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Abstract

In this thesis, a variation on the nonlinear Schrödinger (NLS) equation with multiplicative noise is studied.
In particular, we consider a stochastic version of the parametrically-forced nonlinear Schrödinger equation
(PFNLS), which models the effect of linear loss and the compensation thereof by phase-sensitive amplifi-
cation in pulse propagation through optical fibers. We establish global existence and uniqueness of mild
solutions for initial data in L2(R) and H 1(R).

The proof is an adaptation of a fixed-point argument employed by de Bouard and Debussche [Comm. Math.
Phys., 205:161-181, 1999] for the nonlinear Schrödinger equation with multiplicative noise. The fixed-point
argument relies on space-time estimates on the semigroup generated by the linear parametrically-forced
Schrödinger operator. We prove these so-called Strichartz estimates, originally proven for the Schrödinger
operator, using Fourier methods. A key difference between the Schrödinger operator and its parametrically-
forced version is that the latter is not self-adjoint. We overcome this complication by establishing fixed-time
estimates on the semigroup and its adjoint, based on their Fourier representations.

We also briefly discuss possible future research in the direction of stability of solitary standing wave solutions
of the PFNLS equation under the influence of multiplicative noise. Using informal calculations, we demon-
strate an approach to track the displacement of a soliton due to small stochastic forcing.
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Introduction

Nonlinear Schrödinger equations

The nonlinear Schrödinger (NLS) equation is a well-studied nonlinear partial differential equation that mod-
els the propagation of nonlinear dispersive waves if dissipative processes are negligible [33]. The equation
is

zt = i∆z + iλ|z|2σz for x ∈Rn and t ∈R+. (1)

Here, z is a complex-valued function of space and time, ∆ is the Laplacian, and λ,σ> 0. The condition λ> 0
corresponds to the so-called ‘focusing’ NLS equation, and in case λ < 0 the equation is called ‘defocusing’.
The one dimensional focusing NLS equation finds application in the modeling of pulse propagation trough
optical fibers, where the nonlinear term arises through the Kerr effect. Optical fibers can be used to set up
systems for fiber-optic communications, enabling long-distance communication at high bandwidth [36]. In
this application, z models a complex wave envelope of the electric field in a propagating pulse. In contrast
to the linear Schrödinger equation from quantum mechanics, the variable t represents the physical distance
along the fiber and x corresponds to physical time in the description of an optical wave through a nonlinear
medium. For a detailed review of this application of the NLS equation, we refer to [6, 30].

The NLS equation is known to be globally well-posed for initial data in L2 if 0 <σ< 2
n [35], and in H 1 if 0 <σ<

2
n−2 [12]. These well-posedness results are based on dispersive properties of the Schrödinger evolution. In
particular, a set of space-time estimates, called Strichartz estimates, provides an essential tool for the analysis
of the (nonlinear) Schrödinger equation. For an extensive overview of the mathematical properties of the NLS
equation, we refer the reader to [33].

The NLS equation supports solitary standing wave solutions (solitons) of the form

z(x) =
p

c/2sech(
p

cx), (2)

which are key to physical applications. Here, sech denotes the secant hyperbolic function and c > 0. In
more realistic models of optical fibers dissipative processes can not be neglected, and in that situation, the
soliton no longer remains. To compensate for the loss, an optical fiber loop that makes use of amplification
can be considered. The parametrically-forced nonlinear Schrödinger (PFNLS) equation describes an optical
fiber loop in which the linear loss is compensated by phase-sensitive amplification [17, 24, 25]. The PFNLS
equation reads

zt = i∆z − iνz −ε(γz −µz)+4i |z|2z for x ∈R and t ∈R+, (3)

where the constants ε,γ,µ are all positive and ν is real-valued. The constant γmodels the presence of dissipa-
tion, and the constant µ models the phase-sensitive gain. In order to prevent phase-sensitive effects arising
from the phase-sensitive gain, the model includes a periodic conjugation constant ν. In [23], it was shown
that the PFNLS equation supports solitons of the same form as (2). Moreover, this soliton is exponentially
stable, meaning that a small perturbation of the soliton will decay exponentially to the same pattern.

A stochastic equation

For some physical systems, a more realistic model is obtained by considering perturbations of the system by
noise, giving rise to a stochastic version of the NLS equation and variations thereof. See for instance the model
proposed in [1] describing molecular aggregates with thermal fluctuations. In [3], de Bouard and Debussche
prove existence of global mild solutions in L2, in case the noise is sufficiently regular, for an NLS equation
with multiplicative noise. In the subsequent paper [4], the same authors also show well-posedness for initial
data in H 1. More recent works extend and generalize these existence results, for instance, to treat nonlinear
noise terms [20], or to analyze the equation in the setting of compact manifolds [7, 8].
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2 Introduction

Although many variations and generalizations of the stochastic NLS equation are analyzed in the literature,
these works do not cover the non-self-adjoint linear operation i∆z − iνz − ε(γz −µz) found in the PFNLS
equation. In this thesis, we analyze the following PFNLS equation with multiplicative noise:

dz = (i∆z − iνz −ε(γz −µz))dt +4i |z|2z dt − i (z ◦dW ) for x ∈R and t ∈R+. (4)

Here, the noise W is real-valued and ◦ denotes the Stratonovitch product. This choice of multiplicative noise
is natural in the context of NLS equations, as it conserves the L2-norm in the absence of dissipation and
amplification (ε= 0); a property that is motivated by physical arguments. Indeed, the Stratonovitch product
follows the rules of classical calculus, and upon multiplying (4) with ε= 0 by z and integrating we find

d|z|2L2 = i (〈∆z, z〉L2 −ν|z|2L2 +4|z|3L3 )dt − i (|z|2L2 ◦dW ).

By taking the real part we informally see that the L2-norm is conserved.

In this thesis we prove global existence and uniqueness of mild solutions to (4) for initial data in L2 and H 1,
thereby extending the works of de Bouard and Debussche [3, 4] to incorporate parametric forcing. These mild
solutions take values in the spaces

Lr (
Ω;C ([0,T ];L2(R))∩Lr (0,T ;Lp (R))

)
,

and
Lr (

Ω;C ([0,T ]; H 1(R))∩Lr (0,T ;W 1,p (R))
)

,

for initial data in L2(R) and H 1(R) respectively. Here, p is a constant satisfying p ≥ 4, which depends on
the regularity of the noise. The exponent r is chosen such that (r, p) is an admissible pair for the Strichartz
inequalities. The results hold under the assumption that the noise is suitably regular, to be specified in what
follows.

We also briefly embark upon a discussion on the stability of solitons of the form (2) in the stochastic PFNLS
equation. We demonstrate an approach to track the displacement of a soliton due to the stochastic pertur-
bation, and discuss future research directions. With this aim in mind, we restrict ourselves in this work to
one spatial dimension, in which an explicit representation of the soliton and the stability result of [23] are
available.

The proof of existence and uniqueness directly follows the works of de Bouard and Debussche on the stochas-
tic NLS equation in L2 and H 1 [3, 4]. The proof is based on a fixed-point argument, employing the Banach
fixed point theorem. As the nonlinearity is non-Lipschitz, we first consider an equation in which the nonlin-
earity is truncated. In this way, we obtain global mild solutions for the truncated equation, which give rise
to a local mild solution for the original problem. We then formulate a blow-up criterion, stating that a finite
existence time can only occur due to blow-up of the L2-norm and H 1-norm of solutions in the cases of initial
data in L2 and H 1, respectively. We conclude by proving a bound on the L2-norm and H 1-norm of solutions
on finite time intervals. This bound is derived from a formula describing the evolution of the L2 and H 1 norm
of the mild solutions to (4). The proof of this formula relies on an application of Itô’s formula, which we justify
using a rather technical regularization procedure.

The original fixed-point argument of de Bouard and Debussche relies on the Strichartz estimates that are
available for the Schrödinger evolution. As such, a significant part of this thesis is devoted to a proof of
Strichartz estimates for the evolution of the linear parametrically-forced Schrödinger (PFS) equation. This
result forms the main contribution of this work. The linear evolution of the Schrödinger equation is given by

a multiplication in the Fourier space with the exponential e−i t |ξ|2 . Fixed-time estimates easily follow from this
Fourier solution, which are needed to prove the Strichartz estimates. To recover these fixed-time estimates
in the case of the PFS equation, we explicitly compute its Fourier solution, which takes a more complicated
form. Based on these fixed-time estimates, we then prove the Strichartz estimates for the PFS evolution,
using an additional estimate on the adjoint of the semigroup. We require this additional estimate because
the operator of the linear parametrically-forced Schrödinger equation is not self-adjoint, as opposed to the
Schrödinger operator.

Notation

Throughout this thesis, the following notation is used.



Introduction 3

Function spaces

For p ∈ [1,∞], we denote by Lp (R) the Lebesgue space of complex valued functions on the real line, or we use
the shorthand notation Lp

x . We write

| · |Lp
x
=

(∫
R
| · |p dx

)1/p

for its norm and in case p = 2 we denote the inner product by

〈 f , g 〉L2
x
=

∫
R

f (x)g (x)dx.

We denote the norm of general normed spaces X by ‖ · ‖X and the norm of general inner product spaces by
〈·, ·〉H . The weak derivative of a weakly differentiable function f ∈ Lp (R) is denoted by ∂x f and we write∆= ∂2

x

for the Laplacian. For k ∈N0 and p ∈ [1,∞], W k,p (R) (or the shorthand W k,p
x ) is the Sobolev space of functions

f ∈ Lp (R) that are k times weakly differentiable with weak derivatives up to order k belonging to Lp (R). We
equip this space with the norm

| · |
W

k,p
x

=
k∑

α=0
|∂αx · |L2

x
.

We write H k
x =W k,2

x for k ∈N0 and equip this space with the inner product

〈·, ·〉H k =
k∑

α=0
〈∂αx ·,∂αx ·〉L2

x
.

For r ∈ [0,∞], we will also use the Lebesgue-Bochner spaces of the form Lr (I ; X ), where I is an interval in
the real line and X is a Banach space. These are the strongly Lebesgue-measurable functions f : I → X such
that t 7→ ‖ f (t )‖X is in Lr (I ). In case I = [0,T ] for a fixed T > 0, we use the shorthand Lr

t (X ). Hence, we also
combine shorthand notations as Lr

t (Lp
x ) = Lr (0,T ;Lp (R)).

Lastly, we write S (R) for the Schwartz class of functions whose derivatives are rapidly decreasing. A more
precise definition will follow.

Operator classes

By L (X ,Y ) we denote the class of bounded linear operators from a normed space X into a normed space Y .
Let H , H̃ be separable Hilbert spaces and let X be a Banach space. We denote the class of Hilbert-Schmidt
operators from H into H̃ as L2(H ; H̃) and the class of γ-radonifying operators from H into X as γ(H ; X ). Both
operator classes will be introduced later.

Thesis outline

This thesis is composed of four themed chapters.

Chapter 1 provides an overview of the theory underlying the topic, which we will make use of in subsequent
chapters. First, we briefly review the basic properties C0-semigroups and their application to partial differen-
tial equations in Section 1.1. Then, in Section 1.2, we introduce the concept of Fourier multipliers and present
the Mikhlin multiplier theorem. As an important example, we consider the Riesz potential and we state the
related Hardy-Littlewood-Sobolev inequality. In Section 1.3 we give a compressed overview of the theory of
stochastic integration in the Banach-valued setting. We start by introducing the concept of Brownian motion
in Hilbert spaces, which we use to define the stochastic integral. We then discuss various properties of the
stochastic integral and state a few useful inequalities.

Chapter 2 is devoted to the linear parametrically-forced Schrödinger equation, since an understanding of the
linear equation is essential to the analysis of the stochastic nonlinear equation. We first show in Section 2.1
that the parametrically-forced Schrödinger operator gives rise to a Fourier solution, and we furthermore show
that it generates a C0-group on L2(R) in Section 2.2. We then use the Fourier solution to derive fixed-time esti-
mates on the semigroup in Section 2.3. Finally, we prove that the semigroup satisfies the Strichartz estimates
in Section 2.4.



4 Introduction

In Chapter 3, we turn to the analysis of the stochastic equation (4), in which we give a combined presentation
of the results in [3] and [4]. We start by describing the setting and assumptions in more detail in Section 3.1.
Then, in Section 3.2, we prove a few useful estimates on the stochastic convolution with the semigroup of
the parametrically-forced Schrödinger equation which are required later on. We proceed by proving global
existence and uniqueness of mild solutions for a truncated equation in Section 3.3 using a fixed-point argu-
ment. The solutions to the truncated problem are then used to define a local solution to the original problem
in Section 3.4. Here we also formulate a blow-up criterion, stating that a finite existence time can only occur
in case the H s

x -norm of a solution blows up. Finally, we prove in Section 3.5 that blow-up cannot occur, by
analysis of the evolution of the H s

x -norm using Itô’s formula.

In the final Chapter, Chapter 4, we discuss the stability of solitons in the (stochastic) PFNLS equation. We
start in Section 4.1 by showing that the deterministic equation admits solitons, and present a stability result
due to Kapitula and Sandstede [23]. Then, in Section 4.2, we display an approach to tracking the position
of a stochastically perturbed soliton. We analyze the leading-order behavior of this position correction in
Section 4.3. Lastly, we discuss directions for future research in Section 4.4.



1
Theory

This chapter aims to give a concise overview of the theory required for the analysis of the stochas-
tic PFNLS equation. The proofs in subsequent chapters rely heavily on the properties of the C0-
semigroup generated by the linear operator of Equation (3). We therefore briefly recollect the
properties of C0-semigroups and their generators, and we discuss their relation to partial differ-
ential equations in Section 1.1. We will also require many tools from Fourier analysis, and we
set out the basic concepts of the Fourier transform and related theory in Section 1.2, restricting
ourselves to results needed for subsequent proofs. As Equation (4) is a stochastic partial differ-
ential equation, its analysis belongs to the field of stochastic integration theory. In particular, a
bit of knowledge on the integration of operator-valued processes is required to understand the
formal meaning of (4). In Section 1.3, we, therefore, give a compressed overview of the theory of
stochastic integration in the Banach-valued setting.

1.1. Strongly continuous (semi)groups

The concept of strongly continuous semigroups generalizes the exponential solution of a finite-dimensional
system of linear ODEs to the infinite-dimensional setting. Consider a system of linear first-order ODEs of the
form {

ut = Au,
u(0) = u0 ∈Rn ,

where u(t ) ∈ Rn and A is an n × n matrix. Such a system has a unique solution u ∈ C∞(R;Rn), given by
u(t ) = e t Au0. Here, e t A is the matrix exponential of t A, defined as

e t A = I + t A+ 1

2!
t 2 A2 + . . .+ 1

n!
t n An + . . . ,

for t ∈R. More generally, we can define the operator exponential of a bounded operator A on a Banach space
X by the same series. The operator exponential e t A is then well-defined as a bounded linear operator on X ,
and it enjoys the properties

• e0A = I ;

• e s Ae t A = e(s+t )A for all s, t ∈R;

• t 7→ e t A is continuous;

• d
dt e t A = Ae t A .

Consider now the evolution equation {
ut = Au,
u(0) = u0 ∈ X ,

5



6 1. Theory

where u(t ) ∈ X and A ∈ L (X ). The unique solution u ∈ C∞(R; X ) of this problem is given by the operator
exponential, as u(t ) = e t Au0. In applications to partial differential equations, the operator A is usually a
differential operator acting on a suitable function space X . In most relevant cases, the operator A is, however,
unbounded on the Banach space X . Take for instance the heat equation posed on Lp (R), where the Laplacian
is unbounded. With the aim of generalizing the notion of solution operators for linear evolution equations to
unbounded linear operators, we introduce the following definition of a strongly continuous semigroup.

Definition 1.1.1 (C0-semigroup)
A family of bounded linear operators S = {S(t )}t≥0 acting on a Banach space X is called a C0-semigroup if:

1. S(0) = I ,

2. S(s)S(t ) = S(s + t ) for all t , s ≥ 0 (Semigroup property),

3. limt↓0 ‖S(t )x −x‖X = 0 for all x ∈ X (Strong continuity).

If furthermore ‖S(t )‖L (X ) ≤ 1 for all t ≥ 0, then we call the semigroup contractive.

The infinitesimal generator of S is the linear operator A with domain D(A) defined by

D(A) =
{

x ∈ X : lim
t↓0

1
t (S(t )x −x) exists

}
,

Ax = lim
t↓0

1
t (S(t )x −x), x ∈ D(A).

If instead, we consider a family of bounded linear operators parameterized by the real line instead of the

half-line, we may analogously define the notion of a C0-group.

Definition 1.1.2 (C0-group)
A family of bounded linear operators S = {S(t )}t∈R acting on a Banach space X is called a C0-group if:

1. S(0) = I ,

2. S(s)S(t ) = S(s + t ) for all t , s ∈R (Group property),

3. limt→0 ‖S(t )x −x‖X = 0 for all x ∈ X (Strong continuity).

The infinitesimal generator of a C0-group S is also defined in a similar way, by

D(A) =
{

x ∈ X : lim
t↓0

1
t (S(t )x −x) exists

}
,

Ax = lim
t→0

1
t (S(t )x −x), x ∈ D(A),

the only difference with the generator of a C0-semigroup being the convergence t → 0 instead of t ↓ 0.

Remark 1.1.3. The family of operators {S(t )}t∈R is a strongly continuous group if and only if {S(t )}t≥0 is a
strongly continuous semigroup of invertible operators and S(−t ) = S−1(t ) for all t ≥ 0.

1.1.1. Characterization of generators and properties

The following theorem characterizes when an unbounded linear operator A generates a C0-semigroup.

Theorem 1.1.4 (Hille-Yosida)
An unbounded linear operator A : D(A) ⊆ X → X on a Banach space X generates a C0-semigroup on X if and
only if there exist constants M ≥ 1 and a ∈R such that

1. the domain D(A) is dense in X and A is closed;

2. every λ ∈R such that λ> a belongs to the resolvent set of A;
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3. if λ> a and n ∈N, then

‖(λI − A)−n‖X ≤ M

(λ−a)n .

In that case, ‖S(t )‖L (X ) ≤ Meat for all t ≥ 0.

A proof of the Hille-Yosida theorem can for instance be found in [29, Theorem 5.3, p. 20]. The condition on
powers of the resolvent is often hard to check in practice. The Lumer-Phillips theorem provides a more use-
ful condition for unbounded operators to generate a contraction semigroup, especially in the Hilbert space
setting. For a proof, we refer to [29, Theorem 4.3, p. 14].

Theorem 1.1.5 (Lumer-Phillips)
An operator A : D(A) ⊂ H → H in a Hilbert space H is the generator of a contraction semigroup on H if and
only if:

1. the domain D(A) is dense in H and A is closed;

2. Re〈Ax, x〉H ≤ 0 for all x ∈ D(A) (dissipativity);

3. the range of λI − A is equal to H for some λ> 0.

We collect the following elementary properties of C0-semigroups.

Proposition 1.1.6
Let S be a C0-semigroup on X with generator A.

1. If T is another C0-semigroup generated by A, then T (t ) = S(t ) for t ≥ 0.

2. The semigroup generates continuous orbits from all starting points in X , that is t 7→ S(t )x is a continuous
X -valued function for all x ∈ X and t ≥ 0.

3. The semigroup generates continuously differentiable orbits for all starting points in D(A), that is t 7→
S(t )x is a differentiable X -valued function for all x ∈ D(A). We furthermore have S(t )x ∈ D(A), and

d

dt
S(t )x = AS(t )x = S(t )Ax, t ≥ 0.

4. For all x ∈ X we have
∫ t

0 S(s)x ds ∈ D(A), and

A
∫ t

0
S(s)x ds = S(t )x −x.

If x ∈ D(A), then both sides are equal to
∫ t

0 S(s)Ax ds.

The proofs of these properties can for instance be found in [29, Section 1.2]. We also refer the interested
reader to this work for a detailed treatment of the topic.

1.1.2. Application to evolution equations

From Proposition 1.1.6 it follows that u(t ) = S(t )u0 solves the evolution equation{
ut = Au,
u(0) = u0 ∈ X ,

where u(t ) ∈ X , A : D(A) ⊆ X → X is an unbounded operator on X that generates a C0-semigroup {S(t )}t≥0,
and u0 ∈ D(A). For arbitrary u0 ∈ X , the orbits generated by {S(t )}t≥0 are not necessarily differentiable, and
we can therefore not expect u(t ) = S(t )u0 to solve the evolution equation in the classical sense. It is, however,
true that u(t ) = S(t )u0 solves the integrated version

u(t ) = u0 +
∫ t

0
Au(s)ds, t ∈ [0,T ].
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Let us now consider a nonlinear evolution equation{
ut = Au + f (t ,u(t )),
u(0) = u0 ∈ X ,

(1.1)

where f is a nonlinearity depending on both time and u. In this situation we can also not expect classical
solutions for arbitrary initial data u0 ∈ X . Instead, we introduce the concept of a mild solution.

Definition 1.1.7 (Mild solution)
u : [0,T ] → X is called a mild solution of (1.1) if u is continuous and satisfies

u(t ) = S(t )u0 +
∫ t

0
S(t − s) f (s,u(s))ds.

Under suitable conditions on the nonlinearity f (e.g. Lipschitz continuity), it can be shown that the semi-
linear evolution equation admits unique mild solutions. Moreover, every classical solution is a mild solution.
For proofs of these claims and a more detailed discussion, we refer to [29, Chapter 6]. This shows why the
notion of a mild solution is convenient for semi-linear evolution equations with suitable nonlinearities. Def-
inition 1.1.7 is general enough so that for each initial datum u0 there exists a unique mild solution, and this
class of solutions contains the classical solutions.
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1.2. Fourier analysis

Fourier analysis forms a powerful tool for the study of partial differential equations. Below we present the
fundamental properties of the Fourier transform, and a few (loosely) related results. Most of the material in
this section is standard, and we refer to [18, Chapter 2] for the results where a proof or reference to a proof is
omitted.

Definition 1.2.1 (Schwartz space)
The Schwartz space S (R) is the set of smooth functions f :R→C, such that for each α,β ∈N we have

xα∂βx f → 0 as |x|→∞.

Proposition 1.2.2
The Schwartz space S (R) is dense in Lp (R) if 1 ≤ p <∞.

Definition 1.2.3 (Fourier transform)
For a function f ∈S (R), the Fourier transform of f is the function f̂ :R→C defined as

f̂ (ξ) := 1

2π

∫
R

f (x)e−iξx dx, ξ ∈R. (1.2)

The operator F : f 7→ f̂ is called the Fourier transform. The inverse Fourier transform of f is the function
f̌ :R→C defined by

f̌ (x) :=
∫
R

f (x)e iξx dx, x ∈R. (1.3)

Proposition 1.2.4
The Fourier transform F is a continuous, one-to-one map of S (R) onto itself. Its inverse F−1 is given by

F−1 : f 7→ f̌ .

We may also define the Fourier transform on L1(R) via the formula in (1.2), since∣∣∣∣ 1

2π

∫
R

f (x)e−iξx dx

∣∣∣∣≤ 1

2π

∫
R
| f (x)|dx = 1

2π
| f |L1

x
.

By taking the supremum, we see that the Fourier transform F is a bounded operator from L1(R) into L∞(R).
If f ∈ L2(R) \ L1(R), then we can in general not define the Fourier transform of f via the formula in (1.2), since
the integral does not converge. Instead, we use that the Schwartz space is dense in L2(R) (Proposition 1.2.2)
and define the Fourier transform of f ∈ L2(R) as the L2-limit of the Fourier transforms of an approximating
sequence of Schwartz functions. The next theorem shows that the Fourier transform is an isometry on L2(R).

Theorem 1.2.5 (Plancherel theorem)
If f ∈ L2(R), then f̂ ∈ L2(R) and

| f̂ |L2
ξ
= 1

2π
| f |L2

x
.

We can combine Parseval’s theorem with the bound | f |L∞
x
≤ 1

2π | f |L1
x

to define the Fourier transform on Lp (R)
for all 1 ≤ p ≤ 2. This follows from the following interpolation theorem due to Riesz and Thorin [34].

Theorem 1.2.6 (Riesz-Thorin)
Let Ω be a measure space and 1 ≤ p0, p1 ≤∞,1 ≤ q0, q1 ≤∞. Suppose that

T : Lp0 (Ω)+Lp1 (Ω) → Lq0 (Ω)+Lq1 (Ω)
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is a linear map such that T : Lpi (Ω) → Lqi (Ω) for i = 0,1 and

|T f |Lq0 (Ω) ≤ M0| f |Lp0 (Ω), |T f |Lq1 (Ω) ≤ M1| f |Lp1 (Ω),

for some constants M0, M1. If 0 < θ < 1 and

1

p
= 1−θ

p0
+ θ

p1
,

1

q
= 1−θ

q0
+ θ

q1
,

then T : Lp (Ω) → Lq (Ω) maps Lp (Ω) into Lq (Ω) and

|T f |Lq (Ω) ≤ M 1−θ
0 Mθ

1 | f |Lp (Ω).

As an immediate consequence, we obtain the Hausdorff-Young theorem, which shows that the Fourier trans-
form maps Lp (R) into Lp ′

(R) for 1 ≤ p ≤ 2.

Theorem 1.2.7 (Hausdorff-Young)
If f ∈ Lp (R) with 1 ≤ p ≤ 2, then f̂ ∈ Lp ′

(R) and

| f̂ |
L

p′
ξ

≤ 1

2π
| f |Lp

x
.

The Fourier transform can be used to define operators on Lp (R) by multiplying its Fourier transform with a
function.

Definition 1.2.8 (Fourier multipliers)
For a function m :R→C, we define the Fourier multiplier operator Tm as

Tm f : f 7→F−1{m f̂ }.

The function m is called the symbol of the Fourier multiplier Tm . If a Fourier multiplier is furthermore bounded
on Lp (R), then we call it an Lp -multiplier.

Example 1.2.9. For a differentiable function f , we can compute the derivative using the Fourier inversion
formula (1.3) as

f ′(x) = d

dx

∫
R

f̂ (ξ)e iξx dξ=
∫
R

iξ f̂ (ξ)e iξx dξ=F−1{iξ f̂ (ξ)}(x).

This shows that differentiation is a Fourier multiplier, with symbol m(ξ) = iξ.

Remark 1.2.10. If T is an Lp -multiplier, we can write

|T f |
W

k,p
x

=
k∑

α=0
|∂αx (T f )|Lp

x
=

k∑
α=0

|T (∂αx f )|Lp
x
≤C

k∑
α=0

|∂αx f |Lp
x
=C | f |

W
k,p
x

,

since Fourier multipliers commute. This shows that an Lp -multiplier is also bounded on W k,p (R).

As a consequence, we have the following characterization of the H k -norm.

Proposition 1.2.11 (Fourier characterization of Sobolev spaces)
If k ∈N0, and f ∈ H k (R), then

| f |H k
x
' 2π

(∫
R

(1+|ξ|2)k | f̂ (ξ)|2 dξ

)1/2

.

Here, the symbol ‘'’ denotes norm equivalence.
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Proof. We compute

4π2
∫
R

(1+|ξ|2)k | f̂ (ξ)|2 dξ= 4π2
∫
R

k∑
α=0

(
k

α

)
|ξ|2α| f̂ (ξ)|2 dξ= 4π2

k∑
α=0

(
k

α

)∫
R
|(iξ)α f̂ (ξ)|2 dξ

=
k∑

α=0

(
k

α

)
|∂αx f |2

L2
x

,

which is equivalent to the square of the H k (R)-norm.

We can also consider the Fourier multiplier with symbol ξ 7→ |ξ|−α, which corresponds to the Riesz potential
operator and belongs to the topic of fractional integration.

Definition 1.2.12 (Riesz potential)
For 0 <α< 1, we define the Riesz potential Iα :R→R as the function

Iα(x) = 1

γα|x|1−α
,

where γα is the constant

γα = 2α
p
πΓ(α/2)

Γ(1/2−α/2)
.

We also define the Riesz potential of order α of a function φ ∈S (R) as

(Iα∗φ)(x) = 1

γα

∫
R

φ(y)

|x − y |1−α dy.

The next theorem shows that this operator is bounded from Lp (R) to Lq (R), where 1
q = 1

p −α.

Theorem 1.2.13 (Hardy-Littlewood-Sobolev)
Suppose that 0 <α< 1, 1 < p < 1/α, and q is defined by 1

q = 1
p −α. Then there exists a constant C (α, p) so that

|Iα∗φ|Lq
x
≤C (α, p)|φ|Lp

x
for all φ ∈ Lp (R).

A proof can be found in [19, Theorem 6.1.3, p. 3]. The following theorem provides a useful condition to assert
that a Fourier multiplier is a bounded operator on Lp (R)

Theorem 1.2.14 (Mikhlin multiplier theorem)
If m :R\ {0} →C satisfies

|m(ξ)| ≤C0, for all ξ ∈R\ {0}

and

|ξ|
∣∣∣∣dm

dξ
(ξ)

∣∣∣∣≤C1, for all ξ ∈R\ {0}

and some C0,C1 > 0, then the Fourier multiplier Tm with symbol m is an Lp -multiplier for all 1 < p < ∞.
Moreover, the operator norm of Tm depends only on C0,C1, and p.

For a proof, see [18, Theorem 6.2.7, p. 446]. We present also a few useful properties of the operator (I −ε∆)−1,
which will serve as a regulizing operator. By the Lax-Milgram theorem, there exists for every f ∈ H−1(R) a
unique element u ∈ H 1(R) such that

u −ε∆u = f , in H−1(R).

Hence, we see that (I−ε∆)−1 is well-defined as a mapping from H−1(R) to H 1(R). We may also define (I−ε∆)−1

on Lp (R) with p ≥ 1 as a Fourier multiplier with symbol (1+εξ2)−1. We collect the following useful properties
of the operator (I −ε∆)−1.
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Lemma 1.2.15 (Regulization)
Let p ∈ (1,∞), k ∈N, and f ∈W k,p .

1. For all ε> 0, (I −ε∆)−1 is a bounded operator from W k,p (R) to W k+2,p (R), with

|(I −ε∆)−1 f |
W

k+2,p
x

≤Cε,p | f |W k,p
x

. (1.4)

2. (I −ε∆)−1 is also bounded from W k,p (R) to W k,p (R), with

|(I −ε∆)−1 f |
W

k,p
x

≤Cp | f |W k,p
x

, (1.5)

where Cp does not depend on ε.

3. (I −ε∆)−1 f converges to f in W k,p (R) as ε ↓ 0.

The proof can be found in Appendix A. We conclude the section with a useful embedding result.

Proposition 1.2.16
If p ≥ 2, then H 1(R) embeds continuously into Lp (R) and Lp ′

(R) embeds continuously into H−1(R). That is,

H 1(R) ,→ Lp (R), and Lp ′
(R) ,→ H−1(R). (1.6)

Proof. We first show that H 1(R) ,→ Lp (R). Let therefore u ∈C∞
c (R) and p ≥ 2. Then

|u|p
L

p
x
=

∫
R
|u|p dx =

∫
R
|u|p−2|u|2 dx ≤ |u|p−2

L∞
x

|u|2
L2

x
,

so that

|u|Lp
x
≤ |u|

p−2
p

L∞
x
|u|

2
p

L2
x
≤ |u|

p−2
p

L∞
x
|u|

2
p

H 1
x

.

As u is smooth, we can write

(u(x))2 = 2
∫ x

−∞
u(y)∂x u(y)dy,

so that
|u|2L∞

x
≤ 2|u|L2 |∂x u|L2

x
≤ 2|u|2

H 1
x

,

and we conclude that

|u|Lp
x
≤ 2

p−2
p |u|

p−2
p

H 1
x
|u|

2
p

H 1
x
= 2

p−2
p |u|H 1

x
. (1.7)

The general case follows by density of C∞
c (R) in H 1(R). For the dual estimate, let v ∈ Lp ′

(R). Since H−1(R) is
the dual of H 1(R), and Lp ′

(R) is isometrically isomorphic to the dual of Lp (R) [31, Theorem 4.1, p. 13], we can
write

|v |H−1
x

= sup
u∈H 1

x

〈u, v〉H 1
x×H−1

x

|u|H 1
x

≤ sup
u∈L

p
x

2
p−2

p
〈u, v〉H 1

x×H−1
x

|u|Lp
x

= 2
p−2

p sup
u∈L

p
x

〈u, v〉
L

p
x ×L

p′
x

|u|Lp
x

= 2
p−2

p |v |
L

p′
x

,

where we have used (1.7) in the second step. This shows the result.
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1.3. Stochastic integration in Banach spaces

In this section, we give a condensed introduction to the topic of stochastic integration in Banach spaces. A
detailed treatment of the subject can be found in [27], as well as in [14] and [26]. Before we can give the defini-
tion of the stochastic integral, we first need to introduce the concepts of type 2 Banach spaces, γ-radonifying
operators and cylindrical Brownian motion. Throughout this section, let (γk )k∈N be a sequence of indepen-
dent normal real-valued random variables on a probability space (Ω̃,F̃ , P̃), and let E be a Banach space.

1.3.1. Type p Banach spaces and γ-radonifying operators

We start by introducing the following geometric property of a Banach space, related to random sums.

Definition 1.3.1 (Type p Banach space)
Let p ∈ [1,2]. The Banach space E has the type p property if there exists a constant C > 0 such that for all finite
sequences x1, . . . , xn ∈ E

E

∥∥∥∥∥ N∑
n=1

γn xn

∥∥∥∥∥
p

E

≤C
N∑

n=1
‖xn‖p

E .

The following result can be interpreted as a norm-equivalence result in the context of random sums.

Theorem 1.3.2 (Kahane-Khintchine inequality)
For all 1 ≤ p, q <∞ there exists a constant Cp,q such that for all finite sequences x1, . . . , xn ∈ E we have

(
E

∥∥∥∥∥ N∑
n=1

γn xn

∥∥∥∥∥
p

E

) 1
p

≤Cp,q

(
E

∥∥∥∥∥ N∑
n=1

γn xn

∥∥∥∥∥
q

E

) 1
q

.

A proof can be found in [22, Theorem 6.2.6, p. 23]. With help of the previous theorem, we can give an example
of a type 2 Banach space.

Proposition 1.3.3
For k ∈N and p ≥ 2, the Banach space W k,p (R) has the type 2 property.

Proof. Using Hölder’s inequality and Fubini’s theorem, we may write for f1, . . . , fN ∈W k,p (R)

∣∣∣∣∣ N∑
n=1

γn fn

∣∣∣∣∣
L2(Ω;W

1,p
x )

≤
∣∣∣∣∣ N∑
n=1

γn fn

∣∣∣∣∣
Lp (Ω;W

1,p
x )

=
k∑

α=0

(∫
R
E

∣∣∣∣∣ N∑
n=1

γn∂
α
x fn

∣∣∣∣∣
p

dx

) 1
p

.

By using the Kahane-Khintchine inequality, and L2(Ω) orthogonality of the sequence (γk )k∈N it follows that

∣∣∣∣∣ N∑
n=1

γn fn

∣∣∣∣∣
L2(Ω;W

1,p
x )

≤C
k∑

α=0

∫
R
E

(∣∣∣∣∣ N∑
n=1

γn∂
α
x fn

∣∣∣∣∣
2) p

2

dx


1
p

=C
k∑

α=0

∣∣∣∣∣ N∑
n=1

∣∣∂αx fn
∣∣2

∣∣∣∣∣
1
2

L
p/2
x

,

and via the triangle inequality

∣∣∣∣∣ N∑
n=1

γn fn

∣∣∣∣∣
L2(Ω;W

1,p
x )

≤C
k∑

α=0

(
N∑

n=1
|(∂αx fn)2|

L
p/2
x

) 1
2

=C
k∑

α=0

(
N∑

n=1
|∂αx fn |2Lp

x

) 1
2

≤ C̃

(
N∑

n=1
| fn |2

W
k,p
x

) 1
2

.
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1.3.2. Hilbert-Schmidt and γ-radonifying operators

Recall the following definition of a Hilbert-Schmidt operator.

Definition 1.3.4 (Hilbert-Schmidt operator)
Let H , H̃ be separable Hilbert spaces. An operator Φ ∈ L2(H ; H̃) is called a Hilbert-Schmidt operator if the
series

∑
k∈N ‖Φek‖2

H̃
converges for any orthonormal basis (ek )k∈N of H. We denote by L2(H ; H̃) the space of

such operators, with norm

‖Φ‖2
L2(H ;H̃)

= Tr(Φ∗Φ) = ∑
k∈N

‖Φek‖2
H̃

. (1.8)

This norm is well-defined since the quantity
∑

k∈N ‖Φek‖2
H̃

does not depend on the choice of (ek )k∈N. With the
aim to generalize this notion to Banach-valued operators, we introduce the notion ofγ-radonifying operators.
The following definition of γ-radonifying operators is tailored to operators defined on a separable Hilbert
space, see for example [22, Chapter 9] for a more general definition and treatment of the topic.

Definition 1.3.5 (γ-radonifying operator)
Let H be a separable Hilbert space. A bounded operator K is called a γ-radonifying operator if the series∑

k∈Nγk K ek converges in L2(Ω̃,F̃ , P̃,E) for any orthonormal basis (ek )k∈N of H and any sequence (γk )k∈N of
independent normal real-valued random variables on a probability space (Ω̃,F̃ , P̃). We denote by γ(H ;E) the
space of such operators, with norm

‖K ‖2
γ(H ;E) = Ẽ

∥∥∥∥∥ ∑
k∈N

γk K ek

∥∥∥∥∥
2

E

. (1.9)

This norm does not depend on the choice of (ek )k∈N and (γk )k∈N, and the space γ(H ;E) is a Banach space.
In the case that E is a separable Hilbert space, the space of γ-radonifying operators is equal to the space
of Hilbert-Schmidt operators, with equality of norms. We have the following result on the composition of a
linear operator and a γ-radonifying operator.

Lemma 1.3.6 (Left ideal property)
Let H be a separable Hilbert space and E ,F separable Banach spaces. If K ∈ γ(H ;E) and L ∈ L (E ;F ), then
LK ∈ γ(H ;F ) and

‖LK ‖γ(H ;F ) ≤ ‖L‖L (E ;F )‖K ‖γ(H ;E). (1.10)

Proof. Let (γk )k∈N be a sequence of independent normal real-valued random variables on a probability space
(Ω̃,F̃ , P̃), and (ek )k∈N an orthonormal basis of H . Then, for all m ∈N

Ẽ

∥∥∥∥ m∑
n=1

γk LK ek

∥∥∥∥2

F

= Ẽ
∥∥∥∥L

m∑
n=1

γk K ek

∥∥∥∥2

F

≤ ‖L‖2
L (E ;F )Ẽ

∥∥∥∥ m∑
n=1

γk K ek

∥∥∥∥2

E

≤ ‖L‖2
L (E ;F )‖K ‖2

γ(H ;E).

The conclusion follows by letting m →∞.

1.3.3. Cylindrical Brownian motion

Recall that a real-valued random variable γ is called Gaussian if it has a probability density of the form

fγ(t ) = 1p
2πq

e−t 2/2q .

Definition 1.3.7 (Gaussian random variable)
An E-valued random variable X is called Gaussian if for all x∗ ∈ E∗ the real-valued random variable 〈X , x∗〉
is Gaussian.
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Recall also that an E-valued stochastic process is a family of E-valued random variables (X (i ))i∈I for some
index-set I defined on a common probability space. An important class of stochastic processes is character-
ized by the following definition.

Definition 1.3.8 (Gaussian process)
An E-valued stochastic process (X (i ))i∈I is called a Gaussian process if for all finite sequences i1, . . . , iN ∈ I the

E N -valued random variable (X (i1), . . . , X (iN )) is Gaussian.

It will also be useful to introduce the concept of an isonormal process.

Definition 1.3.9 (H-isonormal process)
Let H be a Hilbert space. An H-isonormal process on Ω is a mapping W : H → L2(Ω) such that:

1. For all h ∈ H the random variable W h is Gaussian;

2. For all h1,h2 ∈ H we have E(W h1 ·W h2) = 〈h1,h2〉H .

Example 1.3.10. If W is an L2(0,T )-isonormal process, then W̃ (t ) := W1[0,t ] defines a real-valued Brownian
motion on [0,T ].

With these definitions in place, we can define the Hilbert space analogue of a real-valued Brownian motion.

Definition 1.3.11 (H-cylindrical Brownian motion)
An L2(0,T ; H)-isonormal process is called an H-cylindrical Brownian motion on [0,T ].

1.3.4. The Itô integral

In this section, we present the stochastic integral for operator-valued processes. We first give its definition for
a class of simple processes, called finite-rank adapted step processes. For the remainder of this section, let
WH be an H-cylindrical Brownian motion on some Hilbert space H . With this aim in mind, we introduce for
h ∈ H and x ∈ X the notation h ⊗x for the element of L (H , X ) defined as

(h ⊗x)k := 〈h,k〉H x, for k ∈ H .

Definition 1.3.12 (Finite-rank adapted step process)
A process Φ : (0,T ) ×Ω → L (H , X ) is called a finite-rank adapted step process with respect to a filtration
(Ft )t∈[0,T ], if it is of the form

Φ(t ,ω) =
N∑

n=1

M∑
m=1

1(tn−1,tn ](t )hm ⊗ξmn(ω),

where h1, . . . ,hM is an orthonormal system in H, and for all (m,n) ∈ M × N , ξnm is an Ftn -measurable step
function from Ω→ X .

For this class of operator-valued processes, we define the stochastic integral as follows.

Definition 1.3.13 (Itô integral)
For Φ as above, we define the Itô integral as∫ T

0
Φ(t )dWH (t ) :=

N∑
n=1

M∑
m=1

(WH (tn)hm −WH (tn−1)hm)ξmn .

The integral extends to processes that can be approximated by a sequence of finite-rank adapted step pro-
cesses. In case E is a type 2 and so-called UMD Banach space, then the processes Φ ∈ Lp (Ω;L2(0,T ;γ(H ;E))),
where 1 < p <∞, that are adapted to (Ft )t∈[0,T ] have this property. We call such processes stochastically in-
tegrable with respect to WH . The abbreviation ‘UMD’ is short for ‘unconditional martingale differences’. It
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was shown in [5, 10] by Burkholder and Bourgain that the class of UMD Banach spaces are exactly the Banach
spaces E for which the Hilbert transform extends to a bounded linear operator on Lp (R;E). For the precise
definition of the UMD class of Banach spaces and related theory, we refer to [21, Chapter 4]. The following
theorem reveals that the Itô integral is an isometry from the space of integrable processes to the space of
square-integrable E-valued random variables.

Theorem 1.3.14 (Itô isometry)
Let E be a UMD and type 2 Banach space and let 1 < p <∞. Then for stochastically WH -integrable processesΦ,
we have

E

∥∥∥∥∫ T

0
Φ(t )dWH (t )

∥∥∥∥p

E
. E|Φ|p

L2(0,T ;γ(H ;E))

See [27, Theorem 13.2, p. 184] for a proof. Using Doob’s maximal inequality, this result can be used to prove
the following inequality on the supremum of the stochastic integral.

Theorem 1.3.15 (Burkholder-Davis-Gundy inequality)
Let H be a separable Hilbert space, E a UMD and type 2 Banach space. If p ∈ [1,∞] and Φ is a WH -integrable
process, then

E sup
0≤t≤T

∥∥∥∥∫ t

0
Φ(t )dWH (t )

∥∥∥∥p

E
≤CE|Φ|p

L2(0,T ;γ(H ;E)))
. (1.11)

A proof of this inequality can be found in [28, Theorem 4.4]. The following lemma provides an estimate for
the stochastic convolution with a contractive semigroup. See [14, Theorem 6.10, p. 166] for a proof.

Lemma 1.3.16
Let {S(t )}t≥0 be a contractive C0-semigroup on a Hilbert space H̃. Then for a WH -integrable process Φ we have

E sup
0≤t≤T

∥∥∥∥∫ t

0
S(t − s)Φ(s)dWH (s)

∥∥∥∥p

H̃
≤CE|Φ|p

L2(0,T ;γ(H ;H̃))
.

We now state a property of the stochastic integral which is familiar from classic integration theory.

Theorem 1.3.17 (Stochastic Fubini)
If for each 0 ≤ s ≤ S we have that Φs is a WH -integrable process and∫ S

0
(E‖Φs‖2

L2(0,T ;γ(H ,E)))
1/2 ds <∞,

then almost surely ∫ S

0

∫ T

0
Φs (t )dWH (t )ds =

∫ T

0

∫ S

0
Φs (t )ds dWH (t ).

For a proof, we refer to [14, Theorem 4.33, p. 110]. We conclude the section with a helpful formula describing
the evolution of a bilinear pairing between two stochastic processes. Although usually stated in a more gen-
eral fashion (see [14, Theorem 4.32, p. 106]), we state this version because it is useful for characterizing the
evolution of the squared norm of a stochastic process.

Theorem 1.3.18 (Itô’s formula (for bilinear maps))
Let E1,E2 and F be UMD Banach spaces and (ek )k≥1 an orthonormal basis of H. Let furthermore b : E1×E2 → F
be a bilinear map and let Θ1 be stochastically integrable w.r.t. WH and have paths in L2(0,T ;γ(H ,E1)) almost
surely. Let ψ1 : [0,T ]×Ω→ E1 be (Ft )t∈[0,T ]-adapted and have paths in L1(0,T ;E1) almost surely. Let also
ξ1 :Ω→ E1 be (Ft )t∈[0,T ]-adapted, and we assume all of the above forΘ2,ψ2 and ξ2, where we replace E1 by E2.
If

ζi (t ) = ξi +
∫ t

0
ψi (s)ds +

∫ t

0
Θi (s)dWH (s),
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for i = 1,2, then almost surely

b(ζ1(t ),ζ2(t ))−b(ζ1(0),ζ2(0)) =
∫ t

0
b(ζ1(s),ψ2(s))+b(ψ1(s),ζ2(s))ds +

∫ t

0
b(ζ1(s),Θ2(s))+b(Θ1(s),ζ2(s))dWH (s)

+
∫ t

0

∑
k≥1

b(Θ1(s)ek ,Θ2(s)ek )ds.

See [9, Corollary 2.6] for a proof.





2
The linear parametrically-forced

Schrödinger equation

This chapter is devoted to the linear parametrically-forced Schrödinger equation. We begin by
considering the Fourier transform of the equation, from which we deduce a characterization of
the Fourier transform of solutions. We proceed by showing that the linear operator of the equa-
tion generates a C0-group in L2(R) in Section 2.2. In Section 2.3, we then derive a set of fixed-time
estimates on the semigroup using the representation of solutions in Fourier space. In the last
section, Section 2.4, we show that the semigroup satisfies the Strichartz estimates, which are key
to proving the existence and uniqueness of mild solutions to the nonlinear stochastic equation.

Recall that the initial value problem for the parametrically-forced Schrödinger equation (PFS) is

zt = i∆z − iνz −ε(γz −µz) for x ∈R and t ∈R+,
z(x,0) = z0(x) for x ∈R,

(2.1)

where z : R×R→ C is a complex-valued function of space and time. The constants ε,γ and µ are all positive
and ν is real-valued. Throughout this work, we will assume that |ν| > εµ, meaning that the conjugation occurs
‘fast enough’ to prevent phase-sensitive effects due to the phase-sensitive forcing term of strength εµ.

By considering only the local effects in equation (2.1), meaning if we ignore for a moment the Laplacian,
we can informally make sense of (2.1) as a physical model for the compensation of dissipative effects. More
precisely, if we consider

zt =−iνz −ε(γz −µz),

with z :R+ →C, then we can summarize the effects of the various parameters as follows. The parameter γ> 0,
modelling dissipation, draws z towards zero. The phase-sensitive gain parameter µ > 0 pulls z towards the
direction of its conjugate. This amplifies real-valued z ∈ C and draws purely imaginary z ∈ C to the origin.
Their combined effect is dissipative or amplifying, depending only on the phase of z ∈ C. Averaged over
all phases, the net effect of γ and µ is always dissipative, regardless of the value of µ > 0. The conjugation
parameter ν acts as a rotation in the complex plane, preventing blow-up of z ∈C that happen to be in a phase-
region where the net effect is amplifying, by rotating z to a phase-region where the net effect is dissipative.

19
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2.1. Fourier solution

Recall that the solution to the linear Schrödinger equation is given by the Fourier multiplier e−i t |ξ|2 . By con-
sidering the Fourier transform of (2.1), we will obtain an analogous exponential multiplier that serves as
a solution operator to (2.1). It will therefore be useful to rewrite the equation first. Let us write z(x, t ) =:
a(x, t )+i b(x, t ), with a,b :R×R→R real-valued. Then we can recast (2.1) as the following real-valued system

at =−∆b +νb −ε(γ−µ)a for x ∈R and t ∈R+,
bt =∆a −νa −ε(γ+µ)b for x ∈R and t ∈R+,

a(x,0) = a0(x) for x ∈R,
b(x,0) = b0(x) for x ∈R,

(2.2)

or in matrix form

∂t

[
a
b

]
=

[−ε(γ−µ) −∆+ν
∆−ν −ε(γ+µ)

][
a
b

]
for x ∈R and t ∈R+,[

a
b

]
(x,0) =

[
a0

b0

]
(x) for x ∈R.

(2.3)

We have the following result for the Fourier solution of (2.2).

Theorem 2.1.1
If a0,b0 ∈ S (R), then there is a unique solution a,b ∈ C 1([0,∞);S (R)) of (2.2). The spatial Fourier transform
of the solution is given by[

â
b̂

]
(t ,ξ) = e−εγt

[
cos

(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

)
t (ξ2 +ν)sinc

(
φ(ξ)t

)
−t (ξ2 +ν)sinc

(
φ(ξ)t

)
cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

)][
â
b̂

]
(0,ξ) for ξ ∈R and t ∈R+,

(2.4)

where φ :R→R+ is defined as

φ(ξ) = (ξ2 +ν)

√
1− ε2µ2

(ξ2 +ν)2 for ξ ∈R. (2.5)

Proof. We apply a Fourier transform to (2.3) in the spatial variable

∂t

[
â
b̂

]
=

[−ε(γ−µ) ξ2 +ν
−ξ2 −ν −ε(γ+µ)

][
â
b̂

]
=: Â(ξ)

[
â
b̂

]
for ξ ∈R and t ∈R+,

and obtain a matrix ODE which is solved by[
â
b̂

]
(t ,ξ) = e t Â(ξ)

[
â
b̂

]
(0,ξ) for ξ ∈R and t ∈R+.

We calculate the matrix exponential e t Â(ξ) by diagonalization, i.e. we write Â(ξ) = U (ξ)D(ξ)U−1(ξ) with

D(ξ) =:

[
λ1(ξ) 0

0 λ2(ξ)

]
. Then, the matrix exponential takes the form

e t Â(ξ) =U (ξ)

[
e tλ1(ξ) 0

0 e tλ2(ξ)

]
U−1(ξ).

The eigenvalues λ1(ξ),λ2(ξ) are the roots of the characteristic equation

0 = det(Â(ξ)−λI ) =
∣∣∣∣−ε(γ−µ)−λ ξ2 +ν

−ξ2 −ν −ε(γ+µ)−λ
∣∣∣∣

=λ2 +ε(γ+µ)λ+ε(γ−µ)λ+ε2(γ−µ)(γ+µ)+ (ξ2 +ν)2

=λ2 +2εγλ+ε2(γ2 −µ2)+ (ξ2 +ν)2.
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Its roots are

λ1,2(ξ) = −2εγ±
√

4ε2γ2 −4(ε2(γ2 −µ2)+ (ξ2 +ν)2)

2
=−εγ±

√
ε2γ2 − (ε2(γ2 −µ2)+ (ξ2 +ν)2)

=−εγ±
√
ε2µ2 − (ξ2 +ν)2 =−εγ± i (ξ2 +ν)

√
1− ε2µ2

(ξ2 +ν)2

=: −εγ± iφ(ξ),

where the last square root is real valued by the assumption |ν| > εµ. The corresponding eigenvectors are

v1,2(ξ) =
[

ξ2 +ν
−εγ± iφ(ξ)+ε(γ−µ)

]
=

[
ξ2 +ν

−εµ± iφ(ξ)

]
.

Hence, we obtain the diagonalization

Â(ξ) =U (ξ)D(ξ)U−1(ξ)

=
[

ξ2 +ν ξ2 +ν
−εµ+ iφ(ξ) −εµ− iφ(ξ)

][−εγ+ iφ(ξ) 0
0 −εγ− iφ(ξ)

][
ξ2 +ν ξ2 +ν

−εµ+ iφ(ξ) −εµ− iφ(ξ)

]−1

,

and upon exponentiating

e t Â(ξ) =U (ξ)

[
e tλ1(ξ) 0

0 e tλ2(ξ)

]
U−1(ξ)

=
[

ξ2 +ν ξ2 +ν
−εµ+ iφ(ξ) −εµ− iφ(ξ)

][
e−εγt e iφ(ξ)t 0

0 e−εγt e−iφ(ξ)t

][
ξ2 +ν ξ2 +ν

−εµ+ iφ(ξ) −εµ− iφ(ξ)

]−1

. (2.6)

After simplification, this yields the result

e t Â(ξ) = e−εγt
[

cos
(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

)
t (ξ2 +ν)sinc

(
φ(ξ)t

)
−t (ξ2 +ν)sinc

(
φ(ξ)t

)
cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

)] . (2.7)

By inspecting the Fourier multiplier of (2.4) at ξ= 0, we can again discuss the roles of the parameters γ,µ and

ν in (2.1). Using that φ(0) =
√
ν2 −ε2µ2, the multiplier e t Â(ξ) takes the form

e t Â(0) = e−εγt

cos
(√

ν2 −ε2µ2t
)
+εµt sinc

(√
ν2 −ε2µ2t

)
tνsinc

(√
ν2 −ε2µ2t

)
−tνsinc

(√
ν2 −ε2µ2t

)
cos

(√
ν2 −ε2µ2t

)
−εµt sinc

(√
ν2 −ε2µ2t

) ,

at ξ= 0. By expanding the terms containing sinc-functions around εµ
ν = 0 as

tνsinc

(√
ν2 −ε2µ2t

)
=

(
1− ε2µ2

ν2

)−1/2
sin

(√
ν2 −ε2µ2t

)
=

(
1+ ε2µ2

2ν2 +O( ε
4µ4

ν4 )
)

sin

(√
ν2 −ε2µ2t

)
,

and

εµt sinc

(√
ν2 −ε2µ2t

)
=

(
ν2

ε2µ2 −1
)−1/2

sin

(√
ν2 −ε2µ2t

)
=

(
εµ
ν +O( ε

3µ3

ν3 )
)

sin

(√
ν2 −ε2µ2t

)
,

we may rewrite

e t Â(0) =e−εγt

 cos
(√

ν2 −ε2µ2t
)

sin
(√

ν2 −ε2µ2t
)

−sin
(√

ν2 −ε2µ2t
)

cos
(√

ν2 −ε2µ2t
)+e−εγt sin

(√
ν2 −ε2µ2t

)[
εµ
ν +O( ε

3µ3

ν3 ) ε2µ2

2ν2 +O( ε
4µ4

ν4 )

− ε2µ2

2ν2 +O( ε
4µ4

ν4 ) − εµ
ν +O( ε

3µ3

ν3 )

]
.

As expected, the parameter γ gives rise to a dissipative factor e−εγt . The effect of the amplification parameter
µ and the conjugation parameter ν seem to be more intertwined. The first matrix in the previous decompo-
sition acts as a rotation with frequency

√
ν2 −ε2µ2. The second matrix captures the phase-sensitive effect,

which is oscillatory in time and becomes small if νÀ εµ. Since the system in (2.2) is equivalent to (2.1), we
immediately obtain the following corollary to Theorem 2.1.1.
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Corollary 2.1.2
If z0 ∈ S (R), then there is a unique solution z ∈C 1([0,∞);S (R)) of (2.1). The spatial Fourier transform of the
solution is given by

ẑ(t ,ξ) =e−εγt [
(cos

(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

)
)â(0,ξ)+ t (ξ2 +ν)sinc

(
φ(ξ)t

)
b̂(0,ξ)

]
+ i e−εγt [−t (ξ2 +ν)sinc

(
φ(ξ)t

)
â(0,ξ)+ (cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

)
)b̂(0,ξ)

]
, (2.8)

for ξ ∈R and t ∈R+, where φ :R→R+ is defined as in Theorem 2.1.1.
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2.2. The forced Schrödinger semigroup

We show in this section that the linear operator associated with the parametrically-forced Schrödinger equa-
tion generates a semigroup on L2(R). To this end we define the operator A on L2(R) by{

D(A) = H 2(R) ⊂ L2(R) → L2(R),
Az = i∆z − iνz −ε(γz −µz) for z ∈ D(A).

(2.9)

As before, ε,γ,µ are positive constants and ν is real-valued.

Proposition 2.2.1
The operator A : H 2(R) ⊂ L2(R) → L2(R) is closed and densely defined.

Proof. We first verify that the unbounded operator A is well defined. It is indeed easy to check that A is
bounded from H 2(R) to L2(R)

|Az|L2
x

(2.9)= |i∆z − iνz −ε(γz −µz)|L2
x
≤ |∆z|L2

x
+ (|ν|+ε(γ+µ))|z|L2

x
≤C |z|H 2

x
.

Furthermore, it follows from the density of the test functions C∞
c (R) in L2(R) that H 2(R) is also dense in L2(R).

Therefore, A is a densely defined unbounded linear operator. To show that A is also closed, we let zn → z in
L2(R) with zn ∈ H 2(R) for all n ∈ N, and Azn → y in L2(R). In order to show that z ∈ H 2(R), we first prove a
convenient auxiliary inequality. Via the triangle inequality, we have the point-wise estimate

|∆z| ≤ |Az|+C |z|,

with C a sufficiently large constant. By squaring the inequality, and applying Young’s inequality with exponent
2 we obtain

|∆z|2 ≤ |Az|2 +C 2|z|2 +2|Az||z| ≤ (1+C )|Az|2 + (C +C 2)|z|2 (2.10)

We then write

|z|2
H 2

x
'

∫
R

(|ξ|4 +2|ξ|2 +1)|ẑ(ξ)|2 dξ≤ 2
∫
R

(|ξ|4 +1)|ẑ(ξ)|2 dξ

= 1

π
|∆z|2

L2
x
+ 1

π
|z|2

L2
x

(2.10)≤ C̃ (|Az|2
L2

x
+|z|2

L2
x

),

where we have again used Young’s inequality to eliminate the |ξ|2 term. We now obtain

|zn − zm |H 2
x
≤ C̃ (|A(zn − zm)|L2

x
+|zn − zm |L2

x
),

and it follows from zn → z in L2(R) and Azn → y in L2(R) that (zn)n≥1 is a Cauchy sequence in H 2(R). There-
fore, it has a limit in H 2(R). As limits are unique, we must have z ∈ H 2(R). Furthermore, it follows from

|Az − y |L2
x
≤ |A(z − zn)|L2

x
+|Azn − y |L2

x
≤C |z − zn |H 2

x
+|Azn − y |L2

x

that Az = y by taking the limit n →∞. This shows that A is closed and concludes the proof.

We will use Theorem 1.1.5 to prove that the operator A generates a semigroup on L2(R).

Theorem 2.2.2
The operator A defined in (2.9) generates a strongly continuous semigroup on L2(R), and for all z ∈ D(A) =
H 2(R) we have

Re〈Az, z〉L2
x
=−εγ|z|2

L2
x
+εµ(|Re z|2

L2
x
−| Im z|2

L2
x

). (2.11)

If µ≤ γ, then the semigroup is furthermore contractive.
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Proof. We first show the inner product identity. Let therefore z ∈ H 2(R). Then

Re〈Az, z〉L2
x

(2.9)= Re

[
i 〈∆z, z〉L2

x
− iν〈z, z〉L2

x
+

∫
R

(−εγ|z|2 +εµz2)dx

]
= Re

[
−i |∂x z|2

L2
x
− iν|z|2

L2
x
+

∫
R

(−εγ|z|2 +εµz2)dx

]
.

Let us write z = a + i b, with a,b ∈ H 2(R) real valued. We then find (2.11) as follows

Re〈Az, z〉L2
x
= Re

∫
R
−εγ(a2 +b2)+εµ(a2 −b2 − i 2ab)dx

=−εγ|z|2
L2

x
+εµ(|a|2

L2
x
−|b|2

L2
x

).

To show that A generates a C0-semigroup on L2(R), we consider the shifted operator

A−ε(µ−γ)I : H 2(R) ⊂ L2(R) → L2(R),

and we write Ã := A−ε(µ−γ)I . It follows from the previous inequality that

Re〈Ãz, z〉L2
x

(2.9)≤ −εγ|z|2
L2

x
+εµ|z|2

L2
x
−ε(µ−γ)|z|2

L2
x
= 0,

so that Ã satisfies the dissipativity condition of Theorem 1.1.5. The shifted operator Ã also satisfies condition
1 of Theorem 1.1.5, as it is the sum of the closed and densely defined operators A and −ε(µ−γ)I . To verify
the last condition, set λ̃ := λ+ ε(µ−γ) so that λI − Ã = λ̃I − A. We now show that λ̃I − A has range L2(R) for
all λ̃ ∈ R. Therefore, consider the Fourier transform of the equation (λ̃I − A)z = f (or rather an equivalent
system), for some f ∈ L2(R)[−ε(γ−µ)− λ̃ ξ2 +ν

−ξ2 −ν −ε(γ+µ)− λ̃
][

â
b̂

]
(ξ) =

[
f̂1

f̂2

]
(ξ) for all ξ ∈R,

where f = f1 + i f2. Recall from the proof of Theorem 2.1.1 that this matrix has determinant zero if and only if
λ̃ = −εγ± iφ(ξ). Since φ(ξ) > 0 for all ξ ∈ R, the matrix is invertible for all ξ ∈ R when λ̃ ∈ R. So (λ̃I − A)z = f
has a solution for all ξ ∈R. In the Fourier space, the solution can be computed via the matrix inverse[

â
b̂

]
(ξ) = 1

(ξ2 +ν)2 + λ̃2 +2εγλ̃+ε2(γ2 −µ2)

[−ε(γ+µ)− λ̃ −ξ2 −ν
ξ2 +ν −ε(γ−µ)− λ̃

][
f̂1

f̂2

]
(ξ) for all ξ ∈R, (2.12)

which scales as 1
ξ2

[
f̂1

f̂2

]
(ξ) as |ξ|→∞. Via the Fourier representation of the Sobolev norm (Proposition 1.2.11)

| f |2
H 2

x
' 4π2

∫
R

(1+|ξ|2)2| f̂ (ξ)|2 dξ,

and the fact that f ∈ L2(R) we then see that the solution is an element of H 2(R). It follows that λ̃I − A =λI − Ã
has range L2(R) for any λ, λ̃ ∈R, and in particular for any λ> 0. We can then conclude by Theorem 1.1.5 that

Ã generates a contraction semigroup on L2(R). It is now easily verified that e At = eε(µ−γ)t e Ãt is also a strongly
continuous semigroup on L2(R), with generator A. If µ≤ γ, then

|e At |L (L2
x ) = eε(µ−γ)t |e Ãt |L (L2

x ) ≤ 1,

which shows that in this case the semigroup (e At )t≥0 is contractive.

We will denote the semigroup generated by A as {S(t )}t≥0. Since the initial value problem (2.1) is an evolution
equation of the linear operator A, the semigroup {S(t )}t≥0 is the solution operator for the PFS equation and
is given by the multiplier of Equation (2.7). Using the Fourier solution, we can in fact show that the initial
value problem (2.1) can also be solved backwards in time, i.e. the semigroup {S(t )}t≥0 can be extended to a
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C0-group {S(t )}t∈R. Via Remark 1.1.3, it suffices to show that S(t ) is invertible for all t ≥ 0, and that its inverse
is S(−t ). Recall from the proof of Theorem 2.1.1 (Equation (2.6)) that S(t ) is a multiplier with symbol

e t Â(ξ) =
[

ξ2 +ν ξ2 +ν
−εµ+ iφ(ξ) −εµ− iφ(ξ)

][
e−εγt e iφ(ξ)t 0

0 e−εγt e−iφ(ξ)t

][
ξ2 +ν ξ2 +ν

−εµ+ iφ(ξ) −εµ− iφ(ξ)

]−1

.

It follows that S(−t ) is a multiplier with symbol

e−t Â(ξ) =
[

ξ2 +ν ξ2 +ν
−εµ+ iφ(ξ) −εµ− iφ(ξ)

][
eεγt e−iφ(ξ)t 0

0 eεγt e iφ(ξ)t

][
ξ2 +ν ξ2 +ν

−εµ+ iφ(ξ) −εµ− iφ(ξ)

]−1

.

Indeed, we see that the matrix e−t Â(ξ) is the inverse of e t Â(ξ). To conclude that the operator S(−t ) is also
the inverse of the operator S(t ), we note that S(−t ) is a bounded operator on L2(R) for all t ≥ 0, since the
transformation t 7→ −t only rearranges the matrix entries in (2.7). In what follows, however, we often work
with the semigroup {S(t )}t≥0 instead of the C0-group {S(t )}t∈R as the exponential factor e−εγt can be used to
control any polynomial growth in time for t ≥ 0.
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2.3. Dispersive properties

From the Fourier solution operator of the linear Schrödinger equation, i.e. the multiplier with symbol e−i t |ξ|2 ,
we can immediately deduce dispersive properties of the corresponding C0-group {T (t )}t∈R. Indeed, we can
for instance see, using Theorem 1.2.5 that,

|T (t )z0|L2
x
= 2π|e−i t |ξ|2 ẑ0(ξ)|L2

ξ
= 2π|ẑ0(ξ)|L2

ξ
= |z0|L2

x
,

for z0 ∈ L2(R) and t ∈ R. Hence, the Schrödinger evolution conserves the L2-norm. Furthermore, by taking

the inverse transform of the Gaussian e−i t |ξ|2 , it follows that the multiplier corresponds to the convolution
with the kernel

Kt (x) := 1p
4πi t

e−i x2/4t ,

so that we have the estimate

|T (t )z0|L∞
x
= sup

x∈R

∣∣∣∣∫
R

Kt (x)z0(x − y)dy

∣∣∣∣≤ 1p
4π|t | sup

x∈R

∫
R

∣∣∣e−i y2/4t z0(x − y)
∣∣∣dy ≤ 1p

4π|t | |z0|L1
x

,

for z0 ∈ L1(R) and t ∈R. This L∞-L1 estimate reveals the dispersive nature of the Schrödinger group: solutions
are uniformly bounded by a function decreasing with time and converging to 0. Meanwhile, the mass (L2-
norm) of solutions is conserved but spreads out over a larger region. In this section, we prove analogues of
the previous two estimates for the linear parametrically-forced Schrödinger equation in forward time. By
interpolation, we then obtain the full range of Lp -Lq estimates on the semigroup in Subsection 2.3.3.

2.3.1. An L∞-L1-estimate

We first prove the L∞-L1-estimate, which holds for t ≥ 0. For that, we will need the following lemma about
the functions in the convolution kernels of the C0-group.

Lemma 2.3.1
Let φ : R→ R+ be defined as in (2.5), i.e. φ(ξ) = (ξ2 +ν)

√
1− ε2µ2

(ξ2+ν)2 . Then there exist constants c1,c2,c3,c4 > 0

such that:

1. |F−1{cos(φ(ξ)t )}|L∞
x
≤ c1/

p|t |+ c3|t |,
2. |F−1{t sinc(φ(ξ)t )}|L∞

x
≤ c2 + c4|t |2,

3. |F−1{t (ξ2 +ν)sinc(φ(ξ)t )}|L∞
x
≤ c1/

p|t |+ c3|t |+ c4|t |2,

for all t ∈R.

Proof. Assume without loss of generality that t ≥ 0.

1. First, we rewrite the square root in φ using the mean value theorem

p
1−x = 1− x

2
p

1−α for x ∈ (0,1),

with α ∈ (0, x). This allows us to rewrite φ as follows

φ(ξ)t = (ξ2 +ν)

√
1− ε2µ2

(ξ2 +ν)2 t = (ξ2 +ν)t − ε2µ2t

2(ξ2 +ν)
√

1−αξ
for ξ ∈R and t ∈R, (2.13)

with αξ ∈ (0, ε2µ2

(ξ2+ν)2 ). Similarly

cos(a − y) = cos(a)+ y sin(β) for a ∈R and y ∈R+,

with β ∈ (a − y, a). We combine these reformulations as

cos(φ(ξ)t ) = cos((ξ2 +ν)t )+ ε2µ2t

2(ξ2 +ν)

sin(αξ,t )√
1−αξ

for ξ ∈R and t ∈R+,
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with αξ ∈ (0, ε2µ2

(ξ2+ν)2 ) and αξ,t ∈
(
(ξ2 +ν)t − ε2µ2t

2(ξ2+ν)
p

1−αξ
, (ξ2 +ν)t

)
. We can now estimate the L∞-norm

of the inverse Fourier transform by taking the inverse of the leading term and treating the second term
as a correction

|F−1{cos(φ(ξ)t )}|L∞
x
≤ |F−1{cos((ξ2 +ν)t )}|L∞

x
+

∣∣∣∣∣F−1

{
ε2µ2t

2(ξ2 +ν)

sin(αξ,t )√
1−αξ

}∣∣∣∣∣
L∞

x

,

in which the second term satisfies∣∣∣∣∣F−1

{
ε2µ2t

2(ξ2 +ν)

sin(αξ,t )√
1−αξ

}∣∣∣∣∣
L∞

x

≤C |t |, (Lemma A.0.1).

The Fourier inverse of the leading term can be explicitly calculated

F−1{cos((ξ2 +ν)t )}(x) = 1

2
p

t
(cos(x2/4t +νt )+ sin(x2/4t +νt )), (Lemma B.0.1).

Thus, we arrive at the desired estimate

|F−1{cos(φ(ξ)t )}|L∞
x
≤ Cp|t | +C |t |.

2. Again, we rewrite using the mean value theorem

sinc(a − y) = sinc(a)− y sinc′(β) for a ∈R and y ∈R+,

with β ∈ (a − y, a). We combine this reformulation with (2.13) as

t sinc(φ(ξ)t ) = t sinc((ξ2 +ν)t )− ε2µ2t 2

2(ξ2 +ν)

sinc′(αξ,t )√
1−αξ

for ξ ∈R and t ∈R+

where again αξ ∈
(
0, ε2µ2

(ξ2+ν)2

)
and αξ,t ∈

(
(ξ2 +ν)t − ε2µ2t

2(ξ2+ν)
p

1−αξ
, (ξ2 +ν)t

)
. We then estimate the L∞-

norm of the inverse Fourier transform as

|F−1{t sinc(φ(ξ)t )}|L∞
x
≤ t |F−1{sinc((ξ2 +ν)t )}|L∞

x
+

∣∣∣∣∣F−1

{
ε2µ2t 2

2

sinc′(αξ,t )

(ξ2 +ν)
√

1−αξ

}∣∣∣∣∣
L∞

x

,

in which the second term is again bounded, this time quadratic in t∣∣∣∣∣F−1

{
ε2µ2t 2

2

sinc′(αξ,t )

(ξ2 +ν)
√

1−αξ

}∣∣∣∣∣
L∞

x

≤C |t |2, (Lemma A.0.1).

We can then conclude that

|F−1{t sinc(φ(ξ)t )}|L∞
x
≤ |t ||sinc((ξ2 +ν)t )|L1

ξ
+C |t |2 ≤C +C |t |2,

as desired.

3. Again, we rewrite using the mean value theorem

t (ξ2 +ν)sinc(φ(ξ)t ) = sin((ξ2 +ν)t )− ε2µ2t 2

2

sinc′(αξ,t )√
1−αξ

for ξ ∈R and t ∈R+,

and find for the L∞-norm of the inverse Fourier transform

|F−1{t (ξ2 +ν)sinc(φ(ξ)t )}|L∞
x
≤ |F−1{sin((ξ2 +ν)t )}|L∞

x
+

∣∣∣∣∣F−1

{
ε2µ2t 2

2

sinc′(αξ,t )√
1−αξ

}∣∣∣∣∣
L∞

x

.
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The second term satisfies a bound∣∣∣∣∣F−1

{
ε2µ2t 2

2

sinc′(αξ,t )√
1−αξ

}∣∣∣∣∣
L∞

x

≤C |t |+C |t |2, (Lemma A.0.1),

and the Fourier inverse of the leading term can be explicitly calculated

F−1{sin((ξ2 +ν)t )}(x) = 1

2
p

t
(cos(x2/4t +νt )− sin(x2/4t +νt )), (Lemma B.0.1).

Thus, we arrive at the estimate

|F−1{t (ξ2 +ν)sinc(φ(ξ)t )}|L∞(R) ≤C /
√
|t |+C |t |+C |t |2.

We are now ready to prove the following L∞−L1 estimate.

Proposition 2.3.2
Let z0 ∈ L1(R), then S(t )z0 satisfies

|S(t )z0|L∞
x
≤ Cp

t
|z0|L1

x
. (2.14)

for t ≥ 0.

Proof. By density, it suffices to consider z0 ∈ S (R). As usual, we write z0 =: a0 + i b0, with a0,b0 : R→ R real-
valued. Then we have via the Fourier representation (2.8)

eεγt |S(t )z0|L∞
x
≤ |F−1{cos

(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

)
}∗a0|L∞

x
+|F−1{t (ξ2 +ν)sinc

(
φ(ξ)t

)
}∗b0|L∞

x

+|F−1{−t (ξ2 +ν)sinc
(
φ(ξ)t

)
}∗a0|L∞

x
+|F−1{cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

)
}∗b0|L∞

x
,

and upon estimating the convolution kernels by their supremum

eεγt |S(t )z0|L∞
x
≤ |F−1{cos

(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

)
}|L∞

x
|a0|L1

x
+|F−1{t (ξ2 +ν)sinc

(
φ(ξ)t

)
}|L∞

x
|b0|L1

x

+|F−1{−t (ξ2 +ν)sinc
(
φ(ξ)t

)
}|L∞

x
|a0|L1

x
+|F−1{cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

)
}|L∞

x
|b0|L1

x
.

Then, via the triangle inequality

eεγt |S(t )z0|L∞
x
≤ (|F−1{cos

(
φ(ξ)t

)
}|L∞

x
+εµ|F−1{t sinc

(
φ(ξ)t

)
}|L∞

x

)|a0|L1
x

+|F−1{t (ξ2 +ν)sinc
(
φ(ξ)t

)
}|L∞

x
|b0|L1

x
+|F−1{t (ξ2 +ν)sinc

(
φ(ξ)t

)
}|L∞

x
|a0|L1

x

+ (|F−1{cos
(
φ(ξ)t

)
}|L∞

x
+εµ|F−1{t sinc

(
φ(ξ)t

)
}|L∞

x

)|b0|L1
x

,

and with help of Lemma 2.3.1

|S(t )z0|L∞
x
≤ e−εγt

( Cp
t
+C +C t +C t 2

)
|z0|L1

x
.

We now distinguish two cases. First, we have for t ≤ 1

|S(t )z0|L∞
x
≤

( Cp
t
+3C )

∣∣∣z0|L1
x
≤ 4Cp

t
|z0|L1

x
.

If otherwise t > 1, then

|S(t )z0|L∞
x
≤ e−εγt (2C +C t +C t 2)|z0|L1

x
≤ e−εγt 4C t 2|z0|L1

x
≤ C̃p

t
|z0|L1

x
,

where C̃ is chosen large enough. So we see that upon taking the maximum of the two constants we obtain
(2.14), as desired.
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2.3.2. An L2-estimate

We now show that the L2-operator norm of S(t ) is uniformly bounded for positive times. This is obvious if
µ ≤ γ, in which case the semigroup is contractive and the operator norm is uniformly bounded by 1. The
uniform bound in the non-contractive case follows again from a consideration of the Fourier solution.

Proposition 2.3.3
Let z0 ∈ L2(R), then S(t )z0 satisfies

|S(t )z0|L2
x
≤C |z0|L2

x
, (2.15)

for t ≥ 0.

Proof. By density, it suffices to consider z0 ∈ S (R). As usual, we write z0 =: a0 + i b0, with a0,b0 : R→ R real-
valued. Then again by (2.8)

eεγt |S(t )z0|L2
x
≤ |F−1{cos

(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

)
}∗a0|L2

x
+|F−1{t (ξ2 +ν)sinc

(
φ(ξ)t

)
}∗b0|L2

x

+|F−1{−t (ξ2 +ν)sinc
(
φ(ξ)t

)
}∗a0|L2

x
+|F−1{cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

)
}∗b0|L2

x
,

and via Parseval’s theorem

eεγt |S(t )z0|L2
x
≤ 2π|(cos

(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

)
)â0|L2

ξ
+2π|t (ξ2 +ν)sinc

(
φ(ξ)t

)
b̂0|L2

ξ

+2π|− t (ξ2 +ν)sinc
(
φ(ξ)t

)
â0|L2

ξ
+2π|(cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

)
)b̂0|L2

ξ
.

By estimating the multipliers with their supremum, we obtain

eεγt |S(t )z0|L2
x
≤ 2π|cos

(
φ(ξ)t

)+εµt sinc
(
φ(ξ)t

) |L∞
ξ
|â0|L2

ξ
+2π|t (ξ2 +ν)sinc

(
φ(ξ)t

) |L∞
ξ
|b̂0|L2

ξ

+2π|− t (ξ2 +ν)sinc
(
φ(ξ)t

) |L∞
ξ
|â0|L2

ξ
+2π|cos

(
φ(ξ)t

)−εµt sinc
(
φ(ξ)t

) |L∞
ξ
|b̂0|L2

ξ

≤ 2πC |ẑ0|L2
ξ
=C |z0|L2

x
,

where we have used that

|cos
(
φ(ξ)t

)±εµt sinc
(
φ(ξ)t

) |L∞
ξ
| =

∣∣∣∣cos
(
φ(ξ)t

)±εµsin
(
φ(ξ)t

)
φ(ξ)

t

∣∣∣∣
L∞
ξ

≤ 1+εµ
∣∣∣∣ 1

φ(ξ)

∣∣∣∣
L∞
ξ

= 1+εµ

∣∣∣∣∣∣∣∣∣
1

(ξ2 +ν)

√
1− ε2µ2

(ξ2+ν)2

∣∣∣∣∣∣∣∣∣
L∞
ξ

= 1+ εµ√
ν2 −ε2µ2

≤C ,

and

|± t (ξ2 +ν)sinc
(
φ(ξ)t

) |L∞
ξ
=

∣∣∣∣ξ2 +ν
φ(ξ)

sin
(
φ(ξ)t

)∣∣∣∣
L∞
ξ

≤
∣∣∣∣ξ2 +ν
φ(ξ)

∣∣∣∣
L∞
ξ

=

∣∣∣∣∣∣∣∣∣
1√

1− ε2µ2

(ξ2+ν)2

∣∣∣∣∣∣∣∣∣
L∞
ξ

= 1√
1− ε2µ2

ν2

.
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2.3.3. Lp -Lp ′
-estimates

We now combine the L∞−L1 estimate of Proposition 2.3.2 and the L2-estimate of Proposition 2.3.3 into an
Lp − Lp ′

-estimate for all p ∈ [2,∞], via Theorem 1.2.6. Here, we denote by p ′ the conjugate exponent of
p ∈ [2,∞], meaning that p ′ is the unique exponent for which 1

p + 1
p ′ = 1. We can now formulate the full range

of dispersive estimates for the forced Schrödinger semigroup.

Theorem 2.3.4
If p ∈ [2,∞] and t > 0, then S(t ) maps continuously Lp ′

(R) to Lp (R) and there exist a constant C such that

|S(t )z0|Lp
x
≤C t−( 1

2 − 1
p )|z0|Lp′

x
, (2.16)

for all z0 ∈ Lp ′
(R).

Proof. Using Theorem 1.2.6, it follows by interpolation between (p, p ′) = (2,2) and (p, p ′) = (∞,1), that for
2 ≤ p ≤∞

|S(t )z0|Lp
x
≤C t−( 1

2 − 1
p )|z0|Lp′

x
.

As a consequence of Theorem 2.1.1, the C0-group {S(t )}t∈R commutes with Fourier multipliers such as the
weak derivatives ∂αx , where α ∈ N. Indeed, the 2× 2 matrix in (2.4) commutes with the symbol of the weak
derivatives, which are (iξ)αI2 for α ∈ N. Therefore, the fixed-time estimates of Theorem 2.3.4 also apply to
Sobolev spaces, and we obtain the following corollary.

Corollary 2.3.5
If p ∈ [2,∞], k ∈ N and t > 0, then S(t ) maps continuously W k,p ′

(R) to W k,p (R) and there exist a constant C
such that

|S(t )z0|W k,p
x

≤C t−( 1
2 − 1

p )|z0|W k,p′
x

, (2.17)

for all z0 ∈W k,p ′
(R).

Proof. We write out the Sobolev norm as

|S(t )z0|W k,p
x

=
k∑

α=0
|∂αx S(t )z0|Lp

x
,

and use that the semigroup commutes with the weak derivative, so that

|S(t )z0|W k,p
x

=
k∑

α=0
|S(t )∂αx z0|Lp

x

(2.16)≤
k∑

α=0
C t−( 1

2 − 1
p )|∂αx z0|Lp′

x
=C t−( 1

2 − 1
p )|z0|W k,p′

x
.
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2.4. Strichartz estimates

The estimates of the previous section are, although insightful, not particularly useful to work with. Instead,
we show that the semigroup {S(t )}t≥0 satisfies a set of space-time smoothing estimates, called Strichartz es-
timates. This type of estimate was first proved for the linear Schrödinger equation, and can be used to ob-
tain local existence results for solutions of the nonlinear Schrödinger equation [16]. Likewise, we will use
the Strichartz estimate for the forced Schrödinger semigroup to obtain existence of mild solutions for the
stochastic parametrically-forced NLS equation. In general Strichartz estimates hold for dispersive equations
that satisfy the dispersive estimates of the previous section. The estimates apply to Bochner-Lebesgue-norms
in which the exponents are admissible pairs. These are defined as follows.

Definition 2.4.1 (Admissible pairs)
A pair (r, p) of exponents is called admissible if 2 ≤ p ≤∞ and

2

r
= 1

2
− 1

p
. (2.18)

The original proof of Strichartz estimates can be found in [32]. We, however, present an adaptation of the
approach of Cazenave [11, Theorem 3.2.5, p. 35]. This approach makes use of the unitarity of the Schrödinger
semigroup, which does not apply to the forced Schrödinger semigroup. Instead, we will work with the adjoint
of the semigroup and its Fourier representation. We now state and prove the Strichartz estimates.

Theorem 2.4.2 (Strichartz estimates)
Let {S(t )}t≥0 be the semigroup associated to the forced Schrödinger equation, and let T ∈ (0,∞). Let furthermore
(r, p) and (γ, q) be admissible pairs.

1. (Convolution estimates) If f ∈ Lγ
′
(0,T ;Lq ′

(R)), then the function

t 7→Φ f (t ) =
∫ t

0
S(t − s) f (s)ds for t ∈ [0,T ), (2.19)

belongs to Lr (0,T ;Lp (R))∩C ([0,T ];L2(R)). Furthermore, there exists a constant C , depending only on r
and γ such that

|Φ f |Lr (0,T ;L
p
x ) ≤C | f |

Lγ′ (0,T ;L
q′
x )

, (2.20)

for every f ∈ Lγ
′
(0,T ;Lp ′

(R)).

2. (Homogeneous estimates) For everyφ ∈ L2(R), the function t 7→ S(t )φ belongs to Lr (0,T ;Lp (R))∩C ([0,T ];L2(R)).
Furthermore, there exists a constant C , depending only on q such that

|S(·)φ|Lr (0,T ;L
p
x ) ≤C |φ|L2

x
. (2.21)

Proof. The proof is divided into seven steps, the first six of which prove the convolution estimates and the
last of which proves the homogeneous estimates. It will be helpful to define the operators Θt ,Λs and Ψ as

Θt , f (s) =
∫ t

0
S∗(t − s)S(t −σ) f (σ)dσ for s ∈ [0,T ), (2.22)

Λs, f (t ) =
∫ T

s
S(t − s)S∗(τ− s) f (τ)dτ for t ∈ [0,T ), (2.23)

and

Ψ f (s) =
∫ T

s
S∗(t − s) f (t )dt for s ∈ [0,T ). (2.24)

Step 1.
We show that for every admissible pair (r, p), the operatorΦ is continuous from Lr ′ (0,T ;Lp ′

(R)) to Lr (0,T ;Lp (R)),
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with norm depending only on r . Therefore, by density it suffices to consider f ∈ Cc ([0,T ),Lp ′
(R)). Theo-

rem 2.3.4 then shows that

|Φ f (t )|Lp
x

(2.19)=
∣∣∣∣∫ t

0
S(t − s) f (s)ds

∣∣∣∣
L

p
x

≤
∫ t

0
|S(t − s) f (s)|Lp

x
ds

(2.16)≤ C
∫ t

0
|t − s|−( 1

2 − 1
p )| f (s)|

L
p′
x

ds

(2.18)= C
∫ t

0
|t − s|− 2

r | f (s)|
L

p′
x

ds ≤C
∫ T

0
|t − s|− 2

r | f (s)|
L

p′
x

ds.

We recognize this last integral as the Riesz potential of order 1− 2
r of the function s 7→ | f (s)|Lp′ , defined for

s ∈ [0,T ). From the Hardy-Littlewood-Sobolev inequality (Theorem 1.2.13), it then follows that

|Φ f |Lr (0,T ;L
p
x ) ≤C | f |

Lr ′ (0,T ;L
p′
x )

,

where C only depends on r .

Step 2.
By the same argument, the operators Θt and Λs are continuous from Lr ′ (0,T ;Lp ′

(R)) to Lr (0,T ;Lp (R)), with
norm depending only on q . Instead of the Lp -estimate on the semigroup, one now uses the following Lp -
estimates on the product of the adjoint and the semigroup.

|S∗(t1)S(t2)z0|Lp
x
≤C |t2 − t1|−( 1

2 − 1
p )|z0|Lp′

x
for all z0 ∈ Lp ′

(R) and t1, t2 > 0, (2.25)

and

|S(t1)S∗(t2)z0|Lp
x
≤C |t2 − t1|−( 1

2 − 1
p )|z0|Lp′

x
for all z0 ∈ Lp ′

x (R) and t1, t2 > 0. (2.26)

These estimates imply that

|S∗(t − s)S(t −σ)z0|Lp
x
≤C |s −σ|−( 1

2 − 1
p )|z0|Lp′

x
for all z0 ∈ Lp ′

x (R),

and
|S(t − s)S∗(τ− s)z0|Lp

x
≤C |t −τ|−( 1

2 − 1
p )|z0|Lp′

x
for all z0 ∈ Lp ′

(R).

One then follows the argument of step 1, and we obtain

|Θt , f |Lr (0,T ;L
p
x ) ≤C | f |

Lr ′ (0,T ;L
p′
x )

, and (2.27)

|Λs, f |Lr (0,T ;L
p
x ) ≤C | f |

Lr ′ (0,T ;L
p′
x )

. (2.28)

The proofs of (2.25) and (2.26) are analogous to that of Theorem 2.3.4, and can be found in Appendix A
(Lemma A.0.2).

Step 3.
We show that for every admissible pair (r, p), the operatorΦ is continuous from Lr ′ (0,T ;Lp ′

(R)) to C ([0,T ],L2(R)),
with norm depending only on r . Therefore, by density it suffices to consider f ∈ Cc ([0,T ),Lp ′

(R)). Via the
embedding Lp ′

(R) ,→ H−1(R) (Proposition 1.2.16) it follows that f ∈ Cc ([0,T ),Lp ′
(R))∩Cc ([0,T ), H−1(R)). By

applying the operator (I −ε∆)−1, we may approximate f with functions fε := (I −ε∆)−1 f ∈Cc ([0,T ), H 1(R)). It
follows from

|Φ fε (t )|L2
x

(2.19)=
∣∣∣∣∫ t

0
S(t − s) fε(s)ds

∣∣∣∣
L2

x

≤
∫ t

0
|S(t − s) fε(s)|L2

x
ds ≤C t | fε|C ([0,t ];L2

x )

that Φ fε ∈C ([0,T ),L2(R)). This allows us to write

|Φ fε (t )|2
L2

x
=

〈∫ t

0
S(t − s) fε(s)ds,

∫ t

0
S(t −σ) fε(σ)dσ

〉
L2

x

=
∫ t

0

∫ t

0
〈S(t − s) fε(s),S(t −σ) fε(σ)〉L2

x
dσds

=
∫ t

0

∫ t

0
〈 fε(s),S∗(t − s)S(t −σ) fε(σ)〉L2

x
dσds

=
∫ t

0
〈 fε(s),

∫ t

0
S∗(t − s)S(t −σ) fε(σ)dσ〉L2

x
ds

=
∫ t

0
〈 fε(s),Θt , fε (s)〉L2

x
ds ≤

∫ t

0
| fε(s)Θt , fε (s)|L1

x
ds
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By applying Hölder’s inequality first in space with exponents p, p ′, and then in time with exponents r,r ′, we
obtain

|Φ fε (t )|2
L2

x
≤

∫ t

0
| fε(s)|

L
p′
x
|Θt , fε (s)|Lp

x
ds ≤ | fε|Lr ′ (0,T ;L

p′
x )
|Θt , fε |Lr (0,T ;L

p
x )

(2.27)≤ | fε|2
Lr ′ (0,T ;L

p′
x )

(1.5)≤ C | f |2
Lr ′ (0,T ;L

p′
x )

, (2.29)

where we have used step 2 to obtain the second to last inequality, and the uniform bound on the regulizing
operator for the last inequality. We now pass to the limit ε ↓ 0 in (2.29), resulting in

|Φ f (t )|2
L2

x
≤C | f |2

Lr ′ (0,T ;L
p′
x )

.

Step 4.
We show that for every admissible pair (r, p), the operator Ψ is also continuous from Lr ′ (0,T ;Lp ′

(R)) to
C ([0,T ],L2(R)), with norm depending only on r . Therefore, by density it suffices to consider f ∈Cc ([0,T ),Lp ′

(R)),
and as in the previous step, we may approximate f with functions fε := (I−ε∆)−1 f ∈Cc ([0,T ), H 1(R)). We then
proceed in the same manner

|Ψ fε (s)|2
L2

x

(2.24)=
〈∫ T

s
S∗(t − s) fε(t )dt ,

∫ T

s
S∗(τ− s) fε(τ)dτ

〉
L2

x

=
∫ T

s

∫ T

s
〈S∗(t − s) fε(t ),S∗(τ− s) fε(τ)〉L2

x
dτdt

=
∫ T

s

∫ T

s
〈 fε(t ),S(t − s)S∗(τ− s) fε(τ)〉L2

x
dτdt

=
∫ T

s
〈 fε(t ),

∫ T

s
S(t − s)S∗(τ− s) fε(τ)dτ〉L2

x
dt

=
∫ T

s
〈 fε(t ),Λs, fε (t )〉L2

x
dt ≤

∫ T

s
| fε(t )Λs, fε (t )|L1

x
dt .

By applying Hölder’s inequality first in space with exponents p, p ′, and then in time with exponents r,r ′, we
obtain

|Ψ fε (s)|2
L2

x
≤

∫ T

s
| fε(t )|

L
p′
x
|Λs, fε (t )|Lp

x
dt ≤ | fε|Lr ′ (0,T ;L

p′
x )
|Λs, fε |Lr (0,T ;L

p
x )

(2.28)≤ | fε|2
Lr ′ (0,T ;L

p′
x )

, (2.30)

where we have used step 2 to obtain the last inequality. Since s is arbitrary, the result follows upon letting
ε ↓ 0.

Step 5.
We show that for every admissible pair (r, p), the operatorΦ is continuous from L1(0,T ;L2(R)) to Lr (0,T ;Lp (R)),
with norm depending only on r . Therefore, let f ∈ L1(0,T ;L2(R)) and consider φ ∈Cc ([0,T ),C∞

c (R)). We have∫ T

0
〈Φ f (t ),φ(t )〉L2

x
dt =

∫ T

0

〈∫ t

0
S(t − s) f (s)ds,φ(t )

〉
L2

x

dt

=
∫ T

0

∫ T

s
〈S(t − s) f (s),φ(t )〉L2

x
dt ds

=
∫ T

0

〈
f (s),

∫ T

s
S∗(t − s)φ(t )dt

〉
L2

x

ds

=
∫ T

0
〈 f (s),Ψφ(s)〉L2

x
ds.

Now, by the Cauchy-Schwarz inequality∣∣∣∣∫ T

0
〈Φ f (t ),φ(t )〉L2

x
dt

∣∣∣∣≤ ∫ T

0
| f (s)|L2

x
|Ψφ(s)|L2

x
ds ≤ | f |L1(0,T ;L2

x )|Ψφ|L∞(0,T ;L2
x )

(2.30)≤ C | f |L1(0,T ;L2
x )|φ|Lr ′ (0,T ;L

p′
x )

, (2.31)



34 2. The linear parametrically-forced Schrödinger equation

where we have used step 4 to obtain the last inequality. Using that the dual of the Bochner space Lr (0,T ;Lp
x )

is isometrically isomorphic to Lr ′ (0,T ;Lp ′
x ) (see for instance [13]), we obtain the following characterization of

the Lr (0,T ;Lp
x )-norm of functions g ∈ L1(0,T ;L2

x ).

|g |Lr (0,T ;L
p
x ) = sup

{∫ T

0
〈g (t ),φ(t )〉L2

x
dt ; φ ∈Cc ([0,T ),C∞

c (R)), |φ|
Lr ′ (0,T ;L

p′
x )

= 1
}
. (2.32)

The result follows from (2.31), and the above relation applied with g =Φ f .

Step 6.
Assume that (γ, q) is another admissible pair, i.e. 2 ≤ q ≤∞ and

2

γ
= 1

2
− 1

q
. (2.33)

From step 3 we obtain that Φ is continuous from Lγ
′
(0,T ;Lq ′

x ) to L∞(0,T ;L2
x ) and from step 1 we obtain that

Φ is continuous from Lγ
′
(0,T ;Lq ′

x ) to Lγ(0,T ;Lq
x ). Therefore there exists a constant C so that

|Φ f |Lγ(0,T ;L
q
x ) ≤C | f |

Lγ′ (0,T ;L
q′
x )

, and (2.34)

|Φ f |L∞(0,T ;L2
x ) ≤C | f |

Lγ′ (0,T ;L
q′
x )

. (2.35)

We now distinguish two cases. First, assume that 2 ≤ p ≤ q , and pick θ ∈ [0,1] so that

1

p
= θ

q
+ 1−θ

2
. (2.36)

This implies for r and γ that

1

r
(2.18)= 1

4
− 1

2p
(2.36)= 1

4
− θ

2q
− 1−θ

4
= θ

4
− θ

2q
(2.33)= θ

γ
+ 1−θ

∞ , (2.37)

where we have used the admissibility condition (Definition 2.4.1) in the first and last equality. We now apply
Hölder’s inequality to the product Φ f (t )θΦ f (t )1−θ, which gives

|Φ f (t )|Lp
x

(2.36)≤ |Φ f (t )|θ
L

q
x
|Φ f (t )|1−θ

L2
x

. (2.38)

Then, we apply Hölder’s inequality in time to find

|Φ f |Lr (0,T ;L
p
x ) =

(∫ T

0
|Φ f (t )|r

L
p
x

dt

) 1
r (2.38)≤

(∫ T

0
|Φ f (t )|θr

L
q
x
|Φ f (t )|(1−θ)r

L2
x

dt

) 1
r

(2.37)≤ |Φ f |θLγ(0,T ;L
q
x )
|Φ f |1−θL∞(0,T ;L2

x )
. (2.39)

Using the previous continuity results for Φ, we finally obtain

|Φ f |Lr (0,T ;L
p
x )

(2.34),(2.35)≤ C | f |
Lγ′ (0,T ;L

q′
x )

.

We conclude that Φ is a continuous map from Lγ
′
(0,T ;Lq ′

x ) to Lr (0,T ;Lp
x ).

Now assume that q < p. It follows from step 1 that Φ is continuous from Lr ′ (0,T ;Lp ′
x ) to Lr (0,T ;Lp

x ) and from
step 5 that Φ is continuous from L1(0,T ;L2

x ) to Lr (0,T ;Lp
x ). By an interpolation theorem due to Bergh and

Löfström [2, Theorem 5.1.2, p. 107], we obtain that there exists a one-parameter family of exponent pairs
(σ,δ) for which it holds that Φ is continuous from Lσ(0,T ;Lδx ) to Lr (0,T ;Lp

x ). These are the pairs (σ,δ) that
satisfy

1

σ
= θ

1
+ 1−θ

r ′ and
1

δ
= θ

2
+ 1−θ

p ′

for some θ ∈ [0,1]. We now show that (γ′, q ′) is part of this family of exponent pairs. Pick θ ∈ [0,1] so that

1

q ′ =
θ

2
+ 1−θ

p ′ . (2.40)
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This implies for γ′ and r ′ that

1

γ′
= 5

4
− 1

2q ′
(2.40)= 5

4
− θ

4
− 1−θ

2p ′ = 5

4
− θ

4
+ 1−θ

2
(

2

r ′ −
5

2
) = θ

1
+ 1−θ

r ′ ,

where we have used that the admissibility condition (Definition 2.4.1) can be formulated as 2
γ′ = 5

2 − 1
q ′ and

2
r ′ = 5

2 − 1
p ′ for the admissible pairs (γ, q) and (r, p) in the first and third equality. It follows that Φ is a contin-

uous map from Lγ
′
(0,T ;Lq ′

x ) to Lr (0,T ;Lp
x ). This completes the proof of the first part of the theorem.

Step 7. We now prove the homogeneous estimate, which is proved in the same way as the convolution esti-
mate. Using the characterization of the Lq (0,T ;Lr

x )-norm of functions g ∈ L1(0,T ;L2
x ), we may write

|g |Lr (0,T ;L
p
x ) = sup

{∫ T

0
〈g (t ),ψ(t )〉L2

x
dt ; ψ ∈Cc ([0,T ),C∞

c (R)), |ψ|
Lr ′ (0,T ;L

p′
x )

= 1
}

,

as in (2.32) and we note that is suffices to show the bound∣∣∣∣∫ T

0
〈S(t )φ,ψ(t )〉L2

x
dt

∣∣∣∣≤C |φ|L2
x

,

for φ ∈ L2
x and ψ ∈Cc ([0,T ),C∞

c (R)) with |ψ|
Lr ′ (0,T ;L

p′
x )

= 1. Therefore we write

∣∣∣∣∫ T

0
〈S(t )φ,ψ(t )〉L2

x
dt

∣∣∣∣=
∣∣∣∣∣
〈
φ,

∫ T

0
S∗(t )ψ(t )dt

〉
L2

x

∣∣∣∣∣ ,

and it follows from the Cauchy-Schwarz inequality that∣∣∣∣∫ T

0
〈S(t )φ,ψ(t )〉L2

x
dt

∣∣∣∣≤ |φ|L2
x

∣∣∣∣∫ T

0
S∗(t )ψ(t )dt

∣∣∣∣
L2

x

. (2.41)

This last factor can in turn be written as∣∣∣∣∫ T

0
S∗(t )ψ(t )dt

∣∣∣∣2

L2
x

=
〈∫ T

0
S∗(t )ψ(t )dt ,

∫ T

0
S∗(s)ψ(s)ds

〉
L2

x

=
∫ T

0

∫ T

0
〈S∗(t )ψ(t ),S∗(s)ψ(s)〉L2

x
dt ds

=
∫ T

0

∫ T

0
〈ψ(t ),S(t )S∗(s)ψ(s)〉L2

x
dt ds

=
∫ T

0

〈
ψ(t ),

∫ T

0
S(t )S∗(s)ψ(s)ds

〉
L2

x

dt

≤
∫ T

0

∣∣∣∣ψ(t ),
∫ T

0
S(t )S∗(s)ψ(s)ds

∣∣∣∣
L1

x

dt .

By applying Hölder’s inequality, first in space and then in time, we find∣∣∣∣∫ T

0
S∗(t )ψ(t )dt

∣∣∣∣2

L2
x

≤
∫ T

0
|ψ(t )|

L
p′
x

∣∣∣∣∫ T

0
S(t )S∗(s)ψ(s)ds

∣∣∣∣
L

p
x

dt

≤ |ψ|
Lr ′ (0,T ;L

p′
x )

∣∣∣∣∫ T

0
S(·)S∗(s)ψ(s)ds

∣∣∣∣
Lr (0,T ;L

p
x )
≤C |ψ|2

Lr ′ (0,T ;L
p′
x )

=C ,

where the last inequality follows as in step 2, and the last equality follows from the assumption |ψ|
Lr ′ (0,T ;L

p′
x )

=
1. Combining this with (2.41), we get ∣∣∣∣∫ T

0
〈S(t )φ,ψ(t )〉L2

x
dt

∣∣∣∣≤C |φ|L2
x

,

as desired.
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As in Corollary 2.3.5, we may use the fact that the semigroup commutes with weak derivatives ∂αx , with α ∈N,
to observe that

∂αxΦ f (t ) = ∂αx
∫ t

0
S(t − s) f (s)ds =

∫ t

0
∂αx S(t − s) f (s)ds =

∫ t

0
S(t − s)∂αx f (s)ds =Φ∂αx f (t ), (2.42)

and obtain Strichartz estimates for Sobolev spaces of the spatial variable. At various points in the proof we
use the equivalence of p-norms on Rn , i.e. for all p ≥ 1 there exist constants C1,C2 > 0 such that

C1

n∑
i=1

|xi | ≤
(

n∑
i=1

|xi |p
)1/p

≤C2

n∑
i=1

|xi |, (2.43)

for all x1, . . . , xn ∈ R. We will also write . to denote that the term to the left of . is smaller than or equal to a
positive constant times the term to the right of ..

Corollary 2.4.3 (Strichartz estimates for Sobolev norms)
Let {S(t )}t≥0 be the semigroup associated to the forced Schrödinger equation, and let T ∈ (0,∞). Let furthermore
k ∈N and let (r, p) and (γ, q) be admissible pairs.

1. (Convolution estimates) If f ∈ Lγ
′
(0,T ;W k,q ′

(R)), then the function

t 7→Φ f (t ) =
∫ t

0
S(t − s) f (s)ds for t ∈ [0,T ),

belongs to Lr (0,T ;W k,p (R))∩C ([0,T ]; H k (R)). Furthermore, there exists a constant C , depending only on
r and γ such that

|Φ f |Lr (0,T ;W
k,p
x )

≤C | f |
Lγ′ (0,T ;W

k,q′
x )

, (2.44)

for every f ∈ Lγ
′
(0,T ;W k,p ′

(R)).

2. (Homogeneous estimates) For every φ ∈ H k (R), the function t 7→ S(t )φ belongs to Lr (0,T ;W k,p (R)) ∩
C ([0,T ]; H k (R)). Furthermore, there exists a constant C , depending only on q such that

|S(·)φ|
Lr (0,T ;W

k,p
x )

≤C |φ|H k
x

. (2.45)

Proof. We first show (2.44), and write out the Lr (0,T ;W k,p
x )-norm as

|Φ f |r
Lr (0,T ;W

k,p
x )

=
∫ T

0
|Φ f |r

W
k,p
x

dt =
∫ T

0

(
k∑

α=0
|∂αxΦ f |Lp

x

)r

dt ,

and use the observation in (2.42), so that

|Φ f |r
Lr (0,T ;W

k,p
x )

(2.42)=
∫ T

0

(
k∑

α=0
|Φ∂αx f |Lp

x

)r

dt
(2.43)
.

k∑
α=0

∫ T

0
|Φ∂αx f |rLp

x
dt =

k∑
α=0

|Φ∂αx f |rLr (0,T ;L
p
x )

.

We then apply the Strichartz estimate for the convolution, yielding

|Φ f |γ
′

Lr (0,T ;W
k,p
x )

(2.20)
.

(
k∑

α=0
|∂αx f |r

Lγ′ (0,T ;L
q′
x )

)γ′/r
(2.43)
.

k∑
α=0

|∂αx f |γ′
Lγ′ (0,T ;L

q′
x )

=
∫ T

0

k∑
α=0

|∂αx f |γ′
L

q′
x

dt

(2.43)
.

∫ T

0
|∂αx f |γ′

W
k,q′
x

dt = | f |γ′
Lγ′ (0,T ;W

k,q′
x )

,

which shows (2.44). For (2.45), we write

|S(·)φ|r
Lr (0,T ;W

k,p
x )

=
∫ T

0
|S(t )φ|r

W
k,p
x

dt =
∫ T

0

(
k∑

α=0
|∂αx S(t )φ|Lp

x

)r

dt =
∫ T

0

(
k∑

α=0
|S(t )∂αxφ|Lp

x

)r

dt

(2.42)≤
k∑

α=0

∫ T

0
|S(t )∂αxφ|rLp

x
dt =

k∑
α=0

|S(·)∂αxφ|rLr (0,T ;L
p
x )

(2.21)
.

k∑
α=0

|∂αxφ|rL2
x

,

and (2.45) follows.



3
A stochastic PFNLS equation

In this chapter, we analyze the parametrically-forced Schrödinger equation with multiplicative
noise, Equation (4). In particular, we prove the existence and uniqueness of global mild solutions
to (4). The proof forms a combined exposition of the existence and uniqueness proofs due to de
Bouard and Debussche in [3, 4], that treat the nonlinear Schrödinger equation with multiplica-
tive noise and initial data in L2 and H 1, respectively. Minor changes to the proofs ensure that
the results apply to the parametrically-forced equation. We begin in Section 3.1 by giving a pre-
cise formulation of the setting and the notion of a mild solution to (4), and we introduce various
spaces that will be used in the analysis. The proof is based on a fixed-point argument, for which
we will need estimates on the stochastic convolution with the PFS semigroup. We prove these
estimates in Section 3.2. In Section 3.3 we then present the fixed-point argument, which applies
to a version of (4) in which the nonlinear term is truncated. This truncation is necessary as the
nonlinearity is not Lipschitz continuous. We proceed by constructing a local solution to the orig-
inal problem based on the global solutions to the truncated problem in Section 3.4. We also show
that a finite existence time can only occur in case of blow-up of the L2-norm or H 1-norm, for ini-
tial data in L2 and H 1, respectively. We conclude the proof of global existence in Section 3.5, by
showing that blow-up does not occur. We therefore analyze the evolution of the L2- and H 1-norm
using Itô’s formula (Theorem 1.3.18). A technical difficulty arises due to the fact that Itô’s formula
applies, in the context of SPDEs, to strong solutions instead of mild solutions. We overcome this
complication via a regularization procedure.

3.1. Preliminaries

For the remainder of this chapter we fix a stochastic basis, i.e. a filtered probability space

(Ω,F , (F (t ))t∈[0,T0],P),

where (F (t ))t∈[0,T ] is a complete and right-continuous filtration, and T0 > 0. We also denote by WH an
L2(R,R)-cylindrical Brownian motion on [0,T0], cf. Definition 1.3.11. We then consider the stochastic par-
tial differential equation

dz = (i∆z − iνz −ε(γz −µz))dt − 1

2
zFΦdt +4i |z|2z dt − i zΦdWH for x ∈R and t ∈R+, (3.1)

where z is a complex-valued process defined on R×R+. The formulation above no longer contains the
Stratonovitch product, which is based on an alternative definition of the stochastic integral. Instead, the
stochastic differential in this equation should be interpreted in the Itô sense, cf. Subsection 1.3.4. Equation
(3.1) is equivalent to (4), and the newly introduced term FΦ serves as a correction to the difference between
the Stratonovitch and Itô products. The function FΦ, called the Îto correction or Itô drift, is defined as

FΦ(x) =
∞∑

k=0
(Φek (x))2 for x ∈R,

37
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with (ek )k∈N and orthonormal basis of L2(R,R). One can verify that this definition of FΦ does not depend on
the choice of (ek )k∈N. We will need to assume that the operatorΦmaps the cylindrical Brownian motion into a
space of more regular functions, as the noise is otherwise too irregular to work with. We make this assumption
precise in Subsection 3.1.1 and furthermore denote the more regular Brownian motion by dW :=ΦdWH .

We impose on (3.1) the initial condition z(0) = z0, and we consider both the cases z0 ∈ Lr (Ω;L2(R)) and
z0 ∈ Lr (Ω; H 1(R)) for some suitably chosen constant r . As in Chapter 2, we write {S(t )}t∈R for the C0-group
associated to the linear parametrically-forced Schrödinger equation. Mild solutions to (3.1) should then, by
definition, satisfy

z(t ) =S(t )z0 +4i
∫ t

0
S(t − s)(|z(s)|2z(s))ds − i

∫ t

0
S(t − s)(z(s)dW (s))− 1

2

∫ t

0
S(t − s)(z(s)FΦ)ds, (3.2)

for each t ∈ [0,T0] and P-almost surely.

3.1.1. Assumptions

In order to obtain a solution to (3.2), we will perform a fixed-point argument in the Banach space Lr (Ω; XT ),
where XT is the space

XT :=C ([0,T ]; Hs
x )∩Lr (0,T ;W s,p

x ), T > 0. (3.3)

We choose the differentiability constant s appropriately as s = 0 or s = 1 to prove existence and uniqueness
results in L2

x and H 1
x respectively. The constants r and p are suitably chosen depending on the regularity of

the noise, as well as constants γ and q which will serve as an admissible pair for the Strichartz estimates. We
now present the conditions on the exponents and the regularity condition on the noise W =ΦWH needed for
the fixed-point argument.

Assumptions 3.1.1
We assume that the operator Φ is:

• Hilbert-Schmidt on L2(R,R), cf. Definition 1.3.4. That is, Φ ∈L2(L2(R,R)).

• γ-radonifying from L2(R;R) to W s,2+δ(R;C) for some fixed δ> 0 and s ∈ {0,1}, Cf. Definition 1.3.5.

We denote L2(L2(R,R)) by L2 to lighten notation. By setting

‖Φ‖δ := ‖Φ‖L2 +‖Φ‖γ(L2(R;R),W s,2+δ(R;C)),

the assumptions on the noise amount to assuming ‖Φ‖δ <∞. We then choose the constants r, p,γ, and q such
that they satisfy:

p ∈ [4,∞); (3.4)

p ≥ 2(2+δ)

δ
; (3.5)

2

r
= 1

2
− 1

p
; (3.6)

q = 4; (3.7)

γ= 8. (3.8)

We now collect some identities that follow from Assumption 3.1.1 which will serve as exponents for Hölder’s
inequality in subsequent proofs.
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Remark 3.1.2. Under Assumption 3.1.1, we have

1

p ′ =
1

2
+ 2

r
; (3.9)

1

p ′ =
1

p
+ 4

r
; (3.10)

1

2
= 1

p
+ 2

r
; (3.11)

1

3γ′
= 1

γ
+ 1

6
; (3.12)

1

q ′ =
1

q
+ 1

q
++ 1

q
; (3.13)

1

γ′
= 2

γ
+ 1

γ
+ 1

2
. (3.14)

We also collect the following useful properties of function spaces with exponents that satisfy Assumption 3.1.1.

Proposition 3.1.3
Under Assumption 3.1.1, we have that

(i) (r, p) and (γ, q) are admissible pairs (cf. Definition 2.4.1);

(ii) If T > 0 and k ∈N, we have the inclusion

C ([0,T ]; H k
x )∩Lr (0,T ;W k,p

x ) ⊆ Lγ(0,T ;W k,q
x );

(iii) If s ∈ {0,1} and f ∈ Hs(R)∩W s,2+δ(R), then

| f |W s,r /2
x

≤ | f |W s,2
x

+| f |
W s,2+δ

x
; (3.15)

(iv) If s ∈ {0,1}, then
‖Φ‖2

γ(L2(R,R),W s,r /2
x )

≤C‖Φ‖2
δ.

Proof.

(i) Follows immediately.

(ii) By inequality (2.39) (with the roles of the admissible pairs (r, p) and (γ, q) reversed, since in this case
p ≥ q) we find

|z|Lγ(0,T ;L
q
x )

(2.39)≤ |z|θ
Lr (0,T ;L

p
x )
|z|1−θ

L∞(0,T ;L2
x )

, (3.16)

for all z ∈C ([0,T ];L2
x )∩Lr (0,T ;Lp

x ), with θ ∈ [0,1]. We can then write for z ∈C ([0,T ]; H k
x )∩Lr (0,T ;W k,p

x )

|z|γ
Lγ(0,T ;W

k,q
x )

=
∫ T

0
|z(t )|γ

W
k,q
x

dt ≤C
∫ T

0

k∑
α=0

|∂αx z(t )|γ
L

q
x

dt =C
k∑

α=0
|∂αx z|γ

Lγ(0,T ;L
q
x )

(3.16)≤ C
k∑

α=0
|∂αx z|θγ

Lr (0,T ;L
p
x )
|∂αx z|(1−θ)γ

L∞(0,T ;L2
x )

Then, by Young’s inequality

|z|
Lγ(0,T ;W

k,q
x )

.

(
k∑

α=0
θ|∂αx z|γ

Lr (0,T ;L
p
x )
+ (1−θ)|∂αx z|γ

L∞(0,T ;L2
x )

)1/γ

.

(
k∑

α=0
|∂αx z|r

Lr (0,T ;L
p
x )

)1/r

+
k∑

α=0
|∂αx z|L∞(0,T ;L2

x )

. |z|r
Lr (0,T ;W

k,p
x )

+|z|L∞(0,T ;H k
x ), (3.17)

as desired.
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(iii) Note that

2 ≤ r

2
≤ 2+δ,

by Assumptions 3.5 and 3.6. Therefore,

| f |W s,r /2
x

=
s∑

α=0
|∂αx f |Lr /2

x
≤

s∑
α=0

(|∂αx f |L2
x
+|∂αx f |L2+δ

x
) = | f |W s,2

x
+| f |

W s,2+δ
x

. (3.18)

(iv) With help of (3.15),

‖Φ‖2
γ(L2(R,R),W s,r /2

x )

(1.9)= E

∣∣∣∣∣ ∑
k∈N

γkΦek

∣∣∣∣∣
2

W s,r /2
x

(3.15)≤ E

(∣∣∣∣∣ ∑
k∈N

γkΦek

∣∣∣∣∣
W s,2

x

+
∣∣∣∣∣ ∑
k∈N

γkΦek

∣∣∣∣∣
W s,2+δ

x

)2

≤ 2(‖Φ‖2
L2

+‖Φ‖2
γ(L2

x ,W s,2+δ
x )

) ≤ 2C‖Φ‖2
δ. (3.19)
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3.2. Stochastic convolution

We introduce the following notation for the stochastic convolution appearing in the mild formulation (3.2)

J z(t ) =
∫ t

0
S(t − s)(z(s)dW (s)) for t ∈ [0,T0], (3.20)

and set

I z(t0, t ) =
∫ t0

0
S(t − s)(z(s)dW (s)) for t0, t ∈ [0,T0], (3.21)

so that J z(t ) = I z(t , t ). We show that stochastic convolution can be estimated in the space Lr (Ω; XT ), starting
with an estimate on the Lr (Ω;Lr

t (W s,p
x ))-part of XT .

Lemma 3.2.1
Let p and r satisfy the conditions in Assumption 3.1.1 and let T > 0. If s ∈ {0,1} and z ∈ Lr (Ω;L∞(0,T ; Hs

x ))
is an (F (t ))t∈[0,T ]-adapted process, then for any α > 0 and any stopping time τ with τ ≤ T almost surely the
stochastic convolution satisfies the estimate

E

(
sup

0≤t0≤τ
|I z(t0, ·)|r

Lr (0,τ;W
s,p
x )

)
≤Cer ε(γ+α)T ‖Φ‖r

δE
(
|z|rL∞(0,τ;Hs

x )

)
. (3.22)

Proof. Starting from the left-hand side of (3.22), we bring the supremum and expectation into the integral to
find

E

(
sup

0≤t0≤τ
|I z(t0, ·)|r

Lr (0,τ;W
s,p
x )

)
= E sup

0≤t0≤τ

(∫ τ

0
|I z(t0, t )|r

W
s,p
x

dt

)
≤

∫ τ

0
E

(
sup

0≤t0≤τ
|I z(t0, t )|r

W
s,p
x

)
dt . (3.23)

Since p ≥ 2, W s,p (R) is a UMD and type 2 Banach space by [21, Prop. 4.2.15] and Proposition 1.3.3. Therefore,
we can apply the Burkholder inequality (Theorem 1.3.15) to the integrand of the previous expression, which
gives

E

(
sup

0≤t0≤τ
|I z(t0, t )|r

W
s,p
x

)
≤CE

(∫ τ

0
‖S(t − s)(z(s)Φ)‖2

γ(L2
x ;W

s,p
x )

ds

)r /2

.

By applying Lemma 1.3.6, with K =Φ and L : u 7→ S(t − s)(z(s)u), we obtain

‖S(t − s)(z(s)Φ)‖γ(L2
x ;W

s,p
x ) ≤ ‖L‖

L (W s,r /2
x ,W

s,p
x )‖Φ‖γ(L2

x ;W s,r /2
x ) ≤C‖L‖

L (W s,r /2
x ,W

s,p
x )‖Φ‖δ,

where the last inequality follows from Proposition 3.1.3 (iv). We can estimate the operator norm using The-
orem 2.3.4, in which we have to include a factor eε(γ+α)T with α > 0 to take into account that t − s ∈ [−T,T ]
takes negative values. It follows that

|Lu|W s,p
x

= |S(t − s)z(s)u|W s,p
x

(2.17)≤ Ceε(γ+α)T |t − s|−( 1
2 − 1

p )|z(s)u|
W

s,p′
x

(3.6)= Ceε(γ+α)T |t − s|− 2
r |z(s)u|

W
s,p′
x

,

and with help Hölder’s inequality,

|Lu|W s,p
x

(3.9)≤ Ceε(γ+α)T |t − s|− 2
r |z(s)|Hs

x
|u|W s,r /2

x
.

Then,

‖S(t − s)(z(s)Φ)‖γ(L2
x ;W

s,p
x ) ≤Ceε(γ+α)T |t − s|− 2

r |z(s)|Hs
x
‖Φ‖δ,

and it follows that

E

(
sup

0≤t0≤τ
|I z(t0, t )|r

W
s,p
x

)
≤Cer ε(γ+α)T ‖Φ‖r

δE

(∫ τ

0
|t − s|− 4

r |z(s)|2Hs
x

ds

)r /2

≤Cer ε(γ+α)T ‖Φ‖r
δ(T 1− 4

r )
r
2 E

(
|z|rL∞(0,τ;Hs

x )

)
, (3.24)
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where in the last step we have used that |z(s)|Hs
x
≤ |z|L∞(0,τ;Hs

x ) and∫ τ

0
|t − s|− 4

r ds =
∫ t

0
(t − s)−

4
r ds +

∫ τ

t
(s − t )−

4
r ds = r

r −4
(t 1− 4

r + (τ− t )1− 4
r ) ≤ 2r

r −4
τ1− 4

r .

The bound in (3.24) does not depend on t , and we conclude that

E

(
sup

0≤t0≤τ
|I z(t0, ·)|r

Lr (0,τ;W
s,p
x )

)
(3.23)≤

∫ τ

0
E

(
sup

0≤t0≤τ
|I z(t0, ·)|r

W
s,p
x

)
dt

(3.24)≤ Cer ε(γ+α)T ‖Φ‖r
δ(T 1− 4

r )r /2E
(
|z|rL∞(0,τ;Hs

x )

)
≤Cer ε(γ+α)T ‖Φ‖r

δT
r
2 −2E

(
|z|rL∞(0,τ;Hs

x )

)
.

The result follows by absorbing the factor T
r
2 −2 into the exponential and the constant.

By considering t0 = t , we obtain the following Corollary.

Corollary 3.2.2
Let p and r satisfy the conditions in Assumption 3.1.1 and let T > 0. If s ∈ {0,1} and z ∈ Lr (Ω;L∞(0,T ; Hs

x ))
is an (F (t ))t∈[0,T ]-adapted process, then for any α > 0 and any stopping time τ with τ ≤ T almost surely the
stochastic convolution satisfies the estimate

E
(
|J z(·)|r

Lr (0,τ;W
s,p
x )

)
≤Cer ε(γ+α)T ‖Φ‖r

δE
(
|z|rL∞(0,τ;Hs

x )

)
. (3.25)

Proof. We use that |J z(t )|W s,p
x

= |I z(t , t )|W s,p
x

≤ sup0≤t0≤τ |I z(t0, t )|W s,p
x

to find

E
(
|J z|r

Lr (0,τ;W
s,p
x )

)
= E

(∫ τ

0
|J z(t )|r

W
s,p
x

dt

)
≤ E

(∫ τ

0
sup

0≤t0≤τ
|I z(t0, t )|r

W
s,p
x

dt

)
.

We then bring the supremum outside of the integral, yielding

E
(
|J z|r

Lr (0,τ;W
s,p
x )

)
≤ E

(
sup

0≤t0≤τ
|I z(t0, ·)|r

Lr (0,τ;W
s,p
x

)
,

and the conclusion follows from Lemma 3.2.1.

In addition to Corollary 3.2.2, we will also need an estimate of the Lr (Ω;L∞
t (Hs

x ))-norm of J z. The estimate
we prove slightly differs from the corresponding estimates in [3, Lemma 3.2] and [4, Lemma 4.2], as the semi-
group is not contractive if µ> γ. This leads to an additional factor, which is exponential in T .

Lemma 3.2.3
Let p and r satisfy the conditions in Assumption 3.1.1 and let T > 0. If s ∈ {0,1} and z ∈ Lr (Ω;Lr

t (Lp
x )) is

(F (t ))t∈[0,T ]-adapted, then J z ∈ Lr (Ω;Ct (Hs
x )) and the stochastic convolution satisfies for any stopping time

τ with τ≤ T almost surely the estimate

E

(
sup

0≤t≤τ
|J z(t )|rHs

x

)
≤Cer ε(µ−γ)T ‖Φ‖r

δT
r
2 −1E

(
|z|r

Lr (0,τ;W
s,p
x )

)
. (3.26)

Proof. We first rewrite the stochastic integral in the case that s= 1. Denote by Ψ an isometry from L2
x to Hs

x ,
and its inverse by Ψ−1. In case s= 0 we can simply take Ψ equal to the identity, and in case s= 1 we can take
for instance the Fourier multiplier with symbol ξ 7→ (1+ξ2)−1. Then W̃ :=ΨW is a Brownian motion on Hs

x ,

and Φ̃ :=ΦΨ−1 is γ-radonifying from Hs
x to W s,2+δ

x . This follows from the following computation of its norm

‖Φ̃‖2
γ(Hs

x ;W s,2+δ
x )

= ‖Φ◦Ψ−1‖2
γ(Hs

x ;W s,2+δ
x )

= E
∣∣∣∣∣ ∑
k∈N

γkΦ(Ψ−1ek )

∣∣∣∣∣
2

W s,2+δ
x

= ‖Φ‖2
γ(L2

x ;W s,2+δ
x )

,
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where (ek )k≥1 is an orthonormal basis of Hs
x , (γk )k≥1 is a sequence of standard normal random variables and

we have used that (Ψ−1ek )k≥1 is an orthonormal basis of L2
x . We now apply Lemma 1.3.16 to the contractive

semigroup (e−ε(µ−γ)t S(t ))t≥0 on Hs
x and find

E

(
sup

0≤t≤τ

∣∣∣∣∫ t

0
e−ε(µ−γ)(t−s)S(t − s)z(s)ΦdW (s)

∣∣∣∣r

Hs
x

)
= E

(
sup

0≤t≤τ

∣∣∣∣∫ t

0
e−ε(µ−γ)(t−s)S(t − s)z(s)Φ̃dW̃ (s)

∣∣∣∣r

Hs
x

)

≤CE

(∫ τ

0
‖z(s)Φ̃‖2

L2(Hs
x ) ds

)r /2

.

Note that

E

(
sup

0≤t≤τ

∣∣∣∣∫ t

0
e−ε(µ−γ)(t−s)S(t − s)z(s)ΦdW (s)

∣∣∣∣r

Hs
x

)
= E

(
sup

0≤t≤τ
e−r ε(µ−γ)t

∣∣∣∣∫ t

0
eε(µ−γ)s S(t − s)z(s)ΦdW (s)

∣∣∣∣r

Hs
x

)

≥ e−r ε(µ−γ)τE

(
sup

0≤t≤τ

∣∣∣∣∫ t

0
S(t − s)z(s)ΦdW (s)

∣∣∣∣r

Hs
x

)
,

so that

E

(
sup

0≤t≤τ
|J z(t )|rHs

x

)
(3.20)= E

(
sup

0≤t≤τ

∣∣∣∣∫ t

0
S(t − s)z(s)ΦdW (s)

∣∣∣∣r

Hs
x

)

≤Cer ε(µ−γ)τE

(∫ τ

0
‖z(s)Φ̃‖2

L2(Hs
x ) ds

)r /2

.

We then apply Lemma 1.3.6 to split up the Hilbert-Schmidt norm as

E

(
sup

0≤t≤τ
|J z(t )|rHs

x

)
(1.10)≤ Cer ε(µ−γ)τ‖Φ̃‖r

γ(Hs
x ;W s,r /2

x )
E

(∫ τ

0
‖z(s)‖2

L (W s,r /2
x ,Hs

x )
ds

)r /2

(3.11)≤ Cer ε(µ−γ)τ‖Φ̃‖r
γ(Hs

x ;W s,r /2
x )

E

(∫ τ

0
|z(s)|2

W
s,p
x

ds

)r /2

.

Here we have used that ‖z(s)‖
L (W s,r /2

x ,Hs
x ) ≤ |z(s)|W s,p

x
via Hölder’s inequality with exponents as in (3.11),

where we interpret z(s) as a multiplier. Via another application of Hölder’s inequality with exponents 1
2 =

1
2 − 1

r + 1
r and Proposition 3.1.3 (iv) we have

E

(
sup

0≤t≤τ
|J z(t )|rHs

x

)
≤Cer ε(µ−γ)τ‖Φ̃‖r

γ(Hs
x ;W s,r /2

x )
T r ( 1

2 − 1
r )E

(
|z(s)|r

Lr (0,τ;W
s,p
x )

)
=Cer ε(µ−γ)τ‖Φ‖r

γ(L2
x ;W s,r /2

x )
T

r
2 −1E

(
|z(s)|r

Lr (0,τ;W
s,p
x )

)
(3.19)≤ 2Cer ε(µ−γ)T ‖Φ‖r

δT
r
2 −1E

(
|z(s)|r

Lr (0,τ;W
s,p
x )

)
.

This concludes the proof.

We may combine the results of Corollary 3.2.2 and Lemma 3.2.3 to obtain the following estimate in the space
Lr (Ω; XT ), where we recall that XT is defined as in (3.3).

Corollary 3.2.4
Let p and r satisfy the conditions in Assumption 3.1.1 and let 0 < T ≤ T0 for some T0 > 0. If s ∈ {0,1} and
z ∈ Lr (Ω; XT ) is an (F (t ))t∈[0,T ]-adapted process, then for any α> 0 and any stopping time τwith τ≤ T almost
surely the stochastic convolution satisfies the estimate

E
(
|J z(·)|rXτ

)
≤Cer ε(µ+γ+α)T ‖Φ‖r

δE
(
|z|rXτ

)
. (3.27)
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Proof. We write

E
(
|J z(·)|rXτ

)
= E

(
( sup

0≤t≤τ
|J z(t )|Hs

x
+|J z(·)|Lr (0,τ;W

s,p
x ))

r
)

≤CE

(
( sup

0≤t≤τ
|J z(t )|rHs

x

)
+E

(
|J z(·)|r

Lr (0,τ;W
s,p
x )

)
.

Applying Corollary 3.2.2 and Lemma 3.2.3 gives

E
(
|J z(·)|rXτ

)
≤Cer ε(µ−γ)T ‖Φ‖r

δT
r
2 −1E

(
|z|r

Lr (0,τ;W
s,p
x )

)
+Cer ε(γ+α)T ‖Φ‖r

δE
(
|z|rL∞(0,τ;Hs

x )

)
≤ C̃ er ε(µ+γ+α)T ‖Φ‖r

δE
(
|z|rXτ

)
,

where we have absorbed the factor T
r
2 −1 into the exponential and the constant in the last step.
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3.3. A truncated equation

In this section, we prove existence and uniqueness for solutions of a stochastic PFNLS equation in the space
XT0 , where we recall that

XT :=C ([0,T ]; Hs
x )∩Lr (0,T ;W s,p

x ), T > 0.

As the nonlinear term |z|2z is not Lipschitz continuous, we consider a truncated version of (3.2) in which the
nonlinearity is truncated in the space XT . To this end, let θR ∈C∞

0 (R) be a smooth cut-off function with inner
radius R and outer radius 2R. That is, suppθ ⊆ (−2R,2R), θ(x) = 1 for x ∈ [−R,R] and 0 ≤ θ(x) ≤ 1 for x ∈ R.
The truncated mild equation then takes the form

z(t ) =S(t )z0 +4i
∫ t

0
S(t − s)(θR (|z|Xs )|z(s)|2z(s))ds

− i
∫ t

0
S(t − s)(z(s)dW (s))− 1

2

∫ t

0
S(t − s)(z(s)FΦ)ds, (3.28)

for each t ∈ [0,T0] and P-almost surely. The following proposition asserts that Equation (3.28) has a unique
solution for initial data z0 ∈ Lr (Ω; Hs

x ).

Proposition 3.3.1 (Global existence and uniqueness for the truncated equation)
Let p and r satisfy the conditions in Assumption 3.1.1, and let 0 < T < T0. Then, if s ∈ {0,1} and z0 ∈ Lr (Ω; Hs

x )
is F (0)-measurable, there exists up to T0 a unique solution z ∈ Lr (Ω; XT0 ) to Equation (3.28).

We first prove the following lemma, which is useful for estimating the nonlinear term in (3.28).

Lemma 3.3.2 (Estimate of the nonlinear term)
Let r, p,γ, and q satisfy the conditions in Assumption 3.1.1 and let T > 0. If s ∈ {0,1} and f , g ∈ Lγt (W s,q

x ), then

|| f |2g |
L
γ′
t (W

s,q′
x )

≤ T 1/2| f |2
L
γ
t (W

s,q
x )

|g |Lγt (W
s,q
x ). (3.29)

Proof. We start by calculating the Sobolev norm of | f |2g as

|| f |2g |
W

s,q′
x

= || f |2g |
L

q′
x
+s|| f |2∂x g |

L
q′
x
+s|∂x (| f |2)g |

L
q′
x

≤ || f |2g |
L

q′
x
+s|| f |2∂x g |

L
q′
x
+s|∂x f | f |g |

L
q′
x

,

and we apply Hölder’s inequality with exponents as in (3.13)

|| f |2g |
W

s,q′
x

≤ | f |2
L

q
x
|g |Lq

x
+s| f |2

L
q
x
|∂x g |Lq

x
+s| f |Lq

x
|g |Lq

x
|∂x f |Lq

x

≤ | f |2
W

s,q
x

|g |W s,q
x

. (3.30)

We then find

|| f |2g |
L
γ′
t (W

s,q′
x )

=
(∫ T

0
|| f (t )|2|g (t )||γ′

W
s,q′
x

dt

)1/γ′
(3.30)≤

(∫ T

0
| f (t )|2γ′

W
s,q
x

|g (t )|γ′
W

s,q
x

dt

)1/γ′

,

and upon applying Hölder’s inequality with exponents as in (3.14), we obtain

|| f |2g |
L
γ′
t (W

s,q′
x )

≤ T 1/2| f |2
L
γ
t (W

s,q
x )

|g |Lγt (W
s,q
x ),

which shows the result.
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Proof of Proposition 3.3.1. In order to show existence and uniqueness, we will perform a fixed-point argu-
ment in the Banach space Lr (Ω; XT ) with T < T0 chosen suitably small. Therefore we define the operator T

as

T z(t ) =S(t )z0 +4i
∫ t

0
S(t − s)(θR (|z|Xs )|z(s)|2z(s))ds

− i
∫ t

0
S(t − s)(z(s)dW (s))− 1

2

∫ t

0
S(t − s)(z(s)FΦ)ds for z ∈ Lr (Ω; XT ). (3.31)

Step 1.
We show that T defines a contraction in the Banach space Lr (Ω; XT ), if T is sufficiently small. To this end, let
z1, z2 ∈ Lr (Ω; XT ) be (F (t ))t∈[0,T ]-adapted processes. Recall that T is a contraction on Lr (Ω; XT ), if

E
(
|T z1 −T z2|rXT

)
≤ κE

(
|z1 − z2|rXT

)
(3.32)

holds for all z1, z2 ∈ Lr (Ω; XT ) and some κ ∈ [0,1). We first treat the deterministic part of T z1−T z2, for which
the desired estimate (3.32) reduces to

|T z1 −T z2|XT ≤ κ|z1 − z2|XT . (3.33)

We apply the Strichartz estimate (Theorem 2.4.2) to the deterministic integrals, and we find for the difference
of T z1 and T z2

|T z1 −T z2|XT =|T z1 −T z2|L∞(0,T ;Hs
x ) +|T z1 −T z2|Lr (0,T ;W

s,p
x )

(2.44)≤ C |θR (|z1|X· )|z1|2z1 −θR (|z2|X· )|z2|2z2|Lγ′t (W
s,q′
x )

+
∣∣∣∣∫ t

0
S(t − s)((z1(s)− z2(s))dW (s))

∣∣∣∣
XT

+C |(z1 − z2)FΦ|Lr ′
t (W

s,p′
x )

≤:I + I I + I I I , (3.34)

which holds P-almost surely. Here we have used that (∞,2), (r, p) and (γ, q) are admissible pairs (Proposi-
tion 3.1.3 (i)), and we recall from Assumption 3.1.1 that γ = 8 and q = 4. To further estimate the term I , we
introduce for i = 1,2 the times

t R
i := sup{t ≤ T, |zi |X t ≤ 2R}, (3.35)

i.e. t R
i is the first time that we have θR (|zi |X t ) = 0. We may assume without loss of generality that t R

1 ≤ t R
2 , so

that we can write [0,T ] = [0, t R
1 ]∪ [t R

1 , t R
2 ]∪ [t R

2 ,T ]. We then split up the integrals as

I ≤C |θR (|z1|X· )|z1|2z1 −θR (|z2|X· )|z2|2z2|Lγ′ (0,t R
1 ;W

s,q′
x )

+C |θR (|z2|X· )|z2|2z2|Lγ′ (t R
1 ,t R

2 ;W
s,q′
x )

=C |(θR (|z1|X· )−θR (|z2|X· ))|z1|2z1 +θR (|z2|X· )(|z1|2z1 −|z2|2z2)|
Lγ′ (0,t R

1 ;W
s,q′
x )

+C |θR (|z2|X· )|z2|2z2|Lγ′ (t R
1 ,t R

2 ;W
s,q′
x )

,

and apply the triangle inequality to find

I ≤|(θR (|z1|X· )−θR (|z2|X· ))|z1|2z1|Lγ′ (0,t R
1 ;W

s,q′
x )

+|θR (|z2|X· )(|z1|2z1 −|z2|2z2)|
Lγ′ (0,t R

1 ;W
s,q′
x )

+C |θR (|z2|X· )|z2|2z2|Lγ′ (t R
1 ,t R

2 ;W
s,q′
x )

=:I1 + I2 + I3. (3.36)
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We now show that each of the deterministic terms I1, I2, I3 and I I I can be controlled by

C T ν|z1 − z2|XT ,

with ν> 0, so that (3.33) indeed holds if T is sufficiently small.

In order to further estimate the terms I1 and I3, we make use of the following auxiliary inequality

|(θR (|z1|X· )−θR (|z2|X· ))z3|γ
′

Lγ′ (t1,t2;W
s,q′
x )

=
∫ t2

t1

|(θR (|z1|X t )−θR (|z2|X t ))z3(t )|γ′
W

s,q′
x

dt

≤
( |θ′R |L∞

R

)γ′ ∫ t2

t1

||z1|X t −|z2|X t |γ
′ |z3(t )|γ′

W
s,q′
x

dt

≤CR

∫ t2

t1

|z1 − z2|γ
′

X t
|z3(t )|γ′

W
s,q′
x

dt

≤CR |z1 − z2|γ
′

XT
|z3|γ

′

Lγ′ (t1,t2;W
s,q′
x )

, (3.37)

which holds for z1, z2 ∈ XT and z3 ∈ Lγ
′
(t1, t2;W s,q ′

x ) with 0 ≤ t1 ≤ t2 ≤ T .

Step 1.1 (Estimating the term I1)
Inequality (3.37) applied to the term I1 with t1 = 0 and t2 = t R

1 gives

I1
(3.37)≤ C |z1 − z2|XT ||z1|2z1|Lγ′ (0,t R

1 ;W
s,q′
x )

. (3.38)

We now apply Lemma 3.3.2 to the nonlinear term to find

I1 ≤C T 1/2|z1 − z2|XT |z1|3Lγ(0,t R
1 ;W

s,q
x )

≤C T 1/2|z1 − z2|XT |z1|3X
tR
1

(3.39)

where the last inequality follows from Proposition 3.1.3 (ii). Then, we use that by definition of t R
1 we have

|z1|X
tR
1
≤ 2R, and therefore

I1
(3.35)≤ C̃ R3T 1/2|z1 − z2|XT . (3.40)

Step 1.2 (Estimating the term I2)
In order to estimate the term I2 we use that θR is bounded and apply the mean value theorem to the remaining
difference, yielding

I2 = |θR (|z2|X· )(|z1|2z1 −|z2|2z2)|
Lγ′ (0,t R

1 ;W
s,q′
x )

≤ ||z1|2z1 −|z2|2z2|Lγ′ (0,t R
1 ;W

s,q′
x )

(3.41)

≤ |(|z1|2 +|z2|2)|z1 − z2||Lγ′ (0,t R
1 ;W

s,q′
x )

. (3.42)

We now note that elements of the sum in (3.42) can be bounded via Lemma 3.3.2 as

||zi |2|z1 − z2||Lγ′ (0,t R
1 ;W

s,q′
x )

≤ T 1/2|zi |2Lγ(0,t R
1 ;W

s,q
x )

|z1 − z2|Lγt (W
s,q
x ),

where i = 1,2. Via Proposition 3.1.3 (ii), we find

|(|z1|2 +|z2|2)|z1 − z2||Lγ′ (0,t R
1 ;W

s,q′
x )

≤ T 1/2(|z1|2X
tR
1

+|z2|2X
tR
1

)|z1 − z2|XT . (3.43)

We now use again that |zi |X
tR
1
≤ 2R, and we conclude that

I2
(3.35)≤ 8T 1/2R2|z1 − z2|XT . (3.44)
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Step 1.3 (Estimating the term I3)
We may also apply inequality (3.37) to the term I3, since θR (|z1|X t ) = 0 if t R

1 ≤ t ≤ t R
2 . This gives

I3
(3.36)= C |θR (|z2|X· )|z2|2z2|Lγ′ (t R

1 ,t R
2 ;W

s,q′
x )

(3.37)≤ C |z1 − z2|XT ||z2|2z2|Lγ′ (t R
1 ,t R

2 ;W
s,q′
x )

,

which is of the same form as estimate (3.38) of term I1. In the same way we obtain

I3 ≤C T 1/2R3|z1 − z2|XT . (3.45)

Collecting inequalities (3.40), (3.44) and (3.45), we have shown that

I ≤CR T 1/2|z1 − z2|XT . (3.46)

Step 1.4 (Estimating the term I I I )
By writing out the Sobolev norm as

|(z1 − z2)FΦ|W s,p′
x

= |(z1 − z2)FΦ|Lp′
x
+s|∂x (z1 − z2)FΦ|Lp′

x
+s|(z1 − z2)∂x FΦ|Lp′

x
,

and upon applying Hölder’s inequality with 1
p ′ = 1

p + 4
r , we find

|(z1 − z2)FΦ|W s,p′
x

(3.10)≤ |z1 − z2|Lp
x
|FΦ|Lr /4

x
+s|∂x (z1 − z2)|Lp

x
|FΦ|Lr /4

x
+s|z1 − z2|Lp

x
|∂x FΦ|Lr /4

x

≤ |z1 − z2|W s,p
x

|FΦ|W s,r /4
x

.

Therefore,

I I I =C |(z1 − z2)FΦ|Lr ′ (0,T ;W
s,p′
x )

≤C T 1− 2
r |FΦ|W s,r /4

x
|z1 − z2|Lr (0,T ;W

s,p
x ) . (3.47)

We now show that the W s,r /4
x -norm of the Itô drift term FΦ is controlled by ‖Φ‖δ. Let therefore (γk )k≥0 be a

sequence of independent normal real valued random variables and recall that FΦ(x) =∑∞
k=0(Φek )2(x), where

(ek )k≥0 is an orthonormal basis of L2(R,R). We can then write, by independence of the normal random vari-
ables

FΦ = E
( ∞∑

k=0
γkΦek

)2

,

and

∂x FΦ = ∂xE

( ∞∑
k=0

γkΦek

)2

= E
[

2

( ∞∑
k=0

γkΦek

)( ∞∑
k=0

γk∂xΦek

)]
≤ E

( ∞∑
k=0

γkΦek

)2

+E
( ∞∑

k=0
γk∂xΦek

)2

, (3.48)

where the last inequality is an application of Young’s inequality. It follows that

|FΦ|W s,r /4
x

= s∑
α=0

(∫
R

(
∂αx FΦ

) r
4 dx

) 4
r (3.48)≤ C

s∑
α=0

∫
R

(
E

( ∞∑
k=0

γk∂
α
xΦek (x)

)2) r
4

dx


4
r

.

By applying Hölder’s inequality in the probability space, and by exchanging expectation and integration, we
obtain

|FΦ|W s,r /4
x

≤C
s∑

α=0

∫
R
E

∣∣∣∣∣ ∞∑
k=0

γk∂
α
xΦek (x)

∣∣∣∣∣
r
2

dx

 4
r

=C
s∑

α=0

E ∣∣∣∣∣ ∞∑
k=0

γk∂
α
xΦek

∣∣∣∣∣
r
2

Lr /2
x

 4
r

.

We conclude by an application of the Kahane-Khintchine inequality (Theorem 1.3.2), yielding

|FΦ|W s,r /4
x

≤C
s∑

α=0
E

∣∣∣∣∣ ∞∑
k=0

γk∂
α
xΦek

∣∣∣∣∣
2

Lr /2
x

≤C‖Φ‖2

γ
(
L2

x ;W s,r /2
x

).
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Then, via Proposition 3.1.3 (iv) we get combined with (3.47)

I I I ≤C T 1− 2
r ‖Φ‖2

δ|z1 − z2|XT . (3.49)

Step 1.5 (Collecting the estimates)
By substituting the results of (3.46) and (3.49) into the starting point (3.34), we find

|T z1 −T z2|XT ≤C T 1/2|z1 − z2|XT

+
∣∣∣∣∫ t

0
S(t − s)((z1(s)− z2(s))dW (s))

∣∣∣∣
XT

+C T 1− 2
r ‖Φ‖δ|z1 − z2|XT .

By taking the Lr (Ω)-norm of this equation we obtain with help of Corollary 3.2.4

E
(
|T z1 −T z2|rXT

)
≤C T 1/2E(|z1 − z2|rXT

)

+Cer ε(µ+γ+α)T ‖Φ‖r
δE(|z1 − z2|rXT

)

+C T 1− 2
r ‖Φ‖δE(|z1 − z2|rXT

),

where α> 0. By setting µ := min
{ 1

2r , 1
r − 2

r 2

}> 0 we combine the constants for T ≤ T0 as

|T z1 −T z2|Lr (Ω;XT ) ≤ C̃ eε(µ+γ+α)T T µ|z1 − z2|Lr (Ω;XT ), (3.50)

where C̃ depends on R,Φ and T0. We then see that upon choosing T small enough, T is a contraction map-
ping in Lr (Ω; XT ).

Step 2.
In order to complete the fixed-point argument, we now show that T maps Lr (Ω; XT ) into itself. From the
contraction estimate (3.50) it is evident that the operator T maps differences of elements in Lr (Ω; XT ) into
Lr (Ω; XT ). We now consider an arbitrary element z ∈ Lr (Ω; XT ) and write

|T z|Lr (Ω;XT ) ≤ |T z −T 0|Lr (Ω;XT ) +|T 0|Lr (Ω;XT ).

The first term is finite by the contraction estimate (3.50), and it, therefore, suffices to show that T 0 is an
element of the space Lr (Ω; XT ). We find

|T 0|XT

(3.31)= |S(t )z0|L∞
t (Hs

x ) +|S(t )z0|Lr
t (W

s,p
x ),

where we have omitted the norm on the probability space Ω, since S(t )z0 does not depend on the path. It
follows from Corollary 2.3.5 that |S(t )z0|L∞

t (Hs
x ) ≤C |z0|Hs

x
<∞. The second term is finite via the homogeneous

Strichartz estimate (2.45). We conclude that T maps Lr (Ω; XT ) into itself.

By steps 1 and 2, it now follows from the Banach fixed-point theorem that there exists a unique solution to
(3.28) in Lr (Ω; XT ). To extend our solution to [0,T0], we note that at t ≤ T we are also in the position to apply
the same contraction argument with initial condition z(T ), since our choice of T only depends on R,T0 and
Φ. Therefore, we write [0,T0] as a union of intervals of size at most T , and define the global solution as a
concatenation of the local solutions.
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3.4. Local existence and blow-up criterion

This section is devoted to the following theorem.

Theorem 3.4.1 (Local existence & blow-up criterion)
Let p and r satisfy the conditions in Assumption 3.1.1, and let 0 < T < T0. Then, if s ∈ {0,1} and z0 ∈ Lr (Ω; Hs

x )
is F (0)-measurable, there exists a stopping time τ∗(z0) and a unique solution z on [0,τ∗) to Equation (3.2) that
is in Lr (Ω; Xτ) for any τ< τ∗. Furthermore, we have P-almost surely

τ∗(z0) =∞ or lim
t↗τ∗

sup
s≤t

|z(t )|Hs
x
=∞.

For the proof of this theorem we will need some preliminaries. Denote by zR the unique solution of the
truncated equation (3.28) with radius R. We define for R > 0 the stopping times

τR := sup{t ∈ [0,T0], |zR |X t ≤ R},

which is the first time |zR |X t reaches R, and before this time no truncation takes place. Until this point, two
solutions zR and zR ′ with R ′ > R should therefore coincide on [0,min{τR ,τR ′ }]. This is stated in the following
lemma.

Lemma 3.4.2
If R ′ > R > 0, then for each t ∈ [0,min{τR ,τR ′ }], we have P-almost surely

zR (t ) = zR ′ (t ).

Proof of Lemma 3.4.2. Let R ′ > R > 0, write τ = min{τR ,τR ′ }, and let T > 0. In case τ < T0, we define zR on
[τ,T0] as the solution to the linearized equation

dy = (i∆y − iνy −ε(γy −µy∗))dt − i y dW − 1

2
yFΦdt ,

with initial condition yR (τ) = zR (τ). In mild formulation, the linearized equation reads

yR (t ) = S(t −τ)zR (τ)− i
∫ t

τ
S(t − s)(yR (s)dW (s))− 1

2

∫ t

τ
S(t − s)(yR (s)FΦ)ds, (3.51)

for each t ∈ [τ,T0], P-almost surely. Equation (3.51) has a unique solution

yR ∈ Lr (Ω;C ([τ,T0]; Hs
x )∩ (Lr (τ,T ;W s,p

x )),

via Proposition 3.3.1, since the same proof can be applied to Equation (3.51) by leaving out the nonlinear
term. We denote the extension as

z̃R (t ) =
{

zR (t ), if t ∈ [0,τ]
yR (t ), if t ∈ [τ,T0],

and we define z̃R ′ (t ) on [0,T0] in the same way. We first show that z̃R (t ) = z̃R ′ (t ) on [0,T ] for small T , and
equality on [0,T0] will follow by reiteration. On [0,T ] we have:

z̃R ′ (t )− z̃R (t ) =4i
∫ t∧τ

0
S(t − s)(|z̃R ′ (s)|2 z̃R ′ (s)−|z̃R (s)|2 z̃R (s))ds

− i
∫ t

0
S(t − s)((z̃R ′ (s)− z̃R (s))dW (s))

− 1

2

∫ t

0
S(t − s) ((z̃R ′ (s)− z̃R (s))FΦ)ds

=: I1(ω, t , x)+ I2(ω, t , x)+ I3(ω, t , x), (3.52)
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since we can omit the truncating function θ if t ≤ τ. Using the Strichartz inequality (Theorem 2.4.2), we can
estimate the term I1 P-almost surely as

|I1|XT = 4

∣∣∣∣∫ t

0
S(t − s)χ[0,τ](s)(|z̃R ′ (s)|2 z̃R ′ (s)−|z̃R (s)|2)z̃R (s))ds

∣∣∣∣
XT

(2.44)≤ C
∣∣χ[0,τ](|z̃R ′ |2 z̃R ′ −|z̃R |2 z̃R )

∣∣
L
γ′
t (W

s,q′
x )

=C
∣∣|z̃R ′ |2 z̃R ′ −|z̃R |2 z̃R

∣∣
Lγ′ (0,τ∧T ;W

s,q′
x )

,

where we have used that (∞,2), (r, p) and (γ, q) are admissible pairs (Proposition 3.1.3 (i)), and we recall from
Assumption 3.1.1 that γ= 8 and q = 4. This last nonlinear term

∣∣|z̃R ′ |2 z̃R ′ −|z̃R |2 z̃R
∣∣
Lγ′ (0,τ∧T ;W

s,q′
x )

has the same

form as (3.41) in the proof of Proposition 3.3.1, and we treat it similarly. We estimate as in step 1.2 of the proof
of Proposition 3.3.1

|I1|XT

(3.43)≤ C T 1/2(|z̃R ′ |2Xτ
+|z̃R |2Xτ

)|z̃R ′ − z̃R |XT

≤C T 1/2(R ′2 +R2)|z̃R ′ − z̃R |XT .

By using (3.49) for term I3, we may write

|z̃R ′ − z̃R |XT ≤CR T 1/2|z̃R ′ − z̃R |XT

+
∣∣∣∣∫ t

0
S(t − s)((z̃R ′ (s)− z̃R (s))dW (s))

∣∣∣∣
XT

+C T 1− 2
r ‖Φ‖δ|z̃R ′ − z̃R |XT .

We take the Lr (Ω)-norm of this equation and via Corollary 3.2.4 we obtain

E
(
|z̃R ′ − z̃R |rXT

)
≤CR T 1/2E(|z̃R ′ − z̃R |rXT

)

+Cer ε(µ+γ+α)T ‖Φ‖r
δE(|z̃R ′ − z̃R |rXT

)

+C T 1− 2
r ‖Φ‖δE(|z̃R ′ − z̃R |rXT

).

By setting µ := min{ 1
2r , 1

r − 2
r 2 } > 0 we combine the constants for T ≤ T0 as

|z̃R ′ − z̃R |Lr (Ω;XT ) ≤ C̃ er ε(µ+γ+α)T T µ|z̃R ′ − z̃R |Lr (Ω;XT ), (3.53)

where C̃ depends on R,R ′,Φ, and T0. Hence, for T sufficiently small, both sides of (3.53) are zero, and we
have z̃R ′ = z̃R on [0,T ] P-almost surely. We can repeat this procedure to get equality of z̃R ′ and z̃R on [0,T0],
P-almost surely. P-almost sure equality of zR ′ and zR on [0,τ] then follows.

From the previous lemma, we can deduce an important property of the stopping times τR .

Corollary 3.4.3
τR is P-almost surely non-decreasing with R.

Proof. By Lemma 3.4.2, we have

|zR |Xτ = |zR ′ |Xτ , (3.54)

P-almost surely, where we recall that τ = min{τR ,τR ′ }. Suppose, for sake of contradiction, that τR ′ < τR on
some set of positive probability. Then on that set τ= τR ′ , so that

|zR |Xτ

(3.54)= |zR ′ |XτR′ > R.

Therefore τ> τR , which contradicts the definition of τ. We conclude that τR ′ ≥ τR , P-almost surely.
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We can now give the proof of Theorem 3.4.1.

Proof of Theorem 3.4.1. We denote again by zR the unique solution of the truncated equation (3.28) with ra-
dius R given by Proposition 3.3.1, and denote

τR (z0) := sup{t ∈ [0,T0], |zR |X t ≤ R}.

By Corollary 3.4.3, we may define τ∗(z0) := limR↗∞τR (z0). We then set z(t ) := zR (t ) on [0,τR ], for each R > 0.
z is then well-defined on [0,τ∗) via Corollary 3.4.3, and solves (3.2) with z ∈ Lr (Ω; Xτ) for each τ < τ∗. This
proves the existence part of the theorem.

We now prove the blow-up criterion. Note that if τ∗ = limR↗∞τR <∞, then

lim
t↗τ∗

|z|X t =∞, (3.55)

meaning that a finite stopping time τ∗ is due to the blow-up of the X t -norm. In the remainder of the proof,
we show that the Lr (0, t ;W s,p

x ) part of the X t -norm does not blow up, so that the Hs
x part must be the cause.

We set
τ̃R = inf{t ∈ [0,τ∗), |z(t )|Hs

x
≥ R},

i.e. τ̃R is the first time |z(t )|Hs
x

reaches R. With help of Corollary 3.4.5 (which we prove later) applied to this
stopping time, we obtain that

E
(
|z|Lr (0,τ̃R ,W

s,p
x )

)
<∞,

so that |z|Lr (0,τ̃R ,W
s,p
x ) is P-almost surely finite. Assume, for sake of contradiction, that

P

(
sup
s≤τ∗

|z(s)|Hs
x
<∞ and τ∗ <∞

)
> 0,

and denote this event by A ⊆Ω. Denote furthermore M(ω) := sups≤τ∗ |z(s)|Hs
x

. We now take R large enough
so that R > M(ω) on some subset Ã ⊆ A of positive probability. On Ã we then have sups≤τ∗ |z(s)|Hs

x
< R, which

together with theP-almost sure finiteness of |z|Lr (0,τ̃R ,W
s,p
x ) contradicts (3.55). We conclude that we must have

τ∗ =∞ or lim
t↗τ∗

sup
s≤t

|z(t )|Hs
x
=∞,

P-almost surely.

The remainder of the section is devoted to the proofs of Corollary 3.4.5 and the following Lemma.

Lemma 3.4.4
Let z be the solution to (3.2) on [0,τ∗) given by Theorem 3.4.1. If τ is a stopping time that P-almost surely
satisfies τ< τ∗ , then we have the bound

|z|Lr (0,τ,W
s,p
x ) ≤C (T0)K (ω)5,

where
K (ω) :=C (T0)(1+ sup

0≤t0≤τ
|z(t0)|3Hs

x
+|J z|Lr (0,τ;W

s,p
x ) + sup

0≤t0≤τ
|I z(t0, ·)|

Lr (0,τ;W
1,p
x )

).

Proof. By applying the Strichartz estimates (Theorem 2.4.2) to the deterministic integrals in (3.2), we obtain
for T > 0

|z|Lr
t (W

s,p
x )

(2.44)≤ C |z0|Hs
x
+C ||z|2z|

L
γ′
t (W

s,q′
x )

+|J z|Lr
t (W

s,p
x ) +C |zFΦ|Lr ′

t (W
s,p′
x )

.

To estimate the term ||z|2z|
L
γ′
t (W

s,q′
x )

, we apply Lemma 3.3.2, which gives

||z|2z|
L
γ′
t (W

1,q′
x )

≤ T 1/2|z|3
L
γ
t (W

s,q
x )

≤C T 1/2(|z|3L∞
t (Hs

x ) +|z|3
Lr

t (W
s,p
x )

),
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where the last inequality follows from Proposition 3.1.3 (ii). By substituting this result, and estimating the Itô
drift term as in (3.47) we obtain

|z|Lr
t (W

s,p
x ) ≤C |z0|Hs

x
+C T 1/2(|z|3L∞

t (Hs
x ) +|z|3

Lr
t (W

s,p
x )

)+|J z|Lr
t (W

s,p
x ) +C T 1− 2

r ‖Φ‖2
δ|z|Lr

t (W
s,p
x ).

We now pick T small enough so that

C T 1− 2
r ‖Φ‖2

δ|z|Lr
t (W

s,p
x ) ≤

1

2
,

and bring this term to the left-hand side to find

|z|Lr (0,T∧τ;W
s,p
x ) ≤ 2C |z0|Hs

x
+2C T 1/2(|z|3L∞(0,T∧τ;Hs

x ) +|z|3
Lr (0,T∧τ;W

s,p
x )

)+2|J z|Lr (0,T∧τ;W
s,p
x ),

where we have changed the time interval to [0, t ∧τ]. We rewrite this estimate by bounding |z0|Hs
x

and T 1/2 by
some constant depending on T0, and add a term sup0≤t0≤τ |I z(t0, ·)|Lr (0,τ;W

s,p
x ) for later use. This gives

|z|Lr (0,T∧τ;W
s,p
x ) ≤C (T0)(1+|z|3L∞(0,T∧τ;Hs

x ))+2|J z|Lr (0,T∧τ;W
s,p
x ) + sup

0≤t0≤τ
|I z(t0, ·)|Lr (0,τ;W

s,p
x )

+2C T 1/2|z|3
Lr (0,T∧τ;W

s,p
x )

≤K (ω)+2C T 1/2|z|3
Lr (0,T∧τ;W

s,p
x )

.

If we choose T as T (ω) := min{K −4(ω)/64C 2,τ}, then it follows that

|z|Lr (0,T ;W
s,p
x ) ≤ 2K (ω).

Indeed, if not, then we would have |z|Lr (0,T ;W
s,p
x ) = 2K (ω) for someω and T ′ ≤ T (ω). This leads to a contradic-

tion

2K (ω) = |z|Lr (0,T ′;W s,p
x ) ≤ K (ω)+2C T ′1/2|z|3

Lr (0,T∧τ;W
s,p
x )

≤ K (ω)+2C (K −4(ω)/64C 2)1/28K 3(ω) = 3

2
K (ω).

In case that T (ω) ≤ τ, we reiterate the previous process on intervals of the form [ j T, ( j +1)T ] ⊆ [0,T0 ∧τ], on
which z satisfies

z(t ) =S(t − j T )z( j T )+4i
∫ t

j T
S(t − s)(|z(s)|2z(s))ds − i

∫ t

j T
S(t − s)(z(s)dW (s))− 1

2

∫ t

j T
S(t − s)(z(s)FΦ)ds.

By estimating as before, we obtain

|z|Lr ( j T,( j+1)T ;W
s,p
x ) ≤2C |z( j T )|Hs

x
+2C T 1/2(|z|3L∞( j T,( j+1)T ;Hs

x ) +|z|3
Lr ( j T,( j+1)T ;W

s,p
x )

)

+2

∣∣∣∣∫ t

j T
S(t − s)(z(s)dW (s))

∣∣∣∣
Lr ( j T,( j+1)T ;W

s,p
x )

.

We estimate |z( j T )|Hs
x
≤ |z|L∞( j T,( j+1)T ;Hs

x ), and for the stochastic convolution we note that∣∣∣∣∫ t

j T
S(t − s)(z(s)dW (s))

∣∣∣∣
Lr ( j T,( j+1)T ;W

s,p
x )

≤
∣∣∣∣∫ t

0
S(t − s)(z(s)dW (s))

∣∣∣∣
Lr ( j T,( j+1)T ;W

s,p
x )

+
∣∣∣∣∫ j T

0
S(t − s)(z(s)dW (s))

∣∣∣∣
Lr ( j T,( j+1)T ;W

s,p
x )

≤ |J z|Lr ( j T,( j+1)T ;W
s,p
x ) + sup

0≤t0≤τ
|I z(t0, ·)|

Lr (0,τ;W
1,p
x )

.

It follows that
|z|Lr ( j T,( j+1)T∧τ;W

s,p
x ) ≤ 2K (ω),

whenever j T ≤ T0 ∧τ. We sum these estimates to find

|z|Lr (0,τ;W
s,p
x ) ≤

(T0∧τ)/T∑
j=0

|z|Lr ( j T,( j+1)T∧τ;W
s,p
x ) ≤ 2

T0

T
K (ω) = 128C T0K 4(ω)K (ω) ≤C (T0)K 5(ω),

as desired.
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By applying the previous lemma to the stopping time

τ̃R = inf{t ∈ [0,τ∗), |z(t )|Hs
x
≥ R}, (3.56)

we obtain the following corollary.

Corollary 3.4.5
Let z be the solution to (3.2) on [0,τ∗) given by Theorem 3.4.1, and let τ̃R be the stopping time defined in (3.56).
Then

E
(
|z|Lr (0,τ̃R ,W

s,p
x )

)
<C (T0)(1+R3 +C R)5.

Proof. By applying Lemma 3.4.4 to the stopping time τ̃R , we obtain

|z|Lr (0,τ̃R ,W
s,p
x ) ≤C (T0)

(
1+ sup

0≤t0≤τ̃R

|z(t0)|15
Hs

x
+|J z|5

Lr (0,τ̃R ;W
s,p
x )

+ sup
0≤t0≤τ̃R

|I z(t0, ·)|5
Lr (0,τ̃R ;W

s,p
x )

)
.

We have upon taking expectations and applying Hölder’s inequality

E
(
|z|Lr (0,τ̃R ,W

s,p
x )

)
≤C (T0)

(
1+E

(
sup

0≤t0≤τ̃R

|z(t0)|15
Hs

x

)
+E

(
|J z|r

Lr (0,τ̃R ;W
s,p
x )

)5/r +E
(

sup
0≤t0≤τ̃R

|I z(t0, ·)|r
Lr (0,τ̃R ;W

s,p
x )

)5/r )
.

Now, by Lemma 3.2.1 and Corollary 3.2.2,

E
(
|z|Lr (0,τ̃R ,W

s,p
x )

)
≤C (T0)

(
1+E

(
sup

0≤t0≤τ̃R

|z(t0)|15
Hs

x

)
+ 1

2
CE

(
|z|rL∞(0,τ̃R ;Hs

x )

)5/r + 1

2
CE

(
|z|rL∞(0,τ̃R ;Hs

x )

)5/r
)

.

Note that
sup

0≤t0≤τ̃R

|z(t0)|Hs
x
< R,

by definition of τ̃R , so that

E
(
|z|Lr (0,τ̃R ,W

s,p
x )

)
≤C (T0)(1+R15 +C R3) ≤C (T0)(1+R3 +C R)5.
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3.5. Global existence and uniqueness

This section is devoted to the main result of the chapter: global existence and uniqueness of solutions to the
stochastic parametrically-forced NLS equation (3.1).

Theorem 3.5.1 (Global existence and uniqueness)
Let p and r satisfy the conditions in Assumption 3.1.1, and let T0 > 0. Then, if z0 ∈ Lr (Ω; Hs

x ) is F (0)-measurable,

there exists up to T0 a unique solution z ∈ Lr (Ω;C ([0,T0]; Hs
x )∩Lr (0,T0;W s,p

x )) to Equation (3.2).

By Theorem 3.4.1, it suffices to prove that the Hs
x -norm of the local solution remains finite. The following

proposition describes the evolution of the Hs
x -norm of the local solution.

Proposition 3.5.2
Let r satisfy the conditions in Assumption 3.1.1 and let z0 ∈ Lr (Ω; Hs

x ) be F (0)-measurable. Let z be the local
solution to (3.2) on [0,τ∗) given by Theorem 3.4.1. Then, we have, P-almost surely, for τ≤ τ∗:

|z(τ)|2Hs
x
=|z0|2Hs

x
−2ε

∫ τ

0
(γ|z(s)|2Hs

x
+µ| Im(z(s))|2Hs

x
)ds +2εµ

∫ τ

0
|Re(z(s))|2Hs

x
ds

−2s
∫ τ

0
〈∂x z(s), z(s)(∂x dW (s))〉L2

x
+s

∞∑
k=0

∫ τ

0
|z(s)∂x (Φek )|2

L2
x

ds. (3.57)

In order to prove this formula for the evolution of the Hs
x -norm, we will use Itô’s formula, also known as

the stochastic chain rule. In particular, we apply the version of Itô’s formula presented in Chapter 1: Theo-
rem 1.3.18. It applies to strong solutions of stochastic partial differential equations, as opposed to the mild
solutions that are available via Theorem 3.4.1. Recall that by Theorem 3.4.1, there exists a stopping time τ∗
and an (F (t ))t∈[0,T ]-adapted process z ∈ Lr (Ω;C ([0,τ∗]; Hs

x )∩Lr (0,τ∗;W s,p
x )) such that (3.2) holds P-almost

surely for τ≤ τ∗. By applying the regulizing operator

Iε := (I −ε∆)−1,

of Lemma 1.2.15 to the mild equation, we wish to obtain an equation of the form

z̃(t ) =z̃0 +
∫ t

0
Ψ1(s)ds +

∫ t

0
Ψ2(s)dW (s),

to which we can apply Itô’s formula. We show that this is the case in the following lemma. In order to avoid
the complication of stopping times in subsequent calculations, we will work with the global solution of the
truncated equation. Since the results we obtain do not depend on the truncation radius, they also apply to
the local solution of the original equation.

Lemma 3.5.3
Let r satisfy the conditions in Assumption 3.1.1 and let z0 ∈ Lr (Ω; Hs

x ) be F (0)-measurable. Let zR be the unique
solution of the truncated equation (3.28) with radius R > 0 given by Proposition 3.3.1. Then, we have, P-almost
surely, for t ≥ 0:

IεzR (t ) =Iεz0 +
∫ t

0
AIεzR (s)ds +4i

∫ t

0
θR (|zR |Xs )Iε(|zR (s)|2zR (s))ds

− i
∫ t

0
Iε(zR (s)dW (s))− 1

2

∫ t

0
Iε(zR (s)FΦ)ds. (3.58)

Proof. We apply AIε to the mild equation (3.28) to find

AIεz(t ) =AS(t )Iεz0 +4i
∫ t

0
θR (|z|Xs )AS(t − s)Iε(|z(s)|2z(s))ds

− i
∫ t

0
AS(t − s)Iε(z(s)dW (s))− 1

2

∫ t

0
AS(t − s)Iε(z(s)FΦ)ds,
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which holds P-almost surely, for t ≥ 0. Here, we have used that the regulizer Iε commutes with the C0-group
{S(t )}t∈R, since the symbol of Iε commutes with the symbol of S(t ). Indeed the symbol of Iε is a multiple of
the 2×2 identity matrix which commutes with the symbol in (2.4). We have also omitted the subscript R on
the solution to lighten notation. We now integrate the equation to find∫ t

0
AIεz(s)ds =

∫ t

0
AS(s)Iεz0 ds +4i

∫ t

0

∫ s

0
θR (|z|Xr )AS(s − r )Iε(|z(r )|2z(r ))dr ds

− i
∫ t

0

∫ s

0
AS(s − r )Iε(z(r )dW (r ))ds − 1

2

∫ t

0

∫ s

0
AS(s − r )Iε(z(r )FΦ)dr ds.

The first integral can be computed by using that

d

dt
S(t ) = AS(t ) on D(A) = H 2(R), (3.59)

(Proposition 1.1.6). For the double integrals, we apply Fubini’s theorem and its stochastic version (Theo-
rem 1.3.17) to change the order of integration.∫ t

0
AIεz(s)ds

(3.59)= S(t )Iεz0 − Iεz0 +4i
∫ t

0

∫ t

0
χ[0,s](r )θR (|z|Xr )AS(s − r )Iε(|z(r )|2z(r ))dr ds

− i
∫ t

0

∫ t

0
χ[0,s](r )AS(s − r )Iε(z(r )dW (r ))ds − 1

2

∫ t

0

∫ t

0
χ[0,s](r )AS(s − r )Iε(z(r )FΦ)dr ds

=S(t )Iεz0 − Iεz0 +4i
∫ t

0

∫ t

0
χ[r,t ](s)θR (|z|Xr )AS(s − r )Iε(|z(r )|2z(r ))ds dr

− i
∫ t

0

∫ t

0
χ[r,t ](s)AS(s − r )Iε(z(r )·)ds dW (r )− 1

2

∫ t

0

∫ t

0
χ[r,t ](s)AS(s − r )Iε(z(r )FΦ)ds dr,

(3.60)

where in the last step we have used that χ[0,s](r ) = χ[r,t ](s) for all (s,r ) ∈ [0, t ]2. Theorem 1.3.17 holds under
the condition that ∫ t

0

(
E

(∫ s

0
‖AS(s − r )Iε(z(r )Φ)‖2

L2(L2
x )

dr

))1/2

ds <∞.

We can verify that this condition holds by splitting up the Hilbert-Schmidt norm, using Lemma 1.3.6 as

‖AS(s − r )Iε(z(r )Φ)‖L2(L2
x )

(1.10)≤ ‖S(s − r )AIε(z(r )·)‖
L (W s,r /2

x ;L2
x )‖Φ‖γ(L2

x ;W s,r /2
x ).

We can further estimate the operator norm using Lemma 1.2.15 as

|S(s − r )AIε(z(r )u)|L2
x

(2.15)≤ C |AIε(z(r )u)|L2
x
≤Cε|z(r )u|L2

x
,

and Hölder’s inequality

|S(s − r )AIε(z(r )u)|L2
x

(3.11)≤ Cε|z(r )|Lp
x
|u|Lr /2

x
≤Cε|z(r )|W s,p

x
|u|W s,r /2

x
,

so that

‖AS(s − r )Iε(z(r )Φ)‖L2(L2
x ) ≤Cε‖Φ‖δ|z(r )|W s,p

x
,

where the last inequality follows via Proposition 3.1.3 (iv). We conclude that

∫ t

0

(
E

(∫ s

0
‖AS(s − r )Iε(z(r )Φ(·))‖2

L2(L2
x )

dr

))1/2

ds ≤ C̃

(
E

(∫ t

0
|z(r )|2

W
s,p
x

dr

))1/2

.

Therefore, the condition is satisfied if z ∈ L1(Ω;L2
t (W s,p

x )), which is indeed the case since z ∈ Lr (Ω;Lr
t (W s,p

x ))
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with r ≥ 2 via (3.6). We proceed from (3.60) by simplifying the inner integrals using (3.59) as∫ t

0
AIεz(s)ds =S(t )Iεz0 − Iεz0 +4i

∫ t

0

∫ t

r
θR (|z|Xr )AS(s − r )Iε(|z(r )|2z(r ))ds dr

− i
∫ t

0

∫ t

r
AS(s − r )Iε(z(r )·)ds dW (r )− 1

2

∫ t

0

∫ t

r
AS(s − r )Iε(z(r )FΦ)ds dr

=S(t )Iεz0 − Iεz0 +4i
∫ t

0

∫ t

r
AS(s − r )ds θR (|z|Xr )Iε(|z(r )|2z(r ))dr

− i
∫ t

0

∫ t

r
AS(s − r )ds Iε(z(r )dW (r ))− 1

2

∫ t

0

∫ t

r
AS(s − r )ds Iε(z(r )FΦ)dr

=S(t )Iεz0 − Iεz0 +4i
∫ t

0
(S(t − s)− I ) θR (|z|Xs )Iε(|z(s)|2z(s))ds

− i
∫ t

0
(S(t − s)− I ) Iε(z(s)dW (s))− 1

2

∫ t

0
(S(t − s)− I ) Iε(z(s)FΦ)ds

=IεS(t )z0 − Iεz0 +4i Iε

∫ t

0
S(t − s)θR (|z|Xs )(|z(s)|2z(s))ds −4i

∫ t

0
θR (|z|Xs )Iε(|z(s)|2z(s))ds

− i Iε

∫ t

0
S(t − s)(z(s)dW (s))+ i

∫ t

0
Iε(z(s)dW (s))

− 1

2
Iε

∫ t

0
S(t − s)(z(s)FΦ)dr + 1

2

∫ t

0
Iε(z(s)FΦ)ds.

In this last expression, we recognize in the terms containing the semigroup the mild form (3.28) with the
operator Iε applied on the left, so that we can write∫ t

0
AIεz(s)ds =Iεz(t )− Iεz0 −4i

∫ t

0
θR (|z|Xs )Iε(|z(s)|2z(s))ds

+ i
∫ t

0
Iε(z(s)dW (s))+ 1

2

∫ t

0
Iε(z(s)FΦ)ds,

and we conclude that

Iεz(t ) =Iεz0 +
∫ t

0
AIεz(s)ds +4i

∫ t

0
θR (|z|Xs )Iε(|z(s)|2z(s))ds − i

∫ t

0
Iε(z(s)dW (s))− 1

2

∫ t

0
Iε(z(s)FΦ)ds,

holds P-almost surely as desired.

We now turn to the proof of Proposition 3.5.2, in which we apply the Itô formula to the stochastic process
obtained in the previous lemma.

Proof of Proposition 3.5.2. Recall from Chapter 1 that Itô’s formula provides an identity for the differential of
functionals of a stochastic process. Here we consider the functional | · |2

Hs
x

on the stochastic process in (3.58),

which may alternatively be written as

|z|2Hs
x
= bs(z, z),

for z ∈ Hs
x , where bs denotes the bilinear map

bs( f , g ) =
∫
R

f g dx +s

∫
R

(∂x f )(∂x g )dx.

This map is well-defined if the product f g is an element of W s,1
x . Note that for this bilinear map we have by

symmetry

bs( f , g )+bs(g , f ) = bs( f , g )+bs(g , f ) = bs( f , g )+bs( f , g ) = 2Rebs( f , g ).

We also introduce the notation

〈 f , g 〉
Lu′

x ×Lu
x

:=
∫
R

f g dx,
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for the dual pairing between f ∈ Lu′
x and g ∈ Lu

x , so that for such f and g we may write

bs( f , g )+bs(g , f ) = 2Re〈 f , g 〉
Lu′

x ×Lu
x
+2sRe〈∂x f ,∂x g 〉

Lu′
x ×Lu

x
.

We now apply Itô’s formula for bilinear maps (Theorem 1.3.18) to the map bs and the processes

ξ1 = Iεz0

ξ2 = Iεz0

ψ1(t ) = AIεzR (t )+4iθR (|zR |X t )Iε(|zR (t )|2zR (t ))− 1
2 Iε(zR (t )FΦ)

ψ2(t ) = AIεzR (t )−4iθR (|zR |X t )Iε(|zR (t )|2zR (t ))− 1
2 Iε(zR (t )FΦ)

Θ1(t ) =−i Iε(zR (t )·)
Θ2(t ) = i Iε(zR (t )·),

where we have used the same notation as in Theorem 1.3.18. By using (3.58) we then note that ζ1(t ) = IεzR (t )
and ζ2(t ) = IεzR (t ), and via Itô’s formula we obtain that P-almost surely,

|Iεz(t )|2Hs
x
=|Iεz0|2Hs

x
+ J ε1(t )+ J ε2(t )+ J ε3(t )+ J ε4(t )+ J ε5(t ), (3.61)

where the terms J ε1, . . . , J ε5 are defined as

J ε1(t ) :=2Re
∫ t

0
〈AIεz(s), Iεz(s)〉Hs

x
ds;

J ε2(t ) :=8Im
∫ t

0
θR (|z|Xs )〈Iε(|z(s)|2z(s)), Iεz(s)〉

L
q′
x ×L

q
x

ds

+24s Im
∫ t

0
θR (|z|Xs )〈Iε(|z(s)|2∂x z(s)), Iε∂x z(s)〉

L
q′
x ×L

q
x

ds;

J ε3(t ) :=−2Im
∫ t

0
〈Iεz(s), Iε(z(s)dW (s))〉Hs

x
;

J ε4(t ) :=−Re
∫ t

0
〈Iε(z(s)FΦ), Iεz(s)〉

L
4+2δ
4+δ

x ×L
2(2+δ)
δ

x

ds

−sRe
∫ t

0
〈Iε∂x (z(s)FΦ), Iε∂x z(s)〉

L
4+2δ
4+δ

x ×L
2(2+δ)
δ

x

ds;

J ε5(t ) :=
∫ t

0

∞∑
k=0

|Iε(z(s)Φek )|2Hs
x

ds.

For the term J ε2 we have used that ∂x (|z(s)|2z(s)) = 3|z(s)|2∂x z(s). We have also omitted the subscript R again
to lighten notation. We now show that each of the integrals J ε1(t ), . . . , J ε5(t ) converges as ε ↓ 0 and we identify
the limits.

Step 1. (convergence of the integral J ε1(t ))
We can further compute the integrand of J ε1(t ) as

Re〈AIεz(s), Iεz(s)〉Hs
x

(2.11)= −εγ|Iεz(s)|2Hs
x
+εµ

(
|Re(Iεz(s))|2Hs

x
−| Im(Iεz(s))|2Hs

x

)
,

since Iεz(s) ∈ Hs+2
x . It follows by Lemma 1.2.15 and continuity of the squared norm that

Re〈AIεz(s), Iεz(s)〉Hs
x
→−εγ|z(s)|2Hs

x
+εµ(|Re(z(s))|2Hs

x
−| Im(z(s))|2Hs

x
) as ε ↓ 0. (3.62)

Since ‖Iε‖L (Hs
x ) ≤ C with C independent of ε (Equation (1.5)), the integrand is dominated by this constant

times the right-hand side of (3.62). This dominating function of s is furthermore integrable on [0, t ], as z ∈
Ct (Hs

x ). We conclude by the dominated convergence theorem that

J ε1(t ) →−2ε
∫ t

0
(γ|z(s)|2Hs

x
+µ| Im(z(s))|2Hs

x
)ds +2εµ

∫ t

0
|Re(z(s))|2Hs

x
ds as ε ↓ 0.
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Step 2. (convergence of the integrals Jε2(t ) and Jε4(t ))
The integrands in the terms J ε2(t ) and J ε4(t ) are all dual pairings of the form

〈Iε f (s), Iεg (s)〉
Lu′

x ×Lu
x

,

where f (s) ∈ Lu′
x and g (s) ∈ Lu

x for almost all s ∈ [0, t ], and some constant b ≥ 1. In case of the first integrand

in term J ε2(t ) we have f (s) = |z(s)|2z(s) ∈ Lq ′
x and g (s) = z(s) ∈ Lq

x . In the second integrand we have f (s) =
|z(s)|2∂x z(s) ∈ Lq ′

x and g (s) = ∂x z(s) ∈ Lq
x . For the first integrand in term J ε4(t ), we can take f (s) = z(s)FΦ ∈

L
4+2δ
4+δ

x and g (s) = z(s) ∈ L
2(2+δ)
δ

x . Lastly, for the second integrand in the term J ε4(t ) we have f (s) = ∂x (z(s)FΦ) ∈
L

4+2δ
4+δ

x and g (s) = ∂x z(s) ∈ L
2(2+δ)
δ

x . We show that∫ t

0
〈Iε f (s), Iεg (s)〉

Lu′
x ×Lu

x
ds →

∫ t

0
〈 f (s), g (s)〉

Lu′
x ×Lu

x
ds,

for these choices of f , g and u.

By Lemma 1.2.15, we know that Iε f (s) → f (s) in Lu′
and Iεg (s) → g (s) in Lu as ε ↓ 0. We then have Iε f (s)Iεg (s) →

f (s)g (s) in L1
x by the following inequality

|Iε f (s)Iεg (s)− f (s)g (s)|L1
x
≤ |(Iε f (s)− f (s))Iεg (s)|L1

x
+| f (s)(Iεg (s)− g (s))|L1

x

≤ |Iε f (s)− f (s)|
Lu′

x
|Iεg (s)|Lu

x
+| f (s)|

Lu′
x
|Iεg (s)− g (s)|Lu

x
,

and letting ε ↓ 0. It follows that

〈Iε f (s), Iεg (s)〉
Lu′

x ×Lu
x
→〈 f (s), g (s)〉

Lu′
x ×Lu

x
, as ε ↓ 0,

since ∣∣∣〈 f (s), g (s)〉
Lu′

x ×Lu
x
−〈Iε f (s), Iεg (s)〉

Lu′
x ×Lu

x

∣∣∣= ∣∣∣∣∫
R

f (x, s)g (x, s)− Iε f (x, s)Iεg (x, s)dx

∣∣∣∣
≤

∣∣∣ f (s)g (s)− Iε f (s)Iεg (s)
∣∣∣
L1

x
→ 0

as ε ↓ 0. We proceed by showing that 〈Iε f (s), Iεg (s)〉
Lu′

x ×Lu
x

can be dominated using Hölder’s inequality as

〈Iε f (s), Iεg (s)〉
Lu′

x ×Lu
x
≤ |Iε f (s)|

Lu′
x
|Iεg (s)|Lu

x
≤ | f (s)|

Lu′
x
|g (s)|Lu

x
,

where we have used that the operator norms of the operators Iε are uniformly bounded in ε on both Lu′
x and

Lu
x (Lemma 1.2.15). In order to apply the dominated convergence theorem, it remains to be shown that the

dominating function | f (s)|
Lu′

x
|g (s)|Lu

x
is integrable for the various choices of f , g and u. For the integrands in

the term J ε2(t ) this is indeed the case, since∫ t

0
||z(s)|2z(s)|

L
q′
x
|z(s)|Lq

x
+s||z(s)|2∂x z(s)|

L
q′
x
|∂x z(s)|Lq

x
ds ≤

∫ t

0
||z(s)|2z(s)|

W
s,q′
x

|z(s)|W s,q
x

ds

(3.30)≤
∫ t

0
|z(s)|4

W
s,q
x

ds ≤ t 1/8|z|Lγ(0,t ;W
s,q
x ),

where the last inequality is an application of Hölder’s inequality with exponents 1
4 = 1

8+ 1
8 . Integrability follows

via Proposition 3.1.3 (ii), since z ∈ X t . For the integrands in the term J ε4(t ), we also have integrability via∫ t

0
|z(s)FΦ|

L
4+2δ
4+δ

x

|z(s)|
L

2(2+δ)
δ

x

+s|∂x (z(s)FΦ)|
L

4+2δ
4+δ

x

|∂x z(s)|
L

2(2+δ)
δ

x

ds

≤
∫ t

0
|z(s)FΦ|

W
s, 4+2δ

4+δ
x

|z(s)|
W

s, 2(2+δ)
δ

x

ds ≤
∫ t

0
|FΦ|W s,1+δ/2

x
|z(s)|2

W
s, 2(2+δ)

δ
x

ds

≤C
∫ t

0
|z(s)|2

W
s, 2(2+δ)

δ
x

ds ≤C
∫ t

0
(|z(s)|Hs

x
+|z(s)|W s,p

x
)2 ds, (3.63)
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where in the last two inequalities we have used that FΦ ∈ W
1, 4+2δ

4+δ
x and 2 < 2(2+δ)

δ ≤ p. Integrability follows, as

z ∈ Lr (0, t ;W s,p
x )∩C ([0, t ]; Hs

x ) with r > 2. We then conclude by the dominated convergence theorem that

J ε2(t ) → 8Im
∫ t

0
θR (|z|Xs )〈|z(s)|2z(s), z(s)〉

L
q′
x ×L

q
x

ds +24s Im
∫ t

0
θR (|z|Xs )〈|z(s)|2∂x z(s),∂x z(s)〉

L
q′
x ×L

q
x

ds,

and

J ε4(t ) →−Re
∫ t

0
〈z(s)FΦ, z(s)〉

L
4+2δ
4+δ

x ×L
2(2+δ)
δ

x

ds −sRe
∫ t

0
〈∂x (z(s)FΦ),∂x z(s)〉

L
4+2δ
4+δ

x ×L
2(2+δ)
δ

x

ds,

as ε ↓ 0. Note that
〈|z(s)|2z(s), z(s)〉

L
q′
x ×L

q
x
= 〈|z(s)|z(s), |z(s)|z(s)〉L2

x
= |z(s)|4

L4
x

,

so that

Im
∫ t

0
θR (|z|Xs )〈|z(s)|2z(s), z(s)〉

L
q′
x ×L

q
x

ds = Im
∫ t

0
θR (|z|Xs )|z(s)|4

L4
x

ds = 0.

Similarly,

Im
∫ t

0
θR (|z|Xs )〈|z(s)|2∂x z(s),∂x z(s)〉

L
q′
x ×L

q
x

ds = 0,

and we find that J ε2(t ) → 0 as ε ↓ 0.

Step 3. (convergence of the integral J5)
By Lemma 1.2.15 and continuity of the squared norm, we then have

|Iε(z(s)Φek )|2Hs
x
→|z(s)Φek |2Hs

x
as ε ↓ 0.

We now use that |Iε(z(s)Φek )|2
Hs

x
≤ C |z(s)Φek |2Hs

x
with C independent of ε (Lemma 1.2.15), which serves as a

dominating function of the variables s and k. In order to see that this dominating function is furthermore
integrable, we note that

∞∑
k=0

|z(s)Φek |2Hs
x
=

∞∑
k=0

〈z(s)Φek , z(s)Φek〉Hs
x
=

∞∑
k=0

〈z(s)Φek , z(s)Φek〉L2
x
+s

∞∑
k=0

〈∂x (z(s)Φek ),∂x (z(s)Φek )〉L2
x

,

and by using that Φek is real-valued for all k,

∞∑
k=0

|z(s)Φek |2Hs
x
=

∞∑
k=0

〈z(s)(Φek )2, z(s)〉
L

4+2δ
4+δ

x ×L
2(2+δ)
δ

x

+s
∞∑

k=0
〈(∂x z(s))Φek , (∂x z(s))Φek〉L2

x

+2s
∞∑

k=0
〈(∂x z(s))Φek , z(s)(∂xΦek )〉L2

x
+s

∞∑
k=0

〈z(s)(∂xΦek ), z(s)(∂xΦek )〉L2
x

=〈z(s)FΦ, z(s)〉
L

4+2δ
4+δ

x ×L
2(2+δ)
δ

x

+s〈(∂x z(s))FΦ,∂x z(s)〉
L

4+2δ
4+δ

x ×L
2(2+δ)
δ

x

+s〈∂x z(s), z(s)(∂x FΦ)〉
L

4+2δ
4+δ

x ×L
2(2+δ)
δ

x

+s
∞∑

k=0
|z(s)(∂xΦek )|2

L2
x

.

It follows as in (3.63) that this function is integrable. We then conclude by the dominated convergence theo-
rem that

J ε5(t ) →
∞∑

k=0
|z(s)Φek |2Hs

x
=〈z(s)FΦ, z(s)〉

L
4+2δ
4+δ

x ×L
2(2+δ)
δ

x

+s〈∂x (z(s)FΦ),∂x z(s)〉
L

4+2δ
4+δ

x ×L
2(2+δ)
δ

x

+s
∞∑

k=0
|z(s)(∂xΦek )|2

L2
x

. (3.64)

Step 4. (convergence of the integral J3)
Finally we show that

J ε3(t ) →−2Im
∫ t

0
〈z(s), z(s)dW (s)〉Hs

x
, as ε ↓ 0,
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in L2(Ω). We therefore apply Itô’s isometry (Theorem 1.3.14) to

E

∣∣∣∣∫ t

0
〈Iεz(s), Iε(z(s)dW (s))〉Hs

x
−

∫ t

0
〈z(s), z(s)dW (s)〉Hs

x

∣∣∣∣2

≤E
∣∣∣∣∫ t

0
〈(Iε− I )z(s), Iε(z(s)dW (s))〉Hs

x

∣∣∣∣2

+E
∣∣∣∣∫ t

0
〈z(s), (Iε− I )(z(s)dW (s))〉Hs

x

∣∣∣∣2

,

which gives

E

∣∣∣∣∫ t

0
〈z(s), z(s)dW (s)〉Hs

x
−

∫ t

0
〈Iεz(s), Iε(z(s)dW (s))〉Hs

x

∣∣∣∣2

≤ E
∫ t

0
‖Γε1(s)‖2

γ(L2
x ;C)

ds +E
∫ t

0
‖Γε2(s)‖2

γ(L2
x ;C)

ds,

where Γε1(s) and Γε2(s) denote the functionals

u 7→ 〈(Iε− I )z(s), Iε(z(s)Φu)〉Hs
x

and u 7→ 〈z(s), (Iε− I )(z(s)Φu)〉Hs
x

,

respectively. For the second term, we proceed by splitting up the γ(L2
x ;C)-norm using Lemma 1.3.6, yielding

‖〈z(s), (Iε− I )z(s)Φ〉Hs
x
‖γ(L2

x ;C) ≤ ‖Φ‖
γ(L2

x ;W s,r /2
x )‖〈z(s), (Iε− I )z(s)·〉Hs

x
‖
L (W s,r /2

x ;C).

We calculate the operator norm by writing

| 〈z(s), (Iε− I )z(s)u〉Hs
x
| ≤ |(Iε− I )z(s)|Hs

x
|z(s)u|Hs

x

and by Lemma 1.2.15 we obtain that the expression above converges to 0 as ε ↓ 0. With the aim of apply-
ing the dominated convergence theorem to the integrals in (28), we further estimate the expression using
Lemma 1.2.15

| 〈z(s), (Iε− I )z(s)u〉Hs
x
| ≤ |z(s)|Hs

x
|z(s)u|Hs

x
,

and use Hölder’s inequality, which gives

| 〈z(s), (Iε− I )z(s)u〉Hs
x
| (3.11)≤ |z(s)|Hs

x
|z(s)|W s,p

x
|u|W s,r /2

x
.

We conclude via Proposition 3.1.3 (iv) that

‖〈z(s), (Iε− I )z(s)Φ〉L2
x
‖γ(L2

x ;C) ≤ ‖Φ‖δ|z(s)|Hs
x
|z(s)|W s,p

x
,

and we can similarly estimate the term involvingΓε1(s). The resulting dominating function s 7→ |z(s)|Hs
x
|z(s)|

W
1,p
x

is indeed an element of L1(Ω;L2
t ) since z ∈ Lr (Ω;Ct (Hs

x )∩Lr
t (W s,p

x )) with r ≥ 2. It follows by the dominated
convergence theorem that

J ε3(t ) →−2Im
∫ t

0
〈z(s), z(s)dW (s)〉Hs

x
, as ε ↓ 0,

in L2(Ω). The convergence is then also P-almost sure. Note that

〈z(s), z(s)dW (s)〉Hs
x
= 〈z(s), z(s)dW (s)〉L2

x
+s〈∂x z(s), (∂x z(s))dW (s)〉L2

x
+s〈∂x z(s), z(s)(∂x dW (s))〉L2

x
.

Since the noise is real-valued, the first two inner products vanish, and we are left with

J ε3(t ) →−2s
∫ t

0
〈∂x z(s), z(s)(∂x dW (s))〉L2

x
as ε ↓ 0.

Step 5. (Collecting the results)
We conclude from (3.61) and steps 1-4 that

|zR (t )|2Hs
x
=|z0|2Hs

x
−2ε

∫ t

0
(γ|zR (s)|2Hs

x
+µ| Im(zR (s))|2Hs

x
)ds +2εµ

∫ t

0
|Re(zR (s))|2Hs

x
ds

−2s Im
∫ t

0
〈∂x zR (s), zR (s)(∂x dW (s))〉L2

x
+s

∞∑
k=0

∫ t

0
|zR (s)∂x (Φek )|2

L2
x

ds,

holds P-almost surely for all t ≥ 0 and R > 0. Since we found in step 2 that J2(t ) = 0, the formula does not
depend on the truncation radius R and it holds also for the local solution z. The result follows by setting t
equal to τ≤ τ∗.
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With help of the previous formula for the evolution of the Hs
x -norm of solutions and the blow-up criterion

provided by Theorem 3.4.1, we can now give a proof of the global existence result.

Proof of Theorem 3.5.1. By Theorem 3.4.1, it suffices to show that we P-almost surely have

sup
s≤τ

|z(τ)|Hs
x
<∞,

for τ≤ min{τ∗,T0} with T0 > 0. By estimating

−| Im(z(s))|2Hs
x
+|Re(z(s))|2Hs

x
≤ |z(s)|2Hs

x

in (3.57), we obtain

|z(τ)|2Hs
x
≤|z0|2Hs

x
+2ε(µ−γ)

∫ τ

0
|z(s)|2Hs

x
ds −2s

∫ τ

0
〈∂x z(s), z(s)(∂x dW (s))〉L2

x

+s
∞∑

k=0

∫ τ

0
|z(s)∂x (Φek )|2

L2
x

ds,

P-almost surely. Upon taking the square, the supremum and the expectation of the equation above, we get

E

(
sup
t≤τ

|z(t )|4Hs
x

)
≤2E

(
|z0|4Hs

x

)
+8ε2(µ−γ)2E

(
sup
t≤τ

∣∣∣∣∫ t

0
|z(s)|2Hs

x
ds

∣∣∣∣2
)
+8sE

(
sup
t≤τ

∣∣∣∣∫ t

0
〈∂x z(s), z(s)(∂x dW (s))〉L2

x

∣∣∣∣2
)

+2sE

(
sup
t≤τ

∣∣∣∣∣ ∞∑
k=0

∫ τ

0
|z(s)∂x (Φek )|2

L2
x

ds

∣∣∣∣∣
2)

.

For the last term, we note that by Hölder’s inequality

∞∑
k=0

∫ τ

0
|z(s)∂x (Φek )|2

L2
x

ds ≤
∞∑

k=0

∫ τ

0
|z(s)|2

L
2(2+δ)
δ

x

|∂x (Φek )|2
L2+δ

x
ds

=
∞∑

k=0
|∂x (Φek )|2

L2+δ
x

∫ τ

0
|z(s)|2

L
2(2+δ)
δ

x

ds ≤C
∫ τ

0
|z(s)|2

H 1
x

ds, (3.65)

where in the final step we have used thatΦek ∈W s,2+δ
x , and the embedding H 1

x ,→ L
2(2+δ)
δ

x (Proposition 1.2.16).
For the expectation of the stochastic integral, we apply the Burkholder inequality (Theorem 1.3.15) as

E

(
sup
t≤τ

∣∣∣∣∫ t

0
〈∂x z(s), z(s)(∂x dW (s))〉L2

x

∣∣∣∣2
)

(1.11)≤ CE

(∫ τ

0
‖〈∂x z(s), z(s)(∂xΦ)〉L2

x
‖2
γ(L2

x ;C)
ds

)
,

and we proceed by splitting up the γ(L2
x ;C)-norm using Lemma 1.3.6, yielding

‖〈∂x z(s), z(s)(∂xΦ)〉L2
x
‖γ(L2

x ;C) ≤ ‖Φ‖
γ(L2

x ;W 1,r /2
x )‖〈∂x z(s), z(s)(∂x ·)〉L2

x
‖
L (W 1,r /2

x ;C).

We calculate the operator norm by writing

| 〈∂x z(s), z(s)(∂x u)〉L2
x
| ≤ |∂x z(s)|L2

x
|z(s)(∂x u)|L2

x
.

We then use Hölder’s inequality, which gives

| 〈∂x z(s), z(s)(∂x u)〉L2
x
| (3.11)≤ |∂x z(s)|L2

x
|z(s)|Lp

x
|∂x u|Lr /2

x
≤ |z(s)|2

H 1
x
|u|W 1,r /2

x
,

where the last inequality follows from the embedding H 1
x ,→ Lp

x (Proposition 1.2.16). We conclude via Propo-
sition 3.1.3 (iv) that

‖〈∂x z(s), z(s)(∂xΦ)〉L2
x
‖γ(L2

x ;C) ≤ ‖Φ‖δ|z(s)|2
H 1

x
,
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and

E

(
sup
t≤τ

∣∣∣∣∫ t

0
〈∂x z(s), z(s)(∂x dW (s))〉L2

x

∣∣∣∣2
)
≤C‖Φ‖2

δE

(∫ τ

0
|z(s)|4

H 1
x

ds

)
. (3.66)

By collecting the results of (3.65) and (3.66), we have shown that

E

(
sup
t≤τ

|z(t )|4Hs
x

)
≤ 2E

(
|z0|4Hs

x

)
+C1E

(
sup
t≤τ

∣∣∣∣∫ t

0
|z(s)|2Hs

x
ds

∣∣∣∣2
)
+C2E

(∫ τ

0
|z(s)|4

H 1
x

ds

)
≤ 2E

(
|z0|4Hs

x

)
+C3

∫ τ

0
E

(
sup
s≤t

|z(s)|4Hs
x

)
dt .

By Grönwall’s lemma, it then follows that

E

(
sup
t≤τ

|z(t )|4Hs
x

)
≤ 2E

(
|z0|4Hs

x

)
eC3τ.

Since τ< T0, we conclude that E
(
supt≤τ |z(t )|4

Hs
x

)
<∞ and it follows that supt≤τ |z(t )|Hs

x
<∞, P-almost surely.

This shows the result.





4
A glimpse on the stability of solitons

In this chapter, we discuss the stability of solitary standing wave solutions in the (stochastic)
PFNLS equation. We start by deriving a solitary standing wave solution to the deterministic
PFNLS equation, and we present a stability result due to Kapitula and Sandstede [23]. We pro-
ceed by considering an approach for tracking the position of the soliton, if subject to the stochas-
tic PFNLS equation of the previous chapter, in Section 4.2. This position correction is defined
in terms of the solution to (3.1), and is itself a stochastic process. We analyze the leading-order
behavior of this process in Section 4.3. Finally, we briefly discuss directions for future research in
Section 4.4. The computations in this section are informal and are meant to give a general idea
of topics that could be explored.

4.1. Solitary standing wave solution

Consider the deterministic PFNLS equation

dz = (i∆z − iωz −ε(γz −µz))dt +4i |z|2z dt . (4.1)

This deterministic equation on the real line supports a solitary-wave solution to this equation of the form

ζ(x) = r e iθ sech(cx),

with r,c > 0 and θ ∈ [0,2π). Here, sech denotes the hyperbolic secant function, defined as

sech(x) = 2

e−x +ex .

Since ζ is not time-dependent, it should satisfy the solitary-wave equation

∆ζ−ωζ+4|ζ|2ζ+ iε(γζ−µζ) = 0. (4.2)

Using that
∆sech(cx) = c2(sech(cx)−2sech3(cx)),

we substitute the ansatz into the solitary-wave equation and find that we must have

r e iθc2 (
sech(cx)−2sech3(cx)

)−ωr e iθ sech(cx)+4r 3e iθ sech3(cx)+ iεr (γe iθ−µe−iθ)sech(cx) = 0.

By linear independence of sech(cx) and sech3(cx), we find that both

4r 3e iθ−2c2r e iθ = 0,

or equivalently
p

2r = c, and

r e iθc2 =ωr e iθ− iεr (γe iθ−µe−iθ),

65
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must hold. The latter implies that c2 =ω− iε(γ−µe−2iθ). This can only hold (for c > 0) if γ−µe−2iθ is purely
imaginary, leading to the requirement that Re(µe−2iθ) = γ, or equivalently cos(2θ) = γ

µ . Then,

γ−µe−2iθ =− Im(µe−2iθ) =−iµsin(−2θ) = iµsin(2θ),

and we find that

c =
√
ω+εµsin(2θ).

Note that the condition on θ can only hold if µ ≥ γ, i.e. the phase-sensitive amplification constant must be
larger than the dissipation constant in order for the compensation to be successful. Note also that if θ satisfies
cos(2θ) = γ/µ, so does θ+π. Thus the sign of the sine term in the soliton can be chosen positive or negative
as we wish. In conclusion, we find two solitons

ζ j (x) = e iθ j

√
ω+εµsin(2θ j )

2
sech(

√
ω+εµsin(2θ j )x), (4.3)

for j = 1,2, where θ1,θ2 ∈ [0,2π) are the two (not necessarily distinct) solutions to cos(2θ j ) = γ/µ. As the equa-
tion is translation invariant, we may also shift the soliton by an arbitrary constant a ∈R. With this alteration,
the soliton ζ j (·+a) remains a solution to (4.1). In [23], it was shown that for the θ j which satisfies sin(2θ j ) > 0,
the corresponding soliton ζ j is exponentially stable. More precisely, the authors prove the following result.

Theorem 4.1.1 (Kapitula and Sandstede, [23])
Consider the PFNLS equation with initial condition z(0) = z0. If ε is sufficiently small and sin(2θ j ) > 0, then
the wave ζ is orbitally exponentially stable, i.e., if ‖z0−ζ‖ is sufficiently small, then there exists a constant b > 0
and a constant a ∈R such that

|z(t , ·)−ζ(·+a)|L2
x
≤Ce−bt for t ≥ 0.

Intuitively, this result shows that the soliton remains relatively unaffected by small perturbations. In the case
of the stochastic PFNLS equation, the soliton is stochastically perturbed by the noise, and it would be inter-
esting to investigate whether the soliton ζ is stable under these conditions.



4.2. Position correction 67

4.2. Position correction

In order to gain a better understanding of the effect of the noise on the soliton ζ, we formulate an approach
to track the displacement of the soliton due to the stochastic perturbation, following [15], where the stability
of traveling pulses in the FitzHugh-Nagumo system is studied. More precisely, we consider the solution z(t , ·)
to the stochastic PFNLS equation with initial condition z(0, x) = z0, i.e.

dz = (i∆z − iνz −ε(γz −µz))dt − 1

2
FΦz dt +4i |z|2z dt + z dW

= Az dt +FΦz dt +4i |z|2z dt + z dW, (4.4)

and we set
z̃a(t , ·) := z(t , ·)−ζ(·+a(t )),

for some sufficiently smooth real-valued function a. Here, ζ is the soliton defined in (4.3) with the θ parameter
satisfying both cos(2θ) = γ/µ and sin(2θ) > 0. z̃a is then the difference between the solution and a translated
soliton. By linearizing (4.4) around the translated soliton, we find that it must satisfy

dz̃a(t , ·) =(dz(t , ·)− ȧ(t ) dζ
dx (·+a(t )))dt

=(Az(t , ·)− 1

2
FΦz(t , ·)+4i |z(t , ·)|2z(t , ·))dt + z(t , ·)dW (t , ·)− ȧ(t ) dζ

dx (·+a(t ))dt

=(Az(t , ·)− 1

2
FΦz(t , ·)+4i |ζ(·+a(t ))|2ζ(·+a(t ))+12i |ζ(·+a(t ))|2 z̃a(t , ·)+Ra(z̃a(t , ·))dt

+ z(t , ·)dW (t , ·)− ȧ(t ) dζ
dx (·+a(t )dt ,

where Ra denotes the nonlinear term

Ra(z(t , ·)) := 4i (|z(t , ·)|2z(t , ·)−|ζ(·+a(t ))|2ζ(·+a(t )))−12i |ζ(·+a(t ))|2 z̃a(t , ·).

By using that the soliton solves the time-independent version of the SPDE, i.e.

Aζ(·+a(t ))+4i |ζ(·+a(t ))|2ζ(·+a(t )) = 0,

we obtain the simplification

dz̃a(t , ·) =(La z̃a(t , ·)− 1

2
FΦ z̃a(t , ·)− 1

2
FΦζ(·+a(t ))+Ra(z̃a(t , ·)))dt

+ z̃a(t , ·)dW (t , ·)+ζ(·+a(t ))dW (t , ·)− ȧ(t ) dζ
dx (·+a(t ))dt . (4.5)

Here, the operator La denotes the linearization of the PFNLS equation around the translated soliton ζ(· +
a(t )), that is

La z := Az +12i |ζ(·+a(t ))|2z.

In [23], it was shown that L0 generates a C0-semigroup on L2(R), and the spectrum of L0, i.e., the lineariza-
tion around ζ, was analyzed. We summarize the findings in Figure 4.1.

In particular, we see that 0 is an eigenvalue of L0. Indeed, by differentiating (4.2), we obtain

A dζ
dx +12i |ζ|2 dζ

dx =L0
dζ
dx = 0,

which shows that dζ
dx is an eigenvector of L0 with eigenvalue 0. This allows us to define a Riesz projection in

L2(R) onto the corresponding eigenspace as

Π := 1

2πi

∫
Γ

(λI −L0)−1dλ,

where Γ is a simple contour enclosing only the eigenvalue 0, and I is the identity on L2(R). We furthermore
define a translation operator Ta on L2(R) for a ∈R as

Ta z = z(·+a), z ∈ L2(R).
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Re(z)

Im(z)

Figure 4.1: Spectrum of linearization of the PFNLS equation about the soliton. Four eigenvalues are an O(ε) distance removed from the
origin. Two eigenvalues lie O(ε2) close to the points −εγ± iν on the line Reλ = −εγ. The spectrum is symmetric with respect to the
reflection across the line Reλ=−εγ. This figure is adapted from [23, Figure 2]

and set
Πa :=TaΠT−a , a ∈R.

With these definitions in place, we can formulate the approach to define a position correction process a(t )
that tracks the position of the soliton as it is perturbed by the noise. Ideally, the difference between the solu-
tion and the translated soliton should be minimal. We formulate this as

a(t ) ∈ argmina∈R |Πa[z̃φ(t , ·)]|L2
x

.

A unique minimizer to this problem is, however, not ensured. Instead, we define approximations am(t ) via a
random ODE, using the partial derivative of the norm that should be minimized w.r.t. the translation param-
eter. To this end, we compute the derivative of ‖Πa[z̃φ(t , ·)]‖2

L2
x

as

∂a |Πa[z(t , ·)−ζ(·+a)]|2
L2

x
= ∂a |Π [z(t , ·−a)−ζ]|2

L2
x

= 2Re〈Π [z(t , ·−a)−ζ] ,Π∂a [z(t , ·−a)−ζ]〉L2
x

=−2Re〈Π [z(t , ·−a)−ζ] ,Π [∂x (z(t , ·−a)−ζ)]〉−2Re
〈
Π [z(t , ·−a)−ζ] ,Π

[
dζ
dx

]〉
L2

x

=−
∫
R
∂x |Π [z(t , ·−a)−ζ] (x)|2 dx −2Re

〈
Π [z(t , ·−a)−ζ] , dζ

dx

〉
L2

x

=−2Re
〈
Π [z(t , ·−a)−ζ] , dζ

dx

〉
L2

x
.

We then define the approximations am(t ) for m À 1 via the following random ODE.

ȧm(t ) = mRe
〈
Πam (t )

[
z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

, (4.6)

with am(0) = 0, and thus ȧm(0) = mRe
〈
Π [z̃0] , dζ

dx

〉
L2

x
. The definition of am(t ) via the random ODE (4.6) is

motivated by the gradient descent method for finding local minima, and we expect that the translated soliton
remains closer to the solution as m increases.



4.3. Leading-order dynamics 69

4.3. Leading-order dynamics

With the aim of studying the leading-order dynamics of the position correction defined in (4.6), we compute
the differential of ȧm(t ). Starting from

ȧm(t ) = m Re
〈
Πam (t )

[
z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

= m Re
〈
Π

[
z̃am (t )(t , ·−am(t ))

]
, dζ

dx

〉
L2

x
,

we take the differential

dȧm(t ) =m Re
〈
Π

[
dz̃am (t )(t , ·−am(t ))

]
, dζ

dx

〉
L2

x

− ȧm(t )m Re
〈
Π

[
∂x z̃am (t )(t , ·−am(t ))

]
, dζ

dx

〉
L2

x
dt

=m Re
〈
Πam (t )

[
d z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

− ȧm(t )m Re
〈
Πam (t )

[
∂x z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

dt ,

and we substitute (4.5), yielding

dȧm(t ) =m Re
〈
Πam (t )

[
(Lam (t ) z̃am (t )(t , ·)− 1

2 FΦ z̃am (t )(t , ·)− 1
2 FΦζ(·+am(t ))+Ram (t )(z̃am (t )(t , ·))

]
, dζ

dx (·+am(t ))
〉

L2
x

dt

+m Re
〈
Πam (t )

[
z̃am (t )(t , ·)dW (t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

+m Re
〈
Πam (t )

[
ζ(·+am(t ))dW (t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

− ȧm(t )m Re
〈
Πam (t )

[
dζ
dx (·+am(t ))

]
, dζ

dx (·+am(t ))
〉

L2
x

dt

− ȧm(t )m Re
〈
Πam (t )

[
∂x z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

dt .

Note that the fourth inner product can be computed as〈
Πam (t )

[
dζ
dx (·+am(t ))

]
, dζ

dx (·+am(t ))
〉

L2
x
=

〈
Π

[
dζ
dx

]
, dζ

dx

〉
L2

x
=

∣∣∣ dζ
dx

∣∣∣2

L2
x

,

and we denote this constant by c. The term containing the linearization Lam (t ) can also be simplified. To this
end, we write 〈

Πam (t )
[
Lam (t ) z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x
=

〈
L0Π

[
z̃am (t )(t , ·−am(t ))

]
, dζ

dx

〉
L2

x
,

and use that Π projects onto the span of dζ
dx , so that we have

Π
[
z̃am (t )(t , ·−am(t ))

]= 〈
Π

[
z̃am (t )(t , ·−am(t ))

]
, dζ

dx

〉
L2

x

dζ
dx ,

which gives〈
Πam (t )

[
Lam (t ) z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x
=

〈
L0

〈
Π

[
z̃am (t )(t , ·−am(t ))

]
, dζ

dx

〉
L2

x

dζ
dx , dζ

dx

〉
L2

x

=
〈
Π

[
z̃am (t )(t , ·−am(t ))

]
, dζ

dx

〉
L2

x

〈
L0

dζ
dx , dζ

dx

〉
L2

x
= 0.

For the last equality we have used that dζ
dx is an eigenvector with eigenvalue 0 of L0. The expression for the

differential of ȧm(t ) now simplifies to

dȧm(t ) =m Re
〈
Πam (t )

[
(− 1

2 FΦ z̃am (t )(t , ·)− 1
2 FΦζ(·+am(t ))+Ram (t )(z̃am (t )(t , ·))

]
, dζ

dx (·+am(t ))
〉

L2
x

dt

+m Re
〈
Πam (t )

[
z̃am (t )(t , ·)dW (t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

+m Re
〈
Πam (t )

[
ζ(·+am(t ))dW (t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

− ȧm(t )m

(
c +Re

〈
Πam (t )

[
∂x z̃am (t )(t , ·)] , dζ

dx (·+am(t ))
〉

L2
x

)
dt .
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To gain a better understanding of the dynamics of the position correction, it is interesting to consider a sim-
plification of the previous equation. In case the noise term is small, we expect that the soliton is not perturbed
much, and we expect z̃ and am(t ) to be small. We therefore consider the following equation, describing only
the leading-order dynamics

dȧm
0 (t ) =−m Re

〈
Π

[ 1
2 FΦζ

]
, dζ

dx

〉
L2

x
dt +m Re

〈
Π [ζdW (t , ·)] , dζ

dx

〉
L2

x
− cmȧm

0 (t )dt , (4.7)

with am
0 (0) = 0, and thus ȧm

0 (0) = mRe
〈
Π [z̃0] , dζ

dx

〉
L2

x
. This linear SDE is solved by the mild solution formula,

yielding

ȧm
0 (t ) = ȧm

0 (0)e−cmt − α

c
(1−e−cmt )+m

∫ t

0
e−cm(t−t̃ ) Re

〈
Π

[
ζdW (t̃ , ·)] , dζ

dx

〉
L2

x
,

where
α= Re

〈
Π

[ 1
2 FΦζ

]
, dζ

dx

〉
L2

x
.

Upon integrating, and using that am(0) = 0, we obtain the following equation for the leading-order position
correction am

0 (t )

am
0 (t ) = ȧm

0 (0)+α/c

cm
(1−e−cmt )− αt

c
+m

∫ t

0

∫ t ′

0
e−cm(t ′−t ′′) Re

〈
Π

[
ζdW (t ′′, ·)] , dζ

dx

〉
dt ′.

We now use that

m
∫ t

0

∫ t ′

0
e−cm(t ′−t ′′) Re

〈
Π

[
ζdW (t ′′, ·)] , dζ

dx

〉
dt ′

=
∫ t

0

∫ t−t ′′

0
me−cmt ′′′ dt ′′′ Re

〈
Π

[
ζdW (t ′′, ·)] , dζ

dx

〉
= 1

c

∫ t

0
(1−e−cm(t−t ′′))Re

〈
Π

[
ζdW (t ′′, ·)] , dζ

dx

〉
,

and we conclude, using ȧm(0) = m Re
〈
Π [z̃0] , dζ

dx

〉
, that

am
0 (t ) =

(
1

c
Re

〈
Π [z̃0] , dζ

dx

〉
+ α

c2m

)
(1−e−cmt )− αt

c
+ 1

c

∫ t

0
(1−e−cm(t−t ′))Re

〈
Π

[
ζdW (t ′, ·)] , dζ

dx

〉
.

Upon taking the limit m →∞, corresponding to an immediate position correction, we find

a∞
0 (t ) = 1

c
Re

〈
Π [z̃0] , dζ

dx

〉
− 1

c
Re

〈
Π

[ 1
2 FΦζ

]
, dζ

dx

〉
L2

x
t + 1

c

∫ t

0
Re

〈
Π

[
ζdW (t ′, ·)] , dζ

dx

〉
.

This shows that, in leading-order, and in the limit of immediate correction, the position correction consists
of a primary part due to the initial difference with the soliton. The position furthermore shifts constantly in
the direction of the Itô drift term − 1

2 FΦ and experiences stochastic fluctuations.
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4.4. Outlook

So far we have been rather imprecise regarding for example the meaning of the ‘reduced’ equation, and the
conclusions that we can draw from the computations in the previous sections. In future research, it would be
interesting to formalize the previous computations into rigorous results. For instance, one question would
be whether the RODE definition of the position correction, Equation (4.6), effectively tracks the position of
the perturbed soliton. A way to do so would be to prove a second moment estimate on the difference z̃am (t )

between the solution and the translated soliton. This could also provide an answer to the question of whether
the soliton is (exponentially) stable under the influence of stochastic perturbations. Indeed, an estimate
controlling the second moment of z̃am (t ) could be interpreted as a generalization of Theorem 4.1.1 to the
stochastic setting.

If successful, such a result would, like [15], set another example of a deterministic stability theorem that is
lifted to the stochastic setting. It seems also that the approach to the calculations set out in the previous sec-
tions is not specific to the equation that is studied. As can be seen in Section 4.3, the computations deal with
properties of the soliton and linearized operator that fall into a more general framework of traveling waves
in nonlinear equations. It could be interesting to study the stability of (standing) waves or other patterns in
stochastic equations in such a more general framework.





Conclusions

In this thesis, the following variation on the nonlinear Schrödinger equation with multiplicative noise was
analyzed:

dz = (i∆z − iνz −ε(γz −µz))dt +4i |z|2z dt − i (z ◦dW ) for x ∈R and t ∈R+.

This parametrically-forced NLS equation includes linear loss in the modeling of pulse propagation through
optical fibers, which is compensated via phase-sensitive amplification. In systems of fiber-optic communi-
cation, this phase-sensitive amplification serves to prevent signal loss in long-distance communication. The
multiplicative noise models random perturbation of the electric field in the optical fiber.

It was shown in this thesis that the stochastic PFNLS equation admits global unique mild solutions for initial
data in L2(R) and H 1(R) that take values in the spaces

Lr (
Ω;C ([0,T ];L2(R))∩Lr (0,T ;Lp (R))

)
,

and
Lr (

Ω;C ([0,T ]; H 1(R))∩Lr (0,T ;W 1,p (R))
)

,

for initial data in L2(R) and H 1(R) respectively. The constants r and p are suitably chosen depending on the
regularity of the noise.

The proof of the existence and uniqueness results forms a combined exposition of works on the nonlinear
Schrödinger equation with multiplicative noise by de Bouard and Debussche [3, 4]. Minor adaptations were
required to fit the arguments to the parametrically-forced setting. The proofs are detailed, and we thus afford
a more accessible presentation of the works by de Bouard and Debussche. In particular, we demonstrate
the technical details behind a regularization procedure used to justify an application of Itô’s formula to mild
solutions of the stochastic PFNLS equation.

The proof of the existence and uniqueness results is based on a fixed-point argument, for which control of the
convolution with the semigroup associated with the linear parametrically-forced Schrödinger equation is es-
sential. In particular, the fixed-point argument uses space-time estimates on the semigroup, called Strichartz
estimates, which hold for equations that satisfy a suitable dispersive estimate. These dispersive properties
of the semigroup, which we proved via its Fourier representation, constitute the main contribution of this
thesis.

The existence and uniqueness results hold under the assumption that the noise is suitably regular. For appli-
cations, it would be interesting to investigate if this regularity assumption could be relaxed. It seems, how-
ever, that this would require a different proof strategy than the fixed-point argument employed in this thesis.
Another question that is natural to ask is whether the results for initial data in L2(R) and H 1(R) can be inter-
polated to obtain existence and uniqueness for initial data in the interpolation space Hs(R), with s ∈ (0,1).
Further investigation might also consider initial data in the higher-order spaces Hs(R), for s= 2,3,4, . . . .

In the final part of this thesis, we discussed the stability of solitary standing wave solutions of the PFNLS
equation under the influence of multiplicative noise. We considered an approach to track the displacement
of a soliton affected by stochastic forcing. A more formal treatment of the problem is required to turn the
presented informal computations into rigorous results. In particular, it would be interesting to obtain an
estimate demonstrating the validity of the position correction. Future research might also explore whether
stochastic perturbation of patterns in nonlinear equations can be analyzed in a more general framework.
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A
Technical lemmas

Lemma A.0.1
If αξ ∈ (0, ε2µ2

(ξ2+ν)2 ) and αξ,t ∈
(
(ξ2 +ν)t − ε2µ2t

2(ξ2+ν)
p

1−αξ
, (ξ2 +ν)t

)
, then

1.

∣∣∣∣F−1
{

ε2µ2t
2(ξ2+ν)

sin(αξ,t )p
1−αξ

}∣∣∣∣
L∞

x

≤C |t |;

2.

∣∣∣∣F−1
{
ε2µ2t 2

2
sinc′(αξ,t )

(ξ2+ν)
p

1−αξ

}∣∣∣∣
L∞

x

≤C t 2;

3.

∣∣∣∣F−1
{
ε2µ2t 2

2
sinc′(αξ,t )p

1−αξ

}∣∣∣∣
L∞

x

≤C |t |+C t 2.

Proof. Note that 0 <αξ < ε2µ2

ν2 < 1, so that
√

1− ε2µ2

ν <√
1−αξ < 1.

1. ∣∣∣∣∣F−1

{
ε2µ2|t |

2(ξ2 +ν)

sin(αξ,t )√
1−αξ

}∣∣∣∣∣
L∞

x

= ε2µ2|t |
2

∣∣∣∣∣F−1

{
sin(αξ,t )

(ξ2 +ν)
√

1−αξ

}∣∣∣∣∣
L∞

x

≤C |t |
∣∣∣∣∣ sin(αξ,t )

(ξ2 +ν)
√

1−αξ

∣∣∣∣∣
L1
ξ

≤C |t |
∣∣∣∣∣ 1

(ξ2 +ν)
√

1−αξ

∣∣∣∣∣
L1
ξ

≤C |t |

∣∣∣∣∣∣∣
1

(ξ2 +ν)
√

1− ε2µ2

ν

∣∣∣∣∣∣∣
L1
ξ

≤C |t |.

2. ∣∣∣∣∣F−1

{
ε2µ2t 2

2

sinc′(αξ,t )

(ξ2 +ν)
√

1−αξ

}∣∣∣∣∣
L∞

x

= ε2µ2t 2

2

∣∣∣∣∣F−1

{
sinc′(αξ,t )

(ξ2 +ν)
√

1−αξ

}∣∣∣∣∣
L∞

x

≤C t 2

∣∣∣∣∣ sinc′(αξ,t )

(ξ2 +ν)
√

1−αξ

∣∣∣∣∣
L1
ξ

≤C t 2

∣∣∣∣∣ 1

(ξ2 +ν)
√

1−αξ

∣∣∣∣∣
L1
ξ

≤C t 2

∣∣∣∣∣∣∣
1

(ξ2 +ν)
√

1− ε2µ2

ν

∣∣∣∣∣∣∣
L1
ξ

≤C t 2

∣∣∣∣∣∣∣
1

(ξ2 +ν)
√

1− ε2µ2

ν

∣∣∣∣∣∣∣
L1
ξ

≤C t 2.
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3. ∣∣∣∣∣F−1

{
ε2µ2t 2

2

sinc′(αξ,t )√
1−αξ

}∣∣∣∣∣
L∞

x

= ε2µ2t 2

2

∣∣∣∣∣F−1

{
sinc′(αξ,t )√

1−αξ

}∣∣∣∣∣
L∞

x

≤C t 2

∣∣∣∣∣sinc′(αξ,t )√
1−αξ

∣∣∣∣∣
L1
ξ

=C t 2
∫
R

|sinc′(αξ,t )|√
1−αξ

dξ.

To control the |sinc′(αξ,t )| term, we will use that |sinc′(x)| < 2
|x| . But to avoid problems around αξ,t = 0,

we split the integral into two parts and use that |sinc′(x)| < 1 around x = 0. Note that as |ξ| tends to
infinity, the lower bound on αξ,t tends to infinity as well. In particular, there exists a constant M > 0,
independent of t , so that αξ,t ≥ |t | if |ξ| > M . Additionally, we choose M large enough so that (ξ2 +
ν)

√
1− ε2µ2

ν2 > ε2µ2

2(ξ2+ν)
, which we need later on. We then split up the integral as follows

∣∣∣∣∣F−1

{
ε2µ2t 2

2

sinc′(αξ,t )√
1−αξ

}∣∣∣∣∣
L∞

x

≤C t 2
∫ M

−M

|sinc′(αξ,t )|√
1−αξ

dξ+C t 2
∫
R\[−M ,M ]

|sinc′(αξ,t )|√
1−αξ

dξ

≤C t 2
∫ M

−M

1√
1−αξ

dξ+C t 2
∫
R\[−M ,M ]

1

αξ,t
√

1−αξ
dξ

≤C t 2
∫ M

−M

1√
1− ε2µ2

ν2

dξ

+C |t |
∫
R\[−M ,M ]

1

(ξ2 +ν− ε2µ2

2(ξ2+ν)
p

1−αξ
)
√

1−αξ
dξ

≤C t 2 +C |t |
∫
R\[−M ,M ]

1

(ξ2 +ν)
√

1−αξ− ε2µ2

2(ξ2+ν)

dξ

≤C t 2 +C |t |
∫
R\[−M ,M ]

1

(ξ2 +ν)
√

1− ε2µ2

ν2 − ε2µ2

2(ξ2+ν)

dξ≤C |t |+C t 2.

Lemma A.0.2
Let {S(t )}t≥0 be the semigroup associated to the forced Schrödinger equation. Then:

|S∗(t1)S(t2)z0|Lp
x
≤C |t2 − t1|−( 1

2 − 1
p )|z0|Lp′

x
, for all z0 ∈ Lp ′

and t1, t2 > 0,

and

|S(t1)S∗(t2)z0|Lp
x
≤C |t2 − t1|−( 1

2 − 1
p )|z0|Lp′

x
, for all z0 ∈ Lp ′

and t1, t2 > 0.

Proof. Using Parseval’s theorem and the Fourier representation of the semigroup of Theorem 2.1.1 we can
write for f , g ∈ L2(R)

〈S(t ) f , g 〉L2
x
=

〈
e t Â(ξ)

[
f̂1(ξ)
f̂2(ξ)

]
,

[
ĝ1(ξ)
ĝ2(ξ)

]〉
L2
ξ

=
〈[

f̂1(ξ)
f̂2(ξ)

]
, (e t Â(ξ))T

[
ĝ1(ξ)
ĝ2(ξ)

]〉
L2
ξ

= 〈 f ,S(t )∗g 〉L2
x

,

which shows that the adjoint S∗(t ) acts as the matrix (e t Â(ξ))T in the Fourier space. Therefore, S∗(t1)S(t2)

and S(t1)S∗(t2) act in the Fourier space as (e t1 Â(ξ))T e t2 Â(ξ) and e t1 Â(ξ)(e t2 Â(ξ))T respectively. One can verify by
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direct computation that

eεγ(t1+t2)(e t1 Â(ξ))T e t2 Â(ξ) = cos(φ(ξ)(t2 − t1))

[
1 0
0 1

]
(A.1)

+ (t2 − t1)(ξ2 +ν)sinc(φ(ξ)(t2 − t1))

[
0 1
−1 0

]
(A.2)

+εµ(t1 + t2)sinc(φ(ξ)(t1 + t2))

[
1 0
0 −1

]
(A.3)

+εµ (ξ2 +ν)(cos(φ(ξ)(t2 − t1))−cos(φ(ξ)(t1 + t2)))

(ξ2 +ν)2 −ε2µ2

[
0 1
1 0

]
(A.4)

+ε2µ2 cos(φ(ξ)(t2 − t1))−cos(φ(ξ)(t1 + t2))

(ξ2 +ν)2 −ε2µ2

[
1 0
0 1

]
. (A.5)

And

eεγ(t1+t2)e t1 Â(ξ)(e t2 Â(ξ))T = cos(φ(ξ)(t2 − t1))

[
1 0
0 1

]
+ (t2 − t1)(ξ2 +ν)sinc(φ(ξ)(t2 − t1))

[
0 −1
1 0

]
+εµ(t1 + t2)sinc(φ(ξ)(t1 + t2))

[
1 0
0 −1

]
−εµ (ξ2 +ν)(cos(φ(ξ)(t2 − t1))−cos(φ(ξ)(t1 + t2)))

(ξ2 +ν)2 −ε2µ2

[
0 1
1 0

]
+ε2µ2 cos(φ(ξ)(t2 − t1))−cos(φ(ξ)(t1 + t2))

(ξ2 +ν)2 −ε2µ2

[
1 0
0 1

]
.

We prove the estimate for S∗(t1)S(t2), the other is then analogous. The matrix entries in (A.1), (A.2) and (A.3)

are also found in e t Â(ξ), only with t replaced by t2− t1 or t1+ t2. The entries of the remaining matrices in (A.4)
and (A.5) are both in L1

ξ
∩L∞

ξ
. By applying Lemma 2.3.1 to these terms, we obtain the following L∞-estimate

|F−1{((e t1 Â(ξ))T e t2 Â(ξ))i j }|L∞
x
≤Ce−εγ(t1+t2)(1/

√
|t2 − t1|+1+|t2 − t1|+ |t2 − t1|2 +|t1 + t2|2),

with i , j ∈ {1,2}. We treat the powers of |t2− t1| first, and distinguish three cases. First assume that |t2− t1| ≤ 1,
then

e−εγ(t1+t2)(1/
√

|t2 − t1|+1+|t2 − t1|+ |t2 − t1|2) ≤ 4/
√

|t2 − t1|.
If t2 − t1 > 1, then

e−εγ(t1+t2)(1/
√
|t2 − t1|+1+|t2 − t1|+ |t2 − t1|2) ≤ e−2εγt1 e−εγ(t2−t1)4|t2 − t1|2 ≤ 4e−εγ(t2−t1)|t2 − t1|2,

which we can bound by C̃ /
p|t2 − t1|, upon choosing C̃ large enough. Similarly, when t1 − t2 > 1:

e−εγ(t1+t2)(1/
√

|t2 − t1|+1+|t2 − t1|+ |t2 − t1|2) ≤ e−2εγt2 e−εγ(t1−t2)4|t2 − t1|2 ≤ 4e−εγ(t1−t2)|t2 − t1|2,

which again is bounded by C̃ /
p|t2 − t1|. We apply the same reasoning to the remaining term

e−εγ(t1+t2)|t1 + t2|2 ≤ C̃ /
√

|t1 + t2|.
Since t1, t2 ≥ 0, we have |t1 + t2| = t1 + t2 ≥ |t2 − t1| and it follows that

e−εγ(t1+t2)|t1 + t2|2 ≤ C̃ /
√

|t2 − t1|,
so that we finally obtain the L∞-estimate

|F−1{((e t1 Â(ξ))T e t2 Â(ξ))i j }|L∞
x
≤C /

√
|t2 − t1|.

We can apply the same reasoning as in the proof of Proposition 2.3.3 to show that the operator norm of
S∗(t1)S(t2) on L2 is uniformly bounded w.r.t. t1 and t2. The desired Lp -estimate then follows by interpo-
lation, as in the proof of Theorem 2.3.4.
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Proof of Lemma 1.2.15.

1. Let ε> 0. We start by writing

|(I −ε∆)−1 f |
W

k+2,p
x

= |(I −ε∆)−1 f |
W

k,p
x

+|∂x (I −ε∆)−1 f |
W

k,p
x

+|∂2
x (I −ε∆)−1 f |

W
k,p
x

,

and we treat the terms via their associated multiplier symbol. These are

m1(ξ) := 1

1+εξ2 ,

m2(ξ) := iξ

1+εξ2 ,

and

m3(ξ) := −ξ2

1+εξ2 ,

for (I −ε∆)−1, ∂x (I −ε∆)−1 and ∂2
x (I −ε∆)−1 respectively. The symbols m1(ξ) and m2(ξ) are both smooth

and uniformly bounded in ξ. Their derivatives are

dm1

dξ
(ξ) := 2ε

ξ

(1+εξ2)2 ,

dm2

dξ
(ξ) := i

1−εξ2

(1+εξ2)2 ,

and

dm3

dξ
(ξ) :=−2

ξ

(1+εξ2)2 ,

from which it follows that the functions ξ→|ξ|dm1
dξ (ξ), ξ→|ξ|dm2

dξ (ξ) and ξ→|ξ|dm3
dξ (ξ) are also smooth

and uniformly bounded in ξ. It then follows from the Mikhlin multiplier theorem (Theorem 1.2.14) that
m1, m2 and m3 are Lp multipliers. As a consequence, the multipliers Tm1 ,Tm2 and Tm3 are bounded on

W k,p
x (Remark 1.2.10) and we find

|(I −ε∆)−1 f |
W

k+2,p
x

≤Cε,p | f |W k,p
x

,

as desired.

2. In the previous part of the proof it was shown that (I − ε∆)−1 is an Lp multiplier. We now show that its
operator norm is uniformly bounded in ε. To this end, we note that

|m1(ξ)| ≤ 1

1+εξ2 ≤ 1,

and

|ξ|
∣∣∣∣dm1

dξ
(ξ)

∣∣∣∣≤ 2
εξ2

(1+εξ2)2 ≤ 2.

Hence, both the symbol and |ξ|
∣∣∣ dm1

dξ (ξ)
∣∣∣ are uniformly bounded in ε. It then follows from the Mikhlin

multiplier theorem that operator norm of (I −ε∆)−1 is uniformly bounded in ε.

3. We show that ((I − ε∆)−1 − I ) f → 0 in Lp , the result then follows by considering the derivatives of f up
to order k. Let therefore δ > 0. By density of the Schwartz space in Lp , we can choose φ ∈ S (R) with
| f −φ|Lp < δ/2, and we can write

|((I −ε∆)−1 − I ) f |Lp
x
≤ |((I −ε∆)−1 − I )( f −φ)|Lp

x
+|((I −ε∆)−1 − I )φ|Lp

x

≤Cp | f −φ|Lp
x
+|((I −ε∆)−1 − I )φ|Lp

x
< δ/2+|((I −ε∆)−1 − I )φ|Lp

x
.

In order to deal with the second term, we write (I −ε∆)−1 − I =F−1
ξ

εξ2

1+εξ2 Fξ, and find

gε(x) := (((I −ε∆)−1 − I )φ)(x) = 1

2π

∫
R

e i xξ εξ2

1+εξ2 φ̂(ξ)dξ,
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with φ̂ ∈S (R). We now estimate

|gε|pLp
x
=

∫
R
|gε(x)|p dx =

∫
R
|gε(x)|p−1|gε(x)|dx ≤ |gε|p−1

L∞
x

|gε|L1
x
≤

∣∣∣∣ εξ2

1+εξ2 φ̂(ξ)

∣∣∣∣
L1
ξ

|gε|L1
x

.

We can dominate the expression in the L1
ξ
-norm above as∣∣∣∣ εξ2

1+εξ2 φ̂(ξ)

∣∣∣∣≤ |φ̂(ξ)|,

for all ε> 0 and ξ ∈R. We also have point-wise convergence∣∣∣∣ εξ2

1+εξ2 φ̂(ξ)

∣∣∣∣→ 0

as ε ↓ 0 for all ξ ∈R. Furthermore, φ̂ ∈ L1(R), since S (R) ⊆ Lp (R) for all p ≥ 1. Therefore, the dominating
function ξ 7→ |φ̂(ξ)| is integrable and we conclude by the dominated convergence theorem that∣∣∣∣ εξ2

1+εξ2 φ̂(ξ)

∣∣∣∣
L1
ξ

→ 0 as ε ↓ 0. (A.6)

To estimate the remaining factor |gε|L1
x

, we rewrite gε as

gε(x) = 1

2π

∫
R

e i xξ εξ2

1+εξ2 φ̂(ξ)dξ= 1

2π

∫
R

εξ2

1+εξ2 φ̂(ξ)
1

1+x2 (1− d

dξ
)e i xξdξ,

and integrate by parts, which gives

gε(x) = 1

2π

∫
R

e i xξ

1+x2

(
d

dξ
−1

)(
εξ2

1+εξ2 φ̂(ξ)

)
dξ.

Note that there is no boundary term, since φ̂ ∈S (R). We proceed by writing

|gε|L1
x
=

∫
R

∣∣∣∣∣ 1

2π

∫
R

e i xξ

1+x2

(
d

dξ
−1

)(
εξ2

1+εξ2 φ̂(ξ)

)
dξ

∣∣∣∣∣dx

≤ 1

2π

∫
R

1

1+x2

∫
R

∣∣∣∣e i xξ
(

d

dξ
−1

)(
εξ2

1+εξ2 φ̂(ξ)

)∣∣∣∣dξdx

≤ 1

2π

∫
R

1

1+x2 dx
∫
R

∣∣∣∣( d

dξ
−1

)(
εξ2

1+εξ2 φ̂(ξ)

)∣∣∣∣dξ

= 1

2

∫
R

∣∣∣∣( d

dξ
−1

)(
εξ2

1+εξ2 φ̂(ξ)

)∣∣∣∣dξ

≤ 1

2

∫
R

∣∣∣∣ εξ2

1+εξ2 (φ̂(ξ)− dφ̂

dξ
(ξ))

∣∣∣∣dξ+ 1

2

∫
R

∣∣∣∣ 2εξ

(1+εξ2)2 φ̂(ξ)

∣∣∣∣dξ.

It follows from (A.6) and the fact that φ̂− dφ̂
dξ ∈ S (R) that the first integral in the remaining expression

converges to 0 as ε ↓ 0. The same follows for the second integral via the same reasoning and the bound∣∣∣∣ 2εξ

(1+εξ2)2 φ̂(ξ)

∣∣∣∣≤ |φ̂(ξ)|.

We conclude that |gε|Lp
x
= |((I −ε∆)−1 − I )φ|Lp

x
→ 0 as ε ↓ 0. We then choose ε small enough so that

|((I −ε∆)−1 − I )φ|Lp
x
≤ δ/2,

and we find that
|((I −ε∆)−1 − I ) f |Lp

x
< δ.

Since δ was arbitrary, the result follows.





B
Fourier transforms

Lemma B.0.1
For t ≥ 0, we have

F−1{cos((ξ2 +ν)t )}(x) = 1

2
p

t
(cos(x2/4t +νt )+ sin(x2/4t +νt ))

Proof.

F−1{cos((ξ2 +ν)t )}(x) =F−1
{

1

2
e i (ξ2+ν)t + 1

2
e−i (ξ2+ν)t

}
(x)

= 1

2
F−1

{
e−2i

p
νtξe i (ξ+pν)2t

}
(x)+ 1

2
F−1

{
e2i

p
νtξe−i (ξ+pν)2t

}
(x)

= 1

2
F−1

{
e i (ξ+pν)2t

}
(x −2

p
νt )+ 1

2
F−1

{
e−i (ξ+pν)2t

}
(x +2

p
νt )

= 1

2
e−i

p
νxF−1

{
e iξ2t

}
(x −2

p
νt )+ 1

2
e−i

p
νxF−1

{
e−iξ2t

}
(x +2

p
νt )

= 1

2
e−i

p
νx (

1

2
+ i

2
)

1p
t

e−i (x−2
p
νt )2/4t + 1

2
e−i

p
νx (

1

2
− i

2
)

1p
t

e i (x+2
p
νt )2/4t

= 1p
t

(
1

4
+ i

4
)e−i (x2/4t+νt ) + 1p

t
(

1

4
− i

4
)e i (x2/4t+νt )

= 1

2
p

t
(cos(x2/4t +νt )+ sin(x2/4t +νt ))

Lemma B.0.2
For t ≥ 0, we have

F−1{sin((ξ2 +ν)t )}(x) = 1

2
p

t
(cos(x2/4t +νt )− sin(x2/4t +νt ))
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Proof.

F−1{sin((ξ2 +ν)t )}(x) =F−1
{

1

2i
e i (ξ2+ν)t − 1

2i
e−i (ξ2+ν)t

}
(x)

= 1

2i
F−1

{
e−2i

p
νtξe i (ξ+pν)2t

}
(x)− 1

2i
F−1

{
e2i

p
νtξe−i (ξ+pν)2t

}
(x)

= 1

2i
F−1

{
e i (ξ+pν)2t

}
(x −2

p
νt )− 1

2i
F−1

{
e−i (ξ+pν)2t

}
(x +2

p
νt )

= 1

2i
e−i

p
νxF−1

{
e iξ2t

}
(x −2

p
νt )− 1

2i
e−i

p
νxF−1

{
e−iξ2t

}
(x +2

p
νt )

= 1

2i
e−i

p
νx (

1

2
+ i

2
)

1p
t

e−i (x−2
p
νt )2/4t − 1

2i
e−i

p
νx (

1

2
− i

2
)

1p
t

e i (x+2
p
νt )2/4t

= 1p
t

(
1

4
− i

4
)e−i (x2/4t+νt ) + 1p

t
(

1

4
+ i

4
)e i (x2/4t+νt )

= 1

2
p

t
(cos(x2/4t +νt )− sin(x2/4t +νt ))
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Itô integral, 15

Kahane-Khintchine inequality, 13

Lumer-Phillips theorem, 7

matrix exponential, 5
Mikhlin multiplier theorem, 11
Mild solution, 8

operator exponential, 5

Parseval’s theorem, 9
PFS equation, 19

Riesz potential, 11
Riesz-Thorin interpolation theorem, 9

Schwartz space, 9
stochastic convolution, 41
stochastic Fubini theorem, 16
Strichartz estimates, 31

type p Banach space, 13
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