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Abstract: Sectorization is an effective technique for reducing the complexities of analyzing and
managing of water systems. The resulting sectors, called district metering areas (DMAs), are expected
to meet some requirements and performance criteria such as minimum number of intervention,
pressure uniformity, similarity of demands, water quality and number of districts. An efficient
methodology to achieve all these requirements together and the proper choice of a criteria governing
the sectorization is one of the open questions about optimal DMAs design. This question is addressed
in this research by highlighting the advantages of three different criteria when applied to real-word
water distribution networks (WDNs). To this, here it is presented a two-stage approach for optimal
design of DMAs. The first stage, the clustering of the system, is based on a Louvain-type greedy
algorithm for the generalized modularity maximization. The second stage, the physical dividing
of the system, is stated as a two-objective optimization problem that utilises the SMOSA version of
simulated annealing for multiobjective problems. One objective is the number of isolation valves
whereas for the second objective three different performance indices (PIs) are analyzed and compared:
(a) standard deviation, (b) Gini coefficient and (c) loss of resilience. The methodology is applied to
two real case studies where the first two PIs are optimized to address similar demands among DMAs.
The results demonstrate that the proposed method is effective for sectorization into independent
DMAs with similar demands. Surprisingly, it found that for the real studied systems, loss of resilience
achieves better performance for each district in terms of pressure uniformity and demand similarity
than the other two specific performance criteria.

Keywords: water network partitioning; water network sectorization; district metered area; commu-
nity structure; multi-objective optimization; simulated annealing

1. Introduction

Modern societies critically depend on infrastructure networks. A good example of
these are the water distribution networks (WDNs) that are designed for distributing
drinking water among consumers. In aged networks, the quality of this service is strongly
affected by the growing demand for water in expanding cities and by leaks that occur as
a result of the aging of the components of the hydraulic system. Water quality control,
leakage reduction and pressure management are difficult tasks due to the size of the water
networks and the non-linear nature of the hydraulic system. Partitioning water distribution
networks into smaller areas, called district metering areas (DMAs), is an effective technique
that reduces the complexities of analyzing and managing these infrastructures.

In the last decade, a growing body of work has shown a wide range of methods for
sectorization of water networks (see ref. [1] for a review). Optimal sectorization in a single
stage is computationally prohibitive even for middle size networks. This is so because
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hydraulic constraints must be evaluated for every candidate solution in order to meet a
number of requirements that characterize a good WDN partitioning [2]. Inside this context,
there is an intense research to find less time consuming methods [3]. In general terms, the
design methods follow two-stages. The first stage seeks WDN clustering based on topologi-
cal considerations and is accomplished by using different concepts of graph theory [2,4–10],
complex network theory [11–18] or multiagent approach [19]. Interesting studies com-
paring the performance of different partitioning algorithms are given in refs. [20,21].
The second stage deals with the placement of flowmeters and valves based on some PI to
be optimized. Several alternatives for these indicators were used in the literature: resilience
index [8,22,23], background leakages [16], number of flow observations [12,16] in addition
of hydraulic indicators as water age, entropy [8], and dissipated power [5] (see ref. [24]
for an improvement of this method). Other frameworks based on the concept of modu-
larity propose the use of fast-greedy partitioning algorithm for creating DMAs through
information encoded by pipe weights [25]. Recently and with a more wide perspective,
in ref. [26] it is proposed a dynamic partitioning of WDNs for an efficient and sustainable
management in response to goals as saving energy, water and monetary costs. In addition,
this dynamic DMAs framework has shown to be useful for an efficient management under
conditions of abnormal increase of the peak demand [27].

WDNs encompass several different types of topology and hydraulic characteristics,
resulting in many alternatives for sectorizing. Many networks have a unique source and
the sectorization is made with the use of volume meters. However, in the present work
we focus on WDNs with multiples sources. Sectorization is conceived by identifying one
o more sources per DMA which is isolated by operating valves on the selected pipes.
The optimal determination of the number and location of these valves is proposed here as a
multiobjective problem. The best sectorization is expected to meet a series of requirements
and performance criteria that include, minimum intervention costs, pressure uniformity,
similarity of demands, water quality and number of districts, among others [28,29]. The gen-
eral procedure, if any, to achieve all these requirements together and the proper choice of
a criteria governing partitions is one of the open questions about optimal DMAs design.
This question is faced and this research highlights the advantages of three criteria (objec-
tives) when applied to real WDNs.

The aim of this study is the optimal design of DMAs by using different partitioning
criteria and the performance evaluation of the obtained structures. In order to accomplish
this, the two-stage approach is developed. The first stage is based on network topology
and consists on the clustering of the system. In particular, the objective of this stage is
community detection via modularity index, that is, the assignment of nodes to communities
(also called modules or clusters) with the property that intracommunity connections are the
strongest relative to intercommunity connections [30,31]. The second stage is formulated as
a two-objective optimization procedure and consists on the physical dividing of the system
into hydraulically independent subsystems or districts. That is, in this stage communities
are brought together to form districts. These districts are designed by implementing
the following objective functions: (1) minimizing number of connections between the
communities of the first stage (equivalently, maximazing the number of valves to be
installed), and (2) minimizing three different PIs: (a) Gini coefficient, (b) Standard deviation,
(c) Loss of resilience. Thus, this procedure provides three sets of optimal solutions giving
the possibility of an unbiased comparison because all are obtained based on the same
initial clustering.

The main contributions of this work are the following: (1) For modularity maximiza-
tion is used the so called Louvain-type greedy algorithm [32,33] which is extremely fast to
be applied for very large WDNs. This algorithm was also used in ref. [17], however here
is applied from a different perspective. A crucial point for the DMAs design is related to
the number of communities resulting from the clustering phase. Typically, the extraction
of communities via modularity maximization provides a segmentation of the network
without any control of the number of communities for the subsequent stage. To address this
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drawback, the Louvain algorithm is used in this work for the maximization of the extended
modularity [34]. This index includes a resolution parameter for tuning the number of initial
communities that will be the starting point for the second stage. (2) Simulated annealing
for the problem of network sectorization was used in ref. [35]. Here it is implemented the
multiobjective SMOSA version of the algorithm which is computationally efficient and
relatively simple of implementing when compared with other metaheuristic algorithms.
(3) The second stage uses a reduced adjacency matrix which encodes the connections among
communities with edges representing a set of boundary pipes. In this work it is assumed
that boundary pipes between two neighbor communities must be all open (i.e., connected)
or all closed (i.e., isolation valve installed). During the second phase, stochastic algorithms
(like simulated annealing) must to evaluate some hydraulic constraints (e.g., minimal nodal
pressure) for each possible solution. An efficient searching requires considering as a unique
possible solution the different connection possibilities of the individual boundary pipes
between two neighbor communities. This condition reduces importantly the number of
design variables of the optimization problem and it is accomplished here via the reduced
(or collapsed) adjacency matrix. Although this adjacency matrix was used in previous
studies with a different purpose [36–38], this strategy assures a significant improvement to
the computational effort. (4) A particular advantage of this methodology is the evaluation
of three different PIs to be used as objective functions for the second stage. To our knowl-
edge, no previous study compares the hydraulic performance of the DMAs obtained under
the three design criteria proposed in this work: one obtained using as objective the loss
of resilience and the others obtained under the paradigm of demand similarity, using as
objective both the Gini coefficient and the standard deviation. (5) Pressure driven approach
(PDA) is used for the hydraulic analysis of the DMAs obtained.

Two real-world case studies reported in the literature [39,40] were used to assess the
proposed methodology. These include a three reservoir real-world WDN with 128 pipes
and a large real-word WDN with five reservoirs and 1278 pipes. The performance of each
sectorization is analyzed and compared.

2. Methodology

Network science provide a means to extract and characterize the topological [41,42] struc-
ture that is present in water distribution systems. To this, it should be noted that its topological
structure can be described as a graph G(V, E), where the set of vertices V = {v1, v2, ..., vn} rep-
resents nodes, reservoirs and tanks, and the set of edges
E = {e1, e2, ..., em} represents the pipes, valves and pumps of the hydraulic system, where
n is the number of nodes, and m is the number of pipes.

2.1. First Stage: Clustering of the System

A community or module is a set of vertices which are densely interconnected between
themselves, but relatively weakly connected to other vertices. The detection of commu-
nities is a topic studied by network science. Different methods exist for communities
extraction [43,44]. In this study, the most popular method is applied that consists of parti-
tioning the network by the maximization of a metric known as modularity, which is defined
as [30,34]:

Q =
1

2m ∑
ij
(Aij − γ

kik j

2m
)δ(Ci, Cj) (1)

where the sum runs over all pairs of vertices, Aij are the elements of the adjacency matrix
A, ki is the degree of the vertex i, m = 1

2 ∑i ki is the total number of edges, and γ is the
structural resolution parameter. The Kronecker delta function δ is equal to one if vertex i
and j belongs to the same community (Ci = Cj), and zero otherwise. The structural resolu-
tion parameter γ allows for the control of number (and size) of communities. As smaller
is γ, smaller is the number (larger is the size) of communities. In this work, it is used
γ = 1 and γ = 0.6 for the first and second study cases respectively. These values were
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fixed in order to regulate a number of initial communities that will be the starting point
for the second stage. Indeed, the first stage provides a set of conceptual cuts that defines
communities. As illustrated in Figure 1, these communities are the “building blocks” for
the districts by selecting which conceptual cuts will be “real cuts”, i.e., a valve (closed)
and which one must remain connected, i.e., no intervention. Here, γ is tuned to have
10 communities for the first case study and 20 communities for the second case study.
Of course, finer initial partition will offer larger connectivity possibilities to the cost of
increasing the computational effort. It is important to note that modularity maximization
was proved to be a NP-hard problem [45] (the acronym NP denotes Nondeterministic
Polynomial time). There exist several heuristic strategies for modularity maximization Q.
In this work, a Louvain-type greedy algorithm it is applied [32,33].

Maximization of Q occurs among all the possible partitioning of the network in com-
munities. Each partition provides a set of the edges, named conceptual cuts. These are the de-
sign variables for this first stage which are given by the binary vector
X = (x1, x2, ..., xm), where xi = 0 in case that there exists a conceptual cut, and xi = 1
otherwise. From the set of s cuts given by {xi ∈ X, i = 1 : s/xi = 0} it is defined the vector
of conceptual cuts: S = (xj, ..., xs). Note that the extraction of communities is accomplished
without resolving the hydraulic system. As a consequence, only a subset of the s conceptual
cuts needs to be materialized as real interventions by a utility looking to sectorize its WDN.

Figure 1. Schematic process of district metering areas (DMAs) design for a simple network.
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2.2. Second Stage: Physical Dividing of the System

Aimed to partitioning the water system, the second stage consists of determining
the optimal location of isolation devices, or equivalently, determining the boundary pipes
which must remain connected. It is important to note that boundary pipes between two
neighbor communities will be specified all together with the same state: all real cuts
(closed valves) or all connected pipes. This condition reduces importantly the number
of design variables of the optimization problem and assures a significant improvement
to the computational effort. This strategy is accomplished here by defining a reduced or
collapsed adjacency matrix. Starting from the structure detected during the first stage, a
reduced adjacency matrix (A′) is built which encodes the connectivity among communities,
similar to the approach presented in [36,37] and subsequently applied to a large WDN [38].

As before, the topological structure can be described as a new graph G′(V′, E′), where
the set of vertices V′ = {v′1, v′2, ..., v′N} now represents the communities previously deter-
mined, and the set of edges E′ = {e′1, e′2, ..., e′v} represents the edges (indeed multi-edges)
between communities, where N is the number of communities, and v is the number of
multi-edges among communities. To represent these multi-edges, a new binary design
vector Y is defined as Y = (y1, y2, ..., yv), where yi = 0 represents a set valves to be installed
at the position i, and yi = 1 represents no intervention at i. Importantly, a given set of
boundary edges (i.e., conceptual cuts) between two nearest neighbor communities, for
instance {xj, ..., xt}, is embedded in a multi-edge yi, that is: yi = (xj, ..., xt) and it is verified
that v ≤ s.

This design stage is formulated as a two objective optimization problem where it
is proposed to minimize the number of conceptual cuts that will be established as no
intervention (i.e., no valves installed) at these pipes together with some of the following
indicators characterizing the hydraulic system. One of the requirements of any sectorization
is to provide districts with similar level of demands [28,29]. Focusing on this objective,
it is proposed to compare two specific indicators of demand similarity with a non-specific
one such as loss of resilience. Specifically, these indicators are: (a) Gini coefficient (G),
(b) Standard deviation (S), (c) Loss of resilience (L).

(a) Gini coefficient. Although the Gini coefficient was originally defined as a measure
of income inequality in a society, it is also used as a measure of any unequal distribution.
It consists of an index that varies between 0 (absolute equality) and 1 (absolute inequality).
In this study, the Gini coefficient is used to minimize the inequality of the demands required
by each community. Formally, the Gini coefficient is defined as:

G =
∑N

i=1 ∑N
j=1
∣∣di − dj

∣∣
2N2d

(2)

where di denotes the total demand of community i, d̄ is the average demand of the complete
water system, and N is the number of communities.

(b) Standard deviation. This PI quantifies the dispersion of the required demands
among communities, that is:

S =

√
∑N

i=1(di − di)2

N − 1
. (3)

where di is the total demand of community i, di is the average demand of the community i,
and N is the number of communities.

(c) Loss of resilience. The resilience index was introduced by Todini [46] and, for a
network without pumps, is given by:

IR =
∑n

i=1 q∗i (hi − h∗i )
∑r

k=1 Qk Hk −∑n
i=1 q∗i h∗i

(4)
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where q∗i and h∗i denote, respectively, the minimum required demand and head at node
i. Similarly, hi denote the head at node i, n is the number of nodes, Qk and Hk are the
discharge and head, respectively, of the reservoir k, where r is the number of reservoirs.

The resilience index represents an important indicator of the power available that
allows water to find alternative paths when the network is partitioned. Network recon-
figuration via partitioning leads to a decreasing resilience. In this work, it is proposed
minimize the loss of resilience:

L = 1− IR (5)

Formally, the two objective optimization is formulated as:

F1(Y) = min

{
v

∑
i=1

yi

}
F2(Y) = min[G] or min[S] or min[L]

(6)

subject to
hh

i ≥ h∗i ∀i = 1, . . . , n

where h is hour of peak demand.
Hydraulic analysis is performed under pressure driven approach (PDA) which are

represented by the matrix equations:

AppQ(t) + ApnH(t) = −Ap0H0(t)

AnpQ(t)− q(Hn, t) = 0
(7)

where t = 1, · · · , nh, and nh is the number of hour of the hydraulic analysis. App is the
diagonal matrix of pipe resistance, Apn = AT

np is derived from the pipe-node topological
matrix, Ap0 is the matrix of static heads, Q is the vector of unknown flow rates, H is the
vector of unknown nodal heads, H0 is the vector of known nodal heads, q is the vector of
water demand which depend on time and current pressure (for detail on the hydraulic
model see ref. [47])). Equation (7) is completed with a model for the supplied demands [48]:

qi =


qi
∗ Pi ≥ Preq

i

qi
∗
(

Pi−P∗i
Preq

i −P∗i

)1/2
P∗i ≤ Pi < Preq

i

0 Pi < P∗i

(8)

where Pi is the pressure at node i, Preq
i is the minimum required pressure for supplying

the demand q∗i . For all case studies were used P∗i = 0 m and Preq
i = 7 m for all nodes, and

nh = 24 h for the second case study.

2.3. Simulated Annealing

The minimization problem stated in this second stage is also a NP-hard problem.
In this work, the simulated annealing algorithm [49,50] was applied to solve the two
objective optimization problem. This algorithm consists of three essential features: (i) to
generate new solutions within the search space, (ii) an acceptance probability for a pro-
posed solution from a previous solution, and (iii) a cooling strategy. The algorithm starts
from an initial solution Y0 at a certain fictitious temperature T0 and continues during a
prefixed number of steps. At each step, the method considers new solution Yt+1 within its
neighborhood of the current solution Yt. For the case of single objective version, the new
solution is accepted as current solution according to an acceptance probability given by:

P(∆F(Y), Tt) = min
(

1, exp
{
−∆F(Y)

Tt

})
(9)
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where ∆F(Y) = F(Yt+1)− F(Yt). That is, if the cost of the new solution Yt+1 is smaller
than the cost of the current solution Yt, the new solution is accepted as current solution.
Otherwise, the worse solution Yt+1 is accepted according to a probability that depends on
the change of the cost and on the temperature parameter. This strategy offers an opportunity
to escape of a local minima.

Different implementations of the simulated annealing can be found for dealing with
multiobjective problems [51]. Here, the method proposed by Suppapitnarm and Parks
(SMOSA) [52] is implemented where a new acceptance probability with multiple tempera-
tures (one for each objective) is also proposed:

P(∆F(Y), Tt) = min

(
1,

2

∏
i=1

exp
{
−∆Fi(Y)

Ti,t

})
(10)

this means that the overall acceptance probability is given by product of individual accep-
tance probabilities for each objective associated with a temperature Ti.

Temperature plays a critical role for the convergence properties of the algorithm.
Initially, temperature must be high enough to accept around 80% of the solutions generated.
Then it is decreased at each steps following a proper cooling strategy, typically Tt+1 = αTt,
with 0 << α < 1. In this work, it is used α = 0.98 for both T1 and T2.

A summary of the methodology proposed in the study is shown in the flowchart of
Figure 2.

Figure 2. Conceptual flowchart of the procedure.
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2.4. Case Studies

The proposed methodology was applied to two case studies. The first is the three-
reservoir network (TRN) which was studied by Zheng [39]. This network is composed of
287 pipes and 202 nodes (see Figure 3). During the operation cycle, three reservoirs are
used as sources. The difference between the maximum and minimum ground elevation
is 37 m. Flowmeters, isolation valves or pumps are not installed in this hydraulic system.
The second case is the modified large network (MLN) which was investigated by Kang
and Lansey [40]. This network is composed of 5 reservoirs, 1278 pipes, 935 demand nodes,
and 4 demand patterns of 24 h each (Figure 4). Here TRN is used for snapshot hydraulic
simulation, while MLN is used for Extended Period Simulation (EPS).

Figure 3. Conceptual cuts obtained for the three-reservoir network (TRN).

Figure 4. Conceptual cuts obtained for the modified large network (MLN).

3. Results
3.1. Case Study 1: Three-Reservoir Water Network (TRN)

The solution with 10 communities, reported in Figure 3, corresponds to the (near)
global maximum of generalized modularity obtained of a result of the first stage for the
TRN network. This solution determines 38 conceptual cuts (indicated in red) and is the
basis for the second phase. The second stage returned multiple DMA designs for each PI.
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Pareto fronts in Figure 5 show different PI values in terms of the number of valves to be
installed. The main results are shown in Tables 1–3 where it is summarized the comparisons
among all solutions in terms of the number of DMAs, the number of interventions, the
value of each PI and other performance indicators of the hydraulic system, namely, extreme
pressures and the node indexes where they are located. The maximum number of DMAs
that is given for each PI is equal to the number of reservoirs, although each district presents
special features. It should be noted that extreme pressures tend to occur on the same
nodes for different objective. The only exception is the first solution shown in Table 1
where the minimum pressure occurs in a different node. In order to illustrate a particular
sectorization, the gray color rows correspond to those solutions defining three DMAs with
a similar number of interventions. These districts are shown in Figure 6 and correspond to
solutions of the Pareto fronts with the highest number of interventions (indicated as A, B
and C in Figure 5). Figure 7 graphically depicts the corresponding demand distributions
for each district. The configuration obtained with standard deviation is very similar to
that obtained from the Gini coefficient. Both solutions define an identical district, shaded
in orange.

Figure 5. Pareto front of solutions for the three-reservoir network (TRN) obtained with the three
studied performance indices (PIs). Legend: S: Standard deviation, G: Gini coefficient, L: Loss
of resilience.

(a) Solution A (b) Solution B (c) Solution C

Figure 6. DMAs obtained after the second stage for each PI. (a) Standard deviation, (b) Gini coefficient and (c) Loss of
resilience. Solutions correspond to those indicated in Figure 5 and to the gray color rows in Tables.
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Figure 7. Demand distribution per DMA for solution A, B and C for TRN network. Colors code
corresponding to DMAs of Figure 6.

Table 1. Operating conditions of each solution obtained with Standard deviation for TRN network. The gray background
corresponds to the solution A represented in Figure 6.

DMAs Nº Valves L G S PMIN(m) Node Index PMAX(m) Node Index
3 19 0.597 0.249 0.187 4.7 161 32.4 199
3 18 0.514 0.208 0.168 9.3 118 32.6 173
2 16 0.510 0.026 0.037 9.3 118 31.8 173
3 13 0.547 0.021 0.016 7.4 136 28.4 173

Table 2. Operating conditions of each solution obtained with Gini coefficient for TRN network. The gray background
corresponds to the solution B represented in Figure 6.

DMAs Nº Valves L G S PMIN(m) Node Index PMAX(m) Node Index
3 18 0.555 0.242 0.182 7.6 118 32.5 199
3 16 0.499 0.100 0.075 12.0 5 28.9 199
2 14 0.496 0.090 0.128 13.5 5 28.9 173
3 13 0.548 0.022 0.016 7.4 136 28.4 173

Table 3. Operating conditions of each solution obtained with Loss of resilience for TRN network. The gray background
corresponds to the solution C represented in Figure 6.

DMAs Nº Valves L G S PMIN(m) Node Index PMAX(m) Node Index
3 19 0.535 0.221 0.177 6.2 118 32.9 173
3 16 0.496 0.139 0.104 12.0 5 30.0 199
2 9 0.471 0.241 0.340 15.2 136 29.8 173
0 0 0.470 - - 15.1 118 29.7 173

Figure 8 shows the pressures obtained for solutions A, B and C, in the extreme case
in which valves are closed, isolating all the DMAs. Solution A shows the largest pressure
variation across a district, for the extreme case (district shaded in light blue) the pressure
varies from 5 m to 30 m of water column, which indicates that the standard deviation does
not offer a good performance to achieve a homogeneous operation of the hydraulic system.
Gini coefficient (solution B) generates the DMAs with the highest minimum pressures and,
additionally, a more homogeneous pressures distribution between two districts (green and
blue). Solution C shows a better variation of the pressures within each district, and thus,
its configuration outperforms the standard deviation index and the Gini coefficient from
the perspective of pressure uniformity in each autonomous DMA.
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Comparing solutions A and B with solution C for the district in orange color of Figure 7,
it is observed that demand increases from 15.3% to 25.9%. This increment generates a drop in
the pressures of the corresponding district with an average of 10.2 m of water column (see
Figure 8). A similar feature can be observed with the decreased demand for the district in
blue color.

(a) Solution A (b) Solution B (c) Solution C

Figure 8. Nodal pressures for the solutions A, B and C for TRN network. Colors code corresponding to DMAs of
Figures 6 and 7.

From Figure 8 should be noted that there are no nodes without water service. In addi-
tion, pressure-driven analysis allows to determine the percentage of the satisfied demand.
For solution A, 13.6% of nodes present pressures below Preq. However, 99.5% of the re-
quired demands are satisfied. For solution B, all the pressures are highest than the required
service pressure Preq and, therefore, 100% of required demand are satisfied. For solution C,
only 3.5% of the nodes present pressures values slightly lower than Preq, delivering 99.9%
of required demands.

3.2. Case Study 2: Five-Reservoir Water Network (MLN)

For this case study, an extended period simulation (EPS) must be evaluated in order to
guarantee the required level of service for all hours under different demand patterns. As a
result of the first stage, Figure 4 shows the conceptual cuts that decompose the network
into 20 communities.

Figure 9 shows the Pareto fronts returned by the second stage optimization procedure
for the different PIs of the MLN network. The performance of the hydraulic system evaluated
for each solution is reported in Tables 4–6. Gini coefficient and loss of resilience provide
maximum number of DMAs and similar number of valves (see Tables 5 and 6). Minimum
and maximum pressures values are found between 4.3 m and 28.7 m. The solution for
standard deviation with maximum number of interventions gives 14 valves and 3 DMAs,
and pressure values into the range of 4.6 m and 29.5 m (Table 4). Looking for solutions
with similar number of interventions, the results show differences about the efficiency
of the hydraulic systems. For instance, the solution obtained with the loss of resilience
for 14 valves determines 3 DMAs and a minimum pressure of 6.0 m. Thus, in order to
illustrate the system behavior in a particular scenario, the solutions with maximum number
of interventions are analyzed. These solutions correspond to the gray rows in Tables 4–6
and, respectively, to solutions A, B and C of Figure 9. At first glance it seems that this
comparison is biased in favor of solution A since it has a smaller number of districts than
solutions B and C. However, it should be noted that a comparison of A with the solutions
of the other two PIs involving the same number of districts further favors these last two
metrics. The DMAs obtained for the PIs under study are shown in Figure 10. As in the first
network studied, colors represent different DMAs.
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Figure 9. Pareto front of solutions for MLN network obtained with the three studied PIs. Legend:
S: Standard deviation, G: Gini coefficient, L: Loss of resilience.

(a) Solution A (b) Solution B (c) Solution C

Figure 10. DMAs obtained for MLN network. Solutions A, B and C are those indicated in Figure 9 for (a) Standard deviation,
(b) Gini coefficient and (c) Loss of resilience.

Table 4. Operating conditions of each solution obtained with Standard deviation for MLN network. The gray background
corresponds to the solution A represented in Figure 10.

DMAs Nº Valves L G S PMIN(m) Node Index PMAX(m) Node Index
3 14 0.708 0.245 0.208 4.6 846 29.5 700
2 11 0.658 0.070 0.099 5.2 303 29.0 932
2 8 0.589 0.039 0.055 5.1 627 26.6 700

Table 5. Operating conditions of each solution obtained with Gini coefficient for MLN network. The gray background
corresponds to the solution B represented in Figure 10.

DMAs Nº Valves L G S PMIN(m) Node Index PMAX(m) Node Index
4 19 0.666 0.237 0.128 4.3 362 28.7 700
3 15 0.650 0.117 0.088 4.3 362 28.4 700
2 10 0.580 0.101 0.143 7.3 289 26.3 700
2 9 0.644 0.032 0.046 4.9 535 28.0 700
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Table 6. Operating conditions of each solution obtained with Loss of resilience for MLN network. The gray background
corresponds to the solution C represented in Figure 10.

DMAs Nº Valves L G S PMIN(m) Node Index PMAX(m) Node Index
4 18 0.685 0.238 0.137 4.7 535 28.7 700
4 17 0.615 0.121 0.078 6.1 159 27.7 700
3 15 0.609 0.135 0.106 6.6 502 27.7 700
3 14 0.591 0.160 0.121 6.0 159 26.8 700
2 12 0.589 0.151 0.214 6.9 159 26.8 700
3 11 0.566 0.251 0.215 6.0 159 26.2 700
2 9 0.560 0.082 0.116 9.6 159 26.2 700
0 0 0.555 - - 10.9 303 26.2 700

Figure 11 shows the distribution of demands for each DMA. Standard deviation
solution shows poor performance when seeking homogenize demands between districts.
Solution A results in two largest districts with demands of 46.1% and 44.6% in contrast
with the 9.3% of the third district.

Figure 12 shows the resulting pressures for the pressure-driven analysis in the extreme
case in which all the defined DMAs operate in isolation during a period of 24 h (solutions
A, B and C correspond to Figure 9). Statistical maximum (top bar), statistical minimum
(bottom bar), 25th and 75th percentiles (top and bottom edges of box), median (red line
in box), and outliers (red crosses) are displayed. Solution A (Figure 12a) presents an
asymmetry for most of the hours in the pressure boxes. It shows a large data dispersion
between the 25th percentile and the median. Outliers are observed above the statistical
maximum for all the hours of the analysis, likewise only for hour 14 an outlier is below
the minimum. For the case of the Gini coefficient (Figure 12b), the pressures between the
25th and 75th percentile shows the least dispersion of the three solutions. Also, solution B
has more outliers below the statistical minimum, but the outliers are significantly reduced
above the maximum as is compared with the first solution. Solution C (Figure 12c) shows
the box data with the bigger amplitude and a reduction of the outliers. In addition, this
solution has the highest medians of the three best settings.

Pressure-driven analysis shows that there no nodes without water service. However,
solution A presents 38% of nodes with pressure values slightly below Preq delivering 97%
of required demands. For solution B, 24.9% of nodes present pressures below Preq with
98.5% satisfied demands. Last, for solution C, 25.9% of the nodes show pressures values
slightly lower than Preq, delivering 98% of required demands.

Figure 11. Demand distribution per DMAs for solutions A, B and C for MLN network. Code colors
corresponding to DMAs of Figure 10.
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(a) Solution A (b) Solution B (c) Solution C

Figure 12. Temporal variation of pressure for solution A, B and C for MLN network. Each time step represents a box plot
for the pressure of all nodes of the network.

4. Conclusions

This work presents a two-stage approach for the optimal design of DMAs. The general
idea is to perform sectorization with the goal of identifying one source per sector. In many
networks there is only one source and so the sectorization is made with the use of volume
meters. In the present case the WDNs are conceived to be isolated by operating valves on
the selected pipes. Determine the number and location of these pipes is proposed here
as a multiobjective optimization problem. One of the typical questions is which second
objective to use next to cost (or number of interventions). This question is faced and
the research highlights the advantages of three criteria (objectives) when applied to real
WDNs. In particular, it investigates to what extent two specific indicators, namely Gini
coefficient and standard deviation, are able to provide districts with similar demands.
The performance of the DMAs obtained are compared with those obtained under loss
of resilience.

To achieve these goals, a methodology based on two-stage approach is developed.
The first stage uses the Louvain-type greedy algorithm for the generalized modularity max-
imization that includes a resolution parameter for tuning the number of initial communities
that are used in the second stage. Thus, the three independent two-objective optimizations
of the second stage start from the same initial configuration. It is found that the application
of these PIs can significantly impact differently the final configuration of the DMAs. For the
cases studied, there are two different situations that restrict the number of DMAs in each
network. In the first case (TRN) the maximum number of DMAs is limited by the number
of existing sources. However, in the second case (MLN) the maximum number of DMAs is
restricted by the hydraulic capacity of the network. That is, no more that 4 districts are able
to satisfy the service conditions.

Two PIs, standard deviation and Gini coefficient, were oriented to provide districts
design with similar demands. The pressure driven approach for the hydraulic analysis
of the solutions indicates that Gini coefficient provided better performance than standard
deviation. That is, comparing the same number of districts with similar number of valves,
Gini coefficient provides solutions with lowest lost of resilience and highest minimum
pressure. It should be noted that the standard deviation has a statistical bias that occurs
when analyzing a low number of data and generates a lack of sensitivity of the function to
achieve homogenization of the variable. That might be the reason of the low performance
when compared with the other PIs. In other words, there are not enough districts for this
PI to achieve a good distribution of the demands. On the other hand, when comparing
the solutions provided by Gini coefficient and loss of resilience under similar conditions,
the analysis indicates that loss of resilience achieves better performance for each district.
Likewise, the results show that the best option when looking for pressure uniformity is to
minimize the loss of resilience.
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Finally, must be emphasized that engineering criteria is a key factor during the pro-
cess of network partitioning that cannot be incorporated in any automatic sectorization.
For instance, it must be defined the number of communities in order to start the second
stage. Here it was used 10 and 20 communities, respectively, for the first and second
case study. This means around 3 and 4 communities by each reservoir, but more complex
networks could require a different criteria. Another example is given by the hydraulic
parameters that the DMAs must satisfy. Here it was investigated two PIs for demand
similarity and compared with minimum loss of resilience. However, the benefits of using
different indicators should be thoroughly investigated in follow up research. Last, it is
expected in the future to extend the analysis to larger WDNs and includes the leakage
detection, although the two cases presented are in locations where the non revenue water
is rather low.
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