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Abstract

As quantum computers are developing, they are beginning to become useful for practical applications, for
example in the field of quantum metrology. In this work, a variational quantum algorithm is used to find
an optimal probe state for measuring parameters in a noisy environment. This is achieved by optimizing a
cost on a quantum computer, based on the Fisher information of the parameters to be estimated. These
parameters are then estimated using maximum likelihood estimators. In a simulation, a probe state was
found that performed better than the best possible state for noiseless measurements, although this could
not be reproduced on an actual quantum computer.
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1
Introduction

Quantum computers have been theorized since the 1980s, when Yuri Manin and Richard Feynman proposed
using a quantum computer to simulate quantum systems, which Feynman showed was impossible on a clas-
sical computer. Later it was discovered that the uses of quantum computers extend beyond just quantum
mechanical problems. Notably, in 1990, Peter Shor invented an algorithm that can factorize numbers into
primes in polynomial time, while no known classical algorithms can do this. This has often been named
the demise of encryption, as important encryption algorithms such as RSA on prime factorization being
exponentially hard. More recently, quantum computers have been built, but encryption has held up so far,
and in general quantum computers have not superseded classical computers for any everyday tasks. This is
because making quantum computers is quite difficult, due to the fragility of quantum states. Various sources
of noise disturb the qubits in the computer, causing inaccurate and unreliable outcomes. Scaling the amount
of qubits up has proven difficult too. Hence, in this era of noisy intermediate scale quantum computers, the
amount of practical applications is limited.

However, shorter circuits can be run reliably on quantum computers, and even these can take a long
time to simulate on a classical computer for larger numbers of qubits. This leads to the idea of variational
quantum algorithms, where quantum computers are combined with classical computers to perform an op-
timization algorithm. The cost function and its gradients can be computed on a quantum computer, and
the classical computer optimizes the parameters using gradient descent. This is useful when evaluating the
cost is infeasible on a classical computer but can be efficiently computed with the use of a quantum computer.

In this work, a variational quantum algorithm will be applied to the field of quantum metrology. An
important result in quantum metrology is that measuring on a set of entangled particles can yield more
precise results than independent measurements. The downside is that entangled particles are more sensitive
to noise, since noise on any of the particles affects all of them. A variational quantum algorithm can be
employed to find a state that optimizes measurements in the noisy environment of a quantum computer, by
being entangled enough to reap the benefits of quantum metrology without being affected by noise too much.

This will be achieved by optimizing a cost function based on the Fisher information of the parameters to
be measured. Then using maximum likelihood estimators, the parameters can be extracted from the probes.
In this work, it will be investigated whether this method can find a probe state that can do better than
the best probe state for noiseless measurements. This will be done both in simulators and on actual IBM
quantum computer.
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2
Quantum Computers

Quantum computers are computers that make use of quantum states for computation. Whereas classical
computers make use of classical bits, quantum computers operate on the state of qubits. Qubits are quantum
systems that are constrained to a two-dimensional state. By manipulating these states, the computer can
perform some tasks very quickly compared to classical computers. The quantum computer can typically
only measure in one basis, the computational basis, which are represented by |0⟩ and |1⟩. Qubit states will
generally be written in this basis.

2.1. Quantum gates
In order to compute with these qubits, there are quantum gates which change their states. Since these gates
bring about some evolution of the quantum system, they must be unitary operators. An example is the
Hadamard gate. This gate acts on the basis states in the following manner

|0⟩ ↦ 1√
2

(|0⟩ + |1⟩)

|1⟩ ↦ 1√
2

(|0⟩ − |1⟩)

And is thus represented as 𝐻 = 1√
2 ⟮1 1

1 −1⟯ in the computational basis.

Something to note is that the |0⟩ and |1⟩ states will have different energy levels, so after time 𝑡 the state
𝛼 |0⟩ + 𝛽 |1⟩ will become 𝛼 |0⟩ + 𝑒−𝑖Δ𝐸 𝑡/ℏ𝛽 |1⟩. This is inconvenient, ideally the state should only change if
the computer does something to it. Hence the state will be viewed in a rotating frame, where |1⟩ actually
represents 𝑒−𝑖Δ𝐸 𝑡/ℏ𝛽 |1⟩.

If there are two qubits, the state of the system now lives in the tensor product of the two individual
Hilbert spaces, which is spanned by the basis states |00⟩ , |01⟩ , |10⟩ and |11⟩.

In this multiple qubit case, gates can still be applied to each qubit individually. For example, applying
the Hadamard gate to the first bit of the |00⟩ state gives

(𝐻 |0⟩) |0⟩ = 1√
2

(|0⟩ + |1⟩) |0⟩ = 1√
2

(|00⟩ + |10⟩)

Another way to view this, is to apply an operator which acts as 𝐻 on the first qubit and as 𝐼 , the identity,
on the second. The way to obtain the operator that acts on the 2-qubit state is by taking the tensor product
𝐻1 = 𝐻 ⊗ 𝐼 . In matrix representation, this is done by taking the Kronecker product.

This is a useful concept, because there are gates that work on 2-qubit states that do not act on the 2
qubits individually. This happens for controlled gates, which apply a gate on a target qubit depending on the
state of a control qubit. If the control qubit is in the |0⟩ state, the gate is not applied to the target qubit, if
the control qubit is in the |1⟩ state it is. Usually though, the control qubit is in a superposition. Then the
target qubit is put in a superposition of the gate being applied and not being applied. More rigorously, if 𝐺
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4 2. Quantum Computers

is some gate, then |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝐺 is the controlled-𝐺 gate, notated as CG, with the first qubit as
control and the second as target. Then if the control qubit is in state 𝛼 |0⟩ + 𝛽 |1⟩, and the target qubit is
in state |𝜓⟩, the resulting state after applying the gate is

CG((𝛼 |0⟩ + 𝛽 |1⟩) ⊗ |𝜓⟩) = 𝛼 |0⟩ |𝜓⟩ + 𝛽 |1⟩ (𝐺 |𝜓⟩)

Note that even though the qubits are referred to as the control and target qubits, the control qubit’s state is
affected by this operation too. In fact, depending on 𝐺, this operation will often entangle the two qubits [12].

Some frequently used gates are parametrized gates, such as the rotation gates 𝑅𝑥(𝜃) = 𝑒−𝑖𝜃𝜎𝑥/2, and
similarly 𝑅𝑦(𝜃) and 𝑅𝑧(𝜃) with the corresponding Pauli matrix in the exponent.

In practice, a quantum computer will only be able to execute a certain set of gates. However, many
gates can be decomposed into others. In general, there exists no finite set of gates that can be combined
to perform every possible unitary operation, but it is possible to have a set of gates that can approximate
any unitary arbitrarily well with a finite amount of gates. Such a set is called a universal gate set. The
Solovay-Kitaev theorem shows that approximating gates can be done efficiently with any universal gate set:
any 1-qubit gate can be approximated to error 𝜀 in operator norm by a sequence of gates from a universal
gate set, where the length of the sequence grows as O(log𝑐(1/𝜀). Here 𝑐 is is a constant depending on the
specific gate set, but is less than 4 for any universal gate set [8].

One particular task which quantum computers are more efficient at than classical computers, is evaluating
expectation values of observables. The Hilbert space of states of 𝑛 two level systems has dimension 2𝑛,
meaning an observable is represented by a 2𝑛 × 2𝑛 complex matrix. This quickly becomes infeasible to
compute on a classical computer, a 30 particle state would take 10 GB of memory if stored as an array of
floating point numbers, and 1018 multiplications would have to be performed. For a quantum computer, only
30 qubits are needed. This amount of qubits has already been achieved in quantum computers, although
noise makes current quantum computers of this size too inaccurate for many purposes. The following chapter
will discuss the workings of qubits and how this noise comes about.



3
Superconducting Qubits

In the previous chapter, it was discussed how quantum computers work in theory. Realising quantum com-
puters has been difficult, however, due to the fragility of quantum states. There are several technologies in
development, but the majority of currently operational quantum computers are based on superconducting
qubits, specifically the transmon qubit. This chapter will describe how these qubits work.

3.1. Superconducting Qubit
To create a qubit, one needs to create a system with two available eigenstates. In a superconducting qubit,
this system is a superconducting electrical circuit. In many ways such a circuit works similarly to a classical
circuit, except for the fact that in some materials at low enough temperatures, electrons pair up. This is
made possible by an attractive force between the electons, due to the electrons deforming the lattice of the
material. Such a pair, called a Cooper pair, together forms a boson. Since the Pauli exclusion principle
now no longer applies, all the Cooper pairs can occupy a shared ground state. In this state, there is a
high energy gap to the next allowed energy level. This cannot be overcome by lattice interactions at low
temperatures, hence eliminating any resistance. The mechanism of the formation of Cooper pairs as a result
of the attractive force, and how the high energy gap is created is described by BCS theory [3].

To understand how a superconducting qubit is formed, we conider a circuit containing a capacitive and
an inductive element, making an LC-circuit which has a resonant frequency at 𝜔𝑟 = 1√

𝐿𝐶 , where 𝐿 and 𝐶
are the inductance and capacitance of the circuit elements, see figure 3.1.

C L

Figure 3.1: Superconducting LC-circuit

Such a circuit does not require a voltage or current source, since the lack of resistance means that any
current will keep circulating indefinitely.

Classically, in a circuit with a capacitor of capacitance 𝐶 and an inductor of inductance 𝐿 such a circuit
has energy

𝐸 = 1
2𝐶𝑉 2 + 1

2𝐿𝐼2 (3.1)

Where 𝑉 is the voltage over the capacitor and 𝐼 is the current through the inductor. To analyse the circuit
on a quantum-mechanical level, it is more useful to express the energy in terms of the charge 𝑄 stored in
the capacitor, and the branch flux Φ through the inductor. These quantities are defined as follows

5



6 3. Superconducting Qubits

𝑄(𝑡) = ∫
𝑡

−∞
𝐼(𝑡′)𝑑𝑡′ (3.2)

Φ(𝑡) = ∫
𝑡

−∞
𝑉 (𝑡′)𝑑𝑡′ (3.3)

Then the energy of the capacitor can be written as 𝐸𝐶 = 1
2 𝐶Φ̇2, and using the relation 𝐼 = 𝐿Φ for the

inductor, its energy becomes 𝐸𝐿 = 1
2𝐿 Φ2. Since 𝐸𝐿 only depends on Φ and 𝐸𝐶 only on its derivative, 𝐸𝐿

can be viewed as the potential and 𝐸𝐶 as the kinetic energy. Then the Lagrangian of the system is

L = 1
2𝐶Φ̇2 − 1

2𝐿Φ2

The canonical conjugate of Φ can then be calculated as dL
dΦ̇ = 𝐶Φ̇ = 𝐶𝑉 = 𝑄 by the known relation for

capacitors. That results in the following Hamiltonian:

H = Φ̇dL
dΦ̇ − L

= Φ̇ ⋅ 𝐶Φ̇ − (1
2𝐶Φ̇2 − 1

2𝐿Φ2)

= 1
2𝐶Φ̇2 + 1

2𝐿Φ2 (3.4)

= 𝑄2

2𝐶 + Φ2

2𝐿 (3.5)

If we compare this to a harmonic oscillator of a spring-mass system with 𝐸 = 1
2 𝑚 ̇𝑥2+ 1

2 𝑚𝜔2
𝑟𝑥2, comparing

its coefficients to equation 3.4 gives 𝑚 = 𝐶 and 𝜔𝑟 = 1√
𝐿𝐶 . Thus such a circuit acts as a harmonic oscillator.

To go to a quantum-mechanical description, the classical Hamiltonian will be converted to a quantum
Hamiltonian by replacing the classical variables in equation 3.5 by their quantum operator counterparts.
Thus the Hamiltonian of the system is

�̂� = �̂�2

2𝐶 + Φ̂2

2𝐿 (3.6)

The quantization condition by Dirac [5] states that the commutator of quantum operators that correspond
to a generalized coordinate and its canonical conjugate is 𝑖ℏ, hence

[Φ̂, �̂�] = 𝑖ℏ (3.7)

�̂� and Φ̂ can be reduced to unitless quantities: �̂� = �̂�
2𝑒 is the number of excess Cooper pairs in the inductor,

and ̂𝜙 = 2𝜋 Φ̂
Φ0

is the reduced flux. These have a commutator of [ ̂𝜙, �̂�] = 𝑖. Then the Hamiltonian can be
rewritten as [9]

�̂� = 4𝐸𝐶�̂�2 + 1
2𝐸𝐿 ̂𝜙2

with 𝐸𝐶 = 𝑒2/(2𝐶) and 𝐸𝐿 = (Φ0/2𝜋)2/𝐿.

For a Cooper pair in the circuit, this means that it is in a harmonic oscillator potential with frequency 𝜔𝑟.
This creates the discrete energy levels 𝐸𝑘 = ℏ𝜔𝑟(𝑘 + 1

2 ) that the Cooper pairs can occupy. The resonant
frequency will be tuned so that energy transitions can be brought about by photons of microwave frequencies.
However, since the energy levels are equally spaced, a photon that excites a Cooper pair from |0⟩ to |1⟩
might just as well excite a Cooper pair from |1⟩ to |2⟩. Since the Cooper pairs should only be able to access
the two lowest state, a mechanism is necessary to differentiate the energy gaps .

Superconducting qubits achieve this using a Josephson junction. It consists of two superconducting
islands, with a non-superconducting material in between. Electrons can tunnel across the gap from one
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island to the other, but it turns out that Cooper pairs can tunnel together, which is called the Josephson
effect. This allows a superconducting current through the junction, following the relation

𝐼 = 𝐼𝑐 sin(𝜙) (3.8)

where 𝜙 is the reduced flux through the junction.

C J

Figure 3.2: Superconducting qubit

If a Josephson junction is used instead of an inductor, the Hamiltonian becomes

𝐻 = 4𝐸𝐶�̂�2 − 𝐸𝐽 cos( ̂𝜙) (3.9)

with 𝐸𝐽 = 𝐼𝑐Φ0/2𝜋 [17].
This is still approximately a harmonic oscillator, which can be seen by Taylor-expanding the cosine, but

has a perturbation of order O(𝜙4). This causes the eigenenergies to shift so that they are not equally spaced
anymore. Now photons of frequency 𝜔0→1 = 𝐸1−𝐸0

ℏ can be used to drive interactions between |0⟩ and
|1⟩, while having only a small chance of affecting other energy transitions. The size of the anharmonicity
depends on 𝜖 = √2𝐸𝐶/𝐸𝐽 Using a perturbative solution of this Hamiltonian, the anharmonicities can be
approximated as [10]

𝐸1 − 𝐸0
𝜔𝑟

= 1 − 1
4𝜖 − 1

16𝜖2 + O(𝜖3) (3.10)

𝐸2 − 𝐸1
𝜔𝑟

= 1 − 1
2𝜖 − 13

64𝜖2 + O(𝜖3) (3.11)

which results in a difference in energy gap of 𝜔𝑟( 1
4 𝜖 − 9

64 𝜖2 + O(𝜖3))

3.2. Application of gates
Single qubit gates are applied by capacitively coupling a sinusoidal voltage source to the superconducting
circuit, see figure . This voltage can be expressed as 𝑉𝑑(𝑡) = 𝑉0𝑠(𝑡) sin(𝜔𝑑𝑡 + 𝜙). This adds a term 𝐻𝑑 to
the Hamiltonian, which in the rotating frame is given by [9]

𝐻𝑑 = Ω𝑉0𝑠(𝑡) ⋅ (cos(𝜙) sin(𝜔𝑑𝑡) − sin(𝜙)𝜔𝑑𝑡)) ⋅ (cos(𝜔𝑟𝑡)𝜎𝑦 − sin(𝜔𝑟𝑡)𝜎𝑥) (3.12)

Where Ω = 𝐶𝑑/(𝐶𝑑 + 𝐶)√ℏ𝐶/2𝐿.
If the applied frequency is matched with the qubit frequency, so 𝜔𝑑 = 𝜔𝑟, and high frequency terms are
neglected, this reduces to

C J

𝐶𝑑

𝑉𝑑(𝑡)

Figure 3.3: Superconducting qubit with driving voltage source



8 3. Superconducting Qubits

𝐻𝑑 = −Ω
2 𝑉0𝑠(𝑡)(cos(𝜙)𝜎𝑥 + sin(𝜙)𝜎𝑦) (3.13)

Hence it is possible to choose the axis of rotation of the qubit state by choosing the corresponding initial
phase 𝜙. The angle of rotation is then

Θ(𝑡) = Ω𝑉0 ∫
𝑡

0
𝑠(𝑡′)𝑑𝑡′ (3.14)

Any single qubit gate can be achieved by applying a sequence of these rotation gates.
This covers the single-qubit gates, but in order to make a universal quantum computer, there also need to

be 2-qubit gates. There are several methods of doing this, but the cross-resonance gate is currently the most
promising technology. It works by capactitively coupling two superconducting qubits of different resonant
frequencies, and driving one qubit at the resonant frequency of the other. This results in a Hamiltonian
term proportional to 𝜎𝑧 ⊗ 𝜎𝑥, the first qubit being the one that is driven [10]. Other 2-qubit gates can be
decomposed into single-qubit gates and the cross-resonance gate.

3.3. Sources of noise
In practice, current quantum computers do not exactly reproduce the theoretical results, since they are
affected by noise. Unlike a classical bit, the state of a qubit is continuous: each of the degrees of freedom
in the general state of a qubit 𝛼 |0⟩ + 𝛽 |1⟩ is continuous, and therefore can deviate a small amount from
the intended value.

The noise will cause the qubit to become entangled with the environment, and thus ends up in a mixed
state. Hence a density matrix can be used to describe the state of the qubit and how the noise affects it.

In its pure state, the qubit has a density matrix of (𝛼 |0⟩ + 𝛽|1⟩)(𝛼 ⟨0| + 𝛽 ⟨1|) which becomes

(|𝛼|2 𝛼𝛽
𝛼𝛽 |𝛽|2)

in matrix representation.
The domninant noise in superconducting qubits can be divided into two categories: latitudinal decay and

longitudinal decay. These terms come from their effect on a state vector in the Bloch sphere.

(a) Latitudinal decay on the Bloch spere (b) Longitudinal decay on the Bloch spere

Both these effects can be described using exponential distributions, with characteristic time 𝑇1 for lati-
tudinal decay and 𝑇2 for longitudinal decay. This gives a new density matrix of

(1 − (1 − |𝛼|2)𝑒−𝑡/𝑇1 𝛼𝛽𝑒−𝑡/𝑇2

𝛼𝛽𝑒−𝑡/𝑇2 |𝛽|2𝑒−𝑡/𝑇1
) (3.15)

after time 𝑡. This is also known as the Bloch-Redfield model of decoherence.
Longitudinal decay is caused by amplitude dampening, which is due to energy exchange with the envi-

ronment. Most likely, the qubit loses energy to the environment, so that a |1⟩ state is reduced to a |0⟩ state.
Then 𝑇1 is the time it takes for 1/𝑒 of qubits to decay.
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Amplitude also causes longitudinal decay. There are also many other processes which induce longitudinal
decay, together called dephasing. Dephasing happens due to the qubit becoming entangled to its environ-
ment, which may happen due to many effects such as interactions with the material that the qubit is made
out of, or interactions with electromagnetic fields from the environment. The rate at which this happens is
called the pure dephasing rate Γ𝜙. Then 1

𝑇2
= 1

2𝑇1
+ Γ𝜙.

In applying gates there can also occur errors. Firstly, there may be an error in the microwave frequency
or the timing of the applied pulse, causing the phase applied to the qubit to be too small or large. These
errors are systematic and can be found and corrected [9].

Multiple-qubit gates are especially sensitive to errors in the driving voltage, as an error in the phase can
lead to the qubit states being rotated

Secondly, the microwave pulses applied to the qubit are short, and thus have a broad range of frequencies.
This may accidentally drive a transition from |1⟩ to |2⟩, called a leakage error, which will cause an incorrect
result at the readout. Longer pulses could be used to mitigate this effect, but then there is a higher chance
of decay or decoherence during the pulse.

Errors can also occur if the process of measuring the qubit alters the state before the measurement,
which is called a readout error [9].

3.4. Transmon Qubits
Qubits tend to be sensitive to charge noise. The effects of charge noise can be diminished by having the flux-
dependent Josephson junction dominate over the charge-dependent capacitor, in other words, by designing
the circuit such that 𝐸𝐽 >> 𝐸𝐶 . This can be achieved by making the capacitance of the capacitor much
larger than the internal capacitance of the Josephson junction. A downside of this method is that it reduces
the anharmonicity, as it depends on √𝐸𝐶/𝐸𝐽 . This increases the chances of leakage errors. Nonetheless,
the transmon qubit has been the most successful design as of now, notably all IBM quantum computers use
this technology.





4
Quantum metrology

Metrology has become increasingly important in the current age of physics, as more and more accurate
measurements are necessary to be able to corroborate hypotheses about the microscopic nature of the
universe. However, any measurement device has some limit of measurement accuracy. In some cases
though, it is possible to obtain a more accurate result by repeating the measurement many times. Then
taking the average of these measurements gives a result with a smaller error. Treating the measurements as
independent identically distributed random variables 𝑋1, … , 𝑋𝑛 whose expectation values are the true value
to be measured, and with variance 𝜎2, the variance of the average �̄� becomes

Var(�̄�) = Var ( 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖) = 1
𝑛2

𝑛
∑
𝑖=1

Var(𝑋𝑖) = 𝜎2

𝑛

And thus, the standard deviation of the average becomes 𝜎/√𝑛. This shows that adding more measurements
yields a more accurate result, but with diminishing returns due to the square root. This leads to the question
if it is somehow possible to combine measurements in such a way that the variance decreases faster as a
function of the amount of measurements.

If the measurements are independent, the answer is that this is not possible. So in order to achieve
a better result, the measurements need to be dependent on each other. This cannot be achieved using
measurements on classical states, since measuring one state does not affect other states. However, this is
possible for entangled quantum states. If the value to be measured can somehow be encoded on a set of
entangled probes, then measurements on these probes are dependent. Hence it could be possible for the
error of the result to decrease faster than 1/√𝑛, where 𝑛 in this case is the number of probes.

4.1. Measuring phase
One example where entangled states can produce more accurate measurements, is measuring the phase
encoded in a quantum state.

Suppose that an unknown phase 𝜙 is added to a qubit system by applying the unitary |0⟩⟨0|+𝑒𝑖𝜙 |1⟩⟨1| to
it, and we want to measure 𝜙. This can be done by preparing the qubit in state 1√

2 (|0⟩ + |1⟩) and applying
the unitary to it, which yields 1√

2 (|0⟩ + 𝑒𝑖𝜙 |1⟩). Measuring in the z-basis gives no information about 𝜙, but
measuring in the x-basis does, since in the x-basis the state is 1

2 ((1 + 𝑒𝑖𝜙) |+⟩ + (1 − 𝑒𝑖𝜙) |−⟩). Then the
probability of measuring |+⟩ is 𝑝+ = |1 + 𝑒𝑖𝜙|2 = cos2(𝜙/2) = 1

2 (1 − cos(𝜙)). Then 𝜙 can be calculated as

𝜙 = cos−1(2𝑝+ − 1) (4.1)

By repeating this experiment several times, 𝑝+ can be estimated as the fraction of times that |+⟩ was
measured. If a more accurate result is needed, an obvious method is to increase the number of repetitions.
However, this is exactly as in the classical situation described above, where in this case 𝑋𝑖 is Bernoulli
distributed with 𝑝+ chance of |+⟩. Hence the error only decreases with the square root of the number of

11
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repetitions. The error in 𝜙 scales linearly with that of 𝑝+, since, using error propagation, we have the relation
𝜎𝜙 = ∣ d𝜙

d𝑝+
∣𝜎𝑝+

for any fixed value of 𝑝+, Hence the error of 𝜙 also decreases with a square root.
However, in this case entangled states can be used to achieve a better result. Suppose the process was

applied on 𝑛 entangled two level systems in the GHZ state: 1√
2 (|0⟩⊗𝑛 + |1⟩⊗𝑛). Then after the process, the

state is 1√
2 (|0⟩⊗𝑛 + 𝑒𝑖𝑛𝜙 |1⟩⊗𝑛). In this case, 𝑛𝜙 can be measured in the same way as 𝜙 before, except now

𝑝+ is the probability of |+⟩⊗𝑛. This gives a better measurement result than the unentangled case: suppose
𝑁 qubits can be used for each method. For the unentangled case, where each qubit is measured individually,
this gives a standard deviation which scales with 1/

√
𝑁 . For the entangled case, this means repeating the

experiment 𝑁/𝑛 times since each measurement involves 𝑛 qubits. Then since 𝑛𝜙 is measured with the same
accuracy as 𝜙 was in the unentangled case, the entangled measurement results in an error reduced by a
factor 𝑛. Hence this error scales as 1

𝑛√𝑁/𝑛 = 1/
√

𝑛𝑁 , a factor √𝑛 better than the unentangled case.
Something to take into account is that 𝑛𝜙 is only determined modulo 2𝜋. If 𝜙 is small, or if it is known

that 𝜙 is close to some known value, this is not an issue. If this is not the case, measurements with smaller
values of 𝑛 can be made to get a rough estimate of 𝜙, and then larger values of 𝑛 can be used to increase
precision. Furthermore, the above method only works for 𝑛𝜙 ∈ [0, 𝜋] due to the inverse cosine. Measuring in
the y-basis replaces the cosine by a sine, so the value of 𝑛𝜙 ∈ [0, 2𝜋] can be calculated with an arctangent.
The errors still scale the same way in this method.

4.2. Heisenberg limit
Similarly to the classical case, there is a limit to how fast the error can decrease with 𝑛. This is known as the
Heisenberg limit, and states that the error can at most decrease as 1

𝑛 [7]. Although it was not discovered
by Heisenberg himself, the bound is derived from a generalized Heisenberg uncertainty principle.
In practice, the amount of probes is limited, as it is difficult to entangle many particles and leave their states
undisturbed. Hence if the necessary precision is not achieved this way, the entangled measurement can be
repeated 𝑁 times to achieve a total bound of 1

𝑛
√

𝑁

4.3. POVMs
As discussed in section 4.1, one can measure in different bases than the 𝑧-basis. While the quantum
computer can only measure in the 𝑧-basis, gates can be used to change the coefficients of the state in the
computational basis, so that they match the coefficients of the original state in the alternative basis. For
example, a measurement in the 𝑥-basis can be realized by mapping the |+⟩ state to |0⟩ and |−⟩ to |1⟩,
giving a transformation matrix of |0⟩⟨+| + |1⟩⟨−|, which turns out to be the Hadamard gate. In this way,
it is possible to measure by projecting onto any orthogonal basis. However, more general, non-projective
measurements are possible. In general, a measurement is any process where some quantity is extracted from
a state, where the value of this quantity is drawn from a set of possible outcomes. For every possible outcome
𝑚, there is a measurement operator 𝑀𝑚, such that measuring |𝜓⟩ results in outcome 𝑚 with probability
𝑝(𝑚) = ⟨𝜓|𝑀†

𝑚𝑀𝑚|𝜓⟩. Since the probability of getting any outcome must be 1, the completeness relation

∑
𝑚

𝑀†
𝑚𝑀𝑚 = 𝐼 (4.2)

holds.

This leads to the definition of a positive operator valued measure: it is a set of positive operators
{𝐹𝑚} that sum to 𝐼 . Since every positive operator 𝐹𝑚 can be factored as 𝑀†

𝑚𝑀𝑚 for some operator
𝑀𝑚, the POVM constitutes a complete set of measurements, with the probability of finding 𝑚 being
𝑝(𝑚) = ⟨𝜓|𝐹𝑚|𝜓⟩. This characterizes the most general way to perform measurements on quantum states.
[15]

4.4. Measurements in the Presence of Noise
So far, only ideal measurement processes have been considered. In the noiseless case the GHZ state is
optimal, as it saturates the Heisenberg limit. But this state is also very sensitive to noise: only the sum of
the phases applied on the |1⟩ state is stored in the state, so if there is an outlier, it will offset the average
phase and cannot be corrected. One way to potentially mitigate this is by choosing a probe state that
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is less sensitive to this noise. Doing this theoretically will be a challenge, due to the intricacies of noise.
However, since quantum computers exhibit noise themselves, it could be possible to optimize the amount
of information about encoded parameters in a state, while automatically accounting for noise. In order to
optimize over the possible probe states, a variational quantum algorithm can be used, which the next chapter
will elaborate on.





5
Variational Quantum Algorithms

Variational quantum algorithms (VQAs) are algorithms that combine classical optimization algorithms with
quantum computations that have low circuit depth and do not require many qubits. These algorithms seek
to find a state that minimizes some cost function. The optimal state then encodes the solution. VQAs have
many applications.

Many applications are directly related to quantum mechanics, such as the one that will be described in
this work. Another example is the variational eigensolver, which can find the ground state and energy of a
Hamiltonian, which is of use for systems which are too difficult to analyse analytically.

Other applications include quantum approximate optimization algorithms, which can find approximate
solutions for combinatorial optimization problems such as the travelling salesman problem [14].

5.1. Overview of the algorithm
Variational quantum algorithms are useful when a problem can be solved by minimizing a cost function,
and this cost function and its gradients can be computed efficiently on a quantum computer, while being
impractical on a classical computer. In practice, this means that the cost function consists of expectation
values of certain observables. The expectation values can be computed on the quantum computer, from
which a classical computer can do calculations with these values to obtain the cost function if necessary.
Then the parameter shift rule can be used to calculate the gradients, which will be explained in more detail
in the next chapter. Firstly, one needs to design a parametrized circuit. On the one hand, it is desirable for
the circuit to be able to produce as many states as possible, as this allows more freedom to reduce the cost
function as much as possible. However, this comes at the cost of having many parameters, which will make
optimization more costly.

Once a circuit has been designed, an initial state of the parameters has to be chosen. The cost function
of this state and its gradients can be calculated on the quantum computer. Then a classical computer is
used to calculate the next iteration of parameters, typically using some form of gradient descent. Then the
cost and gradients at this new state can be calculated to to calculate the following iteration of parameters
and so forth. Using this method, the cost function will approach a local minimum. It is not guaranteed to
be a global minimum, so if something is known about where the global minimum could roughly be, it is best
to choose the initial state in that neighborhood [4].

5.2. Optimizing Probe State with Fisher Information
As discussed in section 4.4, a variational quantum algorithm can be used to find an optimal probe state
for measuring parameters in the presence of noise. The probe state will be generated by a parametrized
circuit 𝑈(𝜽), giving a probe state ∣𝜓probe(𝜽)⟩. This state will then undergo some process that encodes the
parameters 𝝓 on it, which are the parameters we are interested in measuring. The state after this process
will be denoted |𝜓(𝜽, 𝝓)⟩ (or |𝜓(𝝓)⟩ if 𝜽 is fixed). In order to find the optimal state, we need a cost function
that represents how well the 𝝓 parameters can be measured based on the probe state.

The measurement outcomes are governed by some probability distribution which depends on the param-
eters to be measured. Thus in order to measure the parameters, we need an estimator that estimates them

15
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Quantum computer

Classical computer

Initial

Figure 5.1: Overview of a VQA algorithm. 𝑓 is the cost function, 𝑈(𝜽) is the parametrized circuit and 𝑝ℓ are the POVM
outcomes

from a set of samples. Then a measure of the variance of such an estimator could serve as a cost function.
The Fisher information gives a method to achieve this.

The Fisher information is a way of quantifying how well some parameter in a probability distibution can be
estimated. If there are multiple parameters to be estimated, say 𝑚 parameters in 𝝓, the Fisher information
will be an 𝑚 × 𝑚 matrix. The matrix element at position (𝑖, 𝑗) can be interpreted as a measure for how well
parameter 𝜙𝑖 can be estimated based on the value of parameter 𝜙𝑗, or vice versa. The probability distribution
from which 𝝓 is to be estimated, is that of the outcomes of the measurements from the quantum computer.
These measurements can in general be represented by a POVM {𝐹ℓ}, which results in a distribution

𝑓(ℓ; 𝝓) = ⟨𝜓(𝝓)|𝐹ℓ|𝜓(𝝓)⟩ (5.1)

The components of the fisher information are defined as [6]

[𝐼𝝓]𝑗𝑘 = E [( d
d𝜙𝑗

log 𝑓(𝑋; 𝝓)) ( d
d𝜙𝑘

log 𝑓(𝑋; 𝝓))]

where 𝑋 is a random variable for the value of ℓ with a distribution of 𝑓(ℓ; 𝝓).
If we fix some value of 𝝓, it is convenient to write 𝑝ℓ = 𝑓(ℓ; 𝝓), such that the Fisher information becomes

[𝐼𝝓]𝑗𝑘 = E [( d
d𝜙𝑗

log 𝑓(𝑋; 𝝓)) ( d
d𝜙𝑘

log 𝑓(𝑋; 𝝓))] =

∑
ℓ

d
d𝜙𝑗

𝑝ℓ

𝑝ℓ
⋅

d
d𝜙𝑘

𝑝ℓ
𝑝ℓ

⋅ 𝑝ℓ = ∑
ℓ

( d
d𝜙𝑗

𝑝ℓ)( d
d𝜙𝑘

𝑝ℓ)
𝑝ℓ

(5.2)

Usually, one is interested in some (vector-valued) function of the parameters g. Then the Fisher infor-
mation 𝐼g of g can be computed using the Jacobian 𝐽 with [𝐽 ]𝑗𝑘 = 𝜕𝑔𝑗

𝜕𝜙𝑙
:

𝐼g = 𝐽𝑇 𝐼𝝓𝐽 (5.3)

The intuition of the fisher information indicating how well parameters can be estimated is made rigorous
by the Cramér-Rao bound. If ĝ is an unbiased estimator of g, the Cramér-Rao bound states

Cov𝝓[ĝ] ≥ 𝐼−1
g (5.4)
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Where the matrix inequality ≥ is not element-wise, but indicates that the difference of the matrices is
positive semi-definite. This theorem gives a lower bound on the variances of the parameter estimates. Hence,
lowering the Fisher information allows for better estimates [16].

If 𝑔 is a scalar function, 𝐼−1
g is also just a scalar and can be used as a cost function. If 𝑔 is vector valued,

then one could use Tr(𝑊𝐼−1
g ) as a cost function, where 𝑊 is a positive semi-definite weighting matrix. This

is a viable cost function since Tr(𝑊Cov𝝓[ĝ]) ≥ Tr(𝑊𝐼−1
g ), so the cost still represents the lower bound of

some function of the (co)variances. 𝑊 can be chosen as all ones if all entries of the inverse Fisher matrix
are to be weighted equally. Alternatively, one could choose to favor decreasing variances of the individual
parameters over decreasing covariances between them by choosing the off-diagonal elements to be smaller
[13].

5.3. Maximum Likelihood Estimation
Once the optimal probe state has been found, it can now be used to estimate the parameters. Maximum
likelihood estimators use a set of samples from the distribution with the true parameters to estimate those
parameters. This is done by calculating the parameters that maximize the probability of the samples being
the outcomes of the distribution. In this case, each sample from the distribution is the measurement of
one of the outcomes of the POVM {𝐹ℓ}. The probability of finding outcome ℓ under the assumption that
𝝓 are the parameters of the distribution is ⟨𝜓(𝝓)|𝐹ℓ|𝜓(𝝓)⟩ =∶ 𝑝ℓ(𝝓). If there are 𝑁 samples {ℓ𝑖}𝑁

𝑖=1, the
likelihood is then defined as

L(𝝓; {ℓ𝑖}) =
𝑁

∏
𝑖=1

𝑝ℓ𝑖
(𝝓) (5.5)

The value of 𝝓 that maximizes L given the samples is the maximum likelihood estimator. To find this
maximum, it is easier to consider of the logarithm of the likelihood. It has its maxima at the same points
and thus gives the same estimator, but it is easier to take the derivatives. Furthermore, since there is only
a finite number of possible outcomes, this can be rewritten in a more convenient form. If we define 𝐶(ℓ) as
the number of counts of ℓ out of the 𝑁 samples of the true distribution, the log likelihood becomes

logL(𝝓, {ℓ𝑖}) = ∑
ℓ

𝐶(ℓ) log(𝑝ℓ(𝝓)) (5.6)

which has gradients

𝜕
𝜕𝜙𝑗

logL(𝝓, {ℓ𝑖}) = ∑
ℓ

𝐶(ℓ)
𝜕

𝜕𝜙𝑗
𝑝ℓ(𝝓)

𝑝ℓ(𝝓) (5.7)

Then using gradient ascent, the maximum likelihood estimator for 𝝓 can be approximated.

5.4. Optimization
For the gradient descent and ascent, a backtracking line search algorithm can be used. In this method,
the direction of the optimization step is determined first, which is usually minus the gradient of the cost
function, although some methods also take into account the history of previous steps. Then an imaginary
line is drawn from the current point in parameter space in the direction of the step, with a slope that is a
factor 𝑐 smaller than the actual slope of the cost function in that direction. Then the step size is repeatedly
reduced by a factor of 𝛼 until the new cost is below the imaginary line. Figure 5.2 depicts graphically how
this works.

Formally, let x be the current parameters p be the direction of the next optimization step. Then 𝑛
starting at 0 will be increased until

𝑓(x − 𝛼𝑛p) < 𝑓(x) − 𝑐𝛼𝑛⟨∇𝑓(x), 𝑝⟩
holds, which then makes x − 𝛼𝑛p the updated parameters [2].

Under normal circumstances, this method guarantees that the cost function decreases with every opti-
mization step. However, due to the fact that the cost function can only be approximated, this is not the
case anymore. Nonetheless, this method provides a good method of determining a suitable step size, and
allows for various step sizes in different stages of optimization, as large jumps can be made at the start but
smaller steps are required when approaching a minimum.
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Figure 5.2: Diagram of backtracking line search in one dimension. The parabola is the cost function, and the dot indicates the
current position. The dotted line is indicates the maximum cost of the next iteration. The arrows indicate potential step sizes,
where only the smallest arrow satisfies the condition.



6
Parameter Shift Rule

In order to optimize a cost function using gradient descent, it is necessary to calculate the gradient of the
cost function with respect to the optimization parameters. In general, there are several methods of doing
this. The first is explicitly expressing the cost function as a function of the parameters and taking the partial
derivatives, either by hand or using a computer algebra system. This becomes quite costly if the circuit size
and amount of parameters becomes large, and is not flexible, as one needs to do the work again if a different
circuit design is chosen. The second option is numerical differentiation. This approach only has limited
success in quantum applications, since the difference in cost between two points nearby in parameter space
may be dominated by noise, even in an ideal quantum computer there is statistical noise. To mitigate this,
one could choose points further away from each other, thereby decreasing the accuracy of the numerical
derivative, or increasing the amount of shots for calculating the cost function, which increases computation
time.

There is, however, a third method that allows one to estimate the exact values of the gradients of the
cost function. This method gives an exact formula for evaluating the gradient of the cost function with
respect to a parameter in terms of the cost function evaluated at points with the parameter shifted, hence
its name: the parameter shift rule.

6.1. Parameter Shift Rule
The cost function will depend on a parametrized state. This state is generated by a parametrized circuit:
|𝜓(𝜽)⟩ = 𝑈(𝜽) |𝜓0⟩.

For now, suppose the circuit depends on a single parameter. Parametrized quantum gates of the form
𝑈(𝜃) = 𝑒−𝑖𝜃𝐺 will be considered, where the generator 𝐺 is a hermitian matrix.
The parameter shift rule works for cost functions in the form of the expectation value of some observable
𝐻, so the cost function 𝑓 can be expressed as

𝑓(𝜃) = ⟨𝜓0|𝑈†(𝜃)𝐻𝑈(𝜃)|𝜓0⟩ (6.1)

Since d
d𝜃 𝑈(𝜃) = −𝑖𝐺𝑈(𝜃) and 𝑈(0) = 𝐼 , 𝐺 can be calculated as

𝐺 = 𝑖 d
d𝜃𝑈(𝜃)∣

𝜃=0
(6.2)

Depending on the properties of 𝐺, it is possible in many cases to derive a parameter shift rule. For
example, if 𝐺2 = 𝑎𝐼 for some 𝑎 ∈ R, as is the case for the rotation gates which have the Pauli matrices
divided by 2 as generators, we have the following rule [11]:

d
d𝜃𝑓(𝜃) = 1

2 sin(𝛼)(𝑓(𝜃 + 𝛼) − 𝑓(𝜃 − 𝛼)) (6.3)

for any 𝛼 ∈ R except multiples of 𝜋. The specific case of 𝛼 = 𝜋
2 turns out to be the optimal value of 𝛼 to

minimize variance [1]. However, it may also be advantageous to use the freedom of choosing 𝛼 to reduce

19
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the amount of evaluations of 𝑓(𝜃) necessary. For instance, choosing 𝛼 = −𝜃 always reduces the first term
to 𝑓(0). This value could be computed once beforehand, hence if many gradients need to be calculated, this
method halves the amount of evaluations. This does not work if 𝜃 is a multiple of 𝜋, as the parameter shift
formula is not valid for the corresponding value of 𝛼, but in this case 𝛼 = 𝜋

2 − 𝜃 can be chosen, reducing
the first term to 𝑓 ( 𝜋

2 ). In general, the variance of this method will be larger the closer 𝛼 is to a multiple
of 𝜋, so the choice of 𝛼 should be such that it is closest to 𝜋

2 . If the number of gradients to be computed
is very large, it could be worthwhile to precompute several values of 𝑓(𝜃), to be able to choose values of
𝛼 closer to 𝜋

2 . This method of precomputing values could introduce systematic errors: the precomputed
values of 𝑓(𝜃) are not exact due to being evaluated on a quantum computer, but are reused many times.
Hence it is advisable to compute these values with more shots, reducing the chance that the evaluation is
significantly different from the true value. Furthermore, if one can calculate multiple values of interest from
a single quantum computation, such as the outcome probabilities of orthogonal projectors, it still requires
fewer quantum computations to compute their gradients using a fixed 𝛼, in which case 𝜋

2 is the preferable
choice.

For many 2-qubit gates the generator is not involutory, but it does have the property 𝐺3 = 𝑎𝐺 for some
𝑎 ∈ R, notably controlled rotation gates. In this case, there is the following rule [1]:

d
d𝜃𝑓(𝜃) = 𝑑1(𝑓(𝜃 + 𝛼) − 𝑓(𝜃 − 𝛼)) + 𝑑2(𝑓(𝜃 + 𝛽) − 𝑓(𝜃 − 𝛽))) (6.4)

with 𝑑1 sin( 𝛼
2 ) − 𝑑2 sin( 𝛽

2 ) = 1
4 and 𝑑1 sin(𝛼) − 𝑑2 sin(𝛽) = 1

2 .
For this parameter shift rule, the minimum variance is achieved for 𝑑1 =

√
2+1

4
√

2 , 𝑑1 =
√

2−1
4

√
2 , 𝛼 = 𝜋

2 and 𝛽 = 3𝜋
2

This parameter shift rule suffices for most applications: the most common single parameter gates all
have a generator that satisfies 𝐺3 = 𝑎𝐺. Furthermore, if a gate satisfies this property, then so does a
controlled version of it. If 𝑀(𝜃) = 𝑒−𝑖𝜃𝐺 is some gate with 𝐺3 = 𝑎𝐺, then the controlled gate is CM(𝜃) =
|0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑀(𝜃). This has generator 𝐺𝐶𝑀 = 𝑖 d

d𝜃 CM(𝜃)∣𝜃=0 = |1⟩⟨1| ⊗ 𝑖 d
d𝜃 𝑀(𝜃)∣𝜃=0 = |1⟩⟨1| ⊗ 𝐺,

so CM3 = |1⟩⟨1|3 ⊗ 𝐺3 = |1⟩⟨1| ⊗ 𝑎𝐺 = 𝑎𝐺CM. Inductively, this also applies to controlled-controlled gates
and so forth.

6.2. Multiple Gates
If the circuit consists of multiple parametrized gates, and we want to take the partial derivative of the cost
with respect to one of these parameters, the situation isn’t much more complicated. Then the new circuit
becomes

𝑈(𝜽) = 𝑈𝑁(𝜃𝑁) ⋅ … ⋅ 𝑈1(𝜃1) (6.5)
with cost function

𝑓(𝜽) = ⟨𝜓0|𝑈(𝜽)†𝐻𝑈(𝜽)|𝜓0⟩ (6.6)
If we want to take the derivative with respect to 𝜃𝑖, we can set |𝜓𝑖−1⟩ = 𝑈𝑖−1(𝜃𝑖−1) ⋅ … ⋅ 𝑈1(𝜃1) |𝜓0⟩ and

𝐻′ = (𝑈𝑁(𝜃𝑁) ⋅ … ⋅ 𝑈𝑖+1(𝜃𝑖+1))†𝐻(𝑈𝑁(𝜃𝑁) ⋅ … ⋅ 𝑈𝑖+1(𝜃𝑖+1)). Then 𝑓 can be rewritten as

𝑓(𝜽) = ⟨𝜓𝑖−1|𝑈𝑖(𝜃𝑖)†𝐻′𝑈𝑖(𝜃𝑖)|𝜓𝑖−1⟩ (6.7)

Neither 𝐻′ nor |𝜓𝑖−1⟩ depends on 𝜃𝑖, so the parameter shift rule can simply be applied by only shifting the
𝜃𝑖 component of 𝜽 according to the parameter shift rule that applies to 𝑈𝑖(𝜃𝑖).



7
Experimental Setup

As discussed in chapter 5, the Fisher information can be used to quantify how well a function of parameters
can be estimated from the outcomes of measuring a certain state. Hence if a certain experiment involves
measuring some parameters that will be encoded on the quantum state of some probes, it could be worthwhile
to investigate what state these probes need to be prepared in to make an optimally precise measurement.

The parametrized circuit used to prepare the probe state |𝜓(𝜽)⟩ has 4 qubits and depends on 7 parameters.
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Figure 7.1: The circuit used for generating the probe state.

The layout can be seen in figure 7.1. The blue H gates are Hadamard gates. The purple gates are
parametrized gates, with the number indicating which index in 𝜽 controls that gate. The P gates are
|0⟩⟨0| + 𝑒𝑖𝜃 |1⟩⟨1|, applying a phase of 𝜃 to the |1⟩ state. The Rx gates with attached dots are controlled Rx
gates, the dot representing the control qubit. These act as |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ Rx, with Rx(𝜃) = 𝑒𝑖𝜃𝜎𝑥/2, or

(cos(𝜃/2) −𝑖 sin(𝜃/2)
sin(𝜃/2) cos(𝜃/2) )

in matrix representation.
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This circuit is designed such that it can generate the GHZ state for parameters (0, 0, 0, 0, 𝜋, 𝜋, 𝜋), in
order of the labels of the gates. It can also produce completely unentangled states whenever the parameters
of the Rx gates are 0. The first Hadamard gates are there such that the P gates have effect, since all qubits
start in the |0⟩ state. The second layer of Hadamards make it such that the coefficients can also attain
different amplitudes. The controlled Rx gates make sure that the qubits can be entangled.

For the encoding of the parameters, P gates are used to encode the parameters in the phases of the
|1⟩ states. Measurements are made in the x-basis, which is achieved using Hadamard gates as explained in
section 4.3.

P
1

P
2

P
3

P
4

q0

q1

q2

q3

(a) Encoding circuit (b) Measurement circuit

The parameters are encoded on the probe states using P gates on each qubit, see figure 7.2a . Figure
7.2b shows the measurement circuit. The Hadamard gates are used to transform to state into the x-basis,
after which all qubits are measured.

The variational quantum algorithm described in chapter 5 will be run a IBM 5-qubit quantum computer
by the name of Bogota, as well as on a simulator thereof. The true value of 𝝓 will be 𝜋/5⋅(1, 1, 1, 1), and the
VQA will attempt to find the optimal state to measure the average of these parameters, so 𝑔(𝝓) = ∑4

𝑖=1 𝜙𝑖/4.
The algorithm was implemented in Python using the Qiskit package by IBM, which allows one to run

circuits on simulators as well as their actual quantum computers. The simulators include ones that match
their individual quantum computers as closely as possible, as well as ideal simulators. The used code can be
found at https://github.com/benc2/BachelorProjectVQA.

https://github.com/benc2/BachelorProjectVQA
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Results

8.1. Measuring phase
Firstly, a verification of the method described in section 4.1 was performed, including a simulation with
noise. This was performed with 𝑁 = 1024, where for the entangled measurement method, the amount of
entangled qubits 𝑛 ranged from 2 to 10. The error was estimated by repeating the experiment 100 times
for each 𝑛 and calculating the sample standard deviation. The simulation of the noisy case was performed
with the simulator of IBM’s 27-qubit Paris quantum computer

Figure 8.1: Estimates of the standard deviation for different amounts of probes 𝑛, for both ideal (decreasing line) and noisy
(increasing line) simulations. The dotted lines are the estimated standard deviations for a single probe without entanglement,
where the lower one is from an ideal simulation and the upper one from a noisy simulation

From 8.1 it can be seen that the noisy simulation yields high standard deviations. The noise, in this
case probably mostly caused by the multiple-qubit gates, dominates over the beneficial effect of entangled
measurements. However, for the noiseless case, the standard deviation does decrease with 𝑛. Whether it
decreases at the same rate as in theory can be seen in figure 8.2

It can be seen that the ratio of the errors indeed follows a 1/√𝑛 as predicted in theory. There are
deviations from the line, and the errors do not decrease monotonically. This can, however, be attributed to
the variability in the estimate of the standard deviation.

The noisy case is quite different, as can be seen in more detail in figure 8.3, since the errors increase with
𝑛 much faster than the inverse square root decreases. Hence this method of preparing a GHZ probe state
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24 8. Results

Figure 8.2: The ratio 𝑟 of the errors of a measurement on 𝑛 entangled measurements 𝜎𝑒 and an unentangled measurement
𝜎𝑢, compared to a graph of 1/√𝑛

Figure 8.3: The same graph as the previous, but for the noisy simulations

on a quantum computer is not an effective method of improving measurement accuracy.
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8.2. Optimal probe state
Firstly, the VQA was run on a simulator of the Bogota system. In figure 8.4, the cost function is plotted for
each iteration of the gradient descent algorithm.
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Figure 8.4: The cost function for each iteration. The dotted line indicates the cost of the GHZ state

Hence, in the noisy simulation, a better probe state than the GHZ state can be found using the VQA.
This shows that the probe state has a lower Fisher information, but in order to see whether it actually

gives a better estimate, the results of the maximum likelihood estimation have to be compared.
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Figure 8.5: Results of the maximum likelihood maximization using a simulator. (a) shows the log likelihood of the estimates
over the iterations for both the optimal probe state and the GHZ state, and (b) the difference between the true average value
of the parameters and the estimated average value

From figure 8.5a it can be seen that the optimized state achieves a higher likelihood than the GHZ state,
indicating that the optimized state indeed does a better job of estimating the parameters. Note that the
log likelihood has been divided by the number of samples squared, this way the value does does not increase
with the amount of samples. 8.5b shows that the optimized state actually achieves a better estimate of the
average of the parameters than the GHZ state can.

The variational algorithm on the actual quantum computer was not able to improve upon the GHZ state,
see figure 8.6

Due to limited allowed compute time on the IBM system, only a few iterations could be performed. In
these iterations, the cost was not reduced below the cost of the GHZ probe state. The GHZ state has a
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Figure 8.6: The cost function over the iterations for the VQA run on the actual IBM Bogota system. The dotted
line indicates the cost of the GHZ state.

much lower cost in the quantum computer than in the simulation. This indicates that the simulation does
not simulate the real system completely accurately, in fact, it overestimates the noise since the higher cost
indicates less information about the parameters. Since there is less noise in this environment, it is more
difficult to find a better state than the GHZ state.

The maximum likelihood estimators were also approximated on the quantum computer.
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Figure 8.7: Results of the maximum likelihood maximization on the IBM Bogota system, the graphs indicate the same values
as in the figures 8.5a and 8.5b.

In this case, the likelihood of the optimal state is higher than that of the GHZ state, despite having a
lower cost, see figure 8.7a. There are a few factors that could contribute to this. The first is that the cost of
the last state could be lower than indicated, and is higher due to noise. Noise makes it difficult to estimate
the error on the cost, as the causes of noise are complex and it is not evident how the noise affects the
outcome probabilities of any particular circuit. However, as an indication, a sample of 20 costs for the GHZ
state results in a standard deviation of 0.35, which is much smaller than the gap, so this is not likely the
cause. The cost of the Fisher information does not have a direct relationship with the likelihood though, so
despite the lower likelihood, the GHZ state could still produce results that are more accurate.

The outcome estimates seem to be similarly accurate, as can be seen in figure 8.7b. Since the likelihoods
of the optimal and GHZ states are closer to each other than in the simulation, the estimators are potentially
not significantly different. In this case, the bigger factor might be the accuracy of the gradient ascent, which
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for the optimal case worsens the estimate in later iterations.
Nonetheless, the fact that the cost function can be optimized on a real quantum computer is a promising

result. Evaluating the cost function requires processing 9 circuits, and the gradient requires 109 circuits to
be processed. Despite the fact that quantum computers are quite noisy and the inaccuracies in all the results
from the circuits could add up to obtaining a result that is too inaccurate to use, the cost and gradient can
still be evaluated accurately enough to successfully perform gradient descent. Hence variational quantum
algorithms could potentially prove the be a useful tool in this era of noisy quantum computers.





9
Discussion

One major point of discussion is how applicable these results are to actual quantum measurements. Since
the variational algorithm is run on the quantum computer, the probe state is optimized for the type of noise
present in the quantum computer. This is effective if the probes experience the same type of noise, hence
if the probes are also superconducting qubits. However, in real applications these probes are more likely
to be particles such as photons. These could still experience the same types of noise as the qubits do, for
example energy decay and dephasing due to interaction with the environment. However, the degree in which
different causes of noise affect the photon will be different from the qubit, and hence it is not certain that
this method will also generate an effective probe state for photons. Further research could indicate whether
this method is effective under realistic circumstances.

Another issue about practical application is the effectiveness of the maximum likelihood estimators. In
the presented method, the way to calculate the estimator is by gradient ascent, which requires many mea-
surements of the system. Hence it might just be more efficient to perform many single qubit measurements,
defeating the point of using the presented method. However, using entangled probes becomes relatively
more effective with larger numbers of qubits. Thus for a large enough number of qubits, this process could
be advantageous overall. Furthermore, with larger numbers of qubits, noise becomes a more significant
factor, so finding a good probe state is more important. This could be relevant for the future when quantum
computers are scaled up, where even with smaller error rates than current technology, the noise in for many
entangled qubits causes the GHZ state to be suboptimal.

There is also a practical issue considering the Fisher information. It depends on the values of 𝝓 which
are unknown, as they are the parameters to be measured. A possible solution is to use the GHZ state to
find approximate value of 𝝓, and then use this to compute the Fisher information. Assuming it is not too
sensitive to changes in 𝝓, a good probe state can still be found this way.

Furthermore, one could also consider optimizing the POVMs used to measure. This could be done by
applying another parametrized circuit on the state after the parameters have been encoded. This has not
been done here due to computation times. Potentially, choosing a more optimal POVM could increase
measurement accuracy even further.
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10
Conclusion

In this work, it is shown that variational quantum algorithms can be used to optimize a probe state for mea-
suring parameters in a quantum computer simulation that performs better than the GHZ state, although this
result could not be reproduced on an actual quantum computer. Maximum likelihood estimators were shown
to be effective in obtaining the parameter values, where in the simulation the optimized probe state produced
a more accurate result than the GHZ state did. This indicates that in sufficiently noisy environments, the
presented variational quantum algorithm provides a method for obtaining more accurate measurements than
the GHZ state. Furthermore, current quantum computers are shown to be accurate enough to perform opti-
mization with variational quantum algorithms, hence they can provide a useful tool for practical applications
of noisy quantum computers. Further research could indicate if optimizing over POVMs provides an even
more accurate result, and if these results are also applicable to more realistic measurement scenarios.
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