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Abstract

Although a transition to more sustainable energy production is necessary, fossil fuels will remain
a crucial contributor to the world’s energy production in the near future. In numerically
maximizing the production of these fuels, as well as in many other optimization problems, an
objective function has to be optimized on the basis of an input vector, related through some
underlying model. Although the adjoint methodology generally allows for efficient gradient-based
optimization of such a problem, it quickly becomes infeasible when the model comprises a
large-scale system, or access to this model is prohibited. To resolve this, we consider the
application of a model order reduction scheme, in combination with subdomain surrogate modeling,
to perform the optimization using a reduced-order approximation of the model. In particular, we
employ principal orthogonal decomposition (POD), efficiently reducing the size of the underlying
system of equations, on the basis of a limited number of samples of the full-order model. Applying
a domain decomposition, this number of samples can be reduced even further, although at
a decreased efficiency. Next, radial basis function (RBF) interpolation is applied, using the
samples to construct a trajectory piecewise linear approximation of the reduced-order model in
each subdomain. Combining these different techniques, an optimization algorithm is constructed,
applying the adjoint methodology to the reduced-order model in order to compute an approximate
gradient. The accuracy of this approximation was found to be poor, but comparable to alternative
sample-based methods. An improved accuracy could be achieved by reducing the number of input
parameters, allowing for more efficient optimization when applying the algorithm to a particular
reservoir model. For another model, however, the algorithm performed worse upon reducing
the size of the input, as a result of the fewer degrees of freedom in the optimization procedure.
Reacquiring this freedom during the optimization, improved results could be attained, but the
number of iterations and thus the cost of the method increased drastically. Comparing the full
input implementation to another sample-based method, specifically a straight gradient ensemble
algorithm, it was found to produce comparable results. Each method was able to surpass the
other, dependent on the particular situation, though the reduced-adjoint algorithm generally
expended more effort to attain similar results. This suggests that further study is necessary,
for example improving the RBF interpolation or input reduction techniques, to fully exploit the
benefits of the POD-TPWL methodology.
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Chapter 1

Introduction

1.1 Reservoir oil recovery

Since the start of the industrial revolution, energy consumption worldwide has increased tremendously.
This has fuelled a surge in technological development, as well as a rapid population growth, still
continuing to this day [36]. Accordingly, the total energy demand continues to grow each year,
expected to increase with 50% by 2050 [12]. Currently, this energy is largely produced from fossil
fuels, with oil and natural gas still accounting for more than half of the total energy production
in 2018 [5]. As such, although combating climate change necessitates a reduction in the use
of these carbon-rich fuels, they will remain crucial sources of energy throughout the transition
towards less environmentally damaging production. Therefore, it is essential these products are
obtained as efficiently as possible, both from an economical and ecological perspective.

Resources such as oil are generally extracted from underground reservoirs. In the primary stage
of this extraction, the internal pressure naturally forces the oil out of such reservoirs, allowing it
to be pumped up to the surface with little effort [6]. As this method allows only a small portion
of the available oil to be extracted, however, a secondary recovery method is also used, called
waterflooding. As part of this process, water is injected into the reservoir through injection
wells, aiming to push the present oil towards production wells, as illustrated in figure 1.1. At
these latter wells, any present phase can then be extracted, including both the water and the oil.
Naturally, the goal is to maximize this oil production, whilst minimizing the water injection and
production, expending as little effort as possible to recover the greatest amount of viable product.

In order to optimize the process of waterflooding, reservoir simulation is applied. To this end,
information has to be gathered on the reservoir, for example performing seismic surveys or well
test analyses. This already imposes an optimization problem in minimizing the cost associated
with accumulating information, compared to the benefit of having this information, requiring so-
called value-of-information analysis. An additional optimization problem arises in establishing
parameters necessary to describe the flow in the reservoir, referred to as history matching. This
problem involves minimizing the difference between simulation results and physical observations,
seeking model parameters to best represent the dynamics within the reservoir. Once a model
of the flow is constructed, production optimization can finally be performed, determining the
necessary control exerted at the injection and production wells to maximize the amount of
extracted oil. In many cases, geological uncertainty is still taken into account at this stage,
seeking optimal controls maximizing average production under different model parameters.

1



Figure 1.1: Waterflooding of an oil reservoir [22]

1.2 Adjoint-based optimization

For solving optimization problems such as those involved in oil recovery, a variety of techniques
are available. These techniques operate by optimizing an objective function, which expresses the
quality of a particular situation in terms of a single value. Establishing an optimum can then be
done using the gradient of this function, which in turn can be computed through a multitude of
methods.

A common technique used to construct the gradient of an objective function is the adjoint
method. Through this method, the derivative of the objective function with respect to the control
parameters is computed by directly implementing the model functions in the derivation [21]. This
allows an exact gradient to be determined under any circumstances, requiring relatively little
computational effort when considering small-scale models. For problems such as those involved in
oil recovery, however, often an overwhelming number of variables have to be taken into account,
increasing the computational cost tremendously. Moreover, access to the actual models is not
always feasible, in which case the information necessary to employ an adjoint method is not
available.

To address the various problems in applying an adjoint method to construct a gradient, reduction
and reparameterization techniques have been investigated within this context. Reduced-order
modelling techniques such as principal orthogonal decomposition (POD) have been shown to
allow a significant reduction in the cost of the method [7][29]. Additionally applying surrogate
modelling techniques such as trajectory piecewise linearization (TPWL), the complexity of the
method can be further reduced [16][17][18]. Finally, the inherent intrusive property of the adjoint
technique can be lifted using radial basis function (RBF) interpolation [24][42], which can be
combined with a subdomain scheme to reduce the cost. Combining these different methods
into a subdomain POD-TPWL algorithm, adjoint gradients can then be computed on the basis
of a reduced-order linear approximation of the model, yielding promising results when applied
to history matching [43]. At the time of writing of this thesis, however, this non-intrusive
POD-TPWL methodology has not been tested on alternative optimization problems, raising the
question of how it would perform for a problem such as production optimization.
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1.3 Synopsis of the thesis

In this study, we investigate the performance of a non-intrusive, reduced-order linearization
technique for optimization, which we will refer to as the POD-TPWL or reduced adjoint method.
We will consider this methodology specifically in the context of production optimization in
reservoir flow, implementing the algorithm on the basis of two reservoir models. For this situation,
we optimize the performance of the algorithm, and compare it to a similar, more well-established
ensemble based algorithm. In addition, we consider implementing methods for reducing the
number of parameters to be optimized, as also done in the history matching application [43], and
how these affect the algorithm. Overall, we will address three questions:

1. How do the different stages of the algorithm affect its overall performance?

2. How do different schemes reducing the number of parameters to be optimized influence the
efficacy of the algorithm?

3. How does the POD-TPWL method compare to a similar ensemble-based method when
applied to the problem of production optimization?

Before considering these questions, necessary background on reservoir simulation and optimization
methods is introduced in chapters 2 and 3. Consecutively, chapters 4 and 5 provide the mathematical
theory as well as numerical experiments on the core techniques applied in the POD-TPWL
method, addressing the first research question. The obtained results also drive choices made in
the implementation of the algorithm, described in chapter 7. Surrounding chapters 6 and 8 answer
the second question, suggesting various schemes for adjusting the parameters to be optimized,
and displaying the performance of the algorithm based on these schemes. Finally, chapter 9
provides a comparison between the algorithm and an ensemble-based method, answering the
final question. The most important results of these chapters are summarized in the conclusion,
additionally providing suggestions for further improvement.
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Chapter 2

The Porous Media Model

In this chapter, the system of equations governing the flow of oil and water through a reservoir
is derived. Spatial and temporal discretization are performed, describing the flow in terms of
unknown state variables to be numerically computed at specific times. An objective function is
introduced, assigning a monetary value to the situation corresponding to these states. Finally,
two reservoir models are described, on the basis of which any numerical experiments throughout
this thesis will be conducted.

2.1 System of equations

Throughout this thesis, the studied optimization techniques will be considered specifically within
the context of optimization of oil production from a reservoir. This production will be performed
using waterflooding, thus depending on the manner in which water is injected into the reservoir,
as well as the flow of the water and oil through the reservoir. To describe this dependence, a
model of the flow within the reservoir is used. This model computes the flow at any time by
solving a system of equations which this flow must satisfy.

2.1.1 Conservation laws

To attain a general set of equations describing the flow of different phases through a reservoir, we
focus on a small cubic volume within the reservoir. Considering the flow through this volume, the
mass of any phase `, such as water or oil, must be conserved. This means that any mass flowing
into the volume, either naturally or as a result of external influence, must also exit the volume,
or accumulate within it. Consequently, the flow of mass through the volume must satisfy:

([rate in] - [rate out]) + ([rate injected] - [rate extracted]) = [rate accumulated] (2.1)

In this equation, the first term denotes the mass flux, describing the rate at which mass flows
into and out of the considered volume from the surroundings. This rate depends on the change in
velocity of the flow v` of the phase through the volume, where an increase in this velocity implies
that mass leaves the volume more quickly than it enters. Naturally, this rate also depends on
the density ρ` of the phase in the box, determining how much mass the flow actually carries.
Based on these variables, the flux can be shown to be given as [33]:

([rate in] - [rate out]) = −
(
∂(ρ`v`,x)

∂x
+
∂(ρ`v`,y)

∂y
+
∂(ρ`v`,z)

∂z

)
= −∇ · (ρ`v`) (2.2)

4



Aside from natural flow from the surroundings, we also have to account for flow of mass into the
volume from external sources. In the setting of waterflooding, for example, this corresponds to
the injected or extracted fluids at the locations of wells. We denote the rate of this imposed flow
as q`, with a positive value corresponding to flow of phase ` into the volume. The rate at which
mass enters the volume from outside the reservoir can then be given as:

([rate injected] - [rate extracted]) = ρ`q` (2.3)

Finally, we have to consider the mass that is stored within the volume. This depends on the
porosity φ of the material through which the flow occurs, being defined as the ratio of the pore
volume to the total volume of this material. As such, it is a measure of how well the medium can
retain an arbitrary fluid, where a higher porosity corresponds to more available space for mass
accumulation. However, in case of multiple phases, each phase ` can only occupy a fraction of
this available space, which we denote by the saturation s` of this phase. The fraction of the total
volume occupied by phase ` is then given by φs`, such that the rate of accumulation of mass in
the volume is equal to:

[rate accumulated] =
∂(ρ`φs`)

∂t
(2.4)

Combining these results, we find that conservation of mass for an arbitrary phase ` requires:

−∇ · (ρ`v`) + ρ`q` =
∂(ρ`φs`)

∂t
(2.5)

Imposing this equation, the flow of phase ` through the reservoir will conserve mass. Aside
from conserving mass, however, the flow of this phase must also conserve momentum. When
considering porous media, this is generally imposed through Darcy’s law, requiring the velocity
of phase ` to satisfy [19]:

v` = −K

µ`
(∇p` − ρ`g∇d) (2.6)

In this equation the first term describes the effect of the pressure gradient ∇p` of phase ` on its
velocity, with a larger pressure gradient also invoking a greater flow velocity. The second term in
the equation corresponds to the effects of gravity, with g denoting the gravitational acceleration,
and d the depth of the reservoir, dependent on the considered position. This term incorporates
the effect of sloping at the bottom of the reservoir, where gravity will increase the velocity down
along the slope. Both effects are scaled by a factor dependent on the viscosity µ` of the phase,
where a higher viscosity diminishes the effects on the velocity.

In addition to the viscosity, the permeability K of the rock also affects the velocity of the phase.
This tensor provides a measure of how well a phase can pass through the medium, where a higher
permeability corresponds to less obstruction of the flow [2]. In doing so, it accounts for the effects
of the pressure gradient along each direction on the velocity in each direction, thus forming a full
3× 3 matrix. In general, however, a proper choice of coordinate system allows for this tensor to
be written as a diagonal matrix, taking only the effect of the pressure gradients on flow in the
same direction to be nonzero.

Substituting Darcy’s law into the conservation of mass equation, we find that the flow of phase
` must obey:

∇ ·
[
ρ`K

µ`
(∇p` − ρg∇d)

]
+ ρ`q` =

∂(ρ`φs`)

∂t
(2.7)
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In this equation, the density of the phase and porosity of the rock are taken to depend only
on the pressure, whilst the relative permeability depends only on the saturation of the present
phases. The rate q` can be influenced externally, potentially also depending on the pressure, and
being nonzero only at the location of wells. All other parameters are assumed to be known and
constant, such that only the pressure and saturation are unknown variables.

2.1.2 Closure equations

We now assume to have N` phases in the reservoir. Each of these phases must satisfy a
corresponding differential equation (2.7), yielding a total of N` equations to be solved. However,
both the pressure and saturation in each of these equations are unknown, amounting to twice as
many unknown variables. To assure a unique solution, therefore, closure equations are imposed
on these variables. The first of these is straightforward, requiring all space in the reservoir to
be occupied. By definition, then, the sum of the saturation of all phases must be equal to 1,
imposing:

1 =

N∑̀
`=1

s` (2.8)

In the presence of a single phase, this condition implies the saturation of the phase to be equal to
1, leaving only the pressure to be computed. In a situation involving multiple phases, however,
additional equations are required in order to attain a well-posed problem. These equations can
be found considering the pressure difference at the interface between two phases. Specifically, for
an arbitrary pair of phases `1, `2, the pressure difference between the non-wetting phase and the
wetting phase can be given as a function of solely the saturation of the wetting phase [33]. Here,
the wetting phase is the phase with the highest tendency to adhere to the surrounding rock, with
the other phase denoted as non-wetting. Assuming the phases ` = 1, . . . , N` to be ordered from
most- to least-wetting, this yields N` − 1 additional equations:

p`+1 − p` = pc`+1,`
(s`) ` = 1, . . . , N` − 1 (2.9)

Here, pc denotes the capillary pressure between two phases, being some known function of the
saturation of the wetting phase. Since the capillary pressure between two arbitrary phases
can be given as a sum of those between consecutive phases, the equations (2.9) are sufficient
to guarantee all capillary pressure requirements are imposed. In combination with the total
saturation condition and the conservation equations, this gives 2N` equations on the N` phases.

2.1.3 Two phase flow

Throughout this thesis, only a situation with water and oil is considered, involving just two
phases. Of these two, water is the wetting phase, allowing for the water pressure to be expressed
as:

pw = po − pc(sw) (2.10)

Similarly, the oil saturation can be expressed directly in terms of the water saturation as:

so = 1− sw (2.11)
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Finally, the presence of water will inhibit the flow of the oil, and vice versa. To take this into
account, relative permeabilities kro and krw are introduced, describing the additional resistance
to the flow of each phases as result of the presence of the other. Letting K describe the absolute
permeability of the rock, the full permeability for phase ` then becomes:

K` = kr,`K (2.12)

Substituting these results into the conservation equations, we can rephrase them in terms of only
the oil pressure and water saturation, and with a relative permeability:

∇ ·
[
ρwkrw
µw

K

(
∇po −

∂pc
∂sw

∇sw − g∇d

)]
+ ρwqw =

∂(ρwφsw)

∂t

∇ ·
[
ρokro
µo

K(∇po − g∇d)

]
+ ρoqo =

[
∂(ρoφ)

∂t
− ∂(ρoφsw)

∂t

]
(2.13)

To further simplify this system, we expand the accumulation derivatives of each phase `, where
the density and porosity are assumed only to depend on the corresponding pressure:

∂(ρ`φsw)

∂t
= φsw

∂ρ`
∂p`

∂p`
∂t

+ ρ`sw
∂φ

∂p`

∂p`
∂t

+ ρ`φ
∂sw

∂t
(2.14)

In general, the density and porosity depend only weakly on the pressure. Assuming the temperature
to be constant, the derivatives of these parameters can then be described in terms of corresponding
compressibilities:

c`(p`) :=
1

ρ`

∂ρ`
∂p`

cr(p`) :=
1

φ

∂φ

∂p`
(2.15)

These compressibilities provide a measure of the relative change in volume of each phase and
the surrounding rock, in response to a change in pressure of a phase. Assuming the capillary
effects to be small, all of these compressibilities can be expressed as functions of the oil pressure,
allowing the accumulation term for phase ` to be given as:

∂(ρ`φsw)

∂t
= ρ`φswc`(po)

∂po

∂t
+ ρ`φswcr(po)

∂po

∂t
+ ρ`φ

∂sw

∂t
(2.16)

Finally, substituting this result into the system (2.13), we attain:

∇ ·
[
ρwkrw
µw

K

(
∇po −

∂pc
∂sw

∇sw − ρwg∇d

)]
+ ρwqw = ρwφ

[
sw(cw + cr)

∂po

∂t
+
∂sw

∂t

]
∇ ·

[
ρokro
µo

K(∇po − ρog∇d)

]
+ ρoqo = ρoφ

[
(1− sw)(co + cr)

∂po

∂t
− ∂sw

∂t

]
(2.17)

This is the set of nonlinear differential equations describing the flow of oil and water in a reservoir,
as considered in this thesis. Since the pressure is always computed for the oil phase, whilst the
saturation is always computed for the water phase, we will henceforth refer to these unknowns
without explicitly mentioning the corresponding phase, also omitting the o and w subscripts in
the equations.

7



2.2 State space representation

To solve the differential system (2.17), the numerical simulator flow will be used, which is part
of the Open Porous Media initiative, available at [32]. This software computes the unknown
values in a reservoir specified by the user, applying a time-implicit two-point flux finite volume
scheme. We will broadly describe the techniques behind this method here, referring to the OPM
documentation for more information.

Figure 2.1: Spatial discretization of a domain Ω

2.2.1 Spatial discretization

We consider the problem of solving system (2.17) in some computational domain Ω, in our case
denoting the full space occupied by the reservoir. We assume this domain to be bounded by
a surface ∂Ω, for example entailing some layer of rock that is impenetrable to the phases. In
order to solve this problem, the finite volume method, as well as most alternative numerical
methods, divides the computational domain into a large number of smaller grid blocks [14], as
illustrated in figure 2.1. Using a Cartesian coordinate system, we could for example divide the
domain into Ng cubic subdomains Ωi,j,k, with boundaries ∂Ωi,j,k, where indices (i, j, k) denote
the position of the subdomain within the reservoir. Rather than determining the unknown value
at an arbitrary position, then, these are only determined at the centers of each grid block, for
example requiring them to assume a uniform value throughout each grid block. In our case, this
amounts to determining Ng pressure and saturation values at any time t, which we will combine
into a single state vector x(t) ∈ RNx , with Nx := 2Ng. In each subdomain (i, j, k), this state
must then satisfy an equation of the form:

∇ · F (x(t),∇x(t))

∣∣∣∣ijk + S(x(t),u(t))

∣∣∣∣ijk =
∂

∂t
A(x(t))

∣∣∣∣ijk (2.18)

In this system, ∇F (x(t),∇x(t)) describes the mass flux, S(x(t),u(t)) the source effects, and
∂
∂tA(x(t)) the accumulation in grid block (i, j, k). Each of these terms depends on the state x(t)
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at the corresponding time, with the mass flux further depending on the gradient of the state, and
the source effects also depending on some input u(t) ∈ RNw , describing the control exerted at the
wells. This control could entail any variable influencing the rate of flow qi,j,k in the considered
domain, including simply the rate itself.

To solve system (2.18) in an arbitrary domain Ωi,j,k, we first integrate both sides over the entire
domain: ∫

Ωi,j,k
[∇ · F (x(t),∇x(t)) + S(x(t),u(t))] dΩ =

∫
Ωi,j,k

∂

∂t
A(x(t))d∂Ω (2.19)

Using Gauss’s law, the integral of the flux term can be transformed into:∫
Ωi,j,k

∇ · F (x(t),∇x(t)) dΩ =

∫
∂Ωi,j,k

n · F (x(t),∇x(t)) d∂Ω (2.20)

In this notation, the vector n at any point along the boundary ∂Ω is a unit vector pointing
outward, perpendicular to this boundary. Since we are using cubic domains in a Cartesian grid,
this vector will be uniform along each of the six faces along the domain, containing a single
nonzero element equal to ±1 in the direction normal to this face. Assuming further the pressure
and saturation values to be uniform along each face, only their derivatives perpendicular to the
face will be nonzero, allowing us to neglect the other elements. This implies that, considering
for example the boundaries along the y-direction, we can express the integral as:∫

∂Ωi,j,k
ny · F (x(t),∇x(t)) d∂Ω = ∆yF

i,j,k
y (x(t),∇x(t))

:= (∆x∆z)

[
Fy

(
x(t),

∂

∂y
x(t)

)]∣∣∣∣i,j+ 1
2 ,k

i,j− 1
2 ,k

(2.21)

Here ∆x∆z denotes the area of the y-boundaries, assuming each subdomain to be of dimensions
∆x×∆y ×∆z. With this derivation, the divergence operator from the system is removed, but
a dependence upon derivatives of the state vector remains. To remove this, a two-point finite
difference approximation is used, for example replacing the derivative at boundary (i, j + 1

2 , k)
by:

∂yx
i,j+ 1

2 ,k
s,p ≈

xi,j+1,k
s,p − xi,j,ks,p

∆y
(2.22)

In this notation, subscripts s, p denote respectively the saturation and pressure elements of
the state vector x. Along the boundary ∂Ω of the reservoir, approximating the derivative in
this manner requires implementing boundary conditions. This can be done by, for example,
introducing virtual cells outside of the domain, in which we fix the saturation and pressure
values to be predefined functions of those in neighboring cells within the domain. Substituting
this function into the approximation (2.22), we can then express the gradient of the state as a
(linear) operator acting on this state, lifting the dependency on the gradients ∇x.

Since the pressure and saturation are assumed to be uniform throughout each cell, integrating the
source and accumulation functions simply entails multiplying these with the volume ∆x∆y∆z.
Imposing this result in integral equation (2.19), as well as substituting the function (2.21) with
the gradient dependence described through (2.22), this equation then becomes:∑

ξ∈{x,y,z}

∆ξF
i,j,k
ξ (x(t)) + (∆x∆y∆z)Si,j,k(x(t),u(t)) = (∆x∆y∆z)

∂

∂t
Ai,j,k(x(t)) (2.23)
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In this equation, Si,j,k and Ai,j,k represent the source and accumulation effects at position (i, j, k)
in the grid. Solving this system of equations at an arbitrary time t, approximate pressure and
saturation values can then be computed at the grid points.

2.2.2 Temporal discretization

In system (2.23), all spatial derivatives have been removed using spatial discretization. To
also remove the derivative in time, temporal discretization is applied. To this end, let tn for
n = 1, . . . , N denote times at which we wish to compute the state vector, where we assume the
state at time t0 to be known. Using an implicit scheme, we then approximate the temporal
derivative in the accumulation term as:

∂

∂t
Ai,j,k(xn+1) ≈ Ai,j,k(xn+1)−Ai,j,k(xn)

∆t
(2.24)

In this approximation, xn denotes the state at time step n, with ∆t providing the time between
consecutive time steps, assumed to be constant for ease of notation. Substituting this approximation
into system (2.23), as well as dividing by the volume, we attain:

1

∆x∆y∆z

∑
ξ∈{x,y,z}

∆ξF
i,j,k(xn+1) + Si,j,k(xn+1,un+1) =

Ai,j,k(xn+1)−Ai,j,k(xn)

∆t
(2.25)

In this system, all derivatives have been removed, leaving only functions directly dependent on
the state vector xn and input un at each time step. Combining the different functions, as well
as merging the functions at each grid block, we can describe this system compactly as one of the
form:

0 = gn+1(xn,xn+1,un+1) n = 0, . . . , N − 1 (2.26)

This is the general system solved by the numerical simulator. At each time step n+1 = 1, . . . , N ,
this simulator will use the current input un+1 and previous state xn to compute a new state
xn+1 satisfying (2.26), starting with a predefined state x0 = xinit. In this manner, the pressure
and saturation values at certain positions within a specified reservoir are determined at discrete
times t1, . . . , tN , based on the inputs u1, . . . ,uN provided at each time.

2.2.3 Input-output system

When performing production optimization in reservoir flow, it is not directly the state vector
that is used to quantify the performance. Instead, quantities such as the water injection and oil
production rates at each of the wells are considered when optimizing two-phase flow. Therefore,
it is useful to collect these values into a single vector y ∈ RNy , and rewrite system (2.26) in
terms of an input-output system. That is, we assume the vector yn at an arbitrary simulation
time tn, to be given as a direct function hn : RNx × RNu → RNy of the state and input at this
time. Furthermore, by adding xn+1 to both sides of equality (2.26), we explicitly require the
state xn+1 at a new time step to be equal to some function fn+1(xn,xn+1,un+1). We can them
write our system as:

x0 = xinit

xn+1 = fn+1(xn,xn+1,un+1)

yn+1 = hn+1(xn+1,un+1) n = 0, . . . , N − 1 (2.27)
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Throughout this thesis, system (2.27) describes the model on the basis of which we wish to
optimize a cost function. This model, denoted as the full-order model (FOM), is assumed to
be expensive to run, and thus aimed to be executed as sparingly as possible in the numerical
optimization schemes. Although we specifically consider this system in the context of reservoir
flow, numerically solving equations such as (2.17), the POD-TPWL optimization procedure
described in following chapters does not require any knowledge of the actual functions f,h,
and can thus be easily adjusted to fit an arbitrary model.

2.3 Net Present Value

With the model described by equations (2.27), the goal is now to optimize the controls at the
wells for the purpose of producing the most oil at the lowest cost. For this, an objective function
is introduced, translating observed injection and production rates of water and oil into some
monetary value. Specifically, we let qprod,inj

o,w (t) denote respectively the oil and water production
and injection rates at some well at time t, corresponding to water injected at injection wells, and
oil and water produced at production wells. We denote the monetary values of these injected
and produced fluids by rprod,inj

o,w (t), such that the total amount of money earned between times
t0 and tf can be given as:

J =

∫ tf

t0

∑
prod

[rprod
o (t)qprod

o (t)− rprod
w (t)qprod

w (t)]−
∑
inj

[rinj
w (t)qinj

w (t)]

 dt (2.28)

This is the objective function aimed to be maximized throughout this thesis, called the net
present value. By summing over all production and injection wells, and integrating in time,
this function provides a total monetary value corresponding to the observed rates of injection
and extraction. Herein, the values corresponding to both water injection and production are
subtracted from those corresponding to oil production, as any extracted oil will yield a profit,
whereas production or injection of water will only cost money. The monetary values associated
with each phase can change in time, generally assumed to decrease as:

rprod
o (t) = rprod

o (t0)fo(t)(1 + bo)−(t−t0)/year

rprod
w (t) = rprod

w (t0)fw(t)(1 + bw)−(t−t0)/year

rinj
w (t) = rinj

w (t0)fw(t)(1 + bw)−(t−t0)/year (2.29)

Here, fo,w(t) is the time-dependent price factor of the fluid, and bo,w denotes a yearly interest rate.

Since optimization will be performed on the basis of a reservoir model, computing results only
at discrete time steps n = 1, . . . , N , the integral in the function for the net present value can be
replaced by a sum:

J =

N∑
n=1

∑
prod

[rprod
o (tn)qprod

o (tn)− rprod
w (tn)qprod

w (tn)]−
∑
inj

[rinj
w (tn)qinj

w (tn)]

 (2.30)

In this equation, the rates of flow observed at each well are taken to exactly comprise the output
at an observation time:ynop

ynwp

ynwi

 = yn = hn(xn,un) =

hnop(xn,un)
hnwp(xn,un)
hnwi(x

n,un)

 =

qprod
o (tn)

qprod
w (tn)
qinj

w (tn)

 n = 1, . . . , N (2.31)
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With the rates collected in vector y, a corresponding cost vector can be introduced as:

cn =

 rnop

−rnwp

−rnwi

 :=

 rprod
o (tn) · 1prod

−rprod
w (tn) · 1prod

−rinj
w (tn) · 1inj

 n = 1, . . . , N (2.32)

Here, the vectors 1prod,1inj are vectors of sizes corresponding to the number of production and
injection wells, containing only elements equal to 1. With this cost vector, the net present value
can be given simply as:

J =

N∑
n=1

∑
prod

[rprod
o (tn)qprod

o (tn)− rprod
w (tn)qprod

w (tn)]−
∑
inj

[rinj
w (tn)qinj

w (tn)]


=

N∑
n=1

[
[rnop]T · hnop(xn,un)− [rnwp]T · hnwp(xn,un)− [rnwi]

T · hwi(x
n,un)

]
=

N∑
n=1

[cn]T · hn(xn,un) (2.33)

In this equation, the dependence of the cost function on the states and inputs at all times is
directly displayed, indicating it to be of the form:

J = J(x1, . . . ,xN ,u) (2.34)

Here, u ∈ RNu is a vector comprised of all the input variables at all times n = 0, . . . , N − 1. In
production optimization, this is the vector for which an optimum is sought, aiming to maximize
the cost function (2.33).

In many cases, the dependence of the objective function on the used parameters is also considered,
referred to as robust optimization. In that case, uncertainties in, for example, the permeability
values throughout the reservoir are taken into account during the optimization procedure. Letting
β denote these unknown parameters, optimization could then be performed considering an
ensemble of parameter vectors β(1), . . . ,β(Nβ), maximizing the ensemble averaged net present
value:

J =
1

Nβ

Nβ∑
i=1

J(x1, . . . ,xN ,u,β(i)) (2.35)

Naturally, this robust approach to optimization comes with additional complications, as well
as requiring a greater computational effort. For this reason, solely deterministic optimization
has been considered for this thesis, assuming the chosen parameters β to be known with full
certainty. For more detailed descriptions on robust optimization, or more recent developments
in this field, we refer to [3],[21] and [35], [27].
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2.4 Cases

In numerically testing the methods described in the next chapter, two distinct reservoir models
are considered. These are the two-dimensional Kanaal model, providing a simple square reservoir
of which all grid cells lie in the same plane, and the more complex three-dimensional Egg model.
The most important parameters for each model are summarized in table 2.1.

2.4.1 Kanaal model

The Kanaal model is a model of a perfectly square oil reservoir. It covers an area of 990 m
by 990 m in the horizontal plane, and has a uniform depth of just 5 m over this entire domain.
Accordingly, it is discretized only along the x- and y-direction, dividing it into 99×99 grid blocks.
This amounts to a total of 9801 blocks, each measuring ∆x×∆y×∆z = 10 m × 10 m × 5 m. At
these cells, the permeability K is assumed to be exactly known, and only assigned values in the
horizontal directions, as there is no vertical flow. Moreover, these values are equal in the x- and
y-direction, both assigned a predefined value k. Therefore, the permeability in each grid block i
can be expressed as Ki = kI2×2, with I2×2 ∈ R2×2 denoting an identity matrix. The values of
the permeability over the entire reservoir are plotted in figure 2.2.

Figure 2.2: Permeability field of the Kanaal reservoir

In the Kanaal model, Nw = 9 wells are implemented, each injecting or extracting phases into
or from a single grid block. These wells are divided uniformly along the domain, each being
equidistant from its closest neighbors, as displayed by the circular markers in figure 2.2. In this
figure, the six white markers denote injection wells, forming the northern and southern row of
wells. These surround the three production wells at the center of the reservoir, indicated by the
black markers in the figure. Organizing the wells in this manner, the aim is to force the oil from
the northern and southern parts of the reservoir towards the center, to recover as much oil and
as little water as possible.
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For the Kanaal model, simulations always start on the first of January in the year 2000. During
such a simulation, pressure and saturation values are computed in each gird block every ∆t =30
days, finishing on the 27th of April in the year 2012. This corresponds to N = 150 simulation
times, at each of which the injection and production rates at the wells are also observed. During
this period, however, control at the wells is only exerted every 300 days, amounting to 15 times
at which the control is adjusted. Here, control is exerted through interval control valves. If these
valves are fully open, implemented as an input value umax = 1, flow can pass through the valves
unhindered. Conversely, setting the input to umin = 0, the valve is set to be completely closed,
allowing no flow whatsoever. At the control times, the input at each well can be adjusted to be
any value in this domain [umin,umax], after which it will remain constant until the next control
time. Fixing the inputs to be constantly equal to 0.5, this returns pressure and saturation fields
evolving as displayed in figure 2.3. Here, the state variables are plotted in each grid block at
time steps 1, 75 and 150, with the circular markers once more indicating the location of wells.

Figure 2.3: Evolution of the saturation and pressure values for the Kanaal model

At each of the simulation steps, the injected and produced rates of water and oil are observed at
the wells. An example of these rates using the constant input u = 0.5 at all the wells is given in
figure 2.4. Herein, the oil production rates initially increase, corresponding to the injected water
driving the oil towards he production wells. At this stage, the water injection and oil production
rates are also equal, as the interval control valves at the corresponding wells are set to the same
value. However, once water reaches the production wells, water is produced as well as oil. As a
result, starting after approximately 30 time steps, the oil production rate decreases at the cost
of the water production rate, displaying the difficulties of oil production through waterflooding.
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Figure 2.4: Observed injection and production rates and corresponding profit gained over time
for the Kanaal model

In addition to the observed rates, the corresponding gained profit is also plotted in figure 2.4.
For the Kanaal model as implemented throughout this thesis, monetary values of rprod

o = 252,
rprod
w = 60 and rinj

w = 30 were assigned to respectively the produced oil, produced water, and
injected water. The profit made from the oil here is much larger than the cost of injecting or
producing water, whilst producing water is set to cost more than injecting it, to account for the
cost of separation of the produced phases. These values were also taken not to change in time,
imposing a constant price factor fo(t) = fw(t) = 1, and a yearly interest rate of bo = bw = 0.
Implementing these parameters, the profit made in the constant input case initially increases, as
only oil is produced and the rate of this production increases. However, as the water production
rates start exceeding the oil production rates, the scheme starts costing more money than it
returns. As a result, profits start decreasing approximately halfway through the simulation.
This shows that the constant input u = 0.5 does not return a desirable net present value, and
instead, more variable input functions are necessary.

2.4.2 Egg model

Compared to the Kanaal model, the Egg model appears significantly more often in studies on
reservoir flow [20], recently appearing in [8], though varying parameter values are used. It is
also more complex than the Kanaal model, pertaining a larger number of cells over a smaller
reservoir. This reservoir is located in a domain of 480 m × 480 m × 28 m, which is divided
into 60× 60× 7 grid blocks, each measuring 8 m × 8 m × 4 m. However, as no flow is allowed
outside the reservoir, pressure and saturation values are only computed in 18553 of the total
25200 cells, which we denote as the active cells. In each of these cells i, the permeability matrix
Ki is diagonal, and assigned the same value k in each direction, as also done for the Kanaal
model. For the Egg model, however, flow is also allowed in the vertical direction, such that the
tensor is of the form Ki = kI3×3. The values k for the central layer of the reservoir are displayed
in figure 2.5.

15



Figure 2.5: Permeability field of the Egg reservoir

As with the Kanaal model, the injection wells in the Egg model are placed to surround the
production wells. In particular, seven of the Nw = 8 injection wells are distributed along the
edge of the reservoir, with a final well located at the center, displayed as the white markers in
figure 2.5. The production wells here are denoted by black markers, located halfway towards the
edge of the reservoir, enclosed by the injection wells. At these injection wells, control can be
exerted directly through the rate of injected flow, fixed to assume values between umin = 0 s−1

and umax = 79.5 s−1. At the production wells, no control can be exerted, with the rate of flow
at these wells fixed at u = 39.75 s−1 at all times.

Similarly to the Kanaal model, the unknowns of the Egg model are computed over a period of
approximately ten years, starting on the 15th of June in 2011, and finishing on the 23rd of March
in 2021. During this time, the pressure and saturation values are computed every ∆t=30 days,
amounting to a total of N = 120 simulation times. Control, however, can only be exerted at
Tw = 40 times, allowing the rates to be adjusted every third time step of the simulation. Keeping
all the rates constant at u = 39.75 s−1, pressure and saturation values are obtained as displayed
in figure 2.6, providing the state variables after 1, 60 and 120 simulation steps.

As with the Kanaal model, at each of the simulation times of the Egg model, rates of flow
are observed at the wells, yielding results such as those displayed in figure 2.7. In translating
these rates to monetary values, the price of each phase is also kept constant in time, once more
implementing fo(t) = fw(t) = 1 and bo = bw = 0. However, the actual prices are lower than
those of the Kanaal model, fixing rprod

o = 126, rprod
w = 19 and rinj

w = 6. This results in lower
profits to be achieved with the Egg model, as also displayed in figure 2.7. Nevertheless, the
emerging pattern upon implementing a constant input is similar, initially increasing the profits,
but starting to decrease halfway through, as large quantities of water are lost to produce little
oil. This illustrates the necessity of an optimization algorithm, allowing more complex input
functions to be established, aiming to maximize the net present value.
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Figure 2.6: Evolution of the saturation and pressure values for the Egg model

Figure 2.7: Observed injection and production rates and corresponding profit gained over time
for the Egg model
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Kanaal model Egg model

Number of active cells (Ng) 9801 18553
Number of state variables (Nx) 19802 37106
Number of time steps (N) 150 120
Number of output variables (Ny) 15 20
Number of controlled wells (Nw) 9 8
Number of control times (Tw) 15 40
Number of input variables (Nu) 135 320
Lower bound on input values (umin) 0 0
Upper bound on input values (umax) 1 79.5
Oil production profit (rprod

o ) 252 126
Water production cost (rprod

w 60 19
Water injection cost (rinj

w ) 30 6
Oil price factor (fo(t)) 1 1
Water price factor (fw(t)) 1 1
Yearly oil interest rate (bo) 0 0
Yearly water interest rate (bw) 0 0

Table 2.1: Important parameters of the Kanaal and Egg model
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Chapter 3

Optimization Methods

In this chapter, the different optimization schemes employed throughout this thesis are introduced.
A procedure for establishing optimal arguments to an objective function is presented, utilizing the
gradient of this function to iteratively establish new optima. Several techniques for computing
this gradient are discussed, specifically describing the methods as implemented for this thesis.

3.1 Gradient-based optimization

We now consider the problem of constrained optimization, which we can describe as:

max
u∈RNu

J(u)

subject to ui ≥ umin i = 1, . . . , Nu

ui ≤ umax i = 1, . . . , Nu (3.1)

In our case, the objective function J is the net present value, with the vector u providing
the inputs at all times and wells as described in the previous chapter. For such a situation,
analytically solving the problem (3.1) is impossible, and we have to resort to numerical methods.
Herein, we distinguish between the classes of gradient-based and gradient-free methods. The
first of these pertains methods applying the gradient of the cost function with respect to the
input vector to determine an optimum. These methods exploit the fact that the gradient of
the objective function ∇J(u), at any value of the input u, will always point in the direction of
maximal increase of J(u) [38]. As such, by continuously moving in the direction of this gradient,
a local optimum u∗ can be found, for which ∇J(u∗) = 0. However, as illustrated in figure 3.1,
although such a vanishing gradient ∇J(u∗) would assure a local optimum, the established vector
u∗ might not necessarily correspond to the optimum over the entire domain.

The second class of optimization approaches concerns the gradient-free methods. Rather than
relying on the gradient of the cost function, these methods use only the value of the function
itself to determine an optimal input. As a result, they are generally more suitable for finding
global optima than gradient-based methods. However, even obtaining an optimum through a
gradient-free method, this solution is not guaranteed to be globally optimal. Moreover, in most
cases, gradient-free methods are significantly more computationally demanding than gradient-free
ones, requiring a large number of (often expensive) function evaluations before achieving a good
result.
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Figure 3.1: Global and local maxima of a curve

In this thesis, we investigate only gradient-based optimization, considering three different methods
for computing this gradient. For more information on gradient-free methods, and recent developments
in their applications in reservoir flow, we refer to [25] and respectively [8] and [23].

3.1.1 Iterative methods

Almost all numerical optimization methods work iteratively, establishing a new guess of the
optimal input u(k+1) based on an earlier guess u(k), starting at a value u(0). For a gradient-based
optimization method, this new guess is computed simply as [31]:

u(k+1) = u(k) + ρ(k) (3.2)

In this notation, we define ρ(k) to be the step taken at iteration k + 1 of the optimization
algorithm. The problem of optimizing the input then becomes that of optimizing the step at
each iteration, solving:

max
ρ∈RNu

J(u(k) + ρ)

subject to u
(k)
i + ρi ≥ umin i = 1, . . . , Nu

u
(k)
i + ρi ≤ umax i = 1, . . . , Nu (3.3)

To solve this problem, we consider two commonly used strategies, the first of which being the
line search approach. This strategy decomposes the step ρ into a search direction p(k) and step
length α, such that ρ = αp(k). Fixing the search direction p(k) at the start of each iteration k+1,
this approach then only optimizes the size of the step α taken along this direction, hence only
aiming to maximize the cost function along a line at each iteration of the algorithm. Knowing
that the gradient of the objective function always points in the direction of greatest increase, the
search direction at each iteration is computed directly from this gradient:

p(k) = B(k)∇J (k) (3.4)
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Here ∇J (k) := ∇J(u(k)) denotes the gradient of the objective function at the kth guess of the

optimal input, and B(k) is a matrix meant to improve the convergence rate of the algorithm.
Popular choices for B include the inverse (∇2J (k))−1 of the Hessian of the objective function
at the corresponding input, yielding a Newton direction, or some approximation of this inverse
Hessian, yielding a quasi-Newton direction. These directions are very reliable in case the objective
function can be (locally) well approximated by its second-order Taylor polynomial, and an
accurate Hessian can actually be computed. However, these methods are not applied in this
thesis, and instead only a scaling is applied to the gradient. Specifically, at each iteration, the
search direction is computed by dividing the gradient at the previous input by its L-infinity
norm:

p(k) =
∇J (k)

‖∇J (k)‖∞
(3.5)

This definition corresponds to a steepest ascent direction. By using an L-infinity norm, the step
size α will correspond to the greatest change in the elements of u, which is useful when imposing
the physical restrictions on the input values.

The second strategy often used in solving problem (3.3) is the trust region approach. Rather
than optimizing the objective function along a line, this strategy searches for an optimal step
ρ(k) within a specified area around the latest input u(k), called a trust region. This region is

usually specified by requiring the norm ‖ρ‖ of the step to be smaller than some constant ∆
(k)
trust.

In this region, we optimize the cost function J(uk + ρ) by assuming it to closely match a model
function m(k)(ρ), generally taken to be:

m(k)(ρ) = u(k) + ρT ·∇J (k) +
1

2
ρT ·B(k)ρ (3.6)

Here, once again, the matrix B(k) is often chosen to be the Hessian of the objective function,
or an approximation of it. For this thesis, however, this matrix is simply set equal to zero,
approximating the cost function as a linear model:

m(k)(ρ) = u(k) + ρT ·∇J (k) (3.7)

This model increases most quickly along the direction of the gradient ∇J (k), growing with the
distance α moved along this direction. Accordingly, the optimal step ρ under these conditions is
simply αmaxp(k), with the search direction p(k) being given by the normalized gradient (3.5), and
αmax denoting the maximal distance within the trust region that can be travelled in this direction.
Taking this region to be bounded by an L-infinity norm, thereby comprising a hypercube around
the current input u(k), the maximal step size is simply equal to the size of the trust region.
Consequently, the trust region method under these conditions is equivalent to a steepest ascent
line search method, where the step size is taken equal to the size of the trust region. The
remaining problem is then once more that of finding an appropriate step size to move in the
computed search direction, establishing an optimal value along a line.
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3.1.2 Wolfe condition

To determine an optimal step size α(k) to move in the direction p(k), an iterative procedure is
applied. Such a method computes the value of the cost function for different estimates of an
optimal input ui = u(k) +αip(k), adapting the step size αi until a satisfactory result is attained.
Naturally, this requires establishing criteria to indicate when an appropriate step size has been
found. For this, we consider the first Wolfe condition, also known as the Armijo rule.

The Armijo rule, first introduced by Philip Wolfe in 1969 [40][41], provides a condition for
establishing whether the increase in value of the objective function, corresponding to a certain
step size in a line search method, is satisfactory. This condition exploits the fact that, approaching
the input u(k), the cost function will approximately match its first order Taylor approximation
around this input:

J(u(k) + αp(k)) ≈ J(u(k)) + α[p(k)]T ·∇J (k) for α sufficiently small (3.8)

As a result, for arbitrary 0 ≤ ηW < 1, there exists a value α satisfying:

J(u(k) + αp(k)) ≥ J(u(k)) + ηWα[p(k)]T ·∇J (k) (3.9)

This is the first Wolfe condition, requiring the increase in value of the objective function to be
greater than a fraction ηW of the expected increase α[p(k)]T ·∇J (k). Imposing this condition
assures not only that the new input improves the value of the cost function, but also that this
improvement exceeds a certain threshold, the magnitude of which is determined by ηW. This
value is generally taken to be of fairly small order, allowing for substantial freedom in the size
of the step, whilst assuring reasonable improvements are achieved.

3.1.3 The search algorithm

Using the linear trust region method and employing the Armijo rule, we construct an algorithm
for determining a new optimal input u(k+1) based on some input u(k) and corresponding search
direction p(k). For this input, we also assume a model function m(k)(αpk) to be known, for
example given by (3.7), assumed to be accurate within a trust region of size αmax. Denoting
ui = u(k) + αip(k), we then iteratively adjust αi until satisfying a Wolfe condition:

J(ui)− J(u(k))

|m(k)(αip(k))−m(k)(0)|
≥ ηW (3.10)

This condition requires the increase in value of the objective function to be bigger than some
fraction of the expected increase, being equivalent to the Armijo rule when using model (3.7).
Assuming the search direction p(k) to be pointing in some direction of increase of the objective
function, and the model function to match the exact one at the input u(k), this condition will
always be satisfied for sufficiently small α. Accordingly, we can iteratively decrease our guess of
the step size by a factor 1

2 as αi+1 = 1
2α

i until condition (3.10) is satisfied. Here, we start with

a guess α1 = α
(k)
max, equal to the greatest possible step in search direction p(k) whilst remaining

in the trust region.
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To gain slightly more freedom in the optimization process, the step size is also allowed to increase
under certain conditions. Specifically, we note that a model function such as (3.7) matches the
exact cost function at u(k) to first order. Therefore, if the value of the cost function exceeds that
of the model function close to this input, the optimum will likely lie at a greater distance. As
such, the step size will be increased by a factor 1 1

2 whenever an αi is found satisfying:

J(ui)− J(u(k))

|m(k)(αip(k))−m(k)(0)|
≥ 1 (3.11)

Finally, constraints are imposed to assure additional iterations provide significant changes in the
optimal input and corresponding cost function value, given as:

‖ui+1 − ui‖
max{1, ‖ui+1‖}

< ηu
‖J i+1 − J i‖

max{1, ‖J i+1‖}
< ηJ (3.12)

If either of the conditions (3.10) or (3.12) is satisfied, or a maximum number Nsearch of search
iterations has been performed, the input ui = u(k) + αip(k) yielding the greatest cost function
value is retained. We summarize these steps in algorithm 1 below:

Algorithm 1: Line search optimization

Input: Input u(k), Cost value J (k) := J(u(k)), Search direction p(k), Model function

m(k)(ρ), Trust region size α
(k)
max

Result: New input u(k+1)

1 u∗ = u(k)

2 J∗ = J (k)

3 u0 = u(k)

4 J0 = J (k)

5 i = 1;

6 α1 = α
(k)
max

7 while

[
i ≤ Nsearch

]
∧
[
‖ui−ui−1‖

max{1,‖ui‖} ≥ ηu

]
∧
[
‖Ji−Ji−1‖

max{1,‖Ji‖} ≥ ηJ
]

do

8 ui = u(k) + αip(k)

9 J i = J(ui);

10 mi = m(k)(αip(k))

11 if J (i) > J∗ then
12 u∗ = ui

13 J∗ = J i

14 end

15 if Ji−J(k)

|mi−m(k)(0)| > 1 then

16 αi+1 = 1 1
2α

i

17 else if Ji−J(k)

|mi−m(k)(0)| < ηW then

18 αi+1 = 1
2α

i

19 else
20 Break
21 end

22 end

23 u(k+1) = u∗
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3.2 Gradient computation methods

Through algorithm 1, a locally optimal input can be established, improving an arbitrary guess
of the input by moving in some direction of increase p. This direction is based on the gradient

∇J =
[
dJ
du

]T
of the cost function at the previous input, using the fact that this gradient points in

the direction of greatest increase. Computing this gradient, however, cannot always be achieved
in a straightforward manner. Especially if the dependence of the gradient on the input is indirect,
as is the case for the net present value described in the previous chapter, determining an exact
gradient can be strenuous or even impossible.

In this section we consider three different techniques for computing a gradient of the objective
function. The first of these, the adjoint method, shapes the basis of the POD-TPWL method
that is developed in the following chapters. The other methods will be used solely for the purpose
of comparison, and will therefore only be explained in a rudimentary manner. It is important
to note that, numerically implementing either of these methods, the determined gradient at an
arbitrary value of the input will only be an approximation to the actual gradient at this input.
Nevertheless, assuming the angle between this approximation and the actual gradient to be
less than 90o, this approximation will still point in a direction of increase of the cost function.
Therefore, implementing any such approximate gradient, the techniques from the previous section
will still be applicable, albeit less effective than upon employing the exact gradient.

3.2.1 Adjoint method

When considering optimization on a system such as (2.27), the adjoint method is among the
most popular for computing a gradient. This is because of the ability of this technique to
directly take into account the complex dependence of the cost function on the input at each
time, by incorporating the model explicitly into the cost function [21]. Specifically, let the cost
function be of the form:

J = J(x1, . . . ,xN ,u) (3.13)

This implies that any variable on which the cost function depends, can be expressed solely in
terms of the total input vector u, and the states x1, . . . ,xN . For the net present value described
earlier, this assumption holds, as it can be described directly in terms of the outputs of system
(2.27), which in turn depend only on the corresponding inputs and states. In particular, this
dependence is expected to be imposed through a general set of equations:

0 = gn+1(xn+1,xn,u) n = 0, . . . , N − 1 (3.14)

Requiring these equalities to be satisfied, we can introduce an equivalent cost function to (3.13)
as:

Ĵ := J +

N∑
n=1

[λn]Tgn(xn,xn−1,u) (3.15)

In this function, λ1, . . . ,λN ∈ RNx are Lagrange multipliers, also denoted as adjoint vectors.
Since the function gn+1 is required to be zero at each time step, the value of the adjusted cost
function should be equal to that of the original cost function, independent of the value of the
multipliers. Accordingly, the gradient of the original cost function will also match that of the
adjusted one, for which the adjoint vectors can be suitably chosen. To determine this gradient,
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we consider a small perturbation δĴ in the value of the adjusted function. Since this function
depends only on the input and the states, this perturbation too must be the result of one in
either the input or the state. We find:

δĴ = δJ +

N∑
n=1

[λn]T δgn(xn,xn−1,u)

=

N∑
n=1

∂J

∂xn
δxn +

∂J

∂u
δu +

N∑
n=1

[λn]T
[
∂gn

∂xn
δxn +

∂gn

∂xn−1
δxn−1 +

∂gn

∂u
δu

]

=

N∑
n=1

∂J

∂xn
δxn +

∂J

∂u
δu +

N∑
n=1

[λn]T
∂gn

∂xn
δxn +

N−1∑
n=0

[λn+1]T
∂gn+1

∂xn
δxn +

N∑
n=1

[λn]T
∂gn

∂u
δu

=

N−1∑
n=1

[
∂J

∂xn
+ [λn]T

∂gn

∂xn
+ [λn+1]T

∂gn+1

∂xn

]
δxn +

[
∂J

∂xN
+ [λN ]T

∂gN

∂xN

]
δxN

+

[
[λ1]T

∂g1

∂x0

]
δx0 +

[
∂J

∂u
+

N∑
n=1

[λn]T
∂gn

∂u

]
δu (3.16)

Since the initial state x0 = xinit is fixed, no perturbations in this state are possible, such that

the term
[
[λ1]T ∂g

1

∂x0

]
δx0 vanishes. This leaves only perturbations in the input, as well as in the

states at remaining times n = 1, . . . , N . Now, in order to obtain a full derivative of the cost
function with respect to the input, we need to express the perturbation of the cost function solely
in terms of that of the input. To this end, the other perturbations of the state are also set to
zero, by requiring the Lagrange multipliers to satisfy an adjoint model:[

∂gn

∂xn

]T
λn = −

[
∂gn+1

∂xn

]T
λn+1 −

[
∂J

∂xn

]T
n = N − 1, . . . , 1

∂gN

∂xN
λN = −

[
∂J

∂xN

]T
(3.17)

If the partial derivatives of g and J with respect to the state at each time are known, this model
can be solved backwards in time. This provides the adjoint vectors λn such that the δxn terms
in the perturbed cost function vanish, allowing δJ to be expressed directly in terms of δu:

δĴ =

[
∂J

∂u
+

N∑
n=1

[λn]T
∂gn

∂u

]
δu (3.18)

In this perturbation, any effects of the state vector on the objective function are incorporated
through the adjoint vectors, required to satisfy the system (3.17). In this manner, proper choice
of the Lagrange multipliers allows perturbations in the cost function to be expressed solely in
terms of perturbations in the input vector. Letting the size of these perturbation approach zero,
the total derivative of the cost function with respect to the inputs can then be seen to be:

dJ

du
=
dĴ

du
=
∂J

∂u
+

N∑
n=1

[
[λn]T

∂gn

∂u

]
(3.19)

This method thus allows us to describe the full derivative of the cost function with respect to
the input, in terms of the partial derivative, and a partial derivative of the model function.
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When applied to production optimization, we can express the cost function as a linear function
of the outputs:

J =

N∑
n=1

[cn]T · hn(xn,un) (3.20)

Here, the function h provides the output to system (2.27), in terms of the states and inputs at
each time. These states and inputs are required to satisfy an equality (3.21), where the function
gn+1(xn+1,xn,u) is of the form:

gn+1(xn+1,xn,u) = xn+1 − fn+1(xn,xn+1,Kn+1(u)) n = 0, . . . , N − 1 (3.21)

Here, K : RN ·Nu → RNu is a function translating the full input vector u back into an individual
input at each time step. Based on this definition, the partial derivatives are then given by:

∂gn+1

∂u
= −∂fn+1

∂u

∂J

∂u
=

N∑
n=1

[cn]T ·
[
∂hn

∂u

]
∂gn+1

∂xn
= −∂fn+1

∂xn
∂J

∂xn
= [cn]T ·

[
∂hn

∂xn

]
∂gn

∂xn
= I− ∂fn

∂xn
(3.22)

In this last equation, I ∈ RNx×Nx denotes an identity matrix of appropriate size. Substituting
these derivatives, the adjoint model in this case is found to be:[

I− ∂fn

∂xn

]T
λn =

[
∂fn+1

∂xn

]T
λn+1 −

[
∂hn

∂xn

]T
· [cn] n = N − 1, . . . , 1[

I− ∂fN

∂xN

]T
λN = −

[
∂hN

∂xN

]T
· [cN ] (3.23)

Running this system backwards in time, adjoint vectors can be determined, at which point a
resulting gradient can be computed as:

dJ

du
=

N∑
n=1

(
[cn]T ·

[
∂hn

∂u

]
− [λn]T

[
∂fn

∂u

])
(3.24)

In case the analytical partial derivatives of the objective function and model equations are
implemented, the gradient as computed using the adjoint method will be exact. In many cases,
however, numerical approximations have to be made, as the exact derivatives or even the actual
model equations are unknown. Additionally, if the size Nx of the state vector, and thus also
adjoint vector, is large, storing the derivative matrices and adjoint states at each time step can be
computationally infeasible. For these reasons, we consider the implementation of a reduced-order
surrogate model, described in consecutive chapters.

3.2.2 Finite difference method

In the field of derivative approximations, the finite difference method is perhaps the best known
and most commonly applied. It forms the basis of many derivative discretization schemes,
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including the porous media model as discussed in the previous chapter. This is mainly due
to the high accuracy and ease of implementation of this method, allowing for practically any
differential equation to be numerically approximated. However, for the purpose of optimization
on the basis of a system such as (2.27), this method can be computationally very expensive,
making it practically infeasible in many situations.

The concept of the finite difference approximation emerges directly in the definition of the
derivative. Letting J(u) be a function dependent on a single variable u, this derivative at value
u = a is given by:

dJ

du

∣∣∣∣
u=a

= lim
ε→0

J(a+ ε)− J(a)

ε
(3.25)

From this definition, a straightforward approximation of the derivative follows by considering
just a finite step ε > 0:

dJ

du

∣∣∣∣
u=a

≈ J(a+ ε)− J(a)

ε
for ε > 0 small (3.26)

This is a one-sided (forward) finite difference approximation of the derivative of an arbitrary
function. A centered equivalent of this method follows directly as:

dJ

du

∣∣∣∣
u=a

≈ J(a+ ε)− J(a− ε)
2ε

for ε > 0 small (3.27)

When considering a higher dimensional input u ∈ RNu , either of these approximations can
be applied to compute individual derivatives dJ

dui
, which can then be combined to yield an

approximate gradient ∇J . In our implementation, only the one-sided approximation will be
used, noting that the centered scheme requires almost twice the number of evaluations of the
cost function in higher dimensions.

The accuracy of this approximation generally increases as the size of the perturbation ε > 0
decreases, approaching the limit by which the derivative is defined. Nevertheless, when aiming
to maximize the function J , a larger step size can help establish a (more) global optimum, or
speed up the method, making the perturbation size a crucial parameter in the optimization
procedure.

3.2.3 Ensemble method

The final method for gradient computation considered in this thesis is the ensemble optimization
(EnOpt) methodology. Similarly to the finite difference scheme, this method determines an
approximate gradient based on samples of the inputs and the corresponding cost function. Unlike
the finite difference scheme, however, only a relatively small number of samples are generally used
for this approximation, independent of the size of the input vector. Therefore, the EnOpt method
provides an excellent comparison for the POD-TPWL scheme developed in the next chapters,
which also computes a gradient based on a limited number of samples.

The ensemble method is one of several variations on the simultaneous perturbation stochastic
approximation (SPSA) methodology [11]. For such a method, rather than perturbing the input
in a predefined manner, as done for the finite difference approximation, a random perturbation
δuj in the input is considered. In general, such a perturbation is generated from a normal
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distribution N(0,Cu), with Cu denoting some covariance matrix for the input perturbations.
Starting at a current best guess ub for an optimal input, we can consider a new sample input
uj := ub+cδuj as a perturbation of the best guess, where c denotes the perturbation size. Based
on the first order Taylor polynomial around the current optimum ub, we can then approximate
the cost function in the direction of perturbation δuj as:

J(ub + cδuj) = J(ub) + c[δuj ]T∇J(ub) + O(c2) (3.28)

Dropping the higher order terms, we can thus approximate the gradient as:

∇J(ub) ≈
J(ub + cδuj)− J(ub)

c[δuj ]T
(3.29)

This is effectively the finite difference gradient, based on a single perturbation, where all elements
of ub are perturbed simultaneously. For the SPSA method, however, this gradient is smoothed
using the covariance matrix Cu, or more generally an estimate δu[δu]T of this matrix. Multiplying
the gradient with this matrix returns a smoothed approximation:

Cu∇J(ub) ≈
(
δuj [δuj ]T

) J(ub + cδuj)− J(ub)

c[δuj ]T
= δuj

J(ub + cδuj)− J(ub)

c
(3.30)

Naturally, computing the gradient based on the single perturbation δuj will not produce a reliable
result. Instead, a set of Ne perturbations δu1, . . . , δuNe is generated, and a gradient vector is
established as the average of the separate smoothed approximations:

Cu∇J(ub) ≈
Ne∑
j=1

δuj
J(ub + cδuj)− J(ub)

c
(3.31)

This provides the singly-smoothed G-SPSA search direction [15]. Additional smoothing can be
applied by once more pre-multiplying with the covariance Cu or δu[δu]T , returning an estimate
of the vector C2

u∇J at the input ub.

For the EnOpt gradient, the constant c is taken equal to 1, and the factor 1
Ne

is replaced by
1

Ne−1 . This provides an unbiased estimate of the cross-covariance Cu,J between the input and
the cost function, as [11]:

Cu,J = E

 1

Ne − 1

Ne∑
j=1

δuj(J(ub + cδuj)− J(ub))

 (3.32)

This is the singly-smoothed EnOpt search direction, once more providing an estimation of the
smoothed gradient Cu∇J at ub. As for the G-SPSA gradient, a doubly-smoothed version of the
EnOpt search direction can also be constructed, pre-multiplying this vector with (an estimate
of) the covariance Cu. Alternatively, a straight gradient implementation can be used, estimating
the actual gradient ∇J by multiplying the search direction with an estimated inverse of Cu:

∇J ≈

 Ne∑
j=1

δuj [δuj ]T

−1
Ne∑
j=1

δuj(J(ub + cδuj)− J(ub)) = (UUT )−1UJ (3.33)

In this notation, matrix U ∈ RNu×Ne consists column-wise of the perturbations δuj , with the
elements of vector J ∈ RNe denoting the corresponding perturbations in the cost function.
Throughout this thesis, this approximation is considered as the ensemble method gradient, and
provides the search direction in the corresponding implementation.
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Chapter 4

Principal Orthogonal
Decomposition

In this chapter, the theory behind principal orthogonal decomposition is described. Various
choices regarding the implementation of this method are specified, as well as the numerical
experiments driving several of these choices. In addition, the domain decomposition method is
introduced, as applied in the context of model order reduction.

4.1 Model order reduction

We consider once more an arbitrary constrained optimization problem:

max
u∈RNu

J(u)

subject to ui ≥ umin i = 1, . . . , Nu

ui ≤ umax i = 1, . . . , Nu (4.1)

Using the adjoint method, an accurate gradient ∇J =
[
dJ
du

]T
of the cost function J(u) can

be computed at arbitrary values of the input u, at which point a search algorithm can be
implemented to determine an optimum. However, in order to establish a gradient through the
adjoint method, the exact dependence of the cost function on the input must be considered,
which we assume to be through a system of the form:

xn+1 = fn+1(xn,xn+1,un+1)

yn+1 = hn+1(xn+1,un+1) n = 0, . . . , N − 1 (4.2)

In computing the gradient of the cost function, the adjoint method requires computing and

storing the derivative matrices ∂fn+1

∂xn , ∂f
n+1

∂xn+1 ∈ RNx×Nx and dhn+1

dxn+1 ∈ RNy×Nx at each simulation
step. However, as the sizes of the first of these already increase quadratically with the size Nx

of the state vector, the computational storage requirements of this method increase rapidly with
the dimensions of the model. Consequently, applying the adjoint method in its full form is not
always feasible, particularly when considering large-scale systems such as those encountered in
reservoir simulation. Instead, this technique is often combined with a model order reduction
scheme, computing a gradient based on a lower-dimensional model.
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Through model order reduction, a lower-dimensional approximation of a large-scale model is
constructed, aiming to provide an accurate representation of the full system at a reduced
computational cost. In general, this amounts to establishing an invertible mapping Π : RNx →
RÑx , transforming the states and corresponding functions to lower dimensional equivalents and
back. A multitude of methods have been developed to this end, each aiming to minimize the
size Ñx of the reduced-order states, whilst also minimizing the discrepancy between the original
states and their reduced-order approximations. In the field of reservoir flow, proper orthogonal
decomposition (POD) is by far the most popular of these methods, and therefore also the focus
of this study. For more information on alternative methods for model order reduction, we refer
to [37].

4.1.1 State projection

At its core, principal orthogonal decomposition is a projection technique, representing the state
vector under the basis of some reduced subspace. Specifically, if we let RNx denote the space
in which the states x exist, the POD method searches for an optimal subspace S ⊂ RNtnx ,
minimizing the distance between observed states x and their projections ΠSx onto this subspace
[34]. The matrix ΠS ∈ RNx×Nx here is a projection matrix onto S, such that ΠSx provides the
closest vector along S to the vector x, as illustrated for S = R2 in figure 4.1. Such a projection
matrix must always satisfy Π2

S = ΠS, as applying the projection matrix twice should return the
same vector, but for POD we further require this matrix to be symmetric, such that ΠS = ΠT

S .
Imposing this condition, the range R(S) and kernel N(S) of the subspace S will be orthogonal,
and we call ΠS an orthogonal projection [30].

Considering an orthogonal projection ΠS onto some subspace S ⊂ RNx , we can express the

projection in terms of an orthonormal basis of this subspace. Indeed, if we let Φ ∈ RNx×Ñx

denote a matrix whose columns are orthonormal and span S, we find that ψ := ΦTx = Φ−1x
yields the components of state x under basis vectors Φ. Multiplying these components with the
corresponding basis vectors, we then attain the projection of x onto S as:

ΠSx = Φψ = ΦΦTx (4.3)

A projection of this form ΠS := ΦΦT is called a Galerkin projection [1], and can be easily seen
to satisfy both the projection property ΠS = Π2

S and the orthogonality property ΠS = ΠT
S .

Figure 4.1: Projection of vectors in R3 onto S = R2
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Splitting the projection in this manner, the problem of optimizing it becomes that of finding

an optimal basis Φ ∈ RNx×Ñx of reduced size Ñx ≤ Nx, minimizing discrepancies between an
arbitrary state x and its projection ΦΦTx.

4.1.2 Error minimization

To establish an optimal basis Φ, the POD method considers a set of NS states x(1), . . . ,x(NS).
These states are collected by running the full-order model for a small number of different
input vectors, and are assumed to be representative of the states the model generally produces.
Accordingly, the squared error ‖x(i) −ΦΦTx(i)‖22 in representing these states under a basis Φ,
provides a measure of quality of this basis. Therefore, the problem of establishing an optimal
basis Φ can be given as a minimization problem:

min
1

NS

NS∑
i=1

‖x(i) −ΦΦTx(i)‖22 (4.4)

This problem can be rewritten exploiting the orthogonality of the projection, assuring the
projection ΦΦTx ∈ R(S) and the remainder x−ΦΦTx ∈ N(S) to be orthogonal for arbitrary x:

‖x−ΦΦTx‖22 =
[
x−ΦΦTx

]T [
x−ΦΦTx

]
= [x]

T [
x−ΦΦTx

]
−
[
ΦΦTx

]T [
x−ΦΦTx

]
= [x]

T
[x]− [x]

T [
ΦΦTx

]
= ‖x‖22 − ‖ΦTx‖22 (4.5)

Substituting this result, and removing the constant values ‖x(i)‖22, the problem (4.4) of determining
an optimal basis becomes:

max

NS∑
i=1

‖ΦTx(i)‖22 (4.6)

Note that, since ΦTx(i) = Φ−1x(i) provides the components of vector x(i) under basis Φ, this
optimization problem suggests the basis must be chosen such that the norms of these component
vectors are maximized, as would intuitively be expected.

To solve the maximization problem (4.6), we impose the additional condition that the basis
vectors are normalized. Letting Ñx denote the size of the basis Φ, we then require ‖φj‖22 = 1

for j = 1, . . . , Ñx, with φj denoting column j of Φ. To enforce this condition, we introduce
Lagrangian multipliers λ1, . . . , λÑx

, transforming the optimization problem into that of maximizing
a cost function:
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L(φ1, . . . ,φÑx
) :=

NS∑
i=1

‖ΦTx(i)‖22 +

Ñx∑
j=1

λj(1− ‖φj‖22)

=

NS∑
i=1

Ñx∑
j=1

([x(i)]Tφj)(φ
T
j x(i)) +

Ñx∑
j=1

λj − λjφTj φj

=

Ñx∑
j=1

[
NS∑
i=1

(φTj x(i))([x(i)]Tφj)− λjφTj φj + λj

]

=

Ñx∑
j=1

[
φTj XXTφj − λjφTj φj + λj

]
(4.7)

In this last step, we introduce the snapshot matrix X ∈ RNx×NS , composed column-wise of the
collected states x(i). Maximizing the resulting functional with respect to some vector φj , the
derivative with respect to this vector must be equal to zero:

0 =
∂L

∂φj
= φTj XXT − λjφTj j = 1, . . . , Ñx (4.8)

For each basis vector, we then attain an eigenvalue problem:

XXTφj = λjφj j = 1, . . . , Ñx (4.9)

This suggests that the optimal orthogonal space S to project the state vectors onto, is in fact
that spanned by the eigenvectors of the matrix XXT . Moreover, imposing this equality, the
functional L is simply given by the sum of the eigenvalues:

L(φ1, . . . ,φÑx
) =

Ñx∑
j=1

λj (4.10)

Therefore, determining an optimal orthogonal basis Φ ∈ RNx×Ñx of size Ñx to project the state
vectors, is equivalent to solving the eigenvalue problem (4.9), and retaining only the eigenvectors
corresponding to the Ñx largest eigenvalues.

4.1.3 Singular value decomposition

For large Nx, the matrix XXT ∈ RNx×Nx will be of considerable size, and directly solving the
eigenvalue problem (4.9) is undesirable. Instead, we consider the singular value decomposition
of the snapshot matrix X, decomposing it as:

X = UΣVT (4.11)

Here, U ∈ RNx×Nx and V ∈ RNS×NS are orthonormal square matrices. The matrix Σ ∈ RNx×NS

is a pseudo-diagonal matrix, of which the diagonal elements σj for j = 1, . . . ,min{Nx, NS} are
denoted as the singular values of the matrix X, and arranged in order of decreasing absolute
value along the diagonal. Performing this decomposition, the matrix XXT can be given as:

XXT = [UΣVT ][VΣTUT ] = UΣΣTUT = UΛUT (4.12)
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This yields a diagonalization of the matrix XXT , with U comprising the eigenvectors of XXT ,
and the diagonal matrix Λ ∈ Rmin{Nx,NS}×min{Nx,NS} providing the corresponding eigenvalues.
Here, the jth element λj = σ2

j along the diagonal of Λ, gives the jth greatest eigenvalue of XXT ,
with the column uj of U providing the corresponding eigenvector. Since the diagonal σ of Σ

contains only min{Nx, NS} elements, attaining a full eigenvalue spectrum for the matrix XXT

will require the number of snapshots NS to exceed the size Nx of the state. In that case, the
matrix U provides an optimal orthonormal basis for representing the state vectors. Moreover,
as the eigenvectors in U are ordered in accordance with the decreasing eigenvalues along the
diagonal of Λ, an optimal reduced basis for Ñx ≤ Nx can be given as:

Φ̃ = Ũ := [u1, . . . ,uÑx
] (4.13)

Here Ũ ∈ RNx×Ñx consists only of the first Ñx columns of U, corresponding to the eigenvectors
with largest eigenvalues. In this manner, an optimal reduced orthonormal basis can be acquired,
using the singular value decomposition of the snapshot matrix.

4.1.4 Energy criterion

In constructing a reduced basis in the manner described above, the desired size of this basis has
to be established first. To choose such a size, we return to the least squares problem this basis
should solve, which was found to be equivalent to:

min
1

NS

NS∑
i=1

‖x(i) −ΦΦTx(i)‖22 = min
1

NS

NS∑
i=1

[
‖x(i)‖22 − ‖Φ̃Tx(i)‖22

]
(4.14)

Choosing the basis to consist of scaled eigenvectors of XXT , the function to be minimized
becomes:

NS∑
i=1

[
‖x(i)‖22 − ‖Φ̃Tx(i)‖22

]
=

NS∑
i=1

‖x(i)‖22 −
Ñx∑
j=1

([x(i)]T φ̃j)(φ̃
T
j x(i))


=

NS∑
i=1

‖x(i)‖22 −
Ñx∑
j=1

φ̃Tj XXT φ̃j

=

NS∑
i=1

‖x(i)‖22 −
Ñx∑
j=1

λj

=

NS∑
i=1

‖x(i)‖22 − ‖σ̃‖22 (4.15)

In this last step, we define σ̃ to contain only the Ñx largest absolute singular values of matrix
XXT . In this notation, the error is expressed in terms of the difference between the total norm
of these snapshots, and that of the eigenvalues. If the dimension Ñx of the reduced space equals
the dimension Nx of the full space, this error should be equal to zero, as in this case the columns
of Φ = Φ̃ ∈ RNx×Nx will span the full space RNx . This suggests that the total norm ‖σ‖22, when
considering the full spectrum of XXT , should be equal to total norm of the snapshots, which we
denote as the total energy:
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Etot :=

Nx∑
j=1

σ2
j = ‖σ‖22 =

NS∑
i=1

‖x(i)‖22 (4.16)

A measure of the quality of basis Φ̃ in representing the snapshots can then be given in terms of
the energy retained by the spectrum, defined as:

EÑx
:=

Ñx∑
j=1

σ2
j = ‖σ̃‖22 (4.17)

The value of this retained energy increases with the dimension Ñx of the reduced space, matching
the total energy when Ñx = Nx. Determining the amount of basis vectors to retain can thus
be translated into a requirement upon the relative energy to be preserved. In many cases, a
small relative change in energy will already yield a significant reduction in the number of basis
vectors [43], allowing for the major dynamics of the model to be captured through a much lower
dimensional state.

4.2 Domain decomposition

In addition to the proper orthogonal decomposition, a domain decomposition is implemented.
Through this method, the computational domain, pertaining the grid blocks in which the pressure
and saturation variables are to be computed, is divided into a certain number of subdomains,
each containing a portion of the grid blocks. In our implementation, this decomposition serves
a dual purpose. Primarily, it aims to reduce the complexity of the algorithm, by adjusting the
correlation between the unknowns at different grid blocks, based on the subdomain in which they
are located. This is useful in constructing a surrogate model, as will be described in the next
chapter. In addition, applying a domain decomposition in performing the POD method also
offers benefits. For this purpose, rather than constructing a single basis for the entire domain,
reduced bases aree constructed individually for each subdomain, to be combined afterwards.

Let Ω denote the full computational domain, consisting of a total ofNg grid blocks. In implementing
the domain decomposition, these grid blocks are divided over ND disjunct subdomains Ωd, such
that Ω =

⋃ND
d=1 Ωd. This amounts to dividing the grid blocks into ND sets, each containing Nd

g

cells such that Ng =
∑ND
d=1N

d
g , and in such a manner that no two domains share a grid block.

For our purposes, this decomposition will only be performed in the horizontal (x, y) directions,
as the vertical dimension of many reservoirs is comparatively small.

In each domain d, we can consider the oil pressure and water saturation values at the encompassed

grid blocks as the state vector xd,n ∈ RNdx at each time step n. Accordingly, we can construct

snapshots matrices Xd ∈ RNdx×NS for each domain d, by collecting the different rows of a
full snapshot matrix X ∈ RNx×NS corresponding to the cells in this domain. Based on these

snapshot matrices, orthogonal bases Φd ∈ RNdx×Ndx corresponding to singular values σd ∈ RNdx
can then be constructed in each subdomain, which can in turn be reduced to bases Φ̃d ∈ RNdx×Ñdx
corresponding to singular values σ̃d ∈ RÑdx according to an energy criterion. In this manner, the
POD method can be applied separately to the different subdomains, based on a snapshot matrix
for the full domain.
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Applying the POD method separately to the subdomains has an advantage in terms of the
overall number of samples that need to be taken. Indeed, dividing the state variables over ND
subdomains, the state vector in each domain will be of a smaller size Nd

x < Nx. Performing
principal orthogonal decomposition on such reduced states, the required number of snapshots
to represent the states will thus also be lower. As each snapshot of the full domain provides a
snapshot for all of the subdomains, this requires a lower total number of snapshots to be collected.
Since snapshots have to be computed by running the full-order model, which is assumed to be
computationally expensive, this method thus allows a reduction in the computational cost.

Naturally, performing POD separately in the subdomains also comes with a drawback. In
particular, since the size of the singular vector σd in each domain reduces when more domains
are used, the relative number of basis vectors that must be retained to meet the same energy
criterion will increase with the number of domains. For example, in a situation where ND = Ng
subdomains are implemented, the complete reduced basis will be equivalent to the full basis,
offering no reduction of the state dimension. In this sense, the efficacy of the POD method
decreases with the number of subdomains over which it is divided.

4.3 Numerical implementation

4.3.1 Affine subspace

In our application of the POD method, snapshots have always been computed by running the
full-order model for NPOD inputs u(1), . . . ,u(NPOD), collecting the resulting states at all times
N to attain a total of NS = N · NPOD snapshots. These inputs in turn were always computed
by perturbing some background input ub, such that in general, the sample inputs would not be
centered around 0. For this reason, rather than implementing a projection onto a subspace S, a
projection onto an affine subspace x̂ + S has always been performed, for some vector x̂ ∈ RNx .
Such a projection can be given in terms of the original one as x̂ + ΠS(x − x̂), and can thus be
achieved simply by performing the POD method with a shifted snapshot matrix:

X =
[
∆x(1), . . . ,∆x(NS)

]
:=
[
(x(1) − x̂), . . . , (x(NS) − x̂)

]
(4.18)

The aim of this shift is to reduce the norm of the considered snapshots, which is beneficial for
the numerical implementation. As such, a natural choice for the shift is simply the sample mean:

x̂ :=
1

NS

NS∑
i=1

x(i) (4.19)

Henceforth, any considered snapshot matrix will always be (implicitly) shifted according to a
corresponding mean vector x̂, placing the mean over the columns of any such matrix at 0.

4.3.2 Sampling

In performing the POD method, snapshots of the state vector are acquired by running the
full-order model using samples u(j) of the input. These snapshots are meant to provide a good
representation of the overall states attainable, using input functions within the computational
domain. In our implementation, the POD method was applied to construct a gradient ∇J of the
cost function at some background input ub. Therefore, the reduced basis had to be particularly
accurate in representing states corresponding to inputs around ub. For this reason, the input
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samples u(j) were always constructed as random perturbation εPODδu
(j) to the background input

ub, where εPOD denotes the perturbation size.

In the computed input perturbations, the factor εPOD describes the size of the domain for which
the POD method is desired to provide an accurate basis. Indeed, a smaller value of εPOD places
the samples closer to the current optimum ub, thus providing a good representation of the states
corresponding to inputs close to the background input. On the other hand, a greater perturbation
size will allow for representing a larger variety of possible states, at the cost of accuracy close
to the background input. Therefore, the perturbation size has always been adjusted according
to the region in which the optimum was expected to be located. That is, a large perturbation
size was implemented for the initial optimization, but this size would be reduced as the scale at
which an optimum was sought decreased.

To construct the actual perturbations δu(j), random numbers were generated in the domain
[− 1

2 ,
1
2 ], to shape each element of the perturbation. Aiming to attain some spread in the resulting

samples over the desired domain, Latin hypercube sampling was implemented. For each element
i ∈ {1, . . . , Nu} of ub, this method divides the domain [− 1

2 ,
1
2 ] into NPOD smaller domains of

equal size 1
NPOD

, where NPOD denotes the desired number of perturbations. Next, a row vector
of perturbations [δu]i is constructed by generating a random number in each subdomain, and
concatenating the resulting values in a random order. Repeating this process for each of the
Nu input variables, NPOD random perturbations are obtained. Multiplying the attained vectors
with the perturbation size, and adding these to the background input ub, near-random samples
u(j) := ub + εPODδu

(j) are then computed in the hypercube of size εPOD around ub.

4.3.3 Pressure and saturation separation

In our implementation of the POD method, the considered states are composed of pressure and
saturation information in the grid blocks. However, since these quantities display very different
physical behaviour, constructing a single reduced basis Φ̃ to represent the state vectors might
result in either the pressure or saturation variables to be underrepresented [39]. To avoid this,
the orthogonal decomposition was performed separately for the pressure and state variables.
To this end, snapshots x(i) ∈ R2Ng of the full states were collected as before, but rather than
combining these directly into a snapshot matrix X ∈ R2Ng×NS , these were first divided into

pressure and saturation snapshots x
(i)
p ,x

(i)
s ∈ RNg . Combining these into separate snapshot

matrices Xp,Xs ∈ RNg×NS , the POD method could then be performed to attain reduced pressure

and saturation bases Φ̃p ∈ RNg×Ñp and Φ̃s ∈ RNg×Ñs . Reducing the pressure and saturation
states separately according to their respective bases, a complete reduced state could be attained
recombining the results.

Since the pressure and saturation variables exhibit different variabilities, they will also require a
different number of basis vectors to capture their dynamics. Accordingly, different energy criteria
were implemented when establishing the size of each basis. To determine appropriate criteria, the
eigenvalue spectra of the pressure and saturation states in the Kanaal model were considered.
This was done using 100 input samples u(j), for which the state was computed at each time
step n = 1, . . . , 150, amounting to a total of 15000 snapshots. The resulting eigenvalue spectra
were then computed as the squared singular values of the snapshot matrices Xp,Xs, displayed
in figure 4.2. This figure also provides the corresponding cumulative relative energy for each of
the variables, computed as the ratio of the partial energy (4.17) over the total energy (4.16).
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Figure 4.2: Eigenvalue spectrum and corresponding energy plot for pressure and saturation states
based on 100 samples of the Kanaal model

The figure shows that the eigenvalues of the pressure state initially decrease more rapidly
than those of the saturation state. In fact, the first pressure eigenvalue achieves a value of
the order 1010, but this order drops significantly with the consecutive values. Consequently,
the total energy of the system is determined to an extreme extent by the initial eigenvalue,
comprising already more than 99.5% of the total energy. This suggests a very low variability
in the pressure values, allowing the states to be accurately represented with even a single basis
vector. Nevertheless, to allow for slightly more freedom in the pressure values, retaining a few
more basis vectors is desirable. Therefore, an energy condition of 99.9% was chosen for the
pressure states, still requiring less than 10 basis vectors to represent 9801 variables.

For the saturation state, the initial decrease in the eigenvalues occurs less rapidly than for the
pressure state. This yields a more evenly divided contribution of the different eigenvalues to
the total energy. Nevertheless, this contribution too does decrease, resulting in the cumulative
energy to increase at a decreasing rate. Retaining an energy of 95%, the number of retained
basis vectors would be of similar order to the pressure states, allowing for a significant reduction
in the size of the state, whilst approximating the full saturation to a high accuracy.

4.3.4 Domain decomposition

To investigate the effect of the domain decomposition on the accuracy, the POD method has
been applied to the both the Kanaal and Egg model using 100 samples of the input, constructed
using Latin hypercube sampling over the full domain of possible inputs. Herein, the vectors at
each time step were used as snapshots, amounting to 15000 snapshots for the Kanaal model,
and 12000 snapshots for the Egg model. In addition, a random sample uref of the input was
used to attain reference states xnref at each time step of each model. Then, the accuracy of the
POD method using different domain decompositions could be tested, by comparing the reference
states to their projected counterparts under the different implementations. A few of the results
for the pressure states in the Kanaal model are illustrated in figure 4.3.
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(a) True pressure field (b) 1 × 1 domain projection

(c) 3 × 3 domain projection (d) 9 × 9 domain projection

Figure 4.3: Sample of the pressure field and subdomain POD projections

The figure shows that, as would be expected, increasing the number of domains decreases the
smoothness of the field. This is a result of the different domains being represented by different
basis vectors, causing abrupt changes in the pressure and saturation values at the boundaries of
the domains. Near the center of these domains, on the other hand, the decomposition provides
a more accurate projection, as the same amount of snapshots is used to construct a basis for a
smaller amount of variables. However, this comes at the cost of an increased number of basis
vectors being retained, as described in table 4.1. In this table, results for a full projection of the
Egg model variables are not presented, as the 12000 snapshots for this model are not sufficient
to construct a full POD basis for the 18553 unknown variables.

As can be seen from the table, the total number of pressure and saturation basis vectors grows
with the number of subdomains over which these are computed. This is a result of the same
energy criterion being applied, resulting in similar numbers of vectors being retained in each
subdomain as would originally be retained for the full space. This reduces the efficacy of the
POD method when using a large number of subdomains, requiring a trade-off to be made between
accuracy and computational cost when deciding upon the number of subdomains. This trade-off
becomes even more relevant when implementing a surrogate model later on, for which an opposite
effect occurs, decreasing both the accuracy and required computational effort with the number
of domains. For this reason, only a limited number of subdomains has been implemented for this
thesis, consistently using a 4 × 4 decomposition. In this manner, a significant reduction in the
cost was achieved, whilst maintaining a high accuracy.
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Kanaal pressure Kanaal saturation Egg pressure Egg saturation

Full state 9801 9801 18553 18553
1× 1 projection 5 14 – –
3× 3 projection 12 48 58 40
5× 5 projection 25 101 109 83
7× 7 projection 49 158 176 136
9× 9 projection 81 220 291 219

Table 4.1: Reduced number of POD state parameters upon implementing different domain
decompositions

4.3.5 Number of snapshots

In constructing a reduced-order model, the POD method rests on the collected snapshots to
provide an accurate representation of the general states acquired in the model. Intuitively, more
of such snapshots will thus allow for a higher accuracy of the method, as these should provide a
more accurate representation of the full range of possible states. However, taking more snapshots
also comes at an increased computational cost, as this will require more full-order simulations
to be run. To determine how many snapshots to take, an approach from [43] was considered,
quantifying the accuracy of the method in terms of the singular value spectrum corresponding
to the POD basis.

Let X ∈ RNx×(N ·NPOD) be a snapshot matrix, constructed running the full simulation of N steps
using NPOD different control vectors. From this snapshot matrix, an orthogonal basis Φ with
corresponding singular values σ is determined through a singular value decomposition. Next, an
additional Nadd

POD inputs are randomly generated, assumed to differ significantly from the earlier
inputs. Running the full-order model for each of these inputs, N · Nadd

POD new snapshots are
computed and added to the snapshot matrix, for which a singular value decomposition is then
also performed. Now, if the original basis Φ does not accurately represent the considered domain,
and the new inputs differ sufficiently from the original ones, the addition of new snapshots should
result in a significant adjustment of this basis and the corresponding spectrum σ. Conversely,
if the original basis provides a good representation of the considered space state, the change
in spectrum upon addition of new snapshots would be minimal. Therefore, the change in the
spectrum σ under addition of such snapshots can be taken as a measure of the quality of basis Φ
for the state reduction, where a smaller change implies a higher accuracy. In our implementation,
this change was computed as:

∆σ :=
‖σ(i+1) − σ(i)‖2
‖σ(i+1)‖2

(4.20)

In this notation, superscripts (i + 1) and (i) denote consecutive spectra computed before and
after adding new snapshots to the matrix X. By dividing by the norm of the new spectrum,
the difference ∆σ between the spectra would be computed relative to the current spectrum. The
necessary number of snapshots could then be established by requiring this measure of consistency
of the spectrum to be below a certain threshold εσ, adding samples until this criterion is met.
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To investigate the suitability of a spectrum consistency criterion in determining the number
of required samples, the change in spectrum (4.20) has been computed upon adding four new
samples to the POD set, starting at various numbers of samples. These samples were always
generated randomly in the domain of allowed inputs, generally assuring these new inputs to
differ sufficiently from the precomputed samples. This was done for both the Kanaal and the
Egg model, in a 4×4 subdomain framework. The results are displayed in figure 4.4, plotting the
change in spectrum against the original size of the POD set.

Figure 4.4: Relative change in spectrum upon increasing the number of POD samples for Kanaal
and Egg model

The figure shows that, as the size of the snapshot matrix increases, the relative change in spectrum
decreases linearly on a log-log scale, both for the pressure and saturation variables, and in both
models. Here, each of the linear fits has a slope of approximately −1, suggesting the change in
spectrum is inversely related to the number of samples used to generate it. Moreover, for both
models, the number of samples required to achieve a certain consistency in the spectrum seems
to be of the same order.

To establish how the spectrum consistency correlates to the accuracy of the reduction, this
accuracy is measured using a random reference input uref. Computing the states xnref at each
time step of the two models for this reference input, the POD projected state Πxiref could be
compared to the actual state at each time. A measure of the accuracy of the basis could then be
defined as the mean difference:

εref =
1

N

N∑
i=1

‖xiref −Πxiref‖2
‖xiref‖2

(4.21)

This mean was computed for each of the bases considered in figure 4.4, taking the pressure and
saturation errors separately for both models. The results were plotted against the corresponding
change in spectrum, as displayed in figure 4.5. In this figure, the spectrum consistency values
were normalized according to an L-infinity norm, to allow the different situations to be plotted
on the same scale.
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Figure 4.5: Accuracy of projection against scaled spectrum consistency value

The figure shows that, as the consistency of the spectrum decreases, the accuracy of the method
remains of the same order. For both the Egg and Kanaal model, this accuracy is greater
for the pressure states, likely due to the higher energy criterion. Nevertheless, both errors
remain practically constant as the difference between consecutive spectra changes, suggesting no
information on the accuracy of the method can be extracted from this difference as implemented
here. Since also the dependence of this difference on the number of samples is the same for
each model, there is no purpose in explicitly imposing a spectrum consistency condition, rather
than directly fixing the number of POD samples. For this reason, the number of samples
used to construct the reduced-order model has always been directly specified in the numerical
experiments conducted for this thesis, rather than implementing a desired change in spectrum.
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4.3.6 The subdomain POD algorithm

Algorithm 2 below describes the POD method for constructing an optimal reduced basis, performed
in a subdomain framework, as implemented for the purposes of this thesis. Although in this
algorithm the bases are constructed using a completely new set of samples, any precomputed
snapshots can in theory be reused, though this will increase the computational cost.

Algorithm 2: Subdomain POD basis contruction

Input: Background input ub, Number of perturbations NPOD, Size of perturbations
εPOD, Domain decomposition Ω =

⋃ND
d=1 Ωd

Result: Reduced bases Φ̃d
p,s in each subdomain Ωd

1 Construct NPOD random perturbations δu(j) in [− 1
2 ,

1
2 ] using Latin hypercube sampling;

2 Construct random input samples u(j) := ub + εPODδu
(j) ∈ ΓPOD;

3 for j ∈ ΓPOD do
4 Run full-order model for u(j);

5 Collect states x(j),n at all times n = 1, . . . , N in snapshot matrix X(j);

6 end

7 Combine snapshot matrices into single matrix X = [X(1), . . . ,X(NPOD)];
8 for d = 1, . . . , ND do

9 Extract variables from X corresponding to cells in Ωd in Xd;

10 Divide Xd into pressure and saturation snapshots Xd
p,X

d
s ;

11 Compute column-wise means x̂dp, x̂
d
s of each matrix according to (4.19);

12 Redefine snapshots matrices as shifted by their means: Xd
p,s → Xd

p,s − x̂dp,s,;

13 Perform singular value decomposition on each matrix: Xd
p,s = Ud

p,sΣ
d
p,s[V

d
p,s]

T ;

14 Determine minimal Ñp satisfying
∑Ñdp
i=1[σdp ]2i ≥ 99.9

100

∑Ndg
i=1[σdp ]2i ;

15 Determine minimal Ñs satisfying
∑Ñds
i=1[σds ]2i ≥ 95

100

∑Ndg
i=1[σds ]2i ;

16 Retain only first Ñp,s columns of Σd
p,s in Σ̃d

p,s;

17 Construct reduced pressure and saturation bases: Φ̃d
p,s = Ud

p,sΣ̃
d
p,s;

18 end

Running this algorithm, reduced bases for the state vectors can be constructed in each domain,
for both the pressure and saturation variables separately. Based on these bases, an arbitrary state

vector xd,n ∈ RNdx in a domain d at a time step n, can be approximated through a corresponding

reduced component vector ψ̃d,n ∈ RÑdx as:

xd,n =

(
xd,np
xd,ns

)
≈
(

Φ̃d
p O

O Φ̃d
s

)(
ψ̃d,np
ψ̃d,ns

)
= Φ̃dψ̃d,n (4.22)

Here, in order to compute the components ψ̃(j),d,n of a known state x(j),d,n, the pseudo-inverse
of Φ̃d is used:

ψ̃(j),d,n = ([Φ̃d]T Φ̃d)−1[Φ̃d]Tx(j),d,n (4.23)

In this manner, any state can be reduced to a component state, and vice-versa, allowing for less
demanding application of an adjoint methodolgy.
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Chapter 5

Non-Intrusive Piecewise
Linearization

In this chapter, the radial basis function technique is introduced, within the framework of an
application towards trajectory piecewise linearization of the model. The implementation of the
domain decomposition for this method is also discussed, as well as decisions on other stages of
the method. Finally, the accuracy of this method is tested for several situations.

5.1 Surrogate modelling

We once more consider the problem of optimizing an objective function J(u), based on a model
of the form:

x0 = xinit

xn+1 = fn+1(xn,xn+1,un+1)

yn+1 = hn+1(xn+1,un+1) n = 0, . . . , N − 1 (5.1)

In order to apply an adjoint method, principal orthogonal decomposition can be used to reduce

the size of the necessary derivative matrices ∂fn+1

∂xn , ∂f
n+1

∂xn+1 ∈ RNx×Nx and dhn+1

dxn+1 ∈ RNy×Nx .
However, an additional problem presents itself in computing these derivatives, as this requires
knowledge on the different functions. This in turn demands access to the underlying model code,
which in many cases is strenuous or even unfeasible. To be able to implement the adjoint method,
then, surrogate modelling techniques are necessary.

Similarly to model order reduction, surrogate modelling involves establishing an approximation
of a model, which is easier to work with, whilst still providing accurate results. The focus here,
however, lies in reducing the complexity rather than the size of the model, aiming to establish
an approximation for which the derivative functions can be readily computed. Such models
are often constructed by interpolating between known values of the state vector, as for example
done in four-dimensional variational schemes [4]. Alternatively, trajectory piecewise linearization
(TPWL) can be applied, extrapolating information acquired by running the model for some
sample inputs u(1), . . . ,u(NTPWL). When performing this method, the model is linearized around

43



the results corresponding to the sample inputs, approximating system (5.1) as:[
I− ∂fn+1

∂xntr

]
(xn+1 − xn+1

tr ) ≈ ∂fn+1

∂xntr
(xn − xntr) +

∂fn+1

∂un+1
tr

(un+1 − un+1
tr )

(yn+1 − yn+1
tr ) ≈ ∂hn+1

∂xn+1
tr

(xn+1 − xn+1
tr ) +

∂hn+1

∂un+1
tr

(un+1 − un+1
tr ) n = 0, . . . , N − 1

(5.2)

In this approximation, states xntr and outputs yntr at each simulation step n, are those attained
when running the full model based on input sample utr. This input is selected from the set of
input samples, chosen to be the one closest to the current input u, minimizing the Euclidean
distance ‖u−u(i)‖2. In this manner, the piecewise linear approximation will linearly approximate
the model around the samples, exactly matching them at the sample inputs. However, this does
require knowing the derivatives of the model functions at each of these inputs, thereby relying
on access to the model code. To circumvent this intrusive property of the TPWL method, it can
be combined with radial basis function (RBF) interpolation, allowing function derivatives to be
computed without requiring knowledge of the functions themselves.

5.2 Radial basis function interpolation

Radial basis function interpolation is, as the name suggests, a method for interpolating between
provided data using radial basis functions. Accordingly, it can be used to directly construct a
surrogate model based on results attained from a set of sample inputs, as has been done in works
such as [24] and [42]. Nevertheless, the resulting models will remain non-linear, and will require
a large number of samples to provide accurate results. Instead, we discuss RBF interpolation
only for the purpose of constructing gradient matrices of the model, at which point the TPWL
method will be applied to construct a surrogate.

In order to perform RBF interpolation, a certain set of samples must be collected. This is
done running the full-order model for NRBF sample inputs u(1), . . . ,u(NRBF), and collecting the
resulting state vectors x(i),n and outputs y(i),n at all steps n, as well as the inputs u(i) themselves,
into a set ΓRBF. For ease of notation, we will broadly refer to sample i ∈ ΓRBF as the full set
of inputs and results attained when running the model using input vector u(i). We divide this
information into two sets of vectors, respectively describing the arguments for functions f and h
in system (5.1) as:

[χ(i),n+1]T :=
(
[x(i),n]T [x(i),n+1]T [u(i),n+1]T

)
[γ(i),n+1]T :=

(
[x(i),n+1]T [u(i),n+1]T

)
n = 0, . . . , N − 1 (5.3)

Accordingly, we define full argument vectors χ(i) and γ(i) as concatenations of the corresponding
arguments at all time steps. Collecting this information on the different samples in set ΓRBF,
information regarding a new input u can be extrapolated based on the distance of this input to
each of the samples. To this end, we first introduce functions describing the Euclidean distances
between the collected samples:

rn+1
ij := ‖χ(i),n+1 − χ(j),n+1‖2
`n+1
ij := ‖γ(i),n+1 − γ(j),n+1‖2 n = 0, . . . , N − 1 (5.4)
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Similarly, letting χ,γ denote the argument vectors corresponding to the input u, we introduce
radial functions:

rn+1
i (χn+1) := ‖χn+1 − χ(i),n+1‖2
`n+1
i (γn+1) := ‖γn+1 − γ(i),n+1‖2 n = 0, . . . , N − 1 (5.5)

These functions express the distances between argument vectors corresponding to a new input
u, and those of the precomputed RBF samples. Based on these distances, interpolation can then
be performed to compute the state and output at any time step. In particular, state weighting
vectors ωn+1

i ∈ Rx and output weighting vectors εn+1
i ∈ RNy for n = 0, . . . , N − 1 are assigned

to each sample i ∈ ΓRBF. Afterwards, assuming the state xn and corresponding argument χn+1

to be known at time step n, an approximate state xn+1 at the next time step is computed as a
linear combination of the weighting vectors, scaled according to their distance from the current
input:

xn+1 =
∑

i∈ΓRBF

ωn+1
i rn+1

i (χn+1) n = 0, . . . , N − 1 (5.6)

Computing the state at each step in this manner, each weighting vector is scaled in direct
proportion to the distance between the new input and the RBF samples, corresponding to a linear
spline method. From the resulting state, the next argument vector χn+2 can then be computed,
allowing states at each simulation step to be approximated. Herein, the initial argument vector
χ1 can be constructed simply based on the initial state xinit, which is independent of the input
u. Generating approximate states at each time step in this manner, corresponding outputs can
be estimated similarly as:

yn+1 =
∑

i∈ΓRBF

εn+1
i `n+1

i (γn+1) n = 0, . . . , N − 1 (5.7)

5.2.1 Multiquadratic basis function

Computing the states and outputs according to (5.6) and (5.7), the contribution of a sample i to
the solution at an unknown input is taken to decrease linearly with the distance between the two.
As a result, the state at each step will also be a piecewise linear function of the input, with an
undefined gradient at each of the samples. To avoid this, the distances are usually transformed
according to some non-linear basis function θ(r), aiming to attain a smoother interpolation. For
this thesis, this has been done using a multiquadratic function, defined as:

θ(r) :=
√

(εr)2 + 1 (5.8)

In this function, ε > 0 denotes a shape parameter, determining how strongly the distances affect
the correlation. Specifically, a small shape parameter increases the contribution of the added
constant 1, resulting in an almost constant basis function θ(r). On the other hand, when using a
large shape parameter, the contribution of the added value 1 quickly diminishes away from r = 0,
resulting in an approximately linear function. Nevertheless, the added constant assures that the
basis function remains bigger than 0 at r = 0, which is crucial to allow derivative functions to
be computed at the sample points.
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5.2.2 Computing weighting coefficients

Implementing a basis function θ(r) to transform the distances, we attain a surrogate model:

xn+1 = fn+1(χn+1) :=
∑

i∈ΓRBF

ωn+1
i θ(rn+1

i (χn+1))

yn+1 = hn+1(γn+1) :=
∑

i∈ΓRBF

εn+1
i θ(`n+1

i (γn+1)) n = 0, . . . , N − 1 (5.9)

In this system, the weighting coefficient vectors ω(i),n, ε(i),m are chosen such that the surrogate
model matches the original model at the computed RBF samples. At these samples, the states
x(i),n and outputs y(i),n are known at all times n = 1, . . . , N . Therefore, the weighting coefficients
at an arbitrary sample j ∈ ΓRBF can be computed solving the system:

x(j),n+1 =
∑

i∈ΓRBF

ωn+1
i θ(rn+1

ij ) = Wn+1θr,n+1
j

y(j),n+1 =
∑

i∈ΓRBF

εn+1
i θ(`n+1

ij ) = En+1θ`,n+1
j n = 0, . . . , N − 1 (5.10)

Here, W ∈ RNx×NRBF and E ∈ RNy×NRBF are matrices composed column-wise of the state and
output weighting vectors. Similarly, the vectors θr,n+1

j ,θ`,n+1
j ∈ RNRBF contain the distances

between sample j ∈ ΓRBF and all other samples. Combining this system for each of the samples
in ΓRBF, we find a matrix equation:

Xn+1 = Wn+1Θr,n+1

Y n+1 = En+1Θ`,n+1 (5.11)

In this system, Xn+1 ∈ RNx×NRBF and Y n+1 ∈ RNy×NRBF are column-wise compositions of
respectively the states and outputs at the different samples. The distance vectors θr,n+1

j ,θ`,n+1
j

have also been combined into matrices Θr,n+1,Θ`,n+1 ∈ RNRBF×NRBF , yielding a linear system
of Nx×NRBF equations on an equal number of unknowns. This system can be solved efficiently
using an arbitrary linear solver, allowing the weighting vectors at each time step to be computed.

5.2.3 Choice of shape parameter

In computing the weighting vectors, and for consecutively computing results for a new input,
a shape parameter has to be chosen for the basis functions. As noted, this shape parameter
will determine how strongly the distance from the samples affects the solution for an arbitrary
input, and therefore a suitable value must be determined. A common method to do so is using
“leave-one-out” cross validation (LOOCV) [13]. For this method, an estimate is made of the
error in the interpolated solution, by comparing this interpolant to the actual solution at known
samples. Since the interpolated solution is already implemented to exactly match the actual one
at the RBF samples, this would demand additional samples to be taken. To avoid this extra
computational cost, the LOOCV method instead computes the error at each RBF sample, when
interpolating based only on the other samples. For sample k ∈ ΓRBF, then, this error is defined
as:

L(k),n+1
x (ε) = ‖x(k),n+1 − x̃(k),n+1‖2

L(k),n+1
y (ε) = ‖y(k),n+1 − ỹ(k),n+1‖2 n = 0, . . . , N − 1 (5.12)
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Here, vectors x̃(k),n+1 ∈ RNx and ỹ(k),n+1 ∈ RNy are defined as the interpolated states and
outputs at sample k ∈ ΓRBF, based on the remaining samples i ∈ ΓRBF \{k}:

x̃(k),n+1 :=
∑

i∈ΓRBF\{k}

ω̃
(k),n+1
i θ(rn+1

i (χ(k),n+1))

ỹ(k),n+1 :=
∑

i∈ΓRBF\{k}

ε̃
(k),n+1
i θ(`n+1

i (γ(k),n+1)) n = 0, . . . , N − 1 (5.13)

In this system, the weighting vectors at each sample are determined separately for the situation
excluding each sample k ∈ ΓRBF, assuring the approximated vectors x̃(k),n+1, ỹ(k),n+1 still match
the exact results at the samples. Computing an error for each RBF sample this way, a total error
corresponding to an arbitrary value ε > 0 is given by the sum:

Ln+1
x (ε) =

∑
k∈ΓRBF

L(k),n+1
x =

∑
k∈ΓRBF

‖x(k),n+1 − x̃(k),n+1‖2

Ln+1
y (ε) =

∑
k∈ΓRBF

L(k),n+1
y =

∑
k∈ΓRBF

‖y(k),n+1 − ỹ(k),n+1‖2 n = 0, . . . , N − 1 (5.14)

Providing a single output on the basis of a single input, these functions can be efficiently
minimized with respect to the parameter ε within a domain. In this manner, optimal values
ε can be computed at each time step for both the state and output basis functions, minimizing
the errors (5.14).

5.2.4 Derivative functions

With the optimal shape parameter at each time step, weighting vectors for each sample can
be computed by solving system (5.11), allowing the model at any input u to be approximated
through system (5.9). However, remaining fairly complex, this model is constructed solely for the
purpose of attaining gradient information at the samples, at which point the TPWL methodology
can be applied. To determine these gradients, the analytical derivatives at each sample k ∈ ΓRBF

are computed:

∂fn+1

∂χn+1

∣∣∣∣
χ=χ(k)

≈ ∂fn+1

∂χn+1

∣∣∣∣
χ=χ(k)

=
∑

i∈ΓRBF

ωn+1
i

∂θ(rn+1
i (χn+1))

∂χn+1

∣∣∣∣
χ=χ(k)

∂hn+1

∂γn+1

∣∣∣∣
γ=γ(k)

≈ ∂hn+1

∂γn+1

∣∣∣∣
γ=γ(k)

=
∑

i∈ΓRBF

εn+1
i

∂θ(`n+1
i (γn+1))

∂γn+1

∣∣∣∣
γ=γ(k)

n = 0, . . . , N − 1

(5.15)

At each RBF sample k, these derivatives provide approximate gradients of the functions f and
h in system (5.1), with respect to their arguments χ and γ, at each simulation step. These
gradients only require taking the derivative of the basis vectors with respect to each argument,
which can be done analytically. Indeed, considering an arbitrary sample i ∈ ΓRBF, the basis
function derivative can be split using the chain rule:

∂θ(rn+1
i (χn+1))

∂χn+1
=
∂θ(rn+1

i )

∂rn+1
i

∂rn+1
i (χn+1)

∂χn+1

∂θ(`n+1
i (γn+1))

∂γn+1
=
∂θ(`n+1

i )

∂`n+1
i

∂`n+1
i (γn+1)

∂γn+1
n = 0, . . . , N − 1 (5.16)
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Considering now an arbitrary argument χn+1
j at an arbitrary time step in the first equation, we

find the derivative of the distance function to be:

∂rn+1
i

∂χn+1
j

=
∂

∂χj
‖χn+1 − χ(i),n+1‖2 =

χn+1
j − χ(i),n+1

j

‖χn+1 − χ(i),n+1‖2
=
χn+1
j − χ(i),n+1

j

rn+1
i (χn+1)

(5.17)

Since the gradients are computed at the training points, values ri = 0 will have to be considered,
leading to singularities in the above derivative. However, using the multi-quadratic function
basis function, such singularities are avoided, as the derivative of this function depends linearly
on the radial distance:

∂θ(r)

∂r
=

∂

∂r

√
(εr)2 + 1 =

ε2r√
(εr)2 + ε2

=
ε2

θ(r)
r (5.18)

Substituting these results back into (5.16), and performing the same steps for the output derivative
function, we find:

∂θ(rn+1
i (χn+1))

∂χn+1
= ε2

[χn+1]T − [χ(i),n+1]T

θ(rn+1
i (χn+1))

∂θ(`n+1
i (γn+1))

∂γn+1
= ε2

[γn+1]T − [γ(i),n+1]T

θ(`n+1
i (γn+1))

n = 0, . . . , N − 1 (5.19)

With these functions, and the earlier computed weighting vectors, the derivatives (5.15) can
be determined at each sample in ΓRBF. Subsequently, a trajectory piecewise linear function
can be constructed, providing state and output vectors for an arbitrary input u ∈ RNu by
linearly extrapolating results from the closest sample. That is, letting utr denote the sample
input u(i) ∈ ΓRBF minimizing the distance ‖u − u(i)‖, we approximate the model at arbitrary
n ∈ {0, . . . , N − 1} as:

xn+1 − xn+1
tr ≈ ∂fn+1

∂χn+1

∣∣∣∣
χ=χtr

(χn+1 − χn+1
tr )

=
∂fn+1

∂xn+1

∣∣∣∣
x=xtr

(xn+1 − xn+1
tr ) +

∂fn+1

∂xn

∣∣∣∣
x=xtr

(xn − xntr) +
∂fn+1

∂un+1

∣∣∣∣
u=utr

(un+1 − un+1
tr )

yn+1 − yn+1
tr ≈ +

∂hn+1

∂γn+1

∣∣∣∣
γ=γtr

(γn+1 − γn+1
tr )

=
∂hn+1

∂xn+1

∣∣∣∣
x=xtr

(xn+1 − xn+1
tr ) +

∂hn+1

∂un+1

∣∣∣∣
u=utr

(un+1 − un+1
tr ) (5.20)

This system provides a linear approximation of the original model, for which the adjoint method
can be easily implemented. Constructing a gradient of the cost function on the basis of this model,
a search direction can then be established for the optimization procedure, without requiring access
to the model code.
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5.3 Numerical implementation

5.3.1 Argument scaling

Using the RBF method, the value of the interpolated function f is computed for new arguments
χ, based solely on the radial distance of these arguments from the sample arguments χ(i) ∈ ΓRBF.
In our implementation, however, these argument vectors are comprised of input and state values,
which in turn encompass pressure and saturation values. Each of these variables exist at different
scales, where the input is bounded by the physical well limitations, the saturation must be a value
between 0 and 1, and the pressure varies with the implemented units. Therefore, upon computing
distances between different argument vectors, the contribution of each of these variables to the
overall distance will not be equal, and thus neither will their contributions in computing the
weighting vectors. To resolve this, the states and inputs were scaled whenever constructing the
arguments:

[χ(i),n+1]T :=
(

1
cp

[x
(i),n
p ]T 1

cs
[x

(i),n
s ]T 1

cp
[x

(i),n+1
p ]T 1

cs
[x

(i),n+1
s ]T 1

cu
[u(i),n+1]

)
[γ(i),n+1]T :=

(
[ 1
cp

x
(i),n+1
p ]T 1

cs
[x

(i),n+1
s ]T 1

cu
[u(i),n+1]T

)
n = 0, . . . , N − 1

(5.21)

In this definition, the constants cp, cs and cu are factors used to scale respectively the pressure,
saturation, and input values. A natural choice for these would be the range covered by the
corresponding values, which are readily available for the input and saturation from the physical
bounds imposed on these. Unfortunately, such bounds are not applicable for the pressure, offering
no natural scaling factor. Instead, for this thesis, all scaling factors were computed based on the
samples used in the interpolation. Specifically, computing mean vectors x̂np , x̂

n
s and ûn from the

samples in ΓRBF, constants were determined as the greatest distances between the samples and
their means:

cp = max
i∈Γ

(
max

n∈{1,...,N}
{‖x(i),n

p − xnp‖∞}
)

cs = max
i∈Γ

(
max

n∈{1,...,N}
{‖x(i),n

s − xns ‖∞}
)

cu = max
i∈Γ

(
max

n∈{1,...,N}
{‖u(i),n − un‖∞}

)
(5.22)

Here, the means were computed according to equation (4.19). Based on these constants, the
arguments were computed as (5.21), to which the interpolation techniques could then be applied
as described before. Performing the RBF-TPWL method based on these arguments, the resulting
derivatives would also be scaled, expressed in terms of the original arguments as:

∂fn+1

∂χn+1
=
(
cp
∂fn+1

∂xnp
cs
∂fn+1

∂xns
cp

∂fn+1

∂xn+1
p

cs
∂fn+1

∂xn+1
s

cu
∂fn+1

∂un+1

)
∂hn+1

∂γn+1
=
(
cp
∂hn+1

∂xn+1
p

cs
∂hn+1

∂xn+1
s

cu
∂hn+1

∂un+1

)
n = 0, . . . , N − 1 (5.23)

From these derivatives, the individual derivatives with respect to the state and input at each
time could be easily extracted.
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5.3.2 Domain decomposition

Throughout the experiments conducted for this thesis, RBF interpolation has always been
preceded by application of a subdomain POD method. Implementing this method, the model
domain Ω is divided into ND subdomains Ωd, in each of which a reduced orthogonal basis

Φ̃d ∈ RNdx×Ñdx is constructed. Applying RBF interpolation based on the resulting reduced
system, lower order surrogate models can then be constructed individually for each subdomain.

In performing RBF interpolation in each subdomain, the domain decomposition can be exploited
to reduce the required computational effort, whilst potentially increasing the accuracy of the
model. To illustrate this, we consider an arbitrary grid block k ∈ {1, . . . , Ng} at time step
n ∈ {1, . . . , N}, in a situation with an input u ∈ RNu . When performing the full RBF
interpolation as described before, the pressure and saturation values at this grid block will
be extrapolated from the full states x(i),n−1 ∈ RNx corresponding to sample inputs u(i). This
enforces a correlation between the unknown variables at all the grid blocks throughout the
domain, potentially introducing artificial correlations between otherwise (practically) independent
variables [9]. Introducing a domain decomposition can help resolve this issue, as well as reducing
the cost of the method.

In our implementation of the subdomain RBF interpolation, only grid blocks in neighboring
domains were assumed to be correlated. That is, considering an arbitrary domain d ∈ {1, . . . , ND},
the state vector was assumed to satisfy a system of the form:

xd,n+1 = Ln+1(xd,n,xsd,n+1,u) n = 0, . . . , N − 1 (5.24)

Here, vector xsd,n+1 ∈ RNdx at each time step provides the state variables in the subdomains
neighboring and including the domain d. For example for domain 6 in figure 5.1, this state would
comprise only variables in domains 2, 5, 6, 7 and 10 at the next time step, whilst for domain 12,
only variables in domains 8, 11 and 12 would be used. Collecting the arguments of function L,
RBF interpolation can then be performed in each domain, based on an argument vector:

[χd,n+1]T :=
(
[xd,n]T [xsd,n+1]T [u]T

)
(5.25)

Constructing derivative matrices based on these arguments, only information from neighboring
domains is considered, thus reducing the risk of introducing spurious correlations. Furthermore,
excluding these large-distance correlations, implementing the RBF interpolation in this manner
also reduces the required computational effort. This reduction becomes more significant when
more subdomains are used, as this decreases the number of included correlations. However,
this also introduces the risk of omitting correlations essential to the full-order model, thereby
potentially decreasing the accuracy. For this reason, a 4 × 4 domain decomposition has always
be implemented, amounting to a moderate value of 16 subdomains.

Similarly to the state vectors, the outputs can also be divided over the subdomains, and assumed
to depend only on nearby results. In our case, the outputs are comprised of observed quantities
at the different wells, suggesting only subdomains in which such a well is located to provide an
output. For such a domain d including a well, the corresponding output was therefore assumed
only to depend on the variables within this domain:

yd,n+1 = ~~~n+1(xd,n+1,u) n = 0, . . . , N − 1 (5.26)

Including only these local state variables , an interpolated model for the output in each subdomain
containing a well could then be constructed through the RBF method as before.
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Figure 5.1: 3× 4 domain decomposition

5.3.3 Sample computation

Constructing the TPWL approximation through RBF interpolation, derivative matrices of the
model can be computed at different sample inputs u(i) ∈ ΓRBF, allowing the full-order model at
any input u to be approximated by extrapolating the results from the closest sample utr ∈ ΓRBF.
In order to optimize an arbitrary cost function, the adjoint method can then be applied to the
reduced-order model (5.20), to construct a gradient of the cost function at any input u. Here, the
derivatives of the model functions at such an input u depend only on which sample u(i) ∈ ΓRBF

is closest. Since the adjoint gradient in turn is computed solely on the basis of these derivatives,
this gradient too will depend only on the sample input closest to which it is being computed.
The accuracy of the gradient will therefore depend strongly on the distance from each of the
RBF samples.

In order to minimize computational effort, in our implementation, the same samples u(i) used to
construct the POD basis were also always used to perform the RBF interpolation. At any stage,
these samples were determined considering a best guess ub of the input, around which NPOD

perturbed inputs u(i) = ub + εPODδu
(i) were computed. Here, the perturbations εPODδu

(i)

were randomly generated to cover a hypercube of size εPOD around the background. Using
these samples to construct the TPWL approximation, approximate adjoint gradients of the cost
function can be computed at the background input ub, as well as at the NPOD samples in the
surrounding hypercube. However, considering an arbitrary input u not amongst these samples,
neither of these approximations likely provides an accurate gradient.

To test the accuracy of the different gradients, an experiment has been conducted considering
16 random input samples u(k) of the Kanaal model, of which the results were collected in a set
ΓFD. At each of these samples, the finite difference gradient (3.26) of the cost function (2.28) was
computed, using a perturbation size εFD = 10−2. Next, choosing ub = u(k) for k ∈ ΓFD, the POD
and consecutively the RBF method were performed around the background input ub. Herein,
NPOD = 25 perturbations δu(i) to the input ub were used, scaled with factors εPOD = 0.05,
εPOD = 0.20, and εPOD = 0.5. At each of these 25 POD samples, as well as at the background
sample ub, an approximate gradient of the cost function (2.28) was then computed, applying the
adjoint method to the reduced-order TPWL approximation. To compare these gradients to the
finite difference results, the angle between them was computed as:
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θ = arccos

(
[∇ROMJ ]T · [∇FDJ ]

‖∇ROMJ‖2‖∇FDJ‖2

)
(5.27)

Here, ∇ROM denotes the reduced-order model adjoint approximation of the gradient, with ∇FD

denoting the finite difference approximation. Assuming the finite difference approximation to
be highly accurate, this angle provides a measure of the accuracy of the ROM gradient, where
a smaller angle corresponds to a better approximation. Computing this angle at the different
finite difference samples, results were attained such as those displayed in figure 5.2.

In figure 5.2, the first sample from set ΓFD is selected as background sample for the POD, such
that ub = u(1) ∈ ΓFD. In addition, the second POD sample is set to be equal to the second
sample from this set, such that both the center sample and one POD perturbation coincide with
a sample from ΓFD. Each of the three graphs then displays the angle between the finite difference
gradient at a sample in ΓFD, compared to the adjoint gradient computed at each of the 26 POD
samples, where sample 0 corresponds to the background input. These results are shown for each
of the considered POD perturbation sizes, with the star ∗ indicating the POD sample closest to
each finite difference sample.

Figure 5.2: Angles between finite difference and reduced adjoint gradient at different inputs

The figure shows that, overall, the angle between the finite difference and reduced adjoint gradient
is fairly large. When the input sample u(k) ∈ ΓFD does not coincide with a training sample
u(k) ∈ ΓRBF, the adjoint gradient is almost orthogonal to the finite difference one, independent of
which training sample is used. This effect does not depend strongly on the size of the perturbation
used, though a more moderate perturbation size does provide slightly lower angles at inputs away
from the background sample. This is likely due to the fact that the greater perturbation size
covers a higher variety of different inputs, and thus also provides a better estimate of gradients
at unknown samples. Conversely, the accuracy of the gradient at the background sample seems
to increase as the samples are placed closer together, as more information near this background
is incorporated. This accuracy is also much higher than for samples not included in the POD
perturbations, assuming a much lower angle at the background input than at sample 3. A similar
result is observed at the second sample, which is also amongst the POD perturbations, and also
displays significantly lower angles at the appropriate POD sample.
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The results suggest that the accuracy of the RBF approximated gradients are highest at the
actual RBF samples. This is unsurprising, as the accuracy of any RBF interpolation decreases
with the distance from the samples. For this same reason, a moderate perturbation size will also
provide better gradients at inputs away from the RBF samples, as a perturbation size that is too
large or too small will generally increase the distance between these gradients and their closest
sample. For this reason, the implemented optimization procedure has always been started using
εPOD = 1

4 (umax−umin). Over the course of the algorithm, however, this perturbation size would
be decreased, as the domain around ub in which the optimum would be sought decreased as well.

5.3.4 Gradient recomputation

From figure 5.2, it follows that the gradient computed at perturbations of the background input
ub, are significantly more accurate than those at arbitrary inputs. However, searching along the
gradient of the background input in a high-dimensional setting RNu , the gradient information
from other samples is unlikely to become relevant. To avoid numerical inefficiency, therefore,
the gradient at these perturbations was not computed during the implemented optimization
procedure. Instead, we considered computing the gradient at a new input u, without employing
new samples around this input.

In establishing a new gradient, we can distinguish three levels of recomputation. The first of
these simply computes new derivative functions (5.15) at the input u, without adjusting the
RBF weighting coefficients. Since the adjoint method can be applied directly on the basis of
these derivatives, this only requires establishing the state and output vectors for this new input,
and determining the distances of these results from the precomputed samples. A higher level
of recomputation is established when also the weighting coefficients in (5.15) are redetermined,
which requires adding the results from input u to the RBF sample set, and reperforming the
RBF interpolation. In this manner, the new sample will belong to the RBF set, likely yielding a
more accurate gradient, but also requiring a higher computational effort. Further increasing this
effort, we can also add the results at input u to the POD snapshot matrices, and reconstruct the
reduced bases. Implementing these bases, the RBF interpolation can also be performed using
the new samples, constructing a gradient at u based on a new reduced-order approximation.
However, since the accuracy of the POD method was not observed to increase with the number
of samples, the effects of reperforming it are expected to be minimal.

To test the benefit of computing a new gradient, once more a random background input ub
was considered for the Kanal model, along with the corresponding finite difference gradient.
Next, 15 samples u(k) ∈ Γline along a line in the direction of this gradient were generated, and
at each of these the finite difference gradient was computed. In addition, the ROM gradient
at ub was determined based on 25 samples around this input, using a perturbation size of
εPOD = 0.2. The angle between this gradient and the finite difference gradient at each sample
along the line was then computed according to equation (5.27), and plotted against the distance
from the background as the black line in figure 5.3. In addition, the recomputed gradient was
compared to the finite difference gradient at each input, given by the red line. The blue line and
green markers provide this same comparison upon reperforming the RBF and respectively POD
computation, after adding the input u along the line to the perturbation set. In this figure, a
distance ‖u − ub‖∞ = 0.5 corresponds to the input u reaching the boundary of the domain, at
which point one of the elements of the input reaches its maximal absolute value.
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Figure 5.3: Angles between finite difference and reduced adjoint gradient upon reperforming
computations at several inputs along a line

The figure shows that, as the distance ‖u − ub‖∞ between the input u and the background
ub increases, the mismatch between the finite difference gradient at this input and the adjoint
gradient at the background also increases. Computing a new gradient using the same weighting
coefficients, this mismatch can be decreased, although only at sufficient distance from the
background input. This distance can be decreased further by recomputing the weighting vectors
as well, yielding an accuracy exceeding the original one for larger values of ‖u−ub‖∞. Additionally
reconstructing new POD bases, however, does not significantly affect the accuracy, practically
matching the results attained when solely reperforming the RBF.

Overall, the RBF interpolated approximate gradient at an input u seems to improve when
adding it to the RBF samples. Since performing the RBF interpolation is numerically expensive,
however, this recomputation was only performed in the final method once a new optimal input
u∗ was established, resulting from a search algorithm starting in ub. If the resulting gradient
did not provide a new optimum, new samples would be constructed as described for the POD
method, and the process would be repeated.
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5.3.5 Number of samples

Implementing the RBF method as described above, a gradient is initially established at some
input ub based on results of surrounding samples. Since the accuracy of this method at an
arbitrary input depends on the distance from the RBF samples, this accuracy will depend strongly
on the number of samples used. However, computing these samples requires running the full-order
model, which is computationally expensive. Therefore, a trade-off between accuracy and cost
must once again be considered.

To establish the effect of the number of samples on the accuracy of the method, a numerical
experiment has been performed utilizing three arbitrary inputs ub for the Kanaal model. At
each input, the finite difference gradient was computed, and the POD method was applied using
a perturbation size εPOD = 0.25, with NPOD = 25 samples. Performing the RBF interpolation
on the basis of these same perturbations, gradients were established using the adjoint method as
well, and the angles with the corresponding finite difference gradients were computed. Taking
the mean of these angles, an accuracy of the method upon using 25 RBF samples was then
established. Next, a single random perturbation was added to each RBF set, reconstructing the
interpolations and the corresponding gradients, and recomputing the mean angle. Repeating this
procedure until 100 RBF samples were considered, a measure of the accuracy of the method was
attained upon using an increasing number of RBF samples, plotted in figure 5.4.

Figure 5.4: Angles between finite difference and reduced adjoint gradient based on an increasing
number of samples
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The figure shows that, as the number of samples is increased, the gradient at the background input
ub becomes more accurate. Here, the angle declines at a diminishing rate, achieving a decrease
of 15o upon adding the first 25 samples, but attaining less than a 5o decrease upon adding
an additional 25 samples. Even when using 100 samples, the accuracy of the method remains
limited, with an angle of more than 60o between the reduced adjoint and finite difference gradient.

Incorporating these results, the final algorithm for this thesis has only been implemented using
50 samples or less. This value was chosen as the computational effort increases rapidly with the
number of samples, whereas the resulting increase in accuracy diminishes. Using such low number
of samples, the reduced adjoint gradient will differ greatly from the finite difference gradient,
potentially even being orthogonal. Nevertheless, so long as this angle remains smaller than 90o,
the approximate gradient will point in a direction of increase of the cost function. Moreover,
similarly large angles are common for stochastic gradients [27], and tests with the specific EnOpt
method implemented according to (3.33) also yields angles around 80o when using only a small
amount of samples.

5.3.6 The RBF derivative approximation algorithm

Algorithm 3 below summarizes the RBF method for constructing approximate derivative matrices
of a model function f(χ1, . . . ,χNχ), at the location of background arguments χ(b), based on

samples χ(i) with corresponding results x(i) = f(χ(i)). To compute the various derivative
matrices of system (5.1), this algorithm can be applied to functions fn+1,hn+1 at each time step
n = 0, . . . , N−1, in which case the arguments would be given by (χ1,χ2,χ3) = (xn,xn+1,un+1)
and (χ1,χ2) = (xn+1,un+1) respectively. Alternatively, this algorithm can be executed in a

subdomain framework, constructing derivative matrices of model functions Ld,n+1, ~~~d,n+1 as
described by (5.24) and (5.26) respectively, running the algorithm separately in each domain
d ∈ {1, . . . , ND}, and at each time step n ∈ {0, . . . , N−1}. In doing so, arguments (χ1,χ2,χ3) =
(xd,n,xsd,n+1,u) and (χ1,χ2) = (xd,n+1,u) would have to be provided, with corresponding
results given by the state vector xd,n+1 and output vector yd,n+1. For the final POD-TPWL
method, algorithm 3 is performed on reduced vectors (ψ̃d,n, ψ̃sd,n+1, ξ), where ψ̃ comprises the
components of a state vector under some POD basis Φ̃d, and ξ denotes a potentially reduced
input vector.

In computing the derivative matrices, algorithm 3 relies solely on samples of the arguments
and corresponding results to provide information. In practice, any input u(i) for which the
full-order model results are known could be provided as such a sample in the algorithm. However,
as established in section 5.3.3, the quality of the RBF computed gradient at an input ub
diminishes when the samples are placed further away from this input. Therefore, to minimize
the computational cost, the provided samples were always the same as those used for the POD
reduction. These samples always corresponded to simulation results for inputs around some
background input ub, given by the optimal input guess at any stage of the final POD-TPWL
algorithm. In this final algorithm, the background input ub, with corresponding state information,
would also always be provided as background arguments χ(b) in algorithm 3. Through this
algorithm, derivative matrices of the model functions at the optimal input ub could then be
approximated, allowing an adjoint methodology to be applied to construct an approximate
gradient of the cost function at this input. In this manner, at each step of the POD-TPWL
algorithm, a search direction could be computed at the current optimal input guess. Based
on this search direction, a new guess could then be established, iteratively optimizing without
requiring access to the model code.

56



Algorithm 3: Non-intrusibe RBF derivative approximation

Input: Background arguments χ
(b)
1 , . . . ,χ

(b)
Nχ
∈ ΓRBF, Sample arguments

χ
(i)
1 , . . . ,χ

(i)
Nχ
∈ ΓRBF, Sample model results x(i) ∈ ΓRBF

Result: Approximate model derivatives ∂f
∂χ`

at the background arguments

1 Define multi-quadratic function θ(r, ε) =
√

(εr)2 + 1;

2 Construct scaling factors c` = maxi∈ΓRBF

(
maxn∈{1,...,N}{‖χ

(i)
` − χ

(b)
` ‖∞}

)
for all

` = 1, . . . , Nχ;

3 Construct full argument vectors [χ(i)]T =
[

1
c1

[χ
(i)
1 ]T , . . . , 1

cNχ
[χ

(i)
Nχ

]T
]

4 for k ∈ ΓRBF do

5 Collect sample results x(i) ∈ ΓRBF\{k} column-wise in matrix X̃(k);

6 Compute sample distances r
(k)
ij = ‖χ(i) − χ(j)‖2 for i, j ∈ ΓRBF\{k};

7 Collect distances in matrix R̃
(k)

;

8 Define Θ̃(k)(ε) = θ(R̃
(k)
, ε) as function θ(r, ε) applied element-wise to R̃

(k)
;

9 Define matrix
[
W̃

(k)
(ε)
]T

=
[
[Θ̃(k)(ε)]T

]−1

[X̃(k)]T as function of ε;

10 Extract columns ω̃
(k)
i (ε) for i ∈ ΓRBF\{k} from W̃

(k)
(ε);

11 Compute distances r
(k)
i = ‖χ(k) − χ(i)‖2 for i ∈ ΓRBF\{k};

12 Define x̃(k)(ε) =
∑
i∈ΓRBF\{k}

ω̃
(k)
i (ε) · θ(r(k)

i , ε) as function of ε;

13 Define L(k)(ε) = ‖x(k) − x̃(k)(ε)‖2 as function of ε;

14 end

15 Define L(ε) =
∑
k∈ΓRBF

L(k)(ε);

16 Determine an ε∗ ∈
[
10−2, 102

]
minimizing L(ε);

17 Define θ(r) =
√

(ε∗r)2 + 1;

18 Collect sample results x(i) ∈ ΓRBF column-wise in matrix X;

19 Compute sample distances rij = ‖χ(i) − χ(j)‖2 for i, j ∈ ΓRBF;
20 Collect distances in matrix R;
21 Compute Θ = θ(R) as function θ(r) applied element-wise to R;

22 Compute coefficient matrix
[
W
]T

=
[
Θ
]−1[

X
]T

;
23 Extract columns ωi for i ∈ ΓRBF from W;

24 Compute distances r
(b)
i = ‖χ(b) − χ(i)‖2 for i ∈ ΓRBF;

25 Compute derivative vectors
∂θ(r

(b)
i )

∂χ
(b)
`

= c`(ε
∗)2 [χ

(b)
` ]T−[χ

(i)
` ]T

θ(r
(b)
i )

for ` = 1, . . . , Nχ and

i ∈ ΓRBF;

26 Compute model derivatives ∂f
∂χ`

∣∣∣
χ`=χ

(b)
`

=
∑
i∈Γ ωi ·

∂θ(r
(b)
i )

∂χ
(b)
`

for ` = 1, . . . , Nχ;
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Chapter 6

Reduction of the Input
Dimensionality

In this chapter, several methods for reducing the size of the input vector are discussed. Numerical
experiments are conducted to test the benefits of adjusting the input, and a scheme is introduced
for adapting the adjustments during the optimization. In addition, transformation functions are
introduced to assure the input values remain within the physical bounds.

6.1 Dimensionality reduction

Using the methods described in the previous two chapters, a reduced-order linear approximation
of any model can be constructed, allowing for more feasible application of an adjoint method.
This in turn allows for computationally less demanding optimization of an arbitrary cost function
J(u) with respect to the input u of the model, as this input remains invariant under application
of these methods. In many cases, however, the number of dimensions Nu spanned by the possible
inputs is also considerable. For example in the field of reservoir flow, where we assume to have
Nw wells which can be controlled at Tw times, the total number Nu = Nw ·Tw of input variables
can be very large when considering a large number of wells over an extended period of time.
Therefore, an additional reduction in computational effort might be achieved addressing the
dimensionality of the input.

Since the size of the gradient ∇J depends directly on the size of the input u, the numerical
cost of any gradient-based optimization procedure will increase with the number of inputs. The
one-sided finite difference approximation, for example, requires an additional evaluation of the
cost function and thus the underlying model for every additional input parameter. Also for
the adjoint method, relying on derivative matrices of the model functions with respect to u,
decreasing the size of this vector will allow for less expensive optimization. In addition, the
optimization process is generally less complicated in a lower dimensional space. Indeed, reducing
the number of parameters on which to optimize produces a more smooth computational domain,
allowing faster and potentially more accurate optimization. For these reasons, several methods for
reducing the dimensionality of the input have been incorporated in the final algorithm, adjusting
the controls via a reparameterization scheme.
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6.2 Input reparameterization

Let un ∈ RNw denote the input vector at time step n ∈ {1, . . . , N}, with Nw in our case
corresponding to the number of wells over which control is exerted. We assume that this input
can only be adjusted at Tw time steps n1, . . . , nTw , with the input remaining constant between
any two such times. The total control u ∈ RNu with Nu := Nw · Tw is then shaped by the
concatenation of all these controls at each of the control times, providing the overall vector to
be optimized.

When performing reduced-scale optimization, the vector u ∈ RNu is replaced by a lower dimensional
reparameterization ξ ∈ RNc , with Nc ≤ Nu. Rather than optimizing the full input vector u, the
reduced control vector ξ can then be optimized, and the result can be transformed back into
a physical control. Naturally this requires introducing an injective mapping K : RNc → RNu

translating each control vector into a unique input vector. For ease of notation, we also introduce
N corresponding mappings Kn : RNc → RNw for n = 1, . . . , N , directly transforming the control
vector ξ into an input vector at each time step of the model. As the input does not change
between any consecutive control times ni and ni+1, this mapping must yield a constant input
vector for any n satisfying ni ≤ n < ni+1:

Kn(ξ) = un = uni = Kni(ξ) where ni = max
ni≤n
{ni} (6.1)

As a result, even when using an identity mapping, such that ξ = u, the input will still be a
piecewise constant function.

Reducing the size of the input vector, any input reparameterization scheme will also reduce
the number of degrees of freedom for optimization. Consequently, reparameterizing the input
will exclude solutions from the system, potentially pertaining certain optima. A proper choice
of reparameterization is therefore crucial, where the method should match desired or expected
results of the optimal input. Additionally, a multiscale method can be applied, adjusting the
number Nc of controlled parameters during the optimization procedure, and thereby altering the
freedom allowed in searching for an optimum. This approach will be briefly discussed in the last
section.

6.2.1 Step function

Perhaps the most straightforward approach to reducing the number of controls is a method that
will be referred to as step function reparameterization. Given that there are Nw wells for which
input can be defined at Tw times, this method defines the value of the input at all wells but only
at Tc ≤ Tw times, yielding a total of Nc = Nw × Tc control parameters. The value of the input
at other times is simply set equal to the value specified at the previous control time, such that
for arbitrary ξ:

Kn(ξ) = Knci (ξ) where nci = max
nci≤n

(nci ) (6.2)

Here n = 1, . . . , N denote the timesteps of the model, and nci for i = 1, . . . , Tc denote the times
for which the control vector ξ ∈ RNc actually provides a value of the input. The resulting full
input is a step function of Tc − 1 steps at each well. Setting Tc = Tw, this control method is
equivalent to optimization using all input parameters.
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Fixing the input to remain constant between predefined times, the step function method significantly
decreases the variety of attainable input functions when considering only few control times
Tc << Tw. Nevertheless, the ease of implementation and unambiguous transformation offered by
this method amounts to an overall very attractive reparameterization scheme. Specifically when
considering multiscale optimization, where a variable number of controls is desired, the clarity
of this method makes it a suitable candidate. In the experiments performed for this thesis, it
has also only been applied within such a multiscale framework, increasing the number of steps
taken in this method during the optimization.

6.2.2 Cubic spline interpolation

The second method considered for reparameterizing the input is cubic spline interpolation. As
for the step function reparameterization, this method takes the control vector ξ to contain the
values of the input at all Nw wells, but only at Tc ≤ Tw times. The full input is then determined
separately for each well, by interpolating the values at the control times using a cubic spline
method.

Cubic spline interpolation, as the name suggests, is a spline interpolation method constructing
a piecewise polynomial function on the provided data, with each separate polynomial being of
third order. For this method, we assume to have Tc data points (nj , ξj), ordered increasingly in
terms of the times nj . Between each pair of consecutive times nj , nj+1, a third degree polynomial
function is then constructed as:

Pj(n) = ajn
3 + bjn

2 + cjn+ dj (6.3)

To establish the values of the different coefficients in this function, the polynomials are required
to match to second order at the different data points:

Pj(nj) = Pj−1(nj) = ξj Pj(nj+1) = Pj+1(nj+1) = ξj+1

dPj
dn

∣∣∣∣
nj

=
dPj−1

dn

∣∣∣∣
nj

dPj
dn

∣∣∣∣
nj+1

=
dPj+1

dn

∣∣∣∣
nj+1

d2Pj
dn2

∣∣∣∣
nj

=
d2Pj−1

dn2

∣∣∣∣
nj

d2Pj
dn2

∣∣∣∣
nj+1

=
d2Pj+1

dn2

∣∣∣∣
nj+1

(6.4)

Imposing these constraints can be expressed as a linear system, which can be easily solved
to compute the coefficients aj , bj , cj , dj for each segment [nj , nj+1] [10]. Using the polynomial
functions, then, the values of the input can be computed at all times, interpolated from the
prescribed control values ξj .

Interpolating between control parameters will yield smooth inputs over time, with values equal
to those assigned by ξ at the control times. This allows the construction of a wide variety of
input functions, using a small number of control points. Furthermore, the imposed smoothness
also results in functions that might be preferable from a physical perspective, at least when using
limited control times. Even in this situation, however, the final input function at all times will
remain piecewise constant, as the input can be adjusted only at discrete times n1, . . . , nTw ,
being constant between consecutive well times. If the cubic spline interpolation method is
used with Tc = Tw, this control method is equivalent to an optimization method without
reparameterization.
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6.2.3 Principle component analysis

Through principal orthogonal decomposition, the size of state vectors can be reduced by expressing
them in terms of basis vectors, which are derived from observed realizations of the state. Similarly,
the size of inputs can also be reduced by expressing them in terms of certain basis vectors. Unlike
for the state vectors, however, the dominant basis vectors for the input have to be artificially
introduced. This is because the inputs are free to be chosen, and as such any shape of the
input function is, in theory, equally probable. Nevertheless, some input functions might be more
desirable than others, allowing common patterns to be established. We will refer to this method
as principal component analysis (PCA), to distinguish it from the POD applied to the states,
although the underlying theory is identical.

In our implementation of the PCA method, correlations were imposed between the input variables
at the different wells and times. Herein, we assumed the input value at an arbitrary well and
time to be most strongly related to inputs at nearby wells, as well as those at closer times. To
this end, let rj,n for j = 1, . . . , Nw and n = 1, . . . , Tw be a vector containing the spatial and
temporal coordinates of the jth well at the nth time step. Then we take arbitrary inputs [un]j
and [un

′
]j′ to be correlated with a covariance given by:

cov([un]j , [u
n′ ]j′) = exp

(
rj,n − rj

′,n′

2σ2

)
(6.5)

Using this function, the covariance between inputs at different wells and times decreases as a
Gaussian function with the corresponding spatial and temporal distance between these inputs.
Here, the parameter σ2 determines how quickly this decay occurs, imposing a stronger correlation
when using a larger value. Based on this covariance then, random snapshots of the inputs can
be generated, allowing for a reduced basis to be approximated. Alternatively, this basis can be
constructed directly from the eigenvectors of the covariance matrix, retaining only those with
the greatest eigenvalues using some energy criterion [43]. Letting Ξ ∈ RNu×Nc denote the matrix
consisting column-wise of these eigenvectors, a control vector ξ ∈ RNc can then be introduced
as components of a corresponding input u under matrix Ξ:

u = K(ξ) = Ξξ (6.6)

Reducing the input in this manner, effectively a smoothing is introduced in space and time. The
strength of this smoothing is determined by the assigned covariance between the inputs, where
a greater covariance will allow for a smoother function. An increase in this covariance can be
achieved by increasing the variance σ2, as well as by decreasing the distances between the inputs.
These distances are determined by the positions rj,n assigned to each well at each time, defined
as:

[rj,n]T =
(
αt[r

n
t ] αx[rjx]T

)
=
(
αt

∆x
∆t n αxjx αxjy αxjz

)
In this definition, jx, jy, jz denote the indices of the grid block in which the jth well is situated
in respectively the x-, y- and z-direction. The values ∆x and ∆t denote spatial and temporal
discretization steps, used to scale the timestep n to be of comparable magnitudes to the spatial
indices. Finally, the constants αt and αx are implemented to scale the distances between inputs,
thereby adjusting the strength of the correlation between these inputs. In our implementation,
the correlation between inputs at the same well was always assumed to be stronger than that
between different wells, imposed by taking αt = 0.5 and αx = 1.
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Implementing the PCA method in this manner, the input is reparameterized on the basis of
how strongly the different variables are expected to be correlated. By adjusting the position
vectors of the different inputs, the inputs can be assigned to be completely independent, or all
determined by each other. Although this offers a natural reduction in the size of the state, where
stronger correlations allow for representation using fewer basis vectors, the overall choice of this
covariance remains difficult. For example, in introducing a correlation between the inputs at
different wells, it would physically make sense to consider the flow between these wells. However,
incorporating this is practically unfeasible, as the flow depends on the model, and thus on the
prescribed inputs. This problem can be avoided by implementing solely a correlation between
inputs at the same well, using αt << αx. However, in such a scenario, a CSI or step-function
method is generally more appealing, offering input functions that are more comprehensible or
physically more desirable. Therefore the PCA method has not been extensively considered in
the numerical experiments.

6.2.4 Single step control

As a final reparameterization method, we consider single step control. Similarly to step function
control, this method assumes the input in time to change like a step function. However, this
scheme is restricted to just one change in the input value for each well, and instead, the timestep
at which this change occurs is considered as control parameter. Fixing the initial and final
inputs at the wells, this yields a type of bang-bang control, where the input switches between
predefined values and the time of this switch is to be optimized. Such a control method is
physically appealing, especially if the input at all the wells is taken to switch at the same time,
as this requires very limited physical action. Computationally, optimization involving a single
control would also be very cheap, allowing efficient application of a finite difference method as
the optimum is sought (at discrete points) along a single line. However, the restrictions upon the
input in this case are unreasonable, likely excluding many significantly better input functions,
such that the attained optimum deviates a lot from the actual global optimum. Therefore,
additional control has always been permitted, by allowing the input at each well to swap at a
different time. Furthermore, the initial and final values of the input at each well were implemented
to be optimized as well, such that an optimal step function would be sought at each well. This
control method therefore required optimizing Nc = 3Nw values, restricting the input function
at each well to be a step function, but optimizing both the initial and final value, as well as the
time of the step.

6.3 Constraint enforcement

When computing the full inputs un based an arbitrary reparameterization, care should be taken
to assure the physical limitations are not violated. For the step control methods, this can be easily
achieved by assuring the reduced controls to not exceed certain bounds. For the PCA or CSI
reparameterization though, imposing such bounds might unnecessarily exclude certain inputs, or
still yield inputs that are physically infeasible. To avoid this, we have employed transformation
functions.
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In this thesis, a transformation function will be denoted as any function v : R→ [[umin]i, [umax]i],
mapping an arbitrary real number to one satisfying the input restrictions, assumed to be equal
for each well. In implementing such a function, the reduced control was always centered around
zero, and given a natural spread of 1

2 in each direction. This means that, an arbitrary control
parameter ξi was generally fixed to exist in the domain [− 1

2 ,
1
2 ], although it was also possible to

allow greater values. Along this domain, the full input variables uj must then be allowed to attain
any value in the domain [umin,umax], which is most easily assured using a linear transformation
function:

vL(u) :=


umin for u < − 1

2

umin + (umax − umin)(u + 1
2 ) for u ∈ [− 1

2 ,
1
2 ]

umax for u > 1
2

(6.7)

This function transforms each input directly into one satisfying the constraints, where only
adjustments of u within the domain [− 1

2 ,
1
2 ] will affect the final input. Since the slope of this

function is also constant within this domain, the size of such an adjustment in the input will also
be directly proportional to the adjustment before transformation. At the boundaries u = ± 1

2 on
the other hand, this slope changes abruptly to zero, such that increasing or decreasing the value
of u beyond this boundary no longer influences the transformed input. As a result, gradients with
respect to the input will be free to point towards a boundary up to arbitrarily small distances
from it, but are abruptly fixed to point away from or along it once the boundary is reached.
This introduces discontinuities in any gradient-based optimization procedure, which might limit
its performance. To avoid this, a smoother transformation function has also been employed as a
Sigmoid function:

vL(u) :=


umin for u < − 1

2

umin + (umax − umin) 1+exp(−αS)
1+exp(−2αSu) for u ∈ [− 1

2 ,
1
2 ]

umax for u > 1
2

(6.8)

This function has a greater slope near the center of the domain, which decreases as the boundaries
are approached. The value of this slope is determined by the constant αS , where a greater
value corresponds to a steeper increase at the center. Using such a function, the greatest
changes in the input function will be placed at the center of the domain. This encourages the
optimization procedure to establish optima using less extreme values, as adjusting the control
near the boundaries will not significantly affect the input, and thus also not the cost function.
In our implementation, a value αS = 10 has been used, of which the corresponding function
is plotted in figure 6.1. Using this parameter, practically any input can be achieved within
the domain [− 1

4 ,
1
4 ], with the slope of the function being almost zero outside of this domain.

When using this function, therefore, a perturbation size εPOD = 1
8 was always initially taken for

the POD and thus also RBF perturbations, spreading the samples halfway through the domain
[− 1

4 ,
1
4 ]. Accordingly, if a linear transformation function was implemented, this perturbation

size was set to εPOD = 1
4 , as covering the full spectrum of input values for this transformation

function requires controls in the full domain [− 1
2 ,

1
2 ].
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Figure 6.1: Linear and Sigmoid transformation function

6.4 Reduced input optimization

Using any of the described reparameterization schemes, the size of the input can be reduced
to a desired extent, allowing for generally cheaper optimization. In addition, employing such a
method might enhance the overall performance of the optimization method, as the difficulty of
optimization is smaller when optimizing on fewer variables. For a gradient-based method, this
improved performance lies in the construction of the gradient, which will be computationally
cheaper as well as potentially more accurate as the size of the gradient decreases. For example,
when constructing the gradient based on samples of the model, implementing a reduced control
vector will cause these samples to be spread out over a lower-dimensional domain. Consequently,
a small amount of samples should yield more accurate results when considering a reduced
amount of input parameters, suggesting any sample based optimization scheme might benefit
from reparameterizing the inputs.

To test whether a reduced control vector indeed improves the results for the reduced adjoint
method described in the previous chapters, the CSI and step function reparameterization methods
were implemented for the Kanaal model. For each, two control times were considered for all wells,
reducing the number of degrees of freedom from Nu = 135 to Nc = 18. Next, 16 samples ξ(k)

of the reduced control vector were computed randomly in the computational domain for each
scheme, and collected in a set ΓFD. For each of these samples, the finite difference gradient was
then computed, using a perturbation size εFD = 10−3. In addition, the POD-TPWL method
was applied to compute a gradient at each sample ξ(k), taking this sample as background control
ξb = ξ(k). Herein, NPOD = 25 additional perturbations were consistently considered, using
perturbation sizes εPOD = 0.05, εPOD = 0.20, and εPOD = 0.5. The angle between each of the
resulting gradients was consecutively computed using (5.27). The mean of the resulting angles
when using the first sample in ΓFD as background are plotted in figure 6.2. In this figure, the
results are displayed using both reparameterization schemes, as well as when using the full input.
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Figure 6.2: Angles between finite difference and reduced adjoint gradient using different
reparameterization schemes

The figure shows that, reducing the number of parameters to optimize, the accuracy of the
reduced adjoint gradient indeed increases. Both the CSI and step function reparameterization
scheme return relatively small angles between the adjoint and finite difference gradient, displaying
a significant decrease compared to the full control method. This effect is strongest for the smaller
perturbation size, placing the RBF samples closer to the background. For these perturbations,
the adjoint gradient at the background control also provides a more accurate approximation of
that at the perturbations, as these perturbations lie very close to the background.

In addition to increasing the accuracy, implementing a reparameterization scheme also increases
the discrepancy between results using different perturbation sizes. This is likely due to the fact
that perturbations in the reduced control translate to even bigger perturbations in the full input
vector. As a result, different perturbation sizes using smaller control vectors will yield increasingly
different samples for the full input, in turn providing increasingly different gradients. This effect
is stronger for the CSI method, where changes in the control will adjust the shape of the entire
input function, whereas only two values are adjusted using step function control. Nevertheless,
this complex adjustment does allow the CSI method to provide more accurate gradients than
the step function method upon using a small perturbation size.
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6.4.1 Multiscale methods

Implementing a reparameterization method, the overall efficiency of an optimization scheme can
be greatly enhanced, as also shown to be the case for the introduced POD-TPWL method.
However, this enhancement comes at the cost of a certain number of degrees of freedom, as
fewer parameters are considered in the optimization procedure. As a result, a large portion of
the physically possible inputs will be excluded when reparameterizing, potentially limiting the
optimal objective function value that can be achieved. To avoid this, multiscale algorithms can
be applied. These methods adjust the dimensionality of the control as part of the optimization
process, optimizing based on varying degrees of freedom. Through this process, both an optimal
reparameterization and a corresponding optimal control are established simultaneously. Many
such methods have already been developed, using a variety of optimization methods, as well as
considering different schemes to reduce the input dimensionality [8] [28]. These methods can,
for example, adjust the reparameterization based on individual derivatives of the cost function
with respect to each input parameter [26]. However, this still requires computing the full cost
function gradient at each time step, which we aim to avoid through the reparameterization.

For this thesis, a rudimentary multiscale method has been applied, based on the cubic spline
interpolation, and step function reparameterization. The aim of this method is to exploit the
higher accuracy of the gradient in the reduced computational domain, without excluding more
irregular inputs that are physically still allowable. To this end, the number of degrees of freedom
would be increased between different loops of this optimization procedure. Herein, only a small
amount of controls would initially be implemented, on the basis of which optimization would be
performed. Once an optimal input was established, the control vector would be translated to a
higher dimensional equivalent, and the optimization procedure was continued with more degrees
of freedom. This could be repeated until the full input vector was optimized.

In optimizing in the manner described above, the more extreme behaviour of the cost function in
the computational domain is mitigated, as contributions of different input variables to the cost
function value are combined. Optimizing initially in this reduced space, the method should then
guide the input to an area of higher objective function value. At this point, the dimensionality can
be increased, allowing optimization at a finer scale, and the process can be repeated. However,
fully optimizing the control vector at each scale will amount to a substantial computational effort.
Moreover, the optimal control using fewer degrees of freedom will generally not correspond to an
optimal control in the higher dimensional setting. For this reason, the dimensionality was always
aimed to be increased before an actual optimum was established. To this end, the control at each
level would be optimized until the gain of optimizing further was expected to be greater upon
increasing the number of degrees of freedom. As criterion for this, we note that the gradient in
each loop is based on perturbations around the current control. If the new control is still in the
hypercube covered by the perturbations, this hypercube is expected to be the area in which the
optimal control will lie. Therefore, once this situation would occur, the dimesionality would be
increased, and the process could be repeated.
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Chapter 7

The Subdomain POD-TPWL
Adjoint Algorithm

In this chapter, the full sudomain POD-TPWL algorithm is outlined, implementing the techniques
from the previous chapters. The iterative framework in which these techniques are applied is
described, consisting of several nested loops, adjusting the search direction and the step size
taken is this direction. Details regarding the exact application of each of the techniques are
discussed, based on the results from earlier numerical experiments.

7.1 Initialization

Building on the results from previous chapters, we now construct the full algorithm implemented
for this thesis. This algorithm aims to optimize some prespecified cost function J(u), governed
by a model of the form:

x0 = xinit

xn+1 = fn+1(xn,xn+1,un+1)

yn+1 = hn+1(xn+1,un+1) n = 0, . . . , N − 1 (7.1)

Through the algorithm, a reduced-order linear surrogate of this model is constructed, to approximate
a gradient of the objective function. Based on this gradient, an improved input is then established
using the search algorithm described in chapter 3, at which point the entire process is repeated.

7.1.1 Input reparameterization

Before starting the optimization procedure, the algorithm performs an input reparameterization,
obtaining a reduced control vector ξ ∈ RNc to optimize. Here, any of the schemes described in the
previous chapter can be used, although primarily the step function and cubic spline interpolation
have been considered. The number Nc of controls can be set to any value smaller than or equal
to the original number of inputs Nu, where usually a starting value of just 2 control times per
well was chosen. This number of controls can also be increased during the algorithm, halting at
the maximum number of controls.
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In addition to the input reparameterization, a transformation function is also implemented,
assuring the inputs to not exceed the imposed bounds. In general, a Sigmoid function was used
to this end, stimulating the optimization procedure to remain more at the center of the domain.
Letting Kn

bnd denote the reparameterization function at each time step after implementing this
transformation, the system (7.1) becomes:

xn+1 = fn+1(xn,xn+1,Kn+1
bnd (ξ))

yn+1 = hn+1(xn+1,Kn+1
bnd (ξ)) n = 0, . . . , N − 1 (7.2)

7.1.2 Domain decomposition

With the reparameterization scheme chosen to reduce the size of the input, the algorithm starts
the reduction of the state vector dimensions. The first step in this procedure is the domain
decomposition, dividing the total grid Ω into ND disjunct subdomains Ωd. These subdomains
are always implemented only along the horizontal plane, splitting the domain into ND,x and
ND,y regions along the x- and y-direction respectively, where ND = ND,x ·ND,y. Initially, these
domains are sought to contain an equal number of grid blocks. Specifically, letting the grid be
of dimensions Ng,x×Ng,y×Ng,z, such that Ng = Ng,x ·Ng,y ·Ng,z, each domain will be assigned
dimensions:

bNg,x/ND,xc × bNg,y/ND,yc ×Ng,z (7.3)

However, the number of cells in each direction might not be divisible up to integer value by the
corresponding desired number of subdomains. Therefore, if the remaining number of cells in
either the x- or y-direction is less than or equal to 4, the algorithm adds these cells to the last
subdomains. This means that, enumerating the subdomains according to their (x, y) position as
(i, j), the remaining cells in x- and y-direction would be assigned to domains with i = ND,x and
respectively j = ND,y. Alternatively, if the extra number of cells in some direction exceeds 4,
new subdomains are constructed to encompass these. In a situation with more than 4 additional
grid blocks in both the x- and y-direction, this will thus amount to creating ND,y + ND,x + 1
new subdomains at the edge of the domain.

In our implementation, the domain has always been divided into 4 subdomains in each direction,
with a potential extension to a fifth domain as described above. For each of these domains d,

the algorithm collects corresponding pressure and saturation values into a matrix xd,n ∈ R2Ndg

at each time step n, where Nd
g denotes the total number of grid blocks in this subdomain. In

addition, the state variables of grid blocks in neighboring domains are added to xd,n at each
time, to construct a larger vector xsd,n. Herein, only subdomains sharing a face are assumed
to be neighbors, such that any domain has a minimum of 2, and maximum of 4 neighboring
domains, as displayed in figure 5.1. In performing the interpolation, the algorithm assumes the
state variables in each subdomain to rely only on those in neighboring subdomains, yielding for
arbitrary d = 1, . . . , ND a system of the form:

xd,n+1 = Fd,n+1(xd,n,xsd,n+1, ξ)

yd,n+1 = Hd,n+1(xd,n+1, ξ) n = 0, . . . , N − 1 (7.4)
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7.1.3 Starting guess

Once an input reparameterization scheme is chosen, a corresponding initial guess ξb = ξ0 ∈ RNc
has to provided. This initial guess determines in what area the algorithm should start searching
for an optimum, often being based on prior knowledge of the model or preceding optimization
results. In our case, this initial guess was generally placed at the center of the computational
domain, assuming no prior knowledge on the problem.

For the initial guess, the full-order model (7.2) is run, to compute the states xn and outputs yn

at each time. These results, along with the corresponding control vector, are collected as the
first sample in a set Γ. From these results, an initial value of the cost function is also computed.

7.2 Outer loops

During each outer loop of the algorithm, a new gradient of the cost function is computed at the
current optimal guess ξb of the reduced control vector, reperforming both the POD method and
RBF interpolation. Between outer loops, the size of this control vector might also be increased,
adding more degrees of freedom for the optimization procedure.

7.2.1 Proper orthogonal decomposition

Each outer loop starts with reperforming the POD method, based on the new control ξb. For
this, a set of NPOD control vectors ξ(i) ∈ RNc are constructed, by randomly perturbing the
background control according to a Latin hypercube sampling method. Herein, a perturbation
size εPOD is used, such that the samples are taken in a hypercube of corresponding size around
the background control ξb. Based on these perturbations, the full-order model (7.2) is then run,
and the results are added to the sample set Γ. We will denote the set of solely POD samples as
ΓPOD ⊆ Γ.

Using the samples collected in Γ, the POD method is applied. To this end, the average x̂ of the
sample states x(j) ∈ Γ is first computed according to (4.19), and subtracted from the states to
attain shifted vectors ∆x(j) = x(j)− x̂. These shifted vectors are then divided into pressure and

saturation states ∆x
(j)
p,s for the domains d = 1, . . . , ND, and combined into snapshot matrices as:

Xd
p =

(
∆x

(1),d
p . . . ∆x

(NS),d
p

)
∈ RN

d
g×NS

Xd
s =

(
∆x

(1),d
s . . . ∆x

(NS),d
s

)
∈ RN

d
g×NS (7.5)

Based on these snapshot matrices, the POD method is consecutively applied in each subdomain.
For this, a singular value decomposition is performed for both matrices as:

Xd
p = Ud

pΣ
d
p[V

d
p]
T Xd

s = Ud
sΣ

d
s [V

d
s ]
T (7.6)

From these, bases for the pressure and saturation states are constructed as:

Φd
p = Ud

pΣ̃
d
p Φd

s = Ud
sΣ̃

d
s (7.7)

Here, Σ̃d
p,s denotes an adapted version of Σd

p,s containing solely its first Ng columns, removing
the other columns containing only values equal to zero. These bases are then reduced, retaining
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only sufficient columns of each to satisfy a corresponding energy criterium. This was always
taken to be 99.9% for the pressure variables, and 95% for the saturation values, maintaining the
minimum amount Ñp,s of columns necessary to satisfy:

Ñdp∑
i=1

[σdp ]2i ≥
99.9

100

Ndp∑
i=1

[σdp ]2i

Ñds∑
i=1

[σds ]2i ≥
95

100

Nds∑
i=1

[σds ]2i (7.8)

Here, Nd
p,s and Ñd

p,s denote respectively the full and reduced number of pressure and saturation

variables in domain d. Retaining only the first Ñp,s columns of the corresponding basis Φd
p,s,

reduced bases Φ̃d
p and Φ̃d

s are attained. Under these, the full state in domain d is approximated
as:

xd,n =

(
xd,np
xd,ns

)
≈
(

Φ̃d
p O

O Φ̃d
s

)(
ψ̃d,np
ψ̃d,ns

)
= Φ̃dψ̃d,n (7.9)

With these bases, optimization can be performed on the lower dimensional component states
ψ̃d,n in each domain, assumed to satisfy a corresponding set of equations:

ψ̃d,n+1 = Ld,n+1(ψ̃d,n, ψ̃sd,n+1, ξ)

yd,n+1 = ~~~d,n+1(ψ̃d,n+1, ξ) n = 0, . . . , N − 1 (7.10)

In this system, the last equation is only relevant in domains where an output is produced, which
excludes any domain that does not contain a well. Furthermore, the actual functions L and ~~~
are never established. Instead, a linear approximation of this model is constructed using the
RBF-TPWL methodology.

7.3 Inner loops

During each inner loop of the algorithm, a new gradient is computed at the current optimal
control ξb. Afterwards, a new optimum is established through a search algorithm, using the
determined approximate gradient.

7.3.1 RBF interpolation

To perform the RBF interpolation, the same set of samples Γ is used as applied in the POD
method. To this end, a number of input samples ξ(i) and corresponding states x(i),d,n and
outputs y(i),d,n are extracted from Γ, for each domain and at each time step. We will denote
these samples as i = 1, . . . , NRBF, where in our runs, all samples available in Γ, being all samples
employed in the POD method, were reused. For the state vectors, the algorithm further extracts
the state variables x(i),sd,n of the domains surrounding d at each time. Then, the components of
these sample states under the corresponding basis are computed at each time as:

ψ̃i,d,n = ([Φ̃d]T Φ̃d)−1[Φ̃d]Tx(i),d,n ψ̃(i),sd,n = ([Φ̃sd]T Φ̃sd)−1[Φ̃sd]Tx(i),sd,n (7.11)

Here, matrix Φ̃sd combines the bases Φ̃d′ for all domains d′ neighboring and including d. Next,
the arguments of functions L and ~~~ in system (7.10) are collected into scaled argument vectors:

[χ(i),d,n+1]T :=
(

1
cψ

[ψ(i),d,n]T 1
cψ

[ψ(i),sd,n+1]T 1
cξ

[ξ(i)]T
)

[γ(i),d,n+1]T :=
(

1
cψ

[ψ̃(i),d,n+1]T 1
cξ

[ξ(i)]T
)

n = 0, . . . , N − 1 (7.12)
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Here, the constants cψ and cξ are computed based on (5.22), as the maximal deviation of the
global vectors ψ(i),n and ξ(i) from their sample mean, over the entire set Γ. Unlike the constants
(5.22) though, no distinction is made here between pressure and saturation components, since
these will exist at a similar scale.

Based on the arguments (7.12), radial distances between the samples in Γ are now computed,
and transformed according to a multiquadratic basis function (5.8). Collecting these transformed
distances in matrices Θr,d,n,Θ`,d,n ∈ RNRBF×NRBF for the arguments χ and γ respectively,
weighting vectors at the samples are then computed as:

[Wd,n+1]T = [Θr,d,n+1]−1[Zd,n+1]T

[Ed,n+1]T = [Θ`,d,n+1]−1[Y d,n+1]T n = 0, . . . , N − 1 (7.13)

Here, the matrices Zd,n+1 ∈ RÑdx×NRBF and Y d,n+1 ∈ RÑ
d
y×NRBF consist column-wise of the

sample component states and outputs in the domain d. The resulting matrices Wd,n ∈ RÑx×NRBF

and Ed,n ∈ RNy×NRBF provide the RBF weighting coefficients for the reduced states and outputs
in domain d, at each of the samples in Γ. These vectors depend on the choice of the shape
parameter ε > 0 in the multiquadratic function, for which an optimum is established between
εmin = 10−2 and εmax = 100 based on a “leave-one-out” cross validation error.

7.3.2 Trajectory piecewise linearization

After computing the RBF coefficient vectors, a piecewise linear model is constructed around the
current optimum ξb. For this, derivative matrices are computed at ξb as:

Ed,n+1

ψ̃b
:=

∂Ld,n+1

∂ψ̃d,n

∣∣∣∣∣
ψ̃d,n=ψ̃d,nb

=
∑
j∈Γ

ωd,n+1
j ·

∂θ(rn+1
j (χd,n+1))

∂ψ̃d,n

∣∣∣∣∣
ψ̃d,n=ψ̃d,nb

Esd,n+1

ψ̃b
:=

∂Ld,n+1

∂ψ̃sd,n+1

∣∣∣∣∣
ψ̃sd,n+1=ψ̃sd,n+1

b

=
∑
j∈Γ

ωd,n+1
j ·

∂θ(rn+1
j (χd,n+1))

∂ψ̃sd,n+1

∣∣∣∣∣
ψ̃sd,n+1=ψ̃sd,n+1

b

Gd,n+1
ξb

:=
∂Ld,n+1

∂ξ

∣∣∣∣∣
ξ=ξb

=
∑
j∈Γ

ωd,n+1
j ·

∂θ(rn+1
j (χd,n+1))

∂ξ

∣∣∣∣∣
ξ=ξb

Ad,n+1

ψ̃b
:=

∂~~~d,n+1

∂ψ̃d,n+1

∣∣∣∣∣
ψ̃d,n+1=ψ̃d,n+1

b

=
∑
j∈Γ

εd,n+1
j ·

∂θ(`n+1
j (γd,n+1))

∂ψ̃d,n+1

∣∣∣∣∣
ψ̃d,n+1=ψ̃d,n+1

b

Bd,n+1
ξb

:=
∂~~~d,n+1

∂ξ

∣∣∣∣∣
ξ=ξb

=
∑
j∈Γ

εd,n+1
j ·

∂θ(`n+1
j (γd,n+1))

∂ξ

∣∣∣∣∣
ξ=ξb

(7.14)

With these derivatives, a linear reduced-order model is constructed:

ψ̃d,n+1 ≈ ψ̃d,n+1
b + Ed,n+1

ψ̃b
(ψ̃d,n − ψ̃d,nb ) + Esd,n+1

ψ̃b
(ψ̃sd,n+1 − ψ̃sd,n+1

b ) + Gd,n+1
ξb

(ξ − ξb)

yd,n+1 ≈ yd,n+1
b + Ad,n+1

ψ̃b
(ψ̃d,n+1 − ψ̃d,n+1

b ) + Bd,n+1
ξb

(ξ − ξb) (7.15)

For ease of notation, we let a subscript r denote the difference between a new solution and the
current one, such that ψ̃r := ψ̃ − ψ̃b, ξr = ξ − ξb, and yr := y − yb. With this notation, the
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linearized system can be given as:

ψ̃d,n+1
r ≈ Ed,n+1

ψ̃b
ψ̃d,nr + Esd,n+1

ψ̃b
ψ̃sd,n+1
r + Gd,n+1

ξb
ξr

yd,n+1
r ≈ Ad,n+1

ψ̃b
ψ̃d,n+1
r + Bd,n+1

ξb
ξr n = 0, . . . , N − 1 (7.16)

7.3.3 Global system

To compute a gradient of the cost function with respect to the controls ξ, the separate systems
(7.16) in each domain d are first combined into a global system. For this system, the reduced
state vector is given by the full vector of components:

[ψ̃n]T =
(
[ψ̃1,n]T , . . . , [ψ̃ND,n]T

)
∈ RÑx n = 1, . . . , N (7.17)

This vector provides the components of the state under a reduced basis:

Φ̃ =

(
Φ̃1
p O . . . . . . Φ̃ND

p O

O Φ̃1
s . . . . . . O Φ̃ND

s

)
∈ RNx×Ñx (7.18)

With the component vector ψ̃ and basis matrix Φ̃ defined in this manner, the full state at any
time step can then be approximated by a vector:

x̃n =
(
[x̃1,n
p ]T [x̃1,n

s ]T . . . [x̃ND,np ]T [x̃ND,ns ]T
)T

= Φ̃ψ̃n (7.19)

This vector will deviate from the actual state vector xn not only in that the it is merely an
approximation, but also in that the elements might be ordered differently as a result of the
domain decomposition.

To construct the global model, the gradient matrices in each domain are combined. For most
gradients, construction of corresponding global versions is fairly straightforward, as these depend
only on a single domain:

ED,n

ψ̃b
=


E1,n

ψ̃b
O . . . O

O E2,n

ψ̃b
. . . O

...
...

. . .
...

O O . . . END,n

ψ̃b

 Gn
ξb

=


G1,n
ξb

G2,n
ξb
...

GND,n
ξb



An
ψ̃b

=


A1,n

ψ̃b
O . . . O

O A2,n

ψ̃b
. . . O

...
...

. . .
...

O O . . . AND,n

ψ̃b

 Bn
ξb

=


B1,n
ξb

B2,n
ξb
...

BND,n
ξb


For the matrices Esd,n

ψ̃b
however, certain columns will correspond to derivatives of components

across different domains. To account for this, we define:

[
Esd,n

ψ̃b

]
j

:=


∂Ld,n

∂ψ̃j,n

∣∣∣
ψ̃j,n=ψ̃j,nb

j ∈ sd

O j /∈ sd
(7.20)
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Thus, [Esd,n

ψ̃b
]j gives the derivative of the component state Ld,n with respect to ψ̃j,nb , given that

the domain j neighbors the domain d, returning a zero matrix otherwise. With this notation,
the global gradient can be given as:

ESD,n

ψ̃b
=



[
Es1,n

ψ̃b

]
1

[
Es1,n

ψ̃b

]
2

. . .
[
Es1,n

ψ̃b

]
ND[

Es2,n

ψ̃b

]
1

[
Es2,n

ψ̃b

]
2

. . .
[
Es2,n

ψ̃b

]
ND

...
...

. . .
...[

EsND,n

ψ̃b

]
1

[
EsND,n

ψ̃b

]
2

. . .
[
EsND,n

ψ̃b

]
ND


(7.21)

With these global gradient matrices, the reduced-order model becomes:

ψ̃n+1
r ≈ ED,n+1

ψ̃b
ψ̃nr + ESD,n+1

ψ̃b
ψ̃n+1
r + Gn+1

ξb
ξr

ỹn+1
r ≈ An+1

ψ̃b
ψ̃n+1
r + Bn+1

ξb
ξr n = 0, . . . , N − 1 (7.22)

We will refer to this system as the reduced-order model (ROM). Using this model, the value of
the component vectors and thus the actual pressure and saturation states can be approximated,
given as a linear extrapolation around the background input ξb.

For implementation of the adjoint method, we also introduce functions g̃n and h̃
n
:

g̃n+1(ψ̃n, ψ̃n+1, ξ) :=
[
I−ESD,n+1

ψ̃b

]
ψ̃n+1
r −ED,n+1

ψ̃b
ψ̃nr −Gn+1

ξb
ξr

h̃
n+1

(ψ̃n+1, ξ) := ỹn+1
b + An+1

ψ̃b
ψ̃n+1
r + Bn+1

ξb
ξr n = 0, . . . , N − 1 (7.23)

Then we can denote the reduced-order model as:

0 ≈ g̃n+1(ψ̃n, ψ̃n+1, ξ)

ỹn+1 ≈ h̃
n+1

(ψ̃n+1, ξ) n = 0, . . . , N − 1 (7.24)

7.3.4 Adjoint method

With the linear reduced-order model given by (7.24), a gradient can be computed for the cost
function using the adjoint method in a straightforward manner. For this, we introduce a cost
function J̃(ξ), computing the net present value from the control vectors as:

J̃(ψ̃1, . . . , ψ̃N , ξ) :=

N∑
n=1

[c̃n]T · h̃
n
(ψ̃n, ξ) (7.25)

Here, the cost vector c̃ contains the same elements as the original cost vector (2.32), only
rearranged to match the order of the outputs after the domain decomposition. Clearly, the
partial derivatives of this function with respect to its arguments are given by:

∂J̃

∂ψ̃n
=

N∑
n=1

[c̃n]T ·

[
∂h̃

n

∂ψ̃n

]
= [c̃n]T ·An

ψ̃b

∂J̃

∂ξ
=

N∑
n=1

[c̃n]T ·

[
∂h̃

n

∂ξ

]
=

N∑
n=1

[c̃n]T ·Bn
ξb

(7.26)
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Similarly, considering the model in the form (7.24), derivatives of the evolution equation are seen
to be:

∂gn+1

∂ψ̃n+1
=
[
I−ESD,n+1

ψ̃b

] ∂gn+1

∂ψ̃n
= −ED,n+1

ψ̃b

∂gn+1

∂ξ
= −Gn+1

ξb
(7.27)

Substituting these derivatives into the system (3.17), we attain a reduced surrogate adjoint model
as: [

I−ESD,n

ψ̃b

]T
λ̃n =

[
ED,n+1

ψ̃b

]T
· λ̃n+1 −

[
An
ψ̃b

]T
· c̃n n = N − 1, . . . , 1[

I−ESD,N

ψ̃b

]T
λ̃N = −

[
AN
ψ̃b

]T
· c̃N (7.28)

Running this model backwards, the algorithm constructs the adjoint vectors λ̃n ∈ RNx . From
these, the cost function gradient is then computed according to (3.19), which yields for the
reduced system:

[∇J ]
T

=
dJ̃

dξ
=

N∑
n=1

(
[c̃n]T ·Bn

ξb
− [λ̃n]T ·Gn

ξb

)
(7.29)

This provides a search direction for optimizing the control vector at the current control ξb

7.3.5 Search iterations

After establishing a gradient ∇J of the cost function, a new optimal control is sought in the
direction of this gradient. This is done using the line search algorithm 1 described in chapter 3,
trying several controls ξi along the search direction pb until a Wolfe condition is satisfied. The
search direction here is simply computed as the normalized gradient at the control:

pb =
∇J̃

‖∇J̃‖∞

∣∣∣∣∣
ξ=ξb

(7.30)

In case an element of control ξb lies on the boundary of the domain, and the corresponding
element of the gradient points in the direction of this boundary, this element will be set to 0.

In algorithm 1, the step size αi along the search direction is decreased, until the increase in
the value of J exceeds a certain fraction ηW of the expected increased, as computed according
to some model function m(ξ). In our implementation, a value of ηW = 10−4 was consistently
used, requiring only a fairly small improvement with respect to the expected increase. Since
the computed gradient is exactly that of the adjusted cost function J̃(ξ), on the basis of the
reduced system (7.22), the algorithm was also set to use this function as model cost m(ξ) in the
line search, with the exact value of the objective function calculated according to the full-order
model (7.2). The initial step size αmax in the algorithm is based on the size of the domain in
which the model is assumed to be accurate, which we have taken to be αmax = 1 1

2εPOD in our
simulations. Finally, bounds ηξ = 10−3 and ηJ = 10−2 were imposed on the required change
in the input and cost function values respectively. Providing these parameters, algorithm 1 will
then search for a new control ξ∗ and corresponding cost J(ξ∗), varying to a desired degree from
the current values.
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7.4 Reiteration

7.4.1 Inner loops

After establishing a new control ξ∗, yielding a higher value of the cost function than the current
control ξb, this current control is replaced by the new optimal guess. Next, this control is added
to the set Γ of samples, whilst another sample is removed from this set. Specifically, the sample
ξ(j) ∈ Γ which lies furthest from the new optimum ξb, thus maximizing the distance ‖ξ(j)−ξb‖2,
is removed. In this manner, the size of set Γ does not increase during the inner loops, to avoid
increasing the computational cost. Based on the new set Γ, a new inner loop is then initiated,
reperforming the RBF interpolation and gradient computation around the new sample ξb.

The inner loops as described above are repeated until a stopping criterion is satisfied. Here we
have implemented three stopping criteria, the first of which imposes a maximum value Ninner

on the number of inner iterations to be performed. This value was set to be b 3
4NPODc, assuring

that no more than 75% of the POD samples computed during the outer loop were replaced, at
which point the RBF interpolation was no longer expected to be reliable. In practice, however,
this maximum number of iterations was never reached, as one of the alternative stopping criteria
would already be satisfied. These criteria required the cost function and input to display a
significant change between inner iterations, repeating an inner loop only if deemed effective.
They were implemented to be the same conditions as for the search algorithm, requiring:

‖ξk − ξk−1‖
max{1, ‖ξk‖}

≥ ηξ

‖Jk − Jk−1‖
max{1, ‖Jk‖}

≥ ηJ (7.31)

In these inequalities, the superscripts k denote the results of consecutive inner iterations, providing
new estimates of an optimal input ξk, and a corresponding cost function value Jk := J(ξk). In
our implementation, values ηξ = 10−3 and ηJ = 10−2 have been used. Based on these values, the
inner loops would be stopped whenever conditions (7.31) were no longer satisfied, or a maximum
number of inner loops had been performed.

7.4.2 Outer loops

When the inner loops are terminated, a new optimal control ξb and sample set Γ have been
generated, for which reperforming the RBF is not assumed to provide a useful gradient. Instead,
at this stage, a new search direction is computed based on a new sample set, removing certain
samples from Γ and adding NPOD new ones. To establish how many samples to retain, the
distance of the new optimum from the old one is considered.

Let ξk denote the optimal sample at the start of outer loop k. As starting guess ξk+1 for the
new outer loop, the sample ξb ∈ Γ is taken yielding the greatest net present value, potentially
being one of the POD samples in ΓPOD, though usually being the result of the inner iterations.
Next, the distance ‖ξk+1 − ξk‖2 between the current and old optimum is computed. This value
is then compared to the radius of the space spanned by the POD samples, given by:

rkPOD = max
ξ(j)∈ΓPOD

{‖ξ(j) − ξk‖2} (7.32)
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If the sample ξk+1 falls outside of the space spanned by the POD samples, such that rkPOD ≤
‖ξk+1 − ξk‖2, the samples collected in Γ are assumed not to provide useful information for the
next outer loop, and are thus discarded. On the other hand, if the new sample ξk+1 is within
the POD domain, a certain number of samples is retained, computed as:

Nretain =
1

2

⌊(
1− ‖ξ

k+1 − ξk‖2
rkPOD

)⌋
NΓ (7.33)

Using this function, the number of retained samples decreases linearly with the distance from
the starting guess ξk, retaining at most half of the samples NΓ in set Γ, when the new input
ξk+1 is close to the old one. This function rests on the assumption that the samples in Γ are
more relevant for inputs closer to the original ξk, aiming to retain samples only if deemed useful.
Here, no samples are retained when moving outside of the computational domain, as the required
computational effort increases with the number of retained samples. The factor of 1

2 has also
been chosen to further abate this increase in computational cost, although any value between 0
and 1 can be implemented.

In addition to prescribing the number of retained samples, the distance ‖ξk+1 − ξk‖2 also
determines how the perturbation size εPOD for the new samples is adjusted. Specifically, if this
distance is less than rPOD, the optimum is expected to be sought at a smaller scale, and thus the
perturbation size is multiplied with a factor 1

2 . This is only done if no input reparameterization is
used. Otherwise the number of degrees of freedom is doubled, and the same initial perturbation
size is taken, restarting the optimization in a higher-dimensional setting. On the other hand, if the
distance ‖ξk+1 − ξk‖2 exceeds rPOD, the perturbation size is simply kept constant, independent
of whether reparameterization is used.

Adjusting the parameters as described, increasingly more accurate gradients are aimed to be
computed if the control vector does not change sufficiently, using smaller perturbation sizes and
retaining more samples. If this does not yield improved results, however, the algorithm should
be terminated. To enforce this, we required the perturbation size to remain above a certain
threshold, satisfying:

εPOD ≥ µPOD (7.34)

Here we used µPOD = 0.005, noting that the controls are generally scaled to assume values within
the domain [−0.5, 0.5]. If this condition was not satisfied, the algorithm would terminate, as new
outer loops were not expected to improve the results. In addition, a maximal number of Nouter

outer loops was imposed, also terminating the algorithm if the number of outer loops became
too big.

The full methodology as implemented for this thesis is summarized in algorithm 4 below. A
schematic overview for a situation applying a fixed number of degrees of freedom is further
provided in figure 7.1.
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Algorithm 4: Subdomain POD-TPWL adjoint optimization algorithm

Input: Starting input guess uinit, Number of perturbations NPOD, Size of perturbations
εPOD, Domain decomposition Ω =

⋃16
d=1 Ωd, Number of outer iterations Nouter

Optional: Set of precomputed samples Γ
Result: Estimate of optimal input uopt

1 Run the full-order model for input uinit and collect results in Γ;
2 Reduce the input uinit according to the reparameterization to ξinit;
3 Set k = 1 and ξ0 = ξinit;

4 while

[
k ≤ Nouter

]
∧ εPOD > 0.005 do

5 Construct NPOD pseudo-random inputs in the hypercube of size εPOD around ξk−1;
6 Run full-order model for all samples and collect results in ΓPOD ⊆ Γ;

7 Construct POD basis Φ̃d based on the samples in Γ for each subdomain d = 1, . . . , 16;

8 Compute component states ψ̃(i),n for all samples in Γ under bases Φ̃d;

9 Divide component states into (ψ̃(i),d,n, ψ̃(i),sd,n) ∈ Γ in each subdomain d = 1, . . . , 16;

10 Set j = 1 and ξk,0 = ξk−1;

11 while

[
j ≤ b 3

4NPODc
]
∧
[
‖ξk,j−ξk,j−1‖
max{1,‖ξk,j‖} ≥ 10−3

]
∧
[
‖Jk,j−Jk,j−1‖
max{1,‖Jk,j‖} ≥ 10−2

]
do

12 Compute RBF weighting vectors for reduced state and output functions based on
samples in Γ;

13 Construct derivatives of reduced state and output functions using the weighting
vectors;

14 Combine derivatives in each domain into global derivatives;
15 Construct reduced-order model based on global derivatives;
16 Perform adjoint method to reduced-order model to construct a gradient;

17 Determine a new optimum ξk,j in direction of gradient using algorithm 1;

18 Discard furthest sample i from Γ maximizing ‖ξ(i) − ξk,j‖2;

19 Add ξk,j and corresponding reduced state and output information to Γ;
20 Set j = j + 1

21 end

22 Establish ξk = arg maxξ(i)∈Γ{J(Kbnd(ξ(i)))};
23 Determine size rkPOD = maxξ(i)∈ΓPOD

{‖ξ(i) − ξk−1‖2} of POD domain;

24 Determine Nretain = min

{
1
2

⌊(
1− ‖ξ

k−ξk−1‖2
rkPOD

)⌋
NΓ,

1
2NΓ

}
;

25 Retain only Nretain samples closest to ξk in Γ;
26 if Nc < Nu then
27 Set Nc → min{2Nc, Nu};
28 Adjust the reparameterization K;

29 Adjust the sample controls ξ(i) ∈ Γ according to the new reparameterization;

30 else if ‖ξ(i) − ξk−1‖2 < rPOD then
31 Reduce perturbation size εPOD → 0.5 · εPOD;
32 end
33 Set k = k + 1;

34 end

35 Compute optimal input uopt = Kbnd(ξk−1);
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Figure 7.1: Schematic overview of the subdomain POD-TPWL algorithm using a fixed number
of control parameters
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Chapter 8

Numerical Testing of the Reduced
Adjoint Algorithm

In this chapter, the performance of the POD-TPWL algorithm is tested, applying the different
reparameterization schemes from chapter 6. Results are also discussed upon using the full input
vector, for both of the reservoir models introduced in chapter 2. Finally, the performance is
considered when increasing the number of input parameters during the optimization.

8.1 Experimental setup

Implementing the POD-TPWL algorithm as described in the previous chapter, an optimal input
u can be established for an arbitrary cost function J(u), on the basis of any model. The
final execution of this algorithm depends on the parameters used at each stage, for example
determining how many samples are used and retained during each iteration. For this thesis, the
values of these parameters have been chosen on the basis of observations of the various techniques
the algorithm relies on, described in earlier chapters. In this manner, although adjustments are
easily implemented, the algorithm has been specifically tailored for the problem of production
optimization. In testing its performance, the algorithm has also been specifically applied to this
problem, considering the Kanaal and Egg reservoir models as described before.

In running the reduced adjoint algorithm, different input reparameterization schemes could be
applied. The most straightforward of these involves no reduction of the size of the input vector,
optimizing the full set of input parameters as allowed by the model. Since the POD-TPWL
method does not require the size of the vectors to be reduced, and only a limited number of
reparameterization schemes were considered for this thesis, the situation without reduction is
also considered as the basis implementation. Running the algorithm under these conditions,
the performance of the general method was tested. In addition, experiments were conducted
running the algorithm upon reparameterizing the inputs according to each of the methods from
chapter 6. In these experiments, the reduced number of controls was always kept low, aiming to
maximize the benefit of implementing a reparameterization rather than optimizing the full input.
Finally, the same experiments were run increasing the number of degrees of freedom between
outer loops, as described in the previous chapter. For this, only the cubic spline interpolation
and step function control methods were used.
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8.2 Full control results

To test the general performance of the algorithm, it was run several times. In each case, only
a limited number of NPOD = 25 samples was utilized to recompute search directions between
outer loops, to maintain a short computational time. The full input vector was used, not reducing
the number of input parameters, but transforming them through a Sigmoid function to satisfy
the imposed bounds. Otherwise, the algorithm was implemented as described in the previous
chapter, running a maximum of Nouter = 10 outer iterations, and Nsearch = 50 iterations in
the search algorithm. In this manner, better inputs were established iteratively, as expected,
increasing the net present value. An example of this increase is plotted in figure 8.1, for both
the Kanaal and the Egg model. In this figure, each filled marker corresponds to the start of
an outer loop, at which point NPOD new samples were computed and the POD and RBF steps
were reperformed. Each empty marker corresponds to a new inner loop, at which point an RBF
sample was replaced, and a new gradient was computed. In between, the net present value
changes as new inputs are tested through the search algorithm.

Figure 8.1: Example of increase of objective function for Kanaal and Egg model

Overall, the algorithm was found to achieve net present values of around J = 6.85 · 107 for the
Kanaal model, and J = 4.55 · 107 for the Egg model. The large discrepancy in these value is a
result of the different monetary parameters in two models, allowing a larger profit to be made
for the Kanaal model when injecting and producing the same amounts of each phase. Aside from
these different results attained at the end of the algorithm, the intermediate results building up
to this optimum also differed between the models. In particular, the initial increase in net present
value for the Kanaal model was consistently significantly greater than that of the Egg model,
as also visible in figure 8.1. This was despite the fact that, at the end of the first outer loop,
different runs of the algorithm for the same model produced varying estimates of the input. In
consecutive outer loops, the increase in net present value was much less extreme for the Kanaal
model, whereas more gradual improvements were observed for the Egg model.
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An explanation for the disparity between the increase in objective function observed for the
two models, could be the difference in the shape of this function over the domain of possible
inputs. Likely, the cost function favors more extreme inputs for the Kanaal model, whereas more
moderate input values are optimal for the Egg model. As a consequence, the initial step in the
algorithm, moving away from the central inputs towards the boundaries of the domain, produces
a greater improvement for the Kanaal model than for the Egg model. On the other hand, once
this extreme input has been established, determining new inputs offers little improvement for the
Kanaal model, whereas a lot of gain is still possible for the Egg model. As a result, the Kanaal
model also tended to perform many more search iterations than the Egg model, as improvements
for this model rapidly became more difficult to achieve.

Although the increase in net present value assumed different curves for the two models, the
overall performance of the algorithm displayed very similar patterns. Specifically, the effect of
the inner loops was found to be limited for both the Kanaal and Egg model, offering only minor
improvements and in scarce cases. This suggests that, although a fairly accurate gradient can be
computed at an arbitrary input by adding it to the RBF sample set, as seen in chapter 5, this
new search direction does not yield extensive improvements in the considered implementation.
Instead, the outer loops are necessary to provide a more significant increase in the objective
function value, relying on information attained from new samples generated around the input.
However, even between outer loops such improvements are not guaranteed, as especially for the
Kanaal model, new outer loops were often performed without increasing the cost function value.
Improvements could then be attained only once sufficient samples had been accumulated between
such loops, and the perturbation size had sufficiently decreased. This too, however, would often
take multiple outer loops, all the while expending a lot of effort without success.

8.3 Reparameterization experiments

8.3.1 Single step control

Implementing the single step control, varying results were attained. Specifically for the Kanaal
model, a step function type control works very well, and the results of several tests are displayed
in figure 8.2. In the first graph, the increase in net present value is plotted over several outer
loops, computed as the mean of multiple runs starting with the same initial guess. This graph
also provides the maximal and minimal values attained over these different runs, displaying a
large variation from the mean. The value of 7.4 · 107 attained here is exceptionally high, and
corresponds to the input displayed in the second subfigure. At wells 5 and 7, this input displays
extreme values, whilst at the other wells milder input values were attained. Such an input is
difficult to attain using alternative reparameterization schemes, as such schemes cannot mimic
a step function of this form to a sufficient degree. However, the single step method itself is not
able to consistently produce such desirable results either, often assuming more extreme values,
or failing to escape local optima. Moreover applying this method to the Egg model, very poor
results were attained, where often the method failed to improve the value of the objective function
beyond that of the initial guess. This suggests that, a single step control method as applied here,
should be considered only on the basis of prior knowledge or a desired input shape, and even
then several runs are necessary to assure optimal results.
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Figure 8.2: Increase of objective function and example of optimal inputs at injection wells
attained using single step control

8.3.2 Principal component analysis

Using a PCA type reparameterization, poor results were attained. Some of these are displayed
in figure 8.3, showing a minimal, mean, and maximal increase in net present value over several
runs of the Kanaal model. In these simulations, values αt = 0.5, αx = 1, and σ = 1 were used,
imposing a stronger temporal than spatial correlation. The required energy retained by the basis
vectors was taken to be 95%, retaining a reduced basis of 21 vectors. The full control could then
described as a linear combination of these vectors, with the scaling coefficients describing the
control. This way, the full input would be described as a linear combination of smooth basis
functions, of which a few at the first well are plotted in figure 8.3.

Figure 8.3: Increase of objective function and example basis functions using PCA control

82



The poor results attained using this method are due to the difficulties in combining the basis
vectors to a full input. In particular, since each of the resulting basis vectors could assume values
between −1 and 1, imposing bounds on the controls such that the resulting inputs would not
violate the physical limitations was challenging. Indeed, any such restriction would exclude a
large variety of potential input functions. Therefore, the controls were allowed to assume any real
value, after which the computed input function would be transformed using a Sigmoid function.
The resulting inputs, however, were not able to achieve net present values comparable to those
using the full input vector, offering low values of the objective function.

8.3.3 Cubic spline interpolation

Of the different implemented reduction schemes, the cubic spline interpolation method provides
the best results. Using an interpolation based on just a few times at each well, both for the Kanaal
and Egg model the optimization procedure produces consistently reasonable results. Herein, the
CSI method provides a smooth input that can assume a wide variety of shapes, allowing more
irregular inputs upon using more control times. For the Kanaal model, two control times per
well already produces good results, as the resulting inputs approximate step functions, which
work well for this model. Results for such a situation are displayed in figure 8.4. The Egg model,
however, requires more irregular inputs, and thus more input parameters are necessary to attain
better results. Nevertheless, good results can still be attained at a reduced computational cost
for both models, making this method more appealing than either the PCA or single step method.

Figure 8.4: Increase of objective function and example of optimal inputs at injection wells
attained using cubic spline interpolation
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8.4 Dimensionality increase

8.4.1 CSI reparameterization

Using the CSI reparameterization, the algorithm was found to produce good results, based on
a reduced control. In reducing the input, however, degrees of freedom in the optimization
procedure are lost, thus also losing potentially better solutions. Increasing the dimensionality
during the optimization, this problem is aimed to be avoided, exploiting the higher accuracy in
lower dimensions, without the overall loss of freedom. To test this, the algorithm has been run
several times using dimensionality increase. This was done for both the Kanaal and Egg model,
implementing a CSI reparameterization. Herein, initially 2 inputs per well were used for the
Kanaal model, whilst 4 inputs per well were taken for the Egg model, noting that this model
has a greater total number of control parameters. The results of a single run for each model are
given in figure 8.5. In this figure, each triangular marker corresponds to the start of an outer
loop in which the number of degrees of freedom is doubled.

Figure 8.5: Increase of objective function using dimensionality increase with cubic spline
interpolation

As the figure shows, increasing the number of input dimensions based on a CSI reparameterization,
similar objective function values can be achieved as when considering the full input. For both
methods, significant increase in this value is attained with the first outer loop, after which the
increase becomes more limited. These later jumps in the objective function are in fact allowed
by adding more degrees of freedom, though this does not guarantee improvements. In fact, an
optimum was always observed to be established before all available degrees of freedom were
exploited, though the exact number of necessary control parameters varied between runs.

Overall, the obtained cost function values using this scheme are comparable to those using the
full input. However, achieving these values required a larger number of inner iterations. As also
displayed in figure 8.5, the computed search direction at the start of outer loops would often be
poor, at which point the search algorithm would expend a large number of iterations without
yielding any improvement. This result is surprising, as the gradient of the cost function was
observed to be more accurate upon using a reduced control. A potential reason for this is that,
in the lower dimensional setting, a local optimum is established more quickly, at which point
establishing a good search direction becomes more difficult.
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8.4.2 Step function reparameterization

In addition to using the CSI reparameterization, tests were also performed increasing the dimensionality
using a step function reparameterization. For this method, the same initial number of control
parameters was considered, corresponding to a single step for the Kanaal model and two steps for
the Egg model at each controlled well. This number of steps would be doubled between certain
outer loops, splitting each constant segment into an additional step function. The results of two
runs for the Kanaal model are displayed in figure 8.6.

Figure 8.6: Increase of objective function using dimensionality increase with step function control

As can be seen from the figure, varying results were attained. These were largely similar to
those using the cubic spline interpolation, attaining comparable results, and requiring a large
number of inner iterations. Using a step function, however, the higher number of degrees of
freedom was better exploited than for the CSI method, often yielding slightly better results.
This can be seen in the first graph, where a new optimum is established almost every time the
dimensionality is increased. This is likely because each increase in dimensionality translates more
directly into additional freedom for the step function method than for the CSI method, splitting
each constant input value into two independent values. In a situation where this additional
freedom does not allow for better solutions, however, the step function algorithm will perform a
large number of search iterations to establish a new optimum for the higher-dimensional input,
without success. In this manner, even if an optimum is established in a few outer loops, a large
number of iterations will be performed before the algorithm terminates. This can also be seen in
the second figure, where a good objective function value is achieved using few control parameters,
but a large number of search iterations are nevertheless performed, attempting to determine a
better solution using the full input.
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Overall, both dimensionality increase schemes provide good results, attaining similar values to
the algorithm using all input parameters. Very often, these higher values are attained using
few control parameters, and increasing the dimensionality offers only minor improvements, or
no improvement at all. Occasionally, the obtained objective value in reduced space exceeds
that generally achieved utilizing the full control vector, in particular for the Kanaal model, for
which reduced control was already established to be well-suited. Nevertheless, even in this case,
the overall number of iterations expended before terminating is significantly greater than upon
starting with the full control vector. This is a consequence of the algorithm unsuccessfully seeking
to improve the optimum using the additional freedom. As such, a multiscale implementation
of the algorithm seems promising, but adjustments are necessary to reduce the computational
effort.
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Chapter 9

Numerical Comparison with the
Ensemble Methodology

In this chapter, the performance of the POD-TPWL method as outlined in chapter 7, is compared
to that of an ensemble method. Experiments are conducted using different sample sizes, starting
with an uninformed guess of the initial input. In addition, an experiment is displayed upon
starting with a random guess of the input, for each of the available reservoir models.

9.1 Ensemble optimization

With the reduced adjoint method functioning as desired, the question remains whether it is
actually capable of improving upon already existing methods. In testing this, we have compared
the algorithm to an ensemble method, specifically the straight gradient implementation as
described by (3.33). This method was chosen as it computes an estimate of a non-smoothed
gradient of the cost function, similarly to the adjoint method. Moreover, this method constructs
such a gradient at an arbitary input ub, based solely on results from a limited number of
perturbations to the input ub. This allows for a clear comparison between both the attained
results and the computational cost of the two methods. Since the ensemble approach is also a
popular method for efficient optimization in reservoir simulation, it provides a good indication
of the state-of-the-art the POD-TPWL method is desired to match, or even exceed.

In implementing the EnOpt method, the algorithm described in chapter 7 was slightly adjusted,
only altering the computation of the gradient in each outer loop, to assure a fair comparison
between the methods. To this end, the same number NPOD of samples was also generated in
each outer iteration as for the POD-TPWL method. However, rather than computing these
samples according to a Latin hypercube scheme, they were generated from a standard normal
distribution, as also done in most implementations of ensemble schemes. In addition, these
samples were consistently scaled with a factor 0.5, rather than adjusting this factor between
outer loops. Then, an ensemble gradient could be computed according to equation (3.33), which
was normalized to provide a search direction for algorithm 1. Since the ensemble method does not
allow a new gradient to be computed without generating new samples, only a single line search
was conducted during each outer loop, corresponding to fixing Ninner = 1 in the algorithm.
As also no reduced-order model is available for the ensemble method, the Taylor approximate
linear model (3.7) was provided as model function for the search algorithm in each outer iteration.
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To compare the performance of the two methods, several experiments have been conducted. In
each, both algorithms were run for a fixed number of outer loops, starting with the same initial
guess of the input, and adding the same number of samples in each outer iteration. For the first
experiment, the initial guess was fixed at the center of the domain, assuming no prior information
on the optimal input. In this experiment, the number of samples was limited to NPOD = 25, to
keep the computational cost low. As this number of samples affects the performance, however, an
additional experiment was run with NPOD = 50 samples, using the same initial guess. Finally, an
experiment was run once more implementing NPOD = 25, but starting at a random initial guess
of the input, away from the center of the domain. Collecting the net present values attained using
the different methods, as well as the number of full-order model simulations necessary to attain
these values, the performance of the EnOpt and POD-TPWL methods could then be compared
under different circumstances.

9.2 Uninformed initial guess

For the initial comparison of the EnOpt and POD-TPWL algorithms, each was run five times,
collecting the results of the different runs. In these simulations, the initial guess of the input
was always placed at the center of the computational domain, such that ui = 1

2 (umin + umax) for
each input parameter ui. Furthermore, NPOD = 25 perturbations were consistently generated at
each outer loop in order construct a new gradient. The mean of the results was taken over the
five runs, to account for the stochastic variations induced by the random perturbations. This
experiment was performed for both the Kanaal and Egg model, though fewer outer loops were
implemented for the Egg model because of the higher cost.

9.2.1 Kanaal model

The average of the net present value at the end of each outer loop for the Kanaal model is plotted
in figure 9.1.

The figure shows that, applying the POD-TPWL method to the Kanaal model as described, it
generally achieves a greater value of the objective function than the EnOpt method. Especially in
the first step, the reduced adjoint method greatly improves the net present value, increasing it to
an extent unmatched by the ensemble method. In consecutive iterations, this difference decreases
as the ensemble method improves the input more quickly than the adjoint method, though at no
point achieving a greater value. Instead, both methods seem to achieve a local optimum within
8 iterations, offering no more improvements with additional outer loops. Notably, this optimal
input differs greatly for the two methods, with an example given in figure 9.2.

As the figure shows, the optimal input parameters at the injection wells achieved through
the EnOpt algorithm assume less extreme values than those computed using the POD-TPWL
method. This is likely due to the different direction taken already during the first step, resulting
in the optimal inputs of the two methods diverging, until both settle in different local optima.
These local optima attained vary even between runs of the same algorithm, suggesting a highly
irregular field where the net present value assumes local maxima at many different values of the
input.
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Figure 9.1: Objective function increase applying reduced adjoint and ensemble method to the
Kanaal model

Figure 9.2: Example of input functions at injection wells after ten outer loops of the POD-TPWL
and EnOpt algorithms for the Kanaal model
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Although the final net present value is generally greater for the POD-TPWL method, this also
comes at a higher computational cost. The EnOpt method applies a single search algorithm
during each outer loop, but the reduced adjoint method can run multiple of these, computing a
new gradient in between by replacing one of the RBF samples. As a result, the required number
of full-order model runs also increases more rapidly for the POD-TPWL algorithm, as displayed
in figure 9.3. This figure provides the mean cumulative number of full-order model runs at each
outer loop of the two algorithms, based on the five different simulations. In this figure, the dashed
line assumes recomputation of the weighting vectors and derivative matrices in each inner loop
to be of comparable cost to a single full-order model run, adding these to the actual number of
performed runs.

Figure 9.3: Cumulative number of full-order model runs applying the reduced adjoint and
ensemble method to the Kanaal model with NPOD = 25

As the figure shows, the required number of full-order model runs after the initial outer loops is
higher for the POD-TPWL method than for the EnOpt method. The largest portion of these
runs are due to the POD samples computed at the start of each loop, which are equal for both
methods. Nevertheless, as the number of outer loops increases, the additional number of FOM
runs required for the inner loops of the POD-TPWL method also grows fairly big. This makes
the EnOpt method less expensive for the initial loops, though the EnOpt graph does surpass
that of the POD-TPWL method, following an increase in the slope after six loops. This is the
result of a local optimum having been established, but the algorithm being forced to continue
running additional outer loops. As a result, the number of search iterations performed in each
outer loop increases drastically, as the Wolfe condition remains unsatisfied. This suggests that,
under alternative stopping criteria, the EnOpt algorithm will achieve an optimum relying on
fewer runs of the full-order model, though this optimum is generally of lower value than that
achieved using the POD-TPWL method.
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9.2.2 Egg model

Figure 9.4 gives the mean net present values at the end of several outer loops for the Egg model,
computed based on five runs of the ensemble and adjoint algorithm.

Figure 9.4: Objective function increase applying the reduced adjoint and ensemble method to
the Egg model with NPOD = 25

The figure shows that, unlike for the Kanaal model, the EnOpt method performs better than
the POD-TPWL method for the Egg model, yielding a greater average net present value at each
of the outer loops. Surprisingly, this difference emerges starting only in the second outer loop,
where the initial step yields an almost identical increase for both methods. As with the Kanaal
model, however, this initial step already yields very different input functions, an example of
which is displayed in figure 9.5. This suggest that, like for the Kanaal model, the net present
value displays a highly non-convex dependence on the input, with many different inputs yielding
the same net present value. This is also evident from the different input functions that occur
after running the same algorithm multiple times, each run establishing a different local optimum.

In addition to producing a lower net present value, the reduced adjoint method also requires
a greater computational effort to attain this value, as shown in figure 9.6. This is once more
due to the various inner loops, allowing several line searches to be performed during each outer
loop, adding to the required number of full-order model runs. Although these inner loops do
occasionally yield new optima (as can be seen for example in figure 8.1), and do so at a lower
cost than computing new perturbations, this is not sufficient to exceed or even match the results
of the EnOpt method.
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Figure 9.5: Example of input functions at injection wells after a single outer loop of the
POD-TPWL and EnOpt algorithms for the Egg model

Figure 9.6: Cumulative number of ful-order model runs applying the reduced adjoint and
ensemble method to the Egg model with NPOD = 25

Overall, the POD-TPWL method as applied here requires a greater computational effort than
the EnOpt algorithm. Expending this effort, it achieves better results than the EnOpt method
for the Kanaal model, but returns worse values for the Egg model. Since the Egg model is a more
realistic model of a physical reservoir, the ensemble method remains preferable to the reduced
adjoint method under these circumstances.

92



9.3 Increased sample size

Although the POD-TPWL method was found to produce worse results than the EnOpt method
for the Egg model, this was based on a sample size of just NPOD = 25. Since the accuracy of the
approximated gradient increases with the number of samples, an experiment was also conducted
using a larger sample size of NPOD = 50. Computing 50 perturbations in each outer loop, the
algorithm was run once again using both the reduced adjoint and ensemble method. However,
as this doubles the computational effort required between each outer loop, the number of outer
loops in this experiment was decreased. In addition, only three runs were considered for each
model, of which the average was once more determined.

9.3.1 Kanaal model

The observed mean increase in objective function value for the Kanaal model is given in figure
9.7. This figure also provides the corresponding mean number of full-order model runs performed
at the end of each outer loop.

Figure 9.7: Performance of the algorithm applying the reduced adjoint and ensemble method to
the Kanaal model with NPOD = 50

The figure shows that, using a larger set of POD samples for both the POD-TPWL and EnOpt
algorithm, the POD-TPWL algorithm still performs better. In fact, a very similar increase is
observed as in figure 9.1, where the initial step of the reduced adjoint algorithm is very large,
whereas the ensemble method displays a more gradual increase. Surprisingly, neither algorithm
performs significantly better upon increasing the number of samples, with the EnOpt method
even yielding a slightly lower result. A potential explanation for this is the irregular dependence
of the cost function on the input vector also discussed before, yielding a lot of local optima in
the computational domain. As a result, the algorithm will easily guide the input to one of these
optima, at which point even a more accurate approximation of the gradient is not sufficient to
improve the cost function value.
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Increasing the number of perturbed samples for each method, the required number of full-order
model runs increases accordingly, as also seen in figure 9.1. This figure additionally shows that,
under these circumstances, the POD-TPWL algorithm will still rely on more of such runs to
improve the cost function value between outer loops. This effect is particularly clear upon
including the RBF interpolation and derivative computation in the assessment. Nevertheless,
the relative contribution of the inner iterations to the total number of full-order model runs still
decreases, reducing the difference between the required effort for each algorithm. The relative
performance of the POD-TPWL method compared to the EnOpt method thus improves with
the number of perturbations, though the overall gain of using additional samples is minimal.

9.3.2 Egg model

Repeating the experiment for the Egg model, the observed mean increase and corresponding
required number of full-order model runs are displayed in figure 9.8. The figure shows that, as
also observed for the Kanaal model, increasing the number of samples computed in each outer
loop does not yield a significant change in the performance of either algorithm. For both, the
required number of full-order model runs increases as expected, but this does not provide an
improved final net present value. Instead, the increase in this objective function value displays
an almost identical shape to that in figure 9.4, with both algorithms achieving very similar
results in the initial outer loops, but the POD-TPWL method still attaining a lower value than
the EnOpt algorithm as more loops are performed.

Figure 9.8: Performance of the algorithm applying the reduced adjoint and ensemble method to
the Egg model with NPOD = 50

Overall, increasing the number of samples does not enhance the performance of either the
POD-TPWL or EnOpt algorithm, only increasing the required computational effort. Since
the accuracy of the gradients does generally increase with the number of samples, alternative
implementations of these gradient computation schemes might be able to better exploit the
greater sample size. However, the particular algorithms as implemented for this thesis fail to do
so. Instead, using only a small number of samples for these allows for more efficient optimization,
with the ensemble methodology generally performing better.
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9.4 Random start

In the previous experiments, the initial guess of the input was always placed at the center of the
computational domain, assuming no prior knowledge on where an optimum might be situated.
However, if such knowledge is available, the initial guess might be taken in a region where the
optimum is expected, or desired, to be situated. To mimic this, we performed a final experiment
where the input was placed at a random location within the range of possible inputs. Running
both the EnOpt and POD-TPWL algorithm starting at this input, we could then see whether
the results attained before extend to situations with a different initial guess. The results of this
experiment are displayed in figure 9.9 below. These graphs show the increase of the objective
function for both methods applied to both models, starting at the same randomly computed
initial input.

Figure 9.9: Objective function achieved applying the reduced adjoint and ensemble method to
the Kanaal and Egg model with a random initial input

As the figure shows, for both models the starting net present value is higher using the random
input than the center of the domain, though only for the Egg model this also translates into
a greater final value. Remarkably, this value is bigger for the POD-TPWL method than the
EnOpt method for the Egg model, whereas the opposite holds true for the Kanaal model, directly
contradicting the results obtained earlier. This implies a more complex relation between the two
methods, where the POD-TPWL method can in fact provide better results for both models,
depending on the choice of initial value. Nevertheless, the overall cost of this method remains
higher, and there is no guarantee this additional cost also yields a better input. In this sense,
although the POD-TPWL method shows potential, the EnOpt algorithm at this point remains
favorable.
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Chapter 10

Conclusion and Discussion

Overall, the subdomain POD-TPWL method provides an elegant way to compute the gradient
of an arbitrary cost function at a reduced cost. Through this method, the adjoint scheme for
computing an exact gradient can be applied to a sample based approximation which, although
less accurate, is significantly more numerically feasible. In particular, although the full adjoint
method becomes computationally strenuous for large-scale systems, these systems can be addressed
as well by applying principal orthogonal decomposition. This can be done using just a limited
number of samples, which can additionally be employed to construct the necessary derivative
matrices, without requiring access to the model code. The cost of this method can be further
reduced by combining it with a domain decomposition, potentially also increasing the accuracy
of the method. Finally, a reduced cost vector could also be used to further augment the efficiency.

Considering the three questions posed at the start of this thesis, the following was observed:

1. How do the different stages of the algorithm affect its overall performance?

In applying the POD-TPWL methodology, the RBF interpolation for construction of
the surrogate model exerts the greatest influence over the accuracy of the approximate
gradients. In particular, this method depends strongly on the number of samples supplied
for the interpolation, where a considerable amount of samples is necessary to yield a
substantial increase in accuracy. This is in contrast to the POD method, for which the
number of provided snapshots was not observed to significantly affect the accuracy of the
projection. Instead, particularly upon application in a subdomain framework, a limited
number of samples already allowed for significant reduction of the state vector size, whilst
maintaining a high accuracy.

Based on these results, improvements of the POD-TPWL methodology can likely be
achieved focusing on the RBF interpoplation. This interpolation depends strongly on
how the samples are chosen, being determined directly by the distances from the different
samples. As such, alternative sampling schemes might be investigated, potentially improving
the accuracy of the interpolation. In addition, alternate subdomain methods could also
be considered, as the effects of this decomposition on the RBF interpolation has not been
extensively studied for this thesis. Such methods could, for example, include correlations
between diagonally neighboring domains, try to implement a more radial dependence
between cells, or simply consider using more or fewer domains.
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2. How do different schemes reducing the number of parameters to be optimized influence the
efficacy of the algorithm?

Implementing a reparameterization scheme, the POD-TPWL method yields a more accurate
gradient upon using the same number of samples. However, this increased accuracy does not
always translate into an improved performance, partially due to the complex dependence of
the objective function on the input, displaying a large number of locally optimal solutions.
In addition, each reparameterization scheme imposes a certain shape onto the full input
function, resulting in a strongly varying performance when applied to different models.
Optimal inputs for different models also require different numbers of parameters in the
reduced control vector, displaying the need for a multiscale method. However, simply
increasing the number of control parameters during the optimization does not achieve
desirable results, as the algorithm has difficulty exploiting the increased freedom at each
iteration, expending a lot of effort with little reward.

To resolve the encountered issues, more advanced multiscale methods could be implemented.
Such implementations could adjust the size of the reduced control in a smarter way, for
example using gradient information as suggested in [26], to better exploit the benefits a
reparmaterization of the input has to offer.

3. How does the POD-TPWL method compare to a similar ensemble-based method when
applied to the problem of production optimization?

Comparing the POD-TPWL algorithm to a similar EnOpt algorithm, the two are able to
attain comparable values of the objective function. Herein, the initial guess of an optimal
input most strongly affects the final result, with each method providing superior results to
the other under different starting conditions. Surprisingly, an increased amount of samples
does not strongly improve these results for either method, likely due to the large number of
local optima allowed for this problem. As the gradients are computed on the basis of random
perturbations, different runs of either algorithm also return different such optima, making
it difficult to establish which method performs best under general conditions. Nevertheless,
as the required cost in performing the POD-TPWL method tends to be higher, without
guaranteeing a better result, the ensemble method remains preferable at this stage.

To enhance the appeal of the POD-TPWL method, we note that, in order to compute the
objective function gradient at some input, the ensemble method requires constructing a new
set of samples around this input. In this aspect, the reduced adjoint methodology offers a
significant computational advantage, as it allows gradients to be computed at any input in
the computational domain, on the basis of earlier samples. Although the accuracy of such
gradients would be poor for a general input, it was found to be fairly accurate if the input
was amongst the samples used for the RBF interpolation. For this reason, the optimal input
at the end of each inner loop was also added to the RBF samples, recomputing the weighting
vectors and consecutively the gradient. Upon testing the algorithm, however, these inner
iterations were found to provide only minor improvements in the objective function value,
requiring more expensive outer iterations to achieve more significant changes.
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To improve upon our results, future methods could consider alternative implementations
of the intermediate gradient computation. For example, new criteria could be established
for discarding RBF samples between inner loops, retaining only those sufficiently close to
the new optimal input. In this manner, the RBF samples might provide a more accurate
representation of the domain around this input, potentially resulting in a more accurate
gradient. Performing adjustments like these, fewer samples might be required to achieve
the same results, decreasing the necessary number of full-order model simulations. In this
manner, the cost of the POD-TPWL algorithm could be reduced, thereby increasing its
appeal compared to ensemble based algorithms.

Considering these different results and suggestions, it is important to note the vast freedom in
constructing an algorithm based on the described techniques. The choice of search algorithm
and gradient implementation, as well as the extensive number of parameters implemented at
the different stages, each affect the overall performance of the final method. Consequently, even
though the method as implemented for this thesis does not improve upon alternative schemes,
a large variety of similar algorithms can be devised which might achieve this result. Significant
improvements can likely be attained investigating the suggested areas, enhancing the results or
reducing the computational effort. In this manner, further research can unlock the full potential
of the subdomain POD-TPWL methodology, to transcend the performance of the currently
available alternatives.
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[39] Van Doren JFM, Markovinović R, Jansen JD. 2006. Reduced-order optimal control
of waterflooding using proper orthogonal decomposition. Computational Geosciences, 10:
137-158.

[40] Wolfe P. 1969. Convergence conditions for ascent methods. SIAM Review, 11(2): 226-235.
doi: 10.1137/1011036.

[41] Wolfe P. 1971. Convergence conditions for ascent methods II: some corrections. SIAM
Review, 13(2): 185-188. doi: 10.1137/1011036.

[42] Xiao D, Fang F, Pain C, Navon I, Muggeridge A. 2016. Non-intrusive reduced order
modelling of waterflooding in geologically heterogeneous reservoirs. From: ECMOR
XV-15th European conference on mathematics of oil recovery, August 2016. doi:
10.3997/2214-4609.201601854.

[43] Xiao C, Leeuwenburgh O, Lin HX, Heemink A. 2019. Non-intrusive subdomain
POD-TPWL for reservoir history matching. Computational Geosciences, 23: 537-565. doi:
10.1007/s10596-018-9803-z.

101

https://opm-project.org/
https://ourworldindata.org/world-population-growth

	Introduction
	Reservoir oil recovery
	Adjoint-based optimization
	Synopsis of the thesis

	The Porous Media Model
	System of equations
	Conservation laws
	Closure equations
	Two phase flow

	State space representation
	Spatial discretization
	Temporal discretization
	Input-output system

	Net Present Value
	Cases
	Kanaal model
	Egg model


	Optimization Methods
	Gradient-based optimization
	Iterative methods
	Wolfe condition
	The search algorithm

	Gradient computation methods
	Adjoint method
	Finite difference method
	Ensemble method


	Principal Orthogonal Decomposition
	Model order reduction
	State projection
	Error minimization
	Singular value decomposition
	Energy criterion

	Domain decomposition
	Numerical implementation
	Affine subspace
	Sampling
	Pressure and saturation separation
	Domain decomposition
	Number of snapshots
	The subdomain POD algorithm


	Non-Intrusive Piecewise Linearization
	Surrogate modelling
	Radial basis function interpolation
	Multiquadratic basis function
	Computing weighting coefficients
	Choice of shape parameter
	Derivative functions

	Numerical implementation
	Argument scaling
	Domain decomposition
	Sample computation
	Gradient recomputation
	Number of samples
	The RBF derivative approximation algorithm


	Reduction of the Input Dimensionality
	Dimensionality reduction
	Input reparameterization
	Step function
	Cubic spline interpolation
	Principle component analysis
	Single step control

	Constraint enforcement
	Reduced input optimization
	Multiscale methods


	The Subdomain POD-TPWL Adjoint Algorithm
	Initialization
	Input reparameterization
	Domain decomposition
	Starting guess

	Outer loops
	Proper orthogonal decomposition

	Inner loops
	RBF interpolation
	Trajectory piecewise linearization
	Global system
	Adjoint method
	Search iterations

	Reiteration
	Inner loops
	Outer loops


	Numerical Testing of the Reduced Adjoint Algorithm
	Experimental setup
	Full control results
	Reparameterization experiments
	Single step control
	Principal component analysis
	Cubic spline interpolation

	Dimensionality increase
	CSI reparameterization
	Step function reparameterization


	Numerical Comparison with the Ensemble Methodology
	Ensemble optimization
	Uninformed initial guess
	Kanaal model
	Egg model

	Increased sample size
	Kanaal model
	Egg model

	Random start

	Conclusion and Discussion

