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Abstract

The People Counting Problem requires calculating
the number of people in a region of interest. This
is needed in crowd-monitoring scenarios but has be-
come increasingly problematic when relying on video
cameras, as they raise privacy concerns. Instead, we
propose using a mmWave radar to detect people by
creating point clouds from their radar signal reflec-
tions. This approach, however, can pose challenges
when people walk closely together because their indi-
vidual point clouds overlap and are seen as a single,
larger cloud. It is difficult to count how many indi-
viduals this large point cloud holds, which can lead
to miscounting the people in the scene. One approach
to address this issue is leveraging the time dimension
in people walking sequences, which can be done with
Long Short-Term Memory (LSTM) models. Given
this, we investigate how two state-of-the-art models,
PointNet and MARS, perform for people counting
from point clouds when extended through LSTMs.
The results show how both PointNet and MARS im-
prove performance when extended by LSTMs. Par-
ticularly, despite having over double the paramet-
ers, MARS+LSTM outperforms PointNet+LSTM
in terms of accuracy and computational efficiency.
MARS+LSTM can effectively capture small changes
in the local structure of point clouds between frames,
which PointNet loses due to max pooling. This high-
lights the importance of selecting a model architecture,
like the CNN in MARS, that aligns with the data
characteristics to maximise performance.
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1 Introduction
Precise people counting is crucial in various domains,
including high-traffic zone optimisation, formulating
strategic blueprints and conducting forensic invest-
igations [1]. This challenge, referred to as The People
Counting Problem, revolves around deciphering the
patterns in the density of people within designated
Regions of Interest (RoI) [2]. Yet, traditional methods
that rely heavily on surveillance cameras face several
issues. First, video cameras raise significant ethical
concerns about privacy, legal compliance and the use
of personally identifiable information (PII). Second,
cameras require specific environmental conditions
and proper lighting to capture scenes correctly. Addi-
tionally, maintenance of video systems is expensive.

To tackle these issues, we propose using a milli-
metre wave (mmWave) radar [3]. This technology
creates point clouds to represent individuals, ensur-
ing anonymity by not identifying specific people. An
illustration of the cloud of points generated by an
mmWave radar when a group of three people walk

within its range can be seen in Figure 1. The issue
we can observe from this figure is that, when people
walk closely together, their point clouds can overlap
and be mistakenly identified as a single, larger cloud
rather than three separate clusters.

Figure 1: mmWave radar capturing three people moving (left)
and the resulting point cloud that would be generated from this
sequence (right).

To address the challenge of distinguishing and
counting individuals within dense point cloud data,
this research will employ two state-of-the-art models
that can be adapted for people counting from point
clouds: PointNet and MARS. In 2016, PointNet was
presented as a deep neural network, which takes raw
point cloud data as input and aims to classify and
segment these 3D point sets into their true object class
[4]. MARS, which stands for mmWave-based Assist-
ive Rehabilitation System for Smart Healthcare, is a
rehabilitation system that utilises mmWave sensors
to reconstruct human poses in 3D by estimating the
locations of 19 key joints [5]. However, PointNet’s
and MARS’s capabilities to analyse temporal data
from mmWave radar sequences remain constrained.
Previous work has utilised Long Short-Term Memory
(LSMT) models (derived from Recurrent Neural Net-
works) to implement sequence modelling, where
body motion and appearance are captured over time
[6], [7]. Nevertheless, this approach has not been ap-
plied to dynamic people counting using the proposed
architectures.

This research aims to enhance the PointNet and
MARS architectures by incorporating LSTM mod-
els to improve the counting of people from point
clouds. We will assess the performance of PointNet
and MARS for people counting, as opposed to object
classification and posture reconstruction, respectively,
and then evaluate how an LSTM extension can im-
prove both the accuracy and processing time of the
models. This study seeks to answer the question:
"How do PointNet and MARS perform when ex-
tended by an LSTM to count the people in a point
cloud?"

The paper’s structure is tailored to address this
question. Section 2 provides background information
and related work, making it accessible to readers with
varying levels of technological literacy. The methodo-
logy is covered in Section 3, Section 4 describes the
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experimental setup and the results are presented and
discussed in Section 5. Section 6 details how respons-
ible research is adopted in the study, and Section 7
provides the conclusion and future work that could
be investigated as an extension of this study.

2 Background

This section provides a detailed background on the
problem through a technical description of the Point-
Net, MARS and LSTM architectures. It also covers
related work done on these models and their utilities.

2.1 PointNet

PointNet is a deep neural network that directly con-
sumes raw point clouds without the need to con-
vert them to 3D voxel grids or image collections,
effectively processing them in their irregular format
[4]. PointNet can be used in applications such as
object classification, part segmentation and scene se-
mantic parsing. Its classification network can per-
form sixteen-class classification on point clouds.

PointNet’s core strength revolves around its ability
to handle the inherent disorder in raw point clouds,
making it invariant to permutations of the input
points. To achieve this robustness, two key features
are introduced in its architecture. The first is the use
of mini transformer networks (T-Nets), which align
the input data into a standardised canonical space
[8]. This alignment ensures that the model’s outputs
remain consistent despite variations in translation,
scale, rotation, and other spatial transformations. The
second and most crucial component is max pooling.
Max pooling reduces the spatial dimensions of fea-
tures by selecting the maximum value within each
small window [9]. This process allows points to be
in any order while keeping the output invariant to
this randomness.

Figure 2 illustrates PointNet’s structure [4]. The
input to the classification network is an n × m data
structure, where n is the number of points and m
is the number of channels (or features). This input
passes through the T-Nets and is processed through
max pooling. The global feature vector obtained
retains the most essential features while discarding
less relevant ones. This vector is then processed by
multi-layer perceptrons (MLPs), which extract local
features without the complexities of convolutions to
output the class probabilities.

2.2 mmWave-based Assistive
Rehabilitation System (MARS)

MARS is a rehabilitation system that tracks patient
at-home movements through a mmWave radar [5].
It utilises a deep neural network to estimate the

positions of 19 joints on the human body from a
point cloud input. The architectural foundation of
MARS centres around a convolutional neural net-
work (CNN) designed to process 5D point cloud data
containing the spatial coordinates and movement
dynamics of patients’ joints.

The input layer of the CNN receives a stacked 5-
channel feature map. Due to random data ordering
posing a challenge to CNN design, MARS contains a
preprocessing phase to ensure consistent and struc-
tured inputs. This involves the dataset being sor-
ted by ascending coordinate values. The input then
passes through two consecutive convolutional layers
with 16 and 32 channels, respectively, that allow the
network to extract spatial hierarchies from the data
and help generate a flattened vector. The final fully
connected layers learn non-linear combinations of the
high-level features represented in the flattened vector
and generate an output – 57 neurons, representing
the 3D coordinates for the 19 joints.

2.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are a
type of recurrent neural network (RNN) designed
to effectively handle sequential data and capture de-
pendencies [7]. In scenarios where data is split into
sequences, LSTM networks have an exceptional abil-
ity for long-term modelling. Unlike standard RNNs,
LSTM cells use a gating mechanism to control the
flow of information through the network, as shown
in Figure 3 [10]. The input gate i(t) and the forget
gate f (t) determine what information from the input
x(t) and previous hidden state h(t−1) should be ad-
ded to the cell state c(t). The output gate o(t) controls
the hidden state h(t) which is used in the current
time step’s output and as input in the next cell [6].
This selective retention ensures that only the most
relevant information impacts the network’s output,
optimising both memory and processing power.

Figure 3: This diagram is a visualisation of the internal architec-
ture of an LSTM cell, showing how it structures the three gates
(σ) — forget, input, and output [10].

2.4 Related Work

Recent advancements in 3D point cloud processing
have significantly influenced the object and gesture
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Figure 2: This diagram illustrates the structure of PointNet [4]. The classification network transforms input points via two T-Nets
(performing 3 × 3 and 64 × 64 transformations, respectively). These points pass through multiple layers of shared MLPs (Multi-Layer
Perceptrons) before reaching a max pooling layer that aggregates global features. This is fed into another series of MLPs to produce
final output scores for class probabilities. The segmentation network extends the classification pipeline by incorporating additional
MLP layers that append per-point features to the global feature, necessary for detailed segmentation tasks.

recognition domain, as well as people counting meth-
odologies [11]. The integration of convolutional and
recurrent neural networks shows promising results in
harnessing spatial and temporal dimensions of point
cloud data. Despite these advances, a notable gap
remains in the literature: no existing studies have
merged PointNet with temporal models for people
counting, nor have they fully integrated the MARS
architecture with such models. This paper seeks to
bridge this gap. Two studies combining the architec-
tures Point-CNN with Bi-LSTM and PointNet with
LSTM, respectively, have demonstrated enhanced tar-
get and gesture recognition in diverse settings [12],
[13]. This solid base can be adapted for people count-
ing rather than gesture recognition. Moreover, stud-
ies demonstrating the effectiveness of CNN-LSTM
networks in estimating human skeletons from radar
data align closely with our proposed approach in
data modality and network combination [14]. Sim-
ilarly, other research efforts have leveraged LSTM-
based frameworks for gesture recognition and an-
omaly detection, underscoring the robustness and
versatility of LSTM methodologies in handling com-
plex spatial-temporal data [15], [16].

3 Methodology

In this section, we describe the data utilised to run the
experiments and the architecture of the two LSTM-
extended models created in this study. Additionally,
we cover the performance metrics used to evaluate
the models.

3.1 Dataset

The dataset contains frames captured by the
IWR6843ISK radar sensor from Texas Instruments
(TI) [17]. This dataset consists of point cloud data, as

seen in Figure 4, obtained from radar and video re-
cordings of five volunteers walking individually and
in various group sizes and formations. These frames
are labelled into classes, namely 1, 2, 3, 4, 5 people
and bikes, yielding 19,273 sequences of people and
829 sequences of bicycles.

Figure 4: Point cloud visualisation of consecutive frames. This
depicts the movement of three people walking together for two
frames (left) and three frames (right).

3.2 Deep Learning Models

We adopt the deep learning models proposed in
Section 2 for this paper’s investigation on people
counting. Moreover, we extend both models by an
LSTM to leverage the time domain in sequences.

PointNet. The first deep learning model we cre-
ate for the study is a modification of PointNet [4]
implemented as a classification model. Our Point-
Net implementation classifies sequences of frames
ranging from one to five people or bikes. In our ap-
plication, the shape and size of a cluster relative to
the distance from the radar is important information
on the count of people. For this reason, we opt to
remove the input and the feature transformations, as
they change the size and distribution of point clouds.

3



This choice additionally reduces the model size and
increases computational efficiency. Furthermore, we
modify the configuration of the MLP to be (64, 128,
512), halving the global vector’s size from 1024 to
512. Finally, we move the final shared MLP to follow
the LSTM. We reduce its size to (512, 128, k), where
k=6 in our six-class classification model, as opposed
to PointNet’s original sixteen-class classification. Our
PointNet model architecture can be found in Figure 5.

Figure 5: Diagram of our modified PointNet architecture con-
nected to an LSTM. The input is processed and transformed into
a global feature vector. This vector is passed to an LSTM for
sequential processing.

MARS. The second deep learning model imple-
mented is a modification of MARS [5] intended for
people counting rather than pose reconstruction. Ini-
tially, we preserved the original architecture of the
MARS model, including the flattening layer where
data is transformed into a vector of 2048 features,
rather than 512 features as done in PointNet. MARS’s
efficiency in processing time allows us to introduce a
larger feature dimension to the LSTM. This decision
is based on the principle that higher dimensional
data contains more information, which can enhance
the LSTM’s ability to learn and the model’s perform-
ance. As structured in our PointNet architecture,
the LSTM is placed before the fully connected layers.
These layers are composed of a shared MLP of size
(512, 128, 6), where the final layer is of size six for
the classification task. We replace the final regression
function from MARS with the Logarithmic Softmax
function used in classification tasks. Figure 6 shows
our modified MARS architecture.

Figure 6: Diagram of our modified MARS architecture connec-
ted to an LSTM. Input points are preprocessed, passed through
the CNN and fed as a flattened vector into the LSTM.

LSTM. The LSTM model takes inputs with fea-

tures of 512 dimensions from PointNet and 2048 from
MARS through one hidden layer of 512 neurons. The
LSTM has a depth of one and a length corresponding
to the number of frames. We process each frame
consecutively with the output of one frame feeding
into the next LSTM cell through the gate mechanism.
The integrated LSTM architecture is seen in Figure 7.

The last output from the LSTM is fed into the Feed
Forward layer, as shown in Figure 7. This layer be-
gins with a ReLU activation function (Rectified Linear
Unit) which introduces non-linearity to the network
and allows the model to learn more complex data
representations [18]. We then apply Batch Normalisa-
tion to minimise the internal covariate shift [19], and
introduce a Fully Connected layer that reduces the
512 features from the LSTM down to 128 and intro-
duces Dropout at a rate of 0.3. Dropout is explained
in detail in Section 4.3 as a technique to prevent over-
fitting. This Feed Forward layer is repeated, with the
second Fully Connected layer transforming the 128
features into outputs corresponding to the number of
classes. In PointNet this was originally sixteen, but
we perform a six-class classification instead.

3.3 Performance Metrics

We use a confusion matrix to evaluate the perform-
ance of the multiclass classification models, where
the ’True Label’ is on the y-axis, across from the
’Predicted Label’ on the x-axis [20]. To evaluate per-
formance quantitatively, we employ two numerical
metrics on the results. The first metric utilised is
Accuracy, which measures how many samples were
correctly classified into their class from the total num-
ber of samples captured by the mmWave radar [21].
Mathematically, it can be expressed as:

Accuracy =
Number o f correct predictions
Total number o f predictions

To account for the imbalance between datasets, we
calculate a weighted average of individual class ac-
curacies.

Additionally, the F1 score is used to evaluate the
model’s predictive power by looking at how well
it performs for each class separately, as opposed to
looking at performance as a whole, as Accuracy does.
This score is the harmonic mean of Precision and
Recall, where Precision represents the model’s abil-
ity to identify instances of a specific class correctly
and Recall represents the model’s ability to identify
all relevant cases of a specific class. The F1 score
provides a single value that balances both metrics
and is calculated using the formula:

F1 = 2 × Precision × Recall
Precision + Recall
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Figure 7: This diagram illustrates the complete flow of data through the models and the feed-forward architecture. a) & b) mmWave
radar captures movement and converts it into point clouds. c) Movement sequences are separated into individual frames. d) The deep
learning models PointNet or MARS process each frame. e) The frames are fed into an LSTM network to capture temporal dependencies.
f) The LSTM output is passed through a feed-forward network to produce the final output.

This score ranges from 0 to 1, where 1 indicates per-
fect Precision and Recall, and 0 indicates the poorest
performance.

4 Experimental Setup

This section will discuss the study’s experimental and
parameter settings and how Dropout is introduced
as an overfitting preventive technique.

4.1 Data Preprocessing

After filtering the initial dataset to keep sequences
with five frames, we obtain 19,346 sequences. It is
important to note that each class comprises ∼4000
samples, but bikes are less represented with slightly
over 800 samples. This dataset is shuffled and di-
vided into a split of 60% for training, 20% for valida-
tion, and 20% for testing.

Before training the models, we preprocess the data
to ensure it is clean and consistent. First, the clusters
are standardised to equal sizes of 64 points per cloud.
If the initial point cloud is larger than this target input
size, we trim it by removing points with the lowest
Signal-to-Noise values, which measure the strength
of the radar signal relative to the background noise.
This process ensures that the remaining points con-
tain the most accurate information from the people in
the scene and the minimal noise impact. If the point
cloud is smaller than the expected size, we pad it
through Agglomerative Clustering [22] in the case of
PointNet. Alggomerative Clustering is a widespread
technique to upsample data by introducing centroids
according to the already existing points [23]. In the
case of MARS, we pad it with zeros to be consistent

with the original paper [5].
Moreover, we add random noise to the data in

the PointNet model to improve its robustness and
enhance generalisation [24]. For the MARS model,
we sort the points in a consistent manner to the ori-
ginal MARS implementation, which facilitates the
model’s ability to process and learn from the spatial
relationships in the data more effectively.

We refrain from implementing normalisation, as
when points are scaled to a normalised space, import-
ant information on the coordinates and distribution
of points within a point cloud is lost. Similarly, apply-
ing a random rotation would also distort the inherent
spatial relationships and orientations of the points,
potentially degrading the model’s ability to interpret
the structure of the data accurately. Therefore, we do
not implement random rotation as a preprocessing
step.

4.2 Hyperparameters

We introduce two important hyperparameters in the
experiments that define what properties of the data-
set are considered. The following are:

• Persistence. This parameter represents the num-
ber of frames per sequence. Recordings of
people walking can be of different lengths, which
determine the number of frames used for each se-
quence. This parameter has a range from one to
five, representing how many frames a sequence
can have. The latter holds more information to
be processed by the LSTM, however, it can result
in longer run times due to increased information
provided.
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• Features. This parameter represents what fea-
tures of the data points should be considered
when processing. This ranges from two to four
features, where two features consider the x-
coordinate and the y-coordinate, three addition-
ally consider the SNR (Signal-to-Noise Ratio)
value and four also consider the velocity.

We conduct training on an NVidia Tesla V100S
GPU provided by the DelftBlue Supercomputer1.
Running the PointNet and MARS models for 40 and
100 epochs, respectively, revealed the accuracy curves
for the training and validation sets. PointNet is not
tested for more epochs because of its high time com-
plexity. It can be observed that the accuracy saturates
at around 30 epochs in both cases (see Appendix A
and Appendix B), leading us to train the models for
this duration.

For performance comparison, we run both models
without the LSTM extension on 30 epochs. These
models retain the same architecture as described in
Section 3.2, but the data bypass the LSTM and instead
are directly processed by the Feed Forward layer (see
Figure 7). To train these base models, the input is
shaped as: (total number of points from all frames,
number of features), with the number of points de-
termined by persistence, as shown in Table 1. The
experiments are conducted on sequences with per-
sistence of five and points with four features, using a
batch size of 64.

Persistence Number of points
1 64
2 128
3 256
4 512
5 1024

Table 1: Input size definitions based on persistence (number of
frames per sequence).

The input to the LSTM-extended models is shaped:
(persistence, number of points per frame, number of
features), where persistence is five and each frame
holds 64 points after being standardised. Moreover,
we process data with four features in batches of 64.

The loss used in training is the Negative Log-
Likelihood Loss (‘torch.nn.NLLLoss’ in PyTorch),
which is suitable for classification problems with C
classes (C = 6 in these experiments) [25].

Furthermore, the Adam optimiser is employed to
optimise the loss with a learning rate of 0.001 [26].
We chose the Adam optimiser for its ability to adapt-
ively adjust weights to learn parameters individually.
This improves convergence efficiency in these time-
consuming training models.
1 https://doc.dhpc.tudelft.nl/delftblue/

4.3 Dropout

Dropout layers are implemented to reduce the dens-
ity of a neural network by randomly deactivating
neurons during training. This technique helps mitig-
ate overfitting by effectively averaging the network’s
weights [27]. We introduce these layers with a Dro-
pout rate of 0.3 before the Fully Connected layers
in the Feed Forward networks and after each convo-
lutional layer in MARS. As shown in Appendix C
and Appendix D, the models do not overfit when
adjusting the Dropout probability to 0.3, hence we
do not increase the rate further.

5 Results

This section showcases the results obtained from run-
ning the experiments as described in Section 4, and
analyses them to obtain a reflection on the work.

5.1 Base Models

The base PointNet model performs to an accuracy
of 62.5% when run on the discussed settings. The
confusion matrix with specific class probabilities can
be found in Appendix E. This model contains ap-
proximately 140,000 parameters and takes slightly
under 17 hours to train (see Table 2).

The MARS base model can classify frames into the
true number of people or bikes with an accuracy of
60.1%. This accuracy is comparable to PointNet’s as
the 2.4% difference can be accounted for in the ran-
domness when training the models. For further de-
tails on the specific probability distribution of MARS,
refer to Appendix F. The training runtime is around
28 minutes on this model of approximately 4,200,000
parameters (Table 2). Despite having forty times the
parameters of PointNet, MARS has a thirty-two-times
shorter training period. We can conclude this vast
contrast is due to the models’ different data handling
and processing techniques. First, MARS reshapes
input data into a 2D format, allowing it to process
information in larger batches, but PointNet processes
data sequentially. This sequential nature of PointNet
limits its ability to use parallel processing. Second,
each model’s padding operation greatly affects its
runtime. This is discussed in detail in Section 5.4.

5.2 PointNet+LSTM

The performance of the PointNet+LSTM model
shows reasonable effectiveness in classifying objects,
with an overall accuracy of 80% and an F1 score of
0.797, which indicates a good balance between Preci-
sion and Recall. The increase in Accuracy of 17.5%
from the base PointNet model shows performance im-
provement when extending the architecture through
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an LSTM. We can see the areas of strength in the
confusion matrix, shown in Figure 8. These include
higher accuracy in identifying between people classes
but also reveal that the probability of misclassification
is shifted to adjacent classes, particularly between the
’3 person’ and ’4 person’ classes. Figure 9 shows how
point clouds for three and four people are similar
in dimensions, reasoning the model’s low ability to
distinguish between them. This suggests there is po-
tential for improvement in distinguishing between
similar classes.
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Figure 8: Confusion Matrix of the PointNet+LSTM model on
the test dataset.

Figure 9: Point clouds of three (left) and four (right) people
walking closely together. It can be hard for the model to distin-
guish the exact count of people between three or four people.

As shown in Table 2, PointNet+LSTM has sixteen
times the parameters of the base PointNet but inter-
estingly takes three hours less to train. We identified
this arose from the use of Agglomerative Clustering
when padding point clouds, which is an operation of
time complexity O(n3). In PointNet, we pad clusters
to 1024 points (Table 1), whereas in PointNet+LSTM
we pad to 320 points, due to having 5 frames of 64
points each. Although this difference in padding

sizes appears small, the O(n3) operation can lead to
highly increased run times, as proven by our results.

Model
No. Para-

meters
Training

Time
Accuracy

PointNet 142,790 16h 62.5%
MARS 4,200,758 25-30 mins 60.1%

PointNet
+LSTM

2,243,974 13h 80%

MARS
+LSTM

5,318,966 55-60 mins 89.1%

Table 2: A summary of each model’s total number of parameters,
training time and accuracy.

5.3 MARS+LSTM

When running MARS+LSTM on the settings de-
scribed in Section 4, the model performs to an accur-
acy of 89.1%, showing an increase of 29% from the
MARS base model, and of 9.1% from the accuracy of
PointNet+LSTM. The model has an F1 score of 0.890,
indicating a high effectiveness at correctly identifying
and classifying relevant instances. The distribution
of classification accuracy over classes can be seen on
Figure 10, which demonstrates excellent recognition
of individual classes, particularly for ’1 person’ at
97% accuracy.
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Figure 10: Confusion Matrix of the MARS+LSTM model on
the test data set.

The model appears particularly robust in distin-
guishing between different person classes, showing
a clear improvement in reducing adjacent misclas-
sifications compared to the PointNet+LSTM model.
Finally, the extended MARS+LSTM model has a run
time of 1 hour to train – thirteen times less than

7



PointNet+LSTM.

5.4 Discussion

As presented in Table 2, the LSTM-extended models
perform notably better than the base models, indicat-
ing that leveraging temporal data from people walk-
ing sequences through an LSTM improves the results
of our proposed models. PointNet benefits from the
LSTM’s ability to learn long-term dependencies, en-
hancing its sequential data processing capabilities,
while MARS leverages its CNN architecture to cap-
ture spatial hierarchies and local structures before
feeding them into the LSTM for temporal analysis.
This ability in the models to effectively integrate
spatial and temporal information from point clouds
achieves improved performance.

To understand why the PointNet+LSTM model per-
forms worse than the MARS+LSTM model in both
accuracy and training time, we must consider how
each model processes data and the operations it per-
forms.

Regarding runtime, both MARS models take at
least twelve hours less than both PointNet mod-
els. As previously analysed, this difference stems
from PointNet’s use of Agglomerative Clustering
for padding, which introduces a runtime complex-
ity of O(n3). This operation increases complexity
exponentially with more data being input. This in-
crease in time is particularly pronounced with the
large dataset being used in the experiments (Sec-
tion 4). In contrast, MARS uses zero padding, with a
runtime complexity of O(n). When employing zero
padding rather than Agglomerative Clustering in
PointNet+LSTM, it takes slightly over an hour to run,
a duration comparable to the hour that MARS+LSTM
takes. However, zero padding was not used in Point-
Net because the models did not achieve accuracies
higher than approximately 20%, due to the distortion
of spatial structure introduced in the point clouds
by zero-valued points, which PointNet struggles to
learn from. Conversely, running MARS+LSTM with
Agglomerative Clustering in place of zero padding
results in a significantly longer runtime of seventeen
hours, supporting the argument that more compu-
tationally intensive methods can lead to improved
performance at the cost of increased processing time.

Additionally, MARS+LSTM achieves a modestly
higher accuracy than PointNet+LSTM (9.1% higher).
Since the LSTM architectures in the models process
frames separately, they feed on the small changes in
the local structure of point clouds between frames.
This local information is lost in PointNet when apply-
ing max pooling on the data, which aggregates fea-
tures and discards spatial hierarchies, making it more
challenging for LSTMs to learn from the data. In con-

trast, the CNN architecture in MARS captures these
discrepancies in local structure between point clouds
more effectively, resulting in improved performance
when extended by an LSTM. This difference under-
scores the importance of selecting the model archi-
tecture that aligns with the data characteristics and
processing requirements to maximise performance.

6 Responsible Research
In this section, we discuss the ethical aspects of the
research and the measures taken to ensure reprodu-
cibility and transparency.

6.1 Reproducibility

Intending to create reproducible work and contribute
to the field of open research, we developed a transpar-
ent methodology and provided full visibility of the
experiments’ results. Furthermore, the source code of
the base models used is publicly available2, and any
modifications are discussed in detail throughout the
paper. This research adheres to the FAIR (Findable,
Accessible, Interoperable, and Reusable) principles
through detailed documentation to facilitate other
researchers to understand and reproduce this work.

6.2 Ethical Considerations

The data obtained for this research is handled care-
fully to maintain participants’ privacy. By processing
point clouds rather than images of individuals, we
ensure that no personally identifiable information
(PII) is utilised. This approach aligns with ethical
standards and privacy regulations, guaranteeing that
participant anonymity is preserved.

Finally, this research adheres to the Netherlands
Code of Conduct for Research Integrity, as it falls
under the scope of scholarly work conducted at TU
Delft and is governed by this code [28]. This entails
that the principles (Honesty, Scrupulousness, Trans-
parency, Independence and Responsibility) are fol-
lowed, all results have been reported and responsible
methodologies have been followed.

7 Conclusions and Future Work
This study effectively addresses the issue of counting
people in motion from point cloud data. We exten-
ded the PointNet [4] and MARS [5] structures with
Long Short-Term Memory (LSTM) models to test
our hypotheses on whether accounting for temporal
data would improve the performance of these models

2 https://towardsdatascience.com/deep-learning-on-point-cloud
s-implementing-pointnet-in-google-colab-1fd65cd3a263 and
https://github.com/SizheAn/MARS
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when counting people from point clouds. The ad-
justed PointNet and MARS frameworks demonstrate
enhancements in recognising the time-based patterns
of groups walking together. The PointNet+LSTM
outperforms the original PointNet model by 17.5%
and reaches an accuracy of 80%. Moreover, the
MARS+LSTM model achieves an accuracy of 89.1%,
showing a significant increase of 16.7% from the base
MARS model and of 9.1% from PointNet+LSTM.

These findings highlight the effectiveness of integ-
rating temporal data processing using LSTMs into
point cloud analysis, fully answering the original
study question: “How do PointNet and MARS per-
form when extended by an LSTM to count the people
in a point cloud?"

We should explore further work to improve the
performance of the models proposed in this study.
Firstly, the data set could be enhanced to be balanced
across classes and expanded to include data samples
of different environmental conditions and sensor po-
sitions. This could increase PointNet and MARS
capabilities to generalise across various scenarios.
Furthermore, more complex sequence modelling ar-
chitectures such as Transformer networks should be
implemented as an extension to PointNet and MARS,
as they might capture spatial-temporal relationships
more effectively than LSTMs. Finally, this research
was limited by the extensive runtimes of the models.
For future work, we should investigate the real-time
processing capabilities of the proposed models, as
the current runtimes are too long for them to sustain
their performance in dynamic environments where
instant data processing is needed.

In conclusion, there is further to be investigated in
the field of point cloud data processing and how to
leverage the temporal domain with other sequence
modelling architectures. However, LSTMs show
promising results when combined with state-of-the-
art models, PointNet and MARS, to count the number
of people from point clouds.
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Appendix

A PointNet+LSTM Accuracy
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Figure 11: PointNet+LSTM model accuracy diagram over 40 epochs for the training and validation data.

B MARS+LSTM Accuracy
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Figure 12: MARS+LSTM model accuracy diagram over 100 epochs for the training and validation data.
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C PointNet+LSTM Loss
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Figure 13: PointNet+LSTM model loss diagram over 40 epochs for the training and validation data.
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Figure 14: MARS+LSTM model loss diagram over 100 epochs for the training and validation data.
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E PointNet Confusion Matrix
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Figure 15: Confusion Matrix of the PointNet model on the test data set.

F MARS Confusion Matrix
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Figure 16: Confusion Matrix of the MARS model on the test data set.
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