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Abstract

LiDAR technologies are used to measure point cloud data of the earth’s surface. The usage of
LiDAR allows for the fast collections of massive data sets. The AHN2 point cloud data set, part of
Rijkswaterstaats initiative to map the surface of the Netherlands, contains 639 478 217 460 points.

For efficient visualization in web viewers, these massive point clouds are stored in an octree
data structure. Visualization through this method has the downside of discretely visualizing the
point cloud. These discrete artefacts are referred to as density jumps, and are visible where there
is a boundary between blocks retrieved from the octree. These blocks contain different densities
because they are retrieved from different levels of the octree. This thesis proposes a continuous
visualization method for massive point cloud data sets that aims to eliminate these density jumps.

While the continuous visualization of vector data sets has been extensively researched, this is a
novel field of research for point cloud data sets. This thesis explores the feasibility of a vario-scale
visualization method, and aims to implement it in an existing web viewer architecture. Due to the
massive nature of the AHN2 data set, cloud computing and distributed computing techniques are
used to imrove the workflow.

The presented methodology removes the density jumps by determining an upper density bound for
the point cloud density relative to the camera position. Circle packing theory is used to reinforce the
upper bound continuously, thus removing artefacts created by discrete density jumps. A proof-
of-concept for this theory is implemented in an existing point cloud web viewer architecture.
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1. Introduction

Point cloud acquisition technologies, such as terrestrial or airborne LiDAR (Light imaging De-
tection and Ranging), are one of the most promising technologies for surveying and mapping
applications. Developed in the 1960s and introduced on airborne platforms on the 1980s, today
LiDAR is reaching a level of cost-efficiency where it can be applied to smaller platforms, such as
self driving cars or small unmanned aerial vehicles (UAVs). LiDAR systems collect high-density,
high-accuracy and very detailed point cloud data about the terrain and surface objects within a
relatively short amount of time. Other advantages such as weather and light independence as
well as canopy penetration depending on the wavelength make it the technology of choice for
many applications within the field of Geomatics.

In 1996 Rijkswaterstaat identified these advantages of aerial LiDAR point clouds and started
planning the quinquennial collection of a point cloud data set that would cover the Netherlands.
AHN1 was collected between 1997 and 2003, and because the major advances in LiDAR scanners
within that time span the point density would vary enormously between data sets collected in
1997 and those collected in 2003. The oldest data sets contain 1 point per 16m2, while the youngest
contain 1 point per m2. For the AHN2 data set, collected between 2007 and 2012, the goal was set
to collect 6-10 points per m2 (van der Zon, 2013). Currently the AHN3 data set is being collected,
and set to be finished in 2020. Because of the incomplete nature of the AHN3 data set, this thesis
will focus on vario-scale visualization of the AHN2 data set.

Figure 1: SSC for smooth tGAP (Suba et al., 2013)

Within the field of cartography, vario-scale
visualization of information is still being re-
searched. The idea of showing different Levels
of Detail would first be introduced as adaptive
zooming by Cecconi and Galanda (2002) and
later this continuous operation would be re-
ferred to as vario-scale visualization (van Oos-
terom, de Vries, & Meijers, 2006). Although
mention of vario-scale visualization and its
potential benefits for point cloud visualiza-
tion has been made (Poux, Hallot, Neuville, &
Billen, 2016), no substantial research has been
done into the creation of a vario-scale visual-
ization for point cloud data sets.

Vario-scale vector visualization for cartogra-
phy is based on the principle of a continuous
visualization of the data set. This results in a
data index which is best visualized in a 3D cube. Smaller, more detailed polygons are being
merged the larger the scale becomes (van Oosterom & Meijers, 2014). This principle is visual-
ized in Figure 1. In the classical approach the polygons do not merge, but rather jump from one
shape into another once a scale threshold has been reached. This jump leaves distinguishable den-
sity jumps, which can easily be identified when zooming through a data set. Current point cloud
visualization methods also contain these density jumps.

The vario-scale visualization principle for point clouds that will be introduced in this thesis will
eliminate these density jumps. This is based upon the same principle as the vario-scale visualiza-
tion in cartography; the continuous visualization of the data set. For point clouds this is more
challenging because there are no semantics; the points in a point cloud are simply X, Y, Z coor-
dinates plotted in the selected Coordinate Reference System (CRS). Whereas cartographic vector
data sets have semantic data from which relationships between polygons can be determined. Such
as the boundary between polygons, the function of the polygon and the dimensions of the poly-
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gon. The principle of vario-scale visualization of point clouds is visualized in Figure 2, where
points are being visualized regardless of any scale threshold being reached; points are visualized
continuously.

A usability study shows the advantage of using a continuous level of detail, vario-scale, com-
pared to a discrete level of detail when visualizing point clouds (Schütz, Kröstl, & Wimmer, 2019).
For a more detailed visualization of a continuous level of detail compared to a discrete level of de-
tail see Appendix A, a discrete visualization, and Appendix B, a vario-scale visualization. In both
Appendices a top down visualization is made of zooming through the scale levels. In Appendix A
points appear in frame in sudden density jumps, whereas in Appendix B the points appear contin-
uously in each frame.

Figure 2: Vario-scale visualization of point clouds

1.1. Problem statement

The problem solved in this thesis is twofold. The first is to create a method for the vario-scale
visualization of point clouds. This entails finding requirements for the vario-scale visualization as
well as creating possible algorithms for the vario-scale visualisation of point cloud data sets.

Secondly this thesis aims to create a proof-of-concept for the proposed visualization method.
The proposed data set to create this method for is the AHN2 data set. The AHN2 data set is one
of the largest openly available point cloud data sets.

Vario-scale visualization
Current point cloud visualization methods are heavily reliant on the underlying data structure of
the stored point cloud, which has to be efficient for massive data sets.

Currently the most used storage and indexing method for massive point clouds is an octree. An
octree is an index structure which stores spatial data, containing XYZ coordinates, in a 3D cube.
This 3D cube with sides of length n is recursively split up into eight equal cubes (nodes), each

with sides of length
n
2

. This recursion is illustrated in Figure 3.
By storing a set of points in each cube this data structure provides efficient indexing for point

cloud because of the spatial relationship that can be derived from the relationship between nodes.
This indexing method for point clouds is first proposed by Woo, Kang, Wang, and Lee (2002).

Potree is one of the standards in web visualization of point cloud data sets that uses an indexed
octree for web visualisation (Schuetz, 2016). The advantage of this visualization method is that

2



Figure 3: Octree recursive storage

very large data sets can be visualized in real time, because higher levels of detail (the more dense
and lower levels of the octree) will not be rendered until required. This limits the amount of data
that needs to be visualized, and thus retrieved from the web server.

Another advantage is that this allows regions further from the camera origin to be rendered
in lower levels of detail (the less dense and higher levels of the octree). The disadvantage of the
underlying octree structure are the discrete density jumps in Level of Detail. These density jumps
occur when moving up or down the octree, in a non-continuous manner. These density jumps are
especially noticeable during visualization of larger point clouds, when not all data that is rendered
on screen is retrieved from the same level of the octree. Density jumps in a perspective view of the
AHN2 point cloud are illustrated in Figure 4.

Figure 4: Discrete density jumps in the AHN2 web viewer

The main focus of the vario-scale
method proposed in this thesis is to
eliminate these density jumps from
the visualization of the AHN2 point
cloud.

Massive point clouds
The advantage of fast and cheap ac-
quisition of detailed data face a trade
off; point cloud data is very large and
has the risk to become unmanage-
able if not properly stored, processed
and visualized.

Because of the increasing ease with which point cloud data can be collected, point cloud data
will behave more and more like big data in the future. This means point cloud data systems will
face the same defining principles currently faced by other big data systems; Volume, Variety and
Velocity. Current local systems for processing point cloud data are ill equipped for handling these
future developments, which is why in this thesis a framework will be created that makes use of
the scalable advantages of cloud computing.

Many studies have been done on the storage and processing of point cloud data. Most com-
monly these studies focus on the storage of point cloud data in either files or a relational database.
Processing can be done in many ways, it has been commonplace to use open source tools such as
LASTools which offer substantial scalability and speed (Hug, Krzystek, & Fuchs, 2004).

3



These solutions, however, will fall short when in the future point cloud data will be collected not
just by specialized teams of surveyors or governments but also by the devices we use every day.
Examples of this are self-driving vehicles, artificial reality (AR) / virtual reality (VR) surrounding
creation systems and cellular network planning projects. The collection of point cloud data by
these applications and others will mean multiple orders of magnitude more point cloud data
has to be stored and processed. This is done preferably in the same amount of time as current
applications, or faster (real-time). A key application when processing point cloud data is the
visualization of the data. This allows users to visually inspect the data, select regions and analyze
the data in a clear and orderly manner. Current processing systems are unfit for these applications
once the collection of point cloud data will grow even more, with non-real-time rendering of the
data being the largest problem.

For these reasons it is important to create a proof-of-concept for the proposed visualization
method. This proof of concept should be demonstrated on a massive point cloud, so that it will lay
a base for future developments. Processing on massive point clouds requires a careful approach,
as well as scalable solutions.

By transitioning the visualization process from local servers to servers on a cloud service it is
possible to process large point cloud data sets without needing to own, maintain and service the
needed processing power. The ability to up-scale and down-scale the processing power depend-
ing on demand have made cloud computing the service of choice for many large and smaller
companies performing a variety of data processing tasks with a volatile demand in processing
power.

This principle has already been used for point cloud processing, as illustrated by Wang, Hu,
Sha, and Han (2017) and Li, Hodgson, and Li (2017). Combining cloud services and distributed
computing for data processing will allow for an order of magnitude faster processing of point
cloud data and a scalable solution for n users growth (Li, Yang, Liu, Hu, & Jin, 2016).

For these reasons this thesis will use a cloud computing platform, and distributed computing
will be used to perform large processing tasks such as indexing of the point cloud.

1.2. Scientific relevance

As mentioned in Section 1.1, the scientific body of research for vario-scale visualization of point
clouds is virtually non-existent. The vario-scale visualization of point clouds is an area of research
which springs from the vario-scale visualization of vector data sets. This field of research is both
larger and older. The basic notion of discrete visualization versus continuous visualization, as
visualized in Figure 2, will be built upon.

This thesis will lay the ground-works for further research on vario-scale visualization for mas-
sive point clouds, by presenting a theoretical method and practical implementation for vario-scale
visualization. This project is open source, and all code is available on GitHub 1. By choosing the
AHN2 point cloud data set this thesis aims to visualize one of the largest LiDAR point cloud data
sets currently collected.

1.3. Research question

This research aims to create a vario-scale representation of point clouds by creating both a theo-
retical method and a practical proof-of-concept. This is done by implementing the method for the
vario-scale visualization of the AHN2 point cloud.

The proposed research question for this thesis is:

1https://github.com/JippevdMaaden/thesis
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To what extent can a vario-scale visualization method be created that eliminates density
jumps from the web-based visualization of the AHN2 point cloud?

This research question is supported by multiple supporting research questions:

1. To what extent is the current body of research done on the vario-scale visualization of vector data sets
relevant for the vario scale visualization of point cloud data sets?

2. To what extend can a theoretical post-processing approach be created for vario-scale visualization of
point cloud data sets?

3. Which point-cloud processing framework is best suited to create a proof-of-concept vario scale visual-
ization platform for the AHN2 point cloud?

4. To what extend can the theoretical approach be implemented in an existing point cloud web visualiza-
tion framework?

The first supporting research question is answered in Chapter 2 and Chapter 3, where the theo-
retical approach proposed in this thesis is explained. The second supporting question is answered
in Chapter 3, where three proposed approaches to enforce vario-scale visualization are explained.
The third supporting question is answered in Chapter 4, where the practical requirements for the
framework are determined and a choice of components is made for the framework its self. The
fourth supporting question is answered in Chapter 5 where the framework and the theoretical ap-
proach are combined to form the proof-of-concept for the vario-scale visualization of the AHN2
data set.

1.4. Scientific scope

In the scope of this thesis are two separate objectives:

1. Create a theoretical approach for the vario-scale visualization of point cloud data sets.

2. Create a practical implementation of this approach for the AHN2 point cloud.

Because of the lack of research done on the vario-scale visualization of point clouds data sets,
the first objective will mainly be reached by using research from other fields of vario-scale vi-
sualization. The theoretical approach for the vario-scale visualization of vector data sets will be
analyzed and transferable elements will be used to create a theoretical approach for the vario-scale
visualization of the point cloud data sets.

The practical implementation of this theoretical approach will be done for the AHN2 data set.
The research objective is to create an initial proof-of-concept for vario-scale visualization of point
cloud data sets. This thesis will first create a data set from the AHN2 point cloud that is visualized
in the current standard, through octree visualization. Then the proposed method is used to create
a vario-scale data set from the same camera angle. The original visualized data set and the vario-
scale visualized data-set will then be analyzed both visually and numerically to determine the
effectiveness of the implementation.

1.5. Thesis structure

Chapter 2 discusses the current theoretical background, for both vario-scale visualization and
point cloud processing. Chapter 3 discusses the proposed theoretical method for the vario-scale
visualization of point cloud data sets. Chapter 4 discusses the practical requirements for the proof-
of-concept framework, and it describes the decided upon framework as well as the point cloud
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data sets used in this thesis. In Chapter 5 implementation of the framework is explained. Chap-
ter 6 presents and analyses the results from the proof-of-concept implementation. Chapter 7 dis-
cusses these results and describes what further steps can be made to improve the implementation.
Chapter 8 concludes this thesis and reflects on the way in which the main research question has
been answered.
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2. Theoretical background

The theoretical background of this thesis will lay the ground works for the research done in this
thesis. To establish a theoretical framework for vario-scale visualization of point clouds, multiple
areas of research will have to be researched. This thesis has two objectives. Firstly to create a
theoretical implementation of vario-scale visualization for point cloud data. Secondly to create a
proof-of-concept for this implementation. Both of these objectives are introduced in Section 1.1.
This Chapter is divided into two Sections, each representing the theory needed to solve an objec-
tive.

Section 2.1 will first discuss the current research that has been done on the vario-scale visu-
alization of point cloud data sets, as well as discuss the theory behind vario-scale visualization
of vector data sets. This section will support the creation of the theoretical implementation of
vario-scale visualization for point cloud data.

Section 2.2 then discusses the current theoretical framework for point cloud processing. Since
point cloud processing spans from storing the raw data to processing to visualization, this section
is split up into subsections. Each of these subsections will elaborate more upon the specific part
of the point cloud processing cycle.

2.1. Vario-scale visualization

Vario-scale vector visualization
One of the first mentions made of vario-scale visualization for vector data-sets, is not referred to

with the term ’vario-scale’. But rather with ’adaptive zooming’. As a term introduced by Cecconi
and Galanda (2002) it discusses the need to improve the cartographic quality for web mapping
and web GIS.

In their paper, Cecconi and Galanda (2002), make the distinction between objects with a prede-
termined Level of Detail that are stored in a multiscale database at different scales. And temporary
visualization of objects through generalization of topological features for a selected scale at run-
time. The objects stored in the multi-scale database are objects that require high computational
cost for generalization, and can thus not be done real-time, such as buildings or highways. Objects
that are generated on-the-fly require less complex methods and algorithms, objects such as rivers
and lakes. The two operations work in tandem and the resulting data-sets are merged to create a
temporary map, unique to the scale level and location for which it is created.

The main challenges for this implementation is the real-time generalization of topological ob-
jects, and the creation of the temporary map to be viewed client-side. This solution is implemented
on the client-side, which is useful for a fast prototype, but leaves some downsides for a real im-
plementation. Implementing the solution on the server-side would cut down the amount of data
sent to the client, since the generalization happens before the data is sent. It would allow the
solution to utilize the better computational performance on the server for faster generalization or
generalization of more computational heavy objects.

This server-side implementation of the adaptive zooming method proposed by Cecconi and
Galanda (2002) is introduced by van Oosterom (2005). By this time the method is referred to
with the term ’variable-scale’. The server-side implementation is created without redundancy in
objects to be stored. All objects are represented by faces and edges. The creation of a data set
for unique scale level is done by combining the objects, based on a generalization algorithm that
stores relationships between objects in a data structure.

Both the relationships between faces and edges are stored in different data structures, dubbed
(Generalized Area Partitioning) GAP-face tree and GAP-edge forest respectively. Faces are as-
signed an importance value. When zooming through the data set this importance value is used to
determine which of the two faces is least important when merging (zooming out), and thus should
be removed. The merged face is than assigned the semantics of the most important face and its
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importance value is increased. This operation is continued until one face is left at the highest scale.
Edges, which represent the topological relationship between faces, can either be removed, merged
or changed when faces are merged. These operations are dependant on the GAP-edge forest and
the importance ranges assigned to each edge.

Improvements on this method are made by Suba et al. (2013), who implements a tGAP structure
(van Oosterom & Meijers, 2014) with a Space-Scale Cube (SSC) for a smooth volumetric represen-
tation of gradually changing vario-scale objects. Whereas the GAP structure determines which
faces to merge depending on discrete importance values (and thus shows discrete transitions be-
tween objects), the tGAP structure in combination with a SSC allows for continuous zoom and
gradual change and merging of objects.

Vario-scale point cloud visualization
Mention of vario-scale visualization combined with the visualization of point cloud data sets

has been sparse. When these two have been mentioned together (van Oosterom et al., 2014),
(Martinez-rubi et al., 2015) is has been referring to vario-scale LoD visualization, which is a dis-
crete solution showing multiple levels of the octree in the same view frustum. This is visualized
in Figure 5

Figure 5: LoD vario-scale visualization (van Oosterom et al., 2015) (left) (MithrandirMage (2012).
Retrieved October 12 2017 from https://en.wikipedia.org/wiki/Viewing frustum

This implementation of LoD vario scale visualization is discussed in Section 1, where the prob-
lem of this implementation is visualized in Figure 4. The LoD vario-scale implementation stills
shows density jumps when visualizing point cloud data sets.

What all research on vector maps has in common, it generalizes based on:

• Semantic data (assign importance value)

• Topological data (edge shape)

And creates a 3D structure based on the 2D levels that are are non-horizontally connected to
form a volumetric representation of gradually changing vario-scale objects. What all research on
vector maps does not do for point clouds is:

• Take into account 0D objects (no topological data)

• Take into account non-semantic objects

Adding either of the two to a point cloud requires massive amounts of processing power, during
the creation of the method it should be determined whether this is needed or not.

2.2. Point cloud processing

This section will give an overview of the current point cloud processing life cycle. This starts at
Storage and ends with Visualization.
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Storage will discuss current methods used for storing point clouds, both in a file structure and
in a relational database. Indexing will discuss current indexing methods used for indexing point
clouds. Distributed computing will go into detail about the current computing methods used to
processes massive point clouds. Cloud computing will discuss three cloud platforms and their
services.

Storage
Currently there are three conventional methods used for storing point cloud data; using an

ASCII file, a LAS file or in a relational database. Because of the lack of compression and lack of
speed when reading or writing an ASCII file as described by Svalec, Takac, and Zabovsky (2015),
using this format is becoming increasingly uncommon. This has left the industry to adapt the
LAS file format, and its compressed counterpart LAZ, as the industry standard (ASPRS, 2013).
Research into the storage of point cloud data in relational databases has been performed in mul-
tiple studies, most recently in a comprehensive benchmark by van Oosterom et al. (2015) where
both storage in a LAS file-based solution, storage in a flat relational database model and block
storage in a relational database model is bench marked.

While conventionally point cloud data is stored in LAS or LAZ file, a database management
system (DBMS) approach has the possibility to enhance the processing of point cloud data by
allowing for the querying of not only the point cloud data but other data as well such as vector
data to perform spatial queries. In essence storing point cloud data in a LAS file versus storing
point cloud data in a DBMS constitutes to the same; both data types facilitate the storage of point
cloud data in a block, which is the file its self for LAS files or which are blocks (SDO PC and
SDO PC BLK for Oracle) or patches (PCPATCH for PostgreSQL) for DBMS’s. The comprehensive
benchmark by van Oosterom et al. (2015) shows the differences between both storage methods; a
LAS file implementation seems to far outperform all DBMS’s when it comes to loading the largest
data set (2130s vs. 8490s), while DBMS implementations using the block property of the DBMS
compress the data much better (107 GB vs. 440 GB).

For simple queries currently the LASTools point cloud data management system (PCDMS) of-
fers the best performance. Relational databases showed the potential to be more efficient at pro-
cessing more complicated queries.

For purposes of this thesis distributed storage methods will be discussed, using a LAS file-based
storage or a relational database. Since most studies performed in the distributed storage are using
Hadoop and the Hadoop Distributed File Storage (HDFS) (Hanusniak, Svalec, Branicky, Takac, &
Zabovsky, 2015; Li et al., 2016; Li et al., 2017), this will be used as the main case study. Hadoop is
an open source tool for distributed storage and processing of big data (White, 2009). These storage
methods can however be applied to other distributed storage and processing frameworks.

The HDFS will store point cloud data similar to storing it on a single location. The advantages
is that not all storage locations will have to be queried when only data stored on one node of the
HDFS is required. Thus whether a storage method is suitable for the point cloud data is depen-
dent not only on the querying but also on the indexing methods used both across nodes and on
the nodes themselves of the HDFS.

Indexing
Conventional indexing methods for point cloud data include octree indexing by Elsenberg, Bor-
rmann, and Nüchter (2013), R-tree indexing by Gong, Zhu, Zhong, Zhang, and Xie (2012), or k-d
tree indexing by Sayar, Eken, and Öztürk (2015).

Indexing a point cloud is a necessity when working with point clouds, and different indexing
methods are more suitable for different applications. In Figure 6 all three basic indexing meth-
ods are illustrated. Indexing point clouds drastically improves query execution time and enables
efficient searching and extraction of data.
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Figure 6: Octree, R-Tree and k-d tree indexing visualized

An octree is an indexing method derived from both binary trees and quadtrees. An octree
represents a 3D spatial cuboid which is contains geometry. This cube is then subdivided into eight
smaller cubes which each also contain geometry. This subdivision is done until leaf nodes are
created; nodes which only contain one geometry and thus do not have to be subdivided further.
Because a point cloud, especially very large point cloud data sets, cover much of the earths surface,
the higher levels of these octrees function more like quadtree, thus not all the octants of the octree
have to be subdivided. To prevent this two stopping rules for octrees are created; maximal depth
and a minimal number of points.

A k-d tree is also derived from a binary tree structure and its commonly used to organize points
in space, and it is useful for range and k nearest neighbor searches. Creating a k-d tree is similar
to the Quick Sort algorithm, where the median point is used to divide the tree further along either
the x or y dimension.

An R-tree is similar to an octree because it used geometry to bound the spatial data. In stead
of a cube the geometry used is a minimum bounding rectangle, which allows for more freedom
when indexing point cloud data. The R-tree is a balanced search tree, which means that unlike an
octree all its leaf nodes are on the same level in the tree. Having a balanced tree is an advantage
for search queries but has as a pitfall that some minimum bounding rectangles might overlap or
cover too much empty space, which results in very bad worst-case performance.

When indexing a distributed data set two types of indexing are important; global and local
indexing. Global indexing refers to the indexing method of distributed data sets among nodes on
the distributed network. The efficiency of this network depends on multiple factors including the
amount of redundancy built into the infrastructure. Local indexing refers to indexing performed
on the data that is stored on a single data node.
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Figure 7: Tile based decomposition (left) vs. Domain based decomposition (right)

Global indexing such as the methods presented by Li et al. (2017) are dependant on the purpose
of the point cloud data set but can generally be distributed into two types of decomposition; a
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domain-based decomposition and a tile-based decomposition. In a domain-based decomposition
the spatial relationship of the data is considered when processing the data on node x. Thus data
is first collected according to spatial locality and then processed. A tile-based decomposition does
not consider the spatial relationship but minimizes latency by assigning data stored on node x to
be processed on node x. In Figure 7 these spatial decompositions are illustrated. The numbers in-
side the tiles represent the nodes on a distributed file storage infrastructure. It is illustrated that to
obtain spatial locality of data within a processing operation the node locality in the distributed file
storage infrastructure is compromised. Both methods are suited for different types of processing
purposes. For visualization purposes both the lack of latency and spatial locality are important,
which implies the assignment of data to specific nodes.

Local indexing indexes the data stored in a single node, which in the case of point cloud data is
done by the above mentioned conventional spatial indexing methods.

The indexing methods discussed so far are the most commonly used indexing methods for local
indexing. Other indexing methods are derived from the octree, k-d tree or R-tree including the
3DOR-Tree by Gong et al. (2012).

Local indexing methods should improve point retrieval for visualization purposes once the cor-
rect node of the distributed system is located.

Distributed computing
Distributed computing, also referred to as parallel computing, is a computation where a single
problem is split into multiple sub problems, either calculations or processes, which are all solved
simultaneously by multiple computers. Once all sub problems are solved these parallel solutions
are combined again to form the final solution. This type of computing allows for enormous prob-
lems to be solved relatively fast, if the problem adheres to two requirements. The first requirement
is that the problem can be subdivided into sub problems which can be solved in parallel. The sec-
ond requirement is that the overhead created by splitting and combining the problem should be
less than the computational gains. Apache Hadoop, an open-source framework based on the
MapReduce framework by Dean and Ghemawat (2008), is currently the most popular and well
documented distributed computing framework.

The Apache Hadoop framework is suitable for linear processes, where sub problems are not
dependent on other sub problems to be solved. Apache Hadoop does not permit the re-use of data
between the computations of sub problems, unless the data is written to temporary or permanent
external storage and read again. Unless this storage is permanent, if a sub problem is not solved
because of node failure this would break the operation and would mean all the previous sub
problems would have to be recomputed. Because of this the distributed computing process is
either not very robust or too slow for iterative processes.

The creation of Apache Spark by Zaharia, Chowdhury, J. Franklin, Shenker, and Stoica (2010)
changes this with the introduction of resilient distributed data sets (RDD). RDD is the fundamen-
tal data structure of Apache Spark (Zaharia, Chowdhury, Das, & Dave, 2012). It is a read-only
collection of records that can independently of any RDD before it reconstruct the sub problem if
information is lost. An RDD can be explicitly cached in memory and can be reused across parallel
operations.

Because Apache Hadoop and Apache Spark function differently, their applications vary as well.
Sparks main applications are in machine learning and data science, which because of their itera-
tive nature benefit greatly from having a data structure such as RDD (Zaharia et al., 2012). Well
documented packages such as MLlib make Spark easily accessible for these task (Meng et al.,
2016).

However, Apache Spark functions the same as Apache Hadoop when used for non-iterative
processes, because the underlying MapReduce framework is the same and there is no advantage
in using RDDs when performing a linear computation in which data does not have to be reused.
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Because many GIS applications are linear, they do not require the re-use of data but simply
query the data once to be processed, Hadoop remains the main distributed computing framework
used for GIS applications. Illustrated by the recent research into point cloud processing with
Hadoop (Wang et al., 2017; Li et al., 2017), and the amount of documentation there is for Hadoop.

Many distributed computing applications have been built for the processing of spatial data and
point clouds. Examples of these are HadoopGIS created by Aji et al. (2013), VegaGiStore created
by Zhong et al. (2012) and other solutions such as the solution created by Jian et al. (2015) or by
leyman Eken and Sayar (2015). Current research in the distributed processing of GIS data focuses
mostly on Hadoop as a framework for parallel processing and storage (Wang et al., 2017; Růžička,
Orčı́k, Růžičková, & Kisztner, 2016; Li et al., 2017).

This thesis aims to improve the scalability of the AHN2 point cloud viewer by using a dis-
tributed cloud computing solution. Because distributed computing can be a costly solution, and
predictions of user traffic are difficult to make, automatic scaling solution as presented by Li et al.
(2016) should be researched. This automatic scaling Hadoop cluster is launched on AWS, making
it easy to add and remove nodes.

An automatic scaling Hadoop cluster consists of three types of nodes; 1 master node which
performs the MapReduce task, n core-slaves which both store and process data and 0 to k compute
slaves which are initialized when user traffic becomes too high.

A solution such as the automatic scaling Hadoop cluster shows the advantages of combining
distributed computing with cloud computing to form scalable and efficient point cloud process-
ing clusters.

Cloud computing
Cloud computing is a new development that revolutionizes the way both individuals and busi-
nesses access computing services. Computing is done on a network of off-site computing re-
sources, which together form a data-center, accessed through the internet (Byrne, Corrado, &
Sichel, 2017). The term cloud computing encompasses many services, which are generally divided
into three types; Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS) (Pancholi, Patel I, Principal, Gandhi, & Patel, 2017). A brief overview of these ser-
vices and a distinction between what the customer manages versus what the provider manages is
given in Figure 8.

As illustrated these services have an increasing level of abstraction, where the customer needs
less and less knowledge of the underlying principles. As described by Dutt, Jain, and Kumar
(2018) IaaS provides the physical infrastructure and manages these machines. This leaves the
customer responsible for the patching and maintaining of the operating system and application
software. While this is more work, this allows for greater degrees of freedom. PaaS removes the
necessity for the customer to manage the operating system and underlying architecture of the
service, the customer merely manages the application software. SaaS allows for the least amount
of freedom and comes with the greatest ease of use; the customer does not manage any part of the
system. In this service the provider manages everything and the user merely pays for usage.
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Figure 8: Infrastructure, Platform and Software as a service. (Jamesmbond (2013). Retrieved
December 17 2017 from https://mycloudblog7.wordpress.com/2013/06/19/who-manages-
cloud-iaas-paas-and-saas-services/)

Figure 9: B2B IaaS platform adoption. (Skyhigh Networks (2017). Retrieved Decem-
ber 17 2017 from http://www.evontech.com/what-we-are-saying/entry/microsoft-azure-vs-
amazon-aws-comparison-between-two-cloud-computing-giants.html)

Because of the use case and the lack of available ready-made applications for storing, processing
and visualizing point clouds, this thesis will focus on IaaS. This will allow for the greatest degree
of freedom when processing point cloud data. Currently there are three major providers which
provide cloud infrastructure services, these are; Amazon Web Services (AWS), Microsoft Azure
and Google Cloud Platform, as depicted in Figure 9. Other IaaS providers include companies such
as IBM and Salesforce. These platforms however will not be considered for this thesis as Amazon,
Microsoft and Google are making incredible progress in the development of their infrastructure,
and are widely adopted by businesses and well documented.

All three providers offer a wide range of services, for this thesis three of these services are rele-
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vant; Compute services, Database services, Storage services. As seen in Table 1 all three providers
offer these services.

AWS Microsoft Azure Google Cloud

Compute services Elastic Compute
Cloud (E2)

Virtual Machines
(VMs)

Compute Engine

Database services Relational Database
Service (RDS)

SQL Database Cloud SQL

Storage services Simple Storage
Service (S3)

Azure Storage Cloud Storage

Table 1: IaaS service provided by AWS, Microsoft Azure and Google Cloud

AWS started in 2004 and is the longest running cloud service provider. Its services are therefore
well documented and AWS is regarded as being the most comprehensive cloud service. Microsoft
and Google are quickly catching up though and are rolling out many new services and solutions
of their own.

For this thesis AWS will be used as the cloud computing platform. Because AWS is the oldest
cloud computing platform its boasts multiple advantages over its competitors. Previous personal
experience and the ability to easily and cheaply launch Hadoop or Spark clusters with Elastic
MapReduce (EMR) make this the preferred cloud computing platform for this thesis.

14



3. Theoretical approach

3.1. Theoretical vario-scale visualization

For the creation of a methodology for vario-scale visualization of point cloud data sets, two im-
portant design decisions have to be made. The first decision, which framework to use, is made
in Chapter 4. An existing visualization framework is chosen and will be modified where needed.
The second decision is whether to use either a 4D indexing method, or a 3D indexing method
which will require post processing. The difference between these two methods is visualized in
Figure 10. A 4D indexing method would use a 4th dimension such as scale or importance to allow
for vario-scale querying of the data set. Whereas a 3D indexing method uses XYZ indexing and
post-processing to create the vario-scale visualization method.

Figure 10: 3D (a) vs 4D (b) indexing method

Creating a 4D indexing method would allow vario-scale point selection to be done by querying
the indexing structure; the correct query would return a vario-scale partition of the data set. This
implementation is similar to the SSC discussed in Chapter 2. Due to the nature of this thesis, the
creation of a proof of concept, and the time constraint in which it is executed, the decision is made
to use the 3D indexing method. This method requires a separate processing step to go from the
discrete indexed point cloud to a vario-scale partition of the data set.

The resulting data should allow the point cloud to be rendered in view without any density
jumps. Currently the industry standard for web point cloud visualization is the use of Octree
blocks streamed from a web server. This results in density jumps as visible in Figure 11.

Figure 11: Discrete density jumps in the AHN2 web viewer

A good starting point for the analysis of this visualization, is analysing the relationship between
density (points per m2) and the distance from the camera for current visualization methods us-
ing an underlying octree index. This visualization is dubbed Density pyramid; where a 2D slice
is extracted from the 3D view frustum. Throughout this Chapter density will be referred to as
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points per m2, and not points per m3, because of the 2D nature of aerial LiDAR data sets. These
data sets have great point distribution in the X and Y direction, but relatively small point distri-
bution in the Z direction. Because the data set behaves more like a surface than a 3D volume, in
this Chapter all calculations will be done using m2 as opposed to m3.

In the density pyramid in Figure 12(a) a depiction is made of the relationship between the
distance from the camera and the density of the pointcloud. There is a clear visualization of the
density jumps, marked with red circles, as seen in Figure 11. In Figure 12(b) the same depiction
is made, but without the density jumps. The relationship between density and distance to camera
has been changed to a continuous relationship one. This relationship can be described by a density
formula. The formula seems to have similarities to a decreasing function such as f (x) = 0.5x or
f (x) = log0.5x, with f (x) being the density and x being the point distance from the camera.

(a) Density pyramid with density jumps (b) Density pyramid without density
jumps.

Figure 12: Density pyramid with (a) and without (b) density jumps

With the creation of this density formula, a smooth continuous visualization of a point cloud can
be realized. There are two main questions for the creation of a density formula:

• What function best describes the density formula of LiDAR data sets?

• How should this density function be reinforced in the point cloud data set?

3.2. Density formula

The density formula is used to describe the distribution of density relative to the camera distance.
By using a continuous formula a continuous distribution of points is made, eliminating density
jumps. This Section will discuss the ideal density formula, without taking into account the impli-
cations this has for the Octree indexing structure of the web viewer. This will be done according
to three examples, the last one being the vario-scale visualization method. For each example two
types of images will be shown, a top-down image of the data-sets spatial extent and a perspective
view of the data set as experienced on the computer screen. An example of the top-down image
is given in Figure 13(a), and an example of the perspective view is given in Figure 13(b).

For a continuous viewing experience it is important to note that a pixel is only able to show a
single point, thus it does not make sense to render more than 1 point per pixel. Currently the most
common screen resolutions is 1 920 x 1 080 pixels, characterized by 1 920 pixels displayed across
the screen horizontally and 1 080 pixels down the screen vertically; giving the screen 2 073 600
pixels. In this thesis the amount of 2 073 600 pixels will be used, although in the future it is very
likely that 4K screens will become the standard. These screens have a resolution of 3 840 x 2 160
pixels, and thus have 8 294 400 pixels in total. Given that the users screen has 2 073 600 pixels, it
should be noted that ideally no more points are requested by the web viewer, since these points
can not be rendered on screen. This does not keep into account caching, but for simplicity this
will not be regarded as important.
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(a) (b)

Figure 13: Example of a top down view (a), and a perspective view (b) of the same data set

For a clear explanation of the density formula it will be illustrated in 2D and 3D in increasing steps
of complexity. In Figure 14(a) the top-down 2D spatial extents of a LiDAR data set are visualized.
In Figure 14(b) we have overlayed this spatial extent with a grid of n ∗ m units. In Figure 14(c)
the same spatial extent of the data set is shown, but from the perspective view. The density grid
is then also translated to a perspective view, similar to what the end-user might experience in
Figure14(d). Throughout this Section we will fill this grid with varying amounts of points, to see
what effect this has on the density of point is the data set and the way these points are perceived
by the user.

(a) 2D spatial extent of LiDAR data set (b) 2D spatial extent of LiDAR data set,
with density grid

(c) 3D perspective spatial extent of LiDAR
data set

(d) 3D perspective spatial extent of LiDAR
data set, with density grid

Figure 14: Overlaying a grid on the 2D and 3D spatial extents of a LiDAR data set to clarify how
density distribution is affected by the perspective translation
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Constant density from camera
First let us illustrate how a constant density in the data set is changed after the perspective

translation. The density at any distance from the camera (shown in the top-down view as the
eye) is the same. In Figure 15(a) we have created the same spatial extents of the LiDAR data set,
with a grid. In each of the grid spaces we will now project an equal amount of points, as seen
in Figure 15(b). For this example we use three points. Once the perspective translation is made
in Figure 15(c), it becomes evident that this constant density does not provide a constant density
of the data set on the screen. In Figure 15(d) it is visualized that the further away from the user,
the more dense the data set appears to be. The grid changes shape, while there still remain 3
points in each grid cell. It is evident that the grid closer to the user, ie. in front, is perceived
as larger. While the grid in the back is perceived as smaller. This means the larger sections in
front are represented by the same amount of points as the smaller sections at the back, making the
visualization sub-optimal.

(a) 2D spatial extent of LiDAR data set,
with density grid

(b) 2D spatial extents, with a density of 3
points per n ∗ n units

(c) Perspective translation of point cloud
with a density of 3 points per n ∗m units (d) User’s visualization of the point cloud

Figure 15: Translating the 2D spatial extents with a continuous density of three points per n ∗ m
units, to a perspective view

The density function of the points in the 2D spatial extent is visualized in Figure 16.
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Figure 16: Discrete density jumps in the AHN2 web viewer
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Octree blocks density from camera
Currently web viewers select points from the octree in a more advanced matter as described in

Chapter 4. The blocks are selected depending on their distance to the camera; close to the camera
more dense blocks of the octree are selected. An example of what this means for the density
grid is given in Figure 17(a). Each block in the octree contains an equal amount of points, the
difference being that these are spread out of an increasingly larger spatial extents, as illustrated in
Figure 17(b). In Figure 17(c) the perspective translation is done. For the user this means there is a
more uniform density across the screen which is visualized in Figure 17(d).

(a) 2D spatial extents, overlayed with an
Octree selection grid

(b) 2D spatial extents, with an increased
density closer to the camera

(c) Perspective translation of point cloud
using octree selection grid (d) User’s visualization of the point cloud

Figure 17: Translating the 2D octree selection method to a perspective view

This however results in the density jumps as introduced in Chapter 1, and an illustration of this
is made in Figure 18.

(a) (b)

Figure 18: Density jumps visible in both the real point cloud viewer (a) and the schematic visual-
ization of the problem (b).

The density formula will look similar to Figure 19. The density jumps as a result of the octree
selection method are highlighted in red.
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Figure 19: Octree density jumps in the AHN2 web viewer
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Vario-scale density from camera
Ideally the density on the screen should be perceived as constant, which means that instead

of overlaying the 2D spatial extents with a grid, and translation that to the perspective view, the
order should be reversed. The perspective view should be overlayed with a grid, which should
then be translated to the 2D spatial extents using an inverse matrix translation, and an improved
density selection is realized. This means that vario-scale visualization is tied closely to the per-
spective matrix translation. The most important variables that contribute to the perspective matrix
translation are:

• Field of View (FoV)

• Near plane

• Far plane

A schematic workflow of how to realize a constant density on the computer screen is visualized
in Figure 20. In Figure 20(a) the resulting grid from the inverse matrix translation is overlayed on
the spatial extent of the LiDAR data set. In Figure 20(b) this grid is filled with a constant number
of points per grid space. In Figure 20(c) the translation is made to the screen, which results in the
constant density grid. Finally in Figure 20(d) the user is presented with a constant density on the
screen, and more importantly no density jumps are visible in the data set.

(a) 2D spatial extents, overlayed with the
inverse density grid

(b) 2D spatial extents, with the inverse
density grid filled with points

(c) Perspective translation of point cloud
using the perspective matrix translation (d) User’s visualization of the point cloud

Figure 20: Translating the 2D spatial extents to a vario-scale perspective view

The resulting density formula of the data set will look similar to Figure 21.

21



0 200 400 600 800 1,000
0

5

10

15

20

camera distance

de
ns

it
y

density f unction

Figure 21: Vario-scale density function for point cloud data sets

This density function results to a continuous density on the screen. This means that during the
calculation from the view frustum to the viewing volume, visualized in Figure 22, the density is
transformed to be uniform across the viewing volume.

Figure 22: Mapping from view frustum to the viewing volume. (Scratchpixel 2016. Retrieved
April 16 2018 from http://www.scratchapixel.com/lessons/3d-basic-rendering/perspective-
and-orthographic-projection-matrix/projection-matrices-what-you-need-to-know-first)

Vario scale density using perspective transformation matrix
This translation from truncated square pyramid to the viewing volume of 2x2x2 is done using the
perspective transformation matrix, for which a simplified version is shown in Figure 23. Where f
represents the far plane, n represents the near plane and S represents the field of view (FoV), as
shown in equation 1

S =
1

tan( FoV
2 ∗

π
180 )

(1)

In Figure 23 xs, ys and zs are the coordinates in the viewing volume, derived from x, y and
z coordinates in the view frustum. Each points XYZ coordinates, inside the view frustum, is
translated to XsYsZs coordinates, inside the viewing volume. From this we can deduct that the
density is also translated through the perspective transformation matrix.

In the viewing frustum there are six planes; the plane closes to the camera is referred to as the
near plane, and the plane furthest away from the camera is referred to as the far plane. The four
other planes are determined by the FoV. According to this, the density function is a product of the
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Figure 23: Perspective transformation matrix

parameters that define the view frustum, the near plane, far plane and the FoV.
Finding the global density function that, dependant on these three variables, will describe the

vario-scale relationship for every screen is outside of the scope of this thesis. This will be dis-
cussed in Chapter 8 as future work.

Density function
In this thesis, for each frame that is evaluated, a density function will be determined depend-

ing on the octree selection procedure that is used by the proposed framework. This allows the
experimentation with multiple density functions per frame, and will produce results that are both
numerically and visually analysed to propose a vario-scale solution. In Chapter 6 a frame is visu-
alized in a vario-scale manner, using four density formulas. The frames density function is shown
in Figure 24. Originally the frame’s density formula is similar to:
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Figure 24: Density function of the frame

Four density functions are created for comparison, each of with preserves a different percentage
of points from the original frame. Algorithm 2 shows the density function that preserves 75% of the
original points. Algorithm 3 shows the density function that preserves 75% of the original points.
Algorithm 4 shows the density function that preserves 75% of the original points. And Algorithm 5
shows the density function that preserves 75% of the original points.

1
0, 6789(0, 0035 ∗ camera distance)3 (2)

1
0, 6789(0, 005 ∗ camera distance)3 (3)
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1
0, 6789(0, 007 ∗ camera distance)3 (4)

1
0, 6789(0, 01 ∗ camera distance)3 (5)

All four of these density functions are visualized in Figure 25, and the resulting vario-scale data
sets are presented and analysed in Chapter 6.
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Figure 25: Four density formulas visualized
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3.3. Algorithmic implementation

For this thesis three possible reinforcements of the density formula have been explored.

• Random removal

• Filtering bands

• Point radius density

These three methods all have advantages and disadvantages in terms of produced result, diffi-
culty of implementation and computing time.

Random removal
Random point removal works on the basis of generating a random value for each point, and
either keeping or discarding the point according to a threshold. This threshold is determined by
the density formula. Python code for the Random Removal algorithm is found in Algorithm 1. For
each point four variables have to be computed; distance from the camera d, random value r, local
density l and threshold t.

The distance from the camera for point p is calculated using equation 6, where cp is the camera
position.

d =
√
(p.X− cp.X)2 + (p.Y− cp.Y)2 + (p.Z− cp.Z)2 (6)

Local density is determined for a circle with radius of 0.5642 meters around a point, which gives
the density per m2 locally, since Area = Πr2 so for r = 0.5642 the Area will be 1m2.

Upside of this method is that random selection is not affected by factors such as spatial point
order. The downside to this method is that it requires the determination of the local density per
m2 for each point in the point cloud data set. Many of these computations are redundant because
they are done for points that will not be selected, but is needed because the percentage of points
to remove (threshold between 0-1) can only be determined if the complete density is known.

Any assumptions of uniform density could significantly speed up this process. Although it is
known that for the AHN2 data sets, which should have a density of at least 9 points per m2, the
density varies from 8 points per m2 to 40 points per m2 locally. This is dependant on many factors
such as flight path and surface structure. For this reason no assumptions are made on the density
of the point cloud as a whole.
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Algorithm 1 Random removal

import numpy as np
import random
import sc ipy

def random removal ( points , camera parameters , d e n s i t y f u n c t i o n ) :
”””

”””
camera origin = camera parameters . o r i g i n
s e l e c t e d p o i n t s = s e t ( )
kdtree = sc ipy . s p a t i a l . KDTree ( points )

for point in points :
d = distance from camera ( point , camera origin )
r = random ( 0 , 1 )
l o c a l d e n s i t y = len ( kdtree . q u e r y b a l l p o i n t ( point , 0 . 5 6 4 2 ) )
t = d e n s i t y f u n c t i o n ( d ) / l o c a l d e n s i t y

i f r >= t :
continue

else :
s e l e c t e d p o i n t s . add ( point )

return s e l e c t e d p o i n t s
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Filtering bands
Filtering bands works on the basis of splitting the data set into smaller partitions, and enforcing
the density formula for these smaller partitions. It essentially makes the density jumps so small they
appear to be continuous. In Figure 26 these bands are visualized, where in the distance d from the
camera an n amount of bands is created with a width of w.

bn ... ... ... b2 b1

d w

camera

Figure 26: Filtering bands

Removing points in the pointcloud by filtering bands is done by first producing the bands used
to filter on. This splits up the data set into parts that each have an allowed point threshold.
Circular bands have been chosen for this implementation, extending outwards from the camera
origin. The first band b1 starts at the camera origin and is a circle with radius w. Each next
band ni + 1 will also have have width w and start at a radius ofi ∗ w from the camera origin and
end at a radius of i + 1 ∗ w from the camera origin. In Algorithm 2 the filtering bands method is
implemented in Python.

Algorithm 2 Filtering bands

def f i l t e r i n g b a n d s ( points ,
camera parameters ,
d e ns i t y f u nc t i on ,
width = 1 . 0 ) :

”””

”””
d i s t a n c e = camera parameters . d i s t a n c e
o r i g i n = camera parameters . o r i g i n
s e l e c t e d p o i n t s = s e t ( )

for i in range ( d i s t a n c e / width ) :
band radius center = i ∗ width + 0 . 5 ∗ width
l o c a l p o i n t s a r r a y = points in band ( or ig in ,

band radius center ,
points )

a l lowed points = d e n s i t y f u n c t i o n ( band radius center )

s e l e c t e d p o i n t s . add ( l o c a l p o i n t s a r r a y [ a l lowed points ]

return s e l e c t e d p o i n t s

Between bands the density changes using the density formula. The density is calculated for the
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centre of the band. This allows the density to gradually decrease between bands. Inside bands the
density is enforced using arbitrary selection, up to a threshold t determined by the density formula.
This selection can be made non-arbitrary, random for example, which would increase computing
time.

The advantage of this approach is the ability to keep local features visually attractive while
simultaneously gradually decreasing the density. It is however not truly continuous because of
the discrete nature of the bands. This method requires two functions, the density formula that
determines the density descent as a local threshold t. And the calculation of local points in the
band derived from the camera origin, band radius center and the total points.

For the Filtering bands approach an implementation has been tested whereby a set amount of
points for each band is selected, removing the need for local density calculations. This would
in theory allow a significant speedup. However due to the data sets spatial extents intersecting
with the outer spatial bands this would result in a density formula depicted in Figure 27. Towards
the spatial extents the spatial bands are intersected, and thus cover a smaller area. Selecting a set
amount of points for each filtering bands would then increase the density towards the edges of
the data set spatial extents. This problem is schematically depicted in Figure 28, where due to the
spatial extents only the orange area of the outer band is filled with points, compared to the grey
area in the smaller band. This results in a smaller area being filled with the same amount of points
towards the spatial extent of the data set, resulting in a density spike towards the edges of the
data set.
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Figure 27: Density function 1
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Figure 28: Filtering bands using predetermined amount of points per band
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Point radius density
Point radius density works on the basis of plotting circles around points in the data set, where
only 1 point is allowed in each circle. This way an upper density bound is determined; a limit of the
maximum amount of points for any given area. By linking the radius of the circles to the density
function a continuous upper density bound can be created. In Figure 29 an example is given of the
circles being projected on the data set, in each of which only 1 points is allowed.

camera

Figure 29: Point radius density

The creation of circles with a continuously increasing radius is based on the packing problem, a
mathematical problem of packing a single container as densely as possible. Circle packing is a sub
field of study. It studies fitting circles, sometimes of equal size, into a 2D or 3D euclidean space.
The fitting must be done so no overlap occurs, and thus guarantees a maximum amount of circles
for each given area or maximum amount of sphere for each given volume. As discusses, we will
limit this research to 2D euclidean space. Circle packing is the choice for this problem, since the
2D neighbourhood of a 0D element is represented as a circle.

In Figure 30 an example is given of the most optimal 2D circle packing, a hexagonal distribution.

Figure 30: 2D Point radius density

For fitting circles of equal size in a 2D euclidean space the optimal ratio is shown in equation 7
using the hexagonal packing distribution (Chang & Wang, 2010). This indicates that for each
square meter a maximum of 90% of the surface can be covered by circles.

Π
√

3
6
≈ 0.9069 (7)

This information is critical for determining the formula for the upper density bound. Knowing
that at most 90% of the space will be occupied by circles creates a relationship between the neigh-
bourhood (radius) in which there can be no other points. For a given radius, the area occupied by
the circle is shown in equation 8. In equation 9 it is deducted that there can be a maximum of 1
point in each 3.5r2 unit of area. This allows us to determine the amount of points in any area, by
specifying the radius in which there can be no other points.

A = Πr2 (8)

A
0.9

=
Πr2

0.9
≈ 3.5r2 (9)

Knowing the relationship between circle radius and the area it covers for a given point, we
can determine how to apply this to density. If we want n points per square meter this means we
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want 1 point per
1
n

square meter. This means we can deduct the relationship between density and
radius, which is shown in equation 10. In equation 12 we deduct how to determine the radius
from the density.

1
n
= 3.5r2 (10)

r2 =
1

3.5n
(11)

r = 2

√
1

3.5n
(12)

If we wish to enforce a density of 5 points per square meter, this means the radius to determine

the area in which there can be no other point is r =
2

√
1
5

3.5
≈ 0.24meter. Since the density function

determines the amount of allowed points for a given area, relative to the distance from the camera,
these functions can be combined to produce a radius function relative to the camera distance. This
gives the radius function in equation 13:

radius = 2

√
1

3.5 ∗ density f unction
(13)

This function specifies the radius in which no point can be closer than radius r to another point,
to reinforce the upper density bound. Quick execution of this function requires a fast lookup of
point neighbours. A KD-tree is used for this purpose. Using a Nearest Neighbour algorithm, the
neighbouring points inside this radius r can be discarded from the data set. What is left is a data
set with a density that is never above the plotted upper limit of the density.

Python code for the Point radius density algorithm is found in Algorithm 3. For each point
three variables have to be computed; distance from the camera d, allowed radius r and the nearest
neighbours nn. If a point has already been used as a neighbouring point inside the circle radius of
a point, no computations have to be done for that point. In Figure 31 these points are shown in red,
while the points for which all three computations have to be done are shown in green. Depending
on the amount of points that are removed this can significantly speed up the computation.
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Figure 31: Point radius density
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Algorithm 3 Point radius density

import sc ipy

def c i r c l e p a c k i n g ( points , camera parameters , d e n s i t y f u n c t i o n ) :
”””

”””
used points = [ Fa l se ] ∗ len ( points )
s e l e c t e d p o i n t s = s e t ( )

kdtree = sc ipy . s p a t i a l . KDTree ( points )

for j , point in enumerate ( points ) :
i f used [ j ] == True :

continue

d = distance from camera ( point , camera parameters )
r = r a d i u s f u n c t i o n ( d e n s i t y f u n c t i o n ( d ) )
nn = kdtree . q u e r y b a l l p o i n t ( point , r )

for i in nn :
used [ i ] = True

s e l e c t e d p o i n t s . add ( point )

return s e l e c t e d p o i n t s

3.4. Method evaluation

This Section will evaluate the proposed methods in terms of speed per frame. All three imple-
mentations have been tested for three frames, shown in Figure 32. The three methods will be
evaluated in terms of computational speed. Table 2 shows the results of computational speed for
the three proposed methods.

(a) Frame A with 73 241 points
(b) Frame B with 453 438 points (c) Frame C with 1 992 453

points

Figure 32: Three evaluated frames
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Frame A (s) Frame B (s) Frame C (s)

Random removal 1.3 5.4 24

Filtering bands 0.6 3.6 15.1

Point radius density 0.01 0.08 0.36

Table 2: Computational speed of proposed methods

The Point radius density is a clear improvement over the other 2 methods, showing improve-
ments of 800% over the Random removal method and 500% over the Filtering bands method.
This improvement is due to the fact that only the points that are kept in the vario-scale result are
processed, while the discarded points are not.
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4. Framework and Data sets

The creation of a web-based point cloud visualization framework requires solutions for each stage
of the framework. The framework has four major stages, for each of which this Chapter will
discuss the best options. These four stages are storage, indexing, processing and visualization. How
these four stages interact with each other in the framework is depicted in Figure 33. In Section 4.1
a consideration is made between the most used or prevailing industry standards for each stage.
Section 4.2 will describe which solution is chosen, and will present the framework used for the
proof of concept.

Figure 33: Basic framework for proof of concept

4.1. Framework considerations

This Section will evaluate the available option for each of the four major stages of the framework;
storage, indexing, processing and visualization. In this Section the available options will be elaborated
upon. No choice of framework option will be made, since all stages of the framework interact with
each other. It is thus important to evaluate the options not as isolated choices, but in the context
of the bigger framework.

Storage
For storage there are two main options to choose from, which are a file-based storage method and
a database storage method. For each of these methods there are multiple implementations, for
example a file-based storage method could be comprised of ASCII-files, LAS-files or LAZ-files,
and for database storage there is a wide variety of systems to choose from. For this consideration
the LAS/LAZ-file system will be evaluated against the PostgreSQL database. The LAS/LAZ-file
system is currently the most optimal file-bases system for point clouds, and PostgreSQL has the
pgpointcloud extension for storing point clouds.

There are two considerations for the storage method, which are data set size and i/o operation
speed. Good compression will reduce the data set size, but might hinder i/o operations due to
the need for decompression. For this proof of concept the emphasis will lie on reduced data set
size, since the AHN2 data set in LAS form is approximately 12 TB. In terms of i/o operations a
PostgreSQL database solution is significantly slower compared to a LAS-file system, depending
on the performed operation (van Oosterom et al., 2015). LAS files perform the best for i/o oper-
ations because, compared to LAZ files, these do not need to be decompressed. The performance
difference between LAS and LAZ files is most notable in smaller queries, where the decompres-
sion overhead is relatively large. PostgreSQL database storage offers a reduced compression rate
compared to LAZ files. LAZ files offer a x10 compression over LAS files, whereas PostgreSQL
offers a x4 compression rate over LAS files.

Indexing
For point cloud indexing there is a wide variety of indexing methods. For web-based visualization
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there is one indexing method that is the most widely used; an Octree. The use of an octree is based
on the fast querying capabilities that it provides. The data is stored in blocks that are queried
depending on their position in the view frustum. This offers advantages in terms of caching, and
it limits data transfer per user input; when the camera position changes, additional blocks will
be queried from the back-end as needed. The previously loaded blocks that are still visible in the
view frustum do not have to be queried, saving requests to the web-server.

For this section two of the most widely used octree indexing methods for file-based point cloud
data sets will be discussed, PotreeConverter and Entwine. Both of these indexing methods offer
Octrees that are compatible with the web viewers discussed later.

The PotreeConverter builds an Octree with a limit of 20 000 points per block. Each point is
selected and evaluated prior to being inserted. It is determined if there are already points within
n units of the point, and if so the point would be sent down to the next level. This threshold n is
250 units for the first level of the octree, and is halved for subsequent each level in the Octree. This
check is done for each block, until an empty space in a block is found or a new block is created. It
is important to note that the point insertion order is arbitrary, and dependant on the first point in
the first object that is read.

Entwine builds an Octree with a soft limit of 32 768, or 215, which is the maximum value for a
signed 16 bit integer. This value is calculated using the span and over f lowThreshold parameters.
These values can be changed in the config file and by default span = 256 and over f lowThreshold =
0.5. For each block a voxel grid is created of span3, or 2563 = 16 777 216 voxels by defult. To get
an even distribution of points throughout a block in the octree, during insertion each point is eval-
uated against this voxel grid. If the voxel is empty, the point is inserted. If the voxel is already
filled, both points are evaluated against each other. The point closest to the voxel’s center is kept.
Points that are not insert into the block, are put in one of 8 overflow buckets depending on its
location. Each of these overflow buckets will become a child block once the amount of points in
the voxelgrid as well as the points in the overflowbuckets is more than 32 768.

Processing
For the processing of point cloud data there are two options; the use of open source libraries or
the creation of custom tools in a programming language. The main advantage of open source
tools is that a large part of the framework is created, and the tools have been optimized. These
tools, such as PDAL or LAStools, provide multiple extensions for reading, writing and a multi-
tude of different operations on LAS files. Creating a custom solution in a programming language
such as Python or C++ offers the ability to exactly control the implementation of the vario-scale
algorithms, and quickly adapt to new findings.

The custom nature of the vario-scale visualization implementation requires high degrees of
control over the processing environment. Thus a programming language to produce a custom
solution is required. There are multiple options to choose from, each with its own advantages and
disadvantages. For comparison, Python and C++ will be briefly discussed because they both offer
extensions for LAS/LAZ files. The main difference being that Python is an interpreted language
and C++ is a compiled language. This creates an obvious advantage for C++, which has more
compact code and faster runtime speeds. On the other side advantages for Python include adop-
tion rate, writability and readability.

Visualization
For point cloud web-visualization there are two main frameworks that are widely used; Potree
and Plas.io. In terms of compatibility these do not differ greatly. Both of these frameworks use
an Octree indexed file-based point cloud data set to query from, such as the index created by
PotreeConverter or Entwine.

In Potree point selection is done in two actions. Firstly a 2D profile of the required spatial
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extents of the visualized region is created. The required Octree nodes are selected based on their
spatial extents intersecting the 2D profile. A second constraint ensures no nodes deeper than
the maximum allowed depth of the Octree are selected. Requests are made to the web server
to retrieve the selected nodes and these nodes are stored in a priorityqueue. Secondly a view
frustum is created, and for each node in the priorityqueue a determination is made whether or
not the node is inside the view frustum, does not exceed the point limit and does not exceed the
allowed Octree depth.

For Plas.io no information is available on the point selection. A request for an explanation is
currently pending. In Plas.io the main advantage is the fact that camera parameters are passed
as parameters during request handling. These five parameters allow the determination of the
camera orientation within that data set CRM. The five camera parameters that are passed are:

• azimuth

• distance

• max-distance

• target

• elevation

4.2. Proof of concept framework

So far multiple options for each part of the framework have been discussed. This section will
choose an implementation method for each of the four parts: Storage, Indexing, Processing and
Visualization. Each decision made will be made with integration of systems in mind to create an
adequate, easy to work with, web-based work flow.

Storage
For Storage the decision has been made to pick the most cost effective, thus highest compression,
method available. Since the complete AHN2 data set in LAS format would be approximately
12TB it can be stated that compression and cost reduction are of high importance. As discussed in
Section 4.1 the LAZ file system offers the best compression rates. The resulting AHN2 data set to
be stored would be approximately 1TB. Table 3 shows the cost for storing the AHN2 data set on
different cloud platforms.

Warm Storage Cold Storage Long term storage

AWS $20.70 $9.00 $3.60

Google $18.00 $9.00 $6.3

Azure $16.74 $7.65 $1.53

Table 3: Pricing of S3 storage, per year as of December 2018

Cloud storage is chosen because of fast communication with other framework stages hosted
in the cloud environment, typically 10Gbps, and a 99.99% up-time of data service. Microsoft’s
cloud service, Azure, is the cheapest in all three categories when comparing cloud services. Al-
though not the cheapest option, storage on AWS is chosen because of the interoperability with
other framework stages.

37



Indexing
For indexing Entwine is chosen. The choice for Entwine is made because of its integration with the
existing workflow; it seamlessly reads data from the Amazon S3 storage and its indexed structure
can be read by most web-viewers.

Comparatively Entwine also provides faster indexing than PotreeConverter. This can be ex-
plained by the selection method. The PotreeConverter evaluates whether there are points within
threshold n units in the block, and keeps or discards the points based on that. This requires mul-
tiple vector calculations to determine the distances between points. Entwine on the other hand
places each point in a voxel grid. If the block is already occupied, a single calculation suffices to
determine whether or not the new block is closer to the voxel’s center.

Processing
For processing the most important factors include computational speed and custom algorithm
implementation. Because the decision is made to use LAZ files in both Storage and Indexing, it is
critical that the processing framework has a workable extension for LAZ files.

Python is chosen to build the processing framework over other programming languages such
as C++. Python offers the benefit of producing readable algorithms and an understandable im-
plementation. In combination with Python multiple extensions will be used to make up for the
normally slower speed of an interpreted language; the Laspy extension will be used for LAS/LAZ
file operations and the Numpy extension will be used for fast N-dimensional array operations
(uses C for speed).

Visualization
For visualization Plas.io is chosen. The most important factor is the accessibility of camera param-
eters, which are crucial for vario-scale visualization. By using the camera parameters this allows
us to calculate the camera origin, which is crucial for the implementation of the vario-scale visu-
alization method.

Resulting framework
The resulting framework stores the AHN2 point cloud data set as LAZ files in an AWS S3 bucket.
This bucket is queried by Entwine, running on AWS, for indexing. The indexed data set is then
stored in another AWS S3 bucket. This bucked can be queried by Greyhound, also running on
AWS, which queries the original data set (with density jumps). This data set run through the
Python implementation, and the vario-scale implementation is performed to serve the client a
vario-scale point cloud data set. This is illustrated in Figure 34.

The indexing operation, shown in red, is performed once for the entire data set (pre-processing).
The visualization operation, shown in green, is performed every time the client queries the data
set (post-processing).

4.3. Data sets

The data to be processed and visualized is the AHN2 data set. The AHN2 data set consists of
639 478 217 460 points in total. The complete data set is available for download via the PDOK
(Publieke Dienstverlening Op de Kaart).

Multiple subsets of the complete AHN2 data set will be created for testing and scaling purposes.
All data sets will be stored in the LAZ file format on AWS S3. These files are accessible through
every server that has been given the proper credentials. Figure 35 illustrates the data sets. Table 4
shows some specifications of the data sets.
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Figure 34: The proposed framework

Name Format Total Size Points

Delft Wippolder LAZ 10,7MB 5.00× 106

TU Delft Campus LAZ 162MB 1.00× 108

Municipality Delft LAZ 3,2GB 2.20× 109

Province Zuid
Holland

LAZ 84,7GB 6.03× 1010

AHN2 Full LAZ 987GB 6.39× 1011

Table 4: Data sets

Figure 35: The data set regions
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5. Implementation

5.1. Considerations

For the proof of concept for vario-scale pointcloud visualization, the Point radius density method
as described in Chapter 3 is chosen. As shown in Section 3.4 the computational speedup is a
massive improvement over the other two methods. The hypothesis is that, while removing a
large part of the density jumps, some dense features will still be distinguishable visually. Because
only the upper bound of the density is set, all features less dense than this upper bound will be
fully distinguishable. This might include some of the existing density jumps. This hypothesis will
be both visually and numerically tested in Chapter 6.

5.2. Implementation

In Chapter 4, a framework has been chosen to implement the proof of concept. The framework
is implemented on AWS instances, in this Section are more in depth description will be given of
how each part of the framework is implemented.

Storage - LAZ file system
Storage of both the raw data set and the indexed data set is done on AWS S3 storage. The raw
data buckets are made publicly available through:

• http://tu-delft-campus.s3.amazonaws.com/

• http://municipality-delft.s3.amazonaws.com/

• http://province-zuid-holland.s3.amazonaws.com/

The indexed data sets are not public, these can privately be accessed using the AWS Cli and the
authors private credentials.

Indexing - Entwine
Indexing is done using Entwine, publicly available on https://github.com/connormanning/entwine.
Entwine is run using Docker, and requires a config file with parameters. The configuration that is
used is for for example the Province Zuid Holland data set is added in Apendix ??.

Web server - Greyhound
The web server is run using Greyhound, publicly available on https://github.com/hobu/greyhound.
Greyhound is run using a custom the AWS image (AMI) which is not made publicly available
because it contains the authors private AWS credentials. Via these permissions, and using the
following configuration file in Apendix D, Greyhound will query the indexed data sets. It is im-
portant to allow inbound and outbound traffic on port 8080 for the instance, otherwise Greyhound
will be unable to either receive or send requests.

Processing - Python
The Python implementation is run on the same AMI, and uses a Flask API to behave similar to
the Greyhound web server. This implementation is also publicly available on https://github.com/
JippevdMaaden/thesis. Note that the Greyhound web server url will have to be edited manually
in the utils.py file. It is important to allow inbound and outbound traffic on port 5000 and 8080,
which will allow requests to Greyhound and Flask.
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Visualization - Plas.io
The Plas.io webserver has not been modified, and is run by visiting http://speck.ly/. Two parame-
ters are passed as variables in the url, the Flask web server url as s and the resource name as r. A
Speck.ly URL looks like this:

http://speck.ly/?s=ec2-18-195-51-3.eu-central-1.compute.amazonaws.com:8080/r=tu-delft-campus

5.3. Resulting approach

Make sure that on all the instances that are used the appropriate credentials are supplied to the
AWS Command Line Interface (AWS CLI). The configuration file for Greyhound should be al-
tered, a custom path should be added to the resource that will be made available for the im-
plementation. The security settings on all instances should allow traffic on the ports mentioned
above. Once the instances are set up properly Greyhound and Flask should be started by running:

docker run -d -it -p 8080:8080 -v ∼/greyhound:/root/greyhound -v ∼/.aws:/root/.aws connormanning/-
greyhound -c /root/greyhound/config.json

and

python ∼/thesis/flask/speckly app.py

This allows requests to be made to the instance running the Flask app on port 5000, the default
port for Flask. These requests are then directed to Greyhound which returns a bitstream of a
LAS file. This bitstream is then turned in to the LAS file in the Flask app, where it is processed
and turned into a bitstream again. This bitstream is then sent to speck.ly where the points are
visualized in the web browser.

As of writing a bug is encountered when turning the LAS file into a bitstream in the Flask app,
which results in no points being visualized in the web browser.
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6. Results

In this Chapter two results will be presented. In Section 6.1 a small benchmark is presented on the
parallel indexing of massive point cloud data sets using cloud computing. In Section 6.2 a single
frame will be presented that has been created using an Entwine indexed point cloud queried by
the Plas.io web viewer.

6.1. Parallel point cloud indexing

Because of the decision to choose a distributed cloud computing solution, a small benchmark has
been made in which this decision is put into perspective by showing the speed-up compared to
performing the indexing computations on a single machine.

Two benchmarks are done, the first on a single machine to test which configuration is best
for non-parallel indexing. The second on a cluster to determine the speedup parallel indexing
provides compared to non-parallel indexing. For this benchmark four data set are used, presented
in Section 4.3. The AHN2 data set is not used, due to the cost of the combined computational
power required.

The preliminary, non-parallel, benchmark is done on four different AWS instances. These AWS
instances are instances optimized for compute-intensive workloads. These deliver a cost-effective
price per compute ratio. The properties of these four instances are shown in Table 5.

Model CPU Mem (GiB) Network
Performance (Gbps)

c5.2xlarge 8 16 up to 10

c5.4xlarge 16 32 up to 10

c5.9xlarge 36 72 10

c5.18xlarge 72 144 25

Table 5: AWS instances used for non-parallel benchmark

The preliminary benchmark results are illustrated in Table 6. These show that the c5.4xlarge
instance on AWS is the most suitable for a scalable distributed approach. For a data set the size
of the TU Delft Campus it is able to process the most points per hour, with 1.68× 109 points per
hour. This would mean that indexing the entire AHN2 data set would take 380 hours. In the pre-
liminary benchmark we see the tendency for data set with more points to be processing slower,
already hinting to the possible improvements a distributed cloud computing approach could offer.
Notably there seems to be a drop in performance for the c5.9xlarge and the c5.18xlarge instances.
The nature of this drop in performance is not researched. There could be multiple possible expla-
nations, such as the locality of hardware that make up these instances or i/o collisions due to the
large amount of CPU’s. No research is done into this since it is outside the scope of this thesis.
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c5.2xlarge Time (s) Points per hour

Delft Wippolder 20 1.02× 109

TU Delft Campus 410 8.82× 108

Municipality Delft 11 200 7.09× 108

Province Zuid Holland 389 452 5.57× 108

c5.4xlarge Time (s) Points per hour

Delft Wippolder 20 1.02× 109

TU Delft Campus 215 1.68× 109

Municipality Delft 6 427 1.24× 109

Province Zuid Holland 224 762 9.65× 108

c5.9xlarge Time (s) Points per hour

Delft Wippolder 20 1.02× 109

TU Delft Campus 249 1.45× 109

Municipality Delft 6842 1.16× 109

Province Zuid Holland 235 276 9.22× 108

c5.18xlarge Time (s) Points per hour

Delft Wippolder 21 9.73× 108

TU Delft Campus 303 1.19× 109

Municipality Delft 7 800 1.02× 109

Province Zuid Holland 250 202 8.67× 108

Table 6: Preliminary benchmark

The second benchmark, using distributed cloud computing for parallel processing, has been
performed for two data sets. The first two data sets are not included in this benchmark because
of their size. These data set are too small to offer a significant speedup compared to indexing on
a single instance. The largest data set, the AHN2 data set, has not been used due to economic
considerations; indexing the entire data set would take 380 instance hours and in the process
would cost $260. In Table 7 the results are presented.
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c5.4xlarge Instances used Points per hour Merging overhead
(s)

Municipality Delft 20 3.26× 1010 210

Province Zuid
Holland

100 1.49× 1011 1 186

Table 7: Cloud computing benchmark

In total the Municipality Delft data set is indexed in 249 seconds of processing, and 210 seconds
of merging. In total the indexing takes 249 + 210 = 459 seconds. Compared to the 6 427 seconds
the indexing takes on a single instance, this offers a 1 400% improvement. The Province Zuid
Holland data set is indexed in 1456 + 1186 = 2642 seconds, which is an improvement of 8 500%
over the indexing on a single instance.
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6.2. Vario-scale frame

Four different density formulas have been used to create four different vario-scale frames. An anal-
ysis will be made into the main goal of this thesis, removing the density jumps from the frame.
The method used to enforce the density formula is the Point radius density method proposed in
Chapter 3. The framework used to create these results is determined in Chapter 4 and its imple-
mentation is explained in Chapter 5.

The four density formulas used to visualize the vario scale frame have been introduced in Sec-
tion 3.2. These are:

• Density formula 1: 0, 6789(0, 0035 ∗ camera distance)3

• Density formula 2: 0, 6789(0, 005 ∗ camera distance)3

• Density formula 3: 0, 6789(0, 007 ∗ camera distance)3

• Density formula 4: 0, 6789(0, 01 ∗ camera distance)3

And each preserve a percentage of points in the data set, from 75% to 12.5% respectively. These
density formulas are visualized in Figure 36.
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Figure 36: Four density formulas visualized

The results will be presented in a similar fashion as the examples given in Section 3.2. Firstly
the graph with the density jumps is presented, similar to the graph in Figure 37. In addition to
this graph, the density function that is used will be plotted, showing which regions of the point
cloud have been removed, and which regions are still visible. In Figure 37(b) both the upper block
density is depicted in red, and the lower block density is depicted in blue. It is important to realize
that in the 3D spatial extents of the data set there are infinite density formulas for every line from
the camera outward. The upper block density and lower block density merely show the highest density
function and lowest density function respectively that occur in this data set.

Four images in total will be shown for each result; a top down view of the pointcloud density
will be show and an image of the perspective view from the camera position will be presented.
This will be accompanied by two images that show the top down view of the point cloud den-
sity and a perspective view, for the removed points. These images will be guided by a graph
showing the density formula that is used to create the image. For reference, on the next page
Figure 38 and Figure 39 are presented, the original top down and original perspective view of the

46



frame respectively. These two Figures are also added as Appendix E and Appendix F respectively,
which should be used to visually compare the results presented here to the original top down and
perspective view.
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(a) Density jumps currently in the frame

(b) Density function plot top down

Figure 37: Density jumps (a) and their representation in the data set (b)
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Figure 38: Original density of frame
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6.3. Density function 1

This density function used in this section, is presented in Figure 40. This function keeps 75% of
the original data set, the area marked in green. Some of the density jumps are removed, although
a large part of the density jumps still remain in the data set. Figure 41 shows these dense regions
still exist. In Figure 42 it is visible that from the perspective view there are still large density jumps
marking the transition between levels in the octree.
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Figure 40: Density function 1

The Figures showing both the removed points density and perspective views, Figure 43 and
Figure 44 respectively, show that the points that are being removed are mainly around the density
jumps that were previously visible. Not enough points seem to have been removed to completely
eliminate the density jumps however.
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Figure 41: Density function 1 density of frame
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Figure 43: Density function 1 density of the removed points
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6.4. Density function 2

This density function used in this section, is presented in Figure 45. This function keeps 50% of
the original data set, the area marked in green. Most of the density jumps are removed, with
the exception of a region in the middle of the frame where a density jump is still visible in the
data set. Figure 46 shows some of these dense regions. In Figure 47 it is visible that from the
perspective view there is a region in the middle of the frame where a density jumps marks the
transition between levels in the octree.

0 200 400 600 800 1,000
0

5

10

15

20

camera distance

de
ns

it
y

density f unction
upper block density
lower block density

Figure 45: Density function 2

The Figures showing both the removed points density and perspective views, Figure 48 and
Figure 49 respectively, show that a large amount of points around the density jumps are being
removed.
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Figure 46: Density function 2 density of frame
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Figure 48: Density function 2 density of the removed points
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6.5. Density function 3

This density function used in this section, is presented in Figure 50. This function keeps 25% of the
original data set, the area marked in green. All of the visible density jumps are removed, with the
exception of density jumps created by octree blocks behind the camera view frustum. These density
jumps do however become increasingly visible due to the lack of density in the overall data set.
Figure 51 shows these density jumps, that stand out due to the lack of context. In Figure 52 it is
visible that from the perspective view no density jumps are discernible.
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Figure 50: Density function 3

The Figures showing both the removed points density and perspective views, Figure 53 and
Figure 54 respectively, show that all of the points around the density jumps are being removed.
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Figure 51: Density function 3 density of frame
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Figure 53: Density function 3 density of the removed points
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6.6. Density function 4

This density function used in this section, is presented in Figure 55. This function keeps 12.5% of
the original data set, the area marked in green. All of the density jumps are removed. Figure 56
shows the lack of density jumps. In Figure 57 it is visible that there are no density jumps in the data
set, but the context of the data set is difficult to read due to the lack of points in general.
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Figure 55: Density function 4

The Figures showing both the removed points density and perspective views, Figure 58 and
Figure 59 respectively, show that a large part of the data set has been removed.
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Figure 56: Density function 4 density of frame
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Figure 58: Density function 4 density of the removed points
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7. Discussion and Future work

This thesis has two objectives. Firstly to create a theoretical implementation of vario-scale visual-
ization for point cloud data. Secondly to create a proof-of-concept for this implementation. Both
of these objectives are introduced in Section 1.1. In this Chapter the results will be discussed in
Section 7.1, and the main findings will be presented in Section 7.2.

7.1. Discussion

Benchmark
In the parallel point indexing benchmark two benchmarks are run, first a preliminary benchmark
to determine which AWS instance is best suited for the indexing. Secondly a distributed cloud
computing benchmark for parallel processing. The results are presented in Table 8

single instance
processing (s)

parallel
processing (s)

speedup (%) instances used

Municipality
Delft

6 427 459 1 400 20

Province Zuid
Holland

224 762 2642 8 500 100

Table 8: Comparing benchmark results

Using parallel processing shows significant speed up in indexing time for both data sets. The
advantage of using multiple instances becomes clear, with an 8 500% speedup using 100 instances
compared to a 1 400% speedup when using 20 instances. Where an n number of instances is used,
an n00% speedup is expected. This is not the case due to the merging overhead per operation,
which can not be performed in parallel and thus does not enjoy the speedup received from pro-
cessing across multiple instances. The merging overhead is visualized in Figure 60. Without this
merging overhead the speedup would be 2 581% for 20 instances and 15 436% for 100 instances.

parallel processing merging overhead

indexed data setraw data set

Figure 60: Merging overhead

Single frame vario-scale
A visual comparison of the multiple frames, as seen in Figure 61, shows that density formula 2
is the most successful in removing density jumps while retaining the spatial context of the data
set. Both density formula 3 and 4 remove too much of the spatial context, while density formula 1
retains too many density jumps. There are however slight density jumps visible in the furthest edges
of the data set, in line with the hypothesis proposed in Chapter5.
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(a) Density formula 1 (b) Density formula 2

(c) Density formula 3 (d) Density formula 4

Figure 61: Visual comparison of the four density formula’s used

7.2. Findings

Theoretical vario-scale implementation
In Chapter 3 the theoretical reasoning behind the vario-scale implementation is explained. It
follows the translation of a continuous declining density in the data set, to a homogeneous density
presented on screen. In Figure 62 this transition is visualized. A declining density formula shown
in Figure 62(c) results in a constant density on screen, shown in Figure 62(d)

(a) Data set spatial extents (b) User’s visualization of the point cloud
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(c) Density in data set
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(d) Density on screen

Figure 62: From data set spatial extents to users screen

Furthermore three theoretical approaches are presented to enforce this vario-scale visualization
during the proof-of-concept practical implementation. Out of these three implementation meth-
ods the Point radius density method is most suitable in terms of simplicity and computational com-
plexity. The Point radius density method allows the enforcement of a continuous density formula
through the relationship between the camera position and the projected circle around a point in
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which no other point can exist, for visualization purposes of the frame.

Practical vario-scale implementation
The practical implementation of vario-scale visualization for point cloud data is based on existing
web-server architecture that serves point cloud data to web-viewers. This is done through an
octree index, which allows for little querying due to its spatial indexing structure. The proposed
implementation in Chapter 5 removes points from the queried data set to create a point cloud
with a continuous declining density.

As discussed in Section 7.1 the implementation with the best results is the implementation of
density function 2, which removes 50% of the data set. This density function is presented in Figure 63,
where the area marked in red is the regions of the point cloud data set that are removed.

0 200 400 600 800 1,000
0

5

10

15

20

camera distance

de
ns

it
y

density f unction

Figure 63: Density function 2

When comparing the original frame, visualised in Figure 64(a), to the vario-scale frame, visual-
ized in Figure 64(b), it is apparent that a large part of the density jumps are removed.

(a) (b)

Figure 64: Original frame (a) compared to the vario-scale frame (b)

Main findings
The main finding of this thesis is twofold. For the theoretical implementation of vario-scale point
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cloud visualization the importance of the view frustum perspective translation matrix is proven.
There is a direct relationship between the parameters that create the view frustum, and the density
function that should be created for a frame. The Point radius density method as presented is the
most efficient method to enforce the required density formula for a given frame. For the practical
implementation it is proven that it is possible to visualize massive point clouds in a vario scale
way using current web viewer architecture. This method does however have its shortcomings
in terms of computational speed; it is not yet possible to compute 30 frames per second. The
required minimum for visualizing the point cloud in a web viewer. In terms of density functions,
four functions have been researched, with varying results. Some density functions either show too
many points, leaving density jumps, or show too little points, removing too much of the context.

7.3. Integration in scientific body of work

Currently there is a very limited body of research done on the vario-scale visualization of point
cloud data sets. This thesis is one of the first to contribute to the area of research. In Section ??
recommendations will be made as to where further research should focus.
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8. Conclusion and future work

This Chapter will discuss the extent to which the research question, and its sub-questions, have
been answered in Section 8.1 and recommendations will be made for future works in Section 8.2

8.1. Conclusion

First the four supporting research questions will be answered, after which the main research ques-
tion will be answered.

1. To what extent is the current body of research done on the vario-scale visualization of vector data sets
relevant for the vario scale visualization of point cloud data sets?

The current body of research for vector data sets is described in Section 2. For the vario-scale
visualization of vector data sets a semantic data set (such as GAP-face tree and GAP-edge
forest) is created to complement the existing vector data. This semantic data set acts as a
look-up when determining the scale level and the related vario-scale visualization.

Attempts have been made in this thesis to enrich the massive point cloud data set with such
semantic information. The major difference when determining semantic information for
point cloud data sets vs. vector data sets is that for the point cloud data set every point will
have to be enriched. Making the amount of semantic information for the same area orders
of magnitude larger for a point cloud data set. In some attempts this has proven to increase
the data set size by up to 40%.

Because indexing the data set with a fourth dimension has proven unfruitful, there is no
main takeaway from the research done on the vario-scale visualization of vector data sets.

2. To what extend can a theoretical post-processing approach be created for vario-scale visualization of
point cloud data sets?
Three methods are proposed for the reinforcement of a per-frame vario-scale visualization
of the point cloud data set. The most computationally efficient, Point radius density, is chosen
to implement. The idea of enforcing density through the radius around a point is novel in its
simplicity and the way in which it allows a continuous density to be reinforced throughout
the point cloud data set.

3. Which point-cloud processing framework is best suited to create a proof-of-concept vario scale visual-
ization platform for the AHN2 point cloud?

Chapter 2 gives an introduction into the point cloud processing life-cycle, from storage to
visualization. This creates an introduction to Chapter 4 where multiple frameworks for each
phase of the point cloud processing life-cycle are considered.

The choice is made for a point cloud processing framework that unitizes the possibilities of
cloud computing as well as web servers. With all instances and storage running on AWS, the
decision has been made to use Entwine for indexing, Greyhound for processing and Plas.io
for visualization. These frameworks are compatible and thus allow this thesis to focus on
the novel implementation of vario-scale visualization for point cloud data sets.

4. To what extend can the theoretical approach be implemented in an existing point cloud web visualiza-
tion framework?
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The implementation of the theoretical method is done through a second web server, which
retrieves the point cloud data from the Greyhound web server and processes it as a vario-
scale solution. As discussed in Section ?? future research should look into implementing the
solution in the Greyhound web server.

Lastly the main research question will be answered:

To what extent can a vario-scale visualization method be created that eliminates density
jumps from the web-based visualization of the AHN2 point cloud?

The creation of a vario-scale visualization method is successful, with the creation of a method
that is developed on top of an existing point cloud visualization technology stack.

A theoretical approach of enforcing a density throughout the data set so that the density on
screen is perceived as continuous is created. For the practical approach, removing density jumps,
multiple density formulas are created that remove points close to transition areas between Oc-
tree levels. This is enforce using the Point radius density method, where a formula is developed
whereby point density is linked to circle radius relative to the distance to the camera, in which
there can be no neighbouring point. Allowing for an enforcement of the upper density limit in the
point cloud data set.

This theoretical approach is implemented in an existing point cloud visualization technology
stack, where it is evident that a significant amount of points need to be removed to achieve rele-
vant results in removing the density jumps.

8.2. Future work

This Section will discuss improvements on the current implementation and future work for fur-
ther research on the vario-scale visualization of point cloud data sets.

4D index implementation
In Chapter 3 a brief mention is made into the 4D indexing of the point cloud data set, something
which has been researched in this thesis but which proved to be too time intensive. The general
goal of creating this 4D index is to have a 4th value which assists in the retrieval of points in a
vario-scale manner. This, in theory, removes a computational load for each frame and displaces
the computational load to the indexing of the point cloud. This will prove to be a major advantage,
since it will be a big step towards reaching the ability to handle 30 vario-scale frames per second.

The 4th dimension on which the point cloud is indexed should be an attribute which assigns a
weight to the point, determining whether or not it should be rendered. This weight is similar to
the Generalized Area Partitioning implementation discusses in Chapter 2 introduced by van Oos-
terom (2005). This would remove the need to compute any point neighbourhood, thus removing
a large part of the computational load. Removing this processing step is visualized in Figure 65.

Determine a global formula, and query blocks accordingly
In Chapter 3 the relationship between the camera parameters and the required density function for
vario-scale visualization is proven. For the results presented in Chapter 6 four different density
functions have been tested. Determination of a global density formula which, dependant on the
camera parameters, would create a vario-scale visualization method independent of data set or
screen parameters.

This would require a new point cloud visualization framework to be created, since multiple
factors such as indexing and Octree block selection method would have to be adjusted for this
global density function. This would lay the foundation for a truly vario-scale web framework for
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Figure 65: 4D vs 3D indexing method

point cloud visualization.

Implementation in Greyhound
In Chapter 5 the framework is introduced, and there are two web servers introduced. The first is
the existing Greyhound web server, the second is the web server used for the vario-scale process-
ing. Moving the implementation to the Greyhound web server would remove a web server from
the workflow, and altogether simplify the implementation. This would improve the speed with
which a frame can be computed, because sending the point cloud data between web servers is a
time consuming endeavour.

Implementations on client-side
The complete implementation introduced in Chapter 5 is based on a server-side architecture. Be-
cause no data is send to the user before all the processing is done, there can be a substantial
waiting time. By moving the implementations to the client side the need to perform per-frame
calculations on the server side can be eliminated. This allows points to be rendered on screen
faster. Before a client side implementation is realised, other optimizations such as the 4d indexing
structure should be realised first. These remove computational complexity, which would allow
the computation to be done client-side.

Process only the affected octree blocks
In Chapter 6 the presented results show density jumps, although these occur in limit areas. By
predicting these locations, and only processing the point cloud blocks that are neighbouring the
density jump, this implementation would be faster. Research will have to be done in determining
whether or not the time saved by processing fewer blocks is larger than the overhead needed to
compute which blocks are neighbouring a density jump.

Research into addition of Octree blocks
The results presented in Chapter 6 are created by removing points from the existing web viewer
architecture using an indexed Octree. There is a need to remove a large part of the point cloud
data set before the density jumps are removed. By using addition of points instead of removal of
points the implementation has a better control of which blocks are queried. The addition of Octree
blocks works on the basis of ’filling’ the space underneath the density function until it is filled. This
removes much of the computational load needed to remove individual points. The addition of
Octree blocks requires a new block selection strategy to be created.
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Appendices

82



A. Discrete levels top down visualization
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B. Vario scale top down visualization

87



88



89





C. Config File Entwine

Algorithm 4 Entwine configuration file

1 {
2 "input": "s3://province -zuid -holland",

3

4 "output": "s3://jippe -test/greyhound/province -zuid -holland"

,

5

6 "schema": [

7 { "name": "X", "type": "floating", "size": 8 },
8 { "name": "Y", "type": "floating", "size": 8 },
9 { "name": "Z", "type": "floating", "size": 8 }

10 ]

11

12 "threads": 14

13

14 "subset": { "id": 1, "of": 16 }
15

16 }
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D. Config File Greyhound

Algorithm 5 Greyhound configuration file

1 {
2 "cacheSize": "1 GB",

3 "paths": ["s3://jippe -test/greyhound"],

4 "resourceTimeoutMinutes": 30,

5 "http": {
6 "port": 8080,

7 "headers": {
8 "Cache -Control": "public, max -age=300",

9 "Access -Control -Allow -Origin": "*",

10 "Access -Control -Allow -Methods": "GET,PUT,POST,

DELETE"

11 }
12 }
13 }
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E. Results frame original - density
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Figure 66: Original density of frame
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F. Results frame original - perspective
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