
Augmented Reality mirror game

Thijs Boumans Patrick Kramer Alexander Overvoorde
Tim van Rossum

June 26, 2015

Abstract

This report describes the development of an augmented reality game by students
of the Delft University of Technology. This game, called the Augmented Reality
Mirror Game, is a game that uses augmented reality technology to simulate
lasers and objects with optical properties like mirrors and beam splitters. The
goal of this game is to use these objects to route one or more laser beams from
emitters to targets. Collaboration is an essential aspect of the game. Different
players have distinct capabilities to manipulate the game world and solve the
puzzles.

Contents

1 Orientation 1

1.1 Project Description . 1

1.2 Final Product . 1

1.3 Software Design Methods . 2

1.3.1 Design Process . 2

1.3.2 Organization . 3

1.3.3 Design Architecture . 4

1.4 Process . 4

1.4.1 Early Preparations . 4

1.4.2 Research . 4

1.4.3 Programming the basic game 5

1.4.4 The OpenCV server . 5

1.4.5 Restructuring the entire project 5

1.4.6 The new projection code 5

1.4.7 Further integration . 6

1.4.8 Wrapping up . 6

1.4.9 The process table . 6

2 Design 8

2.1 Main activities . 8

2.1.1 A local user wants to start a game 8

2.1.2 A local user wants to join a game 8

2.1.3 A remote user wants to join a game 9

2.1.4 A local player wants to move a mirror 9

i

2.1.5 A remote player wants to rotate a mirror 9

2.1.6 Use case diagrams . 9

2.2 Back-end design . 9

2.2.1 The Core component . 10

2.2.2 The Network component 11

2.2.3 The Projection component 13

2.2.4 The Vision component . 14

2.2.5 The Level component . 15

2.2.6 The Graphics component 15

2.2.7 Experimental code: the RandomLevel component 15

2.3 Game elements . 17

2.3.1 Laser target . 17

2.3.2 Mirror . 18

2.3.3 Wall . 18

2.3.4 Emitter . 18

2.3.5 Checkpoint . 21

2.3.6 Portal . 22

2.3.7 Lens splitter . 22

2.3.8 Planned game objects that didn’t make it 22

2.4 Level design . 23

2.4.1 Levels 1 to 5: the basic tutorial levels 23

2.4.2 Levels 6 to 15: the easy levels 24

2.4.3 Levels 16 to 25: the advanced levels 24

3 Implementation 25

3.1 AR Glasses . 25

3.1.1 SLAM tracking . 26

3.2 Synchronization of World State 26

3.3 Marker Detection . 27

3.3.1 Board detection . 28

3.3.2 Marker detection . 29

3.3.3 Marker recognition . 30

3.3.4 Marker tracking . 31

ii

3.4 Networking and the OpenCV server 31

3.4.1 Communication between C# and C++ 32

3.4.2 The master camera . 32

4 Quality Assurance 34

4.1 IDE used for programming . 34

4.2 Testing . 34

4.2.1 C# Unit Tests . 35

4.2.2 C++ Unit Tests . 35

4.2.3 Integration Tests . 36

4.2.4 User Tests . 36

4.2.5 Code coverage . 37

4.3 Code Style . 37

4.4 SonarQube . 38

4.5 SIG Evaluation . 39

4.6 Demos and playtesting sessions 40

5 Conclusion 41

A Research Report 42

A.1 Problem Formulation . 42

A.2 Problem Analysis . 42

A.2.1 Augmented Reality (AR) Functionality 43

A.2.2 Situational Awareness . 46

A.2.3 Interdependence between players 46

A.2.4 Virtual Co-location . 47

A.3 Proposed Solutions . 48

A.3.1 Laser mirror game . 48

A.3.2 Platformer . 49

A.3.3 FPS Survival game . 50

A.3.4 Tower defense . 50

A.3.5 Minesweepers . 51

A.3.6 The chosen idea . 52

A.4 Conclusion . 52

iii

B Product plan 54

B.1 Concept . 54

B.1.1 Gameplay . 54

B.1.2 Requirements . 55

B.2 Approach . 56

B.2.1 Technical details . 56

B.2.2 Software engineering . 56

B.2.3 Guidelines . 57

B.3 Planning . 57

B.3.1 Holidays + businessdays on which EWI is closed 58

C SIG Midterm Evaluation 59

D SIG Final Evaluation 61

E Info sheet 62

Bibliography 65

iv

List of Figures

1.1 Scrum methodology overview . 3

2.1 The use cases for the remote player. 10

2.2 The use cases for the local player. 11

2.3 Class diagram of the Core component 12

2.4 Class diagram of the Network component 13

2.5 Class diagram of the Projection component 14

2.6 Class diagram of the Vision component 15

2.7 Tiled Map Editor Window . 16

2.8 Class diagram of the Level component 17

2.9 Class diagram of the Graphics component 18

2.10 The random level algorithm, displayed graphically. 19

2.11 The laser target. 19

2.12 A mirror. 20

2.13 A selected mirror. 20

2.14 A wall. 20

2.15 The emitter. 21

2.16 A checkpoint. 21

2.17 The portal. 22

2.18 The lens splitter. 23

3.1 A pair of META One glasses. 26

3.2 A marker that can be recognized by the Meta. 28

3.3 A marker that can be recognized by the Meta and the master
camera. 28

v

3.4 Original marker that indicates a playing surface corner. 28

3.5 New marker that indicates a playing surface corner. 28

3.6 Example of detecting playing surface and isolating it. 29

3.7 Example of thresholding markers with false holes highlighted. . . 30

4.1 The Unity Test Tools unit testing screen. 35

4.2 The C++ code coverage report. 38

4.3 The C++ code coverage report, with covered and uncovered lines. 39

4.4 A SonarQube overview. 40

vi

Chapter 1

Orientation

This chapter provides an overview of the orientation phase of the project, as well
as giving an overview of the entire process of the project from start to finish.
It shows an analysis of the project requirements, and the decisions that have
been made during the project regarding choices of frameworks and libraries as
well as game play elements. It also functions as a thorough introduction to this
report.

For a more in-depth view on the research that has been done leading to these
decisions, please refer to the Research Report in appendix A.

1.1 Project Description

While augmented reality research has grown into a mature field over the last
years, the aspects of situational awareness and presence of augmented reality
(AR) are still quite open research topics. This project is about designing and
implementing a collaborative game to explore the different perception of situa-
tional awareness, presence and workload in a physical and an AR environment.
The game is to be employed as an approximation of collaboratively solving
complex problems, as they occur in crime scene investigation when using vir-
tual co-location, i.e. remote crime scene experts to guide local investigators in
AR to collaboratively analyze the crime scene.

1.2 Final Product

The goal of the game is to solve a puzzle by controlling laser beams using mirrors
in such a way that a predefined target is hit. The game can be played by one
or more local players and one or more remote players.

1

There are cards present for the local players that represent mirror bases. These
must be placed on the table, which will be the locations for the mirrors. The
local players will be able to see the mirrors they place through the use of AR
technology. Each of the local players will only be given a few of the mirror bases
needed to solve the puzzle, and as such solving it requires cooperation from all
local players.

The remote players can also see the placed mirrors, and can rotate them to
influence the path of the laser beam(s). Only by cooperation between local
players (who can only move the mirror bases) and remote players (who can only
rotate them) it becomes possible to hit the target and as such solve the puzzle.

The game provides various types of objects with different capabilities, allowing
for more complex puzzles. Examples of such objects include, but are not limited
to walls, laser beam splitters and checkpoints. For a complete overview of the
game objects provided by the game, see section 2.3.

The game is designed to stimulate cooperation between physically co-located
players and the remote player(s). It does so by dividing abilities required for
solving the puzzles amongst all players as follows:

• Physically co-located players each get only a part of the mirror bases
required to solve the puzzle, requiring input from all of these players.

• Physically remote players have the ability to rotate mirrors while the phys-
ically co-located players do not have this ability, requiring input from both
physically co-located as well as remote players.

1.3 Software Design Methods

This section describes the design methods that were used during the project. It
illustrates the methodology that was used to develop and coordinate the project
during the development phase.

1.3.1 Design Process

In designing and implementing the product, it is important that requirements
can be changed quickly and without much problems. This is not because the
requirements are likely to change from the client side, but because the choice of
AR technology may change over the course of the project because of technical
issues. The available Virtual and Augmented Reality glasses are mostly still in
development, and as such this may affect the technical viability of each device.

To deal with such changes, we use the Scrum methodology [Sutherland and
Schwaber, 2013]. This methodology describes a set of rules that, amongst others,
makes it easier to deal with various changes during the development process.

2

Figure 1.1: Scrum methodology overview

The methodology in graph form can be seen in 1.1. The methodology shown is
nearly identical to what we use, the only exception being that our sprints only
last one week instead of two.

1.3.2 Organization

To be able to simultaneously work on the project without conflicts, we use
Git as a version control system. The project is stored remotely on GitHub,
ensuring the work is efficiently shared between all team members. Also, Git
stores all commits that have been done. These can be reviewed on GitHub, and
it is possible to go back to a commit stage if we absolutely need to, in case of
something horribly wrong happening to the project.

To coordinate and divide the tasks, as well as to maintain the items in the Scrum
backlog, we use Trello. Trello is an on-line service that provides a dynamic way
to organize items in various lists. It does so by using cards as bullet points in a
list. It is also possible to assign certain people to those cards, which can be used
to visibly divide tasks among the group members. Using labels, each card can
also be categorized as a task relating to a certain part or parts of the project,
such as software engineering, graphics design, networking, etc. We created lists
to keep track of which items were in the backlog, which items were being worked
on and which items were already done. This allowed us to easily see what was
being done and what was done.

The project is licensed under the terms of the MIT license. We chose this
license because it allows other developers to learn from this project. Addi-
tionally, since this project is done as a part of a research project, we believe
making it open source may help future researchers in the same field. The full
terms of the MIT license can be found at http://opensource.org/licenses/
mit-license.html

3

To ensure the C# source code in the project meets common coding standards
(as set by Microsoft), we use the code analysis tools FxCop and StyleCop in
combination with SonarQube. FxCop performs static code analysis, like code
complexity and some naming conventions. StyleCop, on the other hand, focuses
more on code style which includes use of spacing and documentation as well
as other factors. SonarQube is a platform that unifies the reports from these
tools and provides a clean overview of the combined issues found by FxCop
and StyleCop, as well as some simple metrics SonarQube has built-in. Further
detail about maintaining code quality is described in the QA section of the
report, chapter 4.

1.3.3 Design Architecture

Because the product is a game and the goal of the project is more focused on the
game mechanics rather than the underlying engine, we chose to use Unity as a
starting point. Unity provides a platform independent development environment
for creating games, and offers many features commonly used in games.

Using Unity means that the project architecture is bound to the loosely coupled
component-based architecture that Unity provides, although it is possible to
include principles from object-oriented programming to some extent.

1.4 Process

This section describes the process of the project. The different phases during
the project are highlighted in this section.

1.4.1 Early Preparations

Before the project started, we had a meeting halfway through March with our
coach about what the project entails and what is currently possible, given the
hardware that we have today. After a brainstorm session and a pitch session
with our coach and client, we were shown what kind of hardware the TU Delft
has available, and also what the limitations of this hardware are. In this phase,
a product plan was also created. This document describes the planning for the
duration of the project, and can be found in appendix B.

1.4.2 Research

The first two weeks were the main research phase. This entailed that the re-
search report had to be written. The second week was partly devoted to writing
the report, and also to testing out more functionality of the software and hard-
ware. The first game object models were also developed during this time, and

4

there were plans for a first demo at the end of week 3 or at the beginning of
week 4. The research report, which was the result of these two weeks, can be
found in appendix A

1.4.3 Programming the basic game

The next two weeks revolved around creating game objects and game play.
After some testing with markers and AR glasses, as well game objects, a first
demo was also developed during this time. This phase also saw unit testing of
game elements, as well as heavy usage of StyleCop and SonarQube to clean up
respectively reorganize code in order to deliver clean code to SIG, for our first
submission.

1.4.4 The OpenCV server

Week 5 finally saw the first demo being demonstrated to the coach. The coach
was satisfied, but there was a lot to be done before the project could be consid-
ered finished. During this week, networking was revamped and development of
a server that makes use of the computer vision library OpenCV started. This
decision was based on various technical challenges we came across during de-
velopment. The reason for this decision can be found in the Implementation
chapter (chapter 3).

1.4.5 Restructuring the entire project

Week 6 began with a massive restructuring of the project. Right before the code
was to be handed in to SIG, Unity failed to build the project completely. There
were no errors in the scripts, but the Unity compiler kept throwing unexplainable
error messages. This caused us to move everything that we wanted to move from
the original project to a new Unity project.

Even though this caused a setback in the project planning, this issue gave us
an opportunity to take a critical look at our code base. After completing this
task and handing in the package for SIG, development could continue on the
OpenCV server. The results for the SIG evaluation from this week can be found
in appendix C.

1.4.6 The new projection code

Week 7 began with further development on the OpenCV server and the code
needed for correct projection of the META One. The projection code base was
overhauled on Monday, mainly to allow for better unit testing. During this
week, the midterm meeting also took place, and we could show off what we
had up until that point. The coach and the customer(s) (Stephan could not be

5

there, so he sent some of his colleagues to check in on how the project went)
were impressed, but they also said that development had to continue for the
time being. At the end of week 7, the server was completed, but now the true
challenge began: integrating all the software into one single product.

Week 8 started with the integration of all the parts of the software. From the
start on, this proved quite challenging. Players could rotate mirrors by rotating
the markers (which shouldn’t happen, as this would kill off the co-operative
element of the game), as well as other things. As such, development on pro-
jection code was once again necessary. Throughout this week, massive progress
was made towards integration of the various parts of the software, especially
from early Wednesday on. Because of the progress considering integration of
software, level design could finally start.

1.4.7 Further integration

Week 9 was even further devoted to integration of all the various bits and
pieces of the software. Once again, massive progress was made in integrating all
software, and at the end of the week, the first fully working version was finally
released.

1.4.8 Wrapping up

At the end of week 10, the final report had to be handed in. This meant that the
project had to be wrapped up. The main activity in this week was testing with
other users (the client and a few volunteers), as well as checking the final report
before it had to be handed in. Also, the info sheet was written in this week, as
it is required to have that checked before the final report can be handed in.

1.4.9 The process table

The following table gives a nice and short overview regarding what was done
every week. An X in a particular subproject and week means that, during that
week, that subproject was developed further.

6

Weeks 1 2 3 4 5 6 7 8 9 10
Research X X

Final report X X X X X X X
Networking X X X X X X X

Augmented reality X X X X X
Game elements X X X X

Testing X X X X X X X
Projection X X X X X X

Level design X X X

7

Chapter 2

Design

This chapter explains the design of the system. This includes: back-end design,
model/graphical design, and main activities.

2.1 Main activities

There are several main activities in the system, corresponding to the two main
user types of the system. These user types are both the physically co- located
players as well as the physically remote players. The activities are as follows:

2.1.1 A local user wants to start a game

The local user ensures the main camera is set up according to the provided
guidelines. The local user then starts the server on the machine the camera
is connected to. The local user needs to take note of the IP address of the
server machine and fill this into his or her local machine (to which the Meta
One glasses are attached). The other players also fill in the same IP address.
The server can also run on one of the players’ machines. The local user needs
to wait for others to join the game. When at least two local players and at least
one remote player has joined the game, the game will start.

2.1.2 A local user wants to join a game

A local player wants to join an active game. Before this can happen, a game
has to be started first. The local player needs to acquire the IP address of the
server machine and fill this in. Once the game starts, the local player will see
virtual objects projected through the Meta One glasses.

8

2.1.3 A remote user wants to join a game

A physically remote player wants to join an active game. Before this can happen,
a game has to be started first. The remote user needs to acquire the IP address
of the local server machine (see 2.1.1) and fill this in. The remote user will see
a virtual version of the same game world as the local players.

2.1.4 A local player wants to move a mirror

A local player is partaking in an active game. To hit the target, they need
to move a mirror to a certain point to allow the laser beam coming from the
emitter to be deflected and therefore to hit the target. The local player uses
movable markers to place a mirror in the game world. Using the Meta One
glasses, local players can see the game objects when at least one marker is in
their view. For this example, it is assumed that the mirror is rotated such that
no more rotation is required. The local player can then take the mirror marker,
move it to the point it should be moved to, and complete the game that way.

2.1.5 A remote player wants to rotate a mirror

Remote players, due to them not being physically co-located with the local
players, cannot move mirror markers, as that would require them to meet up
with the local players and to play with them. However, remote players have
access to an ability that the local players do not have access to, that being
the ability to rotate selected mirrors. The remote player uses a computer for
this. In order to rotate a mirror, the player can click on a mirror to select and
rotate it. When a mirror is selected, the outer frame of the mirror (shown in
2.12) will change color from gold to bright yellow, indicating that this mirror is
selected (the color change will only be visible for the remote player responsible
for clicking on that mirror, even other remote players will not be able to see
this color change). The selected mirror can be rotated clockwise using the right
mouse button, and counter-clockwise using the left mouse button.

2.1.6 Use case diagrams

To illustrate the given main activities, two use case diagrams are displayed here.
The use cases for the remote player are depicted in 2.1, while the use cases for
the local player are depicted in 2.2.

2.2 Back-end design

The system is composed of several main parts. For this purpose, we divided the
C# code over various components, which will be highlighted below.

9

Figure 2.1: The use cases for the remote player.

2.2.1 The Core component

The Core component contains all the code for all the core game play elements.
The term ”core game play elements” refers to all objects necessary to play the
basic game with, basically the code for the game objects. Using only the code
from the Core component, it would be possible to create the same game without
using AR technology or using markers to play the game with, for that matter.

The Core component has two subcomponents: The Core.Emitter component,
which contains code for objects that emit laser beams, and the Core.Receiver

component, which contains code for objects that receive laser beams and have
to do something with these beams.

There are several game objects that emit laser beams as well as receive them (as
seen in 2.3). This causes the Core.Emitter and Core.Receiver components to
have some coupling. However, the coupling is minor, and it only exists between
sub-components in the same main component. As such, this should not cause
that much of a problem, when considered in a software engineering context.

10

Figure 2.2: The use cases for the local player.

2.2.2 The Network component

The Network component has undergone several changes since the start of the
project. These changes are described in this part.

The first take on creating a network functionality in the game was to use the
standard way of networking within Unity itself. This involved creating a rather
simple network script that allowed the game to connect to a Unity master server,
which then handled all changes that were recorded by network view components
of objects, and sent them to all the players, synchronizing the game world.
There are several tutorials on how to write such a networking script and how
to use it in a multi-player game, the tutorial that was used for the script in
the component can be found here: http://www.paladinstudios.com/2013/

07/10/how-to-create-an-online-multiplayer-game-with-unity/.

Unfortunately, due to the major differences between local and remote players,
as well as the way the Meta One manipulated object positions and rotations to
fit the real world, we needed a custom solution to be able to synchronize the
world state in a more controlled way. Because of this, a different solution was
required to create synchronization across the game world. The next option was
to use the Photon Unity Networking package, which not only supported multi-
player better (it allowed for more people to play the same game), but it also
allowed VR and AR games to have multi-player functionality (there is a free

11

Figure 2.3: Class diagram of the Core component

package available on the Unity Asset Store, which can be found here: https:

//www.assetstore.unity3d.com/en/#!/content/1786). However, this was
not used, as the problem was not that we needed to connect several AR players
in the game world (as these would be the local players, and therefore would be
able to see what was going on in the game world by just looking at the marker
that was placed near them). As such, a different solution had to be found.

The final solution we used is as follows: Instead of relying on Unity for the
networking functionality, we decided to combine this problem with another issue
we came across regarding the detection and synchronization of marker locations.
This solution was to deploy a server, written in C++, that uses OpenCV to
detect the markers. This also allows us full control over the detection and
manipulation of object transformations in Unity, as this was causing issues with
both the Meta One SDK as well as Vuforia.

The OpenCV server makes use of a single camera to detect marker locations.
These locations are then sent to all clients over a socket connection. This so-
lution makes it easier to synchronize object positions between users because all
game activities take place in a predefined area on a table, and the users need
only look at a single marker to be able to see the entire scene.

12

Figure 2.4: Class diagram of the Network component

2.2.3 The Projection component

The Projection component is responsible for projecting the world to the Meta
One glasses. It takes care of detecting markers in the playing area and projects
all objects relative to those markers.

The main responsibility, fixing the projection to the Meta One glasses, is partly
taken care of by the Meta SDK. However, the Meta SDK moves and rotates all
game objects to fit the actual position and rotation of the Meta One. Due to
the limited field of vision of the Meta One glasses, not all markers can be seen
at the same time. In order to ensure the game objects and corresponding laser
beams still appear at the correct positions, the Network component provides
relative positions and rotations for all game objects in the playing area (also
see paragraph 2.2.2). The Projection component then uses this information
to place the objects in correct positions relative to any marker detected by
the Meta SDK. This ensures that all objects remain visible and in the correct
locations, as long as the Meta SDK can see at least a single marker.

Note that even if the marker cannot be detected temporarily, there is only

13

a slight error in the locations of objects. This is due to the use of SLAM
localization for tracking markers. See the paragraph about SLAM localization
(3.1.1) for details on how SLAM localization works.

See figure 2.5 for the class diagram for the Projection component.

Figure 2.5: Class diagram of the Projection component

2.2.4 The Vision component

The Vision component is a small component responsible for providing hardware-
specific details regarding marker tracking. It used to be a part of the Projection
component, but it got split off, because it had little to do with the projection
of the game objects into the world, and more with tracking the actual markers.
Also, the Projection component became way too big during development: it
started with about four to five classes, and those got split up into about fifteen
classes, mainly because they violated software engineering principles such as the
single responsibility principle. Because it got so big, some of the classes needed
to be split off from the component and put into another component.

By design, and because of how it was conceived, the Vision component de-
pends lightly on the Projection component. The only communication from
the Vision component to the Projection component is by sending out mes-
sages into the object hierarchy, which are then received by components that can
actually receive said messages.

14

Figure 2.6: Class diagram of the Vision component

2.2.5 The Level component

The Level component contains the functionality to load and build levels for the
players to solve. It contains a way to load levels created using a map editor
application called Tiled [Lindeijer, 2014]. Using this map editor, it becomes
possible to create levels fairly easily using a visual editor. See figure 2.7 for an
example level opened in the Tiled editor. The tiles representing various game
objects can be seen in the lower right of the window, and the level itself is
displayed in the center.

2.2.6 The Graphics component

The Graphics component provides graphical functionality to the game. Since
most graphics-related functions are provided by Unity, this component is very
small, containing only very limited functionality that Unity did not already
provide. The main function included in this component is the code that draws
the laser beam.

2.2.7 Experimental code: the RandomLevel component

The RandomLevel component is an abandoned and deleted component, which
contained code that, when deployed, would create rather simple but random
levels with one target and one laser. The levels are always solvable, and would
be created according to an algorithm that is explained in this section.

The algorithm that was used to create random levels is as follows: First, a
square grid of points is made. The grid was represented by 2D array (a matrix)

15

Figure 2.7: Tiled Map Editor Window

of grid points. Second, the laser target is placed in the middle of the matrix.
Third, a spiral path is created that goes from the laser to an outer edge of the
matrix. This path is then known as the critical path. Finally, walls are added
to the level randomly, however they are never placed on either the target, a part
of the critical path, or the laser. The walls are also rotated either horizontally
or vertically. As can be seen, the levels created were rather simple (as they
did not contain our more advanced game objects, only targets and walls), and
solving them could always be done with several mirrors. The four phases of
the randomization algorithm are displayed graphically in 2.10. The first image
depicts the grid, the second depicts the laser target as a red dot in the middle
of the map, the third image depicts the spiral path that is created from the
target (the orange dot) to the edge of the map (this spiral path always bends
four times, and can start in any random direction), the final image depicts the
random placement of walls as purple dots.

The random level generation was added very early on in the project, and there
was some value in developing it further (think of replay value for the game,
for example). It was also changed later to allow for more possible paths (not
only spirals, but also paths with less or more than four bends). However, it
was scrapped after discussing it with our coach, after which we agreed that
the increase of the replay value of the game was not worth it. Another reason
to abandon it was because the classes belonging to it were some of the most
complex in the project. Even after several attempts to rewrite these classes,
they were still just barely under the maximum complexity that we allowed for
our classes. This was measured with SonarQube, explained in section 4.

16

Figure 2.8: Class diagram of the Level component

2.3 Game elements

For designing the 3D models, we used Blender. Blender is a free application
for 3D modeling, under the GNU General Public License, and Unity natively
supports Blender models (provided it is installed on the system). We have
chosen for a light looking style featuring nature inspired models and gold and
crystal based materials. The light modeling style causes slight misalignments
with the ground to be less noticeable and makes the lack of feedback from moving
a card feel less odd. The crystals and gold just feels good in combination with
the beams of light.

The following sections display and describe the graphics used in the game play
elements, as well as the function of these elements.

2.3.1 Laser target

The laser target is the main target of the game. It consists of a small container,
which contains a crystal. The point of the game is to direct a laser beam from
an emitter to this target. When the target is hit by a laser beam, the outer
columns around the crystal inside will rotate and spread out, indicating that the
target has been hit. The game will proceed to the next level once all targets are
hit, provided that the level contains no checkpoints. An image of the target is

17

Figure 2.9: Class diagram of the Graphics component

shown in figure 2.11. The gold columns depicted are the outer columns described
earlier. Also, the inner crystal can have various colors depending on the color
of the laser beam required to hit it.

2.3.2 Mirror

A mirror is a crucial game element. Its reflective surfaces allow it to reflect any
laser beam that hits these surfaces. It is also the only element that players can
move and/or rotate. All levels require at least one mirror to move or rotate in
order to hit the target. An image of a mirror in-game is shown in 2.12. The
light blue circles reflect laser beams, the golden outer frame does not.

As mentioned before in the user activities, the mirror’s outer frame will become
brightly yellow when that mirror is selected. A selected mirror is shown in figure
2.13.

2.3.3 Wall

The wall is the main obstacle in the game. It blocks incoming laser beams
completely. Walls are used in levels to make it harder for one player to reflect
a laser beam coming from an emitter to the target. The first few levels mainly
use walls to create paths that the laser beam has to go through, later levels use
not only walls, but also other game objects. A wall is shown in 2.14.

2.3.4 Emitter

The emitter is the most important aspect of the entire game. It is the only
”true” source of a laser beam (although game elements like the beam splitter

18

Figure 2.10: The random level algorithm, displayed graphically.

Figure 2.11: The laser target.

19

Figure 2.12: A mirror.

Figure 2.13: A selected mirror.

Figure 2.14: A wall.

can also create beams, these elements always require input in the form of another
laser beam; the emitter does not have that problem, hence it is a ”true” source).
In the early levels, players only move and rotate mirrors to guide a laser beam
from the emitter to the target, while in the later levels beams have to be guided
towards other game elements (like the beam splitter, for example) in order to
complete the level. It is possible to have multiple emitters in a single level, and
later levels use this to create more complex puzzles. What the emitter looks like
exactly is shown in figure 2.15. Also shown here is a laser beam coming from

20

the emitter. The laser beam is colored red per standard. It is also possible to
alter the color of the beam coming from the laser, to be either blue or green.

Figure 2.15: The emitter.

2.3.5 Checkpoint

The checkpoint is a very important game object. Once a checkpoint is hit, it is
registered that the checkpoint has been hit until the laser beam hitting it is no
longer aimed towards it. In order to proceed to the next level, one needs to hit
all the checkpoints in the level as well as all the targets. Checkpoints do not
require that the laser beam has any specific color in order for them to register
that they have been hit. The checkpoints also allow lasers to pass through
them. Checkpoints have been added mainly to prevent sequence breaking of a
level (sequence breaking is a term used in video games for being able to get to
a goal using a different route than you were supposed to, often making it far
easier than it should be. Gamers making use of this ”break the sequence” of
actions in the game, hence the term). An image of a checkpoint is shown in
2.16

Figure 2.16: A checkpoint.

21

2.3.6 Portal

The portal is a more advanced game object. It allows light that travels into it
to travel out of the portal it is linked to, and vice versa. This allows puzzles
to contain targets that cannot be hit by just reflecting laser beams from the
emitters by mirrors (as the laser beams have to travel through a portal in order
to be able to hit the target), therefore forcing the players to redirect laser
beams to portals. A portal is depicted in 2.17. It looks like a recolored mirror.
It has one black side and one green side. The black side allows laser beams to
travel through it to the portal linked to it. The green side blocks laser beams
completely.

Figure 2.17: The portal.

2.3.7 Lens splitter

The lens splitter is another advanced game object. It splits incoming laser
beams, creating two separate laser beams that each go a different way. This
allows creation of another laser beam without needing an extra emitter, which
allows hitting of multiple targets, for example. A lens splitter is depicted in
2.18. As can be seen, it has two lenses, to focus the laser beam to a specific
point in the splitter; and a crystal, to split the incoming beam. The laser beam
has to hit the outer lens in order to be split, and the outgoing beams will be
emitted from the outer points of the crystal.

2.3.8 Planned game objects that didn’t make it

There were some ideas for game objects that did not make the final cut. For
example, there were plans to use AND- and OR-gates that received beams as
input and emitted beams when enough input was given (this would be at least
one beam for the OR-gate, and at least two for the AND-gate, while these gates

22

Figure 2.18: The lens splitter.

would then emit a single beam as output). These were the first logic gates that
we thought about, and later ideas included XOR and NXOR gates (gates that
would only emit a laser beam when hit by an odd or even amount of beams,
respectively). There was (and still is) code that manages the behavior of AND-
and OR-gates, however, there were no models, and after talking about them
with our coach after the first demo, we concluded that these objects would not
add much more to the game, and as such, development on them was scrapped.

Another idea that was eventually scrapped was the inclusion of switches that
would be triggered by aiming a beam on them, which would then cause a wall
linked to the switch to become transparent, allowing light to pass through it.
This would cause players to collaborate to aim a beam to the switch, and then to
aim another beam through the transparent wall. However, no models nor scripts
were developed for this functionality, and the idea was eventually scrapped.

A final idea that was actually implemented and tested, but didn’t meet the
standard we set for it, was the elevator. This was a game object that used
mirrors to elevate laser beams, to allow for passing over walls. The elevator
was never used again, as it didn’t work properly, and also because the portals
overtook its function entirely.

2.4 Level design

Levels are designed to be simple at first, requiring little collaboration, while
getting progressively harder, as well as introducing more and more game ob-
jects. The following sections describe the level categories as well as which game
elements these levels introduce to the player.

2.4.1 Levels 1 to 5: the basic tutorial levels

The first five levels introduce the player to the most basic game elements that the
game has to offer. These include walls, mirrors, and the laser target. Mechanics
introduced and explained in these levels are: walls block incoming laser beams,

23

mirrors reflect laser beams, one needs to hit all laser targets in order to proceed
to the next level, and the color of the emitted laser beam should correspond to
the color of the crystal it is hit with.

2.4.2 Levels 6 to 15: the easy levels

These levels serve to introduce the player to slightly more advanced game objects
and their functions. As such, they introduce portals and lens splitters, as well
as checkpoints. Game mechanics introduced in these levels are: portals allow
a laser beam to travel instantaneously from A to B, lens splitters create two
beams from one, and all checkpoints in a map need to be hit before one can
proceed to the next level. The levels that introduce these features are designed
to be impossible to complete without making use of these new features (this is
an inherent function of the checkpoints, as one can only advance to the next
level if all checkpoints have been hit, thus making use of the checkpoints). For
example, when introducing the portal, the laser target is in a closed off area
and can only be reached by using a portal to let the beam travel from A to B,
with A being reachable by the laser beam on its own and B being in a closed
off area, containing the target.

2.4.3 Levels 16 to 25: the advanced levels

These levels incorporate all the used game objects to create hard levels. The
levels are a lot more difficult and require far more cooperation than the easy
levels, from both the local and the remote players. No new game mechanics are
introduced, but instead the cooperation skills of the players are tested.

24

Chapter 3

Implementation

The Bachelor Project course would not be a real Bachelor Project course if there
were projects without technical challenges whatsoever regarding the implemen-
tation of the final result. Therefore, this chapter elaborates on the technical
challenges faced during development of the project and the solutions that we
have developed for these challenges.

3.1 AR Glasses

One of the first design choices that we had to make was about what AR glass
was going to be used with the project. As can be seen in our research report,
under appendix A, there two options to choose from. These were the Oculus
and the META One. We eventually settled for the META One, because of the
latency of the Oculus. A pair of META Glasses can be seen in figure 3.1.

The challenge with the META One was to get it working in Unity. There is
a Meta SDK which allows for Unity games to work with the META One, but
AR itself is still in development (as of writing this report), and the META One
glasses are experimental at best. The SDK that we used first was also very buggy
(due to the experimental nature of the META One). Also, the META One has a
very limited field-of-view (the field-of-view was so limited that, during one of our
first tests with our coach, the coach had to sit back to keep everything tracked,
which, especially considering that they had to move markers as well as track the
environment continuously, was less than ideal). However, the SLAM tracking
built into the META allows for game objects to continue to be rendered on a
marker even if the marker is outside of the view of the META. SLAM tracking
is explained in subsection 3.1.1.

25

Figure 3.1: A pair of META One glasses.

3.1.1 SLAM tracking

SLAM is an acronym, which means Simultaneous Localization And Mapping.
It stands for a computational problem making a map from an unknown environ-
ment while updating the location of the agent in the same environment. These
problems cannot be solved independently from each other, as updating a map
usually involves knowing the location of the agent before any accurate updates
can be made, and vice versa. Several algorithms have been developed for solving
this problem, and there is even a platform, called OpenSLAM, which contains
several open source algorithms which solve this problem.

However, the algorithms are beside the point. the real benefit of using SLAM
with AR is that SLAM tracking allows the META One to render the game
objects belonging to a marker while keeping them rendered once the marker
leaves the field-of-view of the META One. Considering that the field-of-view of
the META One is not that large (As seen in our research report under Appendix
A), this is a huge benefit. The META One also has built-in support for SLAM
tracking of objects, which meant that no time had to be spent on developing
algorithms.

3.2 Synchronization of World State

Because the game is played by multiple people, the state of the world somehow
has to be synchronized between all players. To do this, we considered two major
options:

The first option was to use the built-in Network View component in Unity.
This would allow Unity to take care of most synchronization, which in turn

26

could make implementing the synchronization particularly easy. However, due
to the way the Meta One glasses manipulate the positions and rotations of
game objects to fit the orientation of the player’s head, synchronizing these
positions would result in incorrect positions for other players. Instead, a custom
serialization method would have to be implemented to undo the manipulation
by the Meta One and then apply the correct manipulation for each of the other
players.

Another option was to introduce a master server with camera that hosts the
game, and provides raw positions and rotations of markers exactly as they were
placed on the table. The only thing left to do would be to move and rotate the
objects for each player to match that player’s view of the playing area.

We chose the second option for the following reasons:

• A master camera can see all markers at any one time, which means that
there is never any uncertainty.

• The first option requires complex peer-to-peer synchronization and conflict
resolution when multiple players see an overlapping set of markers.

• Unlike the cameras worn by players, the master camera is not constantly
moving, meaning that marker recognition is not affected by motion blur.

Aside from the aforementioned reasons, we also made the decision to go with the
second approach because it allowed us more control over the internal workings
of the network functionality and the marker tracking. See section 3.3 for the
details about the marker detection performed by the server.

3.3 Marker Detection

The META One glasses come with marker detection built-in and we had dif-
ficulty replacing this detection with a custom system. That meant that our
master camera server has to detect the same type of marker. Luckily the META
markers have a very simple design. They’re 6 by 6 bits encoded as black and
white squares with a black border around them, as shown in figure 3.2.

These patterns map to an ID and are asymmetrical so that rotation can be
resolved when they are detected. To easily find these markers on a table and
board, we’ve also added a vibrant green border to them. This doesn’t affect the
META, but it makes segmentation of the markers from the background much
more straightforward for the master camera. These final markers are shown in
figure 3.3.

The corners of the playing surface were originally set using red markers, as
shown in figure 3.4. The need for these corner markers is explained in the next
sections, which also describe the rest of the marker tracking process on the
server.

27

Figure 3.2: A marker that can be recognized by the Meta.

Figure 3.3: A marker that can be recognized by the Meta and the master camera.

Figure 3.4: Original marker that indicates a playing surface corner.

Figure 3.5: New marker that indicates a playing surface corner.

3.3.1 Board detection

The first step to tracking is to isolate the playing surface from the camera image
and to apply perspective correction to it. The red corner markers described

28

above are used to find the bounds of the rectangular playing surface. An example
of the transformation is shown in 3.6.

Figure 3.6: Example of detecting playing surface and isolating it.

The four red corner markers are located by converting the input image to the
HSV color space and thresholding on a red-like hue and a high saturation. The
noise is then removed using a morphological open operation and the system
verifies that 4 contours are found. If an amount of contours other than 4 is
found, the user is prompted to move the camera such that the entire playing
surface is visible and there are no other vibrant red objects in view.

The corners of the playing surface are required to compute the transformation
for the perspective correction. The perspective correction is required to recog-
nize markers and their location correctly by making the camera view look like
it views the board from above.

We had some issues with these solid red markers. For example, a red chair near
the testing setup was often also recognized as a corner marker. For that reason
we designed a slightly more complex corner marker that has a yellow center, as
depicted in figure 3.5. Detection of this marker is the same as above along with
a check for the yellow hole.

3.3.2 Marker detection

The markers are first segmented from the playing surface using their vibrant
green borders, again through the HSV color space. The mask that results from
this is cleaned up again using morphological open and close operations. An
example of such a mask is shown in figure 3.7.

It is evident from the example that finding the borders alone is not sufficient,
because they will connect when the markers are close together. However, we
know that each marker contains a non-green center with the actual code, which
shows up as holes in the mask. We can detect these holes by using OpenCV’s

29

Figure 3.7: Example of thresholding markers with false holes highlighted.

contour finding feature using hierarchy mode and selecting just the contours
that lie directly within the outer contours.

Unfortunately, when markers are really close together, some other holes appear
as well (highlighted in the example). We remove these by filtering the contours
using the following criteria:

• Holes have a minimum width and height of 8 (minimum required for read-
ing a pattern)

• Holes are square to within a tolerance of 15%

• Holes have the same size as the median size of all detected holes to within
a tolerance of 15%

Especially the last one works very well for a playing surface with many markers,
where the signal to noise ratio is high. The process finished by returning the
contours of all the holes detected as markers.

3.3.3 Marker recognition

The marker recognition process takes the contours from the marker detector
stage. It starts by finding the minimum area bounding rectangle around a
contour to find its rotation. The source image is then rotated to straighten the
marker.

30

The next step is to isolate the pattern from the marker. It first converts the
image to grayscale and resizes it to 8 by 8 pixels (the 6 by 6 pattern with the 1
pixel wide border within the marker). The average brightness across the pattern
is found and used to threshold the black and white pixels. The image is then
cropped to just the 6 by 6 pixel pattern. The original scale of the marker is also
stored to later scale the marker positions.

The final step is to identify which known pattern the detected pattern best
matches. Although the marker has already been straightened, it could still be
rotated by 90, 180 or 270 degrees. For that reason, the system searches all
known patterns using the four possible rotations of the input. It determines
the best match using the Hamming distance between 2 patterns. The detected
best matching rotation is then added to the rotation needed to straighten it to
compute the complete rotation.

The marker recognition system does not verify if the best pattern match is good
enough, it will happily return a best match with confidence score 0.0.

3.3.4 Marker tracking

The marker tracker system takes the output from the marker detection and
recognition stages (position and match) from each frame and uses this data to
track the movement of markers across frames. It primarily does this by checking
which marker position from the previous frame each new marker position is
closest to. It uses the pattern matching results only when a marker is not
moving quickly. It uses results from multiple frames to smoothen positions and
rotations using a moving average that is discarded when a marker has sudden
changes. It also detects if a marker has been removed by measuring if it hasn’t
been seen for a long while.

All of the changes it detects, like new markers, moved markers and removed
markers are added to a list each frame and returned to the main application.
The main application then broadcasts these changes over the server socket to
the META One clients.

3.4 Networking and the OpenCV server

The game depends on a server application with a master camera. The server
application detects the position and rotation of markers in the playing area. It
does this through the use of a central so-called master camera, that is position
so that the entire playing area is visible from the camera.

The server application is written in C++ and is based on OpenCV and the Qt
framework. We decided to implement the server outside of Unity, since Unity
does much more than what we need of the server. The server only acts as a
way to track all markers even if they aren’t seen by any of the players, and to

31

facilitate synchronizing state changes with all players. For example, if a remote
player rotates an object in the game, the details about that rotation is sent to
the server, which then distributes it to all other players.

A more detailed description about the communication between the Unity clients
and the server can be found in paragraph 3.4.1. The use of the master camera
to detect markers is described in paragraph 3.4.2.

3.4.1 Communication between C# and C++

Communication between the Unity clients and the OpenCV server happens
through the use of sockets. For the Unity side, the Socket facility built into the
C# runtime is used. For the OpenCV server, the TCP Socket facility of the
Qt Network module is used for providing a server socket capable of handling
multiple clients.

The protocol used for communication is kept very simple to reduce network load
and for simplicity. The protocol consists of a number tag indicating the message
type followed by the actual message content. To facilitate the features the game
provides, the following message types are used:

Position Update Sent by the server whenever it detects a change in a marker
position.

Position Delete Sent by the server whenever a marker is removed from the
playing field.

Rotation Update Sent by remote players to indicate they have rotated an
object. This message is forwarded to all connected clients by the server.

Level Update Sent by players as soon as they consider the level to be finished.
The server broadcasts it to the other clients to change the server.

Ping Message Sent by the server and clients to indicate they are still con-
nected and listening.

3.4.2 The master camera

The master camera uses the tracking system described in section 3.3. This
system outputs the positions of the markers in pixels and rotations relative to
the camera. The positions are normalized such that the width and height of
a marker pattern is 1 unit. The detected scale from the marker recognition
module is used to do this and is averaged across all markers and a couple of
frames to ensure stability.

The normalized positions and relative rotations are sent to the META clients
using the communication protocol discussed in the previous section. Once they

32

arrive, they are transformed into the META coordinate system using a ”level
marker”. A ”level marker” is an arbitrary marker detected by both the master
camera and META built-in tracking system. The client can then transform the
relative position of the other markers compared to the level marker from the
server coordinate system to the META coordinate system. The rotation of the
markers is compensated using the META detected rotation and the rotation
received from the server.

33

Chapter 4

Quality Assurance

This chapter explains and describes various quality assurance techniques that
were used during the project, to allow us to deliver a product of good quality
(regarding both code quality and gameplay quality). It also talks a bit about
Microsoft Visual Studio first, our editor of choice for this project, considering
that some QA tools are not available for MonoDevelop, the standard editor
packaged with Unity.

4.1 IDE used for programming

The IDE used for programming was Microsoft Visual Studio. Unity has an
editor of its own available for programming in C#, which is called MonoDevelop.
However, the MonoDevelop IDE is really lacking in functionality. It has no
support for the plugins that we use to check our code. Furthermore, the use of
MonoDevelop enforces a code style that is incompatible with the style guidelines
used by StyleCop (see 4.3),

4.2 Testing

There are three main types of testing done during the project. These are unit
testing, integration testing and user testing. Unity has no native support for
running unit/integration tests that have been written, but there is a toolkit
available for free on the Asset Store, called Unity Test Tools, that does have this
support. The extension is developed by the Unity team, and can be found on the
Unity Asset Store: https://www.assetstore.unity3d.com/en/#!/content/

13802. Using this extension, a new menu bar item, called ”Unity Test Tools”
will appear in the main Unity editor. Clicking on this item creates a drop down
menu with different options, the most important one being the unit test runner.

34

4.2.1 C# Unit Tests

Unit tests are written using the NUnit unit testing framework for C#. NUnit
is a test framework which was ported from the Java test framework JUnit, and
was created to bring xUnit testing to all .NET languages. Using this framework
is also really easy, and a tutorial on how to write unit tests using NUnit can be
found using Google. Using Unity Test Tools, all unit tests in the project are
listed once one clicks on the subitem ”Unit Test Runner”. The tests are listed
in a new window, and one can run all unit tests by clicking on the ”Run All”
button at the top. The menu then shows what unit tests have passed or failed,
and clicking on a unit test shows what went wrong. A unit testing overview can
be seen in 4.1. The UnityTest testing class seen in the overview also displays the
different statuses of tests in the NUnit framework (passing, failing, inconclusive,
not executed, and culture specific).

Figure 4.1: The Unity Test Tools unit testing screen.

4.2.2 C++ Unit Tests

The unit tests for the C++ server code are not written using the NUnit frame-
work, as that would not really work. The framework for the tests in C++ is
the Google Test framework. Google test is, like NUnit for C# and JUnit for
Java, an xUnit-based testing framework. As such, it also supports assertions,

35

type parameterization, etc. Also, it is open source, licensed under the new BSD
license.

To implement the testing functionality into the server project, the unit tests
are separated into their own subproject, which links to the server and runs the
tests. As recommended by the Google Test guide, the Google test framework
source and headers are included directly into the unit tests subproject, ensuring
that the tests can be compiled and run regardless of the platform or compiler
being used.

Because most of the functionality implemented in C++ involves computer vi-
sion, we’ve prepared images so that situations can be reliably reproduced for
test cases. This allows us to test the algorithms under many different lighting
conditions at once, for instance, which saves us a huge amount of time. Some
of the tests involve functionality that returns an image as result. We’ve created
the image we expect and have written utility functions to check if two images
are approximately equal.

4.2.3 Integration Tests

Integration tests are not done via a formalized test procedure, but rather by
creating simple scenes and observing that the subjects of the test work as they
should when they are placed in an actual scene. It is also a lot harder to run
these tests in a standardized way most of the time.

4.2.4 User Tests

Although testing the code is important and it helps ensure that the software
is working correctly, it doesn’t tell us anything about the actual usability of
the product. Since we have been developing a game, it is especially important
that the end users will have fun using the product. Properties like these can be
evaluated by doing user tests.

Most of the initial play testing has been done by us, the developers, because
external parties would not have had a good experience while the game was still
in the middle of development. However, as the project was nearing completion,
the game could no longer be objectively played and tested by the developers.
At that point, we were already too familiar with the levels and game mechanics
to be able to properly judge if the concepts are too hard to figure out for new
players. By having a lot of other people play the game, we were able to estimate
if certain levels were either too easy or too hard, and if all of the different game
objects were easy to understand and fun to interact with.

Finding other computer science students to play the game was not much of
a problem, but we also needed to have other people play the game, to get a
good overview of how different people perceive the game. This is especially
important, as computer science students mostly indicated the technical issues

36

and limitations of the Meta One glasses, which were mostly already known to
us.

4.2.5 Code coverage

Code coverage is a metric that can be used to determine how thorough the
written code has been tested. We have to consider generating code coverage
reports for two languages: The C# Unity project and the C++ server project.

Generating code coverage reports for the C# code is unexpectedly difficuly:
Even though here are several free software packages available on the Internet
that allow for generating code coverage reports of NUnit test suites, these are
hard to use when combined with unit tests in Unity. The reason behind this
is that, to run the unit tests for the game, the Unity Test Tools functionality
has to be used (as most tests use instantiation of gameplay objects, something
that canonly happen in Unity). This functionality has no way of integrating the
NCover or OpenCover software packages. It is possible to integrate these with
Microsoft Visual Studio, however it is impossible to run the unit tests from that
IDE. As such, we had to manually check if the tests tested all possible branches
of the code.

On the other hand, however, analysing code coverage for the C++ project is
almost trivial: For GNU compilers, including MinGW, there is a utility called
gcov, which measures code coverage of GTest-based unit tests. And when using
the Microsoft Visual C++ compiler, it is possible to use Visual Studio to analyse
the coverage of the unit tests. The tool used for analyzing C++ code coverage
through tests is called OpenCppCoverage, which is compatible with Microsoft
Visual Studio 2008 and later. It easily measures unit test code coverage, and also
does not require any extra tools to actually generate the report that describes
the measuring results. These are immediately afterwards given in a HTML file.
An example of such a report and its results is given in 4.2, while an example of
which lines of code have been analyzed is given in 4.3.

4.3 Code Style

We decided to stick to the code style guidelines defined by StyleCop and FxCop,
two utilities developed by Microsoft. These utilities check for common program-
ming and code style errors in projects so that these can easily be identified and
fixed.

During the project, we kept the source code style checked by periodically ded-
icating time solely for checking code style and performing code maintenance.
This also included writing or improving unit tests and refactoring classes and
methods with a relatively high complexity or other issues as indicated by Style-
Cop and FxCop.

37

Figure 4.2: The C++ code coverage report.

4.4 SonarQube

For getting a clear overview of the source code quality of the project, as well as
the issues indicated by FxCop and StyleCop (see section 4.3), we made use of
a SonarQube server, hosted on one of our development machines. SonarQube
keeps track of issues indicated by the abovementioned tools, and performs var-
ious code metrics, like cyclomatic complexity and dependency cycles. Using
SonarQube enabled us to spot problematic classes and methods and allowed us
to improve the overall structure of the source code of the project. An example
of a SonarQube overview can be seen in figure 4.4

An issue with SonarQube is that, while it has free options for analyzing C# code,
it has none of these free options for analyzing C/C++ code, because of the pre-
processing that can happen in C or C++ (as explained in their blog on http://

www.sonarqube.org/ccobjective-c-dark-past-bright-future/). For this
reason, it is very hard to analyze the C++ code that we use for the OpenCV
server.

38

Figure 4.3: The C++ code coverage report, with covered and uncovered lines.

4.5 SIG Evaluation

SIG is an acronym which stands for the Software Improvement Group, which is
a company that is based in Amsterdam. SIG performs code analysis to evaluate
code quality on a scale from one to five stars, and it does so according to the
ISO/IEC 25010 model. Code score is based on the maintainability of the code.

During the project, there are two opportunities to deliver the code that we have
written to SIG. The first opportunity is at the end of May, and the second
is halfway through June. The first opportunity is used as a midterm quality
feedback session, for us to get an idea about how good the code is written and
what can be done better. The second opportunity is then intended to hand in

39

Figure 4.4: A SonarQube overview.

the improved code, and for us to then get feedback on how well the code has
been improved. The improvements in the code also have a weight in the final
result for the project.

The midterm and final evaluation reports we received from SIG are added as
appendices C and D, respectively.

4.6 Demos and playtesting sessions

In order to see how other people would interact with our software (and also
partially to see if solving the game actually required collaboration of multiple
people), several demo’s with the client were hosted. Because of time constraints,
only one play testing session was hosted before the final report had to be handed
in. The main output of that play testing session was that the technology was
far from perfect (which is something that we knew from the start, so that was
not really useful). However, these test subjects were other EEMCS students,
and there were plans to test with students of other faculties, but that was cut
due to time constraints (as mentioned above).

The demos with Stephan (the client) hit a rough start the first few times, as
the game that would be demonstrated would often not work right before the
demo was held. After some demos, however, the game was far enough into
development that it would be easy to prepare an actually working version. The
best demos were demos hosted after week 9 (right before the project had to be
finished), because the game was nearly done. The feedback of these demos is
that Stephan liked the game, and that he looked forward to playing it. This
means that the client likes our product, a positive outcome.

40

Chapter 5

Conclusion

Despite some rocky development, we ended up with a fully playable game in week
9 that met all of the must have and almost all of the should have requirements.
The should have requirements included mirror elevations, but we found that this
wouldn’t work well in practice and replaced this feature with portals. Those
accomplish the same purpose of transferring a laser beam across a wall. We’ve
also done away with color combiners because the results of mixing colors would
be too complicated for players. The game can support this, however, and these
color mixers would be easy to implement. The main takeaway here is that some
of the should haves were not met for gameplay reasons rather than technical
problems.

The only component of the game that is still rather lacking is the one that
gave us the most trouble during development: marker tracking with AR glasses.
The glasses we are using for the game (Meta One) represent the state-of-the-art
of augmented reality see-through glasses, but they have a field-of-view of just
35 degrees and a marker tracking framerate of about 5. The first issue causes
players to have a lack of overview unless they take quite a few steps back from
the table. The second issue causes the mirrors to lag behind when the player
moves their view, which diminishes the immersion of the game. We repeatedly
contacted the company behind the eyewear, but there were no plans to improve
on these issues any time soon.

Despite these limitations of the augmented reality technology, we have been able
to produce a fun and complete game to play that can be used to experiment
with situational awareness like the client desired.

41

Appendix A

Research Report

A.1 Problem Formulation

While augmented reality research has grown into a mature field over the last
years, the aspects of situational awareness and presence of augmented real-
ity (AR) are still quite open research topics. This project is about designing
and implementing a collaborative game to explore the different perception of
situational awareness, presence and workload in a physical and an AR envi-
ronment. The game is to be employed as an approximation of collaboratively
solving complex problems, as they occur in crime scene investigation when using
virtual co-location, i.e. expert remote crime scene investigators to guide local
investigators in AR to collaboratively analyse the crime scene.

The game needs to support at least three players: At least two players are
present at the same location (physically co-located), each wearing AR glasses.
At least one player is physically remote but virtually co-located using VR glasses
[Lukosh, 2015]. It should be impossible, or at least infeasible, to complete the
game without involving the other party. However, this constraint could be
relaxed to allow a higher playability of the game. It would be nice to still be
able to play the game if no suitable virtually co-located player can be found, for
example.

A.2 Problem Analysis

This chapter provides an overview of the issues and challenges that may arise
during development of a solution to the problem description. It provides an
analysis of the problems and possible solutions.

One of the core challenges of the project is the use of Augmented Reality (AR)
technology. An analysis of the available options to implement this functionality

42

is given in section A.2.1. Another important challenge is improving situational
awareness, which is discussed in section A.2.2. The final challenge is the creation
of interdependence between players in such a way that collaboration from all
players is required. This challenge is analyzed in section A.2.3.

A.2.1 Augmented Reality (AR) Functionality

Augmented Reality (AR) is a core aspect of the problem formulation. As such,
careful analysis has to be done as to how the AR functionality can be best
implemented to fully address the context of this project.

We consider three choices for implementing AR functionality: The META One
(an optical see-through device (A.2.1)), the Oculus Rift virtual reality glasses
in conjunction with mounted cameras (A.2.1) and a smartphone with Google
Cardboard (A.2.1).

META One

The META One glasses are optical see-through glasses. [Meta, 2015] Optical
see-through glasses work by projecting a virtual image on top of the world you
see, effectively implementing a 3D AR exprience.

Because the META One is an optical see-through device that also features
motion tracking, AR can be implemented simply by projecting an image against
a black background to the glasses.

A big drawback of the available META One glasses is their Field-of-View, which
is 35 degrees. This Field-of-View is way lower than the Field-of-View of a person,
which may have a negative impact on the game experience.

One of the advantages of this device is that the Software Development Kit (SDK)
that comes with the glasses has tracking and gesture recognition built-in. That
allows us to focus on just the gameplay aspects.

Oculus Rift

We’ve built a camera rig for the Oculus Rift that can be used to turn it into an
augmented reality device. To detect the markers and render objects on them
in Unity, there are several libraries available. Each of these will be discussed in
the next sections.

Oculus offers an SDK for Unity that makes it easy to integrate a game with the
Rift. [OculusVR, 2015] The challenge that we’ll be facing during development
is to properly integrate this SDK with the augmented reality libraries. Each
of the frameworks try to take control of the camera in different ways and it’s
easy to get conflicts there. Getting the Rift see-through functionality working

43

in Unity on its own and the augmented reality functionality on its own is not a
challenge.

The advantage of the Oculus Rift with mounted cameras is that it provides
complete control over the screen allowing us to completely block certain regions
of the view or project black objects. It also causes the AR content to match up
exactly with the real world in terms of timing. The field of view is significantly
larger as well.

A disadvantage is the slight latency between head movements and the view,
which takes work to reduce to a minimum to avoid motion sickness and bad
hand-eye coordination.

Vuforia

Vuforia is a framework by Qualcomm that allows you to create arbitrary mark-
ers, import them into Unity and place objects onto them. [Qualcomm, 2015]
You can then select a webcam and have it render the camera images with 3D
objects projected onto the markers. It’s very easy to use and has built-in sup-
port for virtual reality solutions like GearVR. The tracking quality is very good
and stable, even with low quality markers (with few color transitions).

Unfortunately it currently only works with the 32-bit version of Unity. It also
lacks support for the Oculus Rift on the desktop, which means that we’ll have
to build that functionality ourselves.

Unity AR Toolkit (UART)

Unity AR Toolkit [MacIntyre, 2012] is a project by researchers at the Georgia
Institute of Technology to develop a set of plugins for Unity that make it easy
to build augmented reality applications.

Unfortunately the project was abandoned in 2011 and the tracking library it’s
based on (ARToolKitPlus) was abandoned in 2006. The documentation is also
severely lacking. The camera also needs to be calibrated to work with it. This
project also only works with the 32-bit version of Unity and lacks native Rift
support.

The one advantage of this library is that it moves the 3D objects by default,
instead of the camera. That may make it easier to reconstruct the world with
its mirrors in Unity.

Metaio

Metaio is a well-supported project, much like Vuforia. The difference is that it
has native support for see-through stereo glasses, which makes it well suitable
for both the META One and Oculus Rift solution. [Metaio, 2015]

44

Unlike any of the other solutions, this framework works natively on Unity 64-
bit. It does have the limit of only working with OpenGL, but we don’t expect
that to be a problem.

Google Cardboard

Google Cardboard can be used to implement the same concept for augmented
reality as the Oculus Rift. It allows you to turn a smartphone into a VR headset
by mounting lenses in front of it. This can then be used to implement AR by
overlaying 3D objects over the phone camera image. [Google, 2015]

The advantage of this approach over the Oculus Rift is that it’s much more
convenient. The solution would be completely mobile, meaning that there are
no cables getting in the way (a problem we ran into during testing). It’s also
much cheaper, making it easier for local players to join by simply owning a
smartphone. The disadvantage is that there would be no depth, since most
smartphones don’t have a stereo camera.

The libraries mentioned in the previous section are all suitable for mobile usage.
In fact, they were designed for it and just happen to allow for desktop usage
as well. This currently seems like the most promising alternative, but it will
require further testing.

Markers

An essential component of augmented reality systems are markers. Markers are
physical objects that are used by the augmented reality framework to establish
the position of the player and objects in the virtual world (tracking). There are
two main types of tracking:

• Marker tracking: Special asymmetric patterns similar to QR codes are
printed to cards. These are designed to be efficiently detected by a com-
puter

• Markerless tracking: Tracking with arbitrary images as opposed to
specially designed markers, therefore known as markerless tracking. This
name is a bit misleading, because these images are still typically chosen
based on properties like contrasting colors and sharp edges that are easier
to detect.

The advantage of markerless tracking is that they look more aesthetically pleas-
ing to the players, but the performance may be worse than specially designed
patterns. For that reason, we’re going to use a hybrid form that combines an
easy to scan pattern with a nice looking image of the object it represents (like a
mirror). An example of this concept are graphical QR codes. [Visualead, 2015]

45

A.2.2 Situational Awareness

This project is about exploring the different perception of situational awareness,
presence and workload in a physical and an AR environment (see chapter A.1).
As such, situational awareness plays a key role in this project.

Before considering exactly how situational awareness plays a role in this project,
it is important to define precisely what situational awareness means. According
to [Endsley et al., 2003], situational awareness is defined as the perception of the
elements in the environment within a volume of time and space, comprehension
of their meaning, and the projection of their status in the near future. In other
words, situational awareness means to fully understand the situation, and be
able to predict what is going to happen next. This also includes understanding
any risks the situation brings.

Now that the concept of situational awareness has been defined, the importance
of situational awareness for this project needs to be considered. This project
aims to approximate a situation in which the players need to collaboratively
solve complex problems, as they occur in crime scene investigations (see chapter
A.1). On a crime scene, the investigator needs to analyse and understand the
situation, so there is a need for situational awareness in the problem description.
The game will need to replicate a similar need for situational awareness to be
an accurate approximation of the context of this project.

A.2.3 Interdependence between players

The problem formulation states that the game is to be employed as an approxi-
mation of collaboratively solving complex problems. In order to motivate players
of the game to collaborate, there is a need to create a form of interdependence
amongst the players, as mentioned in [Zagal et al., 2006]. One way to do this is
to create an asymmetry of abilities. Other ways to create interdependence are
explained in the following subsections.

Asymmetry of abilities

The main reason to co-operate is the asymmetry of abilities between the players
involved. For example: physically co-located players can alter the game world,
while virtually co-located players can guide characters to a certain goal utiliz-
ing the altered game environment. One thing to note is that a puppet master
scenario should be avoided. This scenario happens when one player can do ev-
erything except for a few required tasks, and uses the other players to execute
these tasks. In this case, the other players will have less involvement with the
shared goal, and the amount of co-operation will go down.

46

Asymmetry of information

Asymmetry of information could be used as another reason for the players to
co-operate. It means that both types of players (both the physically co-located
and the virtually co-located) have different, separate, parts of the information
required to complete the game. In this case, a puppet master scenario should
also be avoided. Such a scenario can occur here when one type of player has
enough information to infer nearly all information.

Information overload

Another reason for players to co-operate could be information overload. This
means that, while the game could technically be completed by a single player,
the amount of incoming information is too large for one player to handle. An
example would be in Call of Duty, where people work together because there
are too many enemies that walk around and shoot at them. A single player
could potentially beat the game by themselves, but this is not really feasible
considering the amount of enemies and the amount of information coming in
continuously.

A.2.4 Virtual Co-location

Establishing virtual co-location is required to allow physically remote players
to play the game together. As such, both the virtualization of the game world
and the networking are considered in virtually co-locating physically remote
players. Unity has multi player support, because of its master server to handle
multi player games, but the server could be down at times. There are tutorials
on the internet to create a basic multi player game that uses the master server to
handle requests. These tutorials can be used to implement our own multilayer
support. Alternatively we could provide the players with the means to easily
get and exchange their IP addresses through other means such as mail. Besides
the networking we have to look at how we synchronize locations, depending on
the chosen game we have in order of ascending complexity several options:

1. Use markers with known locations. This only works if we have a limited
size and reasonably fixed playing area which we can prepare ahead of time.
This most likely comes in the form of a set of markers on the edges and/or
center of the playing field.

2. Use mobile markers which synchronize between players automatically, for
example cards in a card game. This only works if we can trust the player
to keep these markers within their screen or if there is no augmentation
needed if they cannot see a marker.

47

3. Object recognition which tracks the locations of objects in the scene, this
method only works if there are a number of reasonably stable objects
within the player’s vision.

4. Combining the output of a compass, a gyroscope and trilocations. This
works regardless of what is visible but requires accurate trilocation which
works can be quite hard to do without building a heavy rig.

Of course a combination of several of the above methods is also possible.

In the end the goal of the project is of course to make the remote player feel as
if he is in the same location as the local player and make the local player feel
as if the remote player is playing together with them. So first of all we can look
at the visualization for the remote player:

One method is to provide an Oculus Rift to the remote player(s) and let them
see through the eyes of the local player(s). However, this is likely to cause
nausea. Of course we can display the local player’s view on a screen instead,
but that might result in relative passivism from the remote players, as they do
not have any control over their own view.

We can also let the remote player control one or more avatars within the game
world and view these through either the Oculus Rift or through a screen. This
would keep the remote player more interested as it would add a greater feeling
of immersion than just watching through the eyes of the other player. However,
this comes at the cost of the feeling of connectivity. This would also require
mapping out a large part of the scene in the virtual world.

Lastly we can also let the remote player view the world from a bird’s-eye per-
spective. This can either be done by mounting a camera above the scene or by
rendering it in the virtual world. The second case offers increased player agency
resulting in improved situational awareness at the cost of having to map the
scene fully in the virtual world.

We should also look at how we can make the local player feel as if the remote
player is playing together with him. One method is to heavily encourage com-
munication. If you are talking with someone it is hard to forget their existence.
This can be encouraged by providing appropriate communication channels such
as voice or text chat. Another important thing is that the remote player must
visibly be doing something. This can be achieved by giving him an avatar and
by making his actions visibly change the world.

A.3 Proposed Solutions

A.3.1 Laser mirror game

The goal of the game is to solve a puzzle by controlling laser beams using mirrors
in such a way that a predefined target is hit. The game can be played by one

48

or more local players and one or more remote players.

There are cards present for the local players that represent mirror bases. These
must be placed on the table, which will be the locations for the mirrors. The
local players will be able to see the mirrors they place through the use of AR
technology. Each of the local players will only be given a few of the mirror bases
needed to solve the puzzle, and as such solving the puzzle requires cooperation
from all local players.

The remote players can also see the placed mirrors, and can rotate them to
influence the path of the laser beam(s). Only by cooperation between local
players (who can only move the mirror bases) and remote players (who can only
rotate them) it becomes possible to hit the target and as such solve the puzzle.

The game provides various different types of mirrors with different properties,
allowing for more complex puzzles. One example of such a mirror is a colored
mirror, and then require the target is hit with the right (combination of) colors.
Another way to make puzzles more complex is requiring that the players combine
beams together to create more powerful beams. Other optical components like
beam splitters can also be introduced.

The game is designed to stimulate cooperation between the physically co-located
players and the physically remote player(s). It does so by dividing abilities
required for solving the puzzles amongst all players as follows:

• Physically co-located players each get only a part of the mirror bases
required to solve the puzzle, requiring input from all of these players.

• If there are multiple virtually co-located players, each of these players can
only rotate a subset of the mirrors, and as such input from all virtually
co-located players is required for solving the puzzle.

• Virtually co-located players have the ability to rotate mirrors while the
physically co-located players do not have this ability, requiring input from
both physically as well as virtually co-located players.

Because of this division of abilities, there is an interdependence between all
players (see section A.2.3), regardless of whether these players are physically
co-located or not. This replicates the interdependence that exists in the crime
scene example as given in the problem formulation (see chapter A.1).

A.3.2 Platformer

The game starts with the avatar of the remote player appearing on the table
and a goal appearing above the table. The local players have a pile of blocks,
each of these blocks exists both in the virtual and real world.

49

Inside the virtual world a number of pre-existing structures and obstacles exist
making it harder for the remote player to move around. The local and remote
player must work together in order to get the virtual avatar to the goal.

Team work is heavily encouraged due to the interdependence between the play-
ers: There is information asymmetry (section A.2.3) because the remote player
can see some pre-existing blocks the local player cannot see, and the fact that
local players can place new blocks in the game world provides ability asymmetry
(section A.2.3).

A.3.3 FPS Survival game

The goal of the game is to protect a virtual structure from enemies. These
enemies will come from multiple sides to attack the structure while the remote
players have to stop them. For doing so, they require the aid of the local players,
who can place blocks (similar to the platformer game, section A.3.2) to block
the path of the enemies.

The local players can block the path of the enemies, but they cannot defeat them.
The remote players, who view the game from a first-person perspective, have to
defeat the enemies. Since the perspective of the remote players is limited (also
partly because of the blocks placed by local players), they require information
from the local players, who view the scene from above and as such have a good
view of the entire situation. This creates information asymmetry between the
players (section A.2.3).

To keep the game challenging, the enemies will grow stronger over time, requir-
ing the cooperation between the local and remote players to improve as well.
Because of the fact that local players can only defeat the enemies, and the re-
mote players can block their path, there is a form of ability asymmetry between
the local and remote players (section A.2.3).

A.3.4 Tower defense

The local players start off with a number of towers each which have certain
strengths and abilities. They must place these towers on a table in front of
them. What they cannot, but the remote player can see is what paths a number
of hostile entities will take in order to attack their base. They must therefore
cooperate to place the towers on the right positions to be able to defeat the
enemies before they escape by communicating the ideal locations of the towers
and paths that the hostile entities will take.

This game idea is relatively simple, and because of the simplicity, complexity can
easily be added to make the game more engaging. For example, towers could
be upgradeable, utilizing resources that could be gained either by defeating
individual enemies or by defeating a wave of enemies. The idea behind these
resources is that they are shared between players. They could then be used

50

to upgrade tower types. As these resources are shared, and they can only be
used once, players must work together to choose the best upgrade available in
the given scenario. Enemies should also get procedurally stronger because of
the increased capabilities of the towers. Resources could also be put towards
research for new tower types, which players could then use.

Another way to add extra necessary complexity would be through introducing an
experience system, and to grant towers some experience based on what enemy
they have defeated. These towers would also over time get stronger. Bloons
Tower Defense, a game found on the internet developed by Ninja Kiwi, is a
tower defense game that uses both resources and experience, to show that these
could also be combined. New towers would then be unlocked over time, after
completing a certain amount of waves, instead of using resources.

The problem with this idea is that it will very likely create a puppet master
scenario where the remote player takes charge of the whole situation and the
other players do net get a say in what is going to happen. This could be avoided
by a number of extra abilities. This game shows heavy information and ability
asymmetry.

A.3.5 Minesweepers

This concept is based on the classic game of minesweeper. There’s a grid where
some of the squares have mines under them. Players each start at a random
position and have to place flags on locations of mines while avoiding mines. The
remote player is the only one who can see the numbers around squares, so he
has to give instructions to the players on the field.

The difference compared to the classic version of the game is that it’s all physical.
Local players walk around on the field, where they have to take careful steps to
avoid triggering a mine. This turns the game into some sort of Twister variant
where people can use special moves to quickly traverse the field and find all the
mines. Local players co-operate by dividing the field into sections that they’ll
clear in parallel.

The problem with this concept is the inherent puppet master phenomenon.
Communication between the remote player and local players is very one-sided.
Local players just receive commands where to step and where to plant flags and
don’t really have any input into the game themselves. Even if that problem was
solved, the lack of cooperation aspects between local players would also be a
big problem. Local players don’t really have any reason to interact with each
other. One way to solve that problem would be to require multiple players to
place a flag.

There are also some technical challenges with this concept. It requires that local
players always know their exact position on a large field that they’re inside of,
which would require a lot of markers. Next, the position of their legs would
have to be determined somehow to ensure that they’re not stepping on a mine.

51

Finally, a space large enough for a field would likely have to be found outside
and sunlight doesn’t play well with augmented reality devices. The game could
be transformed into an indoor variant instead, using a board and pawns, but
this does not solve the one-sided communication problem.

A.3.6 The chosen idea

The idea that is chosen is the mirror game idea. The reason for this decision is
that it is a relatively simple idea, it can create hard to solve puzzles, and extra
complexity can easily be added. It also prevents a puppet master scenario by
giving both types of players about half of the abilities required for solving the
game.

The game offers a strong interdependence between players. This, together with
the ability asymmetry caused by the separation between moving mirrors and
rotating them, causes a high need for collaboration between the local and remote
players. As such, this concept comes closest to the problem formulation in
creating a collaborative game between physically remote players.

A.4 Conclusion

In short, the mirror game seems the best solution to the problem. It is a viable
project to create in the given time frame, it is a challenging puzzle game even
when playing a different version of it (a single-player version) on your own, and
it taxes the communication of both the remote and the local players, as they
both have abilities necessary for achieving the goal, but they cannot achieve it
on their own (although this could be relaxed to lower the entry barrier). Also, it
is still a challenging project, because of the technical challenge of integrating AR
hardware, recognition of markers with the game world and synchronization with
the remote player. Additional complexity, such as colored laser beams/targets,
beam splitters, beam mergers etc. could also be implemented to increase the
technical challenge of the problem.

The game and networking will be implemented using Unity, with the Vuforia
library handling augmented reality for the local players. The remote players
will likely be using an Oculus Rift and the local players one of the augmented
reality devices describes in the problem analysis that ends up working best in
practice.

Using this information, we’ve built a small demo that uses Vuforia. It places
a laser emitter, mirror and wall on three markers that can be moved around.
The mirror reflects the laser realistically based on the angle of incidence. We’ve
used this demo to test augmented reality setups with different types of markers,
hardware and frameworks.

52

53

Appendix B

Product plan

B.1 Concept

This section covers the concept idea of the gameplay, and the accompanying
requirements.

B.1.1 Gameplay

The goal of the game is to solve a puzzle by controlling laser beams using mirrors
in such a way that a predefined target is hit. The game can be played by one
or more local players and one or more remote players.

There are cards present for the local players that represent mirror bases. These
must be placed on the table, which will be the locations for the mirrors. The
local players will be able to see the mirrors they place through the use of AR
technology. Each of the local players will only be given a few of the mirror bases
needed to solve the puzzle, and as such solving the puzzle requires cooperation
from all local players.

The remote players can also see the placed mirrors, and can rotate them to
influence the path of the laser beam(s). Only by cooperation between local
players (who can only move the mirror bases) and remote players (who can only
rotate them) it becomes possible to hit the target and as such solve the puzzle.

The game provides various different types of mirrors with different properties,
allowing for more complex puzzles. One example of such a mirror is a colored
mirror, and then require the target is hit with the right (combination of) colors.
Another way to make puzzles more complex is requiring that the players combine
beams together to create more powerful beams. Other optical components like
beam splitters can also be introduced.

54

B.1.2 Requirements

Must haves

• Light source, a target and zero or more blocks must be visible when the
game starts.

• Light source must emit a light beam in a predefined direction.

• Laser beam must reflect against a mirror when it hits one.

• Laser beam must stop when it hits a block

• Local player must be able to see mirrors positioned on the cards using AR
technology.

• Local player must be able to move the mirrors by moving the cards.

• Remote player must be able to see the mirrors in the same positions and
orientations as the local players.

• All players must be able to see the laser beam(s), the light source, the
target and the blocks.

• Remote players must be able to rotate the mirrors.

Should haves

• Elevations of mirrors, to allow light of a lower elevation to hit the target
on a higher elevation, or the other way around

• Light beams should be colored (after a certain level), and only light beams
of a certain color can suffice in hitting the target.

• Combiners (think AND- or OR-gates) that combine light and cause it to
travel to the target.

• Color combiners, to allow for a broader variety of color-specific targets.

Could haves

• Infinite amount of levels.

• Random level generation according to maximum difficulty settings.

• Give hints if the players are stuck.

55

Won’t haves

• Playable with only remote players.

• Playable with only local players.

• Playable on Android or iOS devices.

B.2 Approach

This section covers development details that aren’t directly related to the game-
play itself, such as software engineering practices and guidelines about client
meetings.

B.2.1 Technical details

Although AR glasses have been provided to us, their field-of-view is very limited
and is not suitable for most of our concepts. We experienced ourselves that the
limited fov causes a lot of problems. Instead, we’re going to try to use an Oculus
Rift and cameras to create our own high fov augmented reality glasses.

The Unity game engine is going to be used to render the in-game objects like
mirrors and laser beams over the camera image.

B.2.2 Software engineering

Using the Unity game engine means that we’ll use a loosely coupled component-
based architecture from the start. Unity has built-in unit and integration testing
systems, which we’ll make use of in development. We’ll also maintain UML
diagrams of the architecture to keep an overview of how everything works, and
to plan integration of new features.

We’ll make use of the Scrum software development methodology to plan new
features and to help stick to the schedule. As is expected, there will be a playable
demo at the end of each weekly sprint. As soon as the game has all the basic
ingredients to be fun to play, we’ll find users to play test on a regular basis and
collect feedback from them to improve the gameplay.

The version control software used is Git. The project is on GitHub. Git uses a
master branch (the basic branch which contains the project), as well as multiple
other, user-defined branches. The branch structure of Git allows a team to work
in separate branches, to merge the branches into the master branch later when
that part of the project is done. This is done by making a pull request, defining
what was changed, and afterwards the branch can be merged with the master
branch. The way branches work also allow other team members to do code
reviews of a branch, as all changed/added code can be seen and commented on.

56

B.2.3 Guidelines

Here is a list of rules that help prevent problems during development.

• Meet with the client and coach every week to show a working demo

• Add tests as soon as new methods are added to verify that they work

• Have integration tests for common scenarios to reduce the need for user
testing

• For C# code, we adopt the guidelines presented by Microsoft (See https:

//msdn.microsoft.com/en-us/library/ms229042.aspx)

• Work on the project in the INSYGHTLab from 9 to 5 every workday
(except for the dates listed in the planning section)

B.3 Planning

The first two weeks represent the research phase. In this phase we will find a
suitable augmented reality (AR) library for Unity and prepare an Oculus Rift
for AR use with cameras. We’ll also design an architecture for the game that
covers the marker detection, networking and gameplay mechanics. All of this
information will be described in the research report handed in on May 1st. Main
development commences after this phase and is organized in weekly sprints. The
table below describes the goals per sprint, which will serve as a helpful reference
to stay on schedule during development.

The first SIG submission is due May 26th. By then, we should already have
a semi-functional product. The basic functionality (AR functionality, basic
gameplay mechanics, etc.) should be in this version of our product. All the
relevant graphics assets should also be done.

The second SIG submission is due June 6th. By then, most of the functionality
should be implemented (this includes advanced gameplay mechanics, hitting
multiple targets, mirror elevations, etc). Also, all the bad parts of the code
structure/architecture from the first version should be resolved.

The project should be done by June 26th, the Friday of week 4.10. This includes
not only the project but also a final report of 40 to 50 pages. This means that
the report should be worked on continuously.

57

Weeks Deadline Goal
4.1 + 4.2 May 1st Research report described above
4.3 May 8th AR integration + lasers
4.4 May 15th Basic gameplay start + start report
4.5 May 22nd Finalize first SIG version
4.6 May 29th Start advanced gameplay
4.7 + 4.8 June 12th ???
4.9 + 4.10 June 26th ???

B.3.1 Holidays + businessdays on which EWI is closed

Koningsdag 27-04-2015
Dodenherdenking 04-05-2015
Bevrijdingsdag 05-05-2015
Hemelvaartsdag 14-05-2015
De dag na Hemelvaartsdag 15-05-2015
2e Pinksterdag 25-05-2015

58

Appendix C

SIG Midterm Evaluation

De code van het systeem scoort ruim vier sterren op ons onderhoudbaarheids-
model, wat betekent dat de code bovengemiddeld onderhoudbaar is. De hoogste
score is niet behaald door een lagere score voor Unit Size, Unit Complexity en
Unit Interfacing.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemid-
deld lang is. Het opsplitsen van dit soort methodes in kleinere stukken zorgt
ervoor dat elk onderdeel makkelijker te begrijpen, te testen en daardoor eenvou-
diger te onderhouden wordt. Binnen de langere methodes in dit systeem, zoals
bijvoorbeeld de ’detector::recognizeMarkers’-methode, zijn aparte stukken func-
tionaliteit te vinden welke ge-refactored kunnen worden naar aparte methodes.
Commentaarregels zoals bijvoorbeeld ’// Turn into grayscale and threshold to
find black and white code’ en ’// Cut off border’ zijn een goede indicatie dat er
een autonoom stuk functionaliteit te ontdekken is. Het is aan te raden kritisch
te kijken naar de langere methodes binnen dit systeem en deze waar mogelijk
op te splitsen.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovenge-
middeld complex is. Ook hier geldt dat het opsplitsen van dit soort methodes in
kleinere stukken ervoor zorgt dat elk onderdeel makkelijker te begrijpen, mak-
kelijker te testen en daardoor eenvoudiger te onderhouden wordt. In dit geval
komen de meest complexe methoden ook naar voren als de langste methoden,
waardoor het oplossen van het eerste probleem ook dit probleem zal verhelpen.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met
een bovengemiddeld aantal parameters. Doorgaans duidt een bovengemiddeld
aantal parameters op een gebrek aan abstractie. Daarnaast leidt een groot aan-
tal parameters nogal eens tot verwarring in het aanroepen van de methode en
in de meeste gevallen ook tot langere en complexere methoden. Wat opvalt in
dit systeem is dat zowel in de C# als in de C++ code soms een Point/Vector
abstractie gebruikt wordt, maar dat er ook methoden zijn waar de parameters

59

’x’ en ’y’ los worden doorgegeven. Om het voor toekomstige ontwikkelaars mak-
kelijker te maken om de code te hergebruiken is het aan te raden de abstracties
consistent te gebruiken.

Daarnaast nog de opmerking dat het goed is om te zien dat de README
duidelijk aan geeft dat de ’netlink’ code niet zelf geschreven is. Zou het hier
nog helpen om duidelijk aan te geven welk versienummer van deze library nu in
gebruik is?

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit
niveau te behouden tijdens de rest van de ontwikkelfase. Als laatste nog de op-
merking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk
aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit
automatische tests gedefinieerd te hebben om ervoor te zorgen dat eventuele
aanpassingen niet voor ongewenst gedrag zorgen.

60

Appendix D

SIG Final Evaluation

In de tweede upload zien we dat het codevolume met ongeveer 50 procent is
gestegen, terwijl de score voor onderhoudbaarheid ongeveer gelijk is gebleven.

Bij Unit Size en Unit Complexity valt op dat de deelscores voor de C++ code
zijn gestegen, maar voor de C# code zijn gedaald. Die daling wordt vernamelijk
veroorzaakt door een aantal lange en complexe methodes die jullie sinds de
vorige upload hebben toegevoegd. Voorbeelden zijn MarkerTransformer.Update
en ClientSocket.ReadMessage. Aan de namen van die methodes kun je al zien
dat ze erg veel doen, en het opsplitsen in deelproblemen zou deze methodes
beter onderhoudbaar en vooral beter testbaar maken.

Bij Unit Interfacing zien we geen structurele verbetering voor zowel de C# als
de C++ code. Zoals bij de eerste upload al aangegeven wijst dit vaak op een
gebrek aan abstractie. In MarkerTracker komen bijvoorbeeld vier methodes
voor die allemaal dezelfde lijst van vier parameters aan elkaar doorgeven.

Tot slot is het goed om te zien dat jullie sinds de vorige upload unit testcode
hebben toegevoegd. De hoeveelheid testcode is nog wel vrij beperkt, maar dit
is wel te verklaren aangezien jullie vrij laat begonnen zijn.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige
evaluatie deels zijn meegenomen in het ontwikkeltraject.

61

Appendix E

Info sheet

General information

Project title: Collaborative AR mirror game
Name of the client organization: TU Delft
Date of the final presentation: July 3, 2015
Final report: TBA.

Description of the project

Although augmented reality research has grown into a mature field over the last
years, the aspects of situational awareness and presence of augmented reality
are still open research topics. The mirrors AR game is a collaborative game
that can be used to explore different perceptions of situational awareness and
the effect on solving puzzles.

The main challenge of this project was to develop a system that intuitively
lets co-located and remote players work together on a problem. Most of the
research phase was dedicated to finding the elements that make this feasible.
For example, we gave each player limited abilities so that they’re forced to work
together to reach a solution. That way no player will feel like they’re expend-
able. The biggest issue we ran into is that the AR glasses we’re using have
abysmal tracking performance, which made it more difficult for local players to
be immersed.
In the game players have to guide one or more laser beams from emitters to
targets by placing mirrors inside a level. Each level poses new challenges by
including walls and optical components like beam splitters.

62

There are two kinds of players: local and remote. Local players wear see-
through AR glasses and see the level projected onto a surface in a room. They
can walk around and place so-called markers on the table to indicate where in
the level they want to place a mirror. Remote players are not physically co-
located and see just the level and mirrors on their computer screen. However,
only they have the power to rotate mirrors and a good overview of the entire
level. The players will need to cooperate to get all of the mirrors in the right
places with the correct orientation to complete the level.

The mechanics and restrictions of the game can be controlled to research the
effects on collaboration. Examples:

• Viewpoint of local players can be shown or hidden to remote players.

• Remote camera could be locked or be allowed to move freely.

• Hide the level for either the remote or local players to demand more com-
munication.

The game can support any number of players as long as there’s at least one
local and one remote player.

Members of the project team

Name: Thijs Boumans (T.Boumans-1@student.tudelft.nl)
Interests: Computer Graphics, Algorithm Design
Contribution and role: Front-end Developer

Name: Patrick Kramer (ptrck.krmr@gmail.com)
Interests: Software Engineering, Quality Assurance
Contribution and role: Lead Software Designer, AR Projection Mechanics

Name: Alexander Overvoorde (overv161@gmail.com)
Interests: Computer Graphics, Software Engineering
Contribution and role: Remote Player Visualization, Game Mechanics, Server
Computer Vision

Name: Tim van Rossum (trvanrossum@gmail.com)
Interests: Algorithm Design, Software Engineering
Contribution and role: Final Report curator, Level Designer, Co-lead Software
Designer

63

Coach and client

Coach: Rafaël Bidarra, Computer Graphics, r.bidarra@tudelft.nl
Client: Stephan Lukosch, Multi-Actor Systems, s.g.lukosch@tudelft.nl

64

Bibliography

[Endsley et al., 2003] Endsley, M., Bolte, B., and Jones, D. (2003). Designing
for situational awareness: An approach to user-centered design. Taylor and
Francis.

[Google, 2015] Google (2015). Cardboard. https://www.google.com/get/

cardboard/, Accessed 01-May-2015.

[Lindeijer, 2014] Lindeijer, T. (2014). Tiled map editor. http://www.

mapeditor.org/, Accessed 23-June-2015.

[Lukosh, 2015] Lukosh, S. (2015). Collaborative augmented reality tower
game. http://bepsys.herokuapp.com/projects/view/82, Accessed 23-
April-2015.

[MacIntyre, 2012] MacIntyre, B. (2012). Unity ar toolkit. https://research.
cc.gatech.edu/uart/content/about, Accessed 28-April-2015.

[Meta, 2015] Meta (2015). Meta one. https://www.getameta.com/, Accessed
28-April-2015.

[Metaio, 2015] Metaio (2015). Metaio. http://dev.metaio.com/sdk/

tutorials/see-through-glasses/, Accessed 28-April-2015.

[OculusVR, 2015] OculusVR (2015). Oculus rift development. https://

developer.oculus.com/, Accessed 28-April-2015.

[Qualcomm, 2015] Qualcomm (2015). Vuforia. https://www.qualcomm.com/

products/vuforia, Accessed 28-April-2015.

[Sutherland and Schwaber, 2013] Sutherland, J. and Schwaber, K. (2013). The
Scrum Guide: the definitive guide to Scrum, the rules of the game.

[Visualead, 2015] Visualead (2015). Graphical qr codes. http://nl.

visualead.com/, Accessed 01-May-2015.

[Zagal et al., 2006] Zagal, J., Rick, J., and Hsi, I. (2006). Collaborative games:
lessons learned from board games. Simulation & Gaming Vol.37 No.1.

65

