Fast Dissemination for CommentCast in
Unstructured Peer-to-Peer Networks

Xu Han

%
TUDelft

Delft University of Technology

Fast Dissemination for CommentCast in
Unstructured Peer-to-Peer Networks

Master’s Thesis in Computer Engineering

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Xu Han

16th January 2011

Author
Xu Han (HughXHan@gmail.com)

Title
Fast Dissemination for CommentCast in Unstructured Peer-to-Peer Nsetwork

MSc presentation
January 26, 2011

Graduation Committee
prof. dr. ir. H. J. Sips (chair) Delft University of Technology

dr. ir. J. A. Pouwelse (Supervisior) Delft University of Technology
dr. ir. F. A. Kuipers Delft University of Technology

Abstract

Commenting is an important fundamental functionality offered with video stream-
ing service. Users exchange commentaries and report problems abouitid¢io
content through commenting. Tribler is, however, still lacking of the funetion

of commenting. CommentCast is a fully distributed commenting system in Tribler
based on the BuddyCast protocol stack.

In this thesis, we improve the original design of CommentCast by augmenting
different protocols working cooperatively to supply a fast, bandwidficient and
reliable commenting service. Then, we elaborate the protocol focusiragsbdis-
semination. By comparing with gossip algorithm and flooding algorithm, we de-
cide to use LightFlood [14], an algorithm combining pure flooding and sSpgnn
tree broadcasting, to disseminate comments. Our experiments show that Light-
Flood is a very fast and cost-effective dissemination algorithm.

In order to study the knowledge of user commenting and evaluate our deggn
collected the comment history of movie section of Verycd.com, a website prgvidin
P2P download resources. Since the movie section of Verycd.com has a simila
context as Tribler, we take the collected comment history as a real workdoad
simulation of CommentCast.

Finally, we investigate the performance of the push protocol of Commernivgast
simulating the algorithm working under the real-world workload. Our simulation
shows that the CommentCast is able to spread comments rapidly to a large number
of users. At the same time, the bandwidth consumption is also realistic based on
today’s network infrastructure.

Preface

| would like to thank my advisor Dr. Ir. Johan A. Pouwelse for his inspiraéiod
guidance throughout my research. | appreciate his generous amkkmkeeping
me motivated. | would also like to thank Adele L. Jia and Boxun Zhang for their
constructive suggestions and insightful feedbacks.

| would like to give my thanks to my parents and friends for their support and
encouragement. | can not finish this project without them.

Last but not least, my thanks also goes to Prof. Dr. ir. Henk J. Sips and D
ir. Fernando A. Kuipers for their participation in my thesis committee, and their
comments on my work.

Xu Han

Delft, The Netherlands
16th January 2011

Vi

Contents

Preface \%

1

Introduction 1
1.1 Peerto-Peersystems
1.2 Dissemination Algorithms in Unstructured Networks
1.2.1 Epidemicalgorithm.
1.2.2 Flooding Algorithm
1.3 Tribler
1.4 CommentCast
1.4.1 The Idea and Data Structure of CommentCast

1.4.2 Specifications of CommentCast

Problem Description 9

2.1 Disadvantages of CommentCast
2.1.1 LowDisseminationSpeed
212 LowCoverageRatio
2.1.3 Low Bandwidth Efficiency
2.1.4 Inefficient Usage of Local Hard-Disk

2.2 Researchquestions,

Structural Improvement and Possible Solutions for the New Stragture 13

3.1 Architecture of CommentCast
3.1.1 Architectural Design for CommentCast
3.1.2 Architectural Improvement

3.2 Possible Solutions for Protocols,
3.21 PushProtocol,
3.2.2 Synchronization Protocol
3.2.3 SearchingProtocol

Data Collection and Analysis 21

4.1 Overview of Datacollection

4.2 System Workload of Commenting System
4.2.1 Arrival Rate of Commentsand Threads
4.2.2 SizeofComments

423 CommentsperThread
4.3 Number of Users and User Behavior

5 Exploration and Analysis of the Push Protocol

5.1 Overall Description
5.1.1 Tribler Specifications
5.1.2 Overlay Construction
5.1.3 Experimental Environment
514 ImportantTerms

5.2 Simulation of Original CommentCast
5.2.1 Simulation Specifications
5.2.2 SimulationResult.
5.2.3 Speed Up by Increasing of Initial Fanout

5.3 Simulationof Flooding
5.3.1 Simulation Specifications
5.3.2 SimulationResult.

5.4 Simulationof LightFlood
5.4.1 Constructing The Distributed Spanning Tree
5.4.2 Simulation Specifications
5.4.3 SimulationResults
5.4.4 Refine Distributed Spanning Tree
545 InfluenceofChurn

6 Simulation of LightFlood under Real-World Workload
6.1 SimulationSetup
6.1.1 Setting Parameters of LightFlood
6.2 SimulationResults

7 Conclusions and Future Work

viii

Chapter 1

Introduction

1.1 Peer-to-Peer systems

Before the introduction of Peer-to-Peer(P2P) applications, the clieva$€/S)
architecture dominated network applications, in which servers have a kritiea
in processing or routing etc. The C/S architecture provides very simplanand
ive solutions. Since the boom of the Internet, servers resourcegvieovbecome
the bottleneck. Since the number of clients increased rapidly, the seegetsces
could not catch up with it. In contrast to C/S architecture, a P2P architesgefes
to remedy this problem by sharing client resources such as bandwidthgato
space or processing power. In recent years, P2P technologybasb very pop-
ular for various applications such as file sharing or live streaming applicatfe2P
systems, or distributed systems usually distribute tasks equally on peeps fxce
some noncore tasks like bootstrapping [32].

The key advantage of P2P systems is their scalability, because they make use
of unused resources on client side. Under C/S model, new userselegpart of
resource from the existing users, which causes the system to only @resmidice
to a certain number of users. However, as more and more new users ja@ysthe
tem, the capacity of the system increases accordingly under P2P modelfil&éak
sharing as example. Instead of utilizing only the bandwidth of the serventzlie
also upload parts of the file to other clients while downloading. This is the measo
why P2P systems are able to provide services to large number of userareaimp
with C/S model applications.

P2P systems can be classified as structured or unstructured accordimgyeith
lay being used [22]. The structured networks usually distribute peérs@mtents
in the overlay according to consistent protocols to ensure that any peentnt
are globally traceable, so that any search for content can be routesigedhs who
have the content. The most widely-used structured network is Distributed Ha
Table (DHT). It maps keys to the nodes of an overlay network and peeviteans

of locating the current peer node responsible for a given key. Atrugtared P2P
network forms links arbitrarily between peers and peers can only catitactly-
connected peers within the overlay. Peers in unstructured networakyuseed to

use flooding or gossiping to perceive the overlay in order to find desésaalirces.
Structured overlays are convenient in locating desired resourcépeBrs’ joining

and leaving are expensive for structured overlay, since they cdasefaverhead

in maintaining the topology of overlay. On other hand, the advantage of an un
structured overlay is the low cost maintenance while not providing guasufie
locating desired resources.

1.2 Dissemination Algorithms in Unstructured Networks

In unstructured networks, overlay links between peers are estabbshedarily.

Peers can not locate resources or peers by referring to a unifagtidn as in DHT
based networks. Therefore, locating resources or routing is an impogesearch
area in unstructured networks. There are two widely accepted algorithioghis

in unstructured networks.

1.2.1 Epidemic algorithm

Epidemic algorithms refer to network algorithms allowing rapid dissemination or
aggregation of information. The name is inspired by the spreading of giruse

is also known as a gossip algorithm, because it is similar to spreading rumors in
social networks where people randomly meet each other and exchasgipg

In epidemic algorithms, peers periodically exchange information with a random
neighbor to achieve data dissemination or aggregation. Gossiping is becoming
more and more popular in many research areas such as data aggregdtion a
pology management. [30] provide a systematic survey of many of recamtse

on Gossip algorithms. [12] investigated the gossip algorithm for aggregaditeg
under large dynamic networks. [18] provides a reliable version ofigiogsunder
Byzantine/Altruistic/Rational (BAR model). A series of works on self-oigay
topology management were introduced in [11] and [35]. A failure deteqtion

tocol is described in [29], which can be used to discover and leveratyeork
topology. [1] introduces a mathematic model of gossip algorithm for arbitraty
work graphs, then provides a fast gossip algorithm through theoratiedysis.

Here, we describe two kinds of gossiping, proactive gossiping arsiveagos-
siping. Proactive gossiping, called push, means peers push their itif@nnia
other peers. Passive gossiping, called pull, means peers extrachatimn from
other peers.

Proactive Gossiping

S

cycle 1 cycle 2
cycle 3 cycle 4

Figure 1.1: A Process of Basic Gossiping Algorithm. It shows 4 cycleshafsic
proactive gossiping.

We illustrate a process of basic proactive gossiping where peers begantb
messages to a random neighbor in every cycle after they are infectedctive
gossiping is usually called the push method. In the push method, the initiator of
communication pushes information to the receiver, which means the regeisger
infected after being contacted by an infected peer. The process ofetpe gos-
siping is shown in Figurel.1. The black circles are the infected peers; uittdtes

are the uninfected peers; gray circles are the peers who are newtyemhfmn a
particular cycle. The lines between peers are the links of the overlayramdsa
represent initiating a communication.

In proactive gossiping, peers do not know how many peers are idfetttat is

they do not know when to stop gossiping. The most-common solution is append-
ing a Time-To-Live(TTL) attribute to a message. If the TTL reaches Orspstep
forwarding the message. The initiator of the message gives an initial T, an
peers subtract 1 from TTL on every forward until it reaches 0. ThteliT TL

value takes an important role in overlay coverage. If the TTL is too largetsp
keep sending redundant messages time and time again even when eydrgbod
got the comment. On the other hand, if the TTL is not large enough, somg peer
would never receive the comment.

Passive Gossiping

et

cycle 1 cycle 2
cycle 3 cycle 4

Figure 1.2: A Process of Basic Gossiping Algorithm. It shows 4 cycleshaisic
proactive gossiping.

Figure 1.2 shows the process of passive gossiping. In passivipiggsshe initi-

ator extracts information from the receiver, which means the initiator of commu-
nication is infected after communicating with an infected peer. At the beginning
of the algorithm, there are 3 infected peers. In passive gossiping, thexgbica-

tion is initiated by the uninfected peer to extract information from other pades.
arrows in Figure 1.2 means extraction of information. So uninfected pekisew
infected when they extract information from black peers. The grayspaer the
infected peers in the current cycle.

At the beginning of passive gossiping, most peers fail in extracting nmder
tion. Comparing with proactive gossiping, passive gossiping is moretietfiec
when there is a small fraction of uninfected peers. In real passivaEmog ap-
plication, peers can not know when new information is injected. So usuakysp
periodically contact a random peer to extract information.

Epidemic algorithms do not guarantee to achieve a particular goal withinma give
time period, but the most significant advantage is that it guarantees a maximum
computational complexity and a bandwidth consumption. Peers will not dedicate
too many resources in to one task in heterogeneous P2P network, aadqgidihe
peers will not be depleted unexpectedly in Mobile Ad Hoc Network (MANET)

1.2.2 Flooding Algorithm

Epidemic algorithms do not guarantee message arrival. Usually, reliabilitpecan
met by increasing the number of peers communicating with in each cycle, called

4

fanout [34]. It also increases the dissemination speed of a messageiwark

As the fanout is increased to the maximum value, the algorithm is usually called
flooding. It means peers rebroadcast the message to all their neigtibemshey
receive a new message.

We introduce a flooding algorithm by increasing the fanout of gossipunghis is
actually different from gossiping. In a flooding algorithm, a peer usualtwérds

a received message to all of his neighbors, it then stops forwardingodsip-

ing, peers keep forwarding a received message in every cycle unfillthef the
message drops to 0. Because of forwarding to all neighbors, a flooldjogthm
guarantees arrival of a message. Gossiping, however, does rsideBarrival of
messages, flooding also guarantees shortest arrival time. Reliabilitygmsideed

are therefor the advantages of flooding algorithms. Flooding algorithmaves,

lead to significant amount of retransmissions, which is the primary disady@anta
Figure 1.3 shows the process of a flooding algorithm. Compared with the basic

g

cycle 1 cycle 2
cycle 3 cycle 4

Figure 1.3: The Flooding Process. It shows 4 cycles of a flooding itigoiThe

first difference between flooding and gossiping is that the fanoutaseseto the
maximum value. The second one is that only gray peers being infected in the
current cycle forward the message in the next cycle after being infected

epidemic algorithm in Figure 1.1, flooding covers every peer in the overidynw
4 cycles. On other hand, flooding generates many more retransmissiomng tha
previous proactive gossiping.

1.3 Tribler

Tribler is a fully decentralized P2P file sharing system built on top of the Bi€fdr
protocol. By maintaining an unstructured social overlay based on uster-tri-
bler provides content discovery, content recommendation and dovinépfb].
BitTorrent [5] is one of the most popular protocol for file downloadingdivides
a large file into small pieces, creates hashes for each piece and datepsie
results and tracker information into a torrent file. The tracker is respenfib
keeping track of a list of peers who are downloading the file, so that thies pan
contact them and exchange different pieces of the file. The BitTomenibcol
only focuses on transferring files and leaves file searching to otheramngs,
like Web sites. Tribler realize the fact that traditional P2P file-sharing syste
neglect the power of the social phenomena and wants to exploit the effdot
social phenomena in content discovery, recommendation and file shased bn
BitTorrent protocol.

Tribler group has developed a series of protocols for taste-baseld i@ ma-
tion, distributed reputation management, collaborative downloading, vicksmsir
ing etc. BuddyCast has been developed into a substrate of a completaiegide-
tocol stack [27]. It selects peers to synchronize with and the higher pagtocols,
like Barter Cast, SwarmCast, Friend Cast and CommentCast, do the syimahron
tion of MegaCaches for different purposes.

1.4 CommentCast

The prior work we extend in this thesis is CommentCast, a fully distributed com-
menting system. It works without any central component. Commenting system
has been developed over many years under C/S model. The best-komnreat-

ing system could be the bulletin board system (BBS), or Internet forunS BB
already well studied and the algorithms for accessing database are ntdtuve.
ever, fully distributed commenting system is still under development. Distributed
systems are designed for large scale applications, however algorithilissem-
inating are usually not scalable enough for large networks. Data camgjsie
another problem. There are some algorithms focusing on the consengidilss
Paxos algorithm [17]. Similarly, these algorithms are also not designedrip la
scale network. Last but not least, BBS is a kind of timely service. Users ex
pect to receive updates as soon as possible while the distributed envirtoceme

not guarantee end-to-end relay. Here we would like to introduce a soligion

a fully distributed commenting system called CommentCast which is protocol of
BuddyCast protocol stack.

1.4.1 The Ildea and Data Structure of CommentCast

The basic idea of CommentCast is similar to the other protocols, like BarterCast
[21], of the BuddyCast protocol stack. In CommentCast, every peireadystem
keeps a local database of comments. These comments are in the form of commen
message stored in the local database. Peers collect as many commentemessag
as possible by exchanging comments with other peers. When a user isngrows

a Channel, all corresponding comment messages are acquired frdrddtaiaase

and then arranged in the Channel page according to their time stamps. A commen
message includes Channel ID, Commenter ID, Commenter Nickname, Timestamp,
Comment txt, signature. The detailed information are in Table 1.1.

Field Size Description
Channel ID 20 Bytes ID of the channel
Commenter ID 20 Bytes The PermID of the comment publisher
Nickname of Commenter Max. 30 Bytes The nickname of the commenter
Timestamp 4 Bytes The time when the comment was post
Comment txt Max. 280 Bytes The content of the comment
Signature 67 Bytes For security issue, generate from above four fie|lds

Table 1.1: Comment message table entry structure in local cache

1.4.2 Specifications of CommentCast

CommentCast exchanges comment messages by sending CommentCastgnessage
which are collections of comment messages. The detailed algorithm worék as f
low:

e Each CommentCast message contains 30 comment messages that are 10
my_recentcomments, 5 myandomcomments, 10 othetrecentcomments
and 5 otherandomcomments.

e Peers periodically send out a CommentCast message to another peer. When
and who to send depends on the period of BuddyCast.

e Upon receiving a CommentCast message, the recipient updates its loeal data
base with the new comments in the message.

The myrecentcomment are the comments that were posted by the peer itself
most recently. Myrandomcomment are the comments picked randomly from
my_comments. Likewise, otheecentcomments and othaandomcomments are
recent and randomly picked comments of other peers in the local database.
purpose recent comments is to spread the recent comments out with a High pro
ability while the random comments will still cause eventual consistency.

Chapter 2

Problem Description

The most significant achievement of original CommentCast is that it supplies a
possible solution for the fully distributed commenting system and the epidemic
nature makes it very scalable in a large-scale network. But, the disadeani&
CommentCast are obvious as a commenting system. We can not ignore them.

2.1 Disadvantages of CommentCast

2.1.1 Low Dissemination Speed

The concept of CommentCast relies on the fact that every peer pessesspy of

all comments in the system, which means every single comment should be dissem-
inated to all peers. CommentCast is not flexible. It exchanges data petlpdicd

uses the period of BuddyCast, which is 4 hours per cycle. Our lateriengra in
section 5.2 of this thesis shows that such an epidemic algorithm takes more than
10 cycles to spread a comment to 500 peers. A single spreading cyclaifai@s

4 hours. Spreading of a single message takes more than 40 hours. Wheat w
pect is that the new comments are spread to most peers within a shorter time, eve
enabling real-time communication through commenting.

2.1.2 Low Coverage Ratio

CommentCast can be classified as a technique of distributed-databaksesyznic
ation schema. However, it is not a remarkable way of doing so. From #igrde

we can see that recent comments have a higher probability being spozatiybr
while spreading of history comments is a random-based epidemic algorithm, which
means the speed of spreading of a new comment decreases largelyieratasit
sified as a history comment.

Multi-hop gossiping could not be achieved under such random-baseeneio
algorithm. The statistics from [6] show that most peers, over 90%, onlygsssa
fraction, less than 20%, of the records in BarterCast which uses amabdsed
epidemic algorithm focused on reputation management. Although we do et hav

9

similar statistics from CommentCast, we can expect that CommentCast will not
achieve a much higher performance than this, because the design of Ctdasten
is similar to BarterCast.

2.1.3 Low Bandwidth Efficiency

A solution of distributed system should not use a large amount of bandv@etid-

ing duplicated comments is a waste of bandwidth. Things get much worse when
most peers are sending duplicated comments. The randomness of comnakent se
ing also has an impact on bandwidth usage. Based on the low data cquerage
highly likely that most comments in CommentCast messages are duplicated com-
ments for the receivers. Besides random picking, CommentCast alsa dias
communication. Peers could send the same comments to the same recipient time
and time again. We what a fast system with high communication efficiency.

2.1.4 Inefficient Usage of Local Hard-Disk

It is also debatable whether or not to store all comments from every cheamne
local database. Assuming peers have already possessed all commenttig)itiad:
design definitely increases the speed of retrieving comments. Localdisk-d-
usage becomes a negligible issue. Our experiences tell us that mosbnlers
have interest in a subset of channels and that subset may be only amally
portion of entire set of channels. Saving all comments seems to be an esiabv
solution.

2.2 Research questions

The problems of CommentCast have been analyzed. This thesis can ardyofoc
a subset of those problems. This section will present a guide-line of thisthe

Improve Speed of Dissemination

CommentCast uses a synchronization schema for data dissemination. The main
advantage is that this approach is very reliable. On the other hand, thetleads

ing speed is not acceptable for a commenting system. Based on our egperien
people sometimes chat on BBS nearly in real-time like using instant messengers.
CommentCast can not provide service under such a constrain. Agosebsicr [7],

the round trip delay is the index of primary interest in information retrievalests

and database queries. Even though [7] is based on traditional C/S maslekrh

also applied to distributed commenting system like CommentCast. The primary
goal of this thesis is to improve the speed of dissemination.

Reduce the Cost of Dissemination

10

Considering data dissemination of a single comment, CommentCast is the same
as the basic proactive epidemic algorithm presented in the first chaptéve We
talked about the idea of improving the reliability and disseminating speed by in-
creasing the gossiping fanout. But, as the fanout reaches the maximuen tvedu
number of retransmissions also becomes very large. If spreadingevament is

like a flooding process, the whole system will suffer from a extremely langeunt

of wasted bandwidth. Further more, CommentCast is not a main functionality of
Tribler and it is definitely not acceptable to dedicate such a high cost in Cothmen
Cast. In order to provide a realistic design, reducing the cost of disstarina
significant as well. The second goal of thesis is reduce the cost whiievaai

high speed of dissemination.

Withstand the High Churn Rate

Churn is inevitable in real world systems. Distributed systems are not able to
handle churn as easy as in client/server design. Furthermore, distriysieins

are supposed to supply service to a much larger number of users, whats me
churn becomes even more serious. In order to design an applicableaykieh

can be deployed in Tribler, churn should be taken into account and CotGamsdn
should be able to handle the challenge of a distributed commenting systemaunder
high churn rate.

Derive Real World Parameters for Design

The previous design of CommentCast only supplies a design idea of a fully dis
tributed commenting system. It does not take real world parameters intordaccou
Developing an applicable design should consider the real world worldioddon-
strains. However, previous researches and measurements of comnsystems

are not sufficient enough. It is hecessary to collect relevant data &n exiting
system.

11

12

Chapter 3

Structural Improvement and
Possible Solutions for the New
Structure

This chapter investigates possible solutions for improving CommentCast. First
section of this chapter illustrates CommentCast from an architecture view and im-
proves the design by enriching utilized protocols. Then, it elaborateg pretocol

in detail and provides possible solutions.

3.1 Architecture of CommentCast

Previous work presents the concept of a distributed commenting systethend
working principle of CommentCast, but it doesn’t provide detailed information
needed for an implementation. Some details are still ambiguous. Here we would
like to elaborate the architecture of the CommentCast.

3.1.1 Architectural Design for CommentCast

We derived an architectural design of CommentCast from previous wookn-
mentCast is responsible for retrieving new comments from the Tribler newatk
provides the corresponding comments when a user is browsing a ch&uorak
mentCast does not interact with the user directly, so it works under ¢arfititoe
channel module in Tribler. Figure 3.1 shows the architecture of CommentCast.
Comment messages are stored in a local database called MegaCacheisTher
comment management unit (CMU) that works as a manager of the datapase, o
erating directly on the MegaCache. All comment operations including creating
retrieving and updating go through the CMU. The channel module worbgere
atively between user and CMU. When a user is retrieving channel dateh#mnel
module also sends a query with the channel ID to CMU besides retrievimpeha
information. CMU fetches comment messages for the channel module angreplie

13

Channel Module <E———

Comment Management
Module 3

Comment| Channel
Cast Cast

Local Database

Protocol
stack

1
I
I
I
i
|
: BuddyCast
1
1
1
1
1

Figure 3.1: Architecture of CommentCast

with these comments messages. The channel module arranges the comments into
a user-friendly format and puts them into a channel page which is theameeltto

the user. A user is also able to create a comment through the channel nitduile.
channel module passes the comment text to CMU. CMU then creates a comment
message containing the comment text, PermiID, timestamp, etc. and stores them in
local database. As a security measure, CMU also verifies if the commentdidre

or not by checking peer signature using a Public Key Infrastructu® (P

The protocol stack consists of protocol(s) exchanging comments withjpdiees
from the network. It only has one protocol in the original design, whidhésepi-
demic exchanging protocol. We call it the synchronization protocol. Thtpol
stack does not perform any validation check or comment managementamig is
responsible for sending and receiving comments. When protocol staek/es a
CommentCast message as introduced in section 1.4.2, it extracts comment mes-
sages and passes them to the CMU.

In the design, the CMU works as an agent with the local database. Thisds-he
sary because the distributed commenting system is still not perfect. Thiofunc
alities of a traditional commenting system can not be achieved completely under a
distributed design. CMU could perform some complicated management ingtead o
simply depositing and retrieving. For example, there are some inappropoiate ¢
ments posted deliberately, like spams and curse words. Under Comment@sest, th
comments can not be removed even when the user doesn’t want to seaghiam

14

because the protocol automatically retrieves absent comments from thelnetwo
even if the user removed them. That is to say, the consistency of data is imet ma
tainable under a distributed system, or formally called Byzantine generdlepro
CommentCast translates the consensus problem of a thread into manystsnsen
problems of individual comments, but those problems persist. There ame&ano
ture algorithms solving Byzantine generals problem which are scalablglerou
large scale networks. So our design is that the CMU maintains a managentent fie
for each comment indicating if the comment is removed or not. This means the
remove function does not really remove the comment, it hides the comment from
user.

3.1.2 Architectural Improvement

The core of CommentCast is the protocol. Itis a subprotocol based omtlyBast
protocol stack. However, CommentCast is a comprehensive protocabuldl

be divided into two subtasks. Including most recent comments in a Comment-
Cast message can be considered push-based gossiping for disseymiaaticom-
ments. The entire algorithm of CommentCast seems like a database synclgronizin
protocol. We would like to separate the CommentCast protocol into multiple pro-
tocols. The improved protocols are shown in Figure 3.2 which consists o$la p
protocol, a synchronization protocol and a search protocol. Theqwlostack in
Figure 3.2 does not show the other protocols of the BuddyCast prattzaid, since

the structure is not the major concern here.

Client A Client B

Protocol Stack] Protocol Stack

CommentCast CommentCast

BuddyCast BuddyCast

Network S — Network

Original Communication Model

Client A Client B

Protocol Stack Protocol Stack

{ Sync 3 1 Sync i
i | Push | Protocol | Search | : i | Push [Protocol | Search | |
i | Protocl [Buddy | Protocol | ! : | Protoct | Buddy | Protocol | !
{ Cast] { Cast i

Network —— Network

Improved Communication Model

Figure 3.2: The improved design of protocol stack

The push protocol is supposed to achieve high speed of disseminatiers dte
trying to work cooperatively in spreading newly-injected comments as $gsbv s
sible, so that most channel browsers are able to see the new commentsinhalch

15

as soon as possible. It directly communicates with other peers throughrketwo
layer.

The synchronization protocol tries to synchronize local database#ferfett
peers to achieve high data coverage. The synchronization protoasigned for
three purposes. Firstly, it is used to keep consistency for online pSerse the
push protocol can not guarantee full coverage, peers periodicggetrthe sync
protocol to retrieve missed comments of push protocol, but the sync griayiga
supposed to be sufficiently large such that it will not consume too muchwidtid
Secondly, it is used for churn repair. It is triggered when a reguler ssrts a
Tribler client for pulling new comments during its offline time. Last but not least,
bootstrapping also makes use of the the sync protocol. New Tribler user u
to initiate their local database efficiently. The sync protocol works by uing
BuddyCast sublayer, instead of directly communicating with other peers.

The search protocol is based on a new concept that every peer eapg khe
comments that are most likely to be read by a particular user. When a user is
browsing the comments kept in his local database, it works as the same & the o
idea. When user is browsing a channel without any comments in local databa
CommentCast searches comments from other peers using the searchlprotoc

3.2 Possible Solutions for Protocols

The push protocol is the core of this thesis. Although the protocols warkeare
atively in the distributed commenting system, the other protocols are out of the
scope of this thesis. Therefore, we will elaborate possible algorithmsédaguubkh
protocol first.

3.2.1 Push Protocol

LightFlood

The work of [14] has shown that roughly 70% messages are reduid#dood-
ing with a TTL of 7 on Gnutella overlays. In order to reduce redundanseges
generated by flooding, [14] introduces a fundamental cost-effefttivding oper-
ation in an unstructured P2P network. The fundamental idea of LightFlotmd is
construct an additional spanning tree on the overlay network and diveddis-
semination process into two phases: first, do several hops of pureéniipahd
then, the message will be only broadcasted using the spanning tree.

The flooding is a very reliable disseminating algorithm. It does not only gteea
the arrival of a message, it also guarantees the shortest end to emy.l&atthe
number of redundant transmissions, or retransmissions, make it tooséxgéor
a dissemination process. Therefore, flooding is used for topologyvdisng.

On the other hand, a spanning tree is a structure that minimizes the number of
retransmission in dissemination. Peers have a parent peer and childrerirpa

16

spanning tree. They only forward a message to their parent and chidezs. It
means the dissemination in a spanning tree does not lead to any retransmission.
However, the speed and the reliability are quite poor. Any leaving of peer a

link failure can splits the tree into two parts, which decreases the covefali® o
semination. [14] shows that pure flooding takes 7 hops to cover 95%e0$ [r@
Gnutella’s overlay while broadcasting on spanning tree takes more thasp3Qd

cover the same amount of peers in the same overlay. Based on the anadysis a
flooding and spanning trees are complements for each other. Thetatgrd-lood

makes use of the high speed, reliability of pure flooding and the low rediggad
spanning tree broadcasting.

TTL is an important parameter in flooding. It directly affects the overlayecov
age and redundancy of the flooding algorithm. [14] also shows thatdo@dancy
is relatively low in first 4 hops while it increases dramatically in last 3 hopsderor
to cover 95% peers in the Gnutella’s overlay network. So, in LightFloodfittste
phase is M hops of pure flooding; the second phase is N hops of lastaty on
spanning tree. It's called (M, N) scheme. [14] also investigates thenpeafuce of
LightFlood under different values of M and N. But the actual perforoescould be
very different depending on overlay, because the redundancyvaamthy coverage
largely depend on the overlay structure.

Multipoint Relays

Q

O O ® O

Multipoint

Pure Flooding Relaying

Figure 3.3: Broadcasting by pure flooding and broadcasting by multipdayse

Multipoint relaying is a concept that reduces the number of duplicatechsstia-
sions while forwarding a broadcast message [28]. This techniquétsstre num-

ber of relaying peers forwarding a broadcast messages to a stilisen@ighbor
peers instead of all of its neighbors, like in pure flooding. This set is&egmall

as possible by efficiently selecting neighbors which cover the same netwerk

lay as the the complete set neighbors does. The small subset of neightalied
multipoint relays of a given network. Figure 3.3 shows the concept of muitipo
relay. Left side of the figure is a pure flooding and the right side is a multipoin
relays broadcasting. The pure flooding usually generated a lot ohsetiasions.

In the example, the pure flooding leads to 10 retransmissions, while the multipoint

17

relays technique avoids the retransmission.

An important aspect in multipoint relaying is the manner in which these relays
are selected by each peer. Well-selected multipoint relays could eliminatesretra
mission completely, but it is also possible that they do not bring any improvement.
[28] provides a heuristic to select the multipoint relays and evaluates tf@per
ance by theoretical analyses and simulations.

Although the multipoint relay performs well, it takes a lot of signaling messages
to create the multipoint relay. Under a system with high churn rate, like Tribler,
may consume too much bandwidth for structure maintenance.

Catalogue-Gossip

[24] introduces a flash data dissemination in unstructured P2P netwaréd ba a
gossip algorithm, called Catalogue-Gossip. The objective of the Catalegssip
is to distribute content of arbitrary format and size to all peers which atepthe
network. Catalogue-Gossip relies on an underlying Membership Prd&ida3]
for building up a consistent view of neighbors at every peer.

It divides the content into multiple chunks. Every peer maintains two strugture
for the Catalogue-Gossip. The first structure is a table containing alkshihat
have been downloaded by a peer thus far. The table helps the nodaiassbich
chunks are still missing. To this end, the node can fetch missing parts fran oth
peers. The second structure is a set of frequency counters whiEsgive is to
offer an estimation on how frequent each specific chunk is in the entitersys
Peers retrieve missing chunks in the first table based on Rarest-FirandoR-
First using the second table. Peers are also responsible for asseméloigitiks
into content after download is finished.

The advantage of Category-Gossip is that it is able to spread contentratiid

rary format and size. However, CommentCast is designed for spreealimgents
only. Furthermore, comments are usually very small in size. Dividing them into
chunks is not necessary and leads to extra costs.

3.2.2 Synchronization Protocol

Chapter 1 has already presented the efficiency problem of proactiv@assive
gossiping in 1.2.1. Proactive gossiping is more efficient in terms of redyda
when most peers are not infected. Pushing the proactive gossipingéo the
entire network leads to a large amount of retransmissions, which is ndeetffic
because of redundancy. Therefore, it seems to be reasonablestpasthprotocol
covers the most peers in the network and the other uninfected peersepagsll
the comments to reach the entire network, because passive gossipingjeseifi
covering the last several percent of peers. In passive gosstpmgrobability of
a peer being infected increases as the overlay coverage increasesyrichronize

18

protocol is out of the scope of this thesis, but we would only provide temtatig-
gestion for the protocol.

Splash, in[19], is a good solution for the synchronization protocol. Itpassive
gossiping algorithm for database synchronization. It uses Bloom filtenediace

the bandwidth cost. [19] shows how Splash dramatically increases thagaver
data coverage of peers to 95% coverage, which is 5 times more than BestterC
Achieving the same data coverage as BarterCast only takes less tharefhtpr

the traffic. CommentCast is quite similar to the BarterCast. Although our data
shows the workload of CommentCast is less than BarterCast’s, which leads to
increase in the performance, we believe that using Splash for syrizimgpoom-
ments would provide a great performance.

The synchronization protocol is designed for 3 situations. The firsi®ofe the
users who stay online. The push protocol is responsible for spreadingom-
ments to all online peers. However, for the sake of redundancy, thegratocol
can hardly achieve 100% overlay coverage while churn is inevitable irwvedd
systems, thus impacting the overlay coverage again. Therefor onling goeeoc-
casionally in the need of synchronizing their databases with each otha&illas w
The second situation is when regular users come online. Usually, noleeqg k
their client open all the time even for loyal users. The comment databas&lsho
be updated as soon as possible when a user logs in. When and for lipavuiser
logs off is quite unpredictable. The synchronization algorithm should kiblfe
Last but not least, new users should also be considered. New usgrsoma
at any time, and attracting new users is very important to a software. Ttacplo
should, therefor, be able to collect all history comments in a short time as well.

However, the false positive issue of Bloom filters could be a problem,useca
[19] shows that Bloom filters could waste a lot of traffic for synchromjziast
5% data. Furthermore, Bloom filters are computational-intensive scheney Th
save communication cost, but consume local computational resourcaefdrke
handling the Bloom filters is critical in designing the synchronization protocol.

3.2.3 Searching Protocol

The searching protocol is based on the idea that peers only keep et sfladl
comments in the network. Most users usually don't browse the channekhdya
have no interest in. So keeping comments for all channels does not séenaito
efficient method, considering disk usage. Tribler already has a taséelloaerlay
in which peers are clustered according to their personal interest. Videstitpat
user to selectively keep comments according to their cluster. It's not likegav
the browsing history, but more like predicting the channels that a user masér
in the future. Once, the user selects a channel for which can not comozents
not be found, CommentCast triggers a searching process to get tespamding

19

comments. The searching protocol is a preliminary functionality of the idea. Th

idea doesn’t only increase the disk usage efficiency, it also shrinkatige needed

to be covered by the push protocol. From the results of our simulatioriskisty

the overlay coverage would greatly increase the performance of pasicpl.
Searching algorithm also uses flooding or gossiping in unstructured restwo

The problem is how to get the results with a cost-effective manner. The dionda

in chapter 5 are transferable. How to handle the information of user tasdter@n

an appropriate semantic overlay can be a more important research profiem.

entire design tries to balance performance and cost among differéotpia The

search protocol is not a part of the scope of this thesis.

20

Chapter 4

Data Collection and Analysis

The original design of CommentCast did not take real-world system watkloa
and actual user behavior into account which are important in designipstens.
Abundant measurement studies about social networks and P2P systeavai&
able. [9] and [36] analyze system traffic and user behavior in videdesnand
systems. [3] focuses on social networks various network systemse ahe also
some important measurements in [25] [10] and [15] providing data of P2Ersg.
However, previous studies do not conform our context. We would likeolieat
some data from an existing system. The target system is preferred to fiaviea
context with Tribler, which is, firstly, providing a downloading or video atréng
service; secondly, users are able to create threads, publish resauthe threads,
or leave comments with regard to the contents in a thread; last but not least, the
system is supposed to provide service for a large mount of users.

After considering various choices such as YouTube and EZTV, we Hacided
to focus on Verycd, http://www.verycd.com, a Chinese Web system providing
sources for the eMule protocol [16]. Verycd conforms to our contahough it
uses the eMule protocol instead of BitTorrent. The thread of Verycd @d gna-
logy to the channel in Tribler. Users can create threads and post multipleces
in one thread.

It also has an ideal number of users and comments for investigations. @afr me
urement show that 186,000 users have participated in the discussionswivle
section. According to its naming pattern, we estimate there are at least over a
million registered users of Verycd. Furthermore, Verycd allows anongnown-
loading, thus the actual the number of user is larger than the number dtregis
users. Although we can not know the actual number of users predisislyeas-
onable to believable that Verycd has enough users to be considerdaigs scale
network.

Additionally,Verycd is a commercialized Web system which existed for the last
6 years so the comments are well organized and free from advertisenfdm@s.
quality of the data is quite good. This ensures the data won't have any léas d

21

to spam or abnormal user behavior. We dont have to worry about bNigjl@and
scalability of its server. Our measure won't be interrupted by any exceptleig-
ure 4.1 shows a segment of comments.

SR VeryCD — il — MEEih

FMAETFiE: «LTERER3: ABRZE? (Transformers: Dark of the Moon JEIFHE R [HEE]

«t-m|[1][2][3] 4 [5][6][F—ma EEFLIEPSSEE] vuivn
g 1644 : BisrEl 15148
|3iM(hchel68 @ 2010-12-08, 04:00 PM) 669?
|3im(164477681 @ 2010-12-08, 0332 PM) ee??
|52 7B R R R | | RE— S

MEIDHBMATTFRERA R F R/ LR B A TRikER"
ERME REHERBEEE

@xs 2 @en -9 (@™

H eurobeat i SuHEy 15288
S 3IMinakatazhai @ 2010-12-089, 02:08 PM b b
=z nakatazhai @ -12-08, 02) & b
| 31 Mo 50831 @ 2010-12-09, 02:07 PM) = ¢69?
%i 7 LERATE R, R (TR 2R REAE.
ARAHAMMEET, RIESIHAT , MEWFEHE
@rw 0 @ex 0 ([@#H]
gy yybn 1 Bty 1534

L=l sosmen—sasnensmsmensa—s.
B+ @enll (BE)

| griphino @3, BitE 15448

SR SRR, RRAHELRT R

s+l @sn (o (@)

sunyue0510 &), Bl 1564
. BFLNHEFIE A EWoxTRT BT HSRFLARENARE

M+ 0 @ew 0] [DH]

Figure 4.1: A page of comments of a thread on Verycd.

This chapter will first illustrate how the crawler was deployed and givesna s
mary of the collected data in section 4.1. In section 4.2, we analyze the wdrkloa
from Verycd, including the arrival rate of comments and threads, sizeraments
and number of comments per thread. Then we analyze the number of oders a
user behavior in the commenting system.

4.1 Overview of Data collection

Until 11.6.2010, Verycd has 9 categories of resources containing1@gr,000
threads. Since channels in Tribler mainly offer movies to users, we detided

22

crawl all threads from the movie section. Different categories may leaifféoant

user behavior in commenting. We suppose the comments from movie section are

the most similar to the comments in our channel. Verycd supplies timestamps of

threads and comments, which are critical to our measure. Thanks to thisefeatu

we have access to entire comment history of a channel with a one-time visit.
Verycd has an archive list containing all resource which simplifies cawler

ing. In a normal run, the crawler started from the page of archive list mvatiies:

http://mww.verycd.com/archives/movie/. The crawler starts from the enabivar

list and downloads all data until the first thread of movie section, which mbans

newest threads are downloaded first.It starts at the initial page, sclamkalfor

archive pages and saves all page links in memory. Then the crawler fooks

threads in every archive page. Usually, there are 100 threads iraeztie page.

It make a list storing those thread links. For every link, it downloads the dhrea

page, parses the page and writes relevant information to a file. Sincentimeerus

of Verycd are dynamically loaded through an Ajax application, we need to go

every comment page to find comments. The flowchart of the crawler actiaty is

Figure 4.2.

A

link <- pop a thread
from thread list

page list <- *
parse initial page

html <- load link

parse html

output

link <- pop a page thread
from page list <
\
html <- load
html <- load link comment page
thread list <- parse html
parse html

output
comments

any more
omment:

Y

Figure 4.2: The flowchart of the Verycd crawler activity.

The crawler was started on June 6, 2010 abd downloaded informatiorofrer

23

28,000 of threads and 1 million comments, making over 60,000 of HTTP requests

It finished on July 13, 2010. The actual number of threads and comnrergs@vn

in Table 4.1. We collected the entire information of movie section of the Verycd

which includes 28,259 threads and 1,189,669 comments, form 2003 urfdil B01

a later analysis, we found that the first comment was injected on Oct. 6, 2006

As far as we know, Verycd did not provide a commenting service in its etatyes

Thus the over a million comments were injected between Oct. 2006 and Jun. 2010
Some threads and comments were not parsed due to incomplete or falseilata, b

we successfully parsed over 95 percent of the downloaded data.elggebthat

these results are representative for the user behavior of Verycd.

Thread | Comment
Download | 28,589| 1,189,669
Parsed 28,506| 1,137,619

Table 4.1: Total number of threads and comments. Downloaded threadsmand
ments are the numbers downloaded from server. However, not alldéheead
comments could not be parsed due to data errors. Last row is the total nafnbe
threads and comments that could be parsed.

4.2 System Workload of Commenting System

The system workload is critical to our measurement. The workload is an inmporta
factor, which can greatly affect decisions when designing a system.

4.2.1 Arrival Rate of Comments and Threads

First, we present how many comments per day are injected into the movie section
of Verycd. Since Verycd did not provide a comment system severas &, SO
we take the time of the first comment, Oct. 6, 2006, as the creation time of the
comment system. Figure 4.3 shows the daily comment arrival rate from Oct. 6,
2006 until Jun. 6, 2010. Points in the figure represent the numbersyaheat
injected in a day.

It is clear from Figure 4.3 that comment arrival rate has an upward ttaridg
the its entire life of the system. There were not so many people posting comments
at the early stage. There were even several months when no commeaisjeer
ted. However, the comment arrival rate increased during times. Therfiedbegan
at the end of 2007 and ended in February of 2008 and the secondapperted
during the first 4 months of 2009. After an increase, comment arrit@resnains
stable at the same level for a long time. During our collection, it fluctuates droun
2000 comments per day. It is reasonable to believe the system load remhlas sta
for a period.

24

6000 T T T T T T T

5000

4000

3000

Number of Comments

2000

1000

O Iv ;
2007/Jan 2007/Jul 2008/Jan 2008/Jul 2009/Jan 2009/Jul 2010/Jan

Figure 4.3: Daily comment arrival rate in Verycd. The figure shows thaber

of comments injected every day between Oct. 6, 2006 and Jun. 6, 20X. Th
horizontal-axis is dates and vertical-axis corresponds to the numbenwhents
created in that day

The thread arrival rate is also a factor of system load, because comragnts
threads. Users do not regularly leave comments. They only leave comments f
the contents of their own interest or participate in a controversial disaisBia
thread. The more threads are created in the system, the more new comments will
be injected. Comparing to the comment arrival rate, thread arrival rateaises
more gradually and seems to be more irregular and hard to perceive. éaenpr
the monthly arrival rate of threads in Figure 4.4. Every point means the eumb
of threads created within that month. Thread creation is a basic functionélity o
Verycd. It exists from the beginning of the system. Therefore, threaehbrate
starts from Sep. of 2003 while the comments arrival rate starts from O66, 20
which means the scale of the horizontal axis is different.

The thread arrival rate shows a different property from the commrerabrate.
It increases gradually. At the end of our data, it reaches aroundrd&8ds per
month. So there are a little bit more than 20 threads injected per day. The figure
shows the thread arrival rate bottom at 0 in Jun. of 2004. It is highly litedy the
system was down for more than a month. As it is beyond our scope, we will no
try to find exact reason behind this.

4.2.2 Size of Comments

CommentCast keeps all comments in the local database, which means the the size
of every comment directly affects how much local disk space CommentGCast us
Itis important to estimate whether or not the CommentCast uses realistic amount of

25

800 —————
700 | L

I
600 | /ijﬂ
500 m i
400 :

300

Number of Threads

200

100 |

O "
2004/Jan 2005/Jan 2006/Jan 2007/Jan 2008/Jan 2009/Jan 2010/Jan

Figure 4.4: Monthly thread arrival rate in Verycd. The figure showsilmaber of
threads injected every month Sep. 2006 and Jun. 2010. Horizontal-axgnibis
and vertical-axis is the corresponding number of threads created pén.mon

local disk space. In the design of CommentCast, size of comment text was limited
to 280 Bytes. It is also important to know how many comments may exceed the
the limitation, such that we can adjust our design.

There are two disadvantages of using our data in estimating the comment size.
For one thing, comment size in Verycd could be very different form conisiea
on Tribler, since different language structures lead to different dizermments.
For another, the size of a comment on Verycd is not very precise beténgcd
uses UTF-8 in coding. UTF-8 is a variable-width encoding. Here we wiiked
to take every character as 2 Bytes in estimating. Table 4.2 shows the totaf size o
comments in terms of Bytes and lines with statistic values.

A comment in Verycd is more complex than our requirements in CommentCast.
Its actually a piece of HTML code. Besides the text message, it can alsaénclu
hyperlinks, pictures, Flash and eMule links. Since CommentCast is a teettbas
system, we do not need the extra information beyond text. We take the size of
comments without any text as 0. There are 14,789 0-size comments in 1,137,237
comments, which accounts for 1.30% in total. Because pictures and links influ-
ence the size of a text message, we remove these 0-size comments in ouratatistic
results.

The total size of comments is about 75Mbytes for 1 million comments. The
average size is 65.9 Bytes per comment. A million comments were collected dur-
ing almost four years. The size of comment is not overwhelming for comgputer
nowadays. Another important fact is that more than 75% of the commentssare le

26

Bytes Lines

Total 75,056,308| 1,600,475

Mean 65.90 1.43

Max 123,500 2,516
99-percent quantile 572 6
95-percent quantile 182 3
85-percent quantile 82 1
3rd-quartile 56 1
1st-quartile 18 1

Table 4.2: The size of comments in Verycd in terms of Bytes and lines. First
row is the size of all comments. Second row is the mean value of a comment
size, followed by max value, 99-percent quantile, 95-percent qua8&hpercent
quantile, 3rd-quartile and then 1st-quartile

than the average size, 25% comments are less than 18 Bytes and 85% comments
only have 1 line. Usually, a longer comment is more of interest to other uSers.

the other hand, a short comment can hardly carry any information. Hownieve
difficult to tell what kind of messages is more useful without linguistic study.

4.2.3 Comments per Thread

We already have the approximate size of all comments in Verycd, but usavibe

may change from time to time. For further analysis, we would like to find the aver-
age number of comments in threads. Figure 4.5 shows the cumulative distribution
function (CDF) of the number of comments for every thread and somespanne-

ing statistical values are in Table 4.3. Figure 4.5 shows that only a small poftion
threads, less then 10%, has a large number of comments and a quarteadsthr
have no more than 6 comments. The mean value, 41.73 comments per threads, is
another important value for estimating the disk space taken by CommentCasst. Bas
on the result from the last subsection (65.9Bytes per comments), a thkeadta
average 2.75Kbytes.

Max. | 99% quantile | 90% quantile | 3rd quartile | Median | Mean | 1st quartile
8031 454 79 42 18 41.73 6

Table 4.3: Some useful statistical values of Cumulative Distributed Function of
comments per threads in Figure 4.5.

We divide threads into two groups, intensive threads and sparse shiaambrd-

ing to a quantile point in Table 4.3. Take the 90%quantile point as an example,
threads with more than 79 comments are called intensive threads, and thitads

no more than 79 comments are called sparse threads. For the 90% quantile poin
intensive threads include 645214 comments, which accounts for 52.4%nef c

27

1.0

0.6
Il

CDF

0.4

0.2
e @ o e 000oc0e

0.0

T T T
0 2000 4000 6000 8000

Number of Comments per Thread

Figure 4.5: Cumulative Distributed Function of number of comments per thread.

ments. Moving to the 1st quartile, we find that the intensive threads inclu@é@®1

of all comments. This means the top 10-percent most intensive threadibatatr
more than 50% comments and more than 25% of the threads, the sparse, threads
contribute only 10% of comments.

4.3 Number of Users and User Behavior

Analysis of how many unique users behind the a million comments in Verycd is
also important in designing CommentCast. The number of users largely affects
scale of a P2P system. It also affects the design of the disseminating algagthm
well.

Our data shows that there are 186,109 unique users that have lefstabthea
comment in Verycd. But almost half of them only posted one comment. The num-
ber of users decrease rapidly as the number of comments that they pessis
This information is shown in Table 4.4. It means that most users only ocedigion
leave comments.

On the other hand, we also find that most comments are posted by a small amount

of users. The top 10 most active users with the number of their commentgede lis
in Table 4.5. We calculate the number of comments posted by the most 104percen

28

number of users | Percentage

Unique users 186,109 100%
1-comment users 88,723 47.7%
2-comments users 30,167 16.2%
3-comments users 14,989 8.1%
4-comments users 9352 5.0%

Table 4.4: Unigue users is the number of users who left at least one cammen
X-comment users means the number of users who posted exactly X comments.

active users. The result is 732,958 which accounts for 77.6% of all comsmk:
means that the Pareto principle, saying that roughly 80% of the effectsfcome
20% of the causes, also applies in the context of user commenting behBvéeor.
Pareto principle somehow contradicts the nature of fully decentralizednsyste
which peers are exactly same [2].

Rank | Number of comment User ID
1 4857 @u7015659
2 2131 @u6896514
3 2020 @u5492518
4 1572 @u2672386
5 1495 @u1447113
6 1425 @u4842412
7 1076 @u5646300
8 1064 @u3440818
9 1063 @u5319687
10 1058 @ul1621428

Table 4.5: A list of top-10 most active users. The middle column is the number of
comments posted by the users. The last column is the Id of the user.

From Table 4.4, we can see the users who post less than 5 comments akteady
count for roughly 77% percent of total users. As stated beforg;cdeallows an-
onymous users to download and read comments, which means the regisened u
could be only a fraction. We can not tell the exact number of users mgdidin
comments. What we know is that there must be an amount of anonymous users
Those anonymous users may have no interest in online discussion drax&no
interest in receiving comments. Therefore, the cumulative number of udes

post less than 5 comments is even larger than 77% percent and this numloer co
be very large. Based on that fact, it is reasonable to let user to chdwmtheav they

use CommentCast or not.

29

30

Chapter 5

Exploration and Analysis of the
Push Protocol

We discussed some of the possible solutions for the push protocol in psevio
chapter. We decided to focus on customizing LightFlood in Tribler's oveNdsy

have chosen LightFlood because our primary goal is high disseminatied,shas

the flooding-based algorithm is preferred. Additionally, LightFlood daased
complex signing messages or extra resources to implement. Last but rnopt leas
LightFlood fits in the context of Tribler's overlay due to strong connectivity

This chapter explores the performance of LightFlood scheme in Tribledbas
experimental results. We focus on the dissemination speed and the radyda
dissemination. To facilitate comparison, we simulate the process of disseminating
a single comment.

We simulate 3 algorithms. First one is a proactive gossiping. We generalize the
original CommentCast as basic gossiping and make a simple improvement to speed
up the dissemination without any extra retransmission. In the second simulation,
we investigate the performance and redundancy of a flooding algoriteadlwm
Tribler’s overlay. Finally, we customize LightFlood for Tribler's overlaydasim-
ulate the dissemination of LightFlood. After comparison, we find that LightFlood
is the best choice for the push protocol. Thus we investigate the perfoendn
LightFlood under churn through another simulation.

5.1 Overall Description

Before our simulation, we will describe Tribler specifications, overlaystuie-
tion, and experimental environment.

5.1.1 Tribler Specifications

Our experiments are based on Tribler's environment. It is also importatide
specifications of Tribler. The complete specifications of Tribler can badan

31

[33]. We only list some properties relevant to our experiments:

e Tribler's overlay is a taste-based-clustered graph. Peers are distribvu
different clusters.

e Every peer has 10 fixed neighbors with similar taste and 10 random neigh-
bors selected randomly the entire peer set. Fixed neighbors are alveays th
peers who have most similar tastes with the peer itself. The random peers
are not fixed and change over time.

e Peers are able to acquire random peers from the entire network.

e Every peer maintains TCP connections with their neighbors, which means
peers are able detect logoff of their neighbors. Then they select aigli-n
bors.

Our simulation does not use actual data from the Tribler overlay or peestas
since we do not have this information. Thus fixed neighbors are alsdeslien-
domly. The difference between fixed neighbors and random peers §iroulation

is that fixed neighbors do not change during the simulation after selectitativl
random neighbors are select randomly at the beginning of every cislenala-
tion.

5.1.2 Overlay Construction

Our experiment simulates data dissemination in Tribler’s overlay which is agbgron
connected network with clusters based on personal taste. Since viddem'data

of Tribler's overlay, overlays are constructed in a simulation. There i$ af lex-
isting work in creating a random graph or a random graph with an expdetgée

in [4] [23]. However, creating an overlay is not part of the scope wftiesis. We
would like to apply the overlay in [19] which is used in a similar context as in our
simulation.

We assume the cluster size is 50 [19]. Thus, the number of cluStémsa net-
work, C' = Network Size/50. Then we randomly distribute all peers infd
clusters and every peer also keeps a reference of its cluster. Thisweay cluster

has around 50 peers, but not exactly 50 peers, which is an more realistiay.
From a comparison experiment, we know that clustering causes a sligigecha
of redundancy. Our observation is the number of redundant messageased

a little bit faster in first cycles, however, the total number of redundansayes

is almost the same. The clustering effect is a complex problem, which is not of
concern in this thesis. Therefore, we ignore the clustering effect inoltaving
simulations.

Overlay construction is based on a fact that having a taste buddy, @darfeigh-
bor in our simulation, is a mutual relationship, which means, based on a same

32

Figure 5.1: A diagram of peers that can not establish bidirectional ctione

similarity evaluation function that peer A is a taste buddy of peer B and B is also
a taste buddy of peer A. Or we can say, links are bidirectional connectivhen
peer A selects peer B as its neighbor, peer B also adds peer A as itsareighb

It is necessary to take the degree of peers into account when estaplisininec-
tions in the simulation because another property of Tribler is that peers maintain
10 connections to their taste buddies. Under the fixed degree consteaimuthal
neighborhood introduces another problem that some peers may noefgtbors
when the other peers in cluster have enough neighbors. An examplens &no
Figure 5.1 where we take degree of 4 as an example. Peer a, b, c, dhand e
already established bidirectional link with neighbors. The new peer n atinad
any peer to connect with. So peer n connect a, b, ¢ and d without hidimatlink.
Our algorithm for these peers is repeat random picking form their clustérthe
number of failures is greater than twice the size of the cluster. Then, thdgirdy
establish unidirectional connections. The example in figure 5.1 is an extasae ¢
but it happened a lot during our simulation that bidirectional connections ot
be established.

The flowchart of overlay construction is shown in Figure 5.2. The m®oé¢ con-
struction is on left hand side. N is the network size and C is the number of iduste
which have been described already. Establishing overlay links is arsgledgure
which is on the right hand side. The sub-procedure is executed oneer of the
overlay.

5.1.3 Experimental Environment

The real world distributed systems are asynchronous systems. Hoyild}eshows
that simulating a large scale network asynchronously is almost impossibkkdrase
normal computers. Therefore, we would like to simplify the process intoiasser
of synchronous working processes. In order to ensure the regitniity of our

33

Loop on every peer

'

Start
l«—————
Initiate N peers.

B = select a random
peer from same

Create C clusters

Distribute N peers to C

cluster

B.degree <= 10
No
l Yes

append self o

B.neighbor

Establish Overlay
Links

append B o
self.neighbor

Finish Self degres
Yes <10

No

Figure 5.2: A flowchart showing the construction of the overlay. Entice@ss is
on the left hand side. A sub-procedure of link establishment is on the hayid
side. The sub-procedure is executed on every peer of the overlay.

simulations, it is necessary to make following assumptions:

1. Peers keep repeating communications cycles in which they communicate to
each other in an arbitrary order.

2. Communications including sending and receiving takes one cycle to finish,
which means the receiver can not forward a received message innige sa

cycle.

3. Peers can finish arbitrary local actions within one cycle. This meamg eve
peer can send its message to all neighbor peers with in one cycle.

In the real network environment, network communication are full of uniceyta
It's hard to define the duration of a communication cycle. We will compare the
speed of different algorithms in terms of communication cycles.

5.1.4 Important Terms

We would like to distinguish two useful terms for our simulations, which are very
important metrics.

A common term, coverage, is a personal view of global data, which meaats wh
fraction of all comments a peer has. | order to distinguish from the later teem, w
call it data coverage For peer; data coverage could be represented as:

Local Comments of Peer;
Global Comments of the Network

DataCoverage; =

34

For example, there are 100 comments in Tribee;; has 85 comments in its local
database. Then fgreer;, the DataCoverage; = 85%.

The other term, calledverlay coverage means the fraction of infected peers in a
network for a particular message. Fot@anment;,

Ni

OverlayC =
veriayt overager Network Size

The Ny, is number of peers who are infecteddaynment;, and theN etwork Size
is the total number of peers in Tribler. It means how many percents of haees
been infected byommenty,.

We usually consider an average data coverage of all peers. Thusoweoages

are identical when there is only one message in the simulation. Data coverage is
more of concern while overlay coverage is more intuitive in analyzing thewliss
inating speed of algorithms. Since this chapter only covers disseminatinggof on
message, the coverage will refer to overlay coverage through outtdyxer. The

data coverage will not be mentioned until next chapter.

5.2 Simulation of Original CommentCast

This section presents the simulation of original CommentCast, then improves it
with a very simple scheme to speed it up. The improved result is taken adiadase
for later simulations.

5.2.1 Simulation Specifications

Considering a process of spreading one comment, the original CommewtZkst

as follows: after receiving a message, every peer starts to relay thagadegheir
neighbors from the next cycle. They stop sending until the comment is ectatr
comment any more. The algorithm is similar to the proactive basic gossiping al-
gorithm introduced in 1.2.1.

e A comment message is injected by a random peer of the network.

e Every cycle, peers who have received the comment take a randorfrgeer
the network to send the comment to.

e Receivers put the message in the receiving buffer when they rezevm-
ment.

e The comment is not added to the comment list until all peers finish sending
in the cycle.

35

e The simulation is done when the overlay coverage reaches 100%.

e There is a overall controller who is responsible for recording oventesgic
age and total number of redundant messages in every cycle.

5.2.2 Simulation Result

Figure 5.3 shows the result of overlay coverage of a single comment ircgaleh

In the figure, the vertical-axis is the overlay coverage as percentagehorizontal-

axis represents the communication cycles. We can see a clear trend in how the
overlay coverage grow as the communication cycle increases.

g
()
(o))
< ;
o
3 05F o Emo
o
>
T L
2 %0
© 025 /7500 peers —+—— 7]
xn 1000 peers
‘O 5000 peers ---*---
D DIE—D kD2 ﬁ-ﬁm | lOIOOO peer.SI lllllll e
0 5 10 15 20 25

Communication Cycle (#)

Figure 5.3: Disseminating Speed of the Basic Epidemic algorithm. Vertical-axis is
the overlay coverage, horizontal-axis is the cycles of communication. Tinest
stand for disseminating rate of the same algorithm for 4 different netwoekasiz
500 peers, 1000 peers, 5000 peers and 10000 peers

We did the same simulation on 4 different networks that are 500 peers pE@0o$),
5000 peers and 10000 peers. Every simulation was repeated more thiare80
and the results were averaged to keep reproducibility of the figure. lkas that
the basic epidemic algorithm is scalable for for large scale networks.

5.2.3 Speed Up by Increasing of Initial Fanout

From the result of basic gossiping, we know that the overlay covenagesgast
during the coverage is between 0.25 to 0.75. However, it is not ideal bbithtia5
percent and last 25 percent of coverage. In first 25 perceetrage, too few peers
are infected. In last 25 percent of coverage, blind transmission mosibrages

36

redundant transmissions.

When the initiator posts a comment, he is the only infected peer. Under the design
assumption that every peer is expecting new comments, it is for sure thahgus

a comment to all its neighbors does not generate any redundant messhges

a simple improvement is that when a user initiate a comment, peers immediately
push the comment to all his neighbors. Figure 5.4 shows a comparison hdiaree

sic gossiping and improved gossiping with the push scheme. We call the indprove
gossiping as 'fast-push gossiping’, or short as 'push’.

1 T 1

0.8 500 Peers 08 1000 Peers 4
g
S 06} 1 06 |
3
g oaf — 04l
g
o

0.2 B 0.2

basic —+— basic —+—

I 0 I I

T 1

0.8 | 5000 Peers 0.8 |- 10000 Peers 4

0.6 0.6

0.4 04 |

Overlay Coverage

02 F 02|) e
basic —+—

push .

basic —— |
‘push

. I ! 0t I I
0 5 10 15 20 25 0 5 10 15 20 25

Communication Cycles Communication Cycles

Figure 5.4: Comparison of overlay coverage between basic epidemicaatid f
push gossiping. The vertical-axises are overlay coverages andihialiaxises
are communication cycles. Four results from different networks anershwhich
are 500 peers at top left, 1000 peers at top right, 5000 peers at bofitoamde
10000 peers at bottom right.

The fast-push schema increases the coverage growth of the basigirgpsdt
utilizes available bandwidth to initial coverage of dissemination. The reduydan
of fast-push gossiping is the same as the redundancy of basic gossipungjthe
fast-push gossiping triumphs the basic gossiping in terms of speed anmuiezuy.

Redundancy of the algorithm is discussed in 5.4.3.

5.3 Simulation of Flooding

Flooding is a well known algorithm for unstructured networks. It is vetjable
so that it is popular for topology updates or routing information discovering

37

a flooding algorithm, the peer who received a message broadcasts tregmss
all its neighbors. The flooding algorithm used in the simulation was described in
1.2.2.

Itis obvious that disseminating speed of flooding depends on the ddgreers
and how peers are connected to each other. The Tribler overlay iglstcmmnec-
ted. [20] shows that most P2P overlays rely on high-degree supes, filees the
average degree is much lower, compared with Tribler. Thus we can tetkgec
overlay coverage of flooding increases very fast in the Tribler'slaye On the
other hand, a highly clustered network, or we say a network with a higkecing
coefficient, may lead to extra redundancy.

1

< Start > Receiving
initiate overlay calculate overlay
coverage
select a random record overlay
peer to initiate a coverage and
comment redundancy
Sending nad
.

Figure 5.5: Flow chart of flooding; the simulation repeats until the overlagrco
age reach 100%. Sending and receiving are two loop procedures@stown in
figure 5.6

5.3.1 Simulation Specifications

The flooding algorithm was introduced in 1.2.2. The flow chart of the simulation
is shown in Figure 5.5. The simulation does not stop until all peers are idfbgte
the comment. During the simulation, overlay coverage and number of reslunda
messages is recorded for every cycle of communication. Every cyctenoheinic-
ation includes two sub-procedures, sending and receiving. Sendéhgeaeiving

are loop-processes which are executed on every peer of the ovEnkyeceiving
buffer and sending buffer are two stacks that can keep multiple commeral wh
can be popped out for processing. The flow charts of sending @ed/irg are
shown in Figure 5.6. The left one is for sending and the right one is éaivimg.

38

peer =i th
o| peer=ithelement element of peer
' of peer list list

Y

peer.sending Yes
buffer = Q

No

No

comment =
receiving
buffer pop

comment = sending
buffer.pop()

v)

append comment to
receiving buffers of
10 fixed neighbors
and 10 random
neighbors

append comment
peer.sending
bufer

I

Yes

Figure 5.6: Flow chart of the sending procedure(left) and flow chiathe re-
ceiving procedure(right). These two procedures are two componéfitsoding
simulation.

5.3.2 Simulation Result

Figure 5.7 shows a graph which compares disseminating speed of floodifegssn
push gossiping. The horizontal-axis is adjusted for the flooding algorithms,T
some data of fast-push gossiping is ignored. The coverages of theyfitetare
exactly the same in fast-push gossiping and flooding, because the twihatggor
are identical in the first cycle. However, the coverage of flooding as®s sharply
after the first cycle even in the largest experiment which has 10 thoupards It
only takes 4 cycles to cover entire network. It is also important to notice that th
number of redundant messages is huge. It is too expensive for dstanitigtion.
The gossiping algorithm is sometimes called the anti-entropy algorithm, and the
major problem of flooding is the redundancy. There is no need to compare th
result of the redundancy in the two algorithms. The redundancy compasso
shown in 5.4.3.

5.4 Simulation of LightFlood

Flooding in Tribler's overlay is a very fast algorithm. However, the rethuncy is
overwhelming. Itis necessary to reduce the number of retransmissionsdin).
LightFlood, introduced by [14], is a smart scheme of flooding. It greatiuces

39

0.8 0.8

0.6 0.6 -

04 500 Peers 04

1000 Peers

Overlay Coverage

02| 0.2 -
push —+—

flqoding

push —+—
, flooding

Il 0 2k Il Il
0 2 4 6 8 10 0 2 4 6 8 10

1 T

push T
flooding flooding
08 B 0.8

‘ push LA

[
{=2]
o
% 0.6 - 5000 Peers /" 0.6 - 10000 Peers 4
o
g oaf - 04}
)
>
© o2} R 02 -
0 " 1 1 0 ezt 1 1
0 2 4 6 8 10 0 2 4 6 8 10
Communication Cycles Communication Cycles

Figure 5.7. Comparison of overlay coverage between flooding angfe$t-gos-
siping. The vertical-axises are overlay coverages and horizont@saare com-
munication cycles. Four different networks are compared, which abepgers
at top left, 1000 peers at top right, 5000 peers at bottom left and 1086 jat
bottom right.

redundant messages of flooding by constructing a distributed spanem@d
combine pure flooding and spanning tree broadcasting. We have attisadgsed
LightFlood in 3.2.1. Here, we focus on building a spanning tree on the Tribler
overlay, customizing LightFlood and evaluating the performance of Lightiloo

5.4.1 Constructing The Distributed Spanning Tree

We construct our spanning tree by using the PermIDs. Peers take tihboeigho

has the smallest PermID as their parent peer. Every peer sends a Haéssage
to his parent peer, so that the parent peers can know their childrekeapdhem
in a list for tree broadcasting.

There are several reasons of using PermID to construct spannang fiest
of all, PermIDs are one of the most accessible information. It is very chlreap
terms communication, because Tribler has the PermIDs of all neighborsxtido e
communication is required. Therefore, communication complexity of creating a
distributed spanning tree () = O(1) for a network withN peers. Secondly,
PermIDs are unique identifiers of users. They are easy to compare enestiit
of comparison is transferable from peer to peer.

40

5.4.2 Simulation Specifications

The basic idea of LightFlood has been described in 3.2.1. We only would like to
stress that received messages are forwarded only if they havesited it before,

like in flooding. The process of LightFlood is almost the same as flooding in Fig-
ure 5.5 and Figure 5.6. There is only one difference: The step appameent to
receiving buffer of 10 fixed neighbors and 10 random neighboadled the Flood-

ing step, in Figure 5.6 is modified. The new process replacing the step isishow
in 5.8. Threshold in 5.8 indicates whether to flood the message to all neighbors
or broadcast the message on the spanning tree. Hop count is more easieto

comment.HC
<= Threshold

Yes

Flooding

Tree broadcasting

No

\4

Figure 5.8: The new process for LightFlood replacing the flooding stepédn th
process from Figure 5.6.

stand in LightFlood. We replace TTL with hop count (HC) which starts froam@
increases by 1 when the message is forwarded. Therefore, in exaey the hop
count of message received by infected peers is equal to the cychs.dedooding
when the hop count of the received comment is less or equal to the tlteshdo
tree broadcasting if the hop count is greater than the threshold.

Thresholds are chosen based on the result of previous simulations Blotb-

ing algorithm. From the results in Figure 5.7, we can see the coveragesaé&h
0.3 in cycle 2 respectively for 500 peers and 1000 peers, and 0.7 dhdatively
in cycle 3 for 5000 peers and 10000 peers. Our data also shows thaidined-

ancy increase sharply from cycle 2 to cycle 3 for 500 peers and 166G pfrom
cycle 3 to cycle 4 for 5000 peers and 10000 peers.Optimal choice is avitwe

threshold will be 2 for 500 peers and 1000 peers, 3 for 5000 pedrsGO00 peers.
In the simulation, 2 and 3 were chosen as the thresholds.

Our target is to achieve 100 percent coverage and the simulations rurcanmtil

41

erage reaches 100%. However, our results show that LightFlood atareach
100% coverage without changing rule to only forward new messagesrefine,

the stop condition is modified so that the simulation stops when coverage toesn
increase for several cycles. We will discuss that coverage issue.th 5.4

5.4.3 Simulation Results

Redundancy

LightFlood targets reducing redundancy, so the redundancy is the nraderco

In order to keep the redundancies of different networks companablaeprmalize

the redundant messages to a redundancy index. The redundancyeqdds the
number of redundant messages divided by the network size. It eytscthe av-
erage number of redundant messages per peer. The redundagxgsiage shown
in Table 5.1.

500 peers| 1000 peers| 5000 peers| 10000 peers

LightFlood 3.25 2.92 3.70 3.15
Flooding 18.77 18.77 18.76 18.76
Gossiping 5.94 6.90 8.90 8.70

Table 5.1: Redundancy Indexes for LightFlood, pure flooding andgbre gos-
siping.

We can see LightFlood effectively decreased redundancy of floadifigibler.

On average, the redundancy of tree flooding is less than 10 perctira mfdund-
ancy of flooding. The redundancy is quite high in pure flooding, wheeeyepeer
transmit 20 times every comment (1 + 19 retransmissions). In LightFlood, the re
dundancy is restricted to an acceptable range that is around 3 retrapsesies
every comment.

What's more surprising is that the redundancy of Lightflood is even mueh les
than the redundancy of gossiping. Gossiping is usually taken as an &oj»en
algorithm. But, we can not say the LightFlood it a better anti-entropy algorithm
than gossiping, because usually no gossip is supposed to achieve h08fage,
and reaching the last several percents of peers is very expeosiyessiping.

We also notice that the redundancies of pure flooding are quite stable astthe
work size changes. But the redundancy of spanning tree floodimgsMargely in
different networks. A more interesting phenomenon is that we can nogfigd
pattern as the network size increases. The largest index comes frdhpBets
which is the second largest network while the largest network, with 10866sp
has a very close index, second smallest, to the smallest network which lgas on
500 peers.

42

In order to find out the reason behind the irregular redundancy isgdae ex-
tracted the messages generated during tree broadcasting, and thelizeortham
dividing by the network size. Table 5.2 shows the redundant indexésgdinee
broadcasting and the coverage when it switched from flooding to treelbasting.

500 peers| 1000 peers| 5000 peers| 10000 peers

Total 3.25 2.92 3.70 3.15
Tree part 2.93 2.80 3.02 2.90
Coverage 0.52 0.29 0.68 0.43

Table 5.2: Redundancy table. The first line is the network size. The ddicen

is the redundancy indexes for entire LightFlood algorithm. The third line is the
redundancy indexes for messages generated during broadcastimg toee. The
forth line is the coverage when it switches from flooding to tree broadcgstin

We can see that the largest redundancy index is 3.02 for 5000 pektisealargest
networks size generates the second smallest index which is 2.90. Appatés
still not clear how does the network size affect the redundant mesgagesated
by the algorithm. However, the redundancy index has an obvious risimgj aiethe
initial coverage increases. Therefore, the conclusion is that the daday index
doesn’t depend on the network size but largely depends on the ovenayage
when it switches from flooding to broadcasting on tree. We will have a wide e
ploration of different LightFlood schemes in 6.1.1.

Dissemination Speed

Disseminating speed is also important to the algorithm. Figure 5.9 compares the
dissemination in LightFlood, pure flooding and fast-push epidemic. Generally
speaking, the disseminating speed of spanning tree flooding is very yoouhst
cases, LightFlood is almost as fast as pure flooding which is at the uppedlof
disseminating.

However, in small networks, of 500 peers and 1000 peers, LightFloagisa
little faster than fast-push epidemic, even though the performance ofisganee
flooding is ideal for 90% coverage. A more significant problem is thansipg
tree flooding can not reach 100% coverage. In order to improve thédnarage
of LightFlood, we refine the distributed spanning tree.

5.4.4 Refine Distributed Spanning Tree

We realize that our algorithm for constructing a spanning tree has atdeétdt
can not ensure the resulting spanning tree is connected. Figure 5W§ ahae@x-
ample that the network will be portioned into two separated parts. Peer Adas th

43

1 T 1 T LightFlood —+—
o flooding
2 0.8 -4 0.8 E push ---%---
9]
3 06 -4 0.6 B
o -
& 04} 4 04t i
E ',) x,'
3 02} L 4 02 / x 1000 Peers |
0 —*1‘ T R T B 0 X -- ¥ f T R R
012 3 456 7 829 012 3 456 7 89
1 T T T T T T T 1 T T T T
(5]
2 08} // -4 08 B
) o 5000 Peers 10000 Peers
3 06| / + 06 - B
o /
E‘ 0.4 / x’ 4 04 | ’,"' X
5] / -
> 2+ X 4 02t / X
(@] 0 / L% 0 / X
0 o bk ¥ 0 =k 5k IRV s M R
012 3 456 7 829 012 3 456 7 829
Communication Cycles Communication Cycles

Figure 5.9: Disseminating speed of LightFlood, Flooding and Fast-pusipiug.

smallest PermID in the network. Peer B has the second smallest PermID in the
network. White peers in the figure select A as their parent, black peles 8

as their parent. Although the network is strongly connected, construséethsg

tree is partitioned in two subtrees.

Partition

Figure 5.10: Tree partition. An example of tree partition. Peer A has the sialles
id in the network, peer B has the second smallest id in the network, but they ar
not connected directly. Lines and arrows both are the overlay links.wAredso
shows the spanning tree links. Pointed peers are parents.

Multiple subtrees exists in the network. We expect merging partitioned treés cou
improve overlay coverage. In the simulation, it is easy to tell which peer is the
root of the fully connected spanning tree, called the complete tree. Hoviean
unstructured distributed environment, finding the root of a tree is quitenske

The merge algorithm should be iterated finite times. Here we consider the number

44

of iterations be 3 and we compare performance of the tree produced gtiits
and the complete tree.

The pseudo code of merge algorithm is in Algorithm 1. The merge algorithm
works as follows: whenever a peer, peer A, doesn’t have parestl] iandomly
pick a peer and keep requesting the parent of the selected peer uni fiee the
root of the tree containing the selected peer. We call the root as peéeB.ifltries
to combine it self, peer A and peer B. Combining principles: 1: If the PernflD o
peer B is smaller than the PermID of peer A, peer A will take peer B as its paren
and break out to finish the merge algorithm. 2: If the PermID of peer B isfdarge
than the PermID of peer A, peer B will take peer A as its parent, then it begins
a new iteration. The merge algorithm requires consistent control preegdua
real distributed system, but it is not the concern of this thesis, we do met tus
issue.

Algorithm 1 Tree Partition Merging Algorithem
if self.parent = NULLthen
repeat
p = random peer
while p.parent is not nulldo
p = p.parent
end while
if self.id< p.idthen
p.parent = self
else
if self.id> p.idthen
self.parent=p
BREAK
end if
end if
1=14+1
until ¢ > iteration
end if

The results show the merge algorithm increases the overlay coveragalsand
slightly increase the speed of achieving final coverage. The numbeeeat p
covered by original tree, the tree after 3 iterations of merge, and the cample
tree are shown in Table 5.3. We repeat the simulation 20 times to get the average
values. We can see that the tree after 3 iterations of merge and the competed tr
almost give the same results, especially in small networks.

The complete tree still can not ensure that LightFlood covers 100% pkers.
order to find the reason behind this, we modified the simulation in which peers
retransmit any message during the tree broadcasting part no matter if treejnwe
fected before. After the modification, LightFlood finally reaches 100%eznye.

45

500 peers| 1000 peers| 5000 peers| 10000 peers

Original 489.9 914.3 4943.8 9706.2
3 iterations 499.6 999.2 4992.1 9087.1
Complete 499.6 999.3 4993.6 9990.4

Table 5.3: An average overlay coverage of LightFlood with differeabgjing trees
in terms of number of peers. The first row are the peers covered byHLlagld with
the original spanning tree. The second row are peers covered btFlagd with
a tree after 3 iterations of the merge algorithm. The third row are peersezblagr
LightFlood with a complete tree.

But the the number of redundant messages became too large to accepinand
creased rapidly as the network size increased. Because push pduesn’'t have
to reach 100% coverage, the tree after 3 iterations of merge is goodtefwupe
push protocol.

5.4.5 Influence of Churn

We have already seen that the spanning tree is very fast at data disthegnameal

it is very cost-effective while achieving the high disseminating speed. I$dsian-
portant to know if it is stable under churn. Churn is the effect of manysusaving

or joining the system at the same time [31]. Churn doesn't lead to big problems
under client/server model especially for peers leaving, because thetakes the
key role in communication and the rest of the peers work well. Howevernchu
is a very disturbing problem persisting in Peer-to-Peer systems. In seddd2P
system, frequent joining and leaving cause huge system overhead.n3$tracd
tured P2P systems usually handle joining issue elegantly. However, larggnemo
of peers leaving may break down of the system. Here, we focus on tleuseu
problem caused by peers leaving.

The spanning tree itself is an very fragile structure when it comes to clAum.
leaving peer causes partitioning of the spanning tree, or we say the odeativ-
ity of spanning tree is 1.

LightFlood is not fragile to churn since it utilizes the randomness of flooding.
The algorithm is duplicating the source message abundantly before bstizgc
on the spanning tree. Figure 5.11 shows a diagram of the duplicatecesoes:
sage. The message initiator randomly makes a lot copies of the messageiswhich
the pure flooding part of the algorithm. When the hop count is large enougibp
random duplicating, multiple messages are broadcasted on the spanninfheee
more message sources exist in spanning tree the more reliable the algorithis is.
the reason behind the reliability of the algorithm despite the fragile spannimg tre

Another advantage of LightFlood is that building spanning tree almost dgesn
quire any extra cost. It only needs local information. Furthermore, tidetr

46

Random Flooding

QO QO
O Q Q

Spanning tree
broadcasting

Figure 5.11: A diagram of duplicated messages in LightFlood. The black&snod
are the peers who received the message during random flooding.bfdeycast
the message along the spanning tree.

client is able to detect the leaving of neighbors, because the clients maintRin TC
connections with their neighbors. When they detect their parent is gbestsc
can react rapidly by selecting another parent with local information acalves

the spanning tree structure. The partition merging algorithm is not that flisigta
several communication cycles. The merging algorithm is not taken into accoun

We will focus on the simulation of the system with 10,000 of peers in churnesinc
the LightFlood does not depend on the network size and large scale ketarer
more of a concern for Tribler. After initiating an overlay with 10000 peeartha
overlay in LightFlood with partition merging, a number of peers are randomly re
moved. Then, the same spanning tree flooding algorithm will be carriechaheo
system without any tree recovery. The number of removed peers eideddy a
given churn rate which increases from 0.05 to 0.5. The churn rate mdeaiper-
cent of peers in the network are removed. For example, a churn rat& oféans

10 percent of the peers are removed. We are interested in the impaatrofar
the final coverage of LightFlood for the rest of the peers, becausefthence in
each step is trivial and the final coverage is a cumulative result of tha efiect.
The figure 5.12 shows the results of the simulation.

a7

0.98 - .
0.96 - .
0.94 - .
0.92 - .
09 .
0.88 - .
0.86 - .
0.84 - el

0.82 L
0 0.050.10.150.20.250.30.350.40.450.5

Churn Rate

Overlay Coverage (%)

Figure 5.12: The results of churn simulation. The horizontal-axis showshile
rate which is the percentage of peers are removed. The vertical-aws ghofinal
coverage for the remaining peers using spanning tree algorithm.

From the graph we can see the overlay coverage falls elegantly as threrakte:
increases. Even when the churn rate reaches 0.5, which means 5@¥#rsfape
removed, the spanning tree flooding can still cover over 80% of the rergainin
peers. Under such an extremely high churn rate, LightFlood withoutéwmery
remains very stable. Based on the discussion above, we believe the LaghtFlb
have an excellent performance in the real Tribler client.

48

Chapter 6

Simulation of LightFlood under
Real-World Workload

In the previous chapter, we have explored the theoretical perfornandifer-

ent disseminating algorithms. The results show that LightFlood is the bestchoic
among them which reaches high coverage with a relatively low redund@recin-
vestigate the performance of LightFlood in a more realistic context which edbas
on a real-world workload. The simulation focuses on network traffic atd dov-
erage under a real workload.

6.1 Simulation Setup

The size of a network greatly affects the performance of a disseminatiogthlig.
Estimating of the size of the target network is very important in a simulation. How-
ever, the size of a network keeps changing all the time. It is hard to givecisp
estimation. Tribler is devoted to provide service to over a million users. Consid-
ering the processing power of our machine, simulating such a huge nesamok
realistic. We will take 10,000 peers as network size of our simulation.

The term coverage refers to the overlay coverage in previous simulat8nee

the simulations in this chapter involve multiple comments, Any further usage of
coverage will refer to data coverage in this chapter. Data coverage\atthy
coverage are described in 5.1.4.

In order to provide appropriate workload to our simulation, we crawled riiece
history of comments of the movie section on Verycd.com, which is a commercial
website providing download resources for the eMule protocol. It haaryasim-

ilar context to CommentCast. The detailed description of the data is in Chapter 4.
Figure 4.3 in Chapter 4 shows that comment arrival rate keeps increzfsinghe
release of the commenting system of Verycd. It begins to fluctuate ardap@ 2
comments per day from September of 2009 until the end of our crawlingeThe

49

fore, we will use the comments between Sep. 1, 2009 and Jun. 6, 2010.

We select comments based on hourly workload, because the hour is raprpp
ate granularity. Workload can change largely with in a day, and usealystay
online only for several hours. We randomly pick a moment within the periaah, th
find all comments injected in the following hour after that moment. In order to
eliminate bias of using different hours, we randomly choose 100 hodrgrgvort

the comments posted in those 100 hours into a file as our workload. Based on th
random picking, we get 7,806 comments and every comment has its own beze. T
total size is 466 Kbytes for the 7,806 comments.

There are 5,088 actual users behind those comments where the mostisgtive
posed 32 comments and 3,775 users only posed 1 comment. Our simulator needs
10000 user IDs to initiate the network. We still need some extra users bésides
actual 5,088 users and these extra users will not post any commentg thain
simulation. The extra users will randomly use vacant IDs between the fadges
and smallest id of the actual users.

We continue to use the overlay and the spanning tree from the previous simula
tions in Chapter 5. Disseminating each comment is taken as separated @spcess
which means the next comment is not injected until dissemination of the previous
comment is finished. The simulator works as follows: 1. Select the comments for
the random 100 hours and put them into a file 2. Read a comment from the file 3
Do LightFlood, if the read comment is not null. The flowchart of the simulation is
in Figure 6.1.

Select comments
and put into a file

<
«

\4

comment = read
a comment

do LightFlood

Figure 6.1: The flowchart of the simulation

50

6.1.1 Setting Parameters of LightFlood

The overlay coverage and redundancy of LightFlood are affectedttirby the
parameters, m and n, which are hops of pure flooding and hops ofrvaddast-
ing. In the previous simulations, we take the most intuitive value of m where the
coverage reaches around 50% while the redundancy doesn’tsecsbarply, then
we keep disseminating by broadcasting on spanning tree, which mearasmtne
value of n, until the message is disseminated to all peers. However, rdayde
ment needs fixed values of m and n. Therefore, we will investigate tiierpemce
of different LightFlood schemes with different pairs of the m and n values

We use different values of m and n, ranging from 1 to 4 and O to 4 r&spht
to disseminate a hundred comments through the process in Figure 6.1. Téageave
results of data coverage and redundancy are shown in Table 6.1 afk6rhops

of pure flooding reach almost 100% coverage, thus (4, 1), (4, 2B)(@nd (4, 4)
are not necessary.

m=1| m=2| m=3| m=4
0.002| 0.035| 0.452| 0.999
0.008| 0.128| 0.872| NA
0.042| 0.487| 0.993| NA
0.207| 0.900| 0.998| NA
0.595| 0.999| 0.999| NA

33%33
AWNPFO

Table 6.1: The coverage of different LightFlood schemes.

m=1 m=2 m=3 m=4
0 72| 2470| 79176
14 362 | 13784 NA
92| 2574 28434 NA
622 | 12665| 32169 NA
4008 | 26743 | 32450 NA

33%33
AIWN RO

Table 6.2: The redundancy of different LightFlood schemes.

In the improved design of CommentCast, push protocol doesn't have & o
entire overlay, because it works with a synchronize protocol basedl massive
gossiping. Therefore we choose 85% as our target coveragee @hei7 pairs of
parameters achieving higher than 85% coverage. After consideringdedcy, (3,
1) and (2, 3) are preferred, because their redundancies are titilg it higher

than 1 redundant message per peer.

Churn resilience is also an important factor. We illustrate the reason of vehy th
LightFlood is resilient to churn in 5.4.5 and conducted a simulation of LightFlood

51

with high churn rate. Here we will redo the simulation to compare the churn resi-
lience of (3, 1) and (2, 3) schemes.

085 ——T—T——T—T—T—T—1
0.8 W
0.75 - -
0.7
0.65
0.6
0.55
05 m

0.45 I 1 1 1 1 1
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Churn Rate

Overlay Coverage (%)

—_—

3,n
2.1

1
3 1

Figure 6.2: The coverage of (3, 1) and (2, 3) LightFlood under chtitre hori-
zontal axis is the churn rate ranging from 0.05 to 0.5. It presents themeot
the peers leaving the system. The vertical axis is the overlay coverage wdh
schemes under the churn rate.

Figure 6.2 shows the overlay coverage of the two schemes under ctarfiom
0.05 to 0.5. The churn rate represents the percent of peers leavingstees We
can see that the (3, 1) scheme is much better than (2, 3) under high elern r
Although (2, 3) is a little better in terms of the coverage and redundancy, @tis n
reliable in a real deployment.

Based on the analysis above, (3, 1) is chosen as our target systeme gdrtte
time, we are also interested in (3,4) LightFlood, which is a full coveragensehe
and (2, 2) LightFlood which covers 50% of the peers with a low amountchfird-
ancy.

6.2 Simulation Results

The results of the simulation is shown in table 6.3. We only calculated the up-
load traffic. From the view of network, one peer uploading means dowiriga

of another peer, so the total download traffic equals the total upload trdtfie

speed of the algorithm is not given, because the speed of disseminagiendse

on the scheme of LightFlood. The speed equals the sum of m and n. (3ahsme
the the dissemination will be finished after 4 communication cycles. The speed
is measured only in communication cycles, because the precise time of each TCP
transmission is hard to be estimated.

52

LightFlood Scheme (3,1) (2, 2) (3, 4)
Number of comments 7,806 7,806 7,806
Sum of comment size (Kbyte) 466 466 466
Average data coverage 90.36% 47.96% 99.42%
Total traffic (MByte) 9,798 3,317 17,545
Valid traffic 41.97% 65.79% 25.79%
Redundant messages 97,791,820 19,549,558 223,308,976

Redundant traffic 58.03% 34.36% 74.20%

Table 6.3: Results of the simulation under real workload for 10 hours.

(3, 1) LightFlood achieves 90% data coverage on average for 10863 with
9,798MBytes, in which 58% traffic is wasted in retransmission. It meang ever
peer uploads 100 KByte and downloads 100 KBytes in one hour. T
efficiency is reasonable for a fully distributed comment system on average

LightFlood (3, 4) is also an acceptable scheme which consumes twice the band
width of the (3, 1) scheme. It can achieve nearly full data coverageielier, the
redundant traffic takes 70% of total traffic. On the other hand, (2,igtElood
achieved 48% data coverage. The 70% of bandwidth is consumed in vaigd tra
missions.

Spreading traffic evenly among peers is also very important to a systemreFigu
6.3 shows the CDF of the network traffic of each peer with some importantstatis
ical values in Table 6.4.

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max.
3.90 | 24.40 | 39.03 | 100.33| 85.56 | 3352.07

Table 6.4: Statistical values of the network traffic of each peer for one ho

We can see that the network traffic is negligible for most peers, but soers pe
consume much more bandwidth than others. The max individual traffic went u
to 3,352 KBytes in one hour. Given the recent network infrastruct@dsBytes

per hour is still acceptable. There are two reasons behind the unev&ladh

The first reason is the tree structure of LightFlood. Comparing with leafspee
root peers forward more messages. The second reason is useiohete have
described the Pareto principle of user commenting in 4.3, which means sorae use
are very talkative in online discussions. We are only interested in indivichffic.
Balancing the network traffic is not part of this thesis.

53

1.0

CDF
0.6 0.8

0.4

0.2

T T T T
0 1000 2000 3000

Individual Network Traffic (KBytes per hour)

Figure 6.3: Cumulative distributed function of network traffic of each geed
hour. The horizontal axis is the network traffic in KBytes.

54

Chapter 7

Conclusions and Future Work

This chapter revisits the research questions in Chapter 2 and summanizs-ou
pirical study and the simulation under real-world workload. With the resulis an
conclusions, we go back to the improved design of CommentCast and dibeuss
future work on CommentCast.

Conclusions

This thesis focuses on the improvement of CommentCast. As a commenting sys-
tem, the original dissemination speed of CommentCast is too low because of the
inflexible structure of CommentCast. Exchanging of CommentCast messade whic
contains 30 comments is executed once every 4 hours. If we shortendbeoty
CommentCast to speed up disseminating, it will lead to a a huge amount of re-
transmissions, because our data shows there is about one comment imjebted
system per one minute. Therefore, we propose a new structure thdedihe
functionality of original CommentCast into data dissemination and data synchron
ization. Data dissemination is achieved by a push protocol with a very higldspe

It is supposed to cover not 100% of the peers, but most of them in theorietw
Furthermore, a push protocol can not take care of offline peerssyiifehroniza-

tion protocol is used to extract missed comments in the push protocol andeetrie
new comment when offline peers log on.

After the structure improvements, we studied the performance of basictpma
gossiping and flooding as dissemination speed and redundancy, uperingnts
under Tribler environment. We also applied LightFlood to Tribler and evaluate
the performance of LightFlood by comparing it with gossiping and floodinge T
results show that LightFlood has a comparable speed with flooding, whichcis mu
faster than gossiping, especially in large scale networks. As the same time, the
redundancy generated by LightFlood is much less than the one geneydleadd

ing. LightFlood is even more cost effective than the basic proactivagogsn
achieving a high overlay coverage.

55

Finally, we conducted an intensive study on the performance of diffeshemes

of LightFlood. We found LightFlood (3, 1) to be the best choice for ougetr
system. Based on the real-world workload crawled from Verycd.com tEigbd
achieved 90.36% average data coverage in a network with 10,000 Jéwrse-
dundant traffic takes around 50% of the total traffic compared with aalersd
commenting system. The data is disseminated within 4 cycles. On average, every
peer spends 100 Kbyte per hour on CommentCast. Our simulation also slabws th
LightFlood is very resilient to churn. Under extreme churn, LightFloodmstis

high performance.

Future Work

LightFlood is a very fast, cost-effective and reliable algorithm. The badfitiw
consumption is realistic, such that it can be deployed on real system. ldgwev

it also has its defects. The most significant defect is that workload is atht w
balanced among peers even though the overall bandwidth consumptionlis sma
Figure 6.3 shows the busiest peer should spend a around 3 MBytesyieot
CommentCast. We should prevent the situation that some busy peers spend too
much bandwidth on CommentCast. A technique to balance the workload across
peers is required.

In this improved design, the synchronization protocol is also plays a criaal
It is responsible for retrieving missing comments, churn repair for offlieer
when they log on and bootstrapping for new users. Coordinating thedaat#n
overlay coverage of the push protocol and synchronization protdsolneeds a
lot of work. Because the speed and cost of the push protocol istedfdxy the
overlay coverage directly, we suppose finding the optimal balance is inmpdota
CommentCast.

Last but not least, we also suggested the idea of a searching protatdha
concept of taste-based local database of comments in 3.2.3. The peitisade

to collect and keep all comments in the system. Focusing on a subset based on
user taste would be enough for a user. This would take a lot work of daiagnin

and clustering, but we can expect a significant improvement from implengentin
the relevant design.

56

Bibliography

[1]
[2]
3]
[4]
[5]
[6]
[7]
[8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomiz=dig algorithms.
| EEE Transactions on Information Theory, Volume 52 Issue 6, June 2006.

Y.S. Chen, P.P. Chong, and M.Y. Tong. Mathematical andmater modeling of the
pareto principle, November 1993.

X. Cheng, C. Dale, and J.C. Liu. Statistics and socialwoek of youtube videos,
June 2006.

F. Chung and L.Y. Lu. Connected components in randomltggagth given expected
degree sequence, August 2002. Annals of Combinatorics.

B. Cohen. The bittorrent protocol specification, Jan &00
http://lwww.bittorrent.org/beps/be@003.html.

R. Delaviz. Swarm-based reputation consensus, 2010.tps:htvww. tri-
bler.org/trac/wiki/SwarmBasedReputationConsensus.

D. Ferrari. Client requirements for real-time commuation services|EEE Com-
munications Magazine, pages page 6572, November 1990.

A. J. Ganesh, A. M. Kermarrec, and L. Massoulie. Peepd¢er membership man-
agement for gossip-based protocolEEE Transactions on Computers, Volume 52
Issue 2, February 2003.

P. Gill, M. Arlitt, Z.P. Li, and A. Mahanti. Youtube trafficharacterization: A view
from the edge, 2007. Proceedings of the 7th ACM SIGCOMM cemfee on Internet
measurement (IMC '07).

X.J. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross. A maasment study of a
large-scale p2p iptv system, Dec. 2007.

M. Jelasity and O. Babaoglu. T-man: Gossip-based ayeadpology management.
Engineering Salf-Organising Systems Third International Workshop, Volume 3910,
2006.

M. Jelasity, A. Montersor, and O. Babaoglu. Gossipeobaggregation in large dy-
namic networks ACM Transactions on Computer Systems, volume 23(No. 3):pages
219-252, August 2005.

M. Jelasity, S. Voulgaris, R. Guerraoui, A. M. Kermarrand M. van Steen. Gossip-
based peer samplindphCM Transactions on Computer Systems (TOCS), Volume 25
Issue 3, August 2007.

S. Jiang, L. Guo, and X.D. Zhang. Lightflood: an efficilnbding scheme for file
search in unstructured peer-topeer systemlniernational Conference on Parallel
Processing (ICPP’03), 2003.

T. Karagiannis, A. Broido, N. Brownlee, K.C. Claffy, dM. Faloutsos. Is p2p dying
or just hiding?, January 2005.

Y. Kulbak and D. Bickson. The emule protocol specicatidanuary 2005.

L. Lamport. Paxos made simple, November 2001.

57

[18] Harry C. Li, A. Clement, E. L. Wong, J. Napper, |. Roy, Llv#si, and M. Dahlin,
editors. BAR gossip. OSDI '06 Proceedings of the 7th symposium on Operating
systems design and implementation, USENIX Associatiork&ey, 2006.

[19] G. Logiotatidis. Splash: data synchronization in unanged, untrusted peer-to-peer
networks. MSc thesis, Delft University of Technology, Asga010.

[20] E. K. Lua, J. Crowcrof, and M. Pias. A survey and compari®f peer-to-peer
overlay network schemedEEE Communications Magazine, volume7(No.2):page
72-93, 2005.

[21] M. Meulpolder, J.A. Pouwelse, D.H.J. Epema, and H.gsSBartercast: Fully dis-
tributed sharing-ratio enforcement in bittorrent. TecahiReport PDS-2008-002,
Delft University of Technology, 2008.

[22] P. V. Mieghem. Data Communications Networking, chapter Peer-to-peer network,
page 343. Techne Press, 2006.

[23] M. E.J. Newma. Random graphs as models of networks,drgi010.

[24] A. Papadimitriou and A. Delis, editorgzlash Data Dissemination in Unstructured
Peer-to-Peer Networks. ICPP '08 Proceedings of the 2008 37th International Cenfer
ence on Parallel Processing, 2008.

[25] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J.. STipe bittorrent p2p file-
sharing system: Measurements and analysis, June 2005.

[26] J. A. Pouwelse, P. Garbacki, A. Bakker, A. losup, D. HEgema, M. Reinders, and
H. J. Sips. Tribler: a social-based peer-to-peer systenuaig 2007.

[27] J. A. Pouwelse, J. Yang, M. Meulpolder, D. H. J. Epema, ldnJ. Sips. Buddycast:
An operational peer-to-peer epidemic protocol stack. meeth Report PDS-2008-
005, Delft University of Technology, 2008.

[28] A. Qayyum, L. Viennot, and A. Laouiti, editordViultipoint Relaying for Flooding
Broadcast Messages in Mobile Wireless Networks. 35th Hawaii International Con-
ference on System Sciences, 2002.

[29] R. Renesse, Y. Minsky, and M. Hayden. A gossip-styléufai detection service,
1998. the IFIP International Conference on Distributed&wys Platforms and Open
Distributed.

[30] D. Shah. Gossip algorithmg$-oundations and Trends in Networking, Volume 3(1),
2008.

[31] D. Stutzbach and R. Rejaie. Understanding churn in-pe@eer networks, 2006.
IMC '06 Proceedings of the 6th ACM SIGCOMM conference on fnt¢ measure-
ment.

[32] S. A. Theotokis and D. Spinellis. A survey survey of peepeer content distribu-
tion technologiesACM Computing Surveys (CSUR), volume 36(Issue 4), December
2004.

[33] Tribler protocol specification, January 2009.

[34] S. Verm and W. T. Ooi. Controlling gossip protocol infiea pattern using adaptive
fanout, June 2005. Distributed Computing Systems, 2006d€ 2005. Proceed-
ings. 25th IEEE International Conference.

[35] S. Voulgaris and M. V. Steen, editorsEpidemic-Syle Management of Semantic
Overlays for Content-Based Searching. Euro-Par 2005 Parallel Processing, USENIX
Association Berkeley, 2006.

[36] H.L. Yu, D.D. Zheng, B.Y. Zhao, and W.M. Zheng. Undersiang user beha-
vior in large-scale video-on-demand systems, 2006. Pdicge of the 1st ACM
SIGOPS/EuroSys European Conference on Computer Systeifis 20

58

