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Abstract

The increasing demand for electricity offers many opportunities for renewable energy production, of which
one alternative is tidal stream energy. Several feasibility studies have shown that the global tidal stream en-
ergy potential can contribute significantly to producing renewable energy. This tidal energy can mostly be
produced at the ’tidal hotspots’, where the kinetic energy density is very high due to fast flowing tidal cur-
rents. However, the tidal technology is not yet cost competitive in comparison with other renewables, such
as photovoltaic and wind energy, which is why further cost reductions and efficiency improvements are to
be achieved. Interviews with existing tidal system developers provided insight in the cost breakdown and
showed that maintenance accounts for a significant share of the total project costs. This is due to the harsh
environmental conditions that impose a large uncertainty, which increase the complexity of selecting an op-
timal maintenance policy. Damen Shipyards has shown interest in entering the tidal industry and is exploring
the cost reduction possibilities by developing their own tidal system.

This thesis contributes to Damen Shipyards’ research by performing a time series analysis of a tidal hotspot to
identify and model the multivariate dependence of the governing environmental phenomena. A probabilis-
tic decision support tool is developed for selecting the optimal maintenance policy. The decision support
tool primarily determines when and to what extent corrective maintenance should be performed. The cor-
responding overall maintenance costs are also calculated and secondary information regarding the activity
duration is given. By means of the probabilistic approach, which captures the weather window uncertainty
due to the environmental randomness, the results can be interpreted by the user based on the desired confi-
dence level.

In this research the weather window uncertainty is implemented by simulating a large number of random,
but statistically identical environmental time series, which are based on available measurement data of the
tidal field at EMEC, located at the Orkney Islands in the United Kingdom. The multivariate dependence be-
tween the significant wave height, wave peak period, wind velocity and current velocity is identified in the
measurement set and fully represented in the generated time series by means of a pair-copula construction
simulation. The necessity for having time independence cannot be met in the original dataset, which is why
a new simulation approach is developed. This method consists of a sequential simulation of pair-copula
constructions to include both the time dependence and multivariate dependence in the synthetic time se-
ries. Simulation of the set of synthetic time series showed to be more effective for describing uncertainty
with respect to exclusively using the original dataset, due to the possibility of including more environmental
realizations.

The tidal array is represented as a semi-Markov decision process, which captures all costs and transition
processes related to the deterioration and maintenance decisions. A policy optimization algorithm can then
be used to find the optimal set of decisions and the corresponding maintenance cost rate which includes
both the direct and indirect maintenance costs.

The novel tidal system design of Damen Shipyards is then plugged into the decision support tool in order
to determine the optimal maintenance policy and maintenance costs. The effect of different levels of detail
for representing the tidal system have been compared and the benefits in terms of cost reductions of using
this decision support tool with respect to less advanced approaches have been highlighted. Furthermore,
multiple scenarios have been elaborated to identify the sensitivities in the cases of accounting for unreliability
in the failure rates, varying the number of platforms in the array and including the economic fluctuations of
the maintenance vessel day rates.
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1
Introduction

1.1. Emerging markets for tidal energy converters

1.1.1. Global energy trends

Today’s world is developing at a pace with a rapid growth of the global electricity demand. Data from the U.S.
Energy Information Administration [24] describe an increase of the electricity net generation of the world
between 1990 and 2012 by more than 90%. This trend will also continue the next decades when analyzing
British Petroleum’s global energy outlook [75], which predicts a continuation of this growth due to the grow-
ing population and the overall development of higher living standards. Between 2013 and 2035 the primary
energy production is projected to increase by 37%, with growth averaging 1.4% per year, as is depicted in fig-
ure 1.1a. In addition to this trend, an increase of the fraction of generated electricity with respect to the total
energy produced is expected from 42% today to 47% in 2035, as can be seen in figure 1.1b.

(a) Primary energy production per
region

(b) Inputs to power as a share of total
primary energy

(c) Primary inputs to power

Figure 1.1: Global energy trends up to 2035 by British Petroleum [75]

The increase in the electricity demand offers many opportunities for governments to develop different de-
ployment strategies to meet the demand. Given the growing awareness for sustainability and CO2 reduction,
this has resulted in a vast increase in market share of renewable energy sources, shown in figure 1.1c.

1.1.2. Tidal energy potential

Whilst the vast majority of the renewable energy developments focuses on solar photovoltaic (PV) and wind
energy, several studies [30, 34, 42, 84] have shown that the global tidal stream energy potential can still con-
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tribute significantly at the so-called ’tidal hotspots’, where the kinetic energy density is very high due to fast
flowing tidal currents. An overview of the most significant resources is shown in figure 1.2. The estimates of
global potential of tidal energy generation vary, but it is widely agreed that tidal stream energy capacity could
exceed 120 GW globally, which accounts for 4.36% of the global electricity production in 2015 [76].

Figure 1.2: Quantified global tidal energy resources by Atlantis Resources Limited [8]

In addition to the availability of tidal stream energy, the technology may bring a number of advantages over
comparable renewable energy sources, such as (offshore) wind and solar PV systems:

1. The predictive behavior of the tides enables a very predictable electricity production profile, which
reduces the necessity of expensive electricity buffer stations.

2. Depending of the rating of the turbine, tidal current power can achieve capacity factors in excess of
40% (peaking at 66% so far [60]) on commercial scale sites. Whilst the capacity factors of most offshore
wind farms in the United Kingdom and Denmark balance around 40% [26, 27], the annual capacity
factors of wind turbines and solar PV were in 2015 well below that with factors of 32.5% and 28.6%
[104], respectively.

3. Smaller tidal systems are needed than offshore wind systems for an equivalent power production due
to the higher density of the water relative to air. This may enable a reduction in material costs, but also
savings on installation and Operations & Maintenance (O&M) activities since smaller vessels may be
used.

4. The floating or submerged positioning of tidal systems results in a minimal visual disturbance and may
even be placed in shipping lanes in some cases if the tidal systems are fully submerged [98].

Figure 1.3 shows the tidal flow velocities near the United Kingdom, generated by a numerical model [81]. The
dark red areas group all potential TEC sites – totaling 9500 km2 where water depths exceed 25m and mean
spring peak velocities exceed 2m/s.

1.1.3. Cost competitiveness

The most common index for determining the effectiveness and comparing energy sources is the Levelized
Cost Of Electricity (LCOE). Lower values of the LCOE lead to cheaper electricity generation costs and are
highly preferred. It is defined as follows:
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Figure 1.3: Simulated maximum depth-averaged velocities within a sub-section of the northwest European shelf seas

LCOE = sum of discounted costs over lifetime

sum of discounted electrical energy produced over lifetime
=

∑n
t=1

C APE X t+OPE X t
(1+r )t∑n

t=1
Et

(1+r )t

(1.1)

The tidal industry is relatively new and so far no optimal design has been found. The current cost of electricity
generated by the tidal industry is still significantly higher than other renewable energy sources, as is listed in
table 1.1.

Table 1.1: Levelized cost of electricity for different power sources

Source of energy LCOE [ct/kWh]

Onshore wind 2.9 - 11.4 [78]
Offshore wind 6.7 - 16.9 [78]
Solar PV 3.5 - 18.0 [78]
Tidal stream 23.3 - 34.5 [29]

In order to make the tidal energy systems a viable alternative for existing forms of renewable energy, and thus
more cost competitive, it is required to drastically reduce the LCOE. As is stated in equation 1.1, this can be
achieved through one or more of the following actions:

• Reduction of capital expenditures (CAPEX), related to design, production and installation activities
• Reduction of the operational expenditures (OPEX), related to O&M and removal activities
• Increase of the produced electricity (Et )
• Extension of the system’s lifetime (n). However, this is usually fixed at 20 years as current site lease

contracts only last for that duration.
• Reduction of discount rate (r ). This risk driven factor significantly influences the LCOE, but can be

accounted for by postponing expenses and bringing income forward in time. Once the Technology
Readiness Level (TRL) increases to a commercial level, the discount rate will decrease due to a risk
reduction for the investments.
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1.2. Cost breakdown and reduction potential of tidal systems

1.2.1. Total cost breakdown of tidal systems

Several studies have been conducted on developing strategies for the reduction of the LCOE. One of such
studies [71] has interviewed existing tidal system developers to identify key contributing factors, so appropri-
ate developments can be initiated. Based on these interviews, the breakdown of costs was determined for the
existing tidal devices, which can be seen in figure 1.4.

Figure 1.4: Cost breakdown for current stage of development (left) and commercial target (right)

It can be noted that the OPEX covers 39% of the costs for the current stage of development. The commercial
target shows that this part remains nearly unchanged, which implies that significant cost savings are required
to obtain this result. Based on the interviews it was assumed the overall costs are to be reduced by 61% in
order to reach the commercial target. The OPEX is therefore required to reduce with the same factor.

1.2.2. OPEX cost breakdown of offshore wind farms

A reference study on the lifetime costs for large scale offshore wind farms[88] has identified the OPEX cost
breakdown, which include the processes listed in figure 1.5a. The operational aspects cannot be easily re-
duced by technological and policy related measures and are thus more or less dependent on external devel-
opments.

On the other hand, the maintenance related aspects are fully based on the selected maintenance strategy and
corresponding policy, which is the responsibility of the tidal developer. Assuming that the offshore wind farm
OPEX breakdown is similar to that of tidal arrays, it can be observed that the maintenance accounts for 43%
of the total OPEX costs.

(a) OPEX cost breakdown of offshore wind reference study (b) Included processes in the OPEX

Figure 1.5: Cost breakdown for large scale offshore wind farms

The executing of maintenance of tidal arrays thus accounts for almost 17% of the total cost breakdown. Whilst
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these costs can never be reduced to zero, it is relatively easy to perform a maintenance optimization by means
of a maintenance decision model. Application of the identified optimal maintenance policy can then result
in direct cost savings, which show to be significant in the total cost breakdown. It is therefore decided to focus
on reducing the maintenance costs by means of a maintenance optimization.

1.3. Maintenance management

Maintenance [19] is formally defined as the combination of all technical, administrative and managerial ac-
tions during the life cycle of an item intended to retain it in, or restore it to, a state in which it can perform
the required function (function or a combination of functions of an item which are considered necessary to
provide a given service).

Besides the operational aspects, much attention is paid to the management of maintenance. Maintenance
management embodies all processes answering the question of what activities should be done when, by
whom and with what intention. The management of maintenance can be split into two main processes [22],
the definition of the strategy and the implementation of the strategy, often referred to as the maintenance
policy.

1.3.1. Strategy definition

Maintenance management starts with the definition of the maintenance strategy. The strategy can be com-
posed by first identifying the overall maintenance objectives and applying the right maintenance strategy on
the system (comparable to validation). The effectiveness of the maintenance strategy is valued based on the
correctness of the process and to what extend the system objectives are met during its lifetime [22]. This en-
ables to find an optimal strategy in this phase which allows to minimize the maintenance indirect costs [105],
such as loss of production.

1.3.2. Policy optimization

After having defined the maintenance strategy, the implementation of the strategy is what is most important
(comparable to verification). In this stage the key objective is to ensure optimization of the policy, referring
to the formal set of rules that describe the performance of the maintenance activities within the predefined
boundaries of the strategy. It describes how well the task is being performed, not whether the task itself is cor-
rect. Efficiency is then understood as providing the same or better maintenance for the same cost [22].

1.4. Uncertainties in maintenance of tidal arrays

Uncertainty can be considered in two categories, aleatory and epistemic [62]. Aleatory uncertainty can be
considered as uncertainty arising from inherently probabilistic systems, such as the environmental condi-
tions at the tidal site. The epistemic uncertainty compromise elements that are unknown but have the ability
to be, such as the effect of a new vessel operator, who may deviate from the predefined policy. In this research
only the aleatory uncertainty is included, as this is most significant and does not require actual insights in the
discrepancies of the maintenance execution.

For determining the optimal maintenance of a tidal array the aleatory uncertainties need to be included
which affect the system’s performance. For tidal systems two main uncertainties can be identified, namely
the environmental influences which affect the weather windows and the limited operational data.

1.4.1. Weather windows uncertainty

Tidal array locations are characterized by fast flowing currents, together with wind and waves. These three
environmental phenomena pose a direct limitation to the operability of the maintenance vessel, since waiting
for a weather window may take longer than initially expected.

The wind and wave influence on weather window uncertainty is a well-known problem and has been exten-
sively studied for the installation and maintenance activities of offshore wind farms [51, 62, 92]. Probabilistic
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models have been developed which include the weather window uncertainty and its effect on the total main-
tenance costs and optimal policy.

For tidal array locations the fast flowing currents add more complexity to the model, as this is a severe limita-
tion for performing maintenance activities. Dynamic positioning capabilities of the maintenance vessel are
generally not sufficient to effectively perform station-keeping during an activity. The recurring character of
the tidal current further reduces the possibility of extended weather windows, so the combination of the tidal
current limitations and those of the wind and waves is one to be analyzed extensively.

Since tidal energy is relatively new with respect to offshore wind technology, and has a considerable lower
number of deployed systems, less research has been conducted on the unique environmental conditions at
tidal locations. In order to effectively include the uncertainty due to the waves, wind and currents, it is thus
first required to gain insights in the physical interactions. This thesis will contribute to this cause by analyzing
the multivariate dependence between the currents, waves and wind, so it can be included in the developed
model.

1.4.2. Limited data and experience

A recurring theme from the previously mentioned interviews with tidal developers is that the operating costs
are uncertain because of the early stage of technology development [93]. Some device developers can now
point to data of prototype operation for significant periods but for others lack of experience of long term
operation means that there is uncertainty about the frequency and cost of maintenance interventions.

Only very limited measurement data is available, which further complicates the process of gaining insight
in the weather window uncertainty. Additionally, no failure related data of the tidal components is available,
which requires current maintenance models to be run with data from reference studies, such as available data
from the offshore wind industry. This research attempts to give realistic values for both the equipment failures
and product costs, which may be a first step in quantifying these properties for tidal energy systems.

1.5. Necessity for a probabilistic maintenance model

The mentioned uncertainties form the foundation of this research, together with the implementation of a
maintenance model which allows the tidal array to be described in such detail. Existing analytical main-
tenance models [6, 73, 77] require numerous assumptions and simplifications to be made when describing
the equipment failures and maintenance activities. In addition to the already required assumptions due to
the data limitations, it is therefore desired not to apply further simplifications on the system which further
decrease the degree of realism.

It is therefore decided that an alternative maintenance decision model is to be developed, which is able to
realistically represent the tidal array, the failures and the maintenance activities. A probabilistic approach is
applied to include the weather window uncertainty to support the decision making for selecting an optimal
maintenance policy. Chapter 3 describes the selected maintenance decision model and its characteristics in
more detail.

1.6. The Damen solution

1.6.1. Novel tidal system design

Damen Shipyards is developing a novel tidal system design which aims to bring the LCOE down to a level
which is more in line with the existing renewable systems. Contrary to the majority of existing tidal systems,
the product of Damen will focus on accomplishing significant cost reductions of the total system by an in-
tegral design approach, instead of marginally improving the efficiency of the system’s individual assemblies.
The current top level tidal system design of Damen will be explained more in detail in chapter 5.
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1.6.2. Maintenance management implementation

In terms of maintenance strategies, it is desirable to avoid corrective maintenance as much as possible by
planning preventive maintenance activities [22]. However, for TEC arrays the optimal approach for mainte-
nance activities may deviate from this widely accepted view due to the previously mentioned uncertainties.
These uncertainties may influence the preventive strategies more due to their complexity and increased de-
pendence on the correctness of the inputs of decision making processes.

Also, in this early stage of development, it is more desirable for Damen to obtain extensive insight in the
characteristics of a more conservative strategy, which is less sensitive to the uncertainties, and consider the
corresponding optimal policy as a realistic upper bound. Alternative strategies may still be analyzed at a later
stage if the initial results are promising.

Therefore, the maintenance strategy which is implemented by Damen is a corrective group maintenance
strategy. The application and optimization of this strategy will be the center piece of this research.

Definition of the corrective groupmaintenance strategy
The developed maintenance strategy is strictly corrective and thus only initiates maintenance upon a failure
in the tidal array. The failure modes which are part of this research are described in subsection 5.4.1 and only
include the main assemblies that are related to the electricity producing functions.

The extension to a group based corrective strategy implies that an economical dependence between the fail-
ures and maintenance activity is present. This dependence can be exploited to reduce the maintenance costs,
as can be read in section 3.1. Due to set-up costs, which are independent of the number of failed TECs, the
costs of performing maintenance on multiple TECs differs from maintaining the same quantity individu-
ally.

Policy optimization
For the effective implementation of the group based maintenance strategy it is essential to find the optimal
moment of maintenance and define how many TECs should be replaced when maintenance is initiated. The
break-even point should be found to economically optimize the maintenance, as is depicted in figure 1.6.
The tidal array may be left to deteriorate, since performing maintenance as that moment is not economically
optimal. If so, the failed TEC(s) will be unable to produce electricity, introducing downtime costs. At some
moment, when more TECs have failed, the decision may be to perform maintenance and replace one or
multiple TECs. The tasks and phases of the maintenance operation will be extensively explained in chapter 6.
The developed model will assist with the decision making by producing the optimal decision for every single
identified failure combination within the array.

(a) Maintenance cost curve (b) Moment of optimal maintenance

Figure 1.6: Maintenance optimization
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1.7. Purpose statement

Studies and early array projects have shown that the recent developments of tidal energy converters can sig-
nificantly contribute in generating energy at fast flowing locations. This transition to renewable energy pro-
duction may well have a noticeable impact on the environment by replacing the current conventional energy
sources. However, in order to achieve this, the LCOE of the tidal systems is required to reduce to a compara-
ble level of the alternative (renewable) energy sources for cost competitiveness. So far no single aspect of the
system has been identified which can solely account for the desired cost reduction, so it can only be achieved
by an integral approach of both technological innovations and operational optimization [7].

Recent interviews with TEC developers gave insight in the current LCOE breakdown, which stated that O&M
related activities are the most dominant contributors and account for 39% [71] of the total LCOE. This is a no-
ticeably higher share than that of comparable energy sources, such as the offshore wind, and can be explained
by a number of internal and external factors. Firstly, the (semi-)submerged positioning of the TECs renders
the devices difficult to access and often requires the use of specialized vessels. Additionally, the operability of
maintenance vessels may be severely limited by the combination of wind and waves, but especially fast tidal
flows, which characterize the high potential tidal locations. Furthermore, since the tidal industry is still in
its development phase only limited long-term operational experience and data on component failure rates is
available. The current lack of insight in failure properties makes it hard to develop an efficient maintenance
policy to minimize the overall costs.

The early stage of development of the tidal industry also brings the challenge that no convergence to an
optimal design has been identified yet. Tidal developers each have their own focus points of development,
which results in a large variation of TEC designs. Whilst the continuation of the search for optimal designs is
desirable, the learning rate of the individual developers is mostly limited to the findings of their own specific
system performances. The design methodologies for TECs [68] is therefor still mostly orientated at (technical)
feasibility, after which an appropriate, but most probably sub-optimal, maintenance policy is fitted, resulting
in higher overall costs.

For an effective reduction of the LCOE it is therefore required to improve the existing design methodology by
integrating the maintenance strategy definition and the optimization of its policy at an early stage in the TEC
development. The implementation of this methodology into a computer model is highly desirable to formal-
ize the economic optimization of the maintenance policy and identify the influence of the uncertainties on
the maintenance costs.

The purpose of this study is twofold. First, this study will assess how the governing environmental condi-
tions can be effectively characterized and implemented in a model to describe its effect on the uncertainty
of maintenance. Secondly, the failure and maintenance characteristics of the tidal array will be formalized
into a decision support tool. This decision support tool is both used to identify an optimal maintenance pol-
icy, but also to provide insight in the effect of the various uncertainties on both the proposed policy and its
corresponding maintenance cost.

The decision support tool described in this study is developed in collaboration with Damen Shipyards and a
case study will be performed to economically optimize the maintenance policy of the existing top level TEC
design and provide insight. An extensive analysis will be performed which determines the added value of
this decision support tool by evaluating the recommended maintenance policy and comparing this to that of
other maintenance models.

1.8. Research objectives

The research objective of this study is to increase the understanding of the maintenance uncertainty
of tidal arrays due to the environmental influences and include this uncertainty in the optimization of
the maintenance policy. This will be achieved by developing a decision support tool which captures all
significant internal and external system characteristics.
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1.9. Research questions

The research questions of this thesis are:

RQ 1 How can the environmental effects at tidal hotspots be realistically modeled?
(a) Can dependence between the variables be identified and explained?
(b) What model is best used to generate time series which includes multivariate dependence?

RQ 2 How can the uncertainty in the maintenance activities of the TEC array be included in the model?

RQ 3 How can the resulting optimal maintenance strategy influence the decision making?
(a) How does this model relate to other generic analytic group based maintenance models?
(b) What are the main sensitivities that affect the total maintenance cost?

1.10. Research methodology

The research methodology which is applied consists out of the following consecutive steps:

Step 1 Perform a literature study
1.1 Simulation of realistic environmental time series
1.2 Description of component failures
1.3 Developing a decision model framework

Step 2 Identify the main contributions of the maintenance process
2.1 Tidal system properties
2.2 Maintenance vessel properties
2.3 Analysis of environmental measurement data

Step 3 Develop the decision support tool which can optimize maintenance policies
Step 4 Perform a case study with Damen’s tidal system design to obtain insight in the system characteristics

and sensitivities

1.11. Outline

To facilitate the reading of this research, three parts are introduced which each consist out of multiple chap-
ters to structure the different topics. The outline of this thesis is depicted below in figure 1.7. The main chap-
ter interactions have also been included to give more insight in the overall realization of this research.

Chapter two, three and four provide the theoretical background which will be applied to answer the research
questions and develop the decision support tool.

Chapter five and six describe the tidal system and the selected maintenance strategy, which will serve as the
model’s base case. By means of reference studies and assumptions, the relevant system parameters will be
presented that are implemented in the model.

Chapter seven presents the model framework and gives an overview of the related main processes and model
assumptions of the developed model.

Chapter eight answers research question 1. First environmental measurement data is analyzed to answer
subquestion 1a. Secondly, the development of a new method for generating time series which includes de-
pendence is extensively described. This method provides an answer to subquestion 1b.

Chapter nine describes the development of the policy optimization model by combining the results from
various chapters. An extensive description of the model characteristics are presented to answer research
question 2.

Chapter ten contains the results of the base case simulation. The optimal policy and corresponding costs
will be identified and insight will be provided in the results and the model sensitivities to answer research
question 3.
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Chapter eleven gathers all the conclusions from the individual chapters and presents the main findings of
this research. Also, recommendations are given for further research.

Figure 1.7: Flowchart of this thesis’ topics and the chapter relations



Part I

Theoretical background





2
Multivariate dependence modeling using

copulas

During the operational period of the tidal array, it is subjected to a number of environmental phenomena, of
which the most governing are waves, wind and tidal currents. The combination of these phenomena describe
sea states which pose the limiting factor for a vessel’s workability when performing maintenance activities.
Also, the electricity produced by the TECs is directly related to the tidal velocity profile. In order to develop the
model for finding an optimal maintenance policy, it is thus required to obtain insight in the environmental
variables and their dependencies to generate reliable and realistic samples.

The environmental variables which are included in this research are:

• Wave height [m]
• Wave period [s]
• Wind speed [m/s]
• (Horizontal) current speed [m/s]

Multiple approaches may be used to represent the environmental conditions, such as creating a numerical
model for the location of interest, as has been performed at the EMEC tidal testing site [55]. Developing
such numerical model requires accurate information for determining the boundary conditions and is com-
putationally heavy to run simulations, so reducing the complexity of the problem is preferred. This can be
achieved by evaluating measurement data and applying a probabilistic analysis for a statistical representa-
tion. This method exclusively relies on the availability of measurement data and is relatively easy, though
versatile, to implement.

Because of this it is decided to describe and simulate the occurring environmental conditions of the tidal
location by means of a stochastic approach. It includes the use of copulas for describing the dependence
between variables and generating weather time series with identical statistical characteristics for running the
maintenance model simulations. Previous studies on the application of copulas for describing sea states have
described the dependence between the wind and waves [57, 65], but the inclusion of the tidal velocity has not
yet been performed.

This chapter commences with an introduction to variable dependence, describing what copulas are and giv-
ing arguments why copulas are the preferred method for describing dependence. Also, the methods are in-
troduced to identify and model the multivariate dependence. Lastly, the approach and data requirements for
simulating samples which contain this multivariate dependence are explained.

One of these data requirements for simulating samples cannot be met with the current environmental dataset,
which is why an extension of the current simulation methods has been developed to still enable the simula-
tion of synthetic time series. This extension will be extensively described in section 8.3, but the corresponding
requirement and research gap is already introduced in this chapter, in section 2.7.

13
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2.1. Introduction to dependence

2.1.1. Common methods for describing dependence

Various methods and models are available for describing the dependence between distributions and vari-
ables. Three of the most commonly used types for describing the correlation between two variables are the
Pearson Correlation Coefficient, Kendall’s Tau and Spearmans’s rho [108]. The Pearson correlation coefficient
describes linear correlation whereas the latter two resemble rank correlation methods. The characteristics
and notations of all three types are listed in appendix A.1.

Whilst each of above mentioned types can provide valuable information regarding the relations between vari-
ables, none of them is able to model full dependence, i.e. dependence structure and tail behavior, due to only
describing monotone dependence. It is exactly these properties which are interesting when interpreting and
sampling the interaction between sea state related physical phenomena.

2.1.2. Tail dependence

Definition
The tail dependence of a bivariate distribution is a measure of the dependence in the upper-right- and lower-
left-quadrant of the distribution. The definition is divided into two parts, one for upper and one for lower
[25].

Tail dependence in a bivariate distribution can be represented by the probability that the first variable exceeds
its q-quantile, given that the other exceeds its own q-quantile. The limiting probability, as q goes to infinity, is
called the upper-tail dependence coefficient [89], and a copula is said to be upper-tail dependent if this limit
is not zero.

Tail dependence between environmental variables
Tail dependence properties are particularly important in many applications that rely on non-normal multi-
variate families [45], which is often the case when observing the interaction between sea state related physical
phenomena [5, 50, 57, 65]. The upper tail dependence during extreme weather cases, such as fast winds which
induce high waves, are especially of interest for determining the potential working window of the mainte-
nance vessel and is perfectly captured in the tail dependence property.

Since the tidal array location will also be subjected to fast flowing currents, the possible tail dependence
between the current velocity and wave properties could also contribute significantly. Studies have been per-
formed on the interaction between current-wave interactions [109], but little is known for the unique cir-
cumstances of the tidal arrays. The sheltered location with extremely high currents may well give different
interactions. Therefore, there is a necessity for a more advanced and comprehensive method for describing
the tail dependence between distributions.

Describing tail dependence using copulas
As will be described in section 2.2, the use of copulas accounts for all this and is the preferred method for
describing dependence. It should be noted that throughout this report the Kendall’s Tau will be used regularly,
since this correlation coefficient is closely related to the copula theory. This will be further elaborated on later
in the report. The equation for determining the Kendall’s Tau value is listed in appendix A.1.3.

2.2. Copulas

Copulas are functions that couple multivariate distribution functions to their one-dimensional marginal dis-
tributions. These marginal distributions are uniformly distributed in the range of [0,1] [69]. The use of cop-
ulas enables studying the dependence structure of multivariate distributions by means of decoupling the
marginal properties of the random variables and the dependence structures. The first publication on copulas
was by Sklar [90] in 1959, who developed a theorem which still remains essential for defining copulas. The
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name ’copula’ was chosen to emphasize the manner in which a copula ’couples’ a joint distribution function
to its univariate margins.

2.2.1. Bivariate copula properties

Sklar’s theorem
Theorem (Sklar’s theorem). Let H be a joint distribution function with margins F and G. Then there exists
a copula C such that for all x,y in R̄,

H(x, y) =C (F (x),G(y)) (2.1)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on RanF & RanG. Con-
versely, if C is a copula and F and G are distribution functions, then the function H defined by 2.1 is a joint
distribution function with margins F and G.

Fréchet-Hoeffding bounds
In this section the existence of a maximal and a minimal bivariate copula is shown, usually referred to as
the Fréchet-Hoeffding bounds. All other copulas take values in between these bounds on each point of their
domain, the unit square. The Frechet upper bound corresponds to perfect positive dependence and the
lower bound to perfect negative dependence. For bivariate copulas, the Fréchet-Hoeffding states that the
cumulative distribution function of the copula is bounded by the equation below.

max (u + v −1,0) ≤C (u, v) ≤ mi n (u, v) (2.2)

The upper and lower bounds have been visualized in figure 2.1.

(a) Fréchet-Hoeffing lower bound (b) Fréchet-Hoeffing upper bound

Figure 2.1: Fréchet-Hoeffing bounds

Survival and rotated copulas
Every bivariate copula has a survival copula associated with it that gives the probability of two random vari-
ables both to exceed a certain value.

The survival copula C̄ (u, v) associated with the copula C (u, v) is

C̄ (u, v) = u + v −1+C (1−u,1− v) (2.3)

The purpose of a survival copula may not seem evident at first, but when looking at the graphical representa-
tion it can be observed that the survival copula is in fact the 180 degrees rotated copula. By including survival
copulas dependence may be defined more efficiently without implementing more copula families.
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Similarly, rotation by 90 and 270 degrees is also possible for most bivariate copulas and further extend the
possibilities of also describing negative dependence with the initial set of copulas. An example of the Clay-
ton copula, described in paragraph 2.2.2, is shown below in figure 2.2 together with the rotated and survival
variant.

(a) Clayton copula
(original)

(b) Survival Clayton copula
(180 deg)

(c) Rotated Clayton copula
(90 deg)

(d) Rotated Clayton copula
(270 deg)

Figure 2.2: Original, survival and rotated copula variants

2.2.2. Popular bivariate copula families

Many copula families have been developed, each with their own distinct characteristics to effective describe
dependence, either bivariate or in some cases multivariate. Some main properties can be identified which
clearly distinct themselves from one another. The copulas can either describe have one or two parameters,
and may or may not have a degree of tail dependence and skewness.

Whilst it is possible to use a single copula for describing multivariate dependence, the application of (sets of)
bivariate copulas is often preferred due to its ease of implementation. For this reason, only the properties
of bivariate copulas are explained in the upcoming paragraphs. Additional arguments for this choice are
mentioned in 2.4.

Archimedean copula family
Archimedean copulas are very popular because they can be described in a closed form and only have one
parameter to determine the strength of dependence. Three of the most well known Archimedean copulas
are the Clayton, Frank and Gumbel copulas. Due to their different properties regarding tail dependence,
as will be explained in subsection 2.2.3, these three Archimedean copulas are included in the analysis of
chapter 8.

The equations for cumulative distribution functions are given below.

Clayton copula

Cθ(u, v) = [max{u−θ+ v−θ−1;0}]−1/θ (2.4)

θ ∈ [−1,∞) \ {0} (2.5)

Gumbel copula

Cθ(u, v) = exp
[
−((−log (u))θ+ (−log (v))θ)1/θ

]
(2.6)

θ ∈ [−1,∞) \ {0} (2.7)

Frank copula

Cθ(u, v) =−1

θ
log

[
1+ (exp(−θu)−1)(exp(−θv)−1)

exp(−θ−1)

]
(2.8)

θ ∈R\ {0} (2.9)
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Elliptical copula family
Elliptical distribution families are widely applied in statistics and econometrics, especially in finance [32].
They are so-called implicit copulas because they do not have a simple closed form.

Gaussian copula

There is no simple analytical formula for the Gaussian copula function, but it can be upper or lower bounded,
and approximated using numerical integration [15, 16]. The bivariate Gaussian copula is defined as:

CGa(u, v) =Φρ
(
Φ−1(u),Φ−1(v)

)
(2.10)

where

Φρ(x, y) =
∫ x

−∞

∫ y

−∞
1

2π
√

1−ρ2
e

2ρst−s2−t2

2(1−ρ2) d s d t (2.11)

Gaussian copulas have no tail dependency unless ρ = 1.

Student-t copula

Let tν denote the central univariate Student-t distribution function, with ν degrees of freedom:

tν(x) =
∫ x

∞
Γ((ν+1)/2)p
πνΓ(ν/2)

(
1+ s2

ν

)− ν+1
2

d s (2.12)

where Γ is Euler function and tν, ρ ∈ [0,1], the bivariate distribution corresponding to tν:

tν(x, y) =
∫ x

−∞

∫ y

−∞
1

2π
√

1−ρ2

(
1+ s2 + t 2 −2ρst

ν(1−ρ2)

)− ν+2
2

d s d t (2.13)

The bivariate Student-t copula Cρ,ν is defined as

Cρ,ν(u, v) = tρ,ν
(
t−1

v (u), t−1
v (v)

)
(2.14)

2.2.3. Tail dependence properties

All of the described bivariate copulas, except for the Frank and Gaussian copulas, have different strength of
dependence in the tails of the bivariate distribution. See [46] for an overview of other copulas. The Clayton
copula is lower-tail dependent, but not upper. The Gumbel copula is upper-tail dependent, but not lower.
The Student copula is both lower- and upper-tail dependent, while the Gaussian and Frank are neither lower-
nor upper-tail dependent.

To illustrate the different behaviors of the tails of several copula densities, the contours of the probability
density functions corresponding to the copulas cited above are presented in figure 2.3. The parameters are
chosen in such way that the associated Kendall’s Tau is identical in all figures (τ= 0.60).
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Table 2.1: Copula tail dependence properties [64]

Copula Upper tail dependence Lower tail dependence

Gumbel 2−21/θ 0

Clayton 0

{
21/θ, for θ > 0

0, for θ É 0

Frank 0 0
Gaussian 0 0

Student 2tν+1

(
−

√
(ν+1)(1−ρ)

(1+ρ)

)
2tν+1

(
−

√
(ν+1)(1−ρ)

(1+ρ)

)

(a) Gaussian copula (b) Student-t copula (c) Clayton copula (d) Gumbel copula (e) Frank copula

Figure 2.3: Contour plots of copulas with standard normal marginals (τ= 0.60)

2.3. Fitting a copula to bivariate data

Having identified which bivariate copulas are included in this research, the next step is to describe the method
for fitting a copula to bivariate data. The bivariate data in this research may be any combination between the
four identified environmental variables and each have their own best fitting copula (and corresponding cop-
ula parameter). Having found a good fit, the copula can then be used to represent the bivariate dependence
for further analysis and simulation purposes.

To fit a copula to data three steps are to be performed:

Step 1 Build the empirical copula
Step 2 Determine the optimal copula parameter for the included copula families
Step 3 Compare the copulas and select the best fit

2.3.1. Build the empirical copula

Conversion to pseudo-observations
Converting the original data to pseudo-observations enables to find an estimate of the margins, as these will
change to an uniform distribution. This is achieved by using the ranks of the samples, which is defined as
follows

Ûi j =
Ri j

n +1
(2.15)

where n is the number of observations and the Ri j can be determined by using the expression for Kendall’s
Tau, shown in appendix A.1.3.

The asymptotically negligible scaling factor of (n+1) instead of n is used to force the variates to fall inside the
open unit hypercube, [0,1]d , to avoid problems with density evaluation at the boundaries [67].

Calculating the empirical copula
Once the pseudo-observations are known of the marginal distributions, the empirical copula can be calcu-
lated as follows
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C̃ (u) = 1

n +1

n∑
j=1

I
(
Z j 1 ≤ u1, . . . , Z j d ≤ ud

)
(2.16)

2.3.2. Determine the optimal copula parameter

Method-of-Moments using rank correlation
A straight forward method for estimating the copula parameter, θ, without knowing the marginal distribu-
tion is by using Kendall’s tau [46, 67]. This method takes advantage of the property that many copulas have
a one-to-one correspondence between their parameter and Tau. Table 2.2 shows the relation between the
two.

Table 2.2: Relations between θ and τ

Copula Kendall’s tau Parameter range

Gaussian si n(τ /pi
2 ) −1 < θ < 1

Student-t si n(τ /pi
2 ) −1 < θ < 1

Clayton 2 τ
1−τ 0 < θ

Gumbel 1
1−τ 1 ≤ θ

Frank 1−4θ−1(1−D1(θ)) θ ∈R
D1(θ) = θ−1 ∫ θ

0
t

e t−1
dt

It must be stated that the Kendall’s Tau is only directly related to the first copula parameter. In this research
this only poses a problem for the Student-t copula, which also has a second parameter. Also, the expres-
sion for the Frank copula parameter does not have a closed form, which makes the one-to-one correspon-
dence ineffective to use. To still be able to fit the Frank and Student-t copula on bivariate data, a second
approach is introduced which uses the Maximum Likelihood Estimation (MLE) and is can be applied to all
copulas.

Maximum Likelihood Estimation
An alternative for fitting the best copula parameter is calculating the MLE between the empirical copula,
created from the bivariate dataset, and the theoretical copula. An essential step in calculating the MLE is
converting the data to pseudo-observations [64]. This approach uses a numerical maximization, such as
gradients or finite differences to find the best fit. Several software packages [85, 96] are readily available to
perform these calculations and make this a very effective method for finding the optimal fit.

In this research the model uses the MLE approach, but afterwards the results were verified by comparing
them to the found values of the one-to-one relation between Kendall’s Tau and the copula parameter.

2.3.3. Selecting the best fitting copula

After the parameter of each of the copulas has been identified, the best fitting copula must be identified.
The best fitting copula can be selected according to the Akaike Information Criteria (AIC) [3] and Bayesian
Information Criteria (BIC) [87]. The criteria are computed for all available copula families (e.g., if u and v
are negatively dependent, Clayton and Gumbel and their survival copulas are not considered) and the family
with the minimum value is chosen. For observations ui , i = 1, ..., N, the AIC of a bivariate copula family c with
parameter(s) θ is defined as

AIC =−2
N∑

i=1
ln (c(ui , vi |θ)+2k (2.17)

where k = 1 for one parameter copulas and k = 2 for the two parameter Student-t copula. Similarly, the BIC is
given by
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B IC =−2
N∑

i=1
l n (c(ui , vi |θ)+ ln(N )k (2.18)

Evidently, if the BIC is chosen, the penalty for two parameter families is stronger than when using the AIC.

2.4. Copula constructions for describing multivariate dependence

There are multiple copula construction methods to describe multivariate dependence, each having different
properties and limitations with respect to the ease of implementation and desired complexity of modeling
the dependence. Indepth studies on copula dependence modeling [1, 47] have compared the set of avail-
able copula construction methods and listed some desirable properties and limitations, which are listed in
appendix A.2. The six identified methods can be placed into two distinct groups, constructions which are
described by multivariate copulas and those which can also fully describe the overall dependence by using
bivariate copulas.

2.4.1. Pair Copula Constructions

This latter group, consisting of the nested Archimedean copulas (NACs) and pair-copula constructions (PCCs),
is highly preferred and can model multivariate data sets by using a cascade of lower-dimensional bivari-
ate copulas. Visual representations of both types of constructions are depicted in figure 2.4 to give better
understanding in what the copula constructions look like and the differences between the two construc-
tions.

(a) Fully nested Archimedean
construction (d=4)

(b) Partially nested Archimedean
construction (d=4)

(c) Pair copula construction (d=4)

Figure 2.4: Model structures for construction of multivariate dependence

For the objectives of this research, namely the interpretation and sampling of the four environmental vari-
ables, the preferred option is to describe the multivariate dependence by means of a PCC. This is due to three
main advantages of PCCs with respect to NACs [1].

• Since only bivariate copulas are involved in a PCC, the partial derivatives of may be obtained relatively
easily for most parametric copula families.

• The copulas involved in a PCC do not have to belong to the same family. In contrast to the NAC they do
not even have to belong to the same class.

• The simulation procedure for the PCC is in general much simpler and faster than for the NAC.

Initially Joe [45] gave a probabilistic construction of multivariate distributions functions based on simple
building blocks called pair-copulas. Bedford and Cooke [10, 11] organized these constructions in a graphical
way called regular vines.



2.4. Copula constructions for describing multivariate dependence 21

2.4.2. Vine copula representation

The concept of vines are used to model a multivariate data set through pair-copula construction in a satisfac-
tory fashion. Vines serve as an aid to take advantage of information known in advance (about the dependency
structure), before dividing a multivariate distribution function into bivariate copulas and univariate distribu-
tion functions.

Within this research the two main vine types are included, namely the Canonical vine and the D-vine. Both
vines have their own distinct construction, as is shown in figure 2.5. The details and arguments for selecting
either of the vines is explained in the upcoming paragraphs, but first the notation and interpretation of the
vine structure is explained.

(a) Canonical vine (b) D Vine

Figure 2.5: Four parameter D- and Canonical vines

Interpretation of the vine components
Within any vine, the following components can be identified[2]:

Trees The trees denote the level in the vine. The vine is built from its base level up to its top node, after which
the multivariate dependence is full described by the vine.

Nodes The nodes represent the univariate data in the vine. At the base level these represent the actual in-
put data, but higher level nodes describe the derived data by applying the ’h-function’. This will be
explained in subsection 2.4.3.

Edges Each edge corresponds to a pair-copula density and the edge label corresponds to the subscript of the
pair-copula density.

The four-dimensional (n = 4) vines in figure 2.5 consist of three trees T j , j = 1,2,3. Tree T j has 6− j nodes
and 5− j edges. The whole decomposition is defined by the n(n −1)/2 edges and the marginal densities of
each variable.

The nodes in tree T j are only necessary for determining the labels of the edges in tree T j+1. As can be seen,
two edges in T j , which become nodes in T j+1, are joined by an edge in T j+1 only if these edges in T j share a
common node.

Vine selection
As stated before, each vine type has its own advantages. Fitting a Canonical vine might be advantageous when
a particular variable is known to be a key variable that governs interactions in the data set. In such a situation
one may decide to locate this variable at the root of the canonical vine, as is done with variate 1 in figure 2.5.
The D-vine is mostly preferred if no key variable can be identified in the data and the bivariate combinations
have a more or less equal level of dependence.

In chapter 8 the analysis is performed to select the best fitting vine. The analysis shows that the multivariate
dependence of the environmental data is best represented by the D-vine, due to the absence of a key variable.
More on this analysis can be read in subsection 8.2.2.
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Bedford and Cooke [10] give the density of an n-dimensional distribution for a D-vine (and the C-vine), which
has been described in appendix A.4.

2.4.3. The h-function

An expression for cu, v j |v− j ’s arguments, Fu|v− j and F v j |v− j is found in [67] . In [45] the following relation is
derived (under certain regularity conditions) and given that v is univariate,

Fu|v = ∂Cu,v

∂Fv
(2.19)

and when u and v are uniform, this is defined as the h-function [2].

h(u, v,θ) = Fu|v = ∂Cu,v (ux, v,θ)

∂v
(2.20)

In equation 2.20, θ is the set of parameters for the current copula, and the second parameter of h() is the
conditioning variable. The inverse of the h-function is defined as h−1(u, v,θ) = F−1

u|v , which is as the inverse
of h(u, v,θ) with respect to u. The inverse h-function is required when simulating from a vine construc-
tion.

2.5. Building a vine copula
First one has to choose which variables to join at the first level of the vine. Then the variables that have the
highest rank correlation, expressed in the Kendall Tau, are joined together. Having chosen the order of the
variables at the first level, one has also determined which factorisation to use. Given data and the chosen fac-
torisation, one must then specify the parametric shape of each pair-copula involved. The parametric shapes
may for instance be determined using the following procedure [2]:

Step 1 Determine which copula families to use at level 1 by plotting the observations, and/or applying a
Goodness-of-Fit (GoF) test (AIC or BIC).

Step 2 Estimate the parameters of the selected copulas.
Step 3 Determine the observations required for level 2 as the partial derivatives of the copulas from level 1.
Step 4 Determine which copula families to use at level 2 in the same way as at level 1.
Step .. Repeat step 1-3 for all levels of the construction.

2.6. Vine copula simulation
Once the vine has been constructed and all copula families and their respective parameters has been se-
lected, using the procedure from section 2.5, it is possible to simulate new samples. This simulation method
is applied to generate synthetic time series which are based on the original environmental measurement
data.

The algorithm for the D-vine is available in appendix A.5.1. In addition figure 2.6 visualizes a single simulation
loop of a D-vine with 4 variables (d=4), producing four variates, including the multivariate dependence which
was described by the PCCs. In the description of the simulation procedure the nodes are labeled as v(i , j ).
Only the relevant nodes are depicted in figure 2.6, but appendix A.5.2 can be consulted for a full overview of
the node labels, which are also required in the formal algorithms.

The steps which are taken per simulation loop are as follows:

1. Generate four random numbers from an uniform distribution, w1, . . . , w4

2. Calculate U1

a Start from the bottom-left and let U1 = w1

3. Calculate U2

a Again, start from the bottom-left and use plug in U1 and w2 into the inverse h-function of C (1,1)
to calculate U2
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4. Calculate U3

a Plug in U1 and U2 into the h-function to calculate the conditional distribution v(2,2) at the second
tree

b Plug in v(2,2) and w3 into the inverse h-function of C (2,1) to calculate the intermediate value, U?
3

c Plug in U2 and the intermediate value U?
3 into the inverse h-function of C (2,1) to calculate U3

5. Calculate U4

a Use the same methodology to calculate v(3,2), v(3,3) and v(3,4) using the h-function and corre-
sponding input

b Plug in v(3,4) and w4 into the inverse h-function of C (3,1) to calculate the intermediate value, U?
4

c Plug in v(2,1) and the intermediate value U?
4 into the inverse h-function of C (2,2) to calculate the

second intermediate value, U??
4

d Plug in v(3,1) and the intermediate value U??
4 into the inverse h-function of C (1,3) to calculate

U4

(a) Calculate U1 (b) Calculate U2

(c) Calculate U3 (d) Calculate U4

Figure 2.6: Visualisation of D-vine simulation for one sample set

2.7. Simulation of data with time dependence

2.7.1. Necessity of i.i.d. input data

One important property of the analyzed data set should be carefully checked, since each set of samples is
generated independently from previous simulations. This requires the original dataset to be independent
and identically distributed too for a good representation with the synthetic one. To enable vines to effectively
simulate synthetic time series this necessity implies that the input datasets should be time independent, as
is stated in many publications on copula simulation [2, 65, 67].

Obtaining this state of time independence in the dataset can be either achieved by applying filtering, such as
a GARCH(1,1) [14] model, or by increasing the time step to reduce the dependence between lags, as can be
inspected by plotting the Auto Correlation Factor (ACF) of the input time series.
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2.7.2. Research gap

There may be cases in which either of proposed solutions is undesirable to implement. This happens to be
the case with the measurement data for this research, since only a very limited time series is available. The
number of samples is therefore too small to perform filtering or increasing the time step.

For now it is more important to mention that the described copula and vine theory cannot be directly applied
to generate synthetic time series which contain (near) identical multivariate and time dependence properties,
such as the persistence, as the original time series.

Having performed an extensive literature study, it is to the author’s best beliefs that the copula theories have
in fact not, or very limited, been applied for describing both types of dependence by means of a formal al-
gorithm. This research gap will be studied more extensively in chapter 8 and new methodologies will be
proposed to overcome this limitation.



3
Maintenance Decision Models

For production equipment, ensuring the system function is often the prime objective. Here, maintenance has
to provide the right (but not the maximum) reliability, availability, efficiency and capability (i.e. producing at
the right quality) of production systems in accordance with the need for these characteristics. In principle it
is possible to give an economic value to the maintenance results, and a cost-balance can be done.

In this chapter the application of a semi-Markov decision process is explained to represent the group main-
tenance strategy. The limitations of analytical maintenance models are also touched upon, which prove that
these models are inadequate.

3.1. Group maintenance strategy

The most important characteristic is that the process of replacing components is economically dependent,
as was already mentioned in paragraph 1.6.2. In this thesis a positive economical dependence is identified,
which implies that replacing multiple components at once results in lower costs with respect to replacing
them one after each other in independent activities. Important to state is that in the mentioned studies and
this research as well, all components are assumed to be identical and fail independent.

A fixed cost C0 occurs when initiating a maintenance activity. The cost of repairing an individual component
consists of two components, one fixed and the other time related. Specifically, C f is the fixed cost of repairing
a component and includes such costs as the price of replacement parts, while Cr denotes the cost per unit
time of replacing one component. Each component that fails accumulates down time costs at a rate of Cd per
unit time. By using a objective function the optimal moment of maintenance can be found which minimizes
the sum of all these costs, as is depicted in figure 1.6.

3.2. Limitations of analytical models

Multiple studies have been performed to describe a system in which a group maintenance strategy is applied,
each with their own assumptions. Some studies [6, 73, 77] assume that the replacement is instantaneously
and the costs per unit of time can be neglected. Jacob [44] extends these analytical models by including
random repair times and thus represents the maintenance process more realistically. Assaf [6] has combined
group maintenance optimization theories with the possibility of adding maintenance interval restrictions.
Still, all studies aim to minimize the maintenance costs based on a set of analytical equations.

Whilst these models are able to give an acceptable representation of the tidal array, there are a number of
limitations which render the existing analytical methods useless for accurately describing the system. The
corresponding optimized maintenance policy can thus not be representative.

First of all, the tidal array includes clustering of components since they are spread over a finite number of tidal
platforms. This results in the necessity of differentiating between possible failure combinations, in case more

25
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than one component has failed. As will be explained in chapter 5 this affects both the fixed (C f ) and variable
(Cr ) cost aspect of the maintenance process and thus these values cannot be taken as constants.

A second important limitation is that of the inclusion of uncertainty. It was mentioned in the introduction
that the maintenance duration, and thus costs, depend on the availability of weather windows. In this re-
search an accurate representation of the environmental conditions is desired, which is why a numerical ap-
proach is preferred which can fully describe the randomness of the weather. This numerical approach for
including the uncertainty cannot be effectively combined with the less complex analytical models, which is
why these will not be used. Chapter 7 presents the maintenance model which has been developed to deter-
mine the optimal policy.

3.3. Semi-Markov Decision Processes
Semi-Markov Decision Process (SMDP) have been extensively used to describe maintenance planning prob-
lems and have shown to be an effective approach for minimizing the long-term maintenance costs [9, 36, 102].
Semi-Markov decision processes allow engineers to model complex systems more accurately and enable the
best decision policy to be obtained by means of optimization algorithms. This process type is an extension
of the general Markov processes. The general Markov property and the model extensions into a semi-Markov
decision process will be explained in the next subsections.

3.3.1. General Markov process

A Markov model is a special type of dynamic model with which the probabilistic evolution of a system can be
modeled in time.

The Markov property [61] means that evolution of a stochastic process in the future depends only on the
present state and does not depend on past history. The corresponding Markov process can thus be described
as being ’memory-less’, which corresponds to the property of the exponential distribution.

Any arbitrary system or process can be described using Markov chains by means of defining a finite number
of states which each describe an unique situation in time and/or space. The probability of changing from
one state to another are defined by a set of transition probabilities representing the probability to go from the
state i to the state j in one step, or specific time interval [22].

S = {1,2, ..,n} (3.1)

pi j ,with i , j = 1,2, ..,n (3.2)

For a system with n states, these probabilities can be grouped in a matrix called stochastic matrix of transition
probabilities, in the following form:

P =


p11 p12 . . . p1n

p21 p22 . . . p2n
...

...
. . .

...
pn1 pn2 . . . pnn

 (3.3)

Each element in matrix P is a probability and therefore its value is within the interval [0,1]. Also, and given that
each row contains the probability of a finite number of events, the sum of all elements of each row should be
equal to unity. In other words, P is a stochastic matrix for which each row contains a probability vector.

3.3.2. Extension into a Semi-Markov Decision Process

The general Markov process is extended with two additional properties in order to obtain a Semi-Markov
Decision Process, namely the addition of the following properties:

• Adjustable sojourn times
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P =
0.0 0.8 0.2

0.5 0.1 0.4
0.5 0.0 0.5



Figure 3.1: Example of Markov chain and transition probabilities

• Decisions

The steps of this transition are explained below to give insight in the properties of a semi-Markov decision
process.

State holding times: Semi-Markov processes
Semi-Markov processes allow the amount of time spent in each state to be any positive value and not just
an exponential distribution. This ensures that various transition rates λi , j can be used between any of the
states. This is a very important property, as it allows physical processes, such as the failure rates and the
maintenance rate, to be effectively implemented in the model to be more comparable to the actual situation
[80].

Furthermore, the length of a visit in a state is called the sojourn time (ti ). The sojourn times of each state can
by calculated by the transition rates. Each sojourn time λi , j is the inverse of the sum of the departe rates for
state Si . [83]

ti = 1∑
λi ,dep

(3.4)

The accuracy of estimating the sojourn times directly results in the accuracy of the overall model. Thus,
a sojourn time that is not well represented leads to poor model results. It is therefore important to acquire
realistic values for describing the transition rates between the states to ensure that the corresponding sojourn
times represent reality as much as possible.

Decisionmaking & rewards: Semi-MarkovDecision Processes
The second extension adds decision making properties to the semi-Markov process, which converts it into a
semi-Markov decision process. This is achieved by enabling the user to define a set of decisions (sometimes
called actions in liturature) for each of the states [99]. Whilst the states itself remain unchanged, each of the
decisions has their own set of transition rates and rewards, based on what it represents.

3.3.3. SMDP system representation

The semi-Markov decision process is defined by a four-tuple:

• States
• Decisions
• Transition probabilities
• Costs

Let pi j (a) be the probability of going from state i to state j when action a is chosen and ci (a) is the cost from
a transition to state j from state i when action a is chosen. Then the total reward of choosing action a while in
state i is [40]
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ci (a) =
N∑

j=1
ci , j ·pi j (a) (3.5)

The time spent in each state must also be considered. So it is then necessary to find the reward per unit
time called the earning rate while choosing action a finally giving the best initial policy. This is found by
[100]

q j (a) = ci (a)

ti
(3.6)

3.4. Policy optimization methods

Two methods are used to solve SMDPs, namely a value iteration method and a policy iteration method [101].
The selection of the method is based on whether a finite or an infinite horizon problem is observed. A finite
horizon problem is when the system considered is only being solved for a finite time interval, ensuring the
transient effects when approaching the end of lifetime to be also included.

Using a finite horizon in combination with the value iteration method, it is possible to simply count the re-
ward for each decision and sum the total reward for the entire policy at the end of the time interval. However,
when the time interval is infinite, the rewards obtained will grow without bound over time and disable the
possibility of finding an optimal policy.

In this thesis, a policy iteration method in combination with an infinite is applied as the optimization method.
This can be safely assumed since the operational lifetime of such tidal systems is generally 20 years and the
transient effects on the optimal decisions are negligible, as the sojourn times are significantly shorter than 20
years.

The reward will be measured by the gain that one decision has over another alternative. It is desirable to
maximize this gain for each state in which a choice is present. Then the final policy will be independent of
time. A policy iteration method is advantageous because it is a much more efficient search method for larger
systems.

3.4.1. Policy iteration

The long-run average cost per time unit is taken as the criterion which is to be optimized. For this criterion
the semi-Markov decision process is determined by the following characteristics:

• pi j (a) = the probability that at the next decision epoch the system will be in state j if action a is chosen
in the present state i,

• ti (a) = the expected time until the next decision epoch if action a is chosen in the present state i,
• ci (a) = the expected costs incurred until the next decision epoch if action a is chosen in the present

state i.

The policy iteration algorithm can be found in several formats, but the results remains identical. In this
research the approach of Tomasevicz [101] for using an educated guess as the initial policy (step 1), whereas
the remainder of the algorithm is described by Tijms [99].

Figure 3.2: Policy iteration flow chart
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Step 1: Initial policy
To determine the best policy using the policy iteration method it is first necessary to select an initial policy.
This policy can be selected at random, but this may result in a number of unneeded iterations to reach to the
final optimal policy. Therefore, the first step is to choose an initial policy that is not random, but an educated
guess. The initial policy d1 is the policy in which the highest earning rate, thus the lowest value of ci (a), is
selected for each state.

Step 2: Policy Evaluation
Next, the iteration process begins by the Policy Evaluation step. It is necessary to obtain a scalar that repre-
sents the gain of the selected alternative along with N relative values, vi , for the system. The gain of the policy
is the average reward per unit of time. This provides method of comparison between policies. Note that
there are N relative values and one scalar g in which to solve, giving N +1 unknowns with only N equations.
Therefore one of the relative values, usually vN , is arbitrarily set to zero [40]:

vi = ci (di )− g · ti (di )+∑
j∈I

pi j (di ) · v j (3.7)

vN = 0 (3.8)

Step 3: Policy Improvement
For each state i ∈ I , determine an action ai yielding the minimum in

min
a∈A(i )

{
ci (a)− g (d) · ti (a)+∑

j∈I
pi j (a) · v j (d)

}
(3.9)

The new stationary policy d̄ is obtained by choosing d̄i = ai for all i ∈ I with the convention that d̄i is chosen
equal to the old action di when this action minimizes the policy-improvement quantity.

Step 4: Convergence test
If the new policy d̄ = d , then the algorithm is stopped with policy d . The constant g∗ is uniquely determined
as the minimal average cost per time unit.

Otherwise, go to step 2 with d replaced by d̄ .





4
Equipment failure

Failures are essential events when developing a corrective maintenance model. A failure is defined as the
termination of the ability of equipment to perform a required function [19]. The cause of a failure may not
always be known, but can be related to errors in the design, manufacturing, installation, operation and/or
maintenance.

In this thesis the focus will be on how often the equipment fails and the probability of occurrence, and less
on why and how the equipment has failed. This chapter explains the essential theoretical background and
equations are provided for describing failures in a system.

4.1. Modeling failures

Four basic functions are used to describe equipment failures: [22]

• f (t ) - Failure probability density function (pdf)
• F (t ) - Failure probability distribution function (cdf)
• R(t ) - Reliability function
• λ(t ) - Failure rate

The failure probability density function, f (t ), describes the probability of failure at time ’t’ and integrating this
function gives F (t ), the probability of failure until time ’t’. The reliability function, R(t ) gives the probability
to survive until time ’t’. Failure rate (λ) is the frequency with which equipment fails, expressed in failures per
unit of time.

Each of these four functions are directly related to each other and once one is known, the others can be
derived. The complete derivation of each function can be found in [22], but for this research the following
equations are most important.

∫ t

0
f (t )d t = F (t ) = 1−R(t ) (4.1)

R(t ) = exp

{
−

∫ t

0
λ(t )d t

}
(4.2)

4.2. Random failures

The hazard function describes the failure rate in time and is often referred to as the ’bathtub curve’, which is
depicted in figure 4.1. Whilst there is no general consensus on the applicability of this curve [52], a significant
part of literature represents the bathtub curve as the superposition of three independent hazard rates: [41,
54]
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• Decreasing hazard function - Infant mortality failure
• Constant hazard function - Random failures
• Increasing hazard function - Wear out failures

In this thesis all failure rates are assumed constant. In section 5.4 the arguments are given to substantiate
this assumption of which one important reason is the lack of detailed failure data. Reference failure data
is used, but only fixed failure rates are available for the observed equipment, not the distribution in time.
Therefore the exponential distribution is applicable, as it only requires one parameter to fully describe its
distribution.

If the failure rate is constant ( dλ
d t = 0), it implies that only random failures occur. Depending origin of the

failure data, two approaches are possible. Either the failure data describes all equipment failures during its
lifetime or the constant failure rate has been identified during its operational lifetime. If equipment failure
data of the entire lifetime is fitted with an exponential failure distribution, the constant hazard function at-
tempts to fit the realistic, ’observed failure rate’ hazard function. This gives an underestimation during the
early and ending life time, but an overestimation during the operational lifetime. If the failure data only de-
scribes the lifetime with constant failures, it represents that specific region very well, but cannot be used to
describe the other two regions, or it will severely underestimate the observed failure rates.

In this research the exponential failure rates the second approach is used, so only the constant failure rate
region is included the development of the maintenance model. This approach is most commonly used and
the failure rate data which is presented in chapter 5 is also exclusively applicable for the constant failure
rate region [4]. In figure 4.1 the approximation of the observed failure rate by using a constant failure rate is
depicted by the solid red line.

Figure 4.1: The ’bathtub curve’

Since a constant failure rate is used, the equation of the reliability function can then be rewritten to an ex-
ponential function. Equation 4.4 is called the exponential failure distribution and can thus be applied for
equipment under the assumption that the failure rate is constant in time.

R(t ) = e−λ·t (4.3)

F (t ) = 1−e−λ·t (4.4)

f (t ) =λ ·e−λ·t (4.5)
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Figure 4.2: Reliability function and failure probability distribution function for a constant failure rate

In practice, the mean time between failures (mean time between failure (MTBF), 1/λ) is often reported in-
stead of the failure rate.

MT BF = 1

λ
(4.6)

4.3. Multi-component failure

The tidal system consists of multiple assemblies, so a description of multi-component failures is required as
well. To do so, it is assumed that all assemblies of the tidal system are described by an exponential failure
distribution, as has been explained in section 4.2. In this section both series and parallel systems reliability
will be explained, including their application in the tidal system failure representation.

4.3.1. Serial failure

A series system is a configuration such that, if any one of the system components fails, the entire system fails.
Conceptually, a series system is one that is as weak as its weakest link. [82]. Figure 4.3 gives a schematic
representation of a series system with ’n’ components.

Figure 4.3: Serial system of n components

It is possible to convert the failure distributions of all individual components into one overall failure distribu-
tion. For serial failures the following holds [82]:

"System success" ≡ "Success of every individual component"

This can be written in terms of reliability as follows:

Rs y s = R1 ·R2 · . . . ·Rn (if component reliabilities differ) (4.7)

Rs y s = [Ri ]n (if i=1,...,n components are identical) (4.8)

When plugging the exponential distribution into the equations for serial reliability the following is found:
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R(t ) = e−λ·t (4.9)

λs y s =
n∑

i=1
λi (4.10)

Rs y s (t ) = e−
∑n

i=1λi ·t (4.11)

Fs y s (t ) = 1−Rs y s (t ) = 1−e−
∑n

i=1λi ·t (4.12)

The failure rates of individual components add up to the system’s failure rate. This results in failure probability
distribution function that has an increased steepness and thus the system fails faster on average.

This property is especially important when representing the serial system that is responsible for the electricity
generation. Different assemblies are connected serially and failure of one will result in an overall subsystem
failure, since no electricity can be produced anymore. This does not mean that all individual assemblies are
broken and are to be replaced, but the function of the overall subsystem cannot be executed anymore. Sec-
tion 5.4 gives a detailed description of how the tidal system is represented by means of combining individual
assembly failure distributions.

4.3.2. Parallel failure of identical equipment

A second type of multi-component failures is the parallel system, in which redundancy is included. The
overall system only fails if all of the individual components have failed. Figure 4.4a shows a parallel system of
’n’ components. Parallel systems are usually implemented to increase the MTBF of the overall system, as the
inclusion of more parallel linked components require a longer time before all components have failed. The
example

(a) Parallel system of n components (b) Parallel failure in states

Figure 4.4: Parallel system failure

Since all failure rates are constant in this thesis, the mean time from the ’n paths working’ state to the ’0 paths
working’ state is the sum of the mean times from each state to the next [63]. The transition from one state
to another can be described by means of a serial system failure. Only one of the working paths is required
to fail in order to transit to the next state, in which the same occurs but with one less path working, as is
depicted in figure 4.4b. This immediately gives the well known result that the MTBF of a system with ’n’
parallel redundant paths (without repairs) is proportional to the partial sum of the harmonic series

MT BF (N ) = 1

λ
·
(
1+ 1

2
+ 1

3
+ 1

4
+ . . .+ 1

N

)
(4.13)

Figure 4.5 gives an example of a parallel system with 10 identical components and λ = 0.4. For the differ-
ent number of working paths the overall failure rate, using the serial failure equations, is determined. The
corresponding MTBF is depicted, together with the sum from the initial state up to the observed state. As
the number of parallel components increase, the benefit of the increased redundancy decreases, as the serial
failure rate between the states increases as well.
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Figure 4.5: MTBF of parallel systems

In this research the tidal system will be represented by a number of parallely connected electricity generating
subsystems, which operate independently. The system failure can be described as a full array failure when no
electricity is produced.
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Damen solution - System overview





5
Damen Tidal Energy Converter

In this chapter the current top level design of Damen is described and insight is provided on the design phi-
losophy of the tidal platform and how this affects the design and maintenance tasks. Furthermore, the power
production capacities are explained of the TECs. Lastly, the failure modes, rates and costs are presented in
this chapter.

The system which is described in this chapter, together with the maintenance strategy in chapter 6, will serve
as the base case during the execution of the maintenance model and the interpretation of results, which are
extensively described in part III.

5.1. Tidal array location

The majority of the current tidal systems are developed for implementation at high resource tidal locations
(Vmsp > 3.5 m/s) [28], which prove to be most suitable for the initial deployment round [81]. Tidal feasibility
studies state that the initial pre-commercial development phase should focus on a small-scale array infras-
tructures, producing in the range of 3MW to 20MW. [56].

As mentioned in the introduction, the tidal location in this study is chosen to be the Orkney Islands, United
Kingdom. Feasibility studies have shown that this region contains multiple tidal hotspots [8, 55], as can be
seen in figure 1.3. EMEC is the operator of the tidal location at the Orkney Islands and environmental time
series will be used from their in-house measurements to represent the wave, wind and current characteristics
at that specific location.

For this location the tidal array which is to be developed will consist out of five systems, which are positioned
in a grid with enough spacing to provide good vessel accessibility, no overlap in the mooring footprint and
negligible inter-TEC influence due to the wake disturbance of the current flow.

5.1.1. Feed-in tariff

A Feed-in Tariff (FiT) is a policy mechanism designed to accelerate investment in renewable energy technolo-
gies. This is being achieved by offering long-term contracts to renewable energy producers, typically based
on the cost of generation of each technology.

Each government has its own FiTs and may differ per renewable energy generation technology. The base case
which is used in this thesis uses the EMEC location for the tidal array, for which the United Kingdom FiT is
applied. Several FiTs may apply, depending on the production capacity and TRL of the system [72].

For the base case it is assumed that the FiT for the developed tidal systems at EMEC is 11 cents/kWh and
remains constant for the projected lifetime of 20 years. This may change in time however and is considered
a political uncertainty. The effect of changing the FiT will therefore be investigated in the sensitivity analy-
sis.
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5.2. TEC system overview

5.2.1. System description

Damen’s latest developments regarding a novel TEC design for reducing the LCOE have lead to a top level
design which deviates from current TEC designs. An artist impression of the current Damen design which
will be used in this study is shown in figure 5.1. Whilst the dimensions and selection of included system
components are still in a preliminary phase and should not be observed as part of the final design, the artist
impression clearly shows what design philosophy is applied by Damen.

The tidal platform design describes a floating system which includes 16 vertically orientated Darrieus tur-
bines that produce electricity by rotation of the respective shafts, which in turn power the generators. Con-
trary to most of the industry, this design focuses on using readily available components to reduce the cost
of the system. Also, feasibility studies of Damen [39] have shown that by implementing multiple smaller
turbines and connecting these to individual generators is more cost effective than merely one or two larger
turbines to generate the same amount of electricity, due to the complexity and non-availability of these large
custom components .

Figure 5.1: Artist impression of the Damen TEC design

Plug&Play connection
An important characteristic of the tidal system is its ease for performing maintenance. As stated, the design
has a strong focus on using multiple smaller components instead of one equivalent counterpart with identical
power production. The shift from a CAPEX to an OPEX orientated system requires a different approach during
the development of the top level system design.

One result which is derived from this design approach is the Plug&Play connection of the TEC onto the floater.
The TEC, including all its components, can easily be connected and disconnected onto the floater by means
of inclined outer surfaces, which cling into the similarly shaped slot of the floater. Upon placement, the
TEC will remain in position due to its gravitational force and surface friction. Whilst no final connection has
been designed by Damen yet, all of the alternatives can be traced back to a variant of the ’slide and lock’
mechanism. The operation for the placement follows the reversed procedure.
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It must be noted that the actual maintenance activity involves more steps, such as having the platform enter
maintenance mode. These tasks will be explained more into detail in the next paragraph and chapter 6,
including the required weather windows.

Maintenancemode
In order to perform the TEC replacement the tidal platform first needs to emerge to the water surface, which
is achieved by creating positive buoyancy as a result of filling the buoyancy tanks with air. After surfacing,
the TEC replacement takes place. After having replaced the correct number of TECs, the platform submerges
again and leaves maintenance mode once it is position.

During the maintenance mode, from the emerging to being fully submerged again, none of the TECs is oper-
ational and thus the entire system is affected by downtime. This effect will also be included in the model and
introduces additional set-up costs for the maintenance activity, which are both fixed (platform emerging/-
submerging) and variable (number of TECs to be replaced).

It is important to state that maintenance mode is only initiated if a weather window for the entire set of tasks
is available. Depending on the weather conditions this will require the vessel to wait until the weather window
occurs.

5.2.2. Subsystem & assembly identification

Multiple subsystems can be identified in the design of an individual tidal platform, each directly related to the
main functions of the system. However, as will be explained more in detail in subsection 5.4.1, only the TECs
and its main assemblies will be included in this research since these account for the majority of the random
failures. The functions and failures of remaining subsystems, such as the floater, mooring lines and export
cable, are excluded from this research.

Each tidal platform houses 16 identical TECs which are responsible for generating electricity from the tidal
flow. The assemblies of a TEC which can be identified within this research are:

• Darrieus turbine blades (also called the Prime Mover)
• Generator
• Invertor
• Brake
• Gearbox
• Shaft and bearings

5.3. TEC power generation

As stated, each of the 16 TECs consists out of a PM, which is responsible for converting the kinetic energy
of the current flow into mechanical energy within the system, and a number of components which transfer
the energy (gearbox) before the mechanical energy is converted into electricity (generator). Whilst the PM’s
main function is to maximize the production output, the other assemblies designed to minimize the losses
during energy transport. The power production properties of the tidal system are discussed in this section,
describing parameters which will be used throughout this research.

5.3.1. Power curve

The most common way of representing the production capacity of a PM, and connected assemblies, is by
means of a power curve. The power curve describes the relation between the flow velocity, in this case that of
the tidal current, and the power. The relation between these two parameters is derived from hydrodynamics
and can be written as

P = ηDT ·Cp (T SR) ·ρw ater · A ·U 3
cur r

2
(5.1)
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where:

P Generated power [W ]
Cp (T SR) Power coefficient [-]
ρw ater Density of water [kg /m3]

A Swept area of the PM [m2]
Ucur r Current velocity [m/s]
ηDT Drive train efficiency [−]

Power curves generally have a similar profile to that in figure 5.2, which shows the power curve of the TEC, in-
cluding its drive train losses. A number of characteristic points can be identified which, if the data is available,
can be implemented easily to construct the power curve:

Ucut−i n The minimum flow velocity required to start operating. This is either determined by the inertia of
the PM or controlled by the brake

Ur ated The design flow velocity at which Pr ated is first reached.
Pr ated The power for which the system is designed. By active braking (mechanical or via the generator) the

power is upper bounded at this value
Ucut−out The maximum flow velocity for which the power production is upper bounded. If this value is ex-

ceeded the PM enters its survival mode by bringing the system to a stand-still. This is to prevent the
system from failing in extreme weather conditions.

Figure 5.2: TEC power curve

The power curve can be analytically described by the following equation:

P (Ucur r ) =


0, for Ucur r <Ucut−i n
ηDT ·Cp (T SR)·ρw ater ·A·U 3

cur r
2 , for Ucut−i n ≤Ucur r <Ur ated

Pr ated for Ur ated ≤Ucur r <Ucut−out

0, for Ucur r ≥Ucut−out

 (5.2)

The power generating properties of Darrieus turbine and related components, which will be applied in the
base case, are listed in table 5.1.

5.3.2. Optimal control strategy

Using a control strategy enables the Darrieus turbine to operate at its optimal TSR, either by changing its
pitch angle or by adjusting the rotational speed of the blades. Optimizing TSR for each current flow velocity
maximizes Cp and thus results in an increase of the power production.
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The slowly changing character of the current velocity enables the use of a quasi-static approach for determin-
ing the optimal control strategy. It is therefore assumed that the fluctuations in Ucur r are slow enough for the
control system to always use the best TSR for the optimal power coefficient.

This assumption results in a slight overestimation of the electricity production, as in reality dynamic fluc-
tuations will always result in efficiency losses. However, it is not in the scope of this research to describe
the power production capabilities of the TEC in more detail, as it is an arbitrarily input in the maintenance
model.

Table 5.1: Numerical values of the TEC power generating properties

Parameter Value

Pr ated 110 kW
Ucut−i n 0.5 m/s
Ur ated 2.2 m/s
Ucut−out 3.0 m/s
Cp 0.38
ηDT 90 %
A 58.24 m2

L x D 11.2 x 2.6 m

5.3.3. Power generation related assumptions

In this research a number of assumptions are made to simplify the developed maintenance model. More
detailed information about the Darrieus turbine and the assumptions made to obtain the production related
values can be read in appendix B.

• The power generation properties of all TECs are identical to each other.
• The TECs in the array are not subject to wake effects due to nearby water-structure interaction.
• No efficiency losses occur due to wear-out of the assemblies.
• Marine fouling (and its negative effects) is considered negligible, due to the design of the blades and

use of fouling control coatings [110].
• The control system is assumed to be optimal, which is why a fixed value for Cp can be used.

5.4. TEC failure

The failure of the different components within the system play a central role within this research. The optimal
maintenance policy is highly dependent on the failure rates and the direct and indirect costs in the event of
maintenance in case of failure. Hence, insight in the failure related data is given in this section to clearly
demarcate the scope of this research and the model.

5.4.1. Included failure modes

The main elements of the Damen tidal system can be subdivided into two groups:

• Electricity production related elements
• Miscellaneous elements

An important assumption of this research is that during the operational lifetime of the tidal array, only main-
tenance is required on the electricity producing elements, as these consist out of moving parts. The dynamic
character of these components results in a non-negligible chance of failure due to wear, which is why this is
posed as the main failure mechanics of the system.

This implies that the latter group, which includes the mooring system, the floater and the export cable, are
excluded from the maintenance model and are considered to experience no failure. The structural integrity
of the tidal platform is thus for the system lifetime sufficient to withstand all (extreme) loads.



44 5. Damen Tidal Energy Converter

Additionally, it is assumed in this research that only random failure occurs, described by the exponential
distribution. When a certain assembly has failed, the remainder of the assemblies is still considered to be ’as
new’ and thus has the same constant failure rate throughout its lifetime. No infant mortality and wear-out
effects are included in this research.

Fault tree
The failure modes that can be identified in the tidal array are thus only described by the failure of TECs,
due to a local assembly failure. This is represented in figure 5.3 in the fault tree of one tidal platform. The
other platforms depicted have identical fault trees to describe the platform failure, but are not included in
the figure.

Figure 5.3: Fault tree of the tidals array

The TECs are considered to operate independently of each other and are thus are represented parallel. In the
failure tree this relation is displayed by an ’AND-gate’ until the event of full platform failure occurs.

On the other hand, the individual assemblies with a TEC are connected serially and are considered to fail
mutually exclusive to each other. If one assembly fails, the entire TEC stops operating immediately, rendering
it impossible for other assemblies to fail at the same time. This relation between the assemblies within a TEC
is represented by a ’XOR-gate’ in the fault tree.

5.4.2. Usage of wind turbine reference data

At first, the failure rates for different components of the Damen tidal system are taken into account. At this
point, it needs to be mentioned that the full-scale application of tidal energy devices is not at a mature stage
in order to recuperate actual failure rates for the different modules of the device. A valid alternative to this is
the use of actual failure rates from other related fields of research and application in the renewables sector
(e.g. wind turbines, other renewable energy devices).
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Reliability data from wind turbine assemblies has become available in recent years from surveys [79, 111]
and has been combined in a recent study [4] to perform a Failure Modes and Effect Analysis (FMEA) on wind
turbines. Table 5.2 shows a typical comparison between reliability field data of a small wind turbine, 300 kW,
and a 1 MW wind turbine main assembly failure rates based on [79]. The exponential model and constant
failure rate region are considered for failure rate field data [111]. As mentioned, the exponential failure model
describes merely random failures during the operational lifetime of the system.

Table 5.2: Wind turbine assemblies’ reliability field data

Assembly Failure rate of LWK WTs
300 kW WT 1 MW WT

Blades 0.078 0.308
Generator 0.059 0.126
Brake 0.029 0.056
Gearbox 0.079 0.255
Shaft/bearings 0.002 0.046
Converter 0.045 - 0.2 [79]

As only two data sets are available, 300 and 1000 kW, extrapolating the data to match the Darrieus turbine
power (110 kW) cannot be effectively performed as the relation between the power and failure rates remain
unknown. By applying for instance a linear extrapolation, the failure rate of the shaft and bearings will even
exceed zero, resulting in non-existent negative values. Thus, in order to maintain the level of data reliability
within this thesis as much as possible, it is chosen to use the failure rate data of the 300 kW wind turbine to
represent the tidal system’s failure rates.

5.4.3. Adjustment factors

A similar study [53] which calculates the O&M costs for a specific tidal device uses the same approach of using
wind failure rates as reference data, but on top of that also employs certain adjustment factors. These factors
are:

f1 (= 6.3) to account for the naval underwater environment
f2 (= 1.1) for the data uncertainty origination (data compiled from various sources such as research papers

and other project reports)

Application of these adjustment factors would lead to the following calculation of the failure rate for a com-
ponent:

λad j =λor i ∗ f1 ∗ f2 (5.3)

Whilst the use of such adjustment factors may in specific cases increase the accuracy when describing tidal
device failure rates, the magnitude of the mentioned factors could not be justified and thus these will not
be included in this research. Instead, the 300 kW WT reference values will be used as the base case and in
section 10.3 the model sensitivity will be observed when varying the failure rate inputs. This approach is more
meaningful and provides extensive insight in the effect of uncertainty in component failure rates.

In case of the converter data, which is obtained from a different study, the lower boundary (0.045) is selected
to represent the tidal system’s converter failure rate. This assumption is done to be in correspondence with
the decision of also selecting the lower boundary for the other assemblies.

5.4.4. Bundling of assembly failure rates and product costs

In the model which has been developed in this research, the individual failure rates and product costs are
combined into one overall value, which represents the properties of an entire TEC. This assumption reduces
both the complexity of the model and significantly cuts the simulation time, as the number of unique failure
states reduces exponentially. The bundling of failure rates and product costs can be done due to number of
reasons which are system specific and may not be blindly applied in any situation.
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First of all, the described failure rates are all constant and only random failures are included in the model. The
failure distribution of the assemblies are described by the exponential model, as described in subsection 5.4.2.
This enables the summation of rates into one overall failure rate, which describes the exponential failure
distribution of a TEC.

Secondly, when looking at the physical interaction of the assemblies within a TEC and the corresponding
failure tree, as is depicted in figure 5.3, it is apparent that failure of one assembly leads to the failure of the
entire TEC. Still, only the failed assembly is broken and needs to be replaced, but the developed corrective
maintenance strategy states that the entire TEC will be replaced and repaired onshore.

Characteristic TEC failure rate
Due to the above two arguments, the ratio of assembly failure rates (ri ) with respect to the characteristic TEC
failure rate can be calculated as follows:

λT EC =
n∑

i=1
λass,i (5.4)

ri = λi

λT EC
(5.5)

with λT EC being the failure rate of one TEC. It is easily notices that the inclusion of more assemblies, which
each may bring the entire TEC to a failure, increases the characteristic TEC failure rate. The cumulative distri-
bution function of the exponential failure model in figure 5.4 also shows the same effect of adding the failure
rates.

F (t ) = 1−exp−λ·t (5.6)
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Figure 5.4: Exponential failure distribution of individual assemblies and TEC

Given the assembly failure rates in table 5.2, the ratios of the assembly failure rates with respect to the TEC
failure rate are shown in figure 5.5.
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Figure 5.5: Fraction of assembly failure rate w.r.t. TEC failure rate

It is found that each of the TECs has a failure rate of λT EC = 0.2920 failures per year. To make this number
easier to grasp, it can be converted into the MTBF, as follows:

MT BFT EC = 1

λT EC
(5.7)

Using this equation the MTBF of an individual TEC is 3.4 years.

Characteristic TEC product costs
If a TEC failure occurs due to a local failure of an assembly, the entire TEC gets replaced with a new one and the
failed TEC will be repaired. It is assumed that this is done by replacing the broken assembly with an ’as new’
product, whilst not performing cost-related maintenance on the other assemblies. Thus, the characteristic
TEC product cost for a replacement is the sum of all partial assembly costs, based on its failure ratio.

CT EC =
n∑

i=1
ri ·Ci (5.8)

The TEC product costs upon failure are determined using the ratios listed in 5.5. Damen has performed a
product cost estimation [39] for the individual assemblies. Since the CAPEX is excluded from this model and
it is assumed that only the TEC related components can fail, the cost estimation is limited to these assemblies.
The product costs are listed in table 5.3.

Table 5.3: Product costs of assembly and TEC

Assembly Product cost (Ci ) Failure ratio (r ) Cost contribution (ri ·Ci )

Blades e1260 0.2671 e983
Generator e10200 0.2021 e6018
Brake e10200* 0.0993 e2958
Gearbox e13950 0.2705 e11021
Shaft/bearings e11100 0.0068 e222
Converter e20400 0.1541 e9180
TEC CTEC =e10405

* Braking is performed by using the generator, so identical costs are shared if one of the two failures occur

5.4.5. Failure related assumptions

A few important assumptions regarding the failure must be mentioned to substantiate the calculations and
processes in the maintenance policy optimization model:
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• Individual assembly failures are represented by an exponential model, and are thus random failures
during the operational lifetime of the system.

• If one assembly fails, the remaining non-failed assemblies are considered to still be ’as new’. This fol-
lows implicitly from the first assumption, since only random failures are included.

• Failures are fully independent of each other, both for identical assemblies and between different as-
semblies.

• For each TEC, the assembly failure is calculated as being mutually exclusive. This implies that if one
assembly fails, the entire TEC fails due to this and no situation will occur in which multiple assemblies
will fail simultaneously.

• It is assumed that in case of maintenance of a TEC no additional repair costs are charged for product
related processes such as onshore logistics and labor. These are all assumed to be included in the
product costs of table 5.3.



6
Maintenance strategy

This chapter provides information regarding the implemented maintenance strategy, the vessel which is used
and the activity breakdown into individual tasks. Each of these tasks have their own required duration, costs
and the execution may be bounded by operational limits.

6.1. Maintenance tasks

In order to determine the optimal maintenance policy for the group based corrective maintenance strategy, it
is required to look at the individual tasks and in what order these are executed. As has been mentioned before,
all possibilities of replacing different number of TECs are considered, and each require an unique combina-
tion of tasks. The identified tasks and their ordering within the replacement operation are be discussed in
subsection 6.1.1.

6.1.1. Maintenance process flow

A process flow of the individual vessel related tasks has been developed for describing the maintenance ac-
tivity. The process flow, as seen in figure 6.1, applies to all maintenance activities in this research, regardless
of how many TECs are decided to be replaced at once. Each of the tasks will be explained more in detail in
the remainder of this chapter.

Figure 6.1: Process flow chart for generating the order of maintenance tasks

In figure 6.1 several loops are be observed. Based on the conditions of the maintenance activity and the tidal
array, these loops are initiated. The loops describe the following:

Loop A More than one TEC is loaded, since multiple failed TECs will be replaced at once
Loop B Multiple failed TECs at the same tidal platform will be replaced sequentially
Loop C Failed TEC(s) at another platform will be replaced if the vessel still has ’as new’ TECs left
Loop D More than one failed TEC has been replaced and is sequentially unloaded at the port
Loop E The maintenance activity requires more TECs to be replaced than the vessel’s deck capacity
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Vessel mobilization
When the decision is made to perform maintenance, the vessel will first need to sail to the port which has
the TECs stored. No dedicated vessel is used, but instead a rented one which is available at that time, as will
be explained in subsection 6.2.3. This task thus describes the sailing of the rented vessel towards to port for
loading the TECs and personnel.

TEC (un)loading
If the maintenance vessel arrives in the port, it will load the selected number of TECs onto its deck to prepare
for operation. Likewise, after switching out the failed TEC(s) with functioning one(s), it will unload the failed
TEC(s) at the port, so reparations can commence onshore.

Also, if more TECs are to be replaced than can be loaded at once, the vessel will return to port during operation
to resupply and thus unloading and loading activities are initiated.

Waiting for weather window
Given the weather forecast, it may or may not be possible to perform the TEC replacement operation im-
mediately. The vessel will therefore wait in the port until the forecast shows a weather window in which the
required number of TECs can be replaced at once for at least one tidal platform.

Sailing to/from array
For the EMEC tidal location the distance between the port and the tidal array is approximately 45 kilometers.
For the implementation in this research the influence of external effects, such as the current velocity, are not
considered for the sailing speed. This is a valid assumption, since the mean of the current velocity is zero due
to its sinusoidal velocity profile.

Emerge/submerge platform
These two tasks are directly related to the tidal platform entering its ’maintenance mode’. This is performed
by filling or emptying the floater ballast tanks. The tidal platform enters its ’maintenance mode’ when it
starts emerging and leaves it again when submerged after one or multiple TECs have been replaced. During
the emerging and submerging process all TECs are non-functioning and thus produce no electricity. This
process has also been described in paragraph 5.2.1.

TEC replacement
Once the platform is submerged, the failed TEC can be removed by using the vessel’s crane and is positioned
on deck. Afterwards, a functioning TEC is picked up from the deck and installed in the empty slot of the
floater, as is described in paragraph 5.2.1. During the TEC replacement process all TECs are non-functioning
and thus produce no electricity. This process has also been described in paragraph 5.2.1.

Intra-array transport
When the number of TECs which are to replaced at once are spread out over multiple tidal platforms, it
is required to first commence maintenance at one platform and then, after submerging it, move on to the
next platform. The sailing process between the different tidal platforms costs time and is thus a unique
task.

More importantly, whilst the vessel waits in the port until it can perform its initial replacement activity, this
is not the case for consecutive tidal platforms if more than one requires a TEC to be replaced. If there is no
weather window for completing the replacement of the TECs at the next platform, the vessel will wait near
the array until it becomes possible.
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6.1.2. Weather windows

For a safe and successful execution of a number of tasks a weather window is required since operational limits
apply, which are dependent on the harshness of the weather conditions.

The included operational limits are determined by three criteria, namely:

Limit 1 Vessel sea-keeping performance
Limit 2 Vessel station-keeping (using Dynamic Positioning (DP)) when interacting with the tidal platform
Limit 3 Motions of the vessel and tidal platform during the TEC lifting operation

The task durations and operational limits are determined by using the properties described in subsection 6.1.1
and expert judgment from within Damen [39].

Table 6.1: Required weather window of the maintenance operation

Environmental limits
Task Duration [hours] Limit Hs [m] Tp [s] Uwind [m/s] Ucurr [m/s]

Vessel preparation 48 -
TEC loading 1 -
TEC unloading 1 -
Waiting for weather window 0* -
Port-array transport 2 1 2.5 9
Array-port transport 2 1 2.5 9
Intra-array transport 0.5* 1 2.5 9
Platform emerging 2 2 2 7 2.5
Platform submerging 2 2 2 7 2.5
TEC replacement 1 3 1.5 6 2

* The mentioned duration is applied when no weather window related delays occur. This duration will therefore increase if waiting for a
weather window of successive maintenance tasks is required.

Lack of Tp limits
It must be mentioned that, although in this analysis no limits are set with regard to Tp , it will still be included
in the maintenance model. This is due to the fact that Damen uses in-house tools, which also take the com-
bination of weather conditions into account, for calculating the DP vessel limits in which Tp is also included
as a limit. Whilst the implementation of the respective tools is not included in the scope of this research, it
was desired by Damen to build a model framework which can easily incorporate this in the future.

Additionally, Tp is used to describe the multivariate dependence between environmental variables more re-
alistically. This multivariate dependence will be explained further in chapter 8 and further substantiates the
decision to include Tp from a modeling point of view.

6.2. Maintenance vessel

Damen Shipyards is interested in using vessels from their current portfolio to perform the maintenance ac-
tivities. It is therefore decided that the vessel of choice is the Damen Utility Vessel 6516 [23], which is com-
monly used for light duty supporting and maintenance tasks at offshore locations. It is very similar to the
regular PSV design, but its equipment is carefully selected for performing maintenance activities, such as the
A-frame crane located at the aft of the vessel for lifting operations.

The vessel is represented in this thesis’ model by means of three parameters, namely the sailing speed, the
deck space and the day rate. Each of these parameters is explained more in the next paragraphs.
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6.2.1. Sailing speed

The sailing speed is essential for calculating the time it requires to sail from the port to the tidal array. For the
Damen Utility Vessel the sailing speed is 12.0 knots, which is equal to 22.2 km/h. In this research the sailing
speed is assumed to be constant, even though this may differ in reality (both in positive and negative sense)
due to the influence of environmental influences.

6.2.2. Deck space

The available deck space determines how many TECs can be transported at once. This influences the overall
maintenance time in the case that more than the maximum transportable TECs are desired to be replaced.
In this case the vessel will need to sail back to the port to resupply after the initial replacement until the total
number of replacements has been completed.

The selected Damen Utility Vessel has 450 m2 of deck space, being roughly 15 meters wide and 30 meters long.
Whilst no exact sea keeping regulations for these new loads are known at this moment, it’s been assumed that
the TECs will most probably be placed in transverse direction on the deck. This enables the operator to
position four TEC carriage constructions on the vessel of which three can carry a new TEC for replacement.
The last one is required to place the initial failed TEC at, since this one is first removed from the tidal platform
before one of the new TECs is lifted from the vessel.

In the maintenance optimization model the option of increasing the maximum TECs is also considered,
which may be realized by rearranging the TEC placement if less restrictions turn out to apply.

6.2.3. Day rate

The day rate of the Utility Vessel varies greatly and is subject to numerous factors which are related to the
job availability, market status and the duration the vessel is rented for. The industry commonly distinguishes
rates based on the type of contract:

• Spot contract: contracting a vessel when it is needed
• Term contract: contracting a vessel for a predefined term

Term contracts, and especially long term contracts, most often lead to a discount in the day rate and are thus
favorable if the required vessel activities are certain for an extended amount of time. In this case, since the
deployment of commercial tidal devices has only recently started, it is assumed that for the base case only
spot contracts are used. This also gives a conservative approach for determining the maintenance costs, as
the most expensive day rate type is used.

Spot contract day rates
The day rates of offshore vessel are closely monitored by a number of market analysts. For determining the
vessel rates of the Damen Utility Vessel the analyses performed by Clarksons Platou [20] are used, which is a
renowned maritime data analyst company. The selected Utility Vessel agrees best with the spot day rates of
medium sized PSVs in the North Sea area with a deck space of 500-899m2. The Utility Vessel 6515 has 450m2,
so this assumption is reasonably substantiated.

A large fluctuation in the day rates throughout the years can be observed in figure 6.2. In the last 10 years
the day rates ranged from about 5,000 GBP to 24,000 GBP per day. This variation in rates will most probably
continue throughout the life time of the tidal array, so several cases can be defined. For the base case the day
rate is selected to be constant at 12,000 GBP per day (≈e13,500). However, in section 10.3 a sensitivity study
will be performed which analyzes the effect of applying different day rates.

Additional operation costs
Besides the vessel day rates, some other cost centers cannot be neglected and should also be included when
calculating the overall operation cost rate. Within this research the following two cost centers are also in-
cluded:
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Figure 6.2: Spot day rate of PSVs in the North Sea area

• Specialized personnel/technicians for supervising the offshore maintenance operation
• Fuel costs of the vessel

Personnel
The following is assumed with regard to specialized personnel:

• A team of two specialized technicians should always be present on the vessel when maintenance is
being performed for supervising and troubleshooting.

• The personnel enters the vessel just before departure from the port and remains on board until the
vessel has returned to port after a successful operation. They are thus not present during the loading
and unloading of TECs.

• The technicians are paid $ 125/h (≈e110) per person [70].
• Limitations to personnel maximum working hours are excluded from the model, so the possible neces-

sity of multiple shifts with additional personnel is disregarded. In practice this could be represented by
two 2-man teams which each have a 12-hour shift.

Fuel costs
The fuel costs of the vessel are also included in the cost rate calculation, by means of a number of simplifi-
cations. Fuel consumption data of a reference vessel [107] is used to define three rates of fuel consumption,
which are shown in table 6.2. The price of the required MGO fuel type is assumed to be 400$/MT (≈e360),
based on current market prices [18].

Table 6.2: Damen Utility vessel fuel consumption

Idle in port Sailing Maintenance operation (DP)

1 MT day 13 MT/day 6 MT/day
360e/day 4680e/day 2160e/day

Task cost rate overview
The three identified operation related cost contributions can be added together in order to determine the
overall vessel operation cost rates per defined task. Table 6.3 gives an overview of the costs per hour, rounded
off to the neareste5, and will be used as the base case input for the model.
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Table 6.3: Vessel operation cost rates

Vessel costs Personnel costs Fuel costs Net costs
Task [e/h] [e/h] [e/h] [e/h]

Vessel preparation 565 - 195 760
TEC loading 565 - 15 580
TEC unloading 565 - 15 580
Waiting for weather window 565 - 15 580
Port-array transport 565 220 195 980
Array-port transport 565 220 195 980
Intra-array transport 565 220 195 980
Platform emerging 565 220 90 875
Platform submerging 565 220 90 875
TEC replacement 565 220 90 875
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7
Maintenance model framework

This chapter provides information regarding the maintenance model framework. Section 7.1 visually repre-
sents the framework and introduces the three main processes of the decision support tool. The remainder of
this chapter will give a brief explanation of each process of the model. This will assist to put the outcomes of
chapter 8 and 9 into the correct perspective.

7.1. Model overview

As was already briefly touched upon when describing the thesis outline in section 1.11, the model which
has been developed consists out of three main processes, namely the generation of environmental time se-
ries with multivariate dependence, the failure and maintenance representation of the observed tidal system
and lastly the optimization of the maintenance policy. In figure 7.1 the model’s main framework is visual-
ized.

Figure 7.1: Model framework

7.2. Input

Multiple input types are identified within this model, which are either defined by the user (e.g. system topol-
ogy) or based on the availability of external data (e.g. environmental measurements). The main input cate-
gories are listed below. An overview of the model inputs can be observed in appendix E.1 and gives a good
understanding on what parameter sensitivities can be analyzed by using this model.

• Environmental measurements
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• Tidal system parameters
• Power generation parameters
• Vessel parameters
• Maintenance activity parameters
• Financial parameters

7.3. Process flow

7.3.1. Environmental generation

As can be noted in figure 7.1 this module consists of three steps:

1. Analyze the multivariate measurement data
2. Build a vine copula which describes the identified dependence
3. Simulate synthetic time series from the vine

Probabilistic modeling usingMonte Carlo simulations
The first two steps are executed only once per measurement set to build the vine copula and determine its
parameters. Then, numerous synthetic time series are simulated randomly, but do have identical statistical
properties. Due to this, the randomness of the environment can be described by implementing this set of
time series (e.g. Nsi m=1000) in the remainder of the model, similar to a Monte Carlo (MC) approach.

This results in a large number of independent time series which are independently run through the remainder
of the model. Each simulation will have its own respective properties being calculated by the other processes
and also result in an unique optimal policy, which by itself is a deterministic result.

Having run all the simulations, the individual policy and cost outputs can be combined to generate a prob-
abilistic distribution. This ensures that the maintenance uncertainty due to the environmental influence is
also included in the model results.

7.3.2. System and decision representation

This process consists of two modules, which are directly related to the available decisions when attempting
to optimize the maintenance policy. The decision can either be to perform maintenance by replacing one
or more TECs, or to let the system deteriorate due to TEC failures. Each module calculates the required data
in order to provide the decision making process with the required input to optimize the policy, based on all
available decisions.

Maintenancemodule
Each of the simulated synthetic time series is forwarded to this module, in which the following occurs:

1. Determine all possible maintenance activities based on TEC component quantities and topology
2. Determine the weather window using the operational limits for all combinations of maintenance ac-

tivities and synthetic time series
3. Calculate the total duration and the direct costs (due to vessel day rates) of all maintenance activities

for each synthetic time series

In section 7.3.1 it was already described that a large number of synthetic time series are generated, which are
run through the model. This implies that, as is stated above, each of these time series is used to calculate the
total duration for all possible maintenance activities.

Doing so will result in a distribution of the total maintenance duration, based on the predefined task dura-
tions and corresponding operational limitations. An algorithm has been developed to perform all these tasks
and will be further explained in chapter 9.

By multiplying the duration of the maintenance activity by the day rate of the vessel, the direct costs of main-
tenance are determined.
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Failuremodule
Two processes occur in this module:

1. Calculate the indirect maintenance costs due to the lack of electricity production during the TEC down-
time

2. Calculate the overall failure rate and product cost of each TEC based on the individual component
failure rates and costs

The indirect costs consist out of the lack of electricity production for a given duration, multiplied with the cost
of electricity, due to down-time after a failure. To calculate the production losses during downtime, the Ucur r

time series is used as an input for the current velocity and combined with the power curve of a TEC.

The second process in this module, calculating the overall failure rate and product costs, run independently
from the above-mentioned process. All individual component failure rates are combined and represented as
one characteristic failure rate for the TEC. Likewise, the ratio between the components is used to determine
the overall product cost of new TEC.

7.3.3. Maintenance policy optimization

The maintenance policy optimization process is extensively described in chapter 9 and is responsible for two
tasks:

1. Correctly formatting the calculated data into the SMDP format
2. Optimizing the SMDP problem to determine the optimal group based maintenance policy

As is shown in figure 7.1, all data which describe the transition probabilities, rewards, transition rates and
decisions have been calculated in the previous modules. Several algorithms then combine this to represent
it in the correct format for the SMDP by linking it to the set of possible system states.

This data is then fed to the policy optimization algorithm, which iterates until the optimal maintenance policy
is obtained which minimizes the costs per time unit, and thus has the highest gain.

7.4. Output

7.4.1. Deterministic output of a single simulation

The formal output of a single simulation in the model is a deterministic optimized maintenance policy for
the described system. The output of the model answers the following question:

If a TEC fails, should maintenance be performed and if so, how many TECs should be replaced at once?

7.4.2. Analysis of probabilistic results

In the model numerous of MC simulations take place, which may not result in the same optimal policy, given
the randomly generated environmental inputs. The combined output which is generated by all simulations
thus should be interpreted as the probabilistic results due the the maintenance uncertainty which is imposed
by the environment.

The obtained distributions for all of the optimal policies and total maintenance costs must then be analyzed
in order to select one, or multiple, policies which are defined as optimal. The selection of an optimal policy
is fully dependent on the required certainty that the decision maker desires and this research will only make
recommendations.

7.5. Model assumptions

Numerous assumptions are made in each of the modules, and will all be explained in the corresponding
chapter. In order to give a first insight in the possibilities and restrictions of the developed model, some main
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assumptions are already listed below. The argumentation for the inclusion of each of these assumptions are
described in the respective chapters.

7.5.1. Failure related assumptions

1. A constant component failure rate is assumed, this implies that only random assembly failures are
modeled. Wear-out failures are not considered.

2. Multiple TECs will never fail at exactly the same time, so deterioration occurs in singular steps of one
failure at the time.

3. TECs can fail during maintenance operations, but this is limited to a maximum of one.
4. Failure can only occur when the TECs are operational.
5. Assemblies within the same TEC will never fail at exactly the same time. This means only one assembly

can be broken simultaneously within each TEC, as the TEC stops operating immediately after failure.

7.5.2. Maintenance related assumptions

1. Minimum reliability constraints, such as a minimum required number of operating TECs, are not con-
sidered.

2. A maintenance vessel is always available when deciding to perform maintenance, albeit at a distance
which requires sailing time. The mean sailing time has been defined as the duration of the ’vessel
preparation’ task.

3. The delays in the overall operation duration are exclusively due to waiting for weather windows.
4. The TEC repairs will be performed onshore for the calculated representative assembly costs.
5. The components are ’as new’ after reparation.
6. Functioning TECs are always directly available at the port.
7. The number of function TECs on stock is always sufficient for any maintenance operation. This can

be achieved by having as many TECs on stock as will be maximally replaced at once and assuming a
negligible replacement time of the failed assembly.

8. Once the maintenance activity is initiated, it cannot be canceled anymore.
9. The TEC with most failures will always be maintained first.

7.5.3. Electricity production related assumptions

1. The TECs in the array are not subject to wake effects due to nearby water-structure interaction.
2. All TECs have identical power curves
3. The power generation properties of all TECs are identical to each other.
4. No efficiency losses occur due to wear-out of the assemblies.
5. Marine fouling (and its negative effects) is considered negligible, due to the design of the blades and

use of fouling control coatings [110].
6. The control system is assumed to be optimal, which is why a fixed value for Cp can be used.
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Generation of environmental time series

including dependence

This chapter will provide answers to the first research question posed in this research by performing an ex-
tensive analysis on the generation of multivariate environmental time series which contain multivariate de-
pendence. For realistically describing the maintenance uncertainty in the decision support tool, it is of great
importance to include the multivariate dependence in the synthetic time series, as this resembles reality bet-
ter.

RQ 1 How can the environmental effects at tidal hotspots be realistically modeled?
(a) Can dependence between the variables be identified and explained?
(b) What model is best used to generate time series which includes multivariate dependence?

Section 8.1 describes the measurement dataset which is used in this research. Multiple tests are included
which have been performed to determine what environmental effects and interactions are significant enough
to be included when simulating time series. Together with the bivariate dependence analysis in section 8.2,
which also compares the results to a reference study, research question 1a is attempted to be answered.

It was already mentioned in subsection 2.7.2 that existing theories on copulas and vines do not have a readily
available solution if the analyzed data contains strong time dependence. This is highly undesirable, as in-
correct dependence will be attempted to be modeled in the vine algorithm. Section 8.3 identifies the time
dependence in the data set used in this research.

Section 8.4 proposes two new methods for effectively simulating univariate time dependence and multivari-
ate dependence from the data set. The best method will be used to answer research question 1b. The gen-
erated synthetic time series can then be used to describe the maintenance uncertainty due to the environ-
mental influence. This introduces a probabilistic property to the model and will be achieved by running MC
simulations for the remainder of the maintenance model.

Lastly, section 8.5 is dedicated to identifying and explaining the added value of using the newly developed
method to describe the environmental influence in the maintenance model. This is achieved by performing
three comparison studies between properties of the simulated synthetic time series and alternatives, such as
using the original time series or removing the multivariate dependence.

8.1. Analysis of EMEC environmental measurement data

8.1.1. Data availability

EMEC’s tidal testing location has two sensors which have been logging environmental data. A bottom-founded
Acoustic Wave and Current (AWAC) is used to log the wave and current data and a meteorological (MET) sta-
tion measures the wind speed and direction. More information regarding the measure technology can be
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read in appendix D.1. Below the variables are presented will be used in this analysis. These were obtained
from EMEC’s data logs.

AWAC data:
• Significant wave height [m]
• Peak wave period [s]
• Peak wave direction [deg]
• Horizontal current velocity [m/s]
• Horizontal current direction [deg]

MET data:
• Wind velocity [m/s]
• Wind direction [deg]

The measurement dataset consists of 7922 samples with an interval of 10 minutes, which describe the period
from July to September. No additional data was available for this research, so the seasonality of the environ-
mental conditions could not be observed.

It is therefore important to state that the conclusions in this research cannot be extrapolated for long-term
statistics without further research. However, for the purpose of this thesis, the available data will be assumed
to represent long term environmental conditions in order to be able to feed the maintenance model with
input data.

Data quality
The environmental dataset contains raw measurement data and has not been quality checked by EMEC. The
data contains both negative and extreme values for Hs and Tp , including a small period of no measurements.
In order to determine the multivariate dependence using copulas, the measurement data of all four variates
needs to be usable for each sample.

By filtering the dataset for each of the four variables, the time samples for negative (if applicable) and extreme
values are identified, so these can be removed from the analysis. Furthermore, the data is smoothed to re-
duce local fluctuations and measurement errors. The exact process of filtering and sampling can be read in
appendix D.2.

Location of sensors
A bottom-founded AWAC is located at the position of the red dot in figure 8.1, which is part of EMEC’s tidal
location. What is important to notice is that this tidal array, like many others, resides in a sheltered area. The
nearby islands and shallow water are the reason why the tidal current flows significantly faster than in nearby
open water locations.

Figure 8.1: Geographical location of EMEC [35]

8.1.2. Influence of directionality on the wave-current interaction

Extensive research has been done on the interaction between the waves and currents [48, 109] which have
identified a number of effects which may be important to include in the time series modeling. It was found
that waves are strongly modulated by the tide. Significant wave height and period are mainly controlled by
time-varying water depth, but wave periods are also affected by a Doppler shift produced by the current [13].
Also, a numerical model at EMEC showed local occurrences of tidal lumps, which is the amplification of the
wave height when waves and current are in opposing direction [55].
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The dependence between the variables can be effectively described by using copulas. Still, it must be con-
sidered whether the directional data of the waves and currents is to be included in the dependence analysis
or whether this can be excluded since it does not affect the vessel’s working windows. Therefore, an analysis
is performed on the influence of directionality on the wave propagation direction and the presence of tidal
lumps.

(a) Current velocity direction [deg] (b) Wave propagation direction [deg] (c) Angle between current velocity and
waves propagation [deg]

Figure 8.2: Rose plots of the absolute and relative wave and current velocity directionality

The wave and current directions have been plotted in figure 8.2. The number of occurrences when the current
and waves have opposing directions is not significant when inspecting figure 8.2c and it seems that at the
EMEC measurement location the recurring character of the tidal current direction is dominant for the peak
wave direction. This can also be observed in figure 8.3, which show the directions of waves and current in
time.
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Figure 8.3: Current and wave direction time series

The effects which occur at opposing directions are analyzed more extensively. It can be observed in figure 8.4b
that no amplification of the wave height occurs in the event of opposing directions of the current and waves.
Figure 8.4a shows that this situation mostly occurs when the current velocity is relatively low, showing a peak
at 0.5 m/s. This may be an indication that the wave propagation direction generally follows the current di-
rection with a slight lag. This could explain why the peak in occurrence for opposing direction is found at low
current velocities. This is further analyzed by plotting the time series of both the current and wave propaga-
tion direction. The resulting time series is shown in figure 8.3 and shows that mean wave propagation follows
the current accurately, but does show relatively small fluctuations (<30 deg) around its mean.

From figure 8.4 the absence of tidal lumps cannot be fully explained, significant wave height and current ve-
locity are uncoupled as the time of occurrence is not included. In order to further substantiate the evidence
for the lack of tidal lumps, both variables are coupled in a boxplot to observe what environmental combi-
nations occur in case of having the same and opposite direction. The boxplot is depicted in appendix D.4
and shows that no significant change in the significant wave heights can be seen between the samples de-



64 8. Generation of environmental time series including dependence

(a) Current velocity: Same (blue) & opposing direction (red) (b) Wave Height: Same (blue) & opposing direction (red)

Figure 8.4: Histograms for current velocity and significant wave height for two relative propulsion directions (same vs. opposite)

scribing the same and opposing direction. Given the available measurement data from EMEC, it can thus be
concluded that no amplification of the wave heights can be observed due to its directionality. It is therefore
decided to exclude the directionality data of the wave and current variables in this research, as it does not
noticeably influence the resulting output.

8.1.3. Influence of directionality on the wind-wave interaction

In the previous subsection it was shown that the current and waves directions can be excluded from the de-
pendence analysis. It still is of interest to check whether the wind direction may have a significant influence
on the vessel operability, as the wind may blow unfavorably from the transverse direction. Figure 8.5a shows
the rose plot for the wind direction and it can be observed that North-North-West (note that the figure shows
the ’To’ direction) was the prevailing wind direction during the months July and August, with only little fluc-
tuations from other directions.
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Figure 8.5: Prevailing wind direction and effect on significant wave height

The prevailing direction only deviates 30 degrees from the mean wave and current direction (120/300 deg),
so the wind, waves and current are reasonably co-linear. Figure 8.5b shows a difference in the significant
wave height can be observed when the wind and waves direction is either the same or opposite. Still, the
two distributions do not vary significantly, with the exception of a slightly longer tail for waves propelling
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Table 8.1: Peak data analysis of current velocity frequency spectrum (directional data)

Npeak f [10−4 Hz] T [h] Phenomenon

1 0.1161 23.92 2x Semi-diurnal period
2 0.2246 12.37 Semi-diurnal period
3 0.4453 6.24 1/2x Semi-diurnal period
4 0.6699 4.15 1/3x Semi-diurnal period
5 0.9020 3.08 1/4x Semi-diurnal period

in the South-East direction. Additionally, the wind is a driving force and is not influenced by the waves and
currents.

Excluding the wind direction would remove this variation of significant wave height occurrences, based on
the wave propagation direction. Instead, the total significant wave height distribution would then be ap-
plied for both wave propagation directions, giving a corresponding probability distribution of the wave height
which is depicted in figure 8.5b as the solid red line. It can be seen that the discrepancy between each of the
directional histograms and the total distribution is relatively small. In this research it is therefore decided to
also remove the wind direction, as its effect on the wave height is negligible and the wind direction itself is
mostly fixed.

8.1.4. High frequency wave-current interaction

The tidal current velocity profile is a recurring semi-diurnal process, due to the position moon and sun be-
ing the major driving forces. The low frequency phenomenon is easily detected in the actual tidal velocity,
but this does not necessarily result in the optimal way of defining dependence between the current velocity
and the wind and wave variates. High frequency interaction may occur, which are related to the wind and
wave phenomena and can possibly describes the dependence better. It is thus desirable to analyze whether
this hypothesis can be accepted and dependence should be modeled by implementing exclusively the high
current velocity frequencies, rather than the absolute current velocities which also include the semi-diurnal
process.
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Figure 8.6: Frequency spectrum plots of directional and absolute current velocity data

Table 8.1 shows the frequency and period information of the identified peaks of the current velocity frequency
spectrum in figure 8.6a, which is composed using the measurement data at EMEC. The identified amplitude
peaks in the frequency spectrum exclusively describe tidal related phenomenon, as peak 2 resembles the
semi-diurnal tide period (Tt sd = 12.25 hours). The small discrepancy between measurement and actual pe-
riod is explained by an uncertainty bandwidth of the measurement data when determining the actual peak
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frequencies. The remainder of the identified peaks are directly related to the semi-diurnal tide period, as they
are ratios of this phenomenon, which can be explained by the fact that the recurring peaks are not identically
shaped. This results in this numerical effect, which attempts to describe this slight discrepancy by adding
more frequencies. Also, the peak describing the semi-diurnal tide (peak 2) is significantly higher with respect
to its linked peaks, which expresses itself in a dominant presence within the measurement data.

The Fourier analysis has also been performed on the absolute current velocity measurements, as an attempt
to identify initially hidden characteristics. The resulting plot is depicted in figure 8.6b in which only the
largest two peaks are highlighted. Peak 1 occurs at a frequency which was insignificant at the Fourier analysis
with directional data. Its frequency fully corresponds to the spring tide period, as this occurs almost twice
a month, around new moon and full moon. The sun, moon, and earth form a line (a condition known as
syzygy [94]), which amplifies the tidal range and velocities to its maximum. The second peak can also be fully
explained, as it describes the semi-diurnal period of the tide, albeit twice as small due to using the absolute
value.

Table 8.2: Peak data analysis of current velocity frequency spectrum (absolute data)

Npeak f [10−4 Hz] T [h] Phenomenon

1 0.0076 364.96 (=15.21 days) Spring tide
2 0.4453 6.24 Semi-diurnal period (absolute, thus x2)
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Figure 8.7: Frequency spectrum plots of the significant wave height and peak wave period

Having identified the five largest peaks in the directional frequency spectrum and two in the absolute fre-
quency spectrum, the remainder of the frequencies consist mostly of white noise and produce no significant
amplitude. The occurring frequencies of wave height and wave period are significantly higher, as can be seen
in figure 8.7a and 8.7b. These frequencies cannot be identified in the current velocity frequency spectrum.
This absence of non-tidal related amplitude peaks in the frequency spectrum implicitly proves that the cur-
rent velocity at the EMEC site is not subjected to noticeable high frequency interaction with the occurring
waves.

The observations in this analysis prove that no high frequency current-wave interaction can be identified
in the measurement data. This results in two conclusions which relate to the copula analysis and sample
generation later in this chapter. First of all, the representation of the tidal velocity variate should be performed
in its absolute form, instead of attempting to filter out the semi-diurnal frequency components and perform
the multivariate dependence analysis with high frequency components. Secondly, as no significant peaks
occur at the wave frequencies, it can be assumed that the current velocity variable is dominant and one of the
driving forces in the system. This characteristic will be applied in section 8.4 for the sampling of multivariate
time series.
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8.2. Vine construction

Having shown that for this instance the directionality of the wind, wave and current can be excluded from
this dataset for effectively describing the governing sea states at the EMEC tidal location, the next step is de-
veloping the vine pair-copula construction to describe the multivariate environmental dependence.

8.2.1. Bivariate dependence

The first step in constructing the vine is determining the factorisation of the variables at the base level. This is
done by calculating the Kendall’s Tau rank correlation and connecting the strongest bivariate pairs to function
as the vine’s base.

Using Kendall’s Tau, as described in subsection A.1.3, the following Kendall rank correlations can be observed
from the bivariate data. The value 0 implies full independence and +1/-1 imply full positive and negative rank
correlation, respectively.

Table 8.3: Kendall’s Tau rank correlations of environmental bivariate data

Uwind Hs Tp Ucurr

Uwind 1.000 0.121 -0.089 -0.003
Hs 0.121 1.000 0.077 -0.069
Tp -0.089 0.077 1.000 0.394
Ucurr -0.003 -0.069 0.394 1.000

it shows that the highest dependence can be found between:

• Ucurr-Tp (0.394)
• Uwind-Hs (0.121)
• Uwind-Tp (-0.089, negative)

Comparison to results of related studies
Having shown this, it should be noted that the the identified bivariate dependence is significantly lower than
existing research results [65], as shown in appendix D.5 on the dependence between Hs ,Tp and Uwi nd at sea.
This fundamental difference in results can be explained due to a number of reasons, which should be carefully
considered to uphold the validity of both researches and interpret the data in this research correctly.

Firstly, the EMEC location is geographically different than the location at which dependence were found. The
values from the reference study correspond to the open sea, with a water depth of 650 meters where the wind
is prevalent as the driving force. Hence, wind driven waves are expected to be observed at that location, which
is clearly seen in the dependence between the wind and wave variables. As is seen in figure 8.1, the north east
direction of the EMEC tidal location is blocked by the island. This creates blockage of the wind, so the fetch is
very limited and it can thus be assumed that wind-driven waves are less occurring at the shallow water tidal
location.

Secondly, the inclusion of the high current velocities as an additional environmental driving force, besides
the wind, creates a different situation in which the waves are not exclusively wind-driven at the tidal location.
Figure 8.2c shows that the wave direction is near identical to the tidal current direction in most samples,
which indicates that the current influence is much more dominant than the wind. Whilst these current forces
will never occur at open water locations, it does give a possible explanation why the bivariate dependence
does not correspond well.

Lastly, the comparison study uses multi-year datasets in which the extremes are observed. The time interval
is 30 hours, which ensures that the the logged data is time independent, as is also shown by the calculation
in this thesis in subsection 8.3.2. The EMEC data only describes short-term measurement data of 2 months,
with a 10 minute interval. This has resulted in data which does not contain extreme weather events, in which
a possible strong (upper tail) dependence can be observed.
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8.2.2. Vine type selection

Before walking through steps 1 to 5 in the vine building procedure, as described in section 2.5, the vine type
should be determined to determine which bivariate copula pairs are to be developed at each level. Within
this research only the well described C- and D-vines are included for the vine type selection. Fitting a C-vine
is usually considered when a particular variable is known to be a key variable that governs interactions in the
data set. In such a situation one may decide to locate this variable at the root of the canonical vine to ensure
the system dependence can be best described by copulas.

However, when observing table 8.3, it becomes clear such key variable is not present in this situation and thus
the C-vine does not bring advantage in terms of representing the multivariate dependence. Instead, due to
a relative evenly spread of dependence pairs amongst the variables, a D-vine is preferred and will be used to
describe the multivariate dependence throughout the remainder of this research.

8.2.3. Base level factorisation

Having selected the D-vine construction, the necessity of the base level factorisation arises. The four variables
have to be factorized in such way that the highest Kendall Tau rank correlation pairs are observed at the base
level. Whilst no widely accepted method is described in the literature, besides a full model comparison based
on AIC and BIC, a simple approach is proposed in this research, which maximizes the sum of the absolute
Tau values of the three bivariate pairs. Table D.3 display the result of this approach and demonstrate that the
optimal factorisation is as shown in figure 8.8.

Figure 8.8: Factorisation of variables at D-vine base level

8.2.4. Copula selection

Once the factorisation is known it is possible to determine what copula families best describe the three pairs
of bivariate dependence at the base level.

Pseudo-observations
Initially the processed measurement data need to be converted to its corresponding pseudo-observations in
order to enable the representation using copulas. The method has been described in paragraph 2.3.1 and
enables to describe the empirical dataset into uniform marginal distributions.

For the selected factorisation, as seen in figure 8.8, the following bivariate sets of pseudo-observations are
obtained:

By visually inspecting the pseudo-observations of the three bivariate pairs, a difference in dependence can
already be identified. Since the Kendall Tau correlation values are not especially large (i.e. τ > 0.5), the best
corresponding copula family for describing the bivariate dependence may not be selected by merely visual
inspection. Still, given the distribution of the scatter plots, some preliminary conclusions can be drawn on
the most likely copula families for each of the pairs.

Figure 8.9a shows a clustering of scatter points in the upper right corner, which implies that some magnitude
of upper tail dependence is present between Uwi nd and Hs . Given the mentioned copula tail dependence
properties, a Gumbel or Survival Clayton copula will most likely best fit this data.



8.2. Vine construction 69

(a) Uwind - Hs (b) Hs - Tp (c) Tp - Ucurr

Figure 8.9: Scatter plots of pseudo-observations

Figure 8.9b depicts a near uniform spreading of the points, with a very small clustering in the lower left cor-
ner, which indicates a weak, but noticeable lower tail dependence between Hs and Tp . This can lead to the
conclusion that either a Clayton or Survival Gumbel describes this dependence best.

The last subplot, figure 8.9c, has a distinct cluster of pseudo-observations in both bottom left and top right
corner. This may indicate that this dependence is best represented by the Student-T, with both lower and
upper tail dependence, but in the SouthEast-NorthWest diagonal some clustered pseudo-observations can be
noticed, possibly indicating that the bivariate dependence can describe the entire range. For this dataset the
Student-T, Gaussian and Frank copulas have the closest resemblance to the pseudo-observation plots.

Fitting copulas to the data
The visual inspection of the pseudo-observations already gave a hint about which copula families best de-
scribe the dependence of the three pairs. Still, to ensure the best fitting copula family is selected, the GoF test
is conducted, as described in subsection 2.3.3. First the Kendall’s Tau rank correlation is used to determine
the copula parameter(s) and then these are compared using AIC and BIC. The results are plotted below for
the bivariate sets.

Table 8.4: Copula fitting statistics for bivariate data Uwi nd -Hs

Copula family logLik AIC BIC

Gaussian 122.79 -243.57 -236.60
Student-t 117.63 -231.26 -217.31
Clayton 4.09 -6.18 0.80
Gumbel 175.90 -349.80 -342.82
Frank 138.07 -274.13 -267.15
Survival Clayton 232.20 -462.41 -455.43
Survival Gumbel 27.19 -52.38 -45.40

Table 8.4 shows that the Survival Clayton performs best when fitted to the data, with the Gumbel as the second
best. This was already predicted when visually inspecting the pseudo-observations and thus matches with
our initial findings. The Survival Clayton copula will be applied for representing the dependence between
Uwi nd and Hs , with the corresponding copula parameter, θC l ay ton = 0.29.

Table 8.5 also has a good resemblance of what could be visually identified from the pseudo-observation plots.
The Clayton copula performs best when fitted to the data, with the Survival Gumbel as the second best. The
Clayton copula will be applied for representing the dependence between Uwi nd and Hs , with the correspond-
ing copula parameter, θC l ay ton = 0.19.

The copula fitting statistics of Tp and Ucur r data already gave uncertainty when inspecting the pseudo-
observations. Looking at table 8.6 it can be noted that the Student-t, Gumbel and Frank copulas fit the data
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Table 8.5: Copula fitting statistics for bivariate data Hs -Tp

Copula family logLik AIC BIC

Gaussian 72.44 -142.88 -135.90
Student-t 55.46 -106.92 -92.97
Clayton 114.14 -226.28 -219.30
Gumbel 6.61 -11.22 -4.25
Frank 48.36 -94.73 -87.75
Survival Clayton 7.19 -12.38 -5.40
Survival Gumbel 89.37 -176.74 -169.76

Table 8.6: Copula fitting statistics for bivariate data Tp -Ucur r

Copula family logLik AIC BIC

Gaussian 1276.97 -2551.94 -2544.97
Student-t 1402.30 -2800.61 -2786.65
Clayton 754.95 -1507.89 -1500.91
Gumbel 1479.73 -2957.46 -2950.49
Frank 1439.98 -2877.97 -2870.99
Survival Clayton 1307.06 -2612.12 -2605.14
Survival Gumbel 1048.87 -2095.75 -2088.77

best. Based on the fitting analysis, the Gumbel copula is the most optimal fit by a small margin. However,
since the both a lower and upper tail was identified in figure 8.9c, selecting the Gumbel copula would result
in a loss of the lower tail dependence characteristics when sampling synthetic time series, whereas a Student-
t copula would be able to effectively describe it.

Still, the Gumbel copula is selected for describing the dependence betwen Tp and Ucur r since we are mainly
interested in the upper tail dependence, e.g. the variable dependence at rough seas, to use a conservative
approach for determining the available weather windows during maintenance activities. The corresponding
Gumbel copula parameter is, θGumbel = 1.58.

8.2.5. Vine property overview

The described method in section 2.5 was used to build the of the D-vine and describe the copulas at the dif-
ferent levels. Table 8.7 gives an overview of the best fitting copulas at each level, including the corresponding
Kendall’s Tau of the conditional distributions. The corresponding contour plots of the copulas with standard
normal marginals can be seen in appendix D.7. It can be observed that the dependence decreases as the level
of the vine increases, which corresponds with literature. However, this results in an even weaker dependence
between the variables which are not linked at the base level.

Table 8.7: D-vine copula parameters

Copula Copula family Copula parameter Kendall’s Tau

Tree 1
C(1,1) Gumbel 1.58 0.37
C(1,2) Clayton 0.19 0.09
C(1,3) Survival Clayton 0.29 0.13

Tree 2
C(2,1) Rot. Clayton 270 degrees -0.24 -0.11
C(2,2) Rot. Gumbel 90 degrees -1.12 -0.11

Tree 3
C(3,1) Gumbel 1.11 0.10
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8.3. Existence of time dependence in time series

As is stated in section 2.6, to apply copulas vines to simulate a dataset, the time series should consist out
independent of identically distributed random variates [2, 65, 67]. Several methods have been identified
to obtain time independence in time series, such as using an ARIMA [38] and GARCH [14] models. These
require a thorough analysis of the data and may not be easy to implement, hence they are excluded from
the possible solution space. The most straight forward method is by increasing the time interval between
samples, effectively reducing the number of data points which are included in the copula analysis. As will be
shown in subsection 8.3.2, this approach results in the removal of valuable data, especially since the original
EMEC dataset only describes a limited time span.

This section describes the identification of the univariate time dependence and a new approach for describ-
ing the univariate time dependence by using the existing vine copula theory. This approach is then further
extended to combine the, in section 8.2 described, multivariate dependence of the four variables together
with the respective time dependence.

Exclusion of tidal current variable during simulation
Whilst this method can be widely implemented to describe the time dependence, in this research a special
case arises for the current velocity. The magnitude and occurrence in time of Ucur r does not depend on quasi-
random processes and can to a high accuracy already be predicted, based on the major driving forces behind
it, namely the Earth’s rotation and the influence of the Sun and Moon. Therefore, to preserve the consistency
of the recurring tidal velocity profile, it is decided that the synthetic time series of this variable will not be
simulated using the D-vine.
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Figure 8.10: Copying a fraction of the original Ucurr time series

Instead the entire Ucur r time series will be copied from the existing dataset and plugged into the D-vine for
each time step, using a randomly selected starting point in the original time series. Figure 8.10 shows how
the range is determined in which the starting point is randomly selected. This ensures that the sinusoidal
character of the current velocity is maintained and the current velocity acts as the simulation input for the
other environmental variables in the D-vine.

It must be noted that two disadvantages arise when applying this method to maintain the current velocity
profile. Firstly, any local error or discrepancy in the Ucur r dataset will be repeatedly included in the simulation
of the synthetic time series. Secondly, using the existing Ucur r data limits the maximum time series length
to that of the original dataset. When the desired length of the synthetic time series approaches that of the
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original set, the randomness of the starting point and thus the entire time series also reduces, which is an
important side effect to take into account.

Still, within this research the synthetic time series are applied to calculate the weather windows of the vessel
upon TEC failure and the indirect losses due to reduced production capacity. The original measurement set
contains 7922 data points with 10 minute interval, describing a period of over 2 months. This is significantly
longer than the maintenance activity will, if the maintenance policy requires a call to action.

8.3.1. Univariate time dependence

Univariate time dependence is best described by calculating the ACF of a time series and plotting its respec-
tive correlogram.

The autocorrelation coefficient at lag h is given by [17]

rh = ch

c0
(8.1a)

ch = 1

N

N−h∑
t=1

(Yt − Ȳ ) · (Yth − Ȳ ) (8.1b)

c0 = 1

N

N∑
t=1

(Yt − Ȳ )2 (8.1c)

The upper and lower confidence bounds (B) for correlation with a significance level (α) can also be plotted in
the same correlogram. When the upper or lower bound are exceeded, the null hypothesis that there is no au-
tocorrelation for the given lag is rejected. A test of randomness is conducted by observing the autocorrelation
factor for adjacent timesteps (lag = 1) with a significance level of 0.95.

B =±z1−α/2 ·SE(rh) (8.2a)
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i

N
for h > 1 (8.2c)

8.3.2. Disadvantages of increasing the sampling time interval

Observing the correlograms in figure 8.11 it can be noted that the EMEC measurement data can not be con-
sidered to be time independent. The blue line in the figures represents the criterion to pass the test of ran-
domness and at lag 1 this is not met. When increasing the time interval, it becomes evident in the plots in
appendix D.8 that the increase in sample interval required (14.5 hours) to obtain time independence does not
suffice. Too much data is lost in the process, bringing two disadvantages.

Firstly the characteristic current velocity profile is no longer described by the time independent data. The
simulated time series from the D-vine will have the same time interval. Since these time series are applied
for a weather window analysis, the minimum duration of each maintenance task will also inevitably increase
together with the selected time interval. As we are interested in performing relatively short maintenance tasks
in favorable weather conditions, such as during neap tide, the time interval should be in the same order of
magnitude.

Secondly, the reduction in data also impacts the results of the multivariate analysis. When performing the
bivariate dependence analysis with a time step of 870 minutes (=14.5 hours), ensuring full time independence
of all three variables (Ucur r is excluded), the number of samples reduces from 7922 to 92 points. This further
decreases the reliability of the fitted copula with respect to the actual dependence, as less data is available for
the fitting procedure. This loss in dependence is undesired and thus we continue with the original 10 minute
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(a) Autocorrelation - Uwind (b) Autocorrelation - Hs

(c) Autocorrelation - Tp (d) Autocorrelation - Ucurr

Figure 8.11: Correlograms of EMEC timeseries (1 lag = 10 minutes)

time steps and develop a method to describe time dependence within the D-vine structure to preserve the
limited measurement data.

8.4. New approach for simulating time and multivariate dependence

Several approaches are possible to combine the univariate time dependence with the multivariate depen-
dence, each with their own distinct characteristics. Two methods have been considered in this research,
which both apply a sequential simulation algorithm:

• Multivariate dependence → Univariate time dependence (x3)
• Univariate time dependence (x3) → Multivariate dependence

Both methods are considered sequential as they use a two-step algorithm to simulate synthetic time series
with both types of dependence. Part of the proposed algorithm , the multivariate dependence modeling,
has already been extensively explained in section 8.2. The sequential simulation method combines default
multivariate D-vine with new D-vines. Each of these new D-vines, one for each variable in the multivariate
D-vine, is filled with its own univariate time lagged variates. Simulation from this D-vine should result in
synthetic time series which describe time dependence.

8.4.1. Developed simulation algorithm

The developed algorithm uses the existing D-vine simulation method as its foundation, but extends the simu-
lation methodology to enable the simulation of univariate time series which include time dependence. Before
explaining how the multivariate vines are coupled to the univariate vines, it is first required to elucidate the
simulation process of univariate time series which include time dependence.
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Univariate time series simulation
The univariate time series simulation process is as follows:

Step 1 Build the D-vine by using N lagged sets of the univariate time series (N = 3 in figure 8.12)
Step 2 Simulate the full D-vine once using the method described in section 2.6 (figure 8.12a)
Step 3 Shift all generated variates and D-vine parameters one time lag (figure 8.12b)
Step 4 Simulate a new sample using only one random input and the shifted vine parameters (figure 8.12c)
Step 5 Repeat step 3 and 4 Tsi m times to generate the full synthetic time series

(a) Simulate full D-vine (b) Shift variates one lag (c) Simulate a new sample

Figure 8.12: Univariate time series simulation algorithm

By plugging lagged versions of the original univariate time series into the D-vine, the copulas in the vine are
used to describe the time dependence between the lags. Simulation of a new sample, as seen in figure 8.12c
includes the identified time dependence between the included lags and thus the persistence can be mod-
eled.

Coupling of lagged univariate andmultivariate vines
As mentioned, the results from the univariate time dependence vines are coupled to the existing multivariate
D-vine, of which the characteristics are mentioned in subsection 8.2.5. The two approaches differ in the order
of which the vine inputs and outputs are linked in order to analyze what the difference is on the overall result.
Both approaches will be explained below to give more insight in the developed algorithm.

Approach ’Multivariate dependence → Univariate time dependence (x3)’ first simulates Ts i m samples from
the multivariate D-vine. The samples of the intermediate Uwi nd , Hs and Tp time series are then for each time
step as the w4 simulation input, as depicted in figure 8.12c. This will create three synthetic time series for the
mentioned variables, which are added to the existing Ucur r time series to obtain the final output.

Approach ’Univariate time dependence (x3) → Multivariate dependence’ does the exact opposite and first
uses random numbers to simulate from each of the three univariate D-vines. This creates three independent
time series (excluding Ucur r ). These are then plugged into the multivariate D-vine as w2, w3, w4 input, sam-
ple per sample. The time series which are generated by the multivariate D-vine are the final output of this
approach.

8.4.2. Analysis of univariate case

Before simulating any of the proposed methods, an analysis is performed on simulating time dependence in
a time series for each of the three variables. Again, Ucur r is implemented differently in the D-vine, so this
variable is excluded from the analysis.

Two properties will be looked into, namely the number of time lags which is required as a minimum to suffi-
ciently represent the original data and the influence of using different bivariate copulas. For both properties
the quality of representation between the original and synthetic time series is investigated in terms of statis-
tical properties and persistence.
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As mentioned, the analyses will be performed for Uwi nd , Hs and Tp . However, only the results of Uwi nd will
be visually presented in the next paragraphs, whereas the results of the other variables will only be mentioned
if these vary from the Uwi nd case.

Influence of increasing time lags
To gain insight in the effect of increasing the time lags the time series of Uwi nd is represented by four PCCs,
in which the time lags are included as follows in the base level of the D-vine structure:

1. ti − ti+1 (d = 2)
2. ti − ti+1 − ti+2 (d = 3)
3. ti − ti+1 − ti+2 − ti+3 (d = 4)
4. ti − ti+1 − ti+2 − ti+3 − ti+4 (d = 5)

For this specific analysis, the D-vine is restricted to only use the bivariate Gaussian copula for creating identi-
cal simulation conditions in which only the time lag varies. Also, the synthetic time series are simulated with
a 10 minute interval, just as the original, and the seed for generating random numbers is kept fixed for all four
simulation alternatives.

The D-vines are composed using the copula parameters that are listed in table 8.8. which in their turn are
calculated from the Kendall Tau rank correlation of the bivariate, namely the original and lagged, dataset.
The same rank correlation is found for all the lagged variants, e.g. ti − ti+1 and ti+3 − ti+4, which both are
described by a single lag. This is due to the fact that the bivariate samples have identical variate sets, except
for a different starting and ending point in the dataset. Calculations showed that this is effect is negligible
and thus all bivariate pairs within the same lag have identical properties.

Table 8.8: Kendall rank correlation of the conditional distributions at each vine tree and copula parameter

Tree τ θGaus

1 0.92 0.99
2 -0.55 -0.76
3 0.42 0.61
4 -0.09 -0.14

Upon plotting one instance of each of the synthetic time series of Uwi nd , as is depicted in figure D.12, a num-
ber of phenomena can be observed when comparing the output. Bear in mind that a fixed seed is used for
generating random numbers, so the comparison focuses on the characteristic differences between simula-
tions and less on the actual representation of the original time series.
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Figure 8.13: Simulated time series of Uwi nd for different lags (4t = 10 min)

It can be observed that all four simulation methods show a strong correspondence in the time series profile.
Still, discrepancies can be seen, which are related to the number of used time lags in the D-vine base level.
It seems that using one time lag (d=2) generates a relatively stable output signal, which is not sensitive to
extremes. Using two time lags (d=3) does exactly the opposite and generally describes the maximum outlier
when an extreme, both peaks and troughs, occurs. The other two methods (d=4 and d=5) give intermediate
values and show a reasonably good correspondence with each other.
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In this case, as described by table 8.8, the Kendall’s Tau deteriorates as the time lag is increased. This phe-
nomenon is very similar to that of what can be observed when plotting the correlogram of an univariate time
series. Applying the same methodology, the number of included time lags should depend on the magnitude
of the Kendall’s Tau number, which may or may not exceed a threshold value, stating time independence of
that time lag.

To further elucidate this new insight in the use of bivariate D-vine trees for describing time dependence, the
simulated time series and the Kendall Tau values for the different D-vines are also displayed in figure D.13,
D.14 and D.15 and table 8.9 for the situation in which only every second (420mi n), third (430mi n) and every
sixth (41hour ) datapoint is used in the D-vine copula analysis.

Table 8.9: Kendall rank correlation of time lags and copula parameter

Lag τ(410mi n) τ(420mi n) τ(430mi n) τ(41hour )

1 0.92 0.85 0.79 0.67
2 -0.55 -0.27 -0.10 0.04
3 0.42 0.22 0.08 0.02
4 -0.09 -0.10 -0.01 -0.03
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Figure 8.14: Error between simulation methods when increasing the time steps of the Uwind data

Bivariate independence test

As expected, the error between the d = k and d = k +1 time series, plotted in figure 8.14, becomes smaller as
the Kendall Tau number reduces to values near zero, indicating independence between the respective time
lags and thus no significant improvement when increasing the number of time lags in the D-vine tree.

This observation can be formalized using a test of bivariate copula independence, similar to the threshold
value when calculating the auto-correlation. The bivariate independence test [33] is based on Kendall’s Tau
and exploits the asymptotic normality of the test statistic:

st ati st i c := T =
√

9N (N −1)

2(2N +5)
· | τ | (8.3)

where N is the number of observations and τ the empirical Kendall’s Tau of the data vectors u1 and u2. The
p-value of the null hypothesis of bivariate independence hence is asymptotically

p = 2(1−Φ(T )) (8.4)

where Φ is the standard normal distribution function.
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In essence the extension of the D-vine for describing time dependence is not required to be any longer than
the maximum non-independent time lag, using the above test. By varying the threshold of the p-value, which
is usually set at 0.95, the allowable error between the different time lag methods of the synthetic time series
can be further altered. This is especially useful when also considering the additional simulation time when
extending the D-vine. A balance needs to be found between the level of accuracy of the synthetic time series
and the simulation time of running the D-vine model.

Influence of changing copulas
In addition to varying the time lag, the influence on the synthetic time series is observed upon changing the
bivariate copula family, which is implemented for describing the dependence between the lagged variates.
In the previous paragraph it was proven that no significant difference was seen between using one lag and
multiple when using one hour intervals and a noticeable discrepancy was observed with 10 minute intervals.
In order to use this in our advantage, the comparison of different copula is done with 10 minute intervals and
only one included time lag to amplify the effect of disturbance. Doing so will give insight in the stability of
the copula families for the least accurate time interval.
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Figure 8.15: Simulated time series of Uwi nd for different copula families

Figure 8.15 depicts that varying the copulas results in significant differences in the Uwi nd profile. It can be
noted that the time series which is related to the Clayton copula contains a large number of peaks, which
return throughout the time series, both above and below the other time series. This peaked behavior is not
realistic for describing wind velocities, since these rapid fluctuations of are rarely observed in measurements,
whereas a more smoothed flow with only small local fluctuations, such as in the time series of the other four
copulas, resembles wind profiles more accurately.

Additionally, the Frank copula time series seems to describe an underestimation of Uwi nd , when comparing
it to the other simulated time series. When excluding the negative peaks of the Clayton time series it can
be concluded that the Frank time series describes the lower limits of this time series. Whilst no theoretical
explanation can be provided, this does state that the Frank copula is not a good copula for simulation, since
it is conservative with respect to the others.

In this set of synthetic time series, no clear distinction can be made between the Gaussian, Student-t and
Gumbel copula, so no concrete conclusion can be made on the choice of preference. What must be noted
is that when running the copula fitting analysis, as described in paragraph 8.2.4, the preferred choice is the
Student-t copula.

To further validate the findings and assumptions, this analysis has been rerun for the same dataset with three
variations which are implemented both exclusively and simultaneously in different runs to check whether
the Student-t copula family does indeed represent the lagged data best. These variations were changing the
time step to one hour, including four lagged variates (d=5) and redoing the analysis up to now for the Hs and
Tp variables. Results showed that the Student-T copula fitted the data best for all conditions, so it can be
concluded that choosing the Student-t copula family is the preferred option for describing univariate time
dependence, given the current dataset.
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8.4.3. Goodness of Fit tests

In paragraph 8.4.2 and 8.4.2 the influence of changing the time lag and the copula families for simulating syn-
thetic time series were analyzed qualitatively, as the results were only compared with respect to each other.
This was possible due to the fact that, for a fixed seed, the time series looked relatively comparable and ex-
traordinary behavior could be studied. However, now a selection has been made on the preferred simulation
properties, namely simulating with either Gaussian, Student-t or Gumbel copula with a time interval of 10
minutes and 4 time lags (d=5), it is required to test the goodness of fit of the synthetic time series with respect
to the original one.

Several tests have been developed to check the goodness of fit, which are each explained below. The purpose
of these tests is not only to determine whether the choice of preferred simulation properties is valid. More
importantly the goal is to gain additional insight in the fitting characteristics when simulation large numbers
of synthetic time series and whether bivariate copulas can be applied in general to effectively model time
dependence.

For the goodness of fit tests below, 1000 synthetic time series of Uwi nd were simulated, each with a different
random seed and the following simulation properties:

• 4 time lags: ti − ti+1 − ti+2 − ti+3 − ti+4 (d = 5)
• Student-t copula
• 10 min time interval

Visual inspection
The first test to perform is a visual inspection in which the original time series of Uwi nd is compared to a
number of synthetic time series. This test alone cannot give definitive conclusions, as the randomness of the
synthetic time series will never give (near) identical fits. However, the trends of the time series can already
indicate whether the synthetic time series do have a similar persistence to some extend.

In figure 8.16 the original time series of Uwi nd is plotted over two randomly selected synthetic time series for
a duration of 100 hours.
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Figure 8.16: Visual comparison of original and two synthetic Uwi nd time series

Statistical properties
A second simple test is to calculate the mean and standard deviation for both the original and synthetic time
series and compare the results. Since a large number of synthetic time series have been simulated, the indi-
vidual values are not of particular interest. Instead, the distribution of the mean and standard deviation have
been calculated, as can be seen in figure 8.17, which gives valuable information about the spreading of the
synthetic time series. Table 8.10 contains all relevant data.

The results in table 8.10 show that the mean of the mean and mean standard deviation correspond very well
with the original time series, which indicates a good fit. The spreading of statistical properties within the
set of synthetic time series is more interesting however, since this says something about the accuracy of the
simulation algorithm. Looking at figure 8.17, the spreading of the mean and standard deviation follows a
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Table 8.10: Comparison of statistical properties of original and synthetic time series of Uwi nd

Or i g i nal Synthmean Synthstd

Mean 4.9005 4.9035 0.2299
std 2.0522 2.0704 0.1047

normal distribution. This implies that the majority of the values is clustered around the mean value. By
also inspecting the standard deviation of the two statistical properties, it becomes clear that the spreading is
very limited and each of synthetic time series has a mean value between 4.4436 and 5.3633, and a standard
deviation between 1.8610 and 2.2798, given a 95% confidence. Although no existing threshold is available
in literature, this spreading stay well within the acceptable range from a simulation point of view. A larger
spreading of the standard deviation would lead to more extremes in the time series, whereas an increase in
the spreading of the mean would result in larger shifts of the entire dataset, which is also undesirable.

(a) Histogram of mean (b) Histogram of standard deviation

Figure 8.17: Histograms of mean and standard deviation of synthetic Uwi nd time series

Markov Chain transition probabilities
The last test which is conducted to test the goodness of fit of the synthetic time series with respect tot the
original time series is by means of Markov Chain transition probabilities. The Markov Chain has already been
introduced in chapter 3 and this analysis applies the theory to define multiple states and the corresponding
transition probabilities to get an indication on the persistence of the time series.

The analyses initiates by defining the states. In this analysis the states consist out of bins in which the value
of Uwi nd resides in as time progresses. The states are chosen arbitrarily after some iterations on the bin
bandwidths. It is important to state that the selection of bins has a significant influence on the result and
should not be chosen too small. The approach for finding the correct number of states included the fulfill-
ing of two conditions, whilst attempting to create as maximize the number of states to use as much data as
possible:

• The transition matrix should not contain zero elements on the diagonal, implying too small bins in
which states get skipped

• The only the first positive and negative non-diagonal entry should contain data

The selection of states which fulfill these conditions have been found and are listed in table 8.11.

Markov transition matrix

By calculating the transition of states for each time step, the transition matrix for the original Uwi nd time
series is composed. The 3D bar plot of the transition matrix is depicted in figure 8.18a. The three non-zero
diagonals are plotted in figure 8.18b, which describe the transition to a lower state (Si to Si−1), remaining in
the same state (Si to Si ) and transition to a higher state (Si to Si+1). The latter plot is basically a 2D projection
of the 3D bar plot, as seen from the origin.
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Table 8.11: States of the Uwi nd time series

State bin [m/s] State bin [m/s]

1 [0,1) 7 [6,7)
2 [1,2) 8 [7,8)
3 [2,3) 9 [8,9)
4 [3,4) 10 [9,10)
5 [4,5) 11 [10,11)
6 [5,6) 12 [11,12)
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Figure 8.18: Transition matrix of original Uwi nd time series

Index of dispersion
The index of dispersion [21] is a normalized measure of the dispersion of a probability distribution: it is a
measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a
standard statistical model.

D = σ2

µ
(8.5)

In figure 8.19 the mean, standard deviation and index of dispersion of the error distributions are depicted
for different time lags. It can be observed that all three parameters decline as the time lag increases and ap-
proach a horizontal asymptotic value. Interesting about these plots is that the error margin and its spreading
decrease as the time lag increase, which indicate that the representation of the persistence of synthetic time
series with respect to the original time series improves as larger time periods are observed.
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Figure 8.19: Statistical properties of error distribution for different time lags

The mentioned findings rely on a qualitative approach, since the error values of the time lags are only com-
pared to that of the original time interval (4t = 10 min). Still, combined with the previous two goodness
of fit tests, it can be said that the use of bivariate copulas to describe univariate time dependence is indeed
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possible and the persistence in the original time series has increasingly matching properties when analyzing
longer time intervals.

8.4.4. Expansion to multivariate case

It’s been proven in subsection 8.4.3 that the bivariate copulas can be applied for describing time dependence
in univariate time series by simulating from a D-vine with lagged variates. The final step is to expand this
method from the univariate case to the multivariate case. This will combine three sets of univariate time
dependence (as stated, Ucur r is copied from the existing dataset to preserve its profile) and the multivari-
ate dependence. In the following paragraphs the newly proposed method is described and some results are
discussed.

It is important to state that the cross-correlation, e.g. the dependence between H st and T pt+1, is excluded
from this analysis to prevent these unexplained effects from affecting the simulation results. However, with
the same methodology as is stated in previous sections for the univariate time dependence D-vine modeling,
it is also possible to construct the cross-correlation if desired.

Both simulation methods were executed and it was observed that the synthetic time series of ’multivariate
dependence → univariate time dependence’ lost all of their multivariate dependence, but did include the uni-
variate time dependence. Whilst this multivariate dependence was significantly lower than the univariate
dependence between lagged variates, it is significant enough not to be neglected. Given this undesired result,
this method was thus not optimal for simulating both time dependence and multivariate dependence.

The ’univariate time dependence → multivariate dependence’ method showed considerable better results
when inspecting the synthetic time series. Since the multivariate D-vine algorithm is placed at the end of the
simulation, this dependence is fully included, which is one of the key properties which the synthetic time se-
ries should have. The corresponding Kendall’s tau rank correlation of one simulation is seen in table 8.12 and
shows good correspondence with the rank correlation of the original time series, noted in table 8.3.

Table 8.12: Kendall’s Tau rank correlations of ne synthetic time series realization

Uwind Hs Tp Ucurr

Uwind 1.000 0.087 -0.074 -0.004
Hs 0.087 1.000 0.061 -0.059
Tp -0.074 0.061 1.000 0.327
Ucurr -0.004 -0.059 0.327 1.000

Having identified that the algorithm which is placed at the end presumably is dominant when simulating
synthetic time series, it was expected to see a lack of time dependence, and thus no realistic time profile and
persistence, when using the latter simulation method. However, visual inspection of the synthetic time series,
such as in figure 8.20, showed that for the entire set of synthetic time series the desired persistence was still
present, but possibly in a slightly weakened form with respect to the univariate time series, as described in
section 8.4.2.

A possible explanation for the effectiveness of this newly developed method is the fact that the strongest de-
pendence, the cases of univariate time dependence, was simulated first in a D-vine. These results could then
be plugged into the second D-vine, describing multivariate dependence, as the input in which a considerably
lower dependence was observed, as can be seen when comparing table 8.3 and 8.9. This resulted in only
minor alterations of the already developed persistence within univariate time series, while the multivariate
dependence was included.

No additional research was performed on why this significant difference occurred in the properties of the
synthetic time series between the two methods, so no solid evidence can be given to support these state-
ments.

Still, applying the ’univariate time dependence → multivariate dependence’ has proven to be an effective
method for simulating time series which have both multivariate dependence and univariate time depen-
dence. This application of copulas and vines has up to now not been seen in literature and may well be a new
approach for simulating these dependences, based on data. It is advisable to perform more research on the
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Figure 8.20: Comparison of original time series and one synthetic time series realization

definite effects of applying this simulation method on other types of data with the same dependences, but
different magnitudes.

8.4.5. Synthetic time series validation

A validation study has been performed to justify the application of the simulated synthetic time series to
represent the actual measurements. The validation is based on a comparison of the cumulative distributions
of the weather window persistence in the original and synthetic time series. This approach has already been
used in a similar study [58], which also includes multivariate dependence modeling.

For the valudation in this research the weather window persistence is observed for one maintenance task,
namely the ’TEC replacement’ task. The task is exensively described in subsection 6.1.1. It has operational
limits for the Hs , Uwi nd and Ucur r and therefore can be effectively used to validate the multivariate time
series. The task has the following operational limits:

• Hs limit: 1.5 m
• Uwi nd limit: 6.0 m/s
• Ucur r limit: 2.0 m/s

Figure 8.21a shows the cumulative distribution functions of the persistence for 1000 simulated time series,
using the newly developed algorithm, and compares it with the weather window persistence in the original
time series. It can be observed that the results from the synthetic time series are well clustered around the
original time series. This is a strong indication that the synthetic time series have nearly identical statisti-
cal properties, whilst including randomness to represent the uncertainty. Figure 8.21b further substantiates
this claim, as the mean persistence of the synthetic time series closely follows that of the original time se-
ries.
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Figure 8.21: Comparison of the cumulative distribution functions of the persistence in the original and synthetic time series

It is therefore concluded that the developed algorithm for simulating synthetic time series with both multi-
variate dependence and time dependence can be effectively implemented in the overall maintenance model,
as these show a strong resemblance to the weather window persistence of the original time series.

8.5. Added value of using copulas for time series simulation

In this chapter it has been shown that it is possible to use pair-copula constructions to simulate new real-
izations of time series with multivariate dependence. Besides that it is just as important to show the added
value of implementing this method when considering functionality of the overall maintenance model, as is
described chapter 7. An analysis is therefore conducted to identify the results of running the maintenance
model with exclusively the original measurement data from EMEC, and running the model with the synthetic
time series which have been generated by using copulas.

In this comparison study the developed maintenance model uses identical input parameters, so only the blue
model block of the model framework overview (figure 7.1) is varied. No insight is given in this section in the
maintenance model modules itself, as this will be extensively explained in chapter 9. Instead, the main focus
will be on a comparison of the probabilistic maintenance activity duration for replacing an arbitrary number
of TECs. This is directly influenced by the weather window uncertainty, which is induced by the interaction
between the vessel’s operational limits and the used environmental time series.

The following comparison studies will be conducted to determine the added value of using copulas for time
series (TS) simulation:

1. Original TS ←→ Synthetic TS
(a) Fixed starting point (t=0)
(b) Variable starting points

2. Synthetic TS with/without multivariate dependence

8.5.1. Original TS ←→ Synthetic TS

Two scenarios are used when comparing the effect of the original time series to the synthetic time series. The
first scenario compares the original and synthetic time series for a fixed starting point in order to determine
what the influence is of generating more realizations to introduce uncertainty.

The second scenario enables multiple varying starting points in both the original and synthetic time series.
This enables multiple simulations to be extracted from the same original time series in order to compare the
probabilistic results of an approach without (original TS) and with copulas (synthetic TS).

For each analysis only the maintenance activity durations of replacing 1,5 and 10 TECs are depicted in this
section. The full overview of activity durations from 1 up to and including 10 TEC replacements are available
in appendix D.11.
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Scenario 1: Fixed starting point (t=0)
Firstly, the original time series is directly fed into the maintenance model by assuming that the TEC failure
takes place at t = 0. The corresponding maintenance activity durations of replacing 1,5 and 10 TECs will be
compared to 100 synthetic time series, which use the same starting point to describe the TEC failure. This is
achieved by excluding the random Ucur r starting point, as is described in paragraph 8.3, and using identical
Ucur r samples for running all the D-vine simulations.

Figure 8.22 shows the activity durations for using the original and synthetic time series. The weather window
limits have been selected to fully correspond to the base case, mentioned in subsection 6.1.2. Only one sim-
ulation can be run with the original time series data, so this results in a deterministic value, displayed by the
red vertical line.
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Figure 8.22: Comparison of activity duration with original and synthetic time series (fixed starting point)

First of all it can be noted that, whilst keeping the current velocity time series fixed in all the simulations,
still a large weather window uncertainty is introduced by applying the pair-copula construction to simulate
synthetic time series. It is exactly this environmental randomness which can be included by simulating ad-
ditional time series. Each of these synthetic time series is statistically identical to the original time series, but
more realizations can be generated, resulting in a probabilistic representation of the maintenance activity
durations.

Secondly, in this scenario it is interesting to observe that no fixed factor can be found which can convert the
deterministic duration of the original time series to an arbitrary exceedence probability of the synthetic time
series. Figure 8.22a may show the deterministic duration being close to the P90 exceedence probability, but
figures and 8.22b and 8.22c reject this hypothesis.

Scenario 2: Varying starting points
The second scenario compares the set of 100 synthetic time series to an equally large set of quasi-original
time series, which have been extract from the original measurements by shifting the starting point. These
quasi-original time series have equally spaced starting points and describe a range of 14 days, to represent
both the peak and neap tides which occur in one lunar cycle.

It can be seen in figure 8.23a and 8.23b that the quasi-original time series follows the synthetic time series rea-
sonably well for the replacement of 1 and 5 TECs, respectively. However, as the number of tasks increase, and
thus the number of required weather windows, the two approaches start showing a significant discrepancy.
This effect can be observed in figure 8.23c and in appendix D.11, where each increment in TEC replacements
in depicted.

By using the quasi-original time series is possible to describe weather window uncertainty due to the envi-
ronmental randomness. An advantage of this approach is that it requires no measurement data analysis and
copulas to simulate new synthetic time series, whilst still describing realistic multivariate dependence.

One major limitation of this approach is its restriction in generating more environmental realizations than is
already captured in the original measurement data. Especially since the available dataset is very short, this
results in major limitations when attempting to describe a full spectrum of possible environmental occur-
rences. Figure 8.23c is a good example of the considerable underestimation of the activity duration, which
occurs due to only using copies of the original time series.
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Figure 8.23: Comparison of activity duration with original and synthetic time series (variable starting point)

Instead, by performing a copula analysis on the original time series and describing the identified in a PCC, it
is possible to simulate as many synthetic time series as desired. This is a significant advantage of the vine sim-
ulation method used in this thesis, as more environmental realizations result in a more complete description
of the weather induced uncertainty.

8.5.2. Synthetic TS with/without multivariate dependence

The second comparison study evaluates the added value of the PCC for its ability to include multivariate
dependence. Other methods are available for simulating univariate time series, such as using an ARIMA
model [38] to create forecasts of univariate time series, or by only using the method in subsection 8.4.2 to
model univariate time dependence with a D-vine.

The effect of implementing multivariate dependence to the time series is assessed by comparing the resulting
maintenance activity duration distribution for 100 simulations. The synthetic time series with multivariate
dependence are simulated by using the developed algorithm, described in subsection 8.4.4. The time series
without multivariate dependence are simulated by leaving out the second D-vine simulation step and directly
couple the set of 4 univariate time series. Both methods use the same approach for selecting the Ucur r time
series, as is described in paragraph 8.3.
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Figure 8.24: Comparison of activity duration of synthetic time series with and without multivariate dependence (replace 9 TECs)

In figure 8.24 it can be observed that excluding the multivariate dependence results in an increase of the
maintenance duration, albeit not a significant one as the mean increase is less than 10%, Still, it must be
said that by including multivariate dependence the simulated time series represent the actual situation more
realistically and thus only bring advantages to the validity of the results. Whilst the added value for the current
model configuration proves to be relatively small, the result can be perfectly explained and cases can be
described in which the multivariate dependence may result in significant larger gains in validity.
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Interpretation of results
First of all, the identified bivariate dependence between the four environmental variables, listed in table 8.3,
showed relatively low rank dependence between most pairs, except for Ucur r -Tp (τ= 0.35). This implies that
the peak wave period is reasonably well related to the current velocity, which is used as the simulation input.
However, for the Damen base case it was decided that no limitations are applied with respect to the peak wave
period. Any simulation advantage that would have been gained by implementing multivariate dependence
would therefore be dismissed due to the absence of wave period related operational limits.

The remainder of the multivariate dependence pairs varied between independence (τ≈ 0) and that of Uwi nd -
Hs (τ = 0.12). The discrepancy of the maintenance durations with and without multivariate in figure 8.24 is
thus exclusively the result of the addition of this weak multivariate dependence. This may also be interpreted
in such way that, in case Tp was included in the operational limits, the effect of including the multivariate
dependence would be significantly larger.

Increased effect of multivariate dependencewhenmodeling DP limits
In this thesis the operation limits are independently evaluated for each time step. The lack of applying mul-
tidimensional limits, which effectively captures the operable conditions for combinations of the four en-
vironmental variables, is assumed to be sufficient for this research. However, the developed maintenance
model has been developed in modules in order to be upgraded independently. The connection with Damen’s
in-house DP model has already been established and it is thus possible to determine the vessel’s station-
keeping capabilities by means of advanced calculations. The DP limitations are therefore represented more
realistically in the respective model, but is outside of this thesis’ scope.

The implementation of DP limits will give a significant beneficial effect of using synthetic time series with a
higher level of validity. DP operations are largely affected by the wave drift forces. Wave drift forces are very
much dependent upon the wave period as short steep waves give higher forces than long waves with the same
wave height. Therefore the wave spectrum and the selected wave period in relation to the wave height is very
important in calculating the total wave drift force [103].

When the current velocity is low during its diurnal cycle, the possibility for a weather window may occur.
However, as Tp is strongly dependent on Ucur r , this will logically result in a reduction of the peak wave period
during that same period. As is described above, this can lead to an increase in the total wave drift forces which
negatively influence the weather window opportunities. The inclusion of multivariate dependence can thus
be of great addition to represent the weather window opportunities as realistically as possible.



9
Maintenance policy optimization using

Semi-Markov Decision Processes

RQ 2 How can the uncertainty in the maintenance activities of the TEC array be included in the model?

The focus of the chapter is to rearrange, modify and performing calculations on the parametric inputs that
describe the entire system (tidal array with failing TECs which is to be maintained and are exposed to the en-
vironment) into a format which corresponds with a SMDP and thus can be optimized. As has been explained
in chapter 3, this requires the system from part II to be represented as:

States describing the unique combination of TEC failures in the array
Decisions describing whether or not maintenance is performed in each state, and how many

TECs are to be replaced
Transition probabilities describing what the probability is of going from one state to another, based on the se-

lected decision of performing maintenance (maintenance based transition) or doing
nothing (failure based transition)

Transition rates describing at what rate the transition form one state to another occurs. This is either
induced by a TEC failure or the time is takes to perform maintenance.

Rewards describing the benefits and costs of being in a particular state. This is directly related
to downtime of one or more TECs and the cost of performing maintenance.

This chapter is structured to describe the above mentioned SMDP elements in different sections. Section 9.1
and 9.2 describe the state state generation and decisions, respectively. As has been described in chapter 7, two
main modules can be identified in the policy optimization model. Section 9.4 gives insight in the algorithms
which calculate the SMDP properties of the failure related system processes and section 9.5 does this for the
maintenance process. Section 9.6 explains how all data is combined, after which the optimal maintenance
policy is determined. Lastly, section 9.7 describes the verification study for the model using multiple example
cases.

9.1. State generation

The tidal system can be described by a set of states. The number of states can be selected arbitrarily, but it
should be noted that this has a significant influence of the results. It is thus of great importance to choose
both the quantity and the properties of the states well to find generate a good resemblance of the tidal sys-
tem.

Within this research the number of states has been linked to the number of unique failure combinations
within the tidal array. Two types of states have been defined in the model to resemble system well:

• Deterioration states (D-states, SD )
• Maintenance states (M-states, SM )

87
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Each deterioration state thus describes a unique combination of failed TECs within the array. This effectively
enables the model to include all transitions and costs which occur if the system changes from one state to
another, by either performing maintenance of wait for another TEC to fail.

The maintenance states have a one-to-one relation with the deterioration states and describe the situation
that occurs when the decision is made to perform maintenance, given the system was in a deterioration state
before. This thus requires each deterioration state to have an copy, but with different properties, to which it
is coupled. An except is the initial deterioration state, SD1, which describes full availability of all TECs. In this
state it is not possible to perform maintenance as the entire array is operational.

Figure 9.1: Example of deterioration and maintenance states

A simple serial example of the states and their interaction is depicted in figure 9.1, in which the arrows in-
dicate direction of state changes, red being a TEC failure, gray the decision of performing maintenance and
green the renewal process. The corresponding SMDP properties regarding the rewards, rates and decisions
will be explained in more detail in the remainder of this chapter.

9.1.1. Unique states

The following model input parameters are used to generate the full set of states states:

Npl at f or m The number of tidal platforms which are present within the array.
NT EC The number of TECs per tidal platform.

N f ai l ,max The maximum number of of TECs which are allowed to have failed simultaneously in the array.
This value cannot be exceeded in the model and will force the decision process to perform
maintenance, effectively reducing the number of failed TECs.

Each failure combination within array is an unique state. It is self-evident that the total number of TECs
is

NT EC ,tot = Npl at f or m ·NT EC , (9.1)

and if each individual TEC and tidal platform was identified as an unique entity, the total number of failure
combinations would be

N f ai lcomb,max = NSD = 2Ntec ·Npl at f or m (9.2)

NSM = NSD −1 (9.3)

NStot = NSD +NSM = 2 · (2Ntec ·Npl at f or m
)−1 (9.4)

For the base case the array consists out of 5 platforms with 16 TECs each. This would lead to 2.4179∗1024

states in total. Even when only including either the platforms or TECs as unique entities, the number of
required states is excessively high and showed to be too demanding to be run by the model.

A simplification has been performed, which reduces the number of states of the model, whilst not influencing
the model results. This is due to the fact that all platforms and the TECs are modeled identically, so numerous
quasi-identical failure combinations are present within the tidal array. All platforms and TECs are regarded
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Table 9.1: Example of deterioration state duplicates (2 platforms with 2 TECs, 1 failure)

Platform 1 Platform 2
TEC 1.1 TEC 1.2 TEC 2.1 TEC 2.2

× X X X
X × X X
X X × X
X X X ×

generic and only the unique sets of failed TEC quantities are considered. Table 9.1 shows the duplicates for
an array with 2 platforms and 2 TECs, of which all have unique entities and one has failed.

These duplicate states are merged into one state by an algorithm, based on the simplification that the system
makes no distinction in costs and failure properties between the TECs at different platforms. This assumption
is in line with the data availability and assumption of only including random failures, so no time varying
failure rates are included. This has been covered in section 5.4.

An example of how the deterioration states are generated is depicted below in table 9.2, with Npl at f or m = 3
and Ntec = 2. It shows that only 10 deterioration states (NStot = 19) are identified instead of 64 (NStot = 127),
which would be the case if both TECs and platforms are considered as unique entities. This exponential
reduction of states becomes especially useful for running simulations with large inputs.

Table 9.2: Example of deterioration state generation

State
Platform 1

(NT EC , f ai l ,1)
Platform 2

(NT EC , f ai l ,2)
Platform 3

(NT EC , f ai l ,3)

SD1 0 0 0
SD2 0 0 1
SD3 0 0 2
SD4 0 1 1
SD5 0 1 2
SD6 0 2 2
SD7 1 1 1
SD8 1 1 2
SD9 1 2 2
SD10 2 2 2

9.1.2. Maximum allowable array failures

The parameter N f ai l ,max is implemented to limit the generation of excessive states which are irrelevant in
the policy optimization. This is due to the fact that after a certain number of failures (e.g. after 20% total array
failure) the system contains too many failed TECs which is undesirable and does not represent a realistic
situation. Also, initial results may indicate a range of states where the the pivot point of going from the ’Do
Nothing’ decision to ’Perform Maintenance’ is located. The successive states will, describing a larger number
of failed TECs will thus never be reached and can be excluded without affecting the model results. This can
significantly speed up the simulation.

9.2. Decisions

In the SMDP two sets of decisions have been defined, which correspond directly with the main questions
which are to be answered by this model, as can be read in subsection 7.4.

It is important to note that, whilst the decisions have their own transition rates between states, the decision
making moment is instantaneously upon entering entering the deterioration states from a previous state.
More detailed information regarding the selected transition rates for each decision type is given in section 9.4
and 9.5.
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9.2.1. Primary decision set: ’Should maintenance be performed?’

The first set of decisions can be chosen in any of the deterioration states and are as follows:

Decision 1 ’Do Nothing’ (SD → SD )
Decision 2 ’Perform Maintenance’ (SD → SM )

If decision 1 (D1) is selected the system is left to deteriorate to a next state due to failure of an additional TEC.
Selecting decision 2 (D2) initiates maintenance and the respective maintenance state is entered. There are
two exceptions which have already been briefly explained. In the fully operational state (SD 1) only decision
one can selected, since there are no TECs to be repaired. In the deterioration states in which the number of
failed TECs is equal to N f ai l ,max , decision 2 is forced.

9.2.2. Secondary decision set: ’If so, how many TECs should be replaced at once?’

The second set of decisions can be chosen in any of the maintenance states and are as follows:

Decision 2.1 ’Replace 1 TEC (SM → SD , with: NT EC , f ai l ,new = NT EC , f ai l ,ol d −1)
Decision 2.x ’Replace x TECs, with: 1 ≤ x ≤ NT EC , f ai l (SM → SD , with: NT EC , f ai l ,new = NT EC , f ai l ,ol d −x)

Due to the state architecture, this decision set is only activated after the decision has been made to perform
maintenance (D2) in a deterioration state. In the maintenance state the decision can then be made a number
of failed TECs, ranging between 1 and the number of failed TECs in the entire array, NT EC , f ai l .

(a) Decision set 1: Deterioration states (b) Decision set 2: Maintenance states

Figure 9.2: Decision sets for system states in SMDP representation

9.3. Illustrative example

For the remainder of the chapter a basic example is used to give more insight in the developed algorithm
by means of a number of figures and numeric values. The example is identical to the system described in
table 9.2 and contains 3 platforms with 2 TECs each. This expands the sequential state transitions to a slightly
more complex network of states, which may contain multiple state transition probabilities due to having
multiple platforms in the array, as is visualized in figure 9.3.

Figure 9.3: Tidal array example: deterioration & maintenance states
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The numbers between brackets tell how many TECs have failed at the three platforms and the arrows repre-
sent the transitions based on the selected decision, identical to the method described in section 9.1.

The reason for selecting this specific tidal array selection is that larger systems become virtually impossible
to represent visually. Still, the developed algorithms can be applied identically for larger tidal systems, so no
difference is made.

9.3.1. Clarification on observed maintenance transitions

A number of processes can be observed in figure 9.3, of which two maintenance related ones are required to
elucidate. Firstly, not all possible decisions are displayed, since this would result in a complex visualization.
All of primary decisions D1 and D2 (’Do Nothing’ & ’Perform Maintenance’) are included, but only secondary
decision D2.1 (’Replace one TEC’) is visualized. Despite not being visualized, the other maintenance deci-
sions will still be fully explained in section 9.5.

Secondly, the maintenance decisions do not allow a transition back to any deterioration state, due to the
algorithm rules which describe the maintenance process. This can be seen at state SM5 and SM9 and is further
explained in subsection 9.5.2.

9.4. Deterioration module

In this section the methods will be explained to determine the transition rates, probabilities and rewards for
the deterioration related process. This process is directly related to decision 1 (D1: ’Do Nothing’), so that the
failures of TECs result in the transition from one deterioration state to another (SD → SD ), with increasing
number of failed TECs (NT EC , f ai l ). Figure 9.4 depicts all deterioration states and transitions of the example
from section 9.3.

Figure 9.4: Tidal array example: deterioration transitions (decision: D1)

9.4.1. Failure transition probabilities

Transitions between the deterioration states do not necessarily have one predefined path, as the introduction
of multiple platforms within the system allows multiple destination states in some cases. Figure 9.3 clearly
shows this, as state SD2 and SD5 each have two destination states to which it may transfer upon the event of a
TEC failure.

For each deterioration state the transition probabilities of ending up in another deterioration state are calcu-
lated in a two-step process.

Step 1 Identify the deterioration states which have one more failed TEC than the departing state
(NT EC , f ai l ,to = NT EC , f ai l , f r om +1)

Step 2 Calculate the transition probabilities of going from the departing state to the arrival state
(PSD, f r om→SD,to )

The first step is accomplished by using Algorithm 2 for every deterioration state. Once the possible transitions
are formally identified, the transition probabilities can be calculated. Since the system is represented by a
number of identical TEC subsystems with a constant failure rate (λT EC ), the transition probabilities can be
easily calculated based on the ratio between the number of possible TEC failures which force the transition
to the departure state and the total number of possible TEC failures of the departure state.
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PSD, f r om→SD,to =
NT EC , f ai l ,pos, f r om→to

NT EC ,oper
(9.5)

NT EC ,oper = NT EC ,tot −NT EC , f ai l (9.6)

NT EC , f ai l =
Npl at f or m∑

i=1
NT EC , f ai l ,i (9.7)

It should be noted that the summation of all departing transition probabilities per decision have to add up to
one.

ND,to∑
i=1

PSD, f r om→SD,to,i = 1 (9.8)

As a numerical example, table 9.3 gives the transition probabilities for state SD2, SD4 and SD5 from figure 9.3.
The transition probabilities of the other deterioration states are not given, as it is evident that they each only
have one possible transition and the corresponding probabilities are thus equal to one.

Table 9.3: Examples values of transition probabilities

From To
NT EC ,oper

[−]
NT EC , f ai l ,pos, f r om→to

[−]

PSD, f r om→SD,to

[−]

SD2 SD3 5 1 0.20
SD2 SD4 5 4 0.80
SD4 SD5 4 2 0.50
SD4 SD7 4 2 0.50
SD5 SD6 3 1 0.33
SD5 SD8 3 2 0.67

9.4.2. Failure transition rates

In a SMDP all state transitions are represented as exponential distributions, as is described in chapter 3.
This fully corresponds with the exponential distributions that describe the failure rate of a TEC. Therefore,
the transition rate from one deterioration state to another is determined by the failure rate of the combined
failure options which lead to the arrival state. To formalize this expression, the following equation describes
the transition rate for any arbitrarily deterioration state transition.

λSD, f r om→SD,to = NT EC , f ai l ,pos, f r om→to ·λT EC (9.9)

The number of TEC failure possibilities (NT EC , f ai l ,pos, f r om→to) depends on which two deterioration states
are considered and cannot be solved analytically. Algorithm 2 can be used to determine the quantity and the
results for the example tidal array are listed in table 9.4. The TEC failure rate is chosen to be identical as in the
case described in paragraph 5.4.4, thus λT EC = 0.2920.

In the table the corresponding MTBF between the states are also listed, which describes the transition time
in years. It shows that for the given example, the state transitions occur between 0.57 years and 3.42 years,
depending on the observed state.

9.4.3. Production downtime costs (’Reward’)

For decision 1, ’Do Nothing’, the associated costs entire consist out of the downtime costs, also defined as
the indirect cost of maintenance. This is because a TEC failure results in a lack of electricity production. The
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Table 9.4: Example values of deterioration transition rates

From To
NT EC , f ai l ,pos, f r om→to

[−]

λSD, f r om→SD,to

[1/year ]
MTBF
[year ]

SD1 SD2 6 1.7520 0.57
SD2 SD3 1 0.2920 3.42
SD2 SD4 4 1.1680 0.86
SD3 SD5 4 1.1680 0.86
SD4 SD5 2 0.5840 1.71
SD4 SD7 2 0.5840 1.71
SD5 SD6 1 0.2920 3.42
SD5 SD8 2 0.5840 1.71
SD6 SD9 2 0.5840 1.71
SD7 SD8 3 0.8760 1.14
SD8 SD9 2 0.5840 1.71
SD9 SD10 1 0.2920 3.42

downtime costs of a single TEC is the net price of the electricity which would have been produced in the
period of downtime, had the TEC not failed or undergoing maintenance.

This cost is obtained by multiplying the net amount of missed electricity with the feed-in tariff which applies
to the tidal location. The total amount of electricity losses in a state is multiplied with the number of failed
TECs to obtain the costs of transition between deterioration states. The equation which is applied to calculate
these deterioration costs is as follows:

CSD, f r om→SD,to = ESD, f r om→SD,to ·F i T (9.10)

ESD, f r om→SD,to = NT EC , f ai l ·PT EC ,mean ·
(
MT BFSD, f r om ·365∗24

)
(9.11)

NT EC , f ai l =
Npl at f or m∑

i=1
NT EC , f ai l ,i (9.12)

MT BFSD, f r om = 1

λSD, f r om

(9.13)

In this equation the costs upon transition (CSD, f r om→SD,to ) are expressed in euros and it is important to note
that the transition time (MT BFSD, f r om ) should be converted from years to hours, because the mean TEC elec-
tricity production (PT EC ,mean) is defined in kW and the FiT in e/kW h. The FiT for the tidal array at the EMEC
location has been described in paragraph 5.1.1 and is 0.12e/kW h.

Mean electricity production (PT EC ,mean)
The mean electricity production of a TEC can be calculated once the TEC’s power curve, described in subsec-
tion 5.3.1 is known and a time series of Ucur r is available.

The most straight forward method would be to simulate synthetic time series with corresponding duration as
the transition time, which is equal to the MTBF. However, since the failure rate of a TEC is dependent on the
model input parameters (namely the assembly failure rates), this is not preferable as new time series would
need to be generated each time the assembly parameters are changed. Also, the time series do not have a
duration (Tsi m = 1000hours = 41.67days) which fully corresponds with one full lunar cycle (27.5days), so it is
not possible to calculate the mean electricity production by merely using one time series.

Instead, this model takes advantage of the fact that the current velocity has a recurring sinusoidal profile and
a large set (Nsi m = 1000) of synthetic time series has been generated. The set of synthetic time series, of which
the properties have been discussed in chapter 8, each include a shifted copy of the original Ucur r time series,
with a randomly selected starting point, using an uniform distribution. The mean electricity production of a
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TEC which is used in the model has been calculated by taking the mean of all individual mean TEC production
values relating to the synthetic time series.

The procedure is calculating the model value for PT EC ,mean is done as follows:

Step 1 Calculate the individual mean power production for each of the Nsi m synthetic time series
1.1 Discretize power curve in Nbi n bins (figure 9.5a)
1.2 Determine the histogram of the full length Ucur r time series with identical bins (figure 9.5b)
1.3 Multiply the discretized bins with each other and to calculate the generated power per bin

(figure 9.5c)
1.4 Divide by the number of samples (Tsi m/4t = 6000) to obtain the mean power production for

one simulation (figure 9.5d)
Step 2 Calculate the overall PT EC ,mean by taking the mean of all Nsi m values (figure 9.5d, red line)

(a) TEC power curve (b) Histogram of Ucur r time
series (1 simulation)

(c) Power production per
histogram bin (1 simulation)

(d) CDF of all simulated TEC
mean power production

Figure 9.5: Process for calculating the TEC’s long term mean power production

In this example, using the base case TEC parameters and 1000 synthetic time series from the simulation
method in chapter 8, the long term mean power production PT EC ,mean = 40.0264kW . This value will be ap-
plied to all downtime cost calculations which occur upon transition from one deterioration state to another,
as a result of selecting decision 1, ’Do Nothing’.

9.5. Maintenance module

Using a similar structure as the previous section, this section will present the methods to determine the tran-
sition rates, probabilities and rewards for the maintenance related process. This process is initiated when
decision 2 (D2: ’Perform Maintenance’) is selected in a state, after which the set of sub-decisions (D2.x ) de-
termine how many TECs should be replaced at once.

Unlike the deterioration transitions, deciding to perform maintenance will result in two state transitions, as
is depicted in figure 9.2. The primary decision of performing maintenance (D2) results in the transition from
one deterioration state to its coupled maintenance state (SD → SM ), whereas the secondary decision on the
number of TECs to be replaced results in a transition back from the maintenance state to a deterioration state
(SM → SD ) with a reduced number of failed TECs, corresponding to the number of replacements.

The primary decision D2 does not represent any physical process and imposes no costs ((CD2 = 0). Upon
selection of this primary decision, the state changes instantaneously ((TD2 = 0) from the deterioration state
to its corresponding maintenance state with full probability ((PD2 = 1)

Having said that, the transition rates, probabilities and rewards for the maintenance related process are thus
exclusively related to the secondary decision set D2.x and will be explained in the remainder of this sec-
tion.

9.5.1. Transition probabilities

Two decision rules have been implemented which determine the transition probabilities when performing a
maintenance activity:

1. The maintenance priority
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2. The chance of a TEC failure during maintenance

Maintenance priority
Important to mention is that the algorithm is designed to always maintain the platform with the most TEC
failures first. This ensures that, if it is decided to replace multiple TECs, the number of platforms which are
required to enter ’maintenance mode’ is kept to a minimum. This ensures that less time is spent waiting in
the array by the vessel until a new weather window occurs for the consecutive platform to be maintained,
after the first one is fully renewed and the vessel still has functioning TECs loaded. The implementation of
this design rule ensures that each maintenance decision can only lead to one arrival state, if no TEC failure
occurs during the maintenance activity.

It can be seen in figure 9.6 that three possible maintenance possibilities are possible in maintenance state
SM5, after decision D2 was selected upon entering the corresponding deterioration state SD5. Each of these
maintenance decisions is going to renew the system to a certain extend, reducing the number of NT EC , f ai l in
the arrival state.

Decision D2.1, replacing one TEC, shows a transition to state SD4, but not SD3. This is due to the previously
explained model limitation that the algorithm only allows one possible transition per maintenance decision,
and thus the algorithm prioritizes maintenance on the platform with most failures. This is all under the
assumption that no TEC failure occurs during the activity.

Figure 9.6: Tidal array example: Maintenance transitions from SM5

TEC failure duringmaintenance
The previous paragraph described in what decision rules are applied to determine what the arrival state is
of a maintenance activty. However, this is also affected by the possibility of a TEC failure. As has been men-
tioned in the model assumptions, this model allows one TEC to failure during the execution of a maintenance
activity.

The algorithm has been extended in such way that, whilst still fulfilling the previously mentioned rules, it
calculates what the chance of a TEC failure is during the respective maintenance operation and uses this to
reallocate the transition probabilities of the maintenance activities. In other words, even if the decision was
taken to replace 1 TEC, the final state may contain just as many failures (but not more, due to the limit of 1
TEC failure per activity) as the departure maintenance state.

The chance of a TEC failure during the maintenance activity is

PT EC , f ai l = mi n

(
Tact

(MT BFar r ay ∗365∗24)
,1

)
(9.14)

MT BFar r ay = 1

λar r ay
λar r ay = NT EC ,oper ·λT EC (9.15)

with MT BFar r ay being the failure time until one TEC fails in the array, given the current state.
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Three characteristic situations may occur in the system:

• Tact << MT BFar r ay → PT EC , f ai l ≈ 0
This applies to most cases, since maintenance tasks usually last considerably shorter than the array
failure time.

• Tact ≈ MT BFar r ay → PT EC , f ai l ≈ 1
Especially in large arrays the MT BFar r ay due to the large number of TECs. The failure probability
increases as maintenance takes longer, or the time between TEC failure decreases.

• Tact > MT BFar r ay → PT EC , f ai l = 1
If the maintenance activity duration exceeds that of the MT BFar r ay , it is assumed that a TEC will al-
ways fail during operation.

If PT EC , f ai l is calculated, the transition probabilities are calculated as follows:

PSM , f r om→SD,no f ai l = 1−PT EC , f ai l (9.16)

PSM , f r om→SD, f ai l ,i = PT EC , f ai l ·PSD,no f ai l→SD, f ai l ,i (9.17)

The transition rate to the designated D-state without failure is PSM , f r om→SD,no f ai l , and the transition rate to any
of the possible D-states when failure during the maintenance operation is described by PSM , f r om→SD, f ai l ,i . The
latter parameter uses the deterioration probabilities of the state that would have been arrived in, had failure
not occurred. Similar to the deterioration transition probabilities should the sum of all outgoing transition
probabilities be equal to 1 for each maintenance state.

Table 9.5 shows a numerical example, based on figure 9.6, in which decision D2.2 is selected from mainte-
nance state SM5. The value for PT EC , f ai l = 0.2 is assumed in this example.

Table 9.5: Examples values of maintenance transition probabilities

From To PSD, f r om→SD,to Description

SD2 SD3 0.20 Deterioration due to TEC failure
SD2 SD4 0.80 Deterioration due to TEC failure
SM5 SD2 0.80 Maintenance, no TEC failure during activity
SM5 SD3 0.0.04 Maintenance, TEC failure during activity
SM5 SD4 0.0.16 Maintenance, TEC failure during activity

TEC failure transitions not visualized

Important to mention is that all state transition related figures in this thesis exclusively show the maintenance
transition in which no TEC failure occurs. Still, the transition probability will be integrated in the model and
used to plot the results.

9.5.2. Maintenance task generation algorithm

An algorithm has been developed which determines the required order of maintenance tasks, described in
section 6.1, for the set of maintenance decisions (D2.x ). As has been mentioned in subsection 9.2.2, the num-
ber of possible replacements in an arbitrary maintenance state is between one and NT EC , f ai l .

The developed algorithm works identically as the process flow described in subsection 6.1.1. It loops through
the set of deterioration states and generate all possible replacement activities per state, based on the following
model variables:

NT EC ,vessel The maximum number of ’as new’ TECs that can be replaced at once by the vessel
NT EC , f ai l The total number of failed TECs in the array

NT EC , f ai l ,i The number of failed TECs at platform ’i’

The task generation for the example in figure 9.6 can be seen in appendix C.2.1, which also shows how the
algorithm responds when more TECs need to be repaired than can be loaded at once.
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9.5.3. Maintenance activity duration algorithm (’Transition rates’)

Once all task sets are generated in the previous algorithm, it is possible to calculate the corresponding du-
rations. This occurs in a four step process, which is repeated Nsi m times for each generated activity in the
system.

Step 1 Non-operable time steps per task are identified within the synthetic time series
Step 2 All possible weather windows per task are calculated
Step 3 The generated task sets per activity are fitted onto the synthetic time series

Step 4 The maintenance activity duration is the sum of all individual task durations (Tact =∑Nt ask
i=1 Tt ask )

Each of the process steps will be explained more in detail the next paragraphs and visual examples will be
provided accordingly. Unless stated otherwise, the combination of only one synthetic time series and one
activity (D2.1, replacement of one TEC) will be used.

Identifying non-operable time steps
The operable time steps per task are identified by applying the operational limits onto the synthetic time
series. First, this is done individually per environmental variable, after which the overall non-operability can
be determined by adding all the non-operable time steps. Within this model it is assumed that there is no
dependence between the environmental limits and thus the time step is defined as non-operable as soon as
one of the four (Hs , Tp , Uwi nd , Ucur r ) environmental limits is exceeded. Per simulation, this will generate ten
data sets, one for each identified task, that describe whether the environmental limits are exceeded or not for
each time step.

Figure 9.7 shows the result when the operable time steps of task ’TEC replacement’ are identified for a 48
hour segment of the original time series. As mentioned in subsection 6.1.2, operation limit type 3 applies, so
non-operable time steps are expected to be found in the time series. As said before, in this research no limits
are set for Tp so this figure is not included.
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Figure 9.7: Fitting limits on time series and identifying non-operability

The overall non-operability for this specific task is found by adding all independent results of the environ-
mental variables. The result for this example is shown in figure 9.8.
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Figure 9.8: Overall non-operability for task ’TEC replacement’ for the observed time series

Calculate weather windows
After having identified the non-operable time steps per task for all of the synthetic time series, the next step
is to calculate which periods of availability are long enough, and thus provide a weather window, to perform
the task of interest.
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An algorithm calculates this for each task by pasting the task durations at each of the identified time steps
which describe operability. If the entire duration concurs with operable time steps, this time step (at which
the task commenced) is flagged as a suitable weather window. On the other hand, if the duration cannot be
fully executed, it will mark this time step as unsuitable.

Figure 9.9 shows the example of fitting the ’TEC replacement’ (Tact ,5 = 1 hour → 6×4t ) on a small segment
(T = [6:13 hour]) of the found results in figure 9.8. The time steps (4t = 10mi n) are shown in instances of 10
min, as this is the applied time series interval in this model.
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Figure 9.9: Weather window starting points for task ’TEC replacement’ (green = pass, red = no pass)

Realistic weather window fitting
The algorithm for calculating the activity duration including the weather window has a number of features
which attempt to represent the decision maker’s behavior more realistically. It ensures that the tidal system
remains longer in the ’maintenance mode’ than is strictly necessary. This is done by including intelligence to
the algorithm, which uses the following rules:

1. The vessel will not unnecessarily leave the port (residing in task ’waiting for weather window’) until
the following tasks can be performed at once:

• ’port-array transport’
• ’platform emerging’
• ’TEC replacement’ (all of intended replacements)
• ’platform submerging’

2. The vessel will not unnecessarily initiate the ’maintenance mode’ of a new tidal platform after finish-
ing replacements on another (residing in task ’intra-array transport’) until the following tasks can be
performed at once:

• ’platform emerging’
• ’TEC replacement’ (all of intended replacements)
• ’platform submerging’

The general process for fitting the task list of an activity in the calculated weather windows of a synthetic time
series is as follows:

Step 1 A TEC failure is assumed to occur at t = 0 of the synthetic time series
Step 2 The first task from the generated task list is fitted on the first ’pass’ flagged time step, indicating a

suitable weather window
Step 3 Starting at the time step after the just finished task, the next task from the generated task list is

attempted to be fitted in the time series
Step 4 This process continues until all tasks from the activity’s task list have been fitted

The addition of these realistic rules result in an adjustment to the general process which now no longer fits
each task sequentially after the previous one has been completed, but for the ’waiting for weather window’
and ’intra-array transport’ tasks it will attempt to fit a multi-task weather window (of the above listed tasks)
which should fit all at once, without non-operable time steps.

Probabilistic maintenance durations
The maintenance activity duration algorithm loops the entire set of generated activities through the set of
Nsi m synthetic time series to introduce the probabilistic property of the MC simulation.

In figure 9.10 a significant spreading of the activity duration can be observed due to the implemented ne-
cessity to ’wait for weather window’ and in a lesser extend due to waiting in the ’array-port transport’ task.
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Figure 9.10: Cumulative task durations for the replacement of 1 TEC: D2.1 (1000 simulations)

This proves that, whilst the synthetic time series are statistically identical to each other, the randomness still
results in a huge uncertainty of the maintenance activity duration.

Even for the decision of only replacing one TEC, which requires the shortest weather window to perform the
’maintenance mode’ related tasks, it can be observed that a number of simulations require an activity time
of more than two times (Tact ,max = 128) the absolute minimum time required (Tact ,mi n = 58). The abso-
lute minimum is represented by the bold blue line and describes the situation in which no weather window
limitations occur during operation.

Activity time for multiple TEC replacements

As was mentioned, the conservative case (D2.1) already imposes a significant spreading in the activity dura-
tions. In order to give more insight in the effect of performing multiple TEC replacements, the model has
been run for different scenarios. Figure 9.11 shows the result of replacing between one and six TECs, running
each scenario with 1000 independent synthetic time series.
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Figure 9.11: Cumulative task durations for the replacement of 1 to 6 TECs: D2.1 → D2.6 (1000 simulations)
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The characteristics of figure 9.11 will be explained in much more detail in the sensitivity study. For now
it is interesting to mention that the fraction of simulated activity durations that are equal to the minimum
activity duration, and thus have no weather window limitations, reduces as the number of TECs which are to
be replaced at once increases. The fraction which is equal to the minimum activity duration is highlighted in
the figure by the bold vertical line. This decrease in number of activities without delay was expected, due to
the implementation of the intelligent task fitting algorithm.

Conversion to transition rates
It is required to convert the calculated activity durations (state transition times) to rates, which represent the
mean transition rate (λ) in the exponential distribution function which is the building block for the SMDP.
Identically to the equation used in the Deterioration Module, the relation between the mean time to repair
(MTTR) and λ can be determined.

λMT T R = 1

MT T R
(9.18)

MT T R = Tact (9.19)

Under the assumption that the calculated deterministic duration of the maintenance activities is in fact the
MTTR of the corresponding exponential maintenance activity duration distribution, the maintenance tran-
sition rates can be easily determined.

9.5.4. Maintenance costs (’Rewards’)

The cost of executing a maintenance activity, and thus the costs when changing states due to the maintenance
decision D2.x, consists out of three independent cost contributions, namely:

• Vessel activity costs
• Characteristic TEC product costs
• Downtime costs

For an arbitrary maintenance operation the following holds:

Cmai nt =Cact +CT EC ,tot +CDT,tot (9.20)

Vessel maintenance costs
For each maintenance activity the individual task durations have been calculated per synthetic time series.
This was done in paragraph 9.5.3. To obtain the vessel maintenance costs, also referred to as the direct costs
of maintenance, the task durations are to be multiplied with their respective cost rate. These cost rates have
been described in paragraph 6.2.3 and included the vessel day rate, fuel costs and wages of the specialized
personnel.

Cact =
Nt ask∑
i=1

Tt ask ·Cr ate,t ask (9.21)

Assumptions

Within this research it has been assumed that no additional vessel costs apply, except for those described.

Also, the task durations are used in their original precision, so not rounding off to days or other time intervals
is performed.
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Characteristic TEC product costs
The characteristic TEC product costs describe the mean repair costs of a TEC due to the ’as new’ replacement
of the failed assembly. This cost, based on the ratio of assembly failure rates and assembly product costs, has
been calculated in paragraph 5.4.4 and is found to be CT EC =e10405 per TEC reparation.

The total TEC related costs per maintenance activities can be easily calculated by multiplying the number of
TECs to be replaced by the characteristic TEC product cost. Naturally, the number of TECs to be replaced is
decided by the secondary decision set D2.x .

CT EC ,tot =CT EC ·NT EC ,r epl (9.22)

Assumptions

Determining the characteristic TEC product costs by the method described in this research is only valid when
looking at the system from a long-term perspective, as the individual assembly failures may give different
results (with a large standard deviation) when observing the problem for a short amount of time in real-
ity.

Also, this method assumes that the reparation costs can be assigned to the operation which places the re-
spective TEC back into operation. In reality the costs will have been made already after this TEC failed at an
earlier point in time. Still, when looking at the system from a long-term perspective, the assumption holds
due to the fact that the number of stock TECs onshore need not to exceed the number of TEC in the array, so
reparation of the failed assembly is always preferred to constructing a completely new TEC and thus the TEC
repair costs will stabilize in time.

Downtime costs
The downtime costs during the maintenance activity are calculated in a similar way as is done for the deteri-
oration related downtime costs. However, the main difference is the observed duration. Whereas the deteri-
oration downtime costs describe a long-term process, and thus the mean production of a TEC was used, the
downtime during maintenance is significantly shorter.

Two types of TEC downtime during a maintenance activity are identified:

• Direct downtime of the failed TECs
• Indirect downtime of all TECs when a tidal platform is in ’maintenance mode’

An algorithm uses the initial number of TEC failures as a starting point and then calculates for each task
within the activity’s task list how many TECs are non-operating. Figure 9.12 shows the number of non-
operating TECs for the replacement of two failed TECs, each positioned on a different platform. (SM4 →
SD1)

The procedure of calculating the downtime costs is as follows:

Step 1 Discretize the TEC power curve in Nbi n bins
Step 2 For each maintenance task in the activity:

2.1 Determine the histogram of the Ucur r (tt ask,st ar t : tt ask,end ) time series with identical bins
• tt ask,st ar t is moment the task is started
• tt ask,end is the moment the task is completed

2.2 Multiply the discretized Ucur r and power curve bins with each other and divide by ’[1 hour
/4t ]’ to calculate the generated power per bin in kWh

2.3 Sum the power of all bins to the generated electricity of one TEC during that task
2.4 Multiply with the number of failed TECs to obtain the net generated electricity during that task

Step 3 Sum all generated power in each of the tasks
Step 4 Multiply the total generated electricity with the FiT to obtain the total downtime costs
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Figure 9.12: Tidal array example: NT EC , f ai l during the maintenance activity

9.6. Policy optimization module

Once the tidal system has been effectively described in states, decisions, transition rates, probabilities and
rewards, it is possible to use the unichain policy iteration algorithm, described in subsection 3.4.1, to optimize
the policy. Within the model no alternations have been done on the existing algorithm, the interpretation of
results has shown to play an important role within this research.

9.6.1. Primary output interpretation

For a single simulation the policy optimization module produces two primary outputs:

• The optimal policy of the system
• The maintenance cost rate (gain of the system)

Optimal policy
The optimal policy of the system describes what the most economical decision is to make in each state. Im-
portant to remember is that the SMDP is based on exponential distributions, so the Markov property de-
scribes that the system is memoryless. This implies that, regardless of how the system has made it to the
state, the proposed decision remains optimal. An example output of the model for the example array (3 plat-
forms, 2 TECs each) is shown below in table 9.6.

Table 9.6: Example array: Optimal policy (1 simulation)

State NT EC , f ai l ,i Opt. decision NT EC ,r epl

SD1 [0/0/0] ’Wait’ 0
SD2 [0/0/1] ’Maintenance’ 1
SD3 [0/0/2] ’Wait’ 0
SD4 [0/1/1] ’Maintenance’ 2
SD5 [0/1/2] ’Maintenance’ 3
SD6 [0/2/2] ’Maintenance’ 4
SD7 [1/1/1] ’Maintenance’ 3
SD8 [1/1/2] ’Maintenance’ 4
SD9 [1/2/2] ’Maintenance’ 5
SD10 [2/2/2] ’Maintenance’ 6
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The first two columns of the model output display for which deterioration state, and its TEC failure combi-
nation, the decision is determined. The third column ’Optimal decision’ answers the question of whether or
not to perform maintenance in case the system arrives in that state. The last column ’NT EC ,r epl ’ mentions, if
decided to perform maintenance, how many TECs should be replaced in one activity.

It can be observed that in all maintenance is initiated in all states, except for SD3. Also, if maintenance is
to performed, the maximum number of TECs will be replaced for every condition. These example results
can be extensively analyzed, but this will be done in chapter 10.3 in which the base case is plugged into the
model.

Maintenance cost rate
The optimization model also determines the system’s gain rate, which is interpreted as the reward rate, given
that the optimal policy is executed. In this model the rewards are represented by the costs, so the model
will attempt to minimize the maintenance cost rate for the tidal array. The generated maintenance cost rate
includes all costs which are included in the model, namely:

• Downtime costs
– Failed TEC
– Non-operating TECs during ’maintenance mode’

• TEC repair costs (characteristic TEC product costs)
• Maintenance activity costs

– Vessel day rate
– Fuel consumption
– Personnel wages

In this example the obtained maintenance cost rate is equal to 10.98 e/hour. Since the SMDP optimization
assumes an infinite horizon, the cost rate can be multiplied with the duration of interest to calculate how
much in total is spent on the listed maintenance related costs. Naturally this is bounded by the described
assumptions in the research and additional costs may apply.

9.6.2. Probabilistic output due to environmental randomness

The strength of this model is not producing an optimal policy, and corresponding cost rate, based on one
simulation. Instead, the interface with the newly developed vine model for simulating large numbers of syn-
thetic time series enables to analyze the effect of the weather uncertainty on the model outputs. This imple-
mentation of uncertainty within the model gives a realistic representation of the randomness of the weather.
Therefore, the focus of the output is to combine the results of all Nsi m simulations and bundle it to support
the decision making.

Once finished, the model presents the gain rate for all simulations. Figure 9.13a shows the maintenance cost
rates of the example case for 1000 simulations.

9.6.3. Decision making

By using the output of Nsi m simulations to generate uncertainty, it is possible to support the decision making.
The model provides a graphical overview of the ratio of the optimal policy’s occurrence with respect to the
total number of simulations. This ratio can be interpreted as the probability that the policy of interest does
indeed lead to the desired results. For each policy, the corresponding gain distribution can be generated to
connect the probability of selecting the optimal policy with its results.

Having provided this insight, it is then up to the decision maker to decide which policy is to be executed.
This decision can thus be made on basis of the combination of risk and its costs. For the example in this
chapter the optimal policies are shown in figure 9.13b and the gain distributions are provided for the three
most occurring policies. Notice that many optimal policies only occur once or twice, this can be explained
due to a simulation specific discrepancy in the optimal decision for a single state with respect to the major
policies.
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Figure 9.13: Example tidal array: Maintenance cost rates and optimal policies for Nsi m = 1000
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Figure 9.14: Example tidal array: Maintenance cost rates for Nsi m = 1000

Given the near identical ratios of occurrence, the most economically favorable decision would be to imple-
ment policy C, closely followed by policy B. Policy A, whilst being optimal in 32% of the simulations, provides
a more unfavorable cost rate distribution and thus is not economically optimal overall. Still, if the decision
maker desires to make decisions with a large certainty, it still may be advised to select the slightly more expen-
sive policy A. This type of analysis will be extensively described for the base case in the next chapter.

9.7. Model verification

A verification study has been performed to ensure the optimization model works as expected. Each of the
individual calculations has been tested during development, but now the entire model and its output will
analyzed by means of a degeneracy testing approach. Degeneracy testing [112] consists of checking that the
model works for the extreme values of system and workload (input) parameters. Although extreme cases may
not represent typical cases, degeneracy testing can help to find bugs that would not otherwise have been
discovered.

Numerous degenerate cases with extreme input values have been developed, but for this research only the
most relevant cases are provided.

9.7.1. Case 1a: High set-up vessel, low variable costs costs

This case is executed with an extreme cost rate for the ’vessel preparation’ task, as this only occurs once
during each activity. The variable costs (price for a TEC replacement) is kept to a minimum. The system
consists out of 1 tidal platform with 3 TECs. The remainder of the parameters are identical to the base case,
with Nsi m = 100.

Hypothesis: all optimal policies decide to wait until NT EC , f ai l = 3, then replace all 3 TECs at once
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Figure 9.15: Optimal policy results of case 1a

The results of this case show indeed that the hypothesis is fulfilled. An empty bar means no TEC replacement
in the respective state. 100% of the simulations decide to replace 3 TECs at once when NT EC , f ai l = 3.

9.7.2. Case 1b: Low set-up vessel, High variable costs costs

This case is executed with a low cost rate for the tasks that only occur once, and an extreme cost rate for the
variable ’TEC replacement’ task. The system consists out of 1 tidal platform with 3 TECs. The remainder of
the parameters are identical to the base case, with Nsi m = 100.

Hypothesis: all optimal policies decide to wait until NT EC , f ai l = 3, then replace only 1 TEC

Figure 9.16: Optimal policy results of case 1b

The results of this case show indeed that the hypothesis is fulfilled. An empty bar means no TEC replacement
in the respective state. 100% of the simulations decide to replace 1 TEC when NT EC , f ai l = 3.

9.7.3. Case 2: No weather window requirements

This case is executed without the requirement of weather windows, implying that the vessel is not limited by
the weather conditions and can operate under any conditions. The system consists out of 1 tidal platform
with 3 TECs. The remainder of the parameters are identical to the base case, with Nsi m = 100.

Hypothesis: all maintenance activity durations are identical and maintenance costs are nearly identical
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Figure 9.17: Results of case 2

The results of this case show indeed that the hypothesis is fulfilled. Figure 9.17a shows that all simulations are
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identical to the minimum activity duration, plotted on top of each other. Also, the variation in maintenance
costs in figure 9.17b show only minute variations, which can be explained due to the down time costs, which
vary due to the use of randomly synthetic time series. This also proves that these downtime costs only account
for small variations in the cost rate.

9.7.4. Case 3a: High TEC failure rate

This case is executed with an extremely high TEC failure rate (λT EC ), which will result in short transition times
between the deterioration states. The system consists out of 1 tidal platform with 3 TECs. The remainder of
the parameters are identical to the base case, with Nsi m = 100.

Hypothesis: all optimal policies decide to wait until NT EC , f ai l = 3, then replace 1 TEC

Figure 9.18: Optimal policy results of case 3a

The results of this case show that the hypothesis is partially fulfilled. An empty bar means no TEC replacement
in the respective state. 85% of the simulations decide to replace 1 TEC when NT EC , f ai l = 3.

Explanation of unexpected result
However, for this case it should be noted that the degree of increasing the TEC failure rate has influence
on which optimal policy is presented. For this case the TEC failure rate was increased by 103 (to λT EC =
292 [failures/year]). Incrementally increasing the failure rate showed that the optimal policies changed from
D2.3 → D2.2 → D2.1. This indicates that either failure rate caused the system to be near a break even point of
the boundary of the model applicability has been reached.

Further increasing the failure rate caused more unexpected behavior and it was found that this is due to
the assumption that during the maintenance activity, only one TEC can fail. When λar r ay >> λMT T R this
assumption no longer holds and the model does not realistically represent the system, providing incorrect
policies and maintenance rates.

9.7.5. Case 3b: Low TEC failure rate

This case is executed with an extremely low TEC failure rate (λT EC ), which will result in long transition times
between the deterioration states. The system consists out of 1 tidal platform with 3 TECs. The remainder of
the parameters are identical to the base case, with Nsi m = 100.

Hypothesis: all optimal policies decide to replace NT EC , f ai l in each state

Figure 9.19: Optimal policy results of case 3b

The results of this case show indeed that the hypothesis is fulfilled. An empty bar means no TEC replacement
in the respective state. 100% of the simulations decide to replace NT EC , f ai l in each of the states.



10
Model results

This chapter answers the third research question, namely

RQ 3 How can the resulting optimal maintenance strategy influence the decision making?
(a) How does this model relate to other generic analytic group based maintenance models?
(b) What are the main sensitivities that affect the total maintenance cost?

In this chapter the base case, developed by Damen, is analyzed to determine which group maintenance policy
is recommended. Also, a sensitivity study will be performed for multiple cases, which each describe a possible
alteration in the system. These results will provide more insights in the effect of the assumptions within this
research and the uncertainties in the selection of the model input parameters.

10.1. Damen base case

As already discussed in part II, the Damen base case describes a tidal array located at EMEC. Five platforms,
each with 16 TECs, are located in the array, and each each fulfill the conditions set by the assumptions of this
model. The complete overview of model input parameters can be found in appendix E.1.

10.1.1. Complete description of uncertainty

The model has been run with 1000 (=Nsi m) independently generated synthetic time series, which were gen-
erated using the developed vine algorithm that includes both univariate time dependence and multivariate
dependence of the environmental parameters. It has been assumed that the number of simulations is large
enough to represent any possible random occurrence of sea states, given the equality of the statistical param-
eters. This implies that this probabilistic approach fully describes the uncertainty that is introduced by the
randomness of the environmental conditions.

10.1.2. General findings

Power production
When inspecting the data used for determining the mean power production per TEC (PT EC ,mean), it was
found that the current design of the TEC may have some improvements regarding its cut-out velocity. From
figure 10.1 it can be seen that the current cut-out velocity of 3.0 m/s is not fully in line with the occurring
current velocities at the EMEC tidal site.

Whilst it is outside the scope of this research to propose an improved TEC design, including the working
ranges of its assemblies, the effect of a higher cut-out velocity may very well impact the results of this mainte-
nance optimization. By only increasing the cut-out velocity to 3.1 m/s, an improvement of 3.53% in PT EC ,mean

can already be observed.
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Figure 10.1: Mean power production distribution for different cut-out velocities

The power production and load factor for multiple cut-out velocity values are listed below. It can be seen that
the beneficial effect of increasing the cut-out velocity stagnates for the EMEC location as it becomes closer to
3.5 m/s.

Table 10.1: Power production properties for different cut-out velocities

Ucutout [m/s] 3.0 3.1 3.2 3.3 3.4 3.5

PT EC ,mean [kW] 53.35 55.23 56.54 57.21 57.81 58.25
Load Factor [%] 48.50 50.21 51.40 52.01 52.55 52.96

Failure times
It has been calculated how long it takes to reach a certain number of failed TECs if no maintenance is per-
formed, regardless of the failure combination. Figure 10.2a depicts the failures of all 80 TECs in the array,
distributed over 5 platforms with 16 TECs each. The time until the 30’th TEC failure looks more or less like a
linear relation. This fully corresponds with the theory on parallel component failure with a constant failure
rate, described in subsection 4.3.2. As more TECs are included, the time leading to a full array failure only
slightly increases, since it is proportional to the partial sum of the harmonic series.

The failure time of the first ten TECs has been shown in figure 10.2b. As a result of the large number of TECs
in the array, the first TEC already fails after 15.6 days. This time between failures can effortlessly applied for
the consecutive failures in the figure, as the increase in failure time is negligible.
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(b) Time to failure for 10 TECs

It is important to check whether the condition is met that the shortest failure time does not become smaller
than the corresponding maintenance replacement duration. This condition is required to be met, since the
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Table 10.2: Comparison of failure times and maintenance activity durations

NT EC T f ai l Tmai nt

[days] [days]

1 15.6 6.4
2 31.2 7.5
3 46.8 8.8

maintenance model only allows maximum one TEC failure during a maintenance activity. Table 10.2 shows
the comparison of the failure times and the respective activity durations for one, two and three TECs. Since
there are multiple failure combinations for 2 and 3 TEC failures, only the combination is observed during
which all failures are on the same platform. The P90 value is used as an indication for the activity duration
with a high certainty.

It can be observed that the increase in the MTBF up to the n’th TECs increases faster than the corresponding
maintenance time required to replace all the failed TECs. It can therefore be concluded that the required
condition will always hold for this base case and that the possibility of a TEC failure during maintenance is
modeled realistically.

10.1.3. Identifying optimal policies

Lower limit of maintenance cost rates
Having run the model, an optimal policy was found for each of the independent simulations. This set of
optimal policies can best be interpreted as the theoretical lower limit for performing maintenance, given that
the weather forecast is fully known for the decision maker at any moment in time. This should, theoretically,
give him the required information to always select the best decisions for that specific state, given the full
insight in the weather conditions for the time span of the all possible activities.

Each of these identified optimal policies is the best policy to implement in that single simulation and has
its own corresponding maintenance cost rate. The cumulative distribution of the maintenance cost rates is
depicted in figure 10.3a and represents the absolute minimum cost rate distribution of the base case, under
the assumption mentioned in subsection 10.1.1.

Set of optimal policies
Contrary to the ideal situation in which no (environmental) uncertainties are present, in reality it most com-
mon to operate by means of fixed decision rules, namely the maintenance policy. These dictate what decision
should be taken in each state, without having full insights in the upcoming weather conditions. This requires
us to narrow down the set of identified optimal policies to one recommended policy, which approaches the
global optimum and thus has a cost rate distribution which is nearly identical to that in figure 10.3a.
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Figure 10.3: Maintenance cost rates and optimal policies of the base case
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It may be possible to identify a single policy which is optimal in all of the simulations, and thus concluding
that the policy selection is insensitive to the environmental uncertainty. However, as can be seen in fig-
ure 10.6c a large set of different optimal policies can be found in simulations. In total 363 unique policies
have been found to represent the absolute optimum. All policies which occurred less than one percent of the
total simulations have been collected in the ’miscellaneous’ slice.

TEC replacements of the optimal policies
Before comparing the identified optimal policies to determine which is recommended, the TEC replacement
properties of the theoretical lower limit are analyzed. It has been found that in most of the states the opti-
mal policy dictates that either none or the the maximum number of failed TECs (NT EC , f ai l ) should be re-
placed. This can be seen in figure 10.4, in which the percentage of non-maximum replacements is shown per
state.
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Figure 10.4: Percentage of non-maximum TEC replacements if maintenance is initiated

The two states with the highest number of non-maximum TEC replacements are state 14 and 33, which have
been observed more in detail. The distribution of the number of TEC replacements for both states for the
identified optimal policies have been depicted in figure 10.5. All occurrences in which a non-maximum re-
placement is performed describe a maintenance activity in which one TEC less is replaced.

The selected Utility Vessel can carry three TECs at once, as described in chapter 6. In the situation 5 TECs
were to be replaced instead of 4, the vessel would require to have a tidal platform enter maintenance three
times, instead of only twice. For this small number of simulations the weather window must have been unfa-
vorable, so the additional waiting time (and corresponding costs) was less optimal than replacing one more
TEC.

This phenomenon is also observed in the other occurrences of non-maximum replacements and is the proof
that subdividing the TECs over the tidal platforms, requiring independent tasks to perform the maintenance
on each platform, has a noticeable effect on the policy outcomes, and also influences the maintenance cost
rate.

(a) TEC replacements of optimal policies in
SD14

(b) TEC replacements of optimal policies in
SD33

Figure 10.5: TEC replacements in states with high non-maximum replacements
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Still, it can be said that in a vast majority of the simulations the optimal decision in a state is to either perform
no maintenance or replace the maximum number of TECs. This corresponds with the conclusions of existing
analytical group replacement models [6]. Still, this preliminary model conclusion will be looked into once
more in the recommended policy, which is be described in subsection 10.1.5.

10.1.4. Comparison of optimal policies

For determining the recommended policy in the base case, it has been decided to compare the maintenance
cost rates of the three most occurring optimal policies. The policies which are included are listed below,
including their occurrence within the set of identified optimal policies.

• Policy E (16%)
• Policy F (10%)
• Policy G (17%)

As mentioned before, the approach in this research is to use this initial set of identified optimal policies to
narrow down the observed policies, which will then be applied once more to all 1000 simulations. Again, it
is important to state that, whilst being the optimal policy in at least one simulation, it does not necessarily
have to result in being a global optimal policy. Still, being optimal in some cases and possibly sub-optimal in
others increases the chance of at least approaching the global optimal policy.

Decision regimes
When comparing the three policies and their respective decisions per state, an interesting decision pattern
was observed. It was found that three Decision Regimes (DRs) can be set up, which are related to the number
of TEC failures (NT EC , f ai l ) of the respective states. The distribution of TEC failures among the tidal platforms
did not affect these regimes.

The three DR which were identified in the analyzed optimal policies are:

DR 1 Maintenance should never be performed
DR 2 Maintenance should be performed, based on the failure combination
DR 3 Maintenance should always be performed

In DR 1 the renewal of the failed TECs never outweighs the cost due to the TEC downtime. The system is
therefore left to deteriorate to subsequent D-states until the economical break-even point is achieved.

DR 2 can be seen as the transition between the D1 (’Do Nothing’) and D2 (’Perform Maintenance’) set of
decisions. All three policies have very similar DR boundaries, but an unique set of decisions in DR 2. This
shows that each of the three observed policies have near identical decisions and only differ slightly. It should
be noted that for all three policies the maximum number of TECs are replaced if decided to perform mainte-
nance.

All decisions in DR 3 are to perform maintenance and replace NT EC , f ai l , regardless of the failure combina-
tion. This can be explained by the physical representation that the added cost of long maintenance activities
(including sailing back and forth to the port to load more TECs) never becomes more expensive than the
downtime costs of the non-replaced TEC(s). Also, the fixed mobilization costs of the vessel only have to be
paid once when replacing all TECs in one maintenance activity.

The regime boundaries which apply to the three policies are shown in table 10.3 and are defined by the num-
ber of failed TECs. These may be subjected to change when observing other policies. In this analysis the DR
boundaries of policy G describe the largest envelop when interested in DR 2. Policy E and F have slightly
shifted boundaries between DR 1 and 2, but in this analysis the decisions will be shown for that of policy G to
depict all.

Having developed this new method for describing maintenance policies with a large set of decisions, it is
now possible to perform a clear comparison of the three maintenance policies. DR 1 and 3 describe the
situation of performing no TEC replacement and NT EC , f ai l TEC replacements, respectively. These states and
decisions will not be plotted as these are evident, based on the DR properties. The decisions per state of the
three policies of DR 2 are shown below in figure 10.6.



112 10. Model results

Table 10.3: Boundaries of the decision regimes for analyzed policies

DR Lower boundary Upper boundary
[NT EC , f ai l ] [NT EC , f ai l ]

1 0 2 (3*)
2 3 (4*) 5
3 6 9

* the respective boundaries of policy E and F
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(c) States with NT EC , f ai l = 5
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Figure 10.6: Decisions per state for the three analyzed policies within DR 2 of policy G

It can be observed that policy G is the only policy which initiates maintenance when NT EC , f ai l = 3 in the case
that two TECs have failed on one platform and the third TEC on a different platform.

For the states with NT EC , f ai l = 4 all policies have identical decisions. It may seem that the states with failure
combination NT EC , f ai l ,i = [00004] and [00013] have identical properties, since the situation after replacing
three out of four TECs (due to NT EC ,vessel ) is one failed TEC. It must not be forgotten that the policy opti-
mization also takes the possible next outcomes (the arrival states in case of D1 - ’Do Nothing’) into account,
which are in fact much different.

For the states with NT EC , f ai l = 5 policy E and G initiate maintenance in one more state with respect to policy
F. Overall policy G can be seen as the most maintenance eager policy, followed by policy E and lastly policy
F. Still, this observation does not say anything about the corresponding maintenance cost rate and merely
provides insight in how these policies differ compared to each other.

Maintenance cost rates
Having defined what makes each of the analyzed policies unique, it can be said there is a noticeable differ-
ence in the lower threshold until maintenance is initiated, at least in the cases shown in figure 10.6. Still,
this difference is relatively small considering the set of possible decisions is many times greater due to the
presence of 83 D-states.

To quantify the difference in terms of maintenance cost rates, each of the three policies has been plugged into
the model once more to execute its set of decisions for each of the synthetic time series. Having assumed that
the 1000 simulations fully describe all environmental uncertainty, this will thus lead to the effective main-
tenance cost rate distribution per policy. The cumulative distribution of the three policies are depicted in
figure E.20a.

Confidence levels
Also, figure E.20b shows which policy provides the lowest maintenance cost rate, given a certain confidence
level. Policy E and G fully describe the range of confidence levels, with policy G showing lower cost rates
between 0% and 11%, and in the range of 52.5% up to the 100% confidence level. Industry values for the
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Figure 10.7: Comparison of the maintenance cost rate per analyzed policy

applied confidence levels are usually ranging between P50 and P99, depending on how much risk is taken by
the decision maker. Especially for these kind of costly operations with a high uncertainty, it is highly advised
to implement a conservative confidence level, implying the P-value should be close to 100.

The maintenance cost rates for the described confidence levels are listed in table 10.8, in which also the
theoretical lower limit is given, which corresponds to the previously described situation in which the decision
taker has full insight in all (future) uncertainties at the moment of deciding. It can be seen that especially for
P90 the theoretical lower limit is close to that of policy G, implying that this policy is very cost effective to
implement.

Table 10.4: Maintenance cost rates of the identified optimal policies for different confidence levels

Confidence level Policy E Policy F Policy G Lower limit
[e/h] [e/h] [e/h] [e/h]

P50 78.34 79.86 78.47 77.45
P90 81.89 83.21 80.77 80.15
P99 89.86 92.57 84.41 82.42

Recommendedmaintenance policy
It should be mentioned clearly that the selection of the confidence level is entirely up to the decision maker
and the output of this decision support tool can merely give advice on the risks and gains which are related
to different levels. Still, since the scope of this research describes the early stage development of a novel
tidal platform system, the recommended policy in this thesis will be policy G, using a relatively conservative
confidence level of P90.

10.1.5. Analysis of recommended maintenance policy

This subsection describes the analysis which has been performed to provide more insight in the recom-
mended policy, policy G. The decisions per state have already been described by means of the different DR
levels of the policy, listed in table 10.3, and the decisions in DR 2, shown in figure 10.6.

Maintenance loops
When applying policy G, the tidal system will be left to deteriorate from its fully renewed state (NT EC , f ai l = 0)
until it arrives in one of the states listed in table 10.1.5. In any of those D-states, decision D2 is selected and the
SMDP transits immediately to the corresponding M-state. Since the policy replaces the maximum number
of TECs when a maintenance activity is performed, the loop is closed and the process of deterioration starts
again in its initial state.
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These loops, each with their own unique arrival state, are called maintenance loops and describe a closed set
of states and transitions in which the system acts, given that the maintenance policy is followed at all times.
Table 10.1.5 gives the unique maintenance loops of policy G, including the fraction that the system will end
in that arrival state due to deterioration. A visualization of all states and transitions within the closed set is
shown in appendix E.13.

Table 10.5: Unique maintenance loops of policy G

Loop NT EC , f ai l Arrival state Arrival probability

1 3 [0 0 0 1 2] 60.26%
2

4
[0 0 0 1 3] 7.46%

3 [0 0 1 1 2] 17.98%
4

5
[0 0 0 0 5] 0.24%

5 [0 0 0 1 4] 1.28%
6 [0 1 1 1 2] 10.10%
7 6 [1 1 1 1 2] 2.69%

10.2. Reference case: Optimal policy without unique failure combinations

This section describes the results of a simplified alternative approach for finding an optimal maintenance
policy, without making distinction between the unique failure combinations and assuming that always NT EC , f ai l

TECs will be replaced if maintenance is performed. The results from this calculation can then be used to de-
termine the added value of the newly developed maintenance optimization model.

10.2.1. Approach

This approach uses the same data as the developed model, which has already been presented in subsec-
tion 10.1.2. The approach is as follows:

Step 1 For each NT EC , f ai l , determine:
1.1 Time up to failure
1.2 Total downtime costs up to failure
1.3 P90 value of the total maintenance cost for the least expensive failure combination

Step 2 Add the downtime costs and maintenance costs to obtain the total costs
(if maintenance were to be performed at that moment)

Step 3 Divide the total costs by the time up to the failure to obtain the maintenance cost rate
Step 4 The bottom of the curve shows the optimal value of NT EC , f ai l when maintenance should occur

In this approach the least expensive maintenance operation is selected to provide the absolute lower bound-
ary of costs. Also, the possibility of a TEC failure during maintenance is excluded, which should lower the
overall maintenance cost rate of this approach even further.

10.2.2. Comparison of results

Figure E.20a shows the corresponding maintenance cost rate for each of the possible maintenance policies.
It can be observed that the cost rate decreases when decided to postpone maintenance until more TECs have
failed. Since N f ai l ,max = 9, the cost rates for the remainder of NT EC , f ai l cannot be inspected, but it clearly
shows that the cost rate flattens out at NT EC , f ai l = 9 and will not decrease much more. Therefore, this value
will be assumed to give the minimum maintenance cost rate for this approach.
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Figure 10.8: reference case: Optimal maintenance cost rate

When comparing the minimum cost rate of this approach to that of the policy G, from the developed model,
a significant difference can be observed. The P90 values of the optimal policy for both approaches are listed
below in table 10.6. By implementing the more complex policy optimization model, the overall maintenance
costs can be reduced by almost 25% with respect to an already partially optimized result.

Table 10.6: Comparison of P90 values for minimum cost rates

Approach P90 cost rate Relative difference
[e/h] [%]

Reference case 107.50 100 %
Developed model 80.77 75.13 %

This result is very significant and proofs that the development of this model brings great advantages in terms
of minimizing the maintenance cost rate for complex systems, such as a tidal array. Having included a more
detailed description of the tidal array, by means of describing unique failure combinations, the optimal main-
tenance policy can also differentiate between these unique states, as they each have their own duration and
cost distribution for the corresponding maintenance activity.

In this comparison the optimal policies from both approaches also differed, showing that the uncertainty
and its effects are described more extensively in the model, after which it was included in the optimization
of the maintenance policy. It must be mentioned that all additions to this model greatly increase the number
of possible states and unique decision sets within the system. The choice of representing the tidal array in a
SMDP has been an absolute necessity in terms of finding an optimal policy within a considerable amount of
time.

10.3. Sensitivity analysis

10.3.1. Selecting representative simulations

To reduce the overall simulation time for the sensitivity analysis, only 20 simulations have been selected
(Nsi m = 20). For every 5 percentile of the identified optimal cost rate distribution, the corresponding simula-
tion has been identified. This reduction leads to a lower accuracy, but will have a similar distribution as the
full simulation with Nsi m = 1000.

10.3.2. Scenario 1: TEC failure rate

A large uncertainty at this point in the design is the failure rate of the individual assemblies, which are used to
calculate the model parameter λT EC . As stated in subsection 5.4.2, reference values of 300kW wind turbines
are used in this model. In table 5.2 it was observed that a reduction of power production, from 1MW to 300kW,
leads to significant reductions in the failure rate. By assuming this trend also applies to the assemblies of a
tidal platform, it results in lower failure rates of the TEC, since its rated power (Pr ated ) is only 110kW.
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Figure 10.9: Selection of simulation points from identified optimal policies

On the other hand, the harsh marine environment may induce additional loads on the system, accelerating
the wear of the system. This can theoretically result in an increase in failure rate (of at least the assemblies
which are in contact with the water, such as the blades), but it requires additional research to quantify these
conversion factors. As mentioned, in subsection 5.4.3, there are researches which indeed increase the failure
rates with adjustment factors to take the naval underwater environment into account.

It is thus of great interest to investigate the effect on the optimal policy and maintenance rate distribution
when both increasing and decreasing the failure rate. This will give insight in how this large uncertainty
influences the results.

Model limitations when increasing λT EC

In the model description (subsection 9.5.1 and 9.7.4) it was already described that the applicability of the
model is bounded by the ratio between λar r ay and λMT T R , since only the possibility of one TEC failure is im-
plemented during maintenance. For the majority of the cases this assumption holds, but in cases where either
the number of TECs in the array (NT EC ,tot ) is very large or the TEC failure rate λT EC is larger than currently
assumed, this assumption no longer holds due to λar r ay >>λMT T R and unrealistic results are found.

This limitation will be overcome by running the sensitivity analysis of λT EC twice:

Run 1 describes the example array, described in section 9.3 (Npl at f or m = 3, NT EC = 2), with both reduced
and increased TEC failure rates to give insight in the qualitative influence of changing λT EC .

Run 2 describes the Damen base case (Npl at f or m = 5, NT EC = 16) with reduced TEC failure rates with re-
spect to the base case, to provide quantitative results when λT EC is lower than assumed.

Qualitative results: Run 1
The maintenance cost rates distributions plotted in figure 10.10a show an increase as the failure rate in-
creases, which is as expected. More interesting is to note that the cost rate does not scale linearly with the
change of failure rate. The relative difference of the P90 values have been listed in table 10.7, which shows
that doubling the original failure rate only results in an increase of 48.8% of the total maintenance cost rate.
This can be explained by the existence of fixed set-up costs for maintenance and variable costs. This implies
that regardless of the TEC failure rate, the cost rate always consists of a fraction which can be seen as the fixed
(minimum) costs for maintaining the system.

A second observation is that of the changing maintenance decisions as the failure rate increases. This is
represented in figure 10.10b, which shows the identified optimal decisions in SD2 = [001]. As the failure rate
increases, the time between consecutive failure decreases. A trend can be identified of maintenance that
maintenance is postponed until a later moment as the failure rate increases. The dark blue bar shows that all
optimal decisions choose to perform replace the single failed TEC, if the failure rate would be half the original
failure rate. From 2.5 times the original failure rate all optimal decisions choose to postpone the maintenance
until a later state.
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Figure 10.10: Maintenance cost rates and optimal decisions for different λT EC

Table 10.7: Relative difference in maintenance cost rate at P90 due to changing λT EC

X ·λT EC Rel. diff. at P90

0.5 59.7%
1.0 100.0%
1.5 129.9%
2.0 148.8%
2.5 164.5%
3.0 174.3%

The listed results are only for obtaining qualitative insights in the sensitivities, so the actual maintenance
cost rates are not related to the base case. However, since the failure rate data of tidal assemblies is mostly
unavailable and solely relies on offshore wind reference data, it is important to conclude that this mainte-
nance model is not highly sensible to discrepancies in the failure rates.

Quantitative results: Run 2
Performing the same sensitivity analysis for the Damen base case, it can be observed that the same effect oc-
curs when decreasing the TEC failure rates. A decrease in the failure rate results in a larger (positive) change
in the corresponding maintenance cost rates, whilst an increase in the failure rate has a less significant (neg-
ative) impact on the maintenance cost rate.
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Figure 10.11: Cumulative distribution of maintenance cost rates for different λT EC
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This effect is very favorable, especially in the current phase of development. The resulting maintenance cost
rate for the Damen base case can therefore be a good first estimate, as uncertainty in the failure rates of tidal
assemblies can be easily accounted for by adding a correction factor, which should be in line with the relative
cost differences of this sensitivity scenario.

Table 10.8: Maintenance cost rates of simulations with varying λT EC values for different confidence levels

Confidence level 0.5 ·λT EC 0.6 ·λT EC 0.7 ·λT EC 0.8 ·λT EC 0.9 ·λT EC 1.0 ·λT EC

[e/h] [e/h] [e/h] [e/h] [e/h] [e/h]

P50 56.96 63.48 69.30 73.62 76.46 77.62
P90 66.60 73.06 78.30 81.03 80.94 80.59
P99 67.76 74.11 78.75 81.54 82.58 84.38

10.3.3. Scenario 2: Array size

The second scenario which has been studied is the increasing number of tidal platforms in the array. The
results of this scenario may either be of interest to give insight in the consecutive placement of platforms, or
by finding the optimal number of platforms which can be maintained by one vessel.

Figure 10.12 depicts the maintenance cost rates for increasing the number of platforms from one to five. It
is expected to see an increase in the total maintenance costs, but this gives a distorted view on the actual
effectiveness, as the corresponding increase in electricity production capabilities are not plotted.
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Figure 10.12: Cumulative distribution of maintenance cost rates for different Npl at f or m

Therefore the P90 value of the maintenance cost rates have been normalized to represent the cost of main-
taining one tidal platform. The results are listed in table 10.9 and show a decrease in the normalized mainte-
nance cost rate as the number of tidal platforms in the array increases. It is therefore recommended, under
the assumption that the application of a constant failure rate is valid, to directly construct and commission
the five tidal platforms at once and initiate the operational phase. However, in reality this may result in a
undesirable event in which a significant part of the TECs fail within a short amount of time due to wear-out
failures.

Table 10.9: Normalized maintenance cost rates for different Npl at f or m

Npl at f or m 1 2 3 4 5

P90 total [e/h] 28.97 51.37 67.67 77.16 80.59
P90 normalized [e/h] 28.97 25.68 22.55 19.28 16.11
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10.3.4. Scenario 3: Maintenance vessel

The last scenario which is analyzed in this sensitivity study is that of fluctuating vessel day rates. The base case
value is depicted as the red line in figure 10.13, whilst the blue and yellow line describe the lower and upper
boundary of the vessel day rates, respectively. These day rates have been identified in subsection 6.2.3.

Similar to the first two scenarios, an increase of the day rates by 100% (base case to upper bound: e13.5k to
27.0k) results in an significantly smaller increase of the total maintenance cost rate, namely 35%. However,
by decreasing the day rate by almost 60% (base case to lower bound: e13.5k to 5.6k), the new cost rate is only
reduced by 20% with respect to the original value.
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Figure 10.13: Cumulative distribution of maintenance cost rates for different vessel day rates

A reasonable explanation for this is the presence of the other maintenance cost related factors, which do no
scale with the changing day rates in this analysis. The TEC repair costs remain constant in all three cases and
also the fuel and crew costs fixed, regardless of the day rate changes. Of course the market is highly unpre-
dictable and a fluctuation of one factor, such as vessel day rates, may also be related to price fluctuations of
other related maintenance costs. It is therefore recommendable to rerun this model if any of the cost factors
changes noticeably.





11
Conclusions & recommendations

11.1. Conclusions

RQ 1 How can the environmental effects at tidal hotspots be realistically modeled?
(a) Can dependence between the variables be identified and explained?
(b) What model is best used to generate time series which includes multivariate dependence?

The EMEC tidal field measurement data provided unexpected results when analyzing the bivariate depen-
dence between the wind velocity, significant wave height, peak wave period and the current velocity. A ne-
glegible dependence was found between the wind and wave compared to results from open water locations
[65]. This may be explained by the sheltered location and shallow waters of the tidal location, but no addi-
tional research was performed on this behavior as no long-term data was available from EMEC.

Secondly, the bidirectional current seemed to have a significant influence on the wave propagation direc-
tion. The occurrence of tidal lumps [55], which could be identified in numerical models of the EMEC field,
could not be identified in the measurement data. Contrary to that, it was observed that the general wave
propagation direction would follow the current direction in more than 90% of the samples, and samples with
opposing flow directions only describing relatively small wave heights. This gave enough arguments to as-
sume that the directionality of the waves, current and wind could be neglected when creating synthetic time
series, as this would not contribute in terms of environmental harshness of changes in persistence.

Another analysis of the EMEC measurement data concluded that no improved dependence could be found
between the waves and current when observing the high-frequency components of the respective phenom-
ena. A frequency analysis showed the best correspondence between the waves and current in the lower fre-
quencies, which corresponds to the semi-diurnal character of the tide. It was thus concluded not to imple-
ment high frequency observations for describing dependence between the wave and current variables.

The four environmental parameters (Hs ,Tp ,Uwi nd and Ucur r ) would therefore be used in their normal state,
excluding directionality, to develop the vine. A D-vine structure showed to be the best fit for describing the
multivariate dependence. The only significant bivariate dependence in the data was between the current
velocity and the peak wave period, followed by weak dependence between the wind velocity and significant
wave height, and significant wave height and peak wave period.

Due to the relatively short set of measurement data, it proved to be impossible to obtain time independent
samples. This condition normally is required for an effective representation by copulas, as each set of simu-
lated samples is generated by random seeds and thus does not include variable properties from previous time
steps. Therefore, a new vine simulation method has been developed for including both time dependence and
multivariate dependence in the synthetic time series. This has been achieved by using a sequential sampling
method which first samples the set of univariate time series and then plugs the generated output into the ex-
isting multivariate dependence simulation algorithm, instead of using random uniform input. This method
proves to work very well for the EMEC data and contains both types of dependence in the dataset. The valid-
ity of applying the synthetic time series has been presented as the weather window lengths closely resembled
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that of the original data set.

The added value of using the new simulation method consists of two main factors. Firstly, by using a pair-
copula construction to simulate synthetic time series, more realizations can be generated than by using the
original measurement set. This significantly contributes to providing a more complete description of the
weather window uncertainty. Secondly, the inclusion of multivariate dependence in the synthetic time se-
ries gives a more realistic representation, which is expressed as a slight reduction of the maintenance activity
durations compared to using time series without multivariate dependence. The beneficial effect of includ-
ing multivariate dependence can be strengthened if the operational limits of weather windows are based on
(combinations of) all four environmental variables.

RQ 2 How can the uncertainty in the maintenance activities of the TEC array be included in the model?

Chapter nine describes the development of the model which includes the maintenance and failure related
activities. A semi-Markov decision process has been chosen to represent the decision making in the model.
The tidal array is to be represented in unique states, after which the transition rates and corresponding costs
need to be determined. The unichain policy optimization algorithm can then be applied to converge to an
optimal maintenance policy, which describes the best decision for each state.

Maintenance activities are included by a number of simplifications which describe the process of replacing
TECs by means of a numerical approach, which uses a single synthetic environmental time series. Interaction
between the environmental phenomena and the vessel activity is modeled by means of describing weather
windows for the identified maintenance tasks. The vessel is required to wait until a weather window occurs
for the consecutive tasks, similar to what would happen in reality.

Maintenance uncertainty due to the environment is introduced to the model by applying a Monte Carlo sim-
ulation on the decision making model. Each synthetic environmental time series is randomly generated,
whilst having near identical long-term properties. By using a large number of synthetic time series, it can be
safely assumed that the maintenance uncertainty is fully described by the distributed model results.

RQ 3 How can the resulting optimal maintenance policy influence the decision making?
(a) How does this model relate to other generic analytic group based maintenance models?
(b) What are the main sensitivities that affect the total maintenance cost?

Chapter ten describes the results of the base case run of the decision support model. The maintenance uncer-
tainty has a direct effect on the corresponding optimal policies. For every individual simulation an optimal
policy is found, but it has been found that the optimal policy is subjected to change due to varying mainte-
nance duration and costs. The set of optimal policies each correspond to different maintenance cost rates,
which thus can be described by a distribution based on its occurrence.

Given the limited data availability of the tidal system properties, a relatively detailed representation of the
tidal system has been developed. The model developed in this thesis has proven to generate a maintenance
policy which is almost 25% more cost effective compared to more generic optimization studies. This has
been achieved by expanding the set of unique states in which the tidal array can reside in, compared to the
definitions of a more general group maintenance model. This corresponds closely with the literature on semi-
Markov decision processes, which state that the quality of the model results is mostly dependent on the state
representation of the observed system.

By analyzing the results of the optimal base case maintenance policy it was found that a significant difference
in maintenance costs was found, merely based on varying one state decision. It was thus observed that the
more detailed description of the tidal array in unique failure combinations per tidal platform proved to be a
significant improvement, but would not have been able if an existing analytical model was used.

The sensitivity study included three scenarios, namely the variation in TEC failure rates, the number of tidal
platforms in the array and the fluctuation in vessel day rates. For each scenario it was observed that an
arbitrary increase of the parameter of interest would result in a smaller increase of the corresponding main-
tenance cost rate. The most important conclusions from the sensitivity study are that the model’s sensitivity
to a change in either the failure rate or vessel day rate is well described and the deployment of multiple tidal
platforms in the array is very favorable for the normalized maintenance cost rate.
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11.2. Recommendations

The developed decision support tool has shown to be of significant value for giving a good estimate of the
maintenance cost rate for an arbitrary tidal energy array. The tool can be used by design engineers in its
current state, but nevertheless a number of recommendations can be made to further improve its validity
and range of application.

Besides that, the environmental analysis conducted on the tidal location characteristics may provide a start-
ing point for further research. The recommendations regarding the environmental analysis and time series
simulation will therefore be discussed separately from the maintenance model recommendations. However,
it may be clear that these recommendations also enhance the quality of the maintenance decision support
tool and are certainly of interest for the overall model improvements.

11.2.1. Environmental analysis and modeling

Analyze long term data
In this research the measurement data described two months during the calm summer period. The findings
are therefore not directly applicable to describe year-round weather conditions, as the winter conditions are
usually harsher. The analysis of long term data could therefore contribute significantly to identify seasonality
in the data, which can then be applied to give a better representation of the environmental conditions at a
tidal location. Currently a long term measurement campaign is ongoing at another tidal hotspot in the Bay of
Fundy, Canada, by Fundy Ocean Research Center for Energy (FORCE). Performing a similar research on the
multivariate dependence could also help identify generic dependences of tidal hotspots.

Advanced copula families
The multivariate dependence is described in this research by a D-vine construction which only allowed five
basic copula families to be included. The included copulas can be used to describe the basic upper and/or
lower tail dependence, but more advanced copulas are available. These copulas enable the description of
skewness in bivariate data of the observed time series and thus may give a more accurate representation of
the actual dependence.

Additional environmental variables
The inclusion of additional variables for representing the environment may contribute to the quality of the
generated time series. Literature states that waves height and period are significantly influenced by the
changing water depth at the shallow tidal hotspots. Including this variable may possibly result in new de-
pendence, which has not yet been included in this research.

Validate developed simulation algorithm
A sequential D-vine simulation algorithm has been developed which first models univariate time dependence
after which the multivariate dependence is generated. This method has shown to be effective for creating
synthetic time series with comparable persistence compared to the original time series. The described time
dependence proved to be significantly larger than the multivariate dependence, but this ratio may be well
different for other cases. In order to apply this algorithm for general use, it is therefore highly recommended
to first perform a validation study on the effects on both the multivariate dependence and persistence if this
ratio differs.

11.2.2. Decision support tool

Validate operational data
In this preliminary stage of design, a large uncertainty is in the assumptions regarding the operational data,
such as assembly failure rates, vessel operation limits and task durations. For the validity of the model it
is therefore of great importance to perform validation studies on the failure rate representation. This can
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either be done by interpreting the results of existing reliability studies which describe closely corresponding
components or by means of deploying a tidal prototype for obtaining real data.

Advanced failure rate distributions
Once more operational reliability data of the TEC components become available, the failure rate distribution
should be reconsidered to represent the actual failures more accurately. In this model an exponential failure
distribution is applied, which considers a constant hazard rate and is only suited to describe the operational
lifetime. Evidently, the failure rate will increase once the component’s design lifetime approaches. By merely
describing the failures in the TEC array with a constant failure rate, either the hazard rate is overestimated
during the operational lifetime or the wear-out failures are underestimated.

The corresponding wear-out failures can effectively be described by means of a Weibull or log-Normal dis-
tribution. However, implementation of these advanced failure rate distributions requires failure data to be
present in order to estimate the distribution parameters. If these data become available in the future, several
models [77, 106] are available for calculating and optimizing maintenance policies.

Advanced vessel operations
In this thesis the operation limits are independently evaluated for each time step. A desired addition to the
model would be to include multidimensional limits, which effectively captures the operable conditions for
combinations of the environmental variables. This also enables the coupling of existing models to describe
the limits during station-keeping and dynamic crane operations.

Secondly, the decision making behavior of the vessel can also be improved. During a replacement operation
it may be desirable to deviate from the predefined set of tasks if the alternative, such as returning to port if
the forecast describes no weather window, proves to be more cost effective.

Lastly, the inclusion of multiple vessels to perform maintenance in the same array would resemble the actual
situation better. Each vessel may have different characteristics and be responsible for its own tasks, be it a
maintenance activity or system monitoring.

Differentmaintenance strategy
In this research a corrective group maintenance strategy was applied, for which the optimal policy has been
approached. A different maintenance strategy could possibly lead to further cost reductions, despite having
found an optimal policy for the current strategy. Whilst this strategy was employed to describe the upper
limit of maintenance cost, for further development of the tidal system it is highly recommended to also in-
clude a preventative maintenance strategy. Especially during the operational phase, this strategy can bring
significant improvements due to being executed in the least harsh environmental conditions.



A
Copulas and Vines

A.1. Common methods for describing dependence

A.1.1. Pearson product-moment correlation coefficient

The Pearson product-moment correlation coefficient is a measure of the linear correlation between two vari-
ables X and Y, giving a value between +1 and -1 inclusive, where 1 is total positive correlation, 0 is no correla-
tion, and -1 is total negative correlation.

Pear son′s ρX ,Y = Cov(X ,Y )√
σ2

Xσ
2
Y

(A.1)

As can be seen in figure A.1, the Pearson correlation coefficient is inadequate for fully describing the depen-
dence between the distribution and does not take skewness, symmetry and other non-linear phenomenon
into account.

Figure A.1: Pearson Linear Correlation cases

A.1.2. Spearman’s rank correlation coefficient

The Spearman correlation [91] between two variables is equal to the Pearson correlation between the rank
values of those two variables; while Pearson’s correlation assesses linear relationships, Spearman’s correla-
tion assesses monotonic relationships (whether linear or not). If there are no repeated data values, a perfect
Spearman correlation of +1 or -1 occurs when each of the variables is a perfect monotone function of the
other.
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Spear man′s ρX ,Y = 12
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Figure A.2: Differences between Pearson and Spearman correlation

A.1.3. Kendall rank correlation coefficient

The Kendall rank correlation coefficient [49] is a statistic used to measure the ordinal association between
two measured quantities. Contrary to the Spearman correlation, the Kendall correlation is not affected by
how far from each other ranks are but only by whether the ranks between observations are equal or not. The
Kendall Tau correlation

K end al l ′s τX ,Y = 2

n(n −1)

∑
i< j

si g n[
(
Xi −X j

)(
Yi −Y j

)
] (A.3)

A.2. Properties of the copula construction methods

Joe [47] has performed extensive research on the analytical elucidation of each of the listed copula construc-
tion methods and discussed some desirable properties of copula models, and summarized which of them
can be satisfied for the various constructions.

Table A.1: Satisfaction or not of properties for various constructions

Class A1 A2 A3 A4 B C1 C2 D

Gaussian yes yes no no yes no yes yes
multivariate tv no yes yes no yes no yes yes
Archimedean yes no no bivariate yes yes yes yes
mixture of max-id yes yes bivariate bivariate yes yes yes partly
vine PCC yes yes yes yes no no yes yes
factor yes yes yes yes yes no partly yes

A1 inclusion of independence and comonotonicity copulas
A2 flexible and wide range of dependence
A3 flexible tail dependence
A4 flexible tail asymmetries
B1 closure property under marginalization
C1 closed-form cdf
C2 closed-form density
D ease of simulation

’Bivariate’ in a cell means that the property holds for bivariate but not general multivariate
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A.3. A pair-copula decomposition of a general multivariate distribution
Consider a vector X = (X1, . . . , Xn) of random variables with a joint density function f (x1, . . . , xn). This density
can be decomposed in the following non-unique way

f (x1, . . . , xn) = fn(xn) · f (xn−1|xn) · f (xn−2|xn−1, xn) · . . . · f (x1|x2, . . . , xn) (A.4)

Using the copula properties, as described in ..... and assuming F to be absolutely continuous with strictly,
increasing marginal densities F1, · · · ,Fn , we get

f (x1, . . . , xn) = ∂F (x1, . . . , xn)

∂x1, . . . ,∂xn

= ∂C (x1, . . . , xn)

∂x1, . . . ,∂xn

= c12...n · f1 · . . . · fn

(A.5)

The second step is done by using Sklar’s theorem and the last step by applying the chain rule. The result
in (4.2.2) can be used to represent (4.2.1) with pair-copulas and univariate distribution functions alone. We
make use of the following type of factorizations

f1|2 = f12

f2
= c12 · f1 · f2

f2
= c12 · f1 (A.6)

f1|23 = f123

f23
= f12|3 · f3

f2|3 · f3
= c12|3 · f1|3 · f2|3

f2|3
= c12|3 · c13 · f1 (A.7)

f1|234 = f1234

f234
= f12|34 · f34

f2|34 · f34
= c12|34 · f1|34 · f2|34

f2|34
= c12|34 · c13|4 · c14 · f1 (A.8)

Note that (4.2.3) and (4.2.4) are not unique in that a change in the conditioning set in step two would give
different results, i.e. different pair-copulas in the final results. We see that each term in (4.2.1) can be decom-
posed by the following iterative procedure [2]

fx|v = cxv j |v− j

(
Fx|v− j ,Fv j |v− j

)
fx|v− j (A.9)

for a n-dimensional vector v. Here vj is a component of v, and v-j is the v-vector without component j. De-
composing a distribution function with four variables could then be done as follows:

f1234 = f1 · f2|1 · f3|12 · f4|123

= f1 · c12 f2 · c23|1c13 f3 · c34|12c24|1c14 f4

= c34|12c23|1c24|1c12c13c14

4∏
i=1

fi

(A.10)

There are 24 different combinations for the four-dimensional case [2]. With this is mind, it is desirable to have
a decomposition that describes and preserves the (in advance) known information about the dependence
structure among the variables as good as possible. This is where the concept of vines is a good aid. Vines will
be treated in subsection 2.4.2.

A.4. Vine density distributions
Bedford and Cooke [10] give the density of an n-dimensional distribution for the C- and D-vine, which may
be written as follows:
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A.4.1. D-vine

f1,2,...,n =
n∏

k=1
fk fk

n−1∏
j=1

n− j∏
i=1

Ci ,i+ j |i+1,...,i+ j−1 (A.11)

A.4.2. C-vine

f1,2,...,n =
n∏

k=1
fk fk

n−1∏
j=1

n− j∏
i=1

C j ,i+ j |1,..., j−i (A.12)

A.5. D-vine copula simulation algorithm

A.5.1. D-vine

Algorithm 1 D-vine simulation algorithm [2]

1: Sample w1, ..., wn independent uniform on [0,1]
2: x1 = v1,1 = w1

3: x2 = v2,1 = h−1(w2, v1,1,θ1,1)
4: v2,2 = h(v1,1, v2,1,θ1,1

5: for i = 3 : 1 : n do
6: vi ,1 = wi

7: for k = i −1 : −1 : 2 do
8: vi ,1 = h−1(vi ,1, vi−1,2k−1,θk,i−k )
9: end for

10: vi ,1 = h−1(vi ,1, vi−1,1,θ1, i −1)
11: xi = vi ,1

12: if i == n then
13: STOP
14: end if
15: vi ,2 = h(vi−1,1, vi ,1,θi , i −1
16: vi ,3 = h(vi ,1, vi−1,1,θi , i −1
17: if i > 3 then
18: for j = 2 : 1 : i −2 do
19: vi ,2 j = h(vi−1,2 j−2, vi ,2 j−1,θ j ,i− j )
20: vi ,2 j+1 = h(vi ,2 j−1, vi−1,2 j−2,θ j ,i− j )
21: end for
22: end if
23: vi ,2i−2 = h(vi−1,2i−4, vi ,2i−3,θi−1,1)
24: end for
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A.5.2. Node labels

Figure A.3: D-vine node labels





B
Darrieus turbine power generation

B.1. Types of Darrieus turbines

A vertical-axis wind turbine is of Darrieus-type when it is driven by aerodynamic lift [12, 86]. The Darrieus
turbine consists of two or more aerofoil-shaped blades attached to a rotating vertical shaft. The wind blowing
over the aerofoil contours of the blade creates aerodynamic lift and actually pulls the blades along. In this
section, general mathematical expressions that describe the aerodynamic models of Darrieus-type VAWTs
are presented.

The Darrieus turbine was initially developed for application in the wind industry, but much research has
already been performed on its applicability for tidal currents. Over the course of the years three main Darrieus
variants have been developed, as can be seen in figure B.1. Whilst the rotor geometry differs, all types still rely
on the lift generating properties due to the foil blade profile.

Figure B.1: Darrieus types

B.2. Power curve

Damen Research has developed a darrieus model to determine the power curve parameters. The model uses
a quasi-static approach for calculating the TSR-Cp ratio, based on the Darrieus design. Literature on blade
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aerodynamics [43, 86] was used to develop the model and the Darrieus configuration, including its dimen-
sions, were found iteratively by combining recommended designs from existing research [12, 74] with in-
house cost and efficiency analyses.

B.2.1. Power coefficient

The power coefficient, (Cp ) is a quantity that expresses what fraction of the power in the wind is being ex-
tracted by the wind turbine. It is generally assumed to be a function of both tip-speed ratio and pitch an-
gle.

B.2.2. Darrieus swept area

For Darrieus turbines the swept area is constant, as the Vertical Axis Turbine (VAT) is omni-directional and
can operate with currents from all directions. The swept area for a Darrieus is calculated as follows,

A = 2R ·H (B.1)

which implies that the vertical surface area, formed by twice the radius (R) and the height(H) of the Darrieus
determines the swept area (A) of the PM.

B.2.3. Power coefficient

The power coefficient, (Cp ) is a quantity that expresses what fraction of the power in the wind is being ex-
tracted by the wind turbine. It is generally assumed to be a function of both TSR and pitch angle.

Figure B.2: TSR-Cp relation for different PMs

Tip-speed ratio
The tip-speed ratio (TSR) is the ratio between the tangential speed of the tip of a blade (ωR) and the actual
speed of the flow (Ucur r ). This ratio is especially important since it is related to efficiency, as a relation exists
between the TSR and the Cp of the system.

T SR = ωR

Ucur r
(B.2)
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Optimal control strategy
Using a control strategy enables the PM to operate at its optimal TSR, either by changing its pitch angle or by
adjusting the rotational speed of the blades. Optimizing TSR for each current flow velocity maximizes Cp and
thus results in an increase of the power production.

The slowly changing character of the current velocity enables the use of a quasi-static approach for determin-
ing the optimal control strategy. It is therefore assumed that the fluctuations in Ucur r are slow enough for the
control system to always use the best TSR for the optimal power coefficient.





C
Model properties

C.1. Deterioration Module

C.1.1. Calculate NT EC , f ai l ,pos

The number of TEC failure possibilities between two D-states can be calculated, given the requirement that
the number of failed TECs in a state are written in a row vector, which must be sorted in ascending order. The
TEC failure representation in figure 9.3 and table 9.2 show an example of the correct row vector format.

Algorithm 2 Calculates the number of TEC failure possibilities between two D-states

1 for ii = 1:Nstate
2

3 Dind = State(ii,:);
% Individual combination per deterioration phase

4

5 PMavail = Npm*ones(1,Ntec) - Dind;
6

7 Sred = repmat(Dind,[Ntec 1]) + eye(Ntec);
% Matrix with all possible failures to next deterioration phase from the 'From' state

8

9 [Rind,~] = find(Sred>Nfailmax);
% Find entries which exceed Ntec,fail,max

10 Sred(Rind,:) = [];
% Remove entries

11

12 [Rind,~] = find(Sred>Npm);
% Find entries which exceed Ntec

13 Sred(Rind,:) = [];
% Remove entries

14

15 Ssort = sort(Sred,2);
% Sort remaining entries

16

17 for jj = 1:size(Ssort,1)
18

19 col = ismember(State,Ssort(jj,:),'rows');
% Find the column index of the deteriorated state

20 Trans(ii,col) = Trans(ii,col) + ( PMavail(jj)/sum(PMavail) );
21 Fpos(ii,col) = Fpos(ii,col) + PMavail(jj);

% Number of TECs which can fail for that failure comb
22 end
23

24 end
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C.2. Maintenance Module

C.2.1. Numerical example of maintenance task generation

It can be seen in figure C.1 that three possible maintenance possibilities are possible in maintenance state
SM5, after decision D2 was selected upon entering the corresponding deterioration state SD5. Each of these
maintenance decisions is going to renew the system to a certain extend, reducing the number of NT EC , f ai l in
the arrival state.

Figure C.1: Tidal array example: Maintenance transitions from SM5

Decision D2.1, replacing one TEC, shows a transition to state SD4, but not SD3. This is due to the previously
explained model limitation that the algorithm only allows one possible transition per maintenance decision,
and thus the algorithm prioritizes maintenance on the platform with most failures.

In table C.1 the output of the task generation algorithm is shown for state SM5. The maximum number of
functioning TECs on the vessel (NT EC ,vessel ) is two in this example to show the influence on the task genera-
tion.

Table C.1: Tidal array example: Maintenance task generation

Decision D2.1 Decision D2.2 Decision D2.3

Vessel preparation Vessel preparation Vessel preparation
TEC loading TEC loading TEC loading
Waiting for weather window TEC loading TEC loading
Port-array transport Waiting for weather window Waiting for weather window
Platform emerging Port-array transport Port-array transport
TEC replacement Platform emerging Platform emerging
Platform submerging TEC replacement TEC replacement
Array-port transport TEC replacement TEC replacement
TEC unloading Platform submerging Platform submerging

Array-port transport Array-port transport
TEC unloading TEC unloading
TEC unloading TEC unloading

TEC loading
Waiting for weather window
Port-array transport
Platform emerging
TEC replacement
Platform submerging
Array-port transport
TEC unloading



D
Environmental analysis

D.1. Acoustic Wave and Current ADCP

Acoustic Doppler Current Profilers (ADCPs) are most often used to measure the velocity profile, but wave
data may be obtained when using an AWAC subtype [95], of which an picture is shown in appendix D.1. The
wave height is estimated with a vertical beam that measures the distance to the surface using the echo from
short pulses and simple peak estimation algorithms. The wave direction is found by cross correlating the
along-beam velocity estimates and the wave height measurement from the vertical beam.

Figure D.1: Acoustic wave and current ADCP

D.2. Filtering & smoothing

The environmental dataset contains raw measurement data and has not been quality checked by EMEC. It
contains both negative and extreme values for Hs and Tp , including a small period of no measurements. In
order to determine the multivariate dependence using copulas, the measurement data of all four variates
needs to be usable for each sample. By filtering the dataset for each of the four variables, the time samples
for negative (if applicable) and extreme values are identified, so these can be removed from the analysis.
Furthermore, the data is smoothed to reduce local fluctuations and measurement errors.

The process of filtering and smoothing is shown below and its effect is depicted in figure D.3,D.4,D.5 and
D.6:

1. Remove all NaNs and negative values
2. Remove all extreme values
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3. Apply a Hampel filter to remove outliers

D.2.1. Extreme value removal

Unrealistically high peaks in the datasets are removed increase the dataset accuracy and ensure that the more
advanced Hampel filters more effectively. The cut-off values, listed in table D.1, for the four variates are
selected in consultation via personal contact with EMEC’s data technician [97] to apply expert knowledge for
validation purposes.

Table D.1: Extreme value limits for EMEC dataset

Variate threshold value unit

Hs 5 [m]
Tp 15 [s]
Uwi nd 20 [m/s]
Ucur r 5 [m/s]

D.2.2. Outlier filtering

A Hampel filter [37] is applied to the input vector, x, to detect and remove outliers. For each sample of x, the
function computes the median of a window composed of the sample and its kham surrounding samples, three
per side. It also estimates the standard deviation of each sample about its window median using the median
absolute deviation (MAD). In statistics, the MAD is a robust measure of the variability of a univariate sample
of quantitative data [59]. If a sample differs from the median by more than Nsi g ,ham standard deviations, it is
removed from all four variate time series.

Figure D.2: Window used for the median absolute deviation

M ADi = medi an ( |Xi −medi an(X )| ) (D.1)

For the data sets the following Hampel parameters are used, also based on personal contact with EMEC’s data
technician [97], to perform the outlier filtering.

• kham = 40
• Nsi g ,ham = 3
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D.3. EMEC measurement data
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Figure D.3: Timeseries of Hs
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Figure D.4: Timeseries of Tp
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Figure D.5: Timeseries of Uwi nd
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Figure D.6: Timeseries of Ucur r
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D.4. Influence of directionality on wave-current interaction

Figure D.7: Boxplot of significant wave height per current velocity bin: same and opposite direction

D.5. Reference study on dependence of sea state variables

Montes-Iturrizaga and Heredia-Zavoni [65] have conducted research on the dependence of sea states using
hindmost time series of tropical storms (hurricanes) and extra-tropical events (northers) in the period from
1958 to 1999 for a site at 650 meter water depth located in the Gulf of Mexico.

The time series include data for significant wave height Hs , peak spectral period Tp , and 10-m hourly wind
speed Uwi nd . The significant wave height for extreme sea states are taken as those for which Hs Ê H th

s pro-
vided Hs at time tpeak is a peak value within time windows tpeak +4Tcluster and tpeak −4Tcluster using a

de-clustering time window of 4Tcluster = 30 hours and a treshold value H th
s =4.5m The threshold value here

comes from an analysis of extreme value data based on the POT approach [31] and the time-window was
taken from previous analysis of the data for statistical independence of peak values [66]. The values of all
other associated environmental parameters are taken as those occurring at the same time tpeak as the peak
values of significant wave height.

Table D.2: Kendall’s Tau rank correlations of reference study on sea states

Hs Tp Uwind

Hs 1 0.563 0.555
Tp 0.563 1 0.164
Uwind 0.555 0.164 1
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D.6. All possible factorisations and their combined Tau values

Table D.3: All possible factorisations and their combined Tau values

position 1 position 2 position 3 position 4
∑3

k=1 | τk |
Uwind Hs Tp Ucurr 0,591834
Uwind Hs Ucurr Tp 0,583649
Uwind Tp Hs Ucurr 0,234735
Uwind Tp Ucurr Hs 0,551169
Uwind Ucurr Hs Tp 0,149161
Uwind Ucurr Tp Hs 0,473781
Hs Uwind Tp Ucurr 0,602592
Hs Uwind Ucurr Tp 0,517018
Hs Tp Uwind Ucurr 0,168104
Hs Tp Ucurr Uwind 0,473781
Hs Ucurr Uwind Tp 0,159919
Hs Ucurr Tp Uwind 0,551169
Tp Uwind Hs Ucurr 0,277972
Tp Uwind Ucurr Hs 0,159919
Tp Hs Uwind Ucurr 0,200583
Tp Hs Ucurr Uwind 0,149161
Tp Ucurr Uwind Hs 0,517018
Tp Ucurr Hs Uwind 0,583649
Ucurr Uwind Hs Tp 0,200583
Ucurr Uwind Tp Hs 0,168104
Ucurr Hs Uwind Tp 0,277972
Ucurr Hs Tp Uwind 0,234735
Ucurr Tp Uwind Hs 0,602592
Ucurr Tp Hs Uwind 0,591834

D.7. D-vine contours

(a) D-vine with copula indices (b) Copula contours per tree of the D-vine

Figure D.8: Properties of the used D-vine

D.8. Time independence analysis
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Figure D.9: Time independence analysis
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Figure D.10: Required time interval for full time dependence of all 4 variables
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D.9. Auto- and Cross-correlations of EMEC data

Figure D.11: Auto- and Cross-correlations of EMEC data

D.10. Simulated time series of Uwi nd for different lags and time steps
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Figure D.12: Simulated time series of Uwi nd for different lags (4t = 10 min)
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Figure D.13: Simulated time series of Uwi nd for different lags (4t = 20 min)
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Figure D.14: Simulated time series of Uwi nd for different lags (4t = 30 min)
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Figure D.15: Simulated time series of Uwi nd for different lags (4t = 1 hour)

D.11. Copula comparison study

In this section all activity duration plots for the analyses are depicted. The comparison study considers one
up to ten TEC failures.

D.11.1. Original TS ←→ Synthetic TS
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Scenario 1: Fixed starting point (t=0)
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Figure D.16: Comparison of activity duration with original and synthetic time series (fixed starting point)
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Scenario 2: Varying starting points
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Figure D.17: Comparison of activity duration with original and synthetic time series (variable starting point)





E
Model results

E.1. Base case input parameters

Figure E.1: Input - Simulation data

Figure E.2: Input - Operational data
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(a) Input - System data (b) Input - Failure data (c) Input - Vessel data

E.1.1. Determining N f ai l ,max

The value for N f ai l ,max = 9 was set after several iterations. This value can be arbitrarily set to anything be-
tween 1 and NT EC ,tot , but it was found that for all combinations of N f ai l = 8 and 9, the decision was to replace
the maximum number of TECs. This meant that the upper boundary for found and following deterioration
state would never be reached.

E.2. General results

E.2.1. Maintenance activity

Decision D2.1 - Replace 1 TEC
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Figure E.4: Maintenance activity duration and costs of maintenance for Decision D2.1: ’Replace 1 TEC’
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Decision D2.2 - Replace 2 TECs
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Figure E.5: Maintenance activity duration and costs of maintenance for Decision D2.2: ’Replace 2 TECs’

Decision D2.3 - Replace 3 TECs
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Figure E.6: Maintenance activity duration and costs of maintenance for Decision D2.3: ’Replace 3 TECs’

Decision D2.4 - Replace 4 TECs
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(b) Maintenance activity cost distribution

Figure E.7: Maintenance activity duration and costs of maintenance for Decision D2.4: ’Replace 4 TECs’
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Decision D2.5 - Replace 5 TECs
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Figure E.8: Maintenance activity duration and costs of maintenance for Decision D2.5: ’Replace 5 TECs’

Decision D2.6 - Replace 6 TECs
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Figure E.9: Maintenance activity duration and costs of maintenance for Decision D2.6: ’Replace 6 TECs’

Decision D2.7 - Replace 7 TECs

50 75 100125150175200225250275300325350375400425450475

Maintenance activity duration [hour]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

N
TEC,repl

 = 7

S
D

 = [0  0  0  0  7]

S
D

 = [0  0  0  1  6]

S
D

 = [0  0  0  2  5]

S
D

 = [0  0  0  3  4]

S
D

 = [0  0  1  1  5]

S
D

 = [0  0  1  2  4]

S
D

 = [0  0  1  3  3]

S
D

 = [0  0  2  2  3]

S
D

 = [0  1  1  1  4]

S
D

 = [0  1  1  2  3]

S
D

 = [0  1  2  2  2]

S
D

 = [1  1  1  1  3]

S
D

 = [1  1  1  2  2]

(a) Maintenance activity duration distribution

100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

N
TEC,repl

 = 7

S
D

 = [0  0  0  0  7]

S
D

 = [0  0  0  1  6]

S
D

 = [0  0  0  2  5]

S
D

 = [0  0  0  3  4]

S
D

 = [0  0  1  1  5]

S
D

 = [0  0  1  2  4]

S
D

 = [0  0  1  3  3]

S
D

 = [0  0  2  2  3]

S
D

 = [0  1  1  1  4]

S
D

 = [0  1  1  2  3]

S
D

 = [0  1  2  2  2]

S
D

 = [1  1  1  1  3]

S
D

 = [1  1  1  2  2]

(b) Maintenance activity cost distribution

Figure E.10: Maintenance activity duration and costs of maintenance for Decision D2.7: ’Replace 7 TECs’
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Figure E.11: Maintenance activity duration and costs of maintenance for Decision D2.8: ’Replace 8 TECs’

Decision D2.9 - Replace 9 TECs
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Figure E.12: Maintenance activity duration and costs of maintenance for Decision D2.9: ’Replace 9 TECs’
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E.3. Properties of policy G

E.3.1. Flowchart of D-states and transitions

Figure E.13: Flowchart of D-states and transitions of policy G
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E.3.2. Maintenance loop activity properties

Loop 1: Arrival state [0 0 0 1 2]
State properties:

• NT EC , f ai l ,i = [00012]
• NT EC ,r epl = 3
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Figure E.14: Maintenance activity duration and costs of maintenance loop 1

Loop 2: Arrival state [0 0 0 1 3]
State properties:

• NT EC , f ai l ,i = [00013]
• NT EC ,r epl = 4
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Figure E.15: Maintenance activity duration and costs of maintenance loop 2

Loop 3: Arrival state [0 0 1 1 2]
State properties:

• NT EC , f ai l ,i = [00112]
• NT EC ,r epl = 4
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Figure E.16: Maintenance activity duration and costs of maintenance loop 3

Loop 4: Arrival state [0 0 0 0 5]

State properties:

• NT EC , f ai l ,i = [00005]
• NT EC ,r epl = 5
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Figure E.17: Maintenance activity duration and costs of maintenance loop 4

Loop 5: Arrival state [0 0 0 1 4]

State properties:

• NT EC , f ai l ,i = [00014]
• NT EC ,r epl = 3
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Figure E.18: Maintenance activity duration and costs of maintenance loop 5

Loop 6: Arrival state [0 1 1 1 2]

State properties:

• NT EC , f ai l ,i = [01112]
• NT EC ,r epl = 5
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Figure E.19: Maintenance activity duration and costs of maintenance loop 6

Loop 7: Arrival state [1 1 1 1 2]

State properties:

• NT EC , f ai l ,i = [11112]
• NT EC ,r epl = 6
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Figure E.20: Maintenance activity duration and costs of maintenance loop 7
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