
Fast Dissemination for CommentCast in
Unstructured Peer-to-Peer Networks

Xu Han

Fast Dissemination for CommentCast in
Unstructured Peer-to-Peer Networks

Master’s Thesis in Computer Engineering

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Xu Han

16th January 2011

Author
Xu Han (HughXHan@gmail.com)

Title
Fast Dissemination for CommentCast in Unstructured Peer-to-Peer Networks

MSc presentation
January 26, 2011

Graduation Committee
prof. dr. ir. H. J. Sips (chair) Delft University of Technology
dr. ir. J. A. Pouwelse (Supervisior) Delft University of Technology
dr. ir. F. A. Kuipers Delft University of Technology

Abstract

Commenting is an important fundamental functionality offered with video stream-
ing service. Users exchange commentaries and report problems about the video
content through commenting. Tribler is, however, still lacking of the functionality
of commenting. CommentCast is a fully distributed commenting system in Tribler
based on the BuddyCast protocol stack.

In this thesis, we improve the original design of CommentCast by augmenting
different protocols working cooperatively to supply a fast, bandwidth-efficient and
reliable commenting service. Then, we elaborate the protocol focusing on fast dis-
semination. By comparing with gossip algorithm and flooding algorithm, we de-
cide to use LightFlood [14], an algorithm combining pure flooding and spanning-
tree broadcasting, to disseminate comments. Our experiments show that Light-
Flood is a very fast and cost-effective dissemination algorithm.

In order to study the knowledge of user commenting and evaluate our design, we
collected the comment history of movie section of Verycd.com, a website providing
P2P download resources. Since the movie section of Verycd.com has a similar
context as Tribler, we take the collected comment history as a real workloadfor
simulation of CommentCast.

Finally, we investigate the performance of the push protocol of CommentCastby
simulating the algorithm working under the real-world workload. Our simulation
shows that the CommentCast is able to spread comments rapidly to a large number
of users. At the same time, the bandwidth consumption is also realistic based on
today’s network infrastructure.

iv

Preface

I would like to thank my advisor Dr. Ir. Johan A. Pouwelse for his inspirationand
guidance throughout my research. I appreciate his generous and kindness keeping
me motivated. I would also like to thank Adele L. Jia and Boxun Zhang for their
constructive suggestions and insightful feedbacks.

I would like to give my thanks to my parents and friends for their support and
encouragement. I can not finish this project without them.

Last but not least, my thanks also goes to Prof. Dr. ir. Henk J. Sips and Dr.
ir. Fernando A. Kuipers for their participation in my thesis committee, and their
comments on my work.

Xu Han

Delft, The Netherlands
16th January 2011

v

vi

Contents

Preface v

1 Introduction 1
1.1 Peer-to-Peer systems . 1
1.2 Dissemination Algorithms in Unstructured Networks 2

1.2.1 Epidemic algorithm . 2
1.2.2 Flooding Algorithm . 4

1.3 Tribler . 6
1.4 CommentCast . 6

1.4.1 The Idea and Data Structure of CommentCast 7
1.4.2 Specifications of CommentCast 7

2 Problem Description 9
2.1 Disadvantages of CommentCast 9

2.1.1 Low Dissemination Speed 9
2.1.2 Low Coverage Ratio . 9
2.1.3 Low Bandwidth Efficiency 10
2.1.4 Inefficient Usage of Local Hard-Disk 10

2.2 Research questions . 10

3 Structural Improvement and Possible Solutions for the New Structure 13
3.1 Architecture of CommentCast 13

3.1.1 Architectural Design for CommentCast 13
3.1.2 Architectural Improvement 15

3.2 Possible Solutions for Protocols 16
3.2.1 Push Protocol . 16
3.2.2 Synchronization Protocol 18
3.2.3 Searching Protocol . 19

4 Data Collection and Analysis 21
4.1 Overview of Data collection . 22
4.2 System Workload of Commenting System 24

4.2.1 Arrival Rate of Comments and Threads 24
4.2.2 Size of Comments . 25

vii

4.2.3 Comments per Thread 27
4.3 Number of Users and User Behavior 28

5 Exploration and Analysis of the Push Protocol 31
5.1 Overall Description . 31

5.1.1 Tribler Specifications . 31
5.1.2 Overlay Construction . 32
5.1.3 Experimental Environment 33
5.1.4 Important Terms . 34

5.2 Simulation of Original CommentCast 35
5.2.1 Simulation Specifications 35
5.2.2 Simulation Result . 36
5.2.3 Speed Up by Increasing of Initial Fanout 36

5.3 Simulation of Flooding . 37
5.3.1 Simulation Specifications 38
5.3.2 Simulation Result . 39

5.4 Simulation of LightFlood . 39
5.4.1 Constructing The Distributed Spanning Tree 40
5.4.2 Simulation Specifications 41
5.4.3 Simulation Results . 42
5.4.4 Refine Distributed Spanning Tree 43
5.4.5 Influence of Churn . 46

6 Simulation of LightFlood under Real-World Workload 49
6.1 Simulation Setup . 49

6.1.1 Setting Parameters of LightFlood 51
6.2 Simulation Results . 52

7 Conclusions and Future Work 55

viii

Chapter 1

Introduction

1.1 Peer-to-Peer systems

Before the introduction of Peer-to-Peer(P2P) applications, the client-server(C/S)
architecture dominated network applications, in which servers have a critical role
in processing or routing etc. The C/S architecture provides very simple andintuit-
ive solutions. Since the boom of the Internet, servers resources, however, become
the bottleneck. Since the number of clients increased rapidly, the servers resources
could not catch up with it. In contrast to C/S architecture, a P2P architectureseeks
to remedy this problem by sharing client resources such as bandwidth, storage
space or processing power. In recent years, P2P technology has become very pop-
ular for various applications such as file sharing or live streaming applications. P2P
systems, or distributed systems usually distribute tasks equally on peers except for
some noncore tasks like bootstrapping [32].

The key advantage of P2P systems is their scalability, because they make use
of unused resources on client side. Under C/S model, new users deprive a part of
resource from the existing users, which causes the system to only provide service
to a certain number of users. However, as more and more new users join thesys-
tem, the capacity of the system increases accordingly under P2P model. Take file
sharing as example. Instead of utilizing only the bandwidth of the server, clients
also upload parts of the file to other clients while downloading. This is the reason
why P2P systems are able to provide services to large number of users compared
with C/S model applications.

P2P systems can be classified as structured or unstructured according to the over-
lay being used [22]. The structured networks usually distribute peers and contents
in the overlay according to consistent protocols to ensure that any peer or content
are globally traceable, so that any search for content can be routed to the peers who
have the content. The most widely-used structured network is Distributed Hash
Table (DHT). It maps keys to the nodes of an overlay network and provides means

1

of locating the current peer node responsible for a given key. An unstructured P2P
network forms links arbitrarily between peers and peers can only contactdirectly-
connected peers within the overlay. Peers in unstructured networks usually need to
use flooding or gossiping to perceive the overlay in order to find desiredresources.
Structured overlays are convenient in locating desired resources. But peers’ joining
and leaving are expensive for structured overlay, since they cause alot of overhead
in maintaining the topology of overlay. On other hand, the advantage of an un-
structured overlay is the low cost maintenance while not providing guarantees for
locating desired resources.

1.2 Dissemination Algorithms in Unstructured Networks

In unstructured networks, overlay links between peers are establishedarbitrarily.
Peers can not locate resources or peers by referring to a uniform function as in DHT
based networks. Therefore, locating resources or routing is an important research
area in unstructured networks. There are two widely accepted algorithms todo this
in unstructured networks.

1.2.1 Epidemic algorithm

Epidemic algorithms refer to network algorithms allowing rapid dissemination or
aggregation of information. The name is inspired by the spreading of viruses. It
is also known as a gossip algorithm, because it is similar to spreading rumors in
social networks where people randomly meet each other and exchange gossips.
In epidemic algorithms, peers periodically exchange information with a random
neighbor to achieve data dissemination or aggregation. Gossiping is becoming
more and more popular in many research areas such as data aggregation and to-
pology management. [30] provide a systematic survey of many of recent results
on Gossip algorithms. [12] investigated the gossip algorithm for aggregatingdate
under large dynamic networks. [18] provides a reliable version of gossiping under
Byzantine/Altruistic/Rational (BAR model). A series of works on self-organizing
topology management were introduced in [11] and [35]. A failure detectionpro-
tocol is described in [29], which can be used to discover and leverage network
topology. [1] introduces a mathematic model of gossip algorithm for arbitrarynet-
work graphs, then provides a fast gossip algorithm through theoreticalanalysis.

Here, we describe two kinds of gossiping, proactive gossiping and passive gos-
siping. Proactive gossiping, called push, means peers push their information to
other peers. Passive gossiping, called pull, means peers extract information from
other peers.

2

Proactive Gossiping

cycle 4cycle 3

cycle 2cycle 1

Figure 1.1: A Process of Basic Gossiping Algorithm. It shows 4 cycles of abasic
proactive gossiping.

We illustrate a process of basic proactive gossiping where peers begin tosend
messages to a random neighbor in every cycle after they are infected. Proactive
gossiping is usually called the push method. In the push method, the initiator of
communication pushes information to the receiver, which means the receivergets
infected after being contacted by an infected peer. The process of a proactive gos-
siping is shown in Figure1.1. The black circles are the infected peers; whitecircles
are the uninfected peers; gray circles are the peers who are newly infected in a
particular cycle. The lines between peers are the links of the overlay and arrows
represent initiating a communication.

In proactive gossiping, peers do not know how many peers are infected, that is
they do not know when to stop gossiping. The most-common solution is append-
ing a Time-To-Live(TTL) attribute to a message. If the TTL reaches 0, peers stop
forwarding the message. The initiator of the message gives an initial TTL, and
peers subtract 1 from TTL on every forward until it reaches 0. The initial TTL
value takes an important role in overlay coverage. If the TTL is too large, peers
keep sending redundant messages time and time again even when everybody has
got the comment. On the other hand, if the TTL is not large enough, some peers
would never receive the comment.

Passive Gossiping

3

cycle 4cycle 3

cycle 2cycle 1

Figure 1.2: A Process of Basic Gossiping Algorithm. It shows 4 cycles of abasic
proactive gossiping.

Figure 1.2 shows the process of passive gossiping. In passive gossiping, the initi-
ator extracts information from the receiver, which means the initiator of commu-
nication is infected after communicating with an infected peer. At the beginning
of the algorithm, there are 3 infected peers. In passive gossiping, the communica-
tion is initiated by the uninfected peer to extract information from other peers.The
arrows in Figure 1.2 means extraction of information. So uninfected peers will be
infected when they extract information from black peers. The gray peers are the
infected peers in the current cycle.

At the beginning of passive gossiping, most peers fail in extracting informa-
tion. Comparing with proactive gossiping, passive gossiping is more effective
when there is a small fraction of uninfected peers. In real passive gossiping ap-
plication, peers can not know when new information is injected. So usually, peers
periodically contact a random peer to extract information.

Epidemic algorithms do not guarantee to achieve a particular goal within a given
time period, but the most significant advantage is that it guarantees a maximum
computational complexity and a bandwidth consumption. Peers will not dedicate
too many resources in to one task in heterogeneous P2P network, and power of the
peers will not be depleted unexpectedly in Mobile Ad Hoc Network (MANET).

1.2.2 Flooding Algorithm

Epidemic algorithms do not guarantee message arrival. Usually, reliability canbe
met by increasing the number of peers communicating with in each cycle, called

4

fanout [34]. It also increases the dissemination speed of a message in a network.
As the fanout is increased to the maximum value, the algorithm is usually called
flooding. It means peers rebroadcast the message to all their neighborswhen they
receive a new message.

We introduce a flooding algorithm by increasing the fanout of gossiping, but this is
actually different from gossiping. In a flooding algorithm, a peer usually forwards
a received message to all of his neighbors, it then stops forwarding. Ingossip-
ing, peers keep forwarding a received message in every cycle until theTTL of the
message drops to 0. Because of forwarding to all neighbors, a flooding algorithm
guarantees arrival of a message. Gossiping, however, does not. Besides arrival of
messages, flooding also guarantees shortest arrival time. Reliability and high speed
are therefor the advantages of flooding algorithms. Flooding algorithms, however,
lead to significant amount of retransmissions, which is the primary disadvantage.
Figure 1.3 shows the process of a flooding algorithm. Compared with the basic

cycle 4cycle 3

cycle 2cycle 1

Figure 1.3: The Flooding Process. It shows 4 cycles of a flooding algorithm.The
first difference between flooding and gossiping is that the fanout increases to the
maximum value. The second one is that only gray peers being infected in the
current cycle forward the message in the next cycle after being infected.

epidemic algorithm in Figure 1.1, flooding covers every peer in the overlay within
4 cycles. On other hand, flooding generates many more retransmissions than of the
previous proactive gossiping.

5

1.3 Tribler

Tribler is a fully decentralized P2P file sharing system built on top of the BitTorrent
protocol. By maintaining an unstructured social overlay based on user-taste, Tri-
bler provides content discovery, content recommendation and downloading [26].
BitTorrent [5] is one of the most popular protocol for file downloading. It divides
a large file into small pieces, creates hashes for each piece and encapsulates the
results and tracker information into a torrent file. The tracker is responsible for
keeping track of a list of peers who are downloading the file, so that the peers can
contact them and exchange different pieces of the file. The BitTorrentprotocol
only focuses on transferring files and leaves file searching to other components,
like Web sites. Tribler realize the fact that traditional P2P file-sharing systems
neglect the power of the social phenomena and wants to exploit the effectof the
social phenomena in content discovery, recommendation and file sharing based on
BitTorrent protocol.

Tribler group has developed a series of protocols for taste-based overlay forma-
tion, distributed reputation management, collaborative downloading, video stream-
ing etc. BuddyCast has been developed into a substrate of a complete epidemic pro-
tocol stack [27]. It selects peers to synchronize with and the higher layer protocols,
like Barter Cast, SwarmCast, Friend Cast and CommentCast, do the synchroniza-
tion of MegaCaches for different purposes.

1.4 CommentCast

The prior work we extend in this thesis is CommentCast, a fully distributed com-
menting system. It works without any central component. Commenting system
has been developed over many years under C/S model. The best-known comment-
ing system could be the bulletin board system (BBS), or Internet forum. BBS is
already well studied and the algorithms for accessing database are mature.How-
ever, fully distributed commenting system is still under development. Distributed
systems are designed for large scale applications, however algorithms fordissem-
inating are usually not scalable enough for large networks. Data consistency is
another problem. There are some algorithms focusing on the consensus issue, like
Paxos algorithm [17]. Similarly, these algorithms are also not designed for large
scale network. Last but not least, BBS is a kind of timely service. Users ex-
pect to receive updates as soon as possible while the distributed environment can
not guarantee end-to-end relay. Here we would like to introduce a solutionfor
a fully distributed commenting system called CommentCast which is protocol of
BuddyCast protocol stack.

6

1.4.1 The Idea and Data Structure of CommentCast

The basic idea of CommentCast is similar to the other protocols, like BarterCast
[21], of the BuddyCast protocol stack. In CommentCast, every peer ofthe system
keeps a local database of comments. These comments are in the form of comment
message stored in the local database. Peers collect as many comment messages
as possible by exchanging comments with other peers. When a user is browsing
a Channel, all corresponding comment messages are acquired from local database
and then arranged in the Channel page according to their time stamps. A comment
message includes Channel ID, Commenter ID, Commenter Nickname, Timestamp,
Comment txt, signature. The detailed information are in Table 1.1.

Field Size Description
Channel ID 20 Bytes ID of the channel

Commenter ID 20 Bytes The PermID of the comment publisher
Nickname of Commenter Max. 30 Bytes The nickname of the commenter

Timestamp 4 Bytes The time when the comment was post
Comment txt Max. 280 Bytes The content of the comment

Signature 67 Bytes For security issue, generate from above four fields

Table 1.1: Comment message table entry structure in local cache

1.4.2 Specifications of CommentCast

CommentCast exchanges comment messages by sending CommentCast messages
which are collections of comment messages. The detailed algorithm works as fol-
low:

• Each CommentCast message contains 30 comment messages that are 10
my recentcomments, 5 myrandomcomments, 10 otherrecentcomments
and 5 otherrandomcomments.

• Peers periodically send out a CommentCast message to another peer. When
and who to send depends on the period of BuddyCast.

• Upon receiving a CommentCast message, the recipient updates its local data-
base with the new comments in the message.

The myrecentcomment are the comments that were posted by the peer itself
most recently. Myrandomcomment are the comments picked randomly from
my comments. Likewise, otherrecentcomments and otherrandomcomments are
recent and randomly picked comments of other peers in the local database.The
purpose recent comments is to spread the recent comments out with a high prob-
ability while the random comments will still cause eventual consistency.

7

8

Chapter 2

Problem Description

The most significant achievement of original CommentCast is that it supplies a
possible solution for the fully distributed commenting system and the epidemic
nature makes it very scalable in a large-scale network. But, the disadvantages of
CommentCast are obvious as a commenting system. We can not ignore them.

2.1 Disadvantages of CommentCast

2.1.1 Low Dissemination Speed

The concept of CommentCast relies on the fact that every peer possesses a copy of
all comments in the system, which means every single comment should be dissem-
inated to all peers. CommentCast is not flexible. It exchanges data periodically and
uses the period of BuddyCast, which is 4 hours per cycle. Our later experiment in
section 5.2 of this thesis shows that such an epidemic algorithm takes more than
10 cycles to spread a comment to 500 peers. A single spreading cycle takesup to
4 hours. Spreading of a single message takes more than 40 hours. What we ex-
pect is that the new comments are spread to most peers within a shorter time, even
enabling real-time communication through commenting.

2.1.2 Low Coverage Ratio

CommentCast can be classified as a technique of distributed-database synchroniz-
ation schema. However, it is not a remarkable way of doing so. From the design
we can see that recent comments have a higher probability being spread broadly
while spreading of history comments is a random-based epidemic algorithm, which
means the speed of spreading of a new comment decreases largely once itis clas-
sified as a history comment.

Multi-hop gossiping could not be achieved under such random-based epidemic
algorithm. The statistics from [6] show that most peers, over 90%, only possess a
fraction, less than 20%, of the records in BarterCast which uses a random-based
epidemic algorithm focused on reputation management. Although we do not have

9

similar statistics from CommentCast, we can expect that CommentCast will not
achieve a much higher performance than this, because the design of CommentCast
is similar to BarterCast.

2.1.3 Low Bandwidth Efficiency

A solution of distributed system should not use a large amount of bandwidth.Send-
ing duplicated comments is a waste of bandwidth. Things get much worse when
most peers are sending duplicated comments. The randomness of comment send-
ing also has an impact on bandwidth usage. Based on the low data coverage, it is
highly likely that most comments in CommentCast messages are duplicated com-
ments for the receivers. Besides random picking, CommentCast also doesa blind
communication. Peers could send the same comments to the same recipient time
and time again. We what a fast system with high communication efficiency.

2.1.4 Inefficient Usage of Local Hard-Disk

It is also debatable whether or not to store all comments from every channel in
local database. Assuming peers have already possessed all comments, theoriginal
design definitely increases the speed of retrieving comments. Local hard-disk-
usage becomes a negligible issue. Our experiences tell us that most usersonly
have interest in a subset of channels and that subset may be only a verysmall
portion of entire set of channels. Saving all comments seems to be an controversial
solution.

2.2 Research questions

The problems of CommentCast have been analyzed. This thesis can only focus on
a subset of those problems. This section will present a guide-line of the thesis.

Improve Speed of Dissemination

CommentCast uses a synchronization schema for data dissemination. The main
advantage is that this approach is very reliable. On the other hand, the low spread-
ing speed is not acceptable for a commenting system. Based on our experience,
people sometimes chat on BBS nearly in real-time like using instant messengers.
CommentCast can not provide service under such a constrain. As described in [7],
the round trip delay is the index of primary interest in information retrieval requests
and database queries. Even though [7] is based on traditional C/S model, this can
also applied to distributed commenting system like CommentCast. The primary
goal of this thesis is to improve the speed of dissemination.

Reduce the Cost of Dissemination

10

Considering data dissemination of a single comment, CommentCast is the same
as the basic proactive epidemic algorithm presented in the first chapter. We’ve
talked about the idea of improving the reliability and disseminating speed by in-
creasing the gossiping fanout. But, as the fanout reaches the maximum value, the
number of retransmissions also becomes very large. If spreading everycomment is
like a flooding process, the whole system will suffer from a extremely largeamount
of wasted bandwidth. Further more, CommentCast is not a main functionality of
Tribler and it is definitely not acceptable to dedicate such a high cost in Comment-
Cast. In order to provide a realistic design, reducing the cost of dissemination is
significant as well. The second goal of thesis is reduce the cost while achieving
high speed of dissemination.

Withstand the High Churn Rate

Churn is inevitable in real world systems. Distributed systems are not able to
handle churn as easy as in client/server design. Furthermore, distributedsystems
are supposed to supply service to a much larger number of users, which means
churn becomes even more serious. In order to design an applicable system which
can be deployed in Tribler, churn should be taken into account and CommentCast
should be able to handle the challenge of a distributed commenting system undera
high churn rate.

Derive Real World Parameters for Design

The previous design of CommentCast only supplies a design idea of a fully dis-
tributed commenting system. It does not take real world parameters into account.
Developing an applicable design should consider the real world workloadand con-
strains. However, previous researches and measurements of commentingsystems
are not sufficient enough. It is necessary to collect relevant data from an exiting
system.

11

12

Chapter 3

Structural Improvement and
Possible Solutions for the New
Structure

This chapter investigates possible solutions for improving CommentCast. First
section of this chapter illustrates CommentCast from an architecture view and im-
proves the design by enriching utilized protocols. Then, it elaborates every protocol
in detail and provides possible solutions.

3.1 Architecture of CommentCast

Previous work presents the concept of a distributed commenting system andthe
working principle of CommentCast, but it doesn’t provide detailed information
needed for an implementation. Some details are still ambiguous. Here we would
like to elaborate the architecture of the CommentCast.

3.1.1 Architectural Design for CommentCast

We derived an architectural design of CommentCast from previous work.Com-
mentCast is responsible for retrieving new comments from the Tribler networkand
provides the corresponding comments when a user is browsing a channel.Com-
mentCast does not interact with the user directly, so it works under control of the
channel module in Tribler. Figure 3.1 shows the architecture of CommentCast.
Comment messages are stored in a local database called MegaCache. There is a
comment management unit (CMU) that works as a manager of the database, op-
erating directly on the MegaCache. All comment operations including creating,
retrieving and updating go through the CMU. The channel module works cooper-
atively between user and CMU. When a user is retrieving channel data, the channel
module also sends a query with the channel ID to CMU besides retrieving channel
information. CMU fetches comment messages for the channel module and replies

13

NetworkBuddyCast

Comment

Cast

Channel

Cast

Local Database

Comment Management

Module

Channel Module

User

Protocol
stack

Figure 3.1: Architecture of CommentCast

with these comments messages. The channel module arranges the comments into
a user-friendly format and puts them into a channel page which is then returned to
the user. A user is also able to create a comment through the channel module.The
channel module passes the comment text to CMU. CMU then creates a comment
message containing the comment text, PermID, timestamp, etc. and stores them in
local database. As a security measure, CMU also verifies if the comments arevalid
or not by checking peer signature using a Public Key Infrastructure (PKI).

The protocol stack consists of protocol(s) exchanging comments with otherpeers
from the network. It only has one protocol in the original design, which isthe epi-
demic exchanging protocol. We call it the synchronization protocol. The protocol
stack does not perform any validation check or comment management and isonly
responsible for sending and receiving comments. When protocol stack receives a
CommentCast message as introduced in section 1.4.2, it extracts comment mes-
sages and passes them to the CMU.

In the design, the CMU works as an agent with the local database. This is neces-
sary because the distributed commenting system is still not perfect. The function-
alities of a traditional commenting system can not be achieved completely under a
distributed design. CMU could perform some complicated management instead of
simply depositing and retrieving. For example, there are some inappropriate com-
ments posted deliberately, like spams and curse words. Under CommentCast, those
comments can not be removed even when the user doesn’t want to see themagain,

14

because the protocol automatically retrieves absent comments from the network
even if the user removed them. That is to say, the consistency of data is not main-
tainable under a distributed system, or formally called Byzantine generals problem.
CommentCast translates the consensus problem of a thread into many consensus
problems of individual comments, but those problems persist. There are noma-
ture algorithms solving Byzantine generals problem which are scalable enough for
large scale networks. So our design is that the CMU maintains a management field
for each comment indicating if the comment is removed or not. This means the
remove function does not really remove the comment, it hides the comment from
user.

3.1.2 Architectural Improvement

The core of CommentCast is the protocol. It is a subprotocol based on the BuddyCast
protocol stack. However, CommentCast is a comprehensive protocol. Itcould
be divided into two subtasks. Including most recent comments in a Comment-
Cast message can be considered push-based gossiping for disseminating new com-
ments. The entire algorithm of CommentCast seems like a database synchronizing
protocol. We would like to separate the CommentCast protocol into multiple pro-
tocols. The improved protocols are shown in Figure 3.2 which consists of a push
protocol, a synchronization protocol and a search protocol. The protocol stack in
Figure 3.2 does not show the other protocols of the BuddyCast protocolstack, since
the structure is not the major concern here.

Protocol Stack

Client A

CommentCast

BuddyCast

Network

Protocol Stack

Client B

CommentCast

BuddyCast

Network

Original Communication Model

Improved
Protocol Stack

Protocol Stack

Client A

Protocol Stack

Client B

Improved Communication Model

Sync

Protocol
Buddy

Cast

Push

Protocl

Search

Protocol

Network

Sync

Protocol
Buddy

Cast

Push

Protocl

Search

Protocol

Network

Figure 3.2: The improved design of protocol stack

The push protocol is supposed to achieve high speed of dissemination. Peers are
trying to work cooperatively in spreading newly-injected comments as fast as pos-
sible, so that most channel browsers are able to see the new comments of a channel

15

as soon as possible. It directly communicates with other peers through network
layer.

The synchronization protocol tries to synchronize local databases of different
peers to achieve high data coverage. The synchronization protocol is designed for
three purposes. Firstly, it is used to keep consistency for online peers.Since the
push protocol can not guarantee full coverage, peers periodically trigger the sync
protocol to retrieve missed comments of push protocol, but the sync granularity is
supposed to be sufficiently large such that it will not consume too much bandwidth.
Secondly, it is used for churn repair. It is triggered when a regular user starts a
Tribler client for pulling new comments during its offline time. Last but not least,
bootstrapping also makes use of the the sync protocol. New Tribler users use it
to initiate their local database efficiently. The sync protocol works by usingthe
BuddyCast sublayer, instead of directly communicating with other peers.

The search protocol is based on a new concept that every peer only keeps the
comments that are most likely to be read by a particular user. When a user is
browsing the comments kept in his local database, it works as the same as the old
idea. When user is browsing a channel without any comments in local database,
CommentCast searches comments from other peers using the search protocol.

3.2 Possible Solutions for Protocols

The push protocol is the core of this thesis. Although the protocols work cooper-
atively in the distributed commenting system, the other protocols are out of the
scope of this thesis. Therefore, we will elaborate possible algorithms for the push
protocol first.

3.2.1 Push Protocol

LightFlood
The work of [14] has shown that roughly 70% messages are redundant in flood-
ing with a TTL of 7 on Gnutella overlays. In order to reduce redundant messages
generated by flooding, [14] introduces a fundamental cost-effectiveflooding oper-
ation in an unstructured P2P network. The fundamental idea of LightFlood isto
construct an additional spanning tree on the overlay network and dividethe dis-
semination process into two phases: first, do several hops of pure flooding; and
then, the message will be only broadcasted using the spanning tree.

The flooding is a very reliable disseminating algorithm. It does not only guarantee
the arrival of a message, it also guarantees the shortest end to end latency. But the
number of redundant transmissions, or retransmissions, make it too expensive for
a dissemination process. Therefore, flooding is used for topology discovering.

On the other hand, a spanning tree is a structure that minimizes the number of
retransmission in dissemination. Peers have a parent peer and children peers in a

16

spanning tree. They only forward a message to their parent and childrenpeers. It
means the dissemination in a spanning tree does not lead to any retransmission.
However, the speed and the reliability are quite poor. Any leaving of peer and
link failure can splits the tree into two parts, which decreases the coverage of dis-
semination. [14] shows that pure flooding takes 7 hops to cover 95% of peers in
Gnutella’s overlay while broadcasting on spanning tree takes more than 30 hops to
cover the same amount of peers in the same overlay. Based on the analysis above,
flooding and spanning trees are complements for each other. Therefore, LightFlood
makes use of the high speed, reliability of pure flooding and the low redundancy of
spanning tree broadcasting.

TTL is an important parameter in flooding. It directly affects the overlay cover-
age and redundancy of the flooding algorithm. [14] also shows that the redundancy
is relatively low in first 4 hops while it increases dramatically in last 3 hops in order
to cover 95% peers in the Gnutella’s overlay network. So, in LightFlood, thefirst
phase is M hops of pure flooding; the second phase is N hops of broadcasting on
spanning tree. It’s called (M, N) scheme. [14] also investigates the performance of
LightFlood under different values of M and N. But the actual performance could be
very different depending on overlay, because the redundancy andoverlay coverage
largely depend on the overlay structure.

Multipoint Relays

S S

Pure Flooding
Multipoint
Relaying

Figure 3.3: Broadcasting by pure flooding and broadcasting by multipoint relays

Multipoint relaying is a concept that reduces the number of duplicated retransmis-
sions while forwarding a broadcast message [28]. This technique restricts the num-
ber of relaying peers forwarding a broadcast messages to a subset of its neighbor
peers instead of all of its neighbors, like in pure flooding. This set is keptas small
as possible by efficiently selecting neighbors which cover the same networkover-
lay as the the complete set neighbors does. The small subset of neighborsis called
multipoint relays of a given network. Figure 3.3 shows the concept of multipoint
relay. Left side of the figure is a pure flooding and the right side is a multipoint
relays broadcasting. The pure flooding usually generated a lot of retransmissions.
In the example, the pure flooding leads to 10 retransmissions, while the multipoint

17

relays technique avoids the retransmission.
An important aspect in multipoint relaying is the manner in which these relays

are selected by each peer. Well-selected multipoint relays could eliminate retrans-
mission completely, but it is also possible that they do not bring any improvement.
[28] provides a heuristic to select the multipoint relays and evaluates the perform-
ance by theoretical analyses and simulations.

Although the multipoint relay performs well, it takes a lot of signaling messages
to create the multipoint relay. Under a system with high churn rate, like Tribler,it
may consume too much bandwidth for structure maintenance.

Catalogue-Gossip
[24] introduces a flash data dissemination in unstructured P2P networks based on a
gossip algorithm, called Catalogue-Gossip. The objective of the Catalogue-Gossip
is to distribute content of arbitrary format and size to all peers which are part of the
network. Catalogue-Gossip relies on an underlying Membership Protocol[8] [13]
for building up a consistent view of neighbors at every peer.

It divides the content into multiple chunks. Every peer maintains two structures
for the Catalogue-Gossip. The first structure is a table containing all chunks that
have been downloaded by a peer thus far. The table helps the node ascertain which
chunks are still missing. To this end, the node can fetch missing parts from other
peers. The second structure is a set of frequency counters whose objective is to
offer an estimation on how frequent each specific chunk is in the entire system.
Peers retrieve missing chunks in the first table based on Rarest-First or Random-
First using the second table. Peers are also responsible for assembling the chunks
into content after download is finished.

The advantage of Category-Gossip is that it is able to spread content with an arbit-
rary format and size. However, CommentCast is designed for spreadingcomments
only. Furthermore, comments are usually very small in size. Dividing them into
chunks is not necessary and leads to extra costs.

3.2.2 Synchronization Protocol

Chapter 1 has already presented the efficiency problem of proactive and passive
gossiping in 1.2.1. Proactive gossiping is more efficient in terms of redundancy
when most peers are not infected. Pushing the proactive gossiping to cover the
entire network leads to a large amount of retransmissions, which is not efficient
because of redundancy. Therefore, it seems to be reasonable that the push protocol
covers the most peers in the network and the other uninfected peers passively pull
the comments to reach the entire network, because passive gossiping is efficient in
covering the last several percent of peers. In passive gossiping,the probability of
a peer being infected increases as the overlay coverage increases. The synchronize

18

protocol is out of the scope of this thesis, but we would only provide tentative sug-
gestion for the protocol.

Splash, in[19], is a good solution for the synchronization protocol. It is apassive
gossiping algorithm for database synchronization. It uses Bloom filters toreduce
the bandwidth cost. [19] shows how Splash dramatically increases the average
data coverage of peers to 95% coverage, which is 5 times more than BarterCast.
Achieving the same data coverage as BarterCast only takes less than 1 percent of
the traffic. CommentCast is quite similar to the BarterCast. Although our data
shows the workload of CommentCast is less than BarterCast’s, which leads toan
increase in the performance, we believe that using Splash for synchronizing com-
ments would provide a great performance.

The synchronization protocol is designed for 3 situations. The first oneis for the
users who stay online. The push protocol is responsible for spreadingnew com-
ments to all online peers. However, for the sake of redundancy, the push protocol
can hardly achieve 100% overlay coverage while churn is inevitable in realworld
systems, thus impacting the overlay coverage again. Therefor online peers are oc-
casionally in the need of synchronizing their databases with each other as well.

The second situation is when regular users come online. Usually, nobody keeps
their client open all the time even for loyal users. The comment database should
be updated as soon as possible when a user logs in. When and for how long a user
logs off is quite unpredictable. The synchronization algorithm should be flexible.

Last but not least, new users should also be considered. New users may come
at any time, and attracting new users is very important to a software. The protocol
should, therefor, be able to collect all history comments in a short time as well.

However, the false positive issue of Bloom filters could be a problem, because
[19] shows that Bloom filters could waste a lot of traffic for synchronizing last
5% data. Furthermore, Bloom filters are computational-intensive scheme. They
save communication cost, but consume local computational resources. Therefore,
handling the Bloom filters is critical in designing the synchronization protocol.

3.2.3 Searching Protocol

The searching protocol is based on the idea that peers only keep a subset of all
comments in the network. Most users usually don’t browse the channels that they
have no interest in. So keeping comments for all channels does not seem tobe an
efficient method, considering disk usage. Tribler already has a taste-based overlay
in which peers are clustered according to their personal interest. We suggest that
user to selectively keep comments according to their cluster. It’s not like saving
the browsing history, but more like predicting the channels that a user may browse
in the future. Once, the user selects a channel for which can not commentscan
not be found, CommentCast triggers a searching process to get the corresponding

19

comments. The searching protocol is a preliminary functionality of the idea. The
idea doesn’t only increase the disk usage efficiency, it also shrinks therange needed
to be covered by the push protocol. From the results of our simulations, shrinking
the overlay coverage would greatly increase the performance of push protocol.

Searching algorithm also uses flooding or gossiping in unstructured networks.
The problem is how to get the results with a cost-effective manner. The simulations
in chapter 5 are transferable. How to handle the information of user taste and form
an appropriate semantic overlay can be a more important research problem.The
entire design tries to balance performance and cost among different protocols. The
search protocol is not a part of the scope of this thesis.

20

Chapter 4

Data Collection and Analysis

The original design of CommentCast did not take real-world system workload
and actual user behavior into account which are important in designing a system.
Abundant measurement studies about social networks and P2P systems are avail-
able. [9] and [36] analyze system traffic and user behavior in video-on-demand
systems. [3] focuses on social networks various network systems. There are also
some important measurements in [25] [10] and [15] providing data of P2P systems.
However, previous studies do not conform our context. We would like to collect
some data from an existing system. The target system is preferred to have asimilar
context with Tribler, which is, firstly, providing a downloading or video streaming
service; secondly, users are able to create threads, publish resources in the threads,
or leave comments with regard to the contents in a thread; last but not least, the
system is supposed to provide service for a large mount of users.

After considering various choices such as YouTube and EZTV, we have decided
to focus on Verycd, http://www.verycd.com, a Chinese Web system providingre-
sources for the eMule protocol [16]. Verycd conforms to our context,although it
uses the eMule protocol instead of BitTorrent. The thread of Verycd is a good ana-
logy to the channel in Tribler. Users can create threads and post multiple resources
in one thread.

It also has an ideal number of users and comments for investigations. Our meas-
urement show that 186,000 users have participated in the discussions of themovie
section. According to its naming pattern, we estimate there are at least over a
million registered users of Verycd. Furthermore, Verycd allows anonymous down-
loading, thus the actual the number of user is larger than the number of registered
users. Although we can not know the actual number of users precisely,it is reas-
onable to believable that Verycd has enough users to be considered as alarge scale
network.

Additionally,Verycd is a commercialized Web system which existed for the last
6 years so the comments are well organized and free from advertisements.The
quality of the data is quite good. This ensures the data won’t have any bias due

21

to spam or abnormal user behavior. We dont have to worry about availability and
scalability of its server. Our measure won’t be interrupted by any exceptions. Fig-
ure 4.1 shows a segment of comments.

Figure 4.1: A page of comments of a thread on Verycd.

This chapter will first illustrate how the crawler was deployed and gives a sum-
mary of the collected data in section 4.1. In section 4.2, we analyze the workload
from Verycd, including the arrival rate of comments and threads, size ofcomments
and number of comments per thread. Then we analyze the number of users and
user behavior in the commenting system.

4.1 Overview of Data collection

Until 11.6.2010, Verycd has 9 categories of resources containing over186 ,000
threads. Since channels in Tribler mainly offer movies to users, we decidedto

22

crawl all threads from the movie section. Different categories may lead to different
user behavior in commenting. We suppose the comments from movie section are
the most similar to the comments in our channel. Verycd supplies timestamps of
threads and comments, which are critical to our measure. Thanks to this feature,
we have access to entire comment history of a channel with a one-time visit.

Verycd has an archive list containing all resource which simplifies our crawl-
ing. In a normal run, the crawler started from the page of archive list withmovies:
http://www.verycd.com/archives/movie/. The crawler starts from the end of archive
list and downloads all data until the first thread of movie section, which meansthe
newest threads are downloaded first.It starts at the initial page, scan alllinks for
archive pages and saves all page links in memory. Then the crawler looksfor
threads in every archive page. Usually, there are 100 threads in eacharchive page.
It make a list storing those thread links. For every link, it downloads the thread
page, parses the page and writes relevant information to a file. Since the comments
of Verycd are dynamically loaded through an Ajax application, we need to goto
every comment page to find comments. The flowchart of the crawler activity isas
Figure 4.2.

Start

page list <-

parse initial page

page list

empty?

N

Stop

Y

link <- pop a page

from page list

html <- load link

thread list <-

parse html

thread list

empty?

link <- pop a thread

from thread list

html <- load link

parse html

output

thread

html <- load

comment page

parse html

output

comments

any more

comments?

Y

Y

N

N

Figure 4.2: The flowchart of the Verycd crawler activity.

The crawler was started on June 6, 2010 abd downloaded information from over

23

28,000 of threads and 1 million comments, making over 60,000 of HTTP requests.
It finished on July 13, 2010. The actual number of threads and comments are shown
in Table 4.1. We collected the entire information of movie section of the Verycd
which includes 28,259 threads and 1,189,669 comments, form 2003 until 2010. In
a later analysis, we found that the first comment was injected on Oct. 6, 2006.
As far as we know, Verycd did not provide a commenting service in its early stage.
Thus the over a million comments were injected between Oct. 2006 and Jun. 2010.

Some threads and comments were not parsed due to incomplete or false data, but
we successfully parsed over 95 percent of the downloaded data. We believe that
these results are representative for the user behavior of Verycd.

Thread Comment
Download 28,589 1,189,669

Parsed 28,506 1,137,619

Table 4.1: Total number of threads and comments. Downloaded threads andcom-
ments are the numbers downloaded from server. However, not all threads and
comments could not be parsed due to data errors. Last row is the total number of
threads and comments that could be parsed.

4.2 System Workload of Commenting System

The system workload is critical to our measurement. The workload is an important
factor, which can greatly affect decisions when designing a system.

4.2.1 Arrival Rate of Comments and Threads

First, we present how many comments per day are injected into the movie section
of Verycd. Since Verycd did not provide a comment system several years ago, so
we take the time of the first comment, Oct. 6, 2006, as the creation time of the
comment system. Figure 4.3 shows the daily comment arrival rate from Oct. 6,
2006 until Jun. 6, 2010. Points in the figure represent the numbers of comment
injected in a day.

It is clear from Figure 4.3 that comment arrival rate has an upward trendduring
the its entire life of the system. There were not so many people posting comments
at the early stage. There were even several months when no comments were injec-
ted. However, the comment arrival rate increased during times. The firstone began
at the end of 2007 and ended in February of 2008 and the second one happened
during the first 4 months of 2009. After an increase, comment arrival rate remains
stable at the same level for a long time. During our collection, it fluctuates around
2000 comments per day. It is reasonable to believe the system load remains stable
for a period.

24

 0

 1000

 2000

 3000

 4000

 5000

 6000

2007/Jan 2007/Jul 2008/Jan 2008/Jul 2009/Jan 2009/Jul 2010/Jan

N
um

be
r

of
 C

om
m

en
ts

Figure 4.3: Daily comment arrival rate in Verycd. The figure shows the number
of comments injected every day between Oct. 6, 2006 and Jun. 6, 2010. The
horizontal-axis is dates and vertical-axis corresponds to the number of comments
created in that day

The thread arrival rate is also a factor of system load, because commentsrely on
threads. Users do not regularly leave comments. They only leave comments for
the contents of their own interest or participate in a controversial discussions in a
thread. The more threads are created in the system, the more new comments will
be injected. Comparing to the comment arrival rate, thread arrival rate increases
more gradually and seems to be more irregular and hard to perceive. We present
the monthly arrival rate of threads in Figure 4.4. Every point means the number
of threads created within that month. Thread creation is a basic functionality of
Verycd. It exists from the beginning of the system. Therefore, thread arrival rate
starts from Sep. of 2003 while the comments arrival rate starts from Oct. 2006,
which means the scale of the horizontal axis is different.

The thread arrival rate shows a different property from the comment arrival rate.
It increases gradually. At the end of our data, it reaches around 650threads per
month. So there are a little bit more than 20 threads injected per day. The figure
shows the thread arrival rate bottom at 0 in Jun. of 2004. It is highly likelythat the
system was down for more than a month. As it is beyond our scope, we will not
try to find exact reason behind this.

4.2.2 Size of Comments

CommentCast keeps all comments in the local database, which means the the size
of every comment directly affects how much local disk space CommentCast uses.
It is important to estimate whether or not the CommentCast uses realistic amount of

25

 0

 100

 200

 300

 400

 500

 600

 700

 800

2004/Jan 2005/Jan 2006/Jan 2007/Jan 2008/Jan 2009/Jan 2010/Jan

N
um

be
r

of
 T

hr
ea

ds

Figure 4.4: Monthly thread arrival rate in Verycd. The figure shows thenumber of
threads injected every month Sep. 2006 and Jun. 2010. Horizontal-axis ismonths
and vertical-axis is the corresponding number of threads created per month.

local disk space. In the design of CommentCast, size of comment text was limited
to 280 Bytes. It is also important to know how many comments may exceed the
the limitation, such that we can adjust our design.

There are two disadvantages of using our data in estimating the comment size.
For one thing, comment size in Verycd could be very different form comment size
on Tribler, since different language structures lead to different size of comments.
For another, the size of a comment on Verycd is not very precise because Verycd
uses UTF-8 in coding. UTF-8 is a variable-width encoding. Here we wouldlike
to take every character as 2 Bytes in estimating. Table 4.2 shows the total size of
comments in terms of Bytes and lines with statistic values.

A comment in Verycd is more complex than our requirements in CommentCast.
Its actually a piece of HTML code. Besides the text message, it can also include
hyperlinks, pictures, Flash and eMule links. Since CommentCast is a text-based
system, we do not need the extra information beyond text. We take the size of
comments without any text as 0. There are 14,789 0-size comments in 1,137,237
comments, which accounts for 1.30% in total. Because pictures and links influ-
ence the size of a text message, we remove these 0-size comments in our statistical
results.

The total size of comments is about 75Mbytes for 1 million comments. The
average size is 65.9 Bytes per comment. A million comments were collected dur-
ing almost four years. The size of comment is not overwhelming for computers
nowadays. Another important fact is that more than 75% of the comments are less

26

Bytes Lines
Total 75,056,308 1,600,475
Mean 65.90 1.43
Max 123,500 2,516

99-percent quantile 572 6
95-percent quantile 182 3
85-percent quantile 82 1

3rd-quartile 56 1
1st-quartile 18 1

Table 4.2: The size of comments in Verycd in terms of Bytes and lines. First
row is the size of all comments. Second row is the mean value of a comment
size, followed by max value, 99-percent quantile, 95-percent quantile,85-percent
quantile, 3rd-quartile and then 1st-quartile

than the average size, 25% comments are less than 18 Bytes and 85% comments
only have 1 line. Usually, a longer comment is more of interest to other users.On
the other hand, a short comment can hardly carry any information. However, its
difficult to tell what kind of messages is more useful without linguistic study.

4.2.3 Comments per Thread

We already have the approximate size of all comments in Verycd, but user behavior
may change from time to time. For further analysis, we would like to find the aver-
age number of comments in threads. Figure 4.5 shows the cumulative distribution
function (CDF) of the number of comments for every thread and some correspond-
ing statistical values are in Table 4.3. Figure 4.5 shows that only a small portionof
threads, less then 10%, has a large number of comments and a quarter of threads
have no more than 6 comments. The mean value, 41.73 comments per threads, is
another important value for estimating the disk space taken by CommentCast. Base
on the result from the last subsection (65.9Bytes per comments), a thread takes on
average 2.75Kbytes.

Max. 99% quantile 90% quantile 3rd quartile Median Mean 1st quartile
8031 454 79 42 18 41.73 6

Table 4.3: Some useful statistical values of Cumulative Distributed Function of
comments per threads in Figure 4.5.

We divide threads into two groups, intensive threads and sparse threads, accord-
ing to a quantile point in Table 4.3. Take the 90%quantile point as an example,
threads with more than 79 comments are called intensive threads, and threadswith
no more than 79 comments are called sparse threads. For the 90% quantile point,
intensive threads include 645214 comments, which accounts for 52.4% of com-

27

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Comments per Thread

C
D

F

Figure 4.5: Cumulative Distributed Function of number of comments per thread.

ments. Moving to the 1st quartile, we find that the intensive threads include 91.7%
of all comments. This means the top 10-percent most intensive threads contribute
more than 50% comments and more than 25% of the threads, the sparse threads,
contribute only 10% of comments.

4.3 Number of Users and User Behavior

Analysis of how many unique users behind the a million comments in Verycd is
also important in designing CommentCast. The number of users largely affectsthe
scale of a P2P system. It also affects the design of the disseminating algorithmas
well.

Our data shows that there are 186,109 unique users that have left at least one
comment in Verycd. But almost half of them only posted one comment. The num-
ber of users decrease rapidly as the number of comments that they post increases.
This information is shown in Table 4.4. It means that most users only occasionally
leave comments.

On the other hand, we also find that most comments are posted by a small amount
of users. The top 10 most active users with the number of their comments are listed
in Table 4.5. We calculate the number of comments posted by the most 10-percent

28

number of users Percentage
Unique users 186,109 100%

1-comment users 88,723 47.7%
2-comments users 30,167 16.2%
3-comments users 14,989 8.1%
4-comments users 9352 5.0%

Table 4.4: Unique users is the number of users who left at least one comment.
X-comment users means the number of users who posted exactly X comments.

active users. The result is 732,958 which accounts for 77.6% of all comments. It
means that the Pareto principle, saying that roughly 80% of the effects comefrom
20% of the causes, also applies in the context of user commenting behavior.The
Pareto principle somehow contradicts the nature of fully decentralized system in
which peers are exactly same [2].

Rank Number of comment User ID
1 4857 @u7015659
2 2131 @u6896514
3 2020 @u5492518
4 1572 @u2672386
5 1495 @u1447113
6 1425 @u4842412
7 1076 @u5646300
8 1064 @u3440818
9 1063 @u5319687
10 1058 @u1621428

Table 4.5: A list of top-10 most active users. The middle column is the number of
comments posted by the users. The last column is the Id of the user.

From Table 4.4, we can see the users who post less than 5 comments alreadyac-
count for roughly 77% percent of total users. As stated before, Verycd allows an-
onymous users to download and read comments, which means the registered users
could be only a fraction. We can not tell the exact number of users reading the
comments. What we know is that there must be an amount of anonymous users.
Those anonymous users may have no interest in online discussion or evenhave no
interest in receiving comments. Therefore, the cumulative number of users who
post less than 5 comments is even larger than 77% percent and this number could
be very large. Based on that fact, it is reasonable to let user to choose whether they
use CommentCast or not.

29

30

Chapter 5

Exploration and Analysis of the
Push Protocol

We discussed some of the possible solutions for the push protocol in previous
chapter. We decided to focus on customizing LightFlood in Tribler’s overlay. We
have chosen LightFlood because our primary goal is high dissemination speed, thus
the flooding-based algorithm is preferred. Additionally, LightFlood doesn’t need
complex signing messages or extra resources to implement. Last but not least,
LightFlood fits in the context of Tribler’s overlay due to strong connectivity.

This chapter explores the performance of LightFlood scheme in Tribler based on
experimental results. We focus on the dissemination speed and the redundancy of
dissemination. To facilitate comparison, we simulate the process of disseminating
a single comment.

We simulate 3 algorithms. First one is a proactive gossiping. We generalize the
original CommentCast as basic gossiping and make a simple improvement to speed
up the dissemination without any extra retransmission. In the second simulation,
we investigate the performance and redundancy of a flooding algorithm based on
Tribler’s overlay. Finally, we customize LightFlood for Tribler’s overlay and sim-
ulate the dissemination of LightFlood. After comparison, we find that LightFlood
is the best choice for the push protocol. Thus we investigate the performance of
LightFlood under churn through another simulation.

5.1 Overall Description

Before our simulation, we will describe Tribler specifications, overlay construc-
tion, and experimental environment.

5.1.1 Tribler Specifications

Our experiments are based on Tribler’s environment. It is also important describe
specifications of Tribler. The complete specifications of Tribler can be found in

31

[33]. We only list some properties relevant to our experiments:

• Tribler’s overlay is a taste-based-clustered graph. Peers are distributed in
different clusters.

• Every peer has 10 fixed neighbors with similar taste and 10 random neigh-
bors selected randomly the entire peer set. Fixed neighbors are always the
peers who have most similar tastes with the peer itself. The random peers
are not fixed and change over time.

• Peers are able to acquire random peers from the entire network.

• Every peer maintains TCP connections with their neighbors, which means
peers are able detect logoff of their neighbors. Then they select new neigh-
bors.

Our simulation does not use actual data from the Tribler overlay or peer tastes,
since we do not have this information. Thus fixed neighbors are also selected ran-
domly. The difference between fixed neighbors and random peers in our simulation
is that fixed neighbors do not change during the simulation after selection while the
random neighbors are select randomly at the beginning of every cycle of simula-
tion.

5.1.2 Overlay Construction

Our experiment simulates data dissemination in Tribler’s overlay which is a strongly
connected network with clusters based on personal taste. Since we don’t have data
of Tribler’s overlay, overlays are constructed in a simulation. There is a lot of ex-
isting work in creating a random graph or a random graph with an expecteddegree
in [4] [23]. However, creating an overlay is not part of the scope of this thesis. We
would like to apply the overlay in [19] which is used in a similar context as in our
simulation.

We assume the cluster size is 50 [19]. Thus, the number of clustersC in a net-
work, C = Network Size/50. Then we randomly distribute all peers intoC
clusters and every peer also keeps a reference of its cluster. This way, every cluster
has around 50 peers, but not exactly 50 peers, which is an more realisticoverlay.
From a comparison experiment, we know that clustering causes a slight change
of redundancy. Our observation is the number of redundant messagesincreased
a little bit faster in first cycles, however, the total number of redundant messages
is almost the same. The clustering effect is a complex problem, which is not of
concern in this thesis. Therefore, we ignore the clustering effect in the following
simulations.

Overlay construction is based on a fact that having a taste buddy, or a fixed neigh-
bor in our simulation, is a mutual relationship, which means, based on a same

32

n

c e

a

d

b

Figure 5.1: A diagram of peers that can not establish bidirectional connection.

similarity evaluation function that peer A is a taste buddy of peer B and B is also
a taste buddy of peer A. Or we can say, links are bidirectional connections. When
peer A selects peer B as its neighbor, peer B also adds peer A as its neighbor.

It is necessary to take the degree of peers into account when establishing connec-
tions in the simulation because another property of Tribler is that peers maintain
10 connections to their taste buddies. Under the fixed degree constrain, the mutual
neighborhood introduces another problem that some peers may not find neighbors
when the other peers in cluster have enough neighbors. An example is shown in
Figure 5.1 where we take degree of 4 as an example. Peer a, b, c, d and ehave
already established bidirectional link with neighbors. The new peer n can not find
any peer to connect with. So peer n connect a, b, c and d without bidirectional link.
Our algorithm for these peers is repeat random picking form their clusteruntil the
number of failures is greater than twice the size of the cluster. Then, they randomly
establish unidirectional connections. The example in figure 5.1 is an extreme case,
but it happened a lot during our simulation that bidirectional connections can not
be established.

The flowchart of overlay construction is shown in Figure 5.2. The process of con-
struction is on left hand side. N is the network size and C is the number of clusters
which have been described already. Establishing overlay links is a sub-procedure
which is on the right hand side. The sub-procedure is executed on every peer of the
overlay.

5.1.3 Experimental Environment

The real world distributed systems are asynchronous systems. However, [19] shows
that simulating a large scale network asynchronously is almost impossible based on
normal computers. Therefore, we would like to simplify the process into a series
of synchronous working processes. In order to ensure the reproducibility of our

33

B == self

B = select a random

peer from same

cluster

Yes

B.degree <= 10

counter += 1

counter >
cluster size x2

No

No

Yes

append self to

B.neighbor

append B to

self.neighbor

Yes

No

counter = 0

self.degree

<10Yes

Loop on every peer

No

Start

Initiate N peers

Create C clusters

Distribute N peers to C

clusters

Finish

Establish Overlay

Links

Figure 5.2: A flowchart showing the construction of the overlay. Entire process is
on the left hand side. A sub-procedure of link establishment is on the righthand
side. The sub-procedure is executed on every peer of the overlay.

simulations, it is necessary to make following assumptions:

1. Peers keep repeating communications cycles in which they communicate to
each other in an arbitrary order.

2. Communications including sending and receiving takes one cycle to finish,
which means the receiver can not forward a received message in the same
cycle.

3. Peers can finish arbitrary local actions within one cycle. This means every
peer can send its message to all neighbor peers with in one cycle.

In the real network environment, network communication are full of uncertainty.
It’s hard to define the duration of a communication cycle. We will compare the
speed of different algorithms in terms of communication cycles.

5.1.4 Important Terms

We would like to distinguish two useful terms for our simulations, which are very
important metrics.

A common term, coverage, is a personal view of global data, which means what
fraction of all comments a peer has. I order to distinguish from the later term, we
call it data coverage. Forpeeri data coverage could be represented as:

DataCoveragei =
Local Comments of Peeri

Global Comments of theNetwork

34

For example, there are 100 comments in Tribler,peeri has 85 comments in its local
database. Then forpeeri, theDataCoveragei = 85%.

The other term, calledoverlay coverage, means the fraction of infected peers in a
network for a particular message. For acommentk

OverlayCoveragek =
Nk

Network Size

TheNk is number of peers who are infected bycommentk and theNetwork Size
is the total number of peers in Tribler. It means how many percents of peershave
been infected bycommentk.

We usually consider an average data coverage of all peers. Thus two coverages
are identical when there is only one message in the simulation. Data coverage is
more of concern while overlay coverage is more intuitive in analyzing the dissem-
inating speed of algorithms. Since this chapter only covers disseminating of one
message, the coverage will refer to overlay coverage through out this chapter. The
data coverage will not be mentioned until next chapter.

5.2 Simulation of Original CommentCast

This section presents the simulation of original CommentCast, then improves it
with a very simple scheme to speed it up. The improved result is taken as a baseline
for later simulations.

5.2.1 Simulation Specifications

Considering a process of spreading one comment, the original CommentCastworks
as follows: after receiving a message, every peer starts to relay the message to their
neighbors from the next cycle. They stop sending until the comment is not a recent
comment any more. The algorithm is similar to the proactive basic gossiping al-
gorithm introduced in 1.2.1.

• A comment message is injected by a random peer of the network.

• Every cycle, peers who have received the comment take a random peerfrom
the network to send the comment to.

• Receivers put the message in the receiving buffer when they receivea com-
ment.

• The comment is not added to the comment list until all peers finish sending
in the cycle.

35

• The simulation is done when the overlay coverage reaches 100%.

• There is a overall controller who is responsible for recording overlay cover-
age and total number of redundant messages in every cycle.

5.2.2 Simulation Result

Figure 5.3 shows the result of overlay coverage of a single comment in eachcycle.
In the figure, the vertical-axis is the overlay coverage as percentage. The horizontal-
axis represents the communication cycles. We can see a clear trend in how the
overlay coverage grow as the communication cycle increases.

 0.25

 0.5

 0.75

 0 5 10 15 20 25

O
ve

rla
y

C
ov

er
ag

e
(%

)

Communication Cycle (#)

500 peers
1000 peers
5000 peers

10000 peers

Figure 5.3: Disseminating Speed of the Basic Epidemic algorithm. Vertical-axis is
the overlay coverage, horizontal-axis is the cycles of communication. The 4lines
stand for disseminating rate of the same algorithm for 4 different network size of
500 peers, 1000 peers, 5000 peers and 10000 peers

We did the same simulation on 4 different networks that are 500 peers, 1000peers,
5000 peers and 10000 peers. Every simulation was repeated more than 30times
and the results were averaged to keep reproducibility of the figure. It is clear that
the basic epidemic algorithm is scalable for for large scale networks.

5.2.3 Speed Up by Increasing of Initial Fanout

From the result of basic gossiping, we know that the overlay coverage grows fast
during the coverage is between 0.25 to 0.75. However, it is not ideal both infirst 25
percent and last 25 percent of coverage. In first 25 percent coverage, too few peers
are infected. In last 25 percent of coverage, blind transmission mostly generates

36

redundant transmissions.

When the initiator posts a comment, he is the only infected peer. Under the design
assumption that every peer is expecting new comments, it is for sure that pushing
a comment to all its neighbors does not generate any redundant messages. Thus,
a simple improvement is that when a user initiate a comment, peers immediately
push the comment to all his neighbors. Figure 5.4 shows a comparison between ba-
sic gossiping and improved gossiping with the push scheme. We call the improved
gossiping as ’fast-push gossiping’, or short as ’push’.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

O
ve

rla
y

C
ov

er
ag

e

500 Peers

basic
push

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

1000 Peers

basic
push

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

O
ve

rla
y

C
ov

er
ag

e

Communication Cycles

5000 Peers

basic
push

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

Communication Cycles

10000 Peers

basic
push

Figure 5.4: Comparison of overlay coverage between basic epidemic and fast-
push gossiping. The vertical-axises are overlay coverages and horizontal-axises
are communication cycles. Four results from different networks are shown, which
are 500 peers at top left, 1000 peers at top right, 5000 peers at bottom left and
10000 peers at bottom right.

The fast-push schema increases the coverage growth of the basic gossiping. It
utilizes available bandwidth to initial coverage of dissemination. The redundancy
of fast-push gossiping is the same as the redundancy of basic gossiping.Thus the
fast-push gossiping triumphs the basic gossiping in terms of speed and redundancy.

Redundancy of the algorithm is discussed in 5.4.3.

5.3 Simulation of Flooding

Flooding is a well known algorithm for unstructured networks. It is very reliable
so that it is popular for topology updates or routing information discovering. In

37

a flooding algorithm, the peer who received a message broadcasts the message to
all its neighbors. The flooding algorithm used in the simulation was described in
1.2.2.

It is obvious that disseminating speed of flooding depends on the degree of peers
and how peers are connected to each other. The Tribler overlay is strongly connec-
ted. [20] shows that most P2P overlays rely on high-degree super peers, thus the
average degree is much lower, compared with Tribler. Thus we can expect the
overlay coverage of flooding increases very fast in the Tribler’s overlay. On the
other hand, a highly clustered network, or we say a network with a high clustering
coefficient, may lead to extra redundancy.

Start

initiate overlay

select a random

peer to initiate a

comment

Sending

Receiving

calculate overlay

coverage

record overlay

coverage and

redundancy

coverage =

1
No

stop

Yes

Figure 5.5: Flow chart of flooding; the simulation repeats until the overlay cover-
age reach 100%. Sending and receiving are two loop procedures andare shown in
figure 5.6

5.3.1 Simulation Specifications

The flooding algorithm was introduced in 1.2.2. The flow chart of the simulation
is shown in Figure 5.5. The simulation does not stop until all peers are infected by
the comment. During the simulation, overlay coverage and number of redundant
messages is recorded for every cycle of communication. Every cycle of communic-
ation includes two sub-procedures, sending and receiving. Sending and receiving
are loop-processes which are executed on every peer of the overlay. The receiving
buffer and sending buffer are two stacks that can keep multiple comments which
can be popped out for processing. The flow charts of sending and receiving are
shown in Figure 5.6. The left one is for sending and the right one is for receiving.

38

peer.sending

buffer = 0

comment = sending

buffer.pop()

append comment to

receiving buffers of

10 fixed neighbors

and 10 random

neighbors

No

i > peer list

Yes

peer = i th element

of peer list

i = i + 1

i = 1

No

Yes

receiving

buffer = 0

comment =

receiving

buffer.pop()

comment is

new

 append comment

peer.sending

bufer

Yes

No

i > peer list

peer = i th

element of peer

list

i = i + 1

Yes

No

No

Yes

i = 1

Figure 5.6: Flow chart of the sending procedure(left) and flow chart of the re-
ceiving procedure(right). These two procedures are two componentsof flooding
simulation.

5.3.2 Simulation Result

Figure 5.7 shows a graph which compares disseminating speed of flooding and fast-
push gossiping. The horizontal-axis is adjusted for the flooding algorithm. Thus,
some data of fast-push gossiping is ignored. The coverages of the firstcycle are
exactly the same in fast-push gossiping and flooding, because the two algorithms
are identical in the first cycle. However, the coverage of flooding increases sharply
after the first cycle even in the largest experiment which has 10 thousandspeers. It
only takes 4 cycles to cover entire network. It is also important to notice that the
number of redundant messages is huge. It is too expensive for data dissemination.
The gossiping algorithm is sometimes called the anti-entropy algorithm, and the
major problem of flooding is the redundancy. There is no need to compare the
result of the redundancy in the two algorithms. The redundancy comparison is
shown in 5.4.3.

5.4 Simulation of LightFlood

Flooding in Tribler’s overlay is a very fast algorithm. However, the redundancy is
overwhelming. It is necessary to reduce the number of retransmissions in flooding.
LightFlood, introduced by [14], is a smart scheme of flooding. It greatly reduces

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

O
ve

rla
y

C
ov

er
ag

e

500 Peers

push
flooding

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

1000 Peers

push
flooding

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

O
ve

rla
y

C
ov

er
ag

e

Communication Cycles

5000 Peers

push
flooding

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Communication Cycles

10000 Peers

push
flooding

Figure 5.7: Comparison of overlay coverage between flooding and fast-push gos-
siping. The vertical-axises are overlay coverages and horizontal-axises are com-
munication cycles. Four different networks are compared, which are 500 peers
at top left, 1000 peers at top right, 5000 peers at bottom left and 10000 peers at
bottom right.

redundant messages of flooding by constructing a distributed spanning tree and
combine pure flooding and spanning tree broadcasting. We have alreadydiscussed
LightFlood in 3.2.1. Here, we focus on building a spanning tree on the Tribler
overlay, customizing LightFlood and evaluating the performance of LightFlood.

5.4.1 Constructing The Distributed Spanning Tree

We construct our spanning tree by using the PermIDs. Peers take the neighbor who
has the smallest PermID as their parent peer. Every peer sends a HELLOmessage
to his parent peer, so that the parent peers can know their children andkeep them
in a list for tree broadcasting.

There are several reasons of using PermID to construct spanning tree. First
of all, PermIDs are one of the most accessible information. It is very cheapin
terms communication, because Tribler has the PermIDs of all neighbors. No extra
communication is required. Therefore, communication complexity of creating a
distributed spanning tree isC(N) = O(1) for a network withN peers. Secondly,
PermIDs are unique identifiers of users. They are easy to compare and the result
of comparison is transferable from peer to peer.

40

5.4.2 Simulation Specifications

The basic idea of LightFlood has been described in 3.2.1. We only would like to
stress that received messages are forwarded only if they haven’t received it before,
like in flooding. The process of LightFlood is almost the same as flooding in Fig-
ure 5.5 and Figure 5.6. There is only one difference: The step append comment to
receiving buffer of 10 fixed neighbors and 10 random neighbors’,called the Flood-
ing step, in Figure 5.6 is modified. The new process replacing the step is shown
in 5.8. Threshold in 5.8 indicates whether to flood the message to all neighbors
or broadcast the message on the spanning tree. Hop count is more easy tounder-

comment.HC

<= Threshold

Flooding

Tree broadcasting

Yes

No

Figure 5.8: The new process for LightFlood replacing the flooding step in the
process from Figure 5.6.

stand in LightFlood. We replace TTL with hop count (HC) which starts from 0and
increases by 1 when the message is forwarded. Therefore, in every cycle, the hop
count of message received by infected peers is equal to the cycle. Peers do flooding
when the hop count of the received comment is less or equal to the threshold, or do
tree broadcasting if the hop count is greater than the threshold.

Thresholds are chosen based on the result of previous simulations of theFlood-
ing algorithm. From the results in Figure 5.7, we can see the coverage reaches 0.5,
0.3 in cycle 2 respectively for 500 peers and 1000 peers, and 0.7, 0.4 respectively
in cycle 3 for 5000 peers and 10000 peers. Our data also shows that theredund-
ancy increase sharply from cycle 2 to cycle 3 for 500 peers and 1000 peers, from
cycle 3 to cycle 4 for 5000 peers and 10000 peers.Optimal choice is obvious. The
threshold will be 2 for 500 peers and 1000 peers, 3 for 5000 peers and 10000 peers.
In the simulation, 2 and 3 were chosen as the thresholds.

Our target is to achieve 100 percent coverage and the simulations run untilcov-

41

erage reaches 100%. However, our results show that LightFlood can not reach
100% coverage without changing rule to only forward new messages. Therefore,
the stop condition is modified so that the simulation stops when coverage doesn’t
increase for several cycles. We will discuss that coverage issue in 5.4.4.

5.4.3 Simulation Results

Redundancy

LightFlood targets reducing redundancy, so the redundancy is the main concern.
In order to keep the redundancies of different networks comparable,we normalize
the redundant messages to a redundancy index. The redundancy index equals the
number of redundant messages divided by the network size. It represents the av-
erage number of redundant messages per peer. The redundancy indexes are shown
in Table 5.1.

500 peers 1000 peers 5000 peers 10000 peers
LightFlood 3.25 2.92 3.70 3.15
Flooding 18.77 18.77 18.76 18.76
Gossiping 5.94 6.90 8.90 8.70

Table 5.1: Redundancy Indexes for LightFlood, pure flooding and proactive gos-
siping.

We can see LightFlood effectively decreased redundancy of floodingin Tribler.
On average, the redundancy of tree flooding is less than 10 percent ofthe redund-
ancy of flooding. The redundancy is quite high in pure flooding, where every peer
transmit 20 times every comment (1 + 19 retransmissions). In LightFlood, the re-
dundancy is restricted to an acceptable range that is around 3 retransmissions for
every comment.

What’s more surprising is that the redundancy of Lightflood is even much less
than the redundancy of gossiping. Gossiping is usually taken as an anti-entropy
algorithm. But, we can not say the LightFlood it a better anti-entropy algorithm
than gossiping, because usually no gossip is supposed to achieve 100% coverage,
and reaching the last several percents of peers is very expensive for gossiping.

We also notice that the redundancies of pure flooding are quite stable as thenet-
work size changes. But the redundancy of spanning tree flooding varies largely in
different networks. A more interesting phenomenon is that we can not findany
pattern as the network size increases. The largest index comes from 5000 peers
which is the second largest network while the largest network, with 10000 peers,
has a very close index, second smallest, to the smallest network which has only
500 peers.

42

In order to find out the reason behind the irregular redundancy indexes, we ex-
tracted the messages generated during tree broadcasting, and then normalized them
dividing by the network size. Table 5.2 shows the redundant indexes during tree
broadcasting and the coverage when it switched from flooding to tree broadcasting.

500 peers 1000 peers 5000 peers 10000 peers
Total 3.25 2.92 3.70 3.15

Tree part 2.93 2.80 3.02 2.90
Coverage 0.52 0.29 0.68 0.43

Table 5.2: Redundancy table. The first line is the network size. The second line
is the redundancy indexes for entire LightFlood algorithm. The third line is the
redundancy indexes for messages generated during broadcasting onthe tree. The
forth line is the coverage when it switches from flooding to tree broadcasting.

We can see that the largest redundancy index is 3.02 for 5000 peers and the largest
networks size generates the second smallest index which is 2.90. Apparently, it is
still not clear how does the network size affect the redundant messagesgenerated
by the algorithm. However, the redundancy index has an obvious rising trend as the
initial coverage increases. Therefore, the conclusion is that the redundancy index
doesn’t depend on the network size but largely depends on the overlaycoverage
when it switches from flooding to broadcasting on tree. We will have a wide ex-
ploration of different LightFlood schemes in 6.1.1.

Dissemination Speed

Disseminating speed is also important to the algorithm. Figure 5.9 compares the
dissemination in LightFlood, pure flooding and fast-push epidemic. Generally
speaking, the disseminating speed of spanning tree flooding is very good.In most
cases, LightFlood is almost as fast as pure flooding which is at the upper bound of
disseminating.

However, in small networks, of 500 peers and 1000 peers, LightFlood isjust a
little faster than fast-push epidemic, even though the performance of spanning tree
flooding is ideal for 90% coverage. A more significant problem is that spanning
tree flooding can not reach 100% coverage. In order to improve the finial coverage
of LightFlood, we refine the distributed spanning tree.

5.4.4 Refine Distributed Spanning Tree

We realize that our algorithm for constructing a spanning tree has a defect that it
can not ensure the resulting spanning tree is connected. Figure 5.10 shows an ex-
ample that the network will be portioned into two separated parts. Peer A has the

43

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

O
ve

rla
y

C
ov

er
ag

e

500 Peers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

1000 Peers

LightFlood
flooding

push

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

O
ve

rla
y

C
ov

er
ag

e

Communication Cycles

5000 Peers

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

Communication Cycles

10000 Peers

Figure 5.9: Disseminating speed of LightFlood, Flooding and Fast-push gossiping.

smallest PermID in the network. Peer B has the second smallest PermID in the
network. White peers in the figure select A as their parent, black peers select B
as their parent. Although the network is strongly connected, constructed spanning
tree is partitioned in two subtrees.

A
B

Partition

Figure 5.10: Tree partition. An example of tree partition. Peer A has the smallest
id in the network, peer B has the second smallest id in the network, but they are
not connected directly. Lines and arrows both are the overlay links. Arrows also
shows the spanning tree links. Pointed peers are parents.

Multiple subtrees exists in the network. We expect merging partitioned trees could
improve overlay coverage. In the simulation, it is easy to tell which peer is the
root of the fully connected spanning tree, called the complete tree. However, in an
unstructured distributed environment, finding the root of a tree is quite expensive.
The merge algorithm should be iterated finite times. Here we consider the number

44

of iterations be 3 and we compare performance of the tree produced by 3 iterations
and the complete tree.

The pseudo code of merge algorithm is in Algorithm 1. The merge algorithm
works as follows: whenever a peer, peer A, doesn’t have parent, itwill randomly
pick a peer and keep requesting the parent of the selected peer until peer A find the
root of the tree containing the selected peer. We call the root as peer B. Then it tries
to combine it self, peer A and peer B. Combining principles: 1: If the PermID of
peer B is smaller than the PermID of peer A, peer A will take peer B as its parent
and break out to finish the merge algorithm. 2: If the PermID of peer B is larger
than the PermID of peer A, peer B will take peer A as its parent, then it begins
a new iteration. The merge algorithm requires consistent control procedures in a
real distributed system, but it is not the concern of this thesis, we do not cover this
issue.

Algorithm 1 Tree Partition Merging Algorithem
if self.parent = NULLthen

repeat
p = random peer
while p.parent is not nulldo

p = p.parent
end while
if self.id< p.id then

p.parent = self
else

if self.id> p.id then
self.parent = p
BREAK

end if
end if
i = i+ 1

until i ≥ iteration
end if

The results show the merge algorithm increases the overlay coverage andalso
slightly increase the speed of achieving final coverage. The number of peers
covered by original tree, the tree after 3 iterations of merge, and the complete
tree are shown in Table 5.3. We repeat the simulation 20 times to get the average
values. We can see that the tree after 3 iterations of merge and the completed tree
almost give the same results, especially in small networks.

The complete tree still can not ensure that LightFlood covers 100% peers.In
order to find the reason behind this, we modified the simulation in which peers
retransmit any message during the tree broadcasting part no matter if they were in-
fected before. After the modification, LightFlood finally reaches 100% coverage.

45

500 peers 1000 peers 5000 peers 10000 peers
Original 489.9 914.3 4943.8 9706.2

3 iterations 499.6 999.2 4992.1 9987.1
Complete 499.6 999.3 4993.6 9990.4

Table 5.3: An average overlay coverage of LightFlood with different spanning trees
in terms of number of peers. The first row are the peers covered by LightFlood with
the original spanning tree. The second row are peers covered by LightFlood with
a tree after 3 iterations of the merge algorithm. The third row are peers covered by
LightFlood with a complete tree.

But the the number of redundant messages became too large to accept, andit in-
creased rapidly as the network size increased. Because push protocol doesn’t have
to reach 100% coverage, the tree after 3 iterations of merge is good enough for the
push protocol.

5.4.5 Influence of Churn

We have already seen that the spanning tree is very fast at data disseminating and
it is very cost-effective while achieving the high disseminating speed. It is also im-
portant to know if it is stable under churn. Churn is the effect of many users leaving
or joining the system at the same time [31]. Churn doesn’t lead to big problems
under client/server model especially for peers leaving, because the sever takes the
key role in communication and the rest of the peers work well. However, churn
is a very disturbing problem persisting in Peer-to-Peer systems. In structured P2P
system, frequent joining and leaving cause huge system overhead. The unstruc-
tured P2P systems usually handle joining issue elegantly. However, large amount
of peers leaving may break down of the system. Here, we focus on the structure
problem caused by peers leaving.

The spanning tree itself is an very fragile structure when it comes to churn.Any
leaving peer causes partitioning of the spanning tree, or we say the node connectiv-
ity of spanning tree is 1.

LightFlood is not fragile to churn since it utilizes the randomness of flooding.
The algorithm is duplicating the source message abundantly before broadcasting
on the spanning tree. Figure 5.11 shows a diagram of the duplicated source mes-
sage. The message initiator randomly makes a lot copies of the message, whichis
the pure flooding part of the algorithm. When the hop count is large enoughto stop
random duplicating, multiple messages are broadcasted on the spanning tree. The
more message sources exist in spanning tree the more reliable the algorithm is.It is
the reason behind the reliability of the algorithm despite the fragile spanning tree.

Another advantage of LightFlood is that building spanning tree almost doesn’t re-
quire any extra cost. It only needs local information. Furthermore, the Tribler

46

Random Flooding

Spanning tree
broadcasting

Figure 5.11: A diagram of duplicated messages in LightFlood. The black nodes
are the peers who received the message during random flooding. Theybroadcast
the message along the spanning tree.

client is able to detect the leaving of neighbors, because the clients maintain TCP
connections with their neighbors. When they detect their parent is gone, clients
can react rapidly by selecting another parent with local information and recover
the spanning tree structure. The partition merging algorithm is not that fast, taking
several communication cycles. The merging algorithm is not taken into account.

We will focus on the simulation of the system with 10,000 of peers in churn, since
the LightFlood does not depend on the network size and large scale networks are
more of a concern for Tribler. After initiating an overlay with 10000 peers as the
overlay in LightFlood with partition merging, a number of peers are randomly re-
moved. Then, the same spanning tree flooding algorithm will be carried out on the
system without any tree recovery. The number of removed peers are decided by a
given churn rate which increases from 0.05 to 0.5. The churn rate meanswhat per-
cent of peers in the network are removed. For example, a churn rate of 0.1 means
10 percent of the peers are removed. We are interested in the impact of churn on
the final coverage of LightFlood for the rest of the peers, because theinfluence in
each step is trivial and the final coverage is a cumulative result of the churn effect.
The figure 5.12 shows the results of the simulation.

47

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
ve

rla
y

C
ov

er
ag

e
(%

)

Churn Rate

Figure 5.12: The results of churn simulation. The horizontal-axis shows thechurn
rate which is the percentage of peers are removed. The vertical-axis shows the final
coverage for the remaining peers using spanning tree algorithm.

From the graph we can see the overlay coverage falls elegantly as the churn rate
increases. Even when the churn rate reaches 0.5, which means 50% of peers are
removed, the spanning tree flooding can still cover over 80% of the remaining
peers. Under such an extremely high churn rate, LightFlood without tree-recovery
remains very stable. Based on the discussion above, we believe the LightFlood will
have an excellent performance in the real Tribler client.

48

Chapter 6

Simulation of LightFlood under
Real-World Workload

In the previous chapter, we have explored the theoretical performanceof differ-
ent disseminating algorithms. The results show that LightFlood is the best choice
among them which reaches high coverage with a relatively low redundancy. We in-
vestigate the performance of LightFlood in a more realistic context which is based
on a real-world workload. The simulation focuses on network traffic and data cov-
erage under a real workload.

6.1 Simulation Setup

The size of a network greatly affects the performance of a disseminating algorithm.
Estimating of the size of the target network is very important in a simulation. How-
ever, the size of a network keeps changing all the time. It is hard to give a precise
estimation. Tribler is devoted to provide service to over a million users. Consid-
ering the processing power of our machine, simulating such a huge networkis not
realistic. We will take 10,000 peers as network size of our simulation.

The term coverage refers to the overlay coverage in previous simulations.Since
the simulations in this chapter involve multiple comments, Any further usage of
coverage will refer to data coverage in this chapter. Data coverage andoverlay
coverage are described in 5.1.4.

In order to provide appropriate workload to our simulation, we crawled the entire
history of comments of the movie section on Verycd.com, which is a commercial
website providing download resources for the eMule protocol. It has a very sim-
ilar context to CommentCast. The detailed description of the data is in Chapter 4.
Figure 4.3 in Chapter 4 shows that comment arrival rate keeps increasingafter the
release of the commenting system of Verycd. It begins to fluctuate around 2000
comments per day from September of 2009 until the end of our crawling. There-

49

fore, we will use the comments between Sep. 1, 2009 and Jun. 6, 2010.

We select comments based on hourly workload, because the hour is an appropri-
ate granularity. Workload can change largely with in a day, and users usually stay
online only for several hours. We randomly pick a moment within the period, then
find all comments injected in the following hour after that moment. In order to
eliminate bias of using different hours, we randomly choose 100 hours and import
the comments posted in those 100 hours into a file as our workload. Based on the
random picking, we get 7,806 comments and every comment has its own size. The
total size is 466 Kbytes for the 7,806 comments.

There are 5,088 actual users behind those comments where the most activeuser
posed 32 comments and 3,775 users only posed 1 comment. Our simulator needs
10000 user IDs to initiate the network. We still need some extra users besidesthe
actual 5,088 users and these extra users will not post any comments during the
simulation. The extra users will randomly use vacant IDs between the largest id
and smallest id of the actual users.

We continue to use the overlay and the spanning tree from the previous simula-
tions in Chapter 5. Disseminating each comment is taken as separated processes,
which means the next comment is not injected until dissemination of the previous
comment is finished. The simulator works as follows: 1. Select the comments for
the random 100 hours and put them into a file 2. Read a comment from the file 3.
Do LightFlood, if the read comment is not null. The flowchart of the simulation is
in Figure 6.1.

Start

Select comments

and put into a file

comment = read

a comment

comment is

null

do LightFlood

Stop

No
Yes

Figure 6.1: The flowchart of the simulation

50

6.1.1 Setting Parameters of LightFlood

The overlay coverage and redundancy of LightFlood are affected directly by the
parameters, m and n, which are hops of pure flooding and hops of tree broadcast-
ing. In the previous simulations, we take the most intuitive value of m where the
coverage reaches around 50% while the redundancy doesn’t increase sharply, then
we keep disseminating by broadcasting on spanning tree, which means increase the
value of n, until the message is disseminated to all peers. However, real deploy-
ment needs fixed values of m and n. Therefore, we will investigate the performance
of different LightFlood schemes with different pairs of the m and n values.

We use different values of m and n, ranging from 1 to 4 and 0 to 4 respectively,
to disseminate a hundred comments through the process in Figure 6.1. The average
results of data coverage and redundancy are shown in Table 6.1 and 6.2. Four hops
of pure flooding reach almost 100% coverage, thus (4, 1), (4, 2), (4, 3) and (4, 4)
are not necessary.

m=1 m=2 m=3 m=4
n=0 0.002 0.035 0.452 0.999
n=1 0.008 0.128 0.872 NA
n=2 0.042 0.487 0.993 NA
n=3 0.207 0.900 0.998 NA
n=4 0.595 0.999 0.999 NA

Table 6.1: The coverage of different LightFlood schemes.

m=1 m=2 m=3 m=4
n=0 0 72 2470 79176
n=1 14 362 13784 NA
n=2 92 2574 28434 NA
n=3 622 12665 32169 NA
n=4 4008 26743 32450 NA

Table 6.2: The redundancy of different LightFlood schemes.

In the improved design of CommentCast, push protocol doesn’t have to cover the
entire overlay, because it works with a synchronize protocol based ona passive
gossiping. Therefore we choose 85% as our target coverage. There are 7 pairs of
parameters achieving higher than 85% coverage. After considering redundancy, (3,
1) and (2, 3) are preferred, because their redundancies are only alittle bit higher
than 1 redundant message per peer.

Churn resilience is also an important factor. We illustrate the reason of why the
LightFlood is resilient to churn in 5.4.5 and conducted a simulation of LightFlood

51

with high churn rate. Here we will redo the simulation to compare the churn resi-
lience of (3, 1) and (2, 3) schemes.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

O
ve

rla
y

C
ov

er
ag

e
(%

)

Churn Rate

m=3, n=1
m=2, n=3

Figure 6.2: The coverage of (3, 1) and (2, 3) LightFlood under churn. The hori-
zontal axis is the churn rate ranging from 0.05 to 0.5. It presents the percent of
the peers leaving the system. The vertical axis is the overlay coverage of the two
schemes under the churn rate.

Figure 6.2 shows the overlay coverage of the two schemes under churn rate from
0.05 to 0.5. The churn rate represents the percent of peers leaving the system. We
can see that the (3, 1) scheme is much better than (2, 3) under high churn rate.
Although (2, 3) is a little better in terms of the coverage and redundancy, it is not
reliable in a real deployment.

Based on the analysis above, (3, 1) is chosen as our target system. At the same
time, we are also interested in (3,4) LightFlood, which is a full coverage scheme,
and (2, 2) LightFlood which covers 50% of the peers with a low amount of redund-
ancy.

6.2 Simulation Results

The results of the simulation is shown in table 6.3. We only calculated the up-
load traffic. From the view of network, one peer uploading means downloading
of another peer, so the total download traffic equals the total upload traffic. The
speed of the algorithm is not given, because the speed of dissemination depends
on the scheme of LightFlood. The speed equals the sum of m and n. (3, 1) means
the the dissemination will be finished after 4 communication cycles. The speed
is measured only in communication cycles, because the precise time of each TCP
transmission is hard to be estimated.

52

LightFlood Scheme (3, 1) (2, 2) (3, 4)
Number of comments 7,806 7,806 7,806

Sum of comment size (Kbyte) 466 466 466
Average data coverage 90.36% 47.96% 99.42%
Total traffic (MByte) 9,798 3,317 17,545

Valid traffic 41.97% 65.79% 25.79%
Redundant messages 97,791,820 19,549,558 223,308,976

Redundant traffic 58.03% 34.36% 74.20%

Table 6.3: Results of the simulation under real workload for 10 hours.

(3, 1) LightFlood achieves 90% data coverage on average for 10,000 peers with
9,798MBytes, in which 58% traffic is wasted in retransmission. It means every
peer uploads 100 KByte and downloads 100 KBytes in one hour. The bandwidth
efficiency is reasonable for a fully distributed comment system on average.

LightFlood (3, 4) is also an acceptable scheme which consumes twice the band-
width of the (3, 1) scheme. It can achieve nearly full data coverage. However, the
redundant traffic takes 70% of total traffic. On the other hand, (2, 2) LightFlood
achieved 48% data coverage. The 70% of bandwidth is consumed in valid trans-
missions.

Spreading traffic evenly among peers is also very important to a system. Figure
6.3 shows the CDF of the network traffic of each peer with some important statist-
ical values in Table 6.4.

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.90 24.40 39.03 100.33 85.56 3352.07

Table 6.4: Statistical values of the network traffic of each peer for one hour.

We can see that the network traffic is negligible for most peers, but some peers
consume much more bandwidth than others. The max individual traffic went up
to 3,352 KBytes in one hour. Given the recent network infrastructures,3M Bytes
per hour is still acceptable. There are two reasons behind the uneven workload.
The first reason is the tree structure of LightFlood. Comparing with leaf peers,
root peers forward more messages. The second reason is user behavior. We have
described the Pareto principle of user commenting in 4.3, which means some users
are very talkative in online discussions. We are only interested in individual traffic.
Balancing the network traffic is not part of this thesis.

53

0 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Individual Network Traffic (KBytes per hour)

C
D

F

Figure 6.3: Cumulative distributed function of network traffic of each peerfor 1
hour. The horizontal axis is the network traffic in KBytes.

54

Chapter 7

Conclusions and Future Work

This chapter revisits the research questions in Chapter 2 and summarizes our em-
pirical study and the simulation under real-world workload. With the results and
conclusions, we go back to the improved design of CommentCast and discussthe
future work on CommentCast.

Conclusions

This thesis focuses on the improvement of CommentCast. As a commenting sys-
tem, the original dissemination speed of CommentCast is too low because of the
inflexible structure of CommentCast. Exchanging of CommentCast message which
contains 30 comments is executed once every 4 hours. If we shorten the cycle of
CommentCast to speed up disseminating, it will lead to a a huge amount of re-
transmissions, because our data shows there is about one comment injectedin the
system per one minute. Therefore, we propose a new structure that divides the
functionality of original CommentCast into data dissemination and data synchron-
ization. Data dissemination is achieved by a push protocol with a very high speed.
It is supposed to cover not 100% of the peers, but most of them in the network.
Furthermore, a push protocol can not take care of offline peers. Thesynchroniza-
tion protocol is used to extract missed comments in the push protocol and retrieve
new comment when offline peers log on.

After the structure improvements, we studied the performance of basic proactive
gossiping and flooding as dissemination speed and redundancy, using experiments
under Tribler environment. We also applied LightFlood to Tribler and evaluated
the performance of LightFlood by comparing it with gossiping and flooding. The
results show that LightFlood has a comparable speed with flooding, which is much
faster than gossiping, especially in large scale networks. As the same time, the
redundancy generated by LightFlood is much less than the one generated by flood-
ing. LightFlood is even more cost effective than the basic proactive gossiping in
achieving a high overlay coverage.

55

Finally, we conducted an intensive study on the performance of different schemes
of LightFlood. We found LightFlood (3, 1) to be the best choice for our target
system. Based on the real-world workload crawled from Verycd.com, LightFlood
achieved 90.36% average data coverage in a network with 10,000 peers.The re-
dundant traffic takes around 50% of the total traffic compared with a centralized
commenting system. The data is disseminated within 4 cycles. On average, every
peer spends 100 Kbyte per hour on CommentCast. Our simulation also shows that
LightFlood is very resilient to churn. Under extreme churn, LightFlood retains its
high performance.

Future Work

LightFlood is a very fast, cost-effective and reliable algorithm. The bandwidth
consumption is realistic, such that it can be deployed on real system. However,
it also has its defects. The most significant defect is that workload is not well
balanced among peers even though the overall bandwidth consumption is small.
Figure 6.3 shows the busiest peer should spend a around 3 MBytes per hour on
CommentCast. We should prevent the situation that some busy peers spend too
much bandwidth on CommentCast. A technique to balance the workload across
peers is required.

In this improved design, the synchronization protocol is also plays a criticalpart.
It is responsible for retrieving missing comments, churn repair for offline peers
when they log on and bootstrapping for new users. Coordinating the balance of
overlay coverage of the push protocol and synchronization protocolalso needs a
lot of work. Because the speed and cost of the push protocol is affected by the
overlay coverage directly, we suppose finding the optimal balance is important to
CommentCast.

Last but not least, we also suggested the idea of a searching protocol and the
concept of taste-based local database of comments in 3.2.3. The peers don’t have
to collect and keep all comments in the system. Focusing on a subset based on
user taste would be enough for a user. This would take a lot work of data mining
and clustering, but we can expect a significant improvement from implementing
the relevant design.

56

Bibliography

[1] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms.
IEEE Transactions on Information Theory, Volume 52 Issue 6, June 2006.

[2] Y.S. Chen, P.P. Chong, and M.Y. Tong. Mathematical and computer modeling of the
pareto principle, November 1993.

[3] X. Cheng, C. Dale, and J.C. Liu. Statistics and social network of youtube videos,
June 2006.

[4] F. Chung and L.Y. Lu. Connected components in random graphs with given expected
degree sequence, August 2002. Annals of Combinatorics.

[5] B. Cohen. The bittorrent protocol specification, Jan 2008.
http://www.bittorrent.org/beps/bep0003.html.

[6] R. Delaviz. Swarm-based reputation consensus, 2010. https://www. tri-
bler.org/trac/wiki/SwarmBasedReputationConsensus.

[7] D. Ferrari. Client requirements for real-time communication services.IEEE Com-
munications Magazine, pages page 65–72, November 1990.

[8] A. J. Ganesh, A. M. Kermarrec, and L. Massoulie. Peer-to-peer membership man-
agement for gossip-based protocols.IEEE Transactions on Computers, Volume 52
Issue 2, February 2003.

[9] P. Gill, M. Arlitt, Z.P. Li, and A. Mahanti. Youtube traffic characterization: A view
from the edge, 2007. Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement (IMC ’07).

[10] X.J. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross. A measurement study of a
large-scale p2p iptv system, Dec. 2007.

[11] M. Jelasity and O. Babaoglu. T-man: Gossip-based overlay topology management.
Engineering Self-Organising Systems Third International Workshop, Volume 3910,
2006.

[12] M. Jelasity, A. Montersor, and O. Babaoglu. Gossip-based aggregation in large dy-
namic networks.ACM Transactions on Computer Systems, volume 23(No. 3):pages
219–252, August 2005.

[13] M. Jelasity, S. Voulgaris, R. Guerraoui, A. M. Kermarrec, and M. van Steen. Gossip-
based peer sampling.ACM Transactions on Computer Systems (TOCS), Volume 25
Issue 3, August 2007.

[14] S. Jiang, L. Guo, and X.D. Zhang. Lightflood: an efficientflooding scheme for file
search in unstructured peer-topeer system. InInternational Conference on Parallel
Processing (ICPP’03), 2003.

[15] T. Karagiannis, A. Broido, N. Brownlee, K.C. Claffy, and M. Faloutsos. Is p2p dying
or just hiding?, January 2005.

[16] Y. Kulbak and D. Bickson. The emule protocol specication, January 2005.
[17] L. Lamport. Paxos made simple, November 2001.

57

[18] Harry C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin,
editors. BAR gossip. OSDI ’06 Proceedings of the 7th symposium on Operating
systems design and implementation, USENIX Association Berkeley, 2006.

[19] G. Logiotatidis. Splash: data synchronization in unmanaged, untrusted peer-to-peer
networks. MSc thesis, Delft University of Technology, August 2010.

[20] E. K. Lua, J. Crowcrof, and M. Pias. A survey and comparison of peer-to-peer
overlay network schemes.IEEE Communications Magazine, volume7(No.2):page
72–93, 2005.

[21] M. Meulpolder, J.A. Pouwelse, D.H.J. Epema, and H.J. Sips. Bartercast: Fully dis-
tributed sharing-ratio enforcement in bittorrent. Technical Report PDS-2008-002,
Delft University of Technology, 2008.

[22] P. V. Mieghem. Data Communications Networking, chapter Peer-to-peer network,
page 343. Techne Press, 2006.

[23] M. E. J. Newma. Random graphs as models of networks, Febuary 2010.
[24] A. Papadimitriou and A. Delis, editors.Flash Data Dissemination in Unstructured

Peer-to-Peer Networks. ICPP ’08 Proceedings of the 2008 37th International Confer-
ence on Parallel Processing, 2008.

[25] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips. The bittorrent p2p file-
sharing system: Measurements and analysis, June 2005.

[26] J. A. Pouwelse, P. Garbacki, A. Bakker, A. Iosup, D. H. J.Epema, M. Reinders, and
H. J. Sips. Tribler: a social-based peer-to-peer system, January 2007.

[27] J. A. Pouwelse, J. Yang, M. Meulpolder, D. H. J. Epema, and H. J. Sips. Buddycast:
An operational peer-to-peer epidemic protocol stack. Technical Report PDS-2008-
005, Delft University of Technology, 2008.

[28] A. Qayyum, L. Viennot, and A. Laouiti, editors.Multipoint Relaying for Flooding
Broadcast Messages in Mobile Wireless Networks. 35th Hawaii International Con-
ference on System Sciences, 2002.

[29] R. Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service,
1998. the IFIP International Conference on Distributed Systems Platforms and Open
Distributed.

[30] D. Shah. Gossip algorithms.Foundations and Trends in Networking, Volume 3(1),
2008.

[31] D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer networks, 2006.
IMC ’06 Proceedings of the 6th ACM SIGCOMM conference on Internet measure-
ment.

[32] S. A. Theotokis and D. Spinellis. A survey survey of peer-to-peer content distribu-
tion technologies.ACM Computing Surveys (CSUR), volume 36(Issue 4), December
2004.

[33] Tribler protocol specification, January 2009.
[34] S. Verm and W. T. Ooi. Controlling gossip protocol infection pattern using adaptive

fanout, June 2005. Distributed Computing Systems, 2005. ICDCS 2005. Proceed-
ings. 25th IEEE International Conference.

[35] S. Voulgaris and M. V. Steen, editors.Epidemic-Style Management of Semantic
Overlays for Content-Based Searching. Euro-Par 2005 Parallel Processing, USENIX
Association Berkeley, 2006.

[36] H.L. Yu, D.D. Zheng, B.Y. Zhao, and W.M. Zheng. Understanding user beha-
vior in large-scale video-on-demand systems, 2006. Proceedings of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systems 2006.

58

