
Three regimes of liquid flow over a body are defined,
namely: (a) noncavitating flow; (b) cavitating flow with a
relatively small number of cavitation bubbles in the field
of flow; and (c) cavitating flow with a single large cavity
about the body. The assumption is made that, for the
second regime of flow, the pressure coefficient in the flow
field is no different from that in the noncavitating flow.

ibTiKis basis, the equation of motion for the growth and
collapse of a cavitation bubble containing vapor is derived
and applied to experimental observations on such bubbles.
The limitations of this equation of motion are pointed
out, and include the effect of the finite rate of evaporation
and condensation, and compressibility of vapor and
liquid. A brief discussion of the role of "nuclei" in the
liquid in the rate of formation of cavitation bubbles is
also given.

INTRODUCTION

ADISTINCTIVE
feature of the hydrodynamics of liquids is

the possibility of the coexistence of a vapor or gas phase
with the liquid phase. Such two-phase flow is usually

called c,avitating flow, although it could as well be characterized
as liquid flow with boiling. Cavitating flow has great theoretical
interest in addition to the hydrodynamics involved because of the
relation of this flow condition to the physical-chemical proper-
ties of the liquid. The practical significance of cavitation is of
course clear. The drag of submerged bodies movint through a
liquid rises when cavitation appears; similarly, the efficiency of
pumps, turbines, and propellers drops with the development of
cavitation; and the damage which may be produced by cavita-
tion in these devices is well known.

The particular flow problem discussed in this paper is the flow
of a liquid (water) over a submerged body which will be con-
sidered to be at rest. If po denotes the static pressure, and Vo
the uniform flow velocity of the liquid at a great distance from
the body, then the general character of the flow in so far as cavi-
tation is concerned is correlated with the cavitation parameter

Po

(pV 02) /2

where po is the vapor pressure of the liquid and p its density.
Obviously, one cannot expect a single constant to describe so
complex a phenomenon as cavitating flow about a submerged
body; however, a correlation in a qualitative way may be made
with the various types of liquid flow. Three flow regimes for a
given suitably shaped body will be indicated here. The first (K
sufficiently large) is noncavitating flow. This state of flow con-
sists of a liquid phase only and, with neglect of compressibility
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effects, follows the same laws as are familiar in air flow. If now
K is made smaller, a state of flow is attained in which a relatively
small number of bubbles appear near the boundary of the body.
This state of flow will be taken as the second regime of flow. If K
is further reduced, the number of bubbles increases, until eventu-
ally they merge into one large cavity which completely encloses a
portion of the body. The state of flow with a single cavity about
the body is the third flow regime,. and may be called cavity flow.
-A-Turiher reduction of K brings about only an increase in the size
of the cavity. These three flow conditions are illustrated in
Fig. 1.

FIG. 1 VIEWS SHOWING THE THREE REGIMES OF FLOW
(In the top view, the cavitation parameter K = 0.40; in the center K

0.28; and in the bottom K = 0.18.)

In the cavity-flow regime, the boundary of the cavity may be
taken with reasonably good approximation to be a surface of con-
stant pressure and of constant flow speed. The pressure and
velocity in the flow field are fundamentally different from those
in noncavitating flow. It may be remarked that, at least for
two-dimensional flows, the powerful mathematical methods of the
free streamline theory may be applied to the solution of cavity
flow problems (1, 2).2

The second regime of flow has here been characterized some-
what arbitrarily as the flow condition in which there is only a
relatively small number of bubbles in the flow field. This limita-
tion is made in order to get an analytic simplification. If there
are only a few small bubbles, the effect of the pressure disturbance
of one bubble upon another may be neglected. Further, one may
suppose that the pressure field, except at the bubble, is deter-
mined in the same way as if there were no bubble cavitation.
As is well known for noncavitating flow, if p is the static pres-
sure at any point in the flow field, and if po and Vo are the static
pressure and flow velocity in the uniform flow at a distance
from the body, then with neglect of viscous effects, the pressure
coefficient

2 Numbers in parentheses refer to the Bibliography at the end of
the paper.
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is independent of po and Vo. The present assumption consists
in the calculation of the static pressure p in the second flow
regime with the appropriate values of pa and Vo from the pres-
sure coefficient C, determined for noncavitating flow. This
assumption that the pressure coefficient is essentially the same
just before the first few cavitation bubbles appear as it is after
of course is subject to experimental verification, and the neces-
sary experiments are planned for the high-speed water tunnel in
the Hydrodynamics Laboratory of the California Institute of
Technology. For the present, this assumption is considered a
reasonable one. It may be remarked also that as the number
of bubbles increases with decreasing K, the pressure field should
go over into that characteristic of the cavity-flow field; but, in
the transition, the pressure distribution over the body should
show small-scale spatial variations between the limits of the pres-
sure field of noncavitating flow and that of the fully developed
cavity flow.

EXPERIMENTAL OBSERVATIONS OF CAVITATION BUBBLES

In the present paper an equation of motion will be developed
for a cavitation bubble in a flow regime of the second type. This
equation of motion will be applied to an analysis of experimental
observations made in the high-speed water tunnel. Since a dis-
cussion of these experiments has been given recently by Knapp
and Hollander,(3), only general features will be mentioned here.

The cavitation experiments were made with a 1.5-caliber ogive
for which the noncavitating pressure distribution had been
measured, Fig. 2. Runs were made with tunnel velocities V,

PRESSURE DISTRIBUTION ON 1.5 CALIBER OGIVE

FM. 2 EXPERIMENTALLY DETERMINED PRESSURE COEFFICIENT,
Cp =(p po)/2(p170), IS SHOWN AS A FUNCTION OF AXIAL D/S-

TANCE ALONG MODEL
(The model profile is shown in the dotted curves with the associated scale

for the profile on the right.)

from 40 fps to 70 fps, and the static pressure pa, was reduced until
a few cavitation bubbles appeared. Photographs of these bub-
bles were taken on a moving film at a rate of 15,000 per sec to
20,000 per sec; a reproduction of an example of these photo-
graphs is shown in Fig. 3.

EQUATION OF MOTION FOR A CAVITATION BUBBLE

Frequent reference has been made in the literature on cavita-
tion to Rayleigh's solution for the problem of the collapse of a
spherical cavity in a liquid (4). Rayleigh considered the situa-
tion in which the pressure at a distance from the bubble was
constant. With this assumption, the variation of the bubble
radius with time may be simply and elegantly deduced from the
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energy integral of the motion. In the presdiat problein, the
bubble Moves through a region in Which the pressure -varies
quite rapidly so that an extension of Rayleigh's theory is re-
quired. This extension may be readily carried out as follows:
Consider a spherical bubble in a perfect, incompressible liquid of
infinite extent, and let the origin of co-ordinates be at the bubble
center which is at rest. The radius of-the bubble at any time
t is R, and r is the radius to any point in the liquid. Then, as is
well known (5), the velocity potential for motion of the liquid
with sphericarsymmetry is

= R2k/r [31

and the Bernoulli integral of the motion is

oco 1 . p(r) P(t)-+ - (V 95) 2 - = . . . . . . . . . . [4]
bt 2

where k dR/dt, p(i) is the static pressure at r, and P(t) is the
static pressure at a distance from the bubble. Also, from Equa-
tion [3]

(V)2 = R4 it2/r4

aie 1
- (2 R k2 R2

ot r

Equation [4] will be applied at r = I? so that the equation of
motion for the bubble radius is determined (5). One notes that

(4fat)f-5 = 2 ir R

(V il))2r=R = k2

so that Equation . [4] becomes

p(R) P(t) 3,,-
2

k2 + R . . [7]

Equritiort -[7] is the 'general equation of motion for a spherical
bubble -in a liquid with 'given external pressure p(t), and with
the Pressurast the-bubble boundary p(R). Olingets Rayleigh's
solution as a special case with

P(t) p(R) = Po (a constant)

and with the aid of the relation

3. 1 d.
- R2 ± R =

dt
(R3 R2)

2 2R R2

EqUation [7] is adapted to the present problem with the as-
sumption that

p(R) = p, 2a /R [8]

where po is the vapor preisure of the water at the appropriate
temperature and a is the surface-tension constant for water.
It is thus supposed that one has to deal with the growth and
collapse of a "vapor" bubble. The problem is defined when
P(t) is known. It will be assumed, as just discussed, that P(t) is
determined from the noncavitating pressure distribution over the
body.

The analysis of the experimental data, and the comparison
with the theory, are carried out in the following manner: The
experimental data given include bubble photographs, Fig. 3,
which determine the following:

1 The position of the bubble relative to the body profile as a
function of time.

2 The radius R of the bubble as a function- of time.

Further, the tunnel temperature (and hence p) are given as

well as po and VP; these data are usually combined in the specifi-
cation of the cavitation parameter K and the tunnel tempera-
ture. From this infotthation, and the knowledge of the-pressure
distribution over the body, Fig. 2, the absolute pressure at the
model surfnceis determined.. This absolute pressure as a function
of position on the model is now transformed into the func-
tion P(t) from the correlation of the bubble position on the model
with time. When P(t) has been determined, the integration of
the equation of motion (Equations [7] and [81) may be carried
out to get the radius of the bubble R as a function of time. The
equation of motion cannot be integrated analytically, and its
integration was performed numerically. The solution is deter-
Mined when two constants are specified, and these were taken
to be the observed value of the maximum radius R, where i = 0.
Thris the theoretical solution has been fitted to the experimental
curve only at the peak of the radius-tithe curve. The theoretical
curve was then determined by integrating forward (the collapse
portion) and baokward (the growth portion) from this one point.
A comparison of the calculations With the measured values is
shown in Figs. 4, 5, 6, and 7. The agreement is considered satis
factory, particularly since it must be emphasized that precise
experimental data are difficult to obtain. The theoretical
radius-time curve is quite sensitive to the P(t) function; for the
experiments thus far analyzed, it is believed by the experimental
workers that the cavitation parameter K has not been deter-
mined with quite the necessary accuracy. Further, there are
some difficulties in the determination of the bubble outlines with
precision. That this is the case is not surprising since' one is
requiring considerable photographic detail throughout a proc-
ess which lasts for a time of the order of a milli:4666nd. It must
also be pointed out that there are approximations involved in
applying the theoretical el:illation to the experinientril situation.
These approximations will now be considered.

THEORETICAL APPROXIMATIONS

The Pressure Field. It has been supposed that the pressure
field, P(t), acting on the bubble is determined from the pres71
sure distribution over the model. It is clear-that, in the '
stages of cavitation of present interest, the bubbles will form as
close to the model surface as possible since the pressures take their
lowest values there. However, it also has been assumed that the
bubble is acted on by a spherically symmetric field. Since the bub-
ble is of finite extent and since the pressure field has -definite
pressure gradients both along the model and normal to it, it is
clear that a simplification has been introduced. These pres-
sure gradients would be a source of asymmetry in bubble shape,
and there is some evidence of this asymmetry. It is believed
that the approximation made is not such as to obscure the es-
sential details of the growth and collapse; space gradients in the
pressure field are here regarded as a second-order effect.

It also has been assumed that the bubble is in a liquid of in
finite extent, and it is evident that the bubble grows and col-
lapses in the neighborhood of the model surface. This asym-
metry in the fluid field has an effect which may be pointed out as
follows: As compared with the experimental situation, the
theory would exaggerate the importance of the liquid inertia (this
inertia leads to the term in E2 in Equation [71). Comparison of
the theoretical curve with the experimental points would seem
to indicate some overestimate of this inertia term where R is
small, i.e., -near the beginning of the growth and toward the end
of the collapse.

The presence of the model surface has an additional effect on
the flow field in its neighborhood which arises from the boundary
layer. The thickness of this boundary layer may be estimated
from the Blasius formula, and for the present flow conditions
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.1

FIG. 4

FIG. 6

leads to a thickness of the order of 6 X 10-3 in. On the basis of
this estimate, the effect of the boundary layer will be neglected.
It should be noted that the present measurements extend to
minimum bubble sizes larger than this boundary-layer thickness
although some reduction in the effective value of it should be ex-
pected for very small R.

An experimental source of apparent asymmetry in bubble
shape might be supposed to arise from an overestimate of the
bubble dimension in the direction of its motion which would be
produced by its motion during the time of light exposure (1.5 X

10-8 sec). However, this blurring would give an apparent ex-
tension of the image by approximately 10-8 in. so that this error
Is not particularly significant.

Temperature and Pressure Conditions in Bubble. It has been
assumed in the theoretical calculations that the vapor pressure,
p,, in the bubble, and hence the bubble temperature, remain
constant. Clearly, heat must be applied to the bubble to evapo-
rate water and maintain the vapor pressure during growth, and
heat of condensation must be removed during collapse. The
temperature changes required may be estimated readily. Con-
sider a bubble with maximum radius R, which has a growth
time T. The total mass of vapor which is evaporated into the
bubble is (47/3)R,,' , where p' is the vapor density. The total
heat required is

Q = (4%13)R,3 p'L

UI

10

2

0

FIG. 5

FIG. 7

where L is the latent heat of evaporation. Thus for a bubble
which grows to a maximum radius R,,, = 0.10 in. in 20 frames
(T = 10-3 sec), the mass of vapor is 1.17 X 10-8 grams, and Q =
6.8 X 10-4 calories. This heat is taken out of a water layer sur-
rounding the bubble. If the thermal diffusivity of water is D
(D = 1.43 X 10-8 sq cm per sec), then the order of magnitude
of the thickness d of the water layer from which this heat is con-
ducted is

d T

and for T = 10-3 sec, d 1.2 X 10-8 cm. The volume of the
water layer from which this heat comes is of the order of magni-
tude 4T-R,02 d, and, in the present example, the corresponding
mass of water is 1.0 X 10-8 g. Finally, the temperature drop of
this water layer is

(4sr/3)R,,,3 p'L p'L
AT -

4wR,2 dpc 3d pc

p'L
szs

31/157- PC

where c is the specific heat of water. In the present example, AT
(growth) = 0.7 deg C = 1.3 deg F. A typical value of collapse
time is r 10 frames = 0.5 X 10-8 sec, and the corresponding
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temperature change, estimated in this same way, is

AT (collapse)A.'s 1 deg 'C =- 1.8 deg F

It is apparent that these temperature changes are insignifi-
cant so that one may take the bubble boundary to have a con-
stant temperature, essentially the same as the water tempera-
ture, and a constant value of p.

This conclusion cannot be accepted unconditionally, how-
ever, since evaporation, or condensation, is a process which
takes place at a finite rate and, if this rate is not sufficiently
high to keep up with the rate of volume change of the bubble,
the vapor in the bubble will behave more like a Permanent than a
condensable gas. This effect definitely limits the range of valid-
ity of the particular assumption, = const, toward the end
of the collapse phase where the radial velocity i? increases
rapidly. This trend toward rapid increase in the calculated
radial velocity is illustrated in Fig. 8. The rate of evaporation,

. 60 -
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30

Cu7

I I -
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Pm. 8 CALCULATED RADIAL VEL;OCITIES h, ARE SHOWN AS A FUNC-
TION OF RUBBLE RADIUS

or condensation, can be estimated from elementary kinetic
theory which says that the mass of gas evaporated (or con-
densed) per unit area per unit time at an absolute temperature
T is

I I2m= PVN ... [9]

where p, again denotes the vapor pressure for a vapor with
molar mass M, and B is the gas constant. If one assumes that
the vapor obeys the perfect, gas law

p. = PBT

which is reasonably accurate in the temperature range of inter-
est (6), Equation [9] may be written
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= = PiTT
27rM

where V = BT /27M is the desired velocity to be associated
with the rate of the evaporation or condensation process: For
the Present problem, at 22.2 C = 72 F, V is approximately 150
rnps = 500 fps. Hence unless k is appreciably less than this
value, one may not assume the constant value for p,. During
the collapse, when k approaches or exceeds this value, the col-
lapse velocity would tend to be decreased because the vapor
will begin to show a rising pressure as it behaves like a permanent

A further effect of interest is the shock loss which Will appear
in the vapor when k reaches the gas acoustic velocity. ' The ef-
fects of compressibility both in the vapor and in the liquid will
not be considered here, although the problems posed by them are
of great interest. A solution of these problems will be decisive
for the quantitative determination of the high pressures arising
toward the end of the bubble collapse, the regrowth or Subse-
quent oscillations of the bubble, and the sound energy radi.
ate.

Air Content in Bubble and Role of Nuclei in Formation of
Bubbles. The assumption has been made that any air con-
tained in the bubble' does not affect the dynamics of the bubble
growth and collapse over the range of bubble sizes which have
been measured and analyzed here. This assumption might be
censidered questionable since the water-tunnel flow experiments
are made with water containing an appreciable concentration of
dissolved air. Furthermore in the region of flow in which the
bubble behavior is studied, the liquid pressure is considerably
below the liquid static pressure po at a distance from the model.
Hence one should expect that the water is supersaturated with
dissolved air and that diffusion of air into the bubble would
take place.

An analytic solution for such a diffusion problem has been
carried out by P. S. Epstein and the author, the details of which
will be presented elsewhere. For the present discussion it is
necessary only to say that the diffusion process is so slow that it
does not contribute ap.preciany alteration in the air
content of the bubble,:

As will be pointed out later, the initial air content of a bubble
is very small so that over the range of bubble sizes which are ob-
served and to which the present calculations have been applied,
the effect of the air may be neglected. It must be emphasized,
however, that the small mass of air in the bubble plays a most
important role in the initial stages of bubble growth, and also
may enter in the final stages of the bubble collapse. The initial
stages of bubble growth in which the air content would be of
significance, refer to bubble dimensions which are beyond the
present range of experimental observation. Similarly, the final
stages of bubble collapse in which the compressibility of air, water
vapor, and liquid are of importance, refer to bubble dimensions
which lie within the last frame photogra,phed.3

A few remarks, nevertheless, may be made concerning the
initial formation of the bubble. It is the present view that the
formation of a bubble in cavitating flow, or in boiling, begins from
a nucleus within the liquid containing air, or vapor, or both.
Such gas-phase nuclei are ordinarily submicroscopic in size, and
become evident only upon growth of the nuclei through pressure
reduction in the liquid (reduction in the function denoted pre-
viously by P[t]), or through elevation of temperature (increase
in the function denoted by p [R]). The absence of such nuclei
means that the very large forces of surface tension must be
overcome to initiate cavitation or boiling. It is well known
that degassed pure liquids can withstand very large tensions,

Knapp and Hollander (3) assumed that, over the present range
[10] of observation, the bubble contains essentially only water vapor.

The present discussion supports this view.



or may be superheated considerably, without the formation of

cavities and bubbles.
Recently, Harvey (7) and subsequently Pease and Blinks (8)

have shown experimentally that water saturated with air also
has high tensile strength, provided it is denucleated. Harvey's
method of denucleation of water saturated with air consists in
putting the solution under high pressures (of the order of 10,000
psi) for several minutes. The air nuclei are squeezed into solu-
tion so that when the solution is brought back to atmospheric
pressure it does not cavitate under the tensions which freely
produced cavitation before the pressurization. These same pres-
sure-treated air-water solutions also can be superheated by as
much as 60 to 80 deg C without boiling.

Presumably in ordinary untreated water the nuclei which
contain gas and vapor are stabilized on small solid particles.
The presence of a solid, or third phase, is indicated since the sur-
face energy of a bubble bounded by a solid surface and a liquid
surface may be very low. Methods whereby the probable rate of
formation of nuclei as determined by the surface energy may be
calculated have been discussed by Becker and airing (9) and
Kaischew and Stranski (10). The aim of the theory is to calcu-
late the tensile strength of liquids, but it should be applicable
also to the statistics of the number of nuclei which should grow
to macroscopic bubbles for given conditions of liquid temperature
and pressure.

CONCLUSION

The main purpose of the present discussion, aside from touch-
ing upon problems which still await quantitative solution, has
been to point out the following: Liquid flow can be divided into
the three regimes mentioned; and, since the noncavitating regime
and the single-cavity regime may be considered to be on a quanti-
tative basis, the main concern here has been a clarification of the
second, or bubble, regime of flow. Also, it has been remarked
that an interesting experiment would be the measurement of the
pressure distribution over a body in this second regime of flow.
It has been shown that the macroscopic behavior of cavitation
bubbles may be explained reasonably well by a fairly simple
equation.

Finally, it may be pointed out that the macroscopic behavior

of the bubbles formed in a boiling liquid may be considered as en-
tirely analogous to the cavitation bubbles more specifically con-
sidered here. The growth of bubbles in a liquid has great interest
at present in the problem of increasing the heat transfer from a
heated solid to a liquid.
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