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Summary

Light incident on a medium that contains localized irregularities deviates from the
straight path in more than one direction, both in reflection and in transmission. This
phenomenon is called scattering. A straightforward example is light that is reflected
or transmitted into several angles from a rough surface. Optical scatterometry is a
method that can be used for the characterization of unknown properties of a medium
by measuring some parameters or properties of the scattered light, such as its intensity
distribution, polarization and coherence. The scattered field is usually detected or
observed at a distance of many wavelengths from the medium, in the socalled far
field region. Farfield detection is convenient in terms of data acquisition, but the
drawback is that, in the far field, high spatial frequency information contained in the
near field is lost. By measuring the scattered far field  one does not obtain a direct
image, but instead by means of solving an inverse electromagnetic model and taking
a priori knowledge into account, one can infer some parameters of interest of the
medium/scatterer.

In this thesis, we explore a particular scatterometry technique, in which a coherent
light beam is focused by a lens on a surface to be inspected and the scattered light is
collected and detected in the far field. Since the focused spot illuminates a small region
of the sample, lateral scanning of the focused beam is required in order to cover the
entire area of interest. This technique is called Coherent Fourier Scatterometry (CFS).
Because CFS enables the detection of subwavelength particles of low optical contrast
and at low light levels, the detection, localization and classification of isolated particles
on surfaces is an important application of CFS. In this dissertation, we explore several
aspects of nanoparticle detection using CFS and introduce new applications of the
technique.

In Chapter 1, we introduce the application of scattering for the detection and local
ization of tiny objects on top of a surface. Furthermore, we show how the technique
can be applied for quality control of surfaces, in particular for the semiconductor indus
try, with the substrate being a silicon wafer. We furthermore summarize the limitations
of CFS as compared to existing surface inspection tools.

The concept of CFS and the main optical setup are outlined and explained in Chap
ter 2. This chapter also lays the foundations for the analytical and numerical modeling
that has been used in this dissertation.

In contrast to imaging techniques that are limited by diffraction, CFS is essentially
limited by noise. In Chapter 3, we show the implementation of a heterodyne detection
system in order to suppress the experimental noise. The demonstrated improvement
of the signaltonoise ratio (SNR) allows us to detect particles of smaller sizes than in
previous experiments. The ability to minimize the noise in the measurement process
enables us to push the technique for the detection of particles in the domain of deep
subwavelength sizes, which is critical in many applications.

In Chapter 4, we investigate the unique properties of highly focused vector beams,

ix



x Summary

possessing conventional (linear and circular) and cylindrical (radial and azimuthal) po
larization states, combined with substrates coated with a specially designed thin film.
The design takes into account the phenomenon of evanescent wave amplification,
resulting in an improvement in the sensitivity of detection.

In order to maximize the scattering due to the nanoparticle, the focused beam that
is used for the illumination should have its focal plane at the surface that contains
the nanoparticle. In Chapter 5, we study the effects of defocusing the illuminating
beam, and as result, we propose a novel method of determining the focus position
on a surface that relies on measuring the scattering of an isolated particle. We show
that our method has superior focus position performance as compared to existing
techniques based on astigmatism.

One of the main applications of scatterometry is to estimate the amount of contam
ination on a surface. The quality/cleanliness of, for example, a silicon wafer is judged
by determining the density, location and size distribution of the detected particles.
This data is extracted by monitoring the detector signal as a function of the position of
the illumination spot on the surface by means of a lateral raster scan along the surface
to be inspected. The smaller the particle size we are aiming to measure, the smaller
the scanning step should be, providing more measurements at more positions. This
leads to a growing amount of data to be processed and stored, which is a challenging
scenario.

In Chapters 6 and 7, we look at ways to improve data acquisition and postprocess
workflow. These ways involve the searching, clustering, calibration, and classification
of particle signals, as well as the rejection of anomalies. Our results illustrate that
the proposed algorithms can detect and classify surface contaminants correctly and
effectively for the dataset, both with and without drifts in the raster scan positions.

Armed with the improvements of the system from the previous chapters, we in
vestigate in Chapter 8, the detection of particles in the deep subwavelength regime
and determine the ultimate limits of our instrument. We analyze the electronic noise,
vibration sources and the effect of surface roughness, resulting in the ability to detect
a latex sphere of 29 nm diameter on a silicon wafer at a wavelength of 405 nm.



Samenvatting

Licht dat invalt op een medium met lokale onregelmatigheden wijkt af van het recht
doorgaande pad in meer dan één richting, zowel bij weerspiegeling als bij doorvalling.
Dit fenomeen heet verstrooiing. Een eenvoudig voorbeeld is licht dat onder meerdere
hoeken wordt weerspiegeld of doorgelaten door een onregelmatig oppervlak. Optische
verstrooiingsmeting is een methode die kan worden gebruikt voor het bepalen van on
bekende eigenschappen van een medium door een aantal parameters of eigenschap
pen van het licht te meten, zoals zijn intensiteitsverdeling, polarisatie en coherentie.
Het verstrooide veld wordt gewoonlijk gedetecteerd of waargenomen op een afstand
van meerdere golflengtes van het medium, in het zogenaamde verre veld. Detectie in
het verre veld is geschikt voor gegevensverwerving, maar het nadeel is dat hoogfre
quente informatie aanwezig in het nabije veld verloren raakt in het verre veld. Door
het verstrooide verre veld te meten verkrijgt men niet een direct beeld, maar in plaats
daarvan, door het oplossen van een invers elektromagnetisch model en a priori kennis
in acht te nemen, kan men een aantal belangrijke parameters van het medium/de
verstrooier afleiden. In dit proefschrift verkennen we een speciale verstrooiingsmeet
techniek waarbij een coherente lichtstraal door een lens wordt gefocusseerd op een
te inspecteren oppervlak en het verstrooide licht wordt verzameld en gedetecteerd in
het verre veld. Omdat de gefocusseerde lichtvlek slechts een klein gebied van het
monster belicht, is zijdelingse aftasting van de gefocusseerde straal vereist zodat het
volledige gebied van belang wordt gedekt. Deze techniek wordt Coherente Fourier Ver
strooiingsmeting (CFV) genoemd. Omdat CFV de detectie van deeltjes kleiner dan de
golflengte en van laag optisch contrast mogelijk maakt bij weinig licht, is de detectie,
lokalisatie en classificatie van afgezonderde deeltjes op oppervlakken een belangrijke
toepassing van CFV. In dit proefschrift verkennen we meerdere aspecten van de de
tectie van nanodeeltjes door middel van CFV en introduceren we nieuwe toepassingen
van de techniek. In hoofdstuk 1 introduceren we de toepassing van verstrooiing voor
de detectie en lokalisatie van kleine deeltjes bovenop een oppervlak. Verder tonen we
hoe de techniek kan worden toegepast op de kwaliteitscontrole van oppervlakken, in
het bijzonder voor de halfgeleiderindustrie waarbij het substraat een silicium wafer is.
Verder vatten wij de beperkingen van CFV, vergeleken met bestaande inspectiegereed
schappen voor oppervlakken, samen. Het CFVconcept en de belangrijkste optische
opstelling worden geschetst en uitgelegd in hoofdstuk 2. Dit hoofdstuk legt ook de ba
sis voor de analytische en numerieke modellering die in dit proefschrift gebruikt is. In
tegenstelling tot beeldvormingstechnieken die door diffractie beperkt worden, wordt
CFV hoofdzakelijk beperkt door ruis. In hoofdstuk 3 tonen we de verwezenlijking van
een heterodyne detectiesysteem voor het onderdrukken van experimentele ruis. De
aangetoonde verbetering van de signaalruisverhouding (SRV) stelt ons in staat deel
tjes te detecteren die kleiner zijn dan die in eerdere experimenten. Het vermogen
de ruis te minimaliseren stelt ons in staat de techniek van deeltjesdetectie naar het
domein van diepsubgolflengte afmetingen uit te breiden, wat van cruciaal belang is

xi
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voor vele toepassingen. In hoofdstuk 4 onderzoeken we de unieke eigenschappen van
sterk gefocusseerde vectorstralen, die gebruikelijke (lineair en circulair) en cilindrische
(radiaal en azimutaal) polarisatietoestanden bezitten, gecombineerd met substraten
gecoat met een speciaal ontworpen dunne film. Het ontwerp houdt rekening met het
verschijnsel van verdwijnende golfversterking, met een verbeterde detectiegevoelig
heid als resultaat. Om de verstrooiing door het nanodeeltje te maximaliseren, moet de
gefocusseerde straal die voor de belichting gebruikt wordt zijn brandvlak hebben in het
oppervlak dat de nanodeeltjes bevat. In hoofdstuk 5 bestuderen we de effecten van
het onscherp maken van de belichtingsstraal. Als resultaat stellen we een nieuwe me
thode voor, gebaseerd op het meten van de verstrooiing door een afgezonderd deeltje,
voor het bepalen van de brandpuntpositie op een oppervlak. We laten zien dat onze
methode beter presteert als het gaat om brandpuntposities vergeleken met bestaande
technieken op basis van astigmatisme. Eén van de voornaamste toepassingen van
verstrooiingsmeting is het inschatten van de hoeveelheid vervuiling op een oppervlak.
De kwaliteit/reinheid van bijvoorbeeld een silicium wafer wordt beoordeeld door het
bepalen van de dichtheid, plaats en grootteverdeling van de gedetecteerde deeltjes.
Deze gegevens worden gewonnen door het volgen van het detectorsignaal als functie
van de positie van de belichtingsvlek op het oppervlak tijdens een zijdelingse rastervor
mige aftasting van het te inspecteren oppervlak. Hoe kleiner de deeltjesgrootte is die
willen we meten, hoe kleiner de aftastingsstap moet zijn, waardoor meer metingen op
meer posities worden verschaft. Dit leidt tot een groeiende hoeveelheid gegevens die
verwerkt en opgeslagen moet worden, wat een uitdagend scenario is. In hoofdstuk 6
en 7 kijken we naar manieren om het proces van gegevensverwerving en nabewerking
te verbeteren. Deze manieren hebben betrekking op het zoeken, groeperen, kalibre
ren en classificeren van signalen van deeltjes, evenals het verwerpen van anomalieën.
Onze resultaten illustreren dat de voorgestelde algoritmes oppervlakteverontreinigin
gen juist en doeltreffend kunnen detecteren én classificeren voor de meetreeks, zowel
met als zonder afdrijving van de aftastingsposities in het raster. Bewapend met de ver
beteringen van het systeem uit de vorige hoofdstukken, onderzoeken we in hoofdstuk
8 de detectie van deeltjes in het diepsubgolflengteregime en bepalen we de uiterste
limieten van ons instrument. We analyseren de elektronische ruis, trillingsbronnen en
het effect van oppervlakteruwheid, met als resultaat het vermogen een latex bol met
een diameter van 29 nm op een silicium wafer te detecteren met een golflengte van
405 nm.



1
Introduction

1.1. Scattering
The phenomenon of scattering is ubiquitous. The human eye sees it as a “blue” sky
in a summer morning or a diffuse glow during the night, the color of a laser or fog
in the air. Alternatively, scattering recorded with a stateoftheart instrument mani
fests itself in collisions between atoms, electrons, and photons, such as processes in
nuclear reactors or inside an accelerator, and highenergy electrons precipitation in
the atmosphere. Scientists across the world are interested in studying the scattering
effects that take part in the interaction between the light and matter in order to de
termine the physical properties of materials. The dimensions of an arbitrary structure
and its quality is adequately studied with optical metrology, which is the science of
measurements with light. Staring from the height and width determination of a dis
tant object by triangulation over many decades, optical metrology has developed to
the vibrant area of technological advancements [1]. Numerous optical techniques and
instruments, such as microscopes, wavefront sensors, optical comparators, and inter
ferometers are available now where subnanometer precision is achieved. By studying
the properties of the electromagnetic field that is generated from the interaction be
tween the probe and the unknown target, it is nowadays possible to retrieve intricate
parameters of the object such as its shape and roughness. Commonly, the measure
ment in the farfield regime is adopted since it is noninvasive. In the farfield, for
successful information retrieval of features smaller than the Rayleigh limit, the inverse
problem of scatterometry (optical metrology with scattered light) requires a priori in
formation. In many cases, we assume that the target under the study is guaranteed
to exist, and it is partially known. For example, one can deposit particles of certified
material on top of a surface, measure the intensity of the scattered field, and by com
bining this information with electromagnetic models, one can deduce parameters such
as size and position of the scatterer. However, when the target becomes extremely
small, as for example, a fraction of the wavelength, the question arises: given the
measuring instrument, would we still detect this target? The answer is yes, if the
sensitivity of the instrument is high enough. Many areas of optics and physics rely on
the detection and localization of tiny objects on top of a surface. The main examples

1
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include contamination and nanofabricated features and defects in the semiconductor
industry [2, 3], the studies of viruses and bacteria for biological and medical sciences
[4, 5], air and water pollution with toxic particles in environmental science [6, 7].

In this thesis, we will concentrate on the application of scatterometry for isolated
nanoparticle detection aimed at quality control in the semiconductor industry.

1.2. Quality control for the semiconductor industry
One of the big challenges in the semiconductor industry is the quality control of the
entire lithograph process; it includes the unwanted contamination on the silicon wafers
in the nanometersize scale (Figure 1.1). This contamination can occur at different
stages of the lithography process on the wafer, and it is vital to check the bare or
patterned wafer. Contamination of the reticle (mask) is also an important problem
that hinders the manufacture of integrated circuits. The reticle quality and reticle
defects continue to be a top industry risk [8].

Figure 1.1: Different inspection scenarios of a reticle (mask) for the particle scanner. The

fabrication of the reticle photomask includes the intermediate steps wherein the reticle substrate,

blank or the final patterned mask is analyzed for the presence of contamination and defects.

The pellicle film is intended to protect the mask from additional contamination. The cleanliness

of the wafer is analyzed both before and after the mask projection.

The cause of the contamination ranges from the abrasion of the mechanical parts
and dust introduced during the assembly to particles induced by the plasma light
source and to remainders of the photoresist. To ensure the quality and high yield
in semiconductor manufacturing, contamination due to isolated particles in the size
range from 20 nm to 1 𝜇m in diameter should be detected and, specifically for high
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concentrations, localized and removed.
Before the inline inspection, contamination due to, for example, isolated nanopar

ticles was studied using certifiedsize polystyrene latex spheres (PSLs) that were de
posited on the surface of interest in a controlled manner. When analyzing other par
ticles consisting of different materials, the scattering crosssections can be converted
to the Latex Sphere Equivalent (LSE) [9]. From the Rayleigh scattering crosssection
[10]:

𝜎𝑠 ∝
𝑑6
𝜆4 (

𝑚2 − 1
𝑚2 + 2)

2

. (1.1)

where, 𝜎𝑠 represents the amount of scattering, 𝑑 is the diameter of a sphere, 𝑚
represents optical contrast of the particle and is equal to 𝑚 = √𝑛2 + 𝑘2, where 𝑛 and
𝑘 are the real and imaginary parts of the refractive index, respectively, and 𝜆 is the
wavelength of the light. Accordingly, from the perspective of the detector, there is no
difference between e.g. 100 nm PSL (𝑛 = 1.57) and Au 80.8 nm (𝑛 = 1.46, 𝑘 = 1.95)
diameter sphere at 𝜆 = 405 nm and one can assume that 80.8 nm gold particle in
free space has a LSE of 100 nm. Depending on the instrument’s collection optics and
the wavelength regime, particle scattering on surfaces can be a stronger or weaker
function of particle diameter.

Electronic chips are made with the aid of an optical photolithography system. The
goal is to transfer the patterns of the future chips from a photomask (reticle) to a
silicon wafer coated with photoresist. The estimate of the minimum particle size on
the mask which will cause the defects on the wafer can be calculated from [11]:

𝑑𝑑𝑒𝑓 =
1
2 ⋅

𝐶𝐷 ⋅ 𝑀
𝐸 . (1.2)

where the 𝑑𝑑𝑒𝑓 is the diameter/size of the defect, 𝐶𝐷 is the critical dimension, which
is defined as the smallest feature that can be patterned, 𝑀 is the demagnification
factor of the imaging system and 𝐸 = Δ𝐶𝐷𝑤𝑎𝑓𝑒𝑟/Δ𝐶𝐷𝑚𝑎𝑠𝑘 is the error factor that
describes the influence of the imperfections of the mask on the final printed pattern.
Error factor is defined as the derivative of the Δ𝐶𝐷𝑤𝑎𝑓𝑒𝑟 at the wafer to that at the
reticle Δ𝐶𝐷𝑚𝑎𝑠𝑘 [12]. It depends on feature size, pattern type, exposure parameters,
illumination conditions etc. Typical values are usually calculated numerically and fall
within a range from 1.5 to 3.5. It is common that the estimate for 𝑑𝑑𝑒𝑓 is in the order
of the feature size of the pattern 𝐶𝐷. For instance, with 𝑀 = 4 and 𝐸 = 1.75 it is
critical to eliminate 25 nm or larger particles for the 𝐶𝐷 = 22 nm node. Further, we
summarize the estimates for the maximum allowed particle size within the other parts
of an Extreme ultraviolet lithography (EUV) system [13–15]:

• EUV reticle load 50 nm.
• The front side of the pellicle (Figure 1.1) ≈ 1 𝜇𝑚.
• The front side 20 nm and the back side ≈ 1 𝜇𝑚 of the reticle blank.
• The size of the contamination on bare/patterned wafer is < 20 nm.

1.3. Surface inspection in the semiconductor industry
The semiconductor industry uses metrological tools for product qualification. The main
techniques to study nanometersize features are scanning electron (SEM) and dark and
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bright field microscopes (Figure 1.2). For electrically conductive materials, surface
analysis in the reflection mode is straightforward with SEMs. If the scattering objects
are buried inside the structures, transmission electron microscope (TEM) or scanning
TEM (STEM) using a beam or a focused spot of electrons can be used [16]. With these
techniques, subnanometer resolution can be achieved. However, the implementation
of these techniques in the production line can be complicated, and they are slow. In
addition, if high beam current and acceleration voltage for the electrons are used, SEM
can also produce cracks on the surface or permanent thermal damage.

In order to solve this problem, noninvasive inline surface inspection, based on
optical scatterometry is a powerful option. It relies on illuminating the surface under
study with a probing light beam and processing light that is diverted from the surface
using a farfield detection system. The contamination can be detected if the scattering
produces a sufficient amount of light (photons) on the detector. It is also crucial to
scan the entire area because the location of the contamination is essential in product
monitoring and root cause analysis.

Figure 1.2: (a) Basic principle of the scanning electron microscope (SEM), (b) brightfield epi

illumination, and (c) darkfield microscope. In SEM primary electron beam is rasterscanned

over the sample surface where the secondary electrons are generated. An image is created

by combining the detector signal (information about topography) and the rastering voltages.

In epiillumination, a light at the detector is a combination of reflected and scattered from the

sample while in darkfield microscopy only the scattered light is captured. Commonly, darkfield

particle scanners rely on the spiral scanning where the wafer is rotated underneath the beam.
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Darkfield techniques, where only the scattered portion of the light is captured, are
powerful tools for highthroughput contamination analysis. The stateofart systems
work with bare wafers, smooth and rough films, and deliver defect detection sensitivity
aimed at the 7 nm logic and advanced memory device nodes [17, 18]. There are also
types of scanners designed for either blank or patterned masks inspection, that aim
to achieve the highresolution, low noise imaging of defects present inside a multi
layer structure (e.g. MoSi). These are called actinic, which means they operate
at the same wavelength as used for writing the pattern to the wafer [19]. For all
techniques in the darkfield family, the direct reflected light is eliminated from the
measured field. Consequently, the incident power has to be high in order to produce
enough scattering and a sufficient signaltonoise ratio (SNR). Hence, similar to SEM,
in darkfield measurements, there is a a danger of altering or damaging the sample
under study due to thermal effects [20].

The socalled bright field technique, where both the reflected and the scattered
light from the surface are measured, solves the issue of the sample damaging since
it uses very low incident power. However, similarly to darkfield, the small inherent
scattering causes too low a SNR. In this context, it is hard to detect tiny particle sizes,
with diameters smaller than 200 nm in bright field mode using wavelengths in the vis
ible spectrum. To solve this issue and to allow for the detection of such particle sizes,
researchers have proposed various methods including labelfree interferometric re
flectance imaging sensor (IRIS) or interferometric scattering microscopy (ISCAT) [21]
and nonconventional sensing with optical forces in optical pseudoelectrodynamics
microscopy (OPEM) [3]. Unfortunately, these approaches suffer from shot noise in
the camera, mechanical instability, and low throughput.

Alternatively, one can obtain high sensitivity and low power of the illumination by
measuring the light that is scattered from the particles to the farfield in a smart way
such that the SNR can be improved as compared to darkfield techniques operating
with the same power. Bright field differential detection is the core of the technique,
called coherent Fourier scatterometry (CFS) [22] that has been recently applied to
particle detection, to achieve a low cost, robust technique, suitable for the detection
of low index nanoparticles not only on wafers but also on low contrast substrates
such as plastic or glass [23–26]. In this application of CFS, the surface is raster
scanned with the aid of highNA tightly focused spot. The keyenabling principle is
the differential detection of the scattered and reflected fields from the nanoparticle
and sample surface, where depending on the position of the particle w.r.t. the focused
spot, the scattering is asymmetric, while the bare low roughness surface renders nearly
zero signal.

The performance of the surface inspection tools based on the manufacturer’s spec
ification as well as on published results, are summarized in Table 1.1. Compared to the
existing particle scanners, the method based on CFS was slow and less sensitive. How
ever, at that time ([23], 2014), the detector noise and scanning issues substantially
limited the highest sensitivity that could be obtained.
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Table 1.1: The initial sensitivity and other parameters of the technique applied to particle de

tection (by the year 2014) are compared to the stateoftheart systems for the particle size

detection, including the recent ones (by the year 2020). The Latex Sphere Equivalent (LSE) is

one of the critical parameters when any scatterometric particle is calibrated against contami

nation standards of certifiedsize PSLs. The speed performance of the techniques is estimated

based on the settings required to detect 100 nm PSL and to analyze the full area of 200 mm
(8inch) wafer.

Scanner
Sensitivity

(LSE)
Source

Inspection

target

Time as normalized

to 100 [nm] sensitivity

to cover 200 [mm] wafer

Reference

Darkfield (conventional)
scientific 35 nm 193 nm

mask blank

reticle substrate
2 [hr] 2017 [27, 28]

industrial <16 nm 193 nm

bare wafers

films

(smooth and rough)

3 [m] 20132016 [29–31]

Darkfield (actinic)
ABI 33 nm 13.5 nm mask blank 26 [m] 20132020 [19, 32]

APMI 32 nm 13.5 nm patterned mask 1.16 [h] 20152019 [33–35]

SEM <5 nm
Accelerating voltage

500 V  30 kV
patterned wafer 4.36 [hr] 2013 [36, 37]

CFS (single beam) >100 nm 405 nm plastic sheet *9 [m] 2014 [23]

Hence, discovering the limits of the CFS technique in the context of nanoparticle
detection is an essential and, according to the author, exciting topic. If the sensi
tivity and/or speed of the CFS technique is improved, the scatterometer can be inte
grated into current semiconductor manufacturing processes to facilitate inspection of
nanoscale features/unpatterned wafers inline with lithography processes. The scat
terometer can also be used in highlyaccurate inspection of polymer webs or pellicle
structures. In addition, we envision that this system could be employed in bridg
ing the gap between SEM and other metrology tools such as inline/3D AFM [38–40].
Moreover, it could be explored in new applications such as extending the capabilities
of optical microscopy by enabling the analysis of subwavelength bio nanoparticles on
surfaces [41, 42].

1.4. Goals of this thesis
For the detection of very small particles of diameter < 100 nm at a fast rate using
CFS, it is crucial to optimize the entire system. The goal of this thesis is to boost the
sensitivity of CFS, by using an optimal illuminating focused spot in conjunction with
optimized detection schemes with both depending on the inspected sample. We have
used numerical tools to understand the parameters that could influence the scattering
process such as polarization or the surface design. We revisited the way in which the
data should be collected and defocusing effects. We also introduced the pre, post
data process tools and methods to maximize sensitivity for nanoparticle detection on
different types of surfaces such as plastic, glass or silicon wafers. Furthermore, we
experimentally and numerically established the detection limit of our current system.

*the speed is estimated for 100 𝑚/𝑠 spiral scanning and was not optimized in the real system (refers to
Table 1.1)
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1.5. Outline
In this dissertation, we deal with the following subjects:

• Chapter 2: Introduction to electromagnetic theories and numerical modeling.
We start by showing the schematics of CFS. Next, we highlight the importance
of understanding the polarization and phase effects when focusing light with a
high numerical aperture lens. After that, we introduce an analytical model of
a dipole at the interface to understand scattering effects that take place in the
system. Furthermore, we discuss the principle of finitedifference timedomain
(FDTD) and finite element method (FEM) numerical solvers for Maxwell’s equa
tions. Finally, we explain the importance of meshing and the geometry for a
computational domain.

• Chapter 3: Heterodyne detection system for nanoparticle detection. To mit
igate the experimental noise, we implement the heterodyne detection system.
The underlying principle of heterodyne is explained, and experimentally we have
determined the suitable frequencies and waveforms for both modulation and
reference signals. The result of this implementation is the first improvement
detecting polystyrene nanoparticles.

• Chapter 4: Polarization effects in evanescent wave amplification for particle
detection. We describe the problem of the particles being indexmatched with
the substrate, such as in the case of polystyrene particle on top of plastic or glass,
analyze the role of the polarization of the input beam (linear, radial and circular),
and the coupling mechanism to cavity modes when the surface is coated with a
thin film. The studied enhancing mechanism of evanescent wave amplification
is accompanied by simulations where both the nearfield and farfield gain are
considered. We conclude the study by showing the best materials/thickness and
polarization of the input light that should be used to optimize the evanescent
wave amplification effect.

• Chapter 5: Highlysensitive laser focus positioning method with submicrometer
accuracy. We analyze the nearfield amplitude and phase of the probe interaction
with the particle on a surface. We give a detailed description of the novel focus
determination approach based on the farfield detection of the scattered light
from a particle deposited on the sample surface. The new method is highly sen
sitive; a twofold improvement in the slope of an error curve over other methods,
such as astigmatismbased methods, is demonstrated.

• Chapter 6: Efficient signal processing with the aid of machine learning. It
has been shown that it is possible to minimize the noise in the system, set the
optimal focusing position, and further, it is beneficial to use linearly polarized
light. The process of the detection in the domain less than 100 nm (< 𝜆/4) as
compared to particles of diameter larger than 100 nm (< 𝜆/4) is associated with
the processing of much bigger differential voltage datasets. In this chapter, we
develop the framework of preprocessing and semiautomatic feature extraction.
Starting from the raw data with the user input for the search criteria, and by
modifying the techniques of unsupervised clustering, we can get the particle
size distribution histogram with high selectivity between the particle classes.
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• Chapter 7: Convolutional neural network applied for nanoparticle classification.
We rely on the possibilities of convolutional neural networks (CNN) to automati
cally extract features from the scanned maps to distinguish between the 40, 50,
60, 80 nm particles and the background. We optimize the architecture of the net
work, to achieve the right balance between the training time and the highenough
accuracy. We show that based on the relatively small set of ≈ 1300 images,
we can train the network with two convolutional layers and batch normaliza
tion to achieve 95% accurate results. Furthermore, the CNN method illustrates
the superior performance in terms of specificity and sensitivity compared to the
thresholding and search approach of Chapter 6. We rely on the three methods
of the penultimate layer thresholding, such as baseline, mean activation vectors
(MAV), and OpenMax to capture the unknown samples. The approach of MAV
turns out to be an optimal method where we achieve the best result of capturing
80% of the fooling images at the cost of only dropping the 10% of the original
dataset. The main contribution of this chapter is to emphasize that CNN can be
exploited as a highperformance analysis tool that is most suitable to treat the
big datasets.

• Chapter 8: The limits of detection. In the final chapter, we conduct validation
experiments on the basis of specially fabricated lithography samples using elec
tron beam technique. We carry out the analysis of the noise due to electronics,
surface roughness, and vibration and merge it with a quantitative assessment of
lowindex particles.

• Chapter 9: Conclusion and Outlook. Here, we summarize the thesis and discuss
possible future work.
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2
Introduction to

Electromagnetic theories and
Numerical Modeling

We present a review of the electromagnetic theory to treat the problem of particle
detection with CFS. In Section 2.1, we give the schematics of the CFS experi
mental setup. In Sections 2.22.3, we describe the theory necessary to account
for the high numerical aperture of our system and its consequence to the field
distribution in the focal region. Next, in Sections 2.4 and 2.5 we develop the
relations necessary to analytically account for the interaction between the in
cident light and the isolated subwavelength particle (dipole) at the interface
between two media. Finally, in Section 2.6, we describe numerical modeling
with FDTD and FEM, and we test the convergence of our template models and
explain the computational geometry.
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2.1. Coherent Fourier Scatterometry
Coherent Fourier Scatterometry is a relatively young technique based on the scattering
of coherent light into the far field of a laser beam that is focused on the sample. It
was initially applied to the problem of grating shape reconstruction with the collection
of overlapping diffracted orders in the far field [1, 2]. Also, it has been shown that
CFS has outstanding capabilities for the detection of nanoparticles on top of silicon,
glass, and plastic substrates [3]. Afterwards, by replacing the original CCD camera
with a differential detection scheme using a bicell, CFS has been modified to better
suit the problem of particle detection. As a benefit, effects of spurious reflections from
a sample surface were eliminated and a radical increase in the SNR and speed were
achieved [4].

The experimental setup is shown in Figure 2.1.

Figure 2.1: A sketch of the experimental setup: STAGE: piezoelectric 𝑥𝑦𝑧 translator; OBJ:
objective lens; PC: ondemand polarizator convertor (zeroorder vortex halfwave retarder);

BS1, BS2: beam splitters; POL: linear polarizer, COL: light collimator, LENS1, LENS2, LENS3

converging lenses; CAM: CCD camera used for localizing the sample; SD: split detector (bicell

silicon photodiode), LAS: blue diode laser. A schematic of the objective with entrance and exit

pupil as optical system that focuses the collimated beam.

The light source is a blue diode laser (405 nm by Power Technology, model:
IQ1A25) that is polarized before it approaches the focusing lens of numerical aperture
𝑁𝐴 = 0.9 (OBJ in the figure). The objective is a noncommercial objective designed for
mastering CDs in optical data storage. The focused spot is < 1 𝜇m. The high numeri
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cal aperture allows for the collection of a large number of diffracted angles within the
illumination cone of the light (up to 64 degrees w.r.t. optical axis in air). These include
the scattered and reflected fields from the nanoparticle and substrate. A telescopic
arrangement formed by LENS2 and LENS3 is used to fit the reflected beam into the
area of the split detector (SD). Recorded signals from the photodetector are the basis
for the signal maps. In our system, SD is bicell silicon photodiode. The sample is
mounted on a 3D piezoelectric stage whose position can be controlled with subnm
precision (P620.ZCD stacked on P629.2CD by Physik Instrumente). STAGE is pro
grammed to move in rasterscan (introduced earlier in Figure 1.2). As it will be clear
later, the state of polarization is crucial to determine the various contributions of the
electric field components of the focused spot on the scattering of the isolated particle.
In order to generate azimuthal or radial polarization, we add a liquid crystal polarizator
converter (PC in the figure, zeroorder vortex half wave retarder from Thorlabs) before
the objective (OBJ), otherwise the polarization is linear. This converter will only be
used in the Chapter 4. Finally, the camera (CAM) is used for localizing the sample.

2.2. Vectorial diffraction integral

For the strong focusing regime (high NA), the widely used scalar theory becomes
invalid, because it cannot predict the polarizationinduced effects such as the creation
of strong longitudinal components or the broadening of the electric field distribution
in the focal plane. A vectorial focusing theory is required instead. The focal region
description of the field was firstly described by Ignatowsky [5] and further rederived
by Richards and Wolf [6]. In this thesis, we will rely on the calculation steps given in
reference [7].

We consider a collimated beam as a monochromatic timeharmonic plane wave,
with frequency 𝜔 > 0 and electric field EEE(𝑟𝑟𝑟, 𝑡) = 𝑅𝑒[𝐸𝐸𝐸(𝑟𝑟𝑟)𝑒−𝑖𝜔𝑡], by implication, con
tains timedependence in the form of 𝑒−𝑖𝜔𝑡. The wave is incident on the lens that is
rotationally symmetric and fulfills the Abbe’s sine condition 𝑅𝑚𝑎𝑥 = 𝑅𝑓 sin𝛼 where the
maximum radius of the exit pupil 𝑅𝑚𝑎𝑥 equals the focal length of the imaging system
𝑅𝑓 times the sine of the maximum incidence angle 𝛼 [8]. Threrefore, the numerical
aperture is defined as 𝑁𝐴 = 𝑛 sin𝛼, where 𝑛 is the refractive index of the focusing
media. The lens assumed to be aberrationfree, causes no absorption or reflection,
and the focusing medium is isotropic, homogeneous and nonmagnetic (𝜇 = 𝜇0).

Given the vector field distribution in the exit pupil 𝑎𝑎𝑎(𝑘𝑥 , 𝑘𝑦), by integrating over
the exit pupil (𝑑𝑘𝑥 , 𝑑𝑘𝑦) (Ω is the solid angle subtended by the aperture of the lens as
seen from the focal point), the field in the focal region is given by: 𝐸𝐸𝐸(𝑟𝑟𝑟)

𝐸𝐸𝐸(𝑟𝑟𝑟) = − 𝑖
2𝜋 ∫∫Ω

𝑎𝑎𝑎(𝑘𝑥 , 𝑘𝑦)
𝑘𝑧

exp [𝑖𝑘𝑘𝑘 ⋅ 𝑟𝑟𝑟] 𝑑𝑘𝑥𝑑𝑘𝑦 . (2.1)
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Figure 2.2: Propagation of the field distribution in the entrance pupil 𝑎𝑎𝑎0(𝑘𝑟, 𝜓) via the exit pupil
𝑎𝑎𝑎1(𝑘𝑟, 𝜓) to the focal region 𝑎𝑎𝑎1(𝑟). The entrance, with the unit vectors (�̂�𝑠𝑠, �̂�𝑝𝑝, �̂�𝑘𝑘), to exit, with the
unit vectors (�̂�𝑠𝑠1, �̂�𝑝𝑝1, �̂�𝑘𝑘1), lens transformation with matrix 𝑇𝑇𝑇. The observation plane (𝑥, 𝑦) with
unit vectors (�̂�𝑥𝑥, �̂�𝑦𝑦, �̂�𝑧𝑧) is in the Gaussian focus with focal length 𝑅𝑓.

The set of cylindrical coordinates in the exit pupil is introduced 𝑘𝑘𝑘 = (𝑘𝑟 , 𝜓, 𝑘𝑧), and
in the focal region 𝑟𝑟𝑟 = (𝑟, 𝜙, 𝑧) such that:

𝑘𝑘𝑘 = 𝑘𝑟 cos𝜓�̂�𝑥𝑥 + 𝑘𝑟 sin𝜓�̂�𝑦𝑦 + 𝑘𝑧 �̂�𝑧𝑧, (2.2)

𝑟𝑟𝑟 = 𝑟 cos𝜙 �̂�𝑥𝑥 + 𝑟 sin𝜙�̂�𝑦𝑦 + 𝑧 �̂�𝑧𝑧. (2.3)

In order to discretize Eq. 2.1 in cylindrical coordinates a necessary transformation for
the elements of integration is given by

𝑑𝑘𝑥𝑑𝑘𝑦 ≡ (
𝜕𝑘𝑥
𝜕𝑘𝑟

𝜕𝑘𝑥
𝜕𝜓

𝜕𝑘𝑦
𝜕𝑘𝑟

𝜕𝑘𝑦
𝜕𝜓
)𝑑𝑘𝑟𝑑𝜓 = 𝑘𝑟𝑑𝑘𝑟𝑑𝜓. (2.4)

By expanding the dot product in the exponential term and rewriting the differential,
the equation 2.1 becomes:

𝐸𝐸𝐸(𝑟𝑟𝑟) = − 𝑖
2𝜋 ∫∫Ω

𝑎𝑎𝑎(𝑘𝑟 , 𝜓)
𝑘𝑧

exp [𝑖𝑟𝑘𝑟 cos (𝜓 − 𝜙) + 𝑖𝑘𝑧𝑧] 𝑘𝑟𝑑𝑘𝑟𝑑𝜓. (2.5)

In the aplanatic imaging system, the transition from the entrance pupil, a disc
defined by Ω′ , to the exit pupil, a spherical shell defined by Ω, can be considered as a
rotation of the field vector around the angular axis �̂�𝜙𝜙 in a cylindrical basis �̂�𝑟𝑟, �̂�𝜙𝜙, �̂�𝑧𝑧. This
lens operation is described by the transfer matrix 𝑇𝑇𝑇 (Figure 2.2).
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With propagation vector on the cylindrical coordinate frame given by 𝑘𝑖 = (𝑘𝑟𝑖 , 𝑘𝜙𝑖 , ±𝑘𝑧𝑖),
a Fourier transform can always be used 𝐸𝐸𝐸𝑖(𝑟𝑟𝑟) = 𝐴𝐴𝐴 exp [±𝑖𝑘±𝑖 ] to decompose the total
field into plane waves and to propagate it to the point of observation. The subscript 𝑖
indicates the medium in which the vector is defined, while the superscript ± indicates
the direction of propagation. Because the transition from medium 𝑖 to next medium
𝑖+1 at position 𝑧 = 𝑑𝑖 should be independent of the coordinates (𝑟, 𝜙), plane wave de
composition implies that 𝑘𝑟𝑖 = 𝑘𝑟𝑖+1 = 𝑘𝑟 and 𝜓𝑖 = 𝜓𝑖+1 = 𝜓 . The propagation vector
of monochromatic waves has a fixed length 𝑘2𝑖 = 𝑘2𝑧𝑖 +𝑘2𝑟 . The sign of the square root
that should be taken to obtain the propagation vector is so that the wave decreases
exponentially in the direction of propagation (determined by energy conservation).

As mentioned above, the transfer matrix is necessary to take the lens effect into
account, i.e. the rotation effect of the lens on the field vector and square root multipli
cation factor 𝑅𝑓√𝑘𝑧/𝑘 (Abbe’s sine condition). If the field distribution in the entrance
pupil is defined in polar coordinates such that 𝐸𝐸𝐸0(𝑘𝑟 , 𝜓), the field distribution in exit
pupil is defined by 𝐸𝐸𝐸1(𝑘𝑟 , 𝜓) = 𝑇𝑇𝑇 ⋅ 𝐸𝐸𝐸0(𝑘𝑟 , 𝜓). To describe the rotation of field vec
tor three operations are necessary (1) operation 𝑃𝑃𝑃 for projection of the Cartesian to
cylindrical coordinates, (2) operation 𝑅𝑅𝑅 for rotation of the field vectors in cylindrical co
ordinates, and (3) 𝑃𝑃𝑃−1 for inverse of the first operation, i.e. projection from cylindrical
to Cartesian coordinates. The matrix operators are given by

𝑃𝑃𝑃 = ⎛⎜

⎝

cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0
0 0 1

⎞
⎟

⎠

, (2.6)

𝑅𝑅𝑅 = 1/𝑘1
⎛
⎜

⎝

𝑘𝑧1 0 𝑘𝑟
0 𝑘1 0
−𝑘𝑟 0 𝑘𝑧1

⎞
⎟

⎠

, (2.7)

𝑇𝑇𝑇 = 𝑃−1𝑃−1𝑃−1𝑅𝑅𝑅𝑃1𝑃1𝑃1 = 1
𝑘1
⎛
⎜

⎝

𝑘𝑧1 cos2 𝜓 + 𝑘1 sin2 𝜓 (𝑘𝑧1 − 𝑘1) sin𝜓 cos𝜓 𝑘𝑟 cos𝜓
(𝑘𝑧1 − 𝑘1) sin𝜓 cos𝜓 𝑘𝑧1 sin2 𝜓 + 𝑘1 cos2 𝜓 𝑘𝑟 sin𝜓

−𝑘𝑟 cos𝜓 −𝑘𝑟 sin𝜓 𝑘𝑧1

⎞
⎟

⎠

.

(2.8)
where 𝑘1 = |𝑘𝑘𝑘1| defines the amplitude of the propagation vector in the first medium.
In the experimental scheme, we define a certain polarization state for the light beam
(is described in the polar coordinate system), which is transformed by the objective
lens and converges to the focal spot (cylindrical coordinate system). The set of unit
vectors in the entrance pupil as (�̂�𝑘𝑘, �̂�𝑠𝑠, �̂�𝑝𝑝) (red cross blue is green Figure 2.2) given by

�̂�𝑘𝑘 = 𝑘
𝑘𝑘
𝑘 , �̂�𝑠𝑠 = �̂�𝑘𝑘 × �̂�𝑧𝑧

|�̂�𝑘𝑘 × �̂�𝑧𝑧|
, �̂�𝑝𝑝 = �̂�𝑘𝑘 × �̂�𝑠𝑠. (2.9)
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The unit vector �̂�𝑘𝑘 is parallel, �̂�𝑠𝑠 is perpendicular to the direction of wave propagation,
and �̂�𝑝𝑝 is perpendicular to the plane created by �̂�𝑘𝑘 and �̂�𝑠𝑠. By performing a scalar multipli
cation of the field vector (𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧) with the three unit vectors below (in the cylindrical
coordinate system of exit) one can get the three components of the electric field.

�̂�𝑘𝑘
±
𝑖 =

1
𝑘𝑖
⎛
⎜

⎝

𝑘𝑟 cos𝜓
𝑘𝑟 sin𝜓
±𝑘𝑖𝑧

⎞
⎟

⎠

, �̂�𝑠𝑠±𝑖 = �̂�𝑠𝑠𝑖 =
⎛
⎜

⎝

sin𝜓
− cos𝜓
0

⎞
⎟

⎠

, �̂�𝑝𝑝±𝑖 =
1
𝑘𝑖
⎛
⎜

⎝

±𝑘𝑖𝑧 cos𝜓
±𝑘𝑖𝑧 sin𝜓
−𝑘𝑟

⎞
⎟

⎠

. (2.10)

Using the transfer matrix 𝑇𝑇𝑇 Eq. 2.8, and, for convenience integrating over the entrance
pupil Ω′ rather than exit pupil Ω, the Eq. 2.5 now can be written in the final form

𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑟𝑟𝑟) = −
𝑖𝑅𝑓
2𝜋 ∫∫Ω′

√𝑘𝑧
𝑘
𝑇𝑇𝑇𝐸𝐸𝐸0(𝑘𝑟 , 𝜓)

𝑘𝑧
exp [𝑖𝑟𝑘𝑟 cos (𝜓 − 𝜙) + 𝑖𝑘𝑧𝑧] 𝑘𝑟𝑑𝑘𝑟𝑑𝜓.

(2.11)
The integration/summation is defined over the cone Ω′ given by 𝜓 ∈ (0, 2𝜋] and 𝑘𝑟 ∈
[0, 𝑁𝐴 𝑘0), where the wave number in vacuum given by 𝑘0 = 𝜔√𝜖0𝜇0. The integral
over the 𝜓 is performed analytically using the integral representation of the Bessel
function of the first kind and the integral over the 𝑘𝑟 is estimated numerically [7, 9].

In order to compute focal fields for various polarization states at the input, we
consider six different possibilities:

Table 2.1: The 𝐸𝑥(𝑘𝑟, 𝜓) and 𝐸𝑦(𝑘𝑟, 𝜓) coefficients to set the polarization of entrance pupil.

Input polarization 𝐸𝑥(𝑘𝑟 , 𝜓) 𝐸𝑦(𝑘𝑟 , 𝜓)
linear x 1 0

linear y 0 1

right circular 1/√2 𝑖/√2
left circular 𝑖/√2 1/√2
radial cos𝜓 sin𝜓

azimuthal − sin𝜓 cos𝜓

We continue by providing intuition for the rotation of polarization induced by the
high NA lens.
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Figure 2.3: Focusing properties with highNA lenses for different beam input polarization states.

The focusing of linearly (x) A) and radially B) polarized light in 𝑥𝑧 and 𝑦𝑧 crosssection of the
beam.

For linearly polarized light along the 𝑥axis, the rays propagating in the 𝑥𝑧 and the
𝑦𝑧plane contribute differently to the focal field (left and right image of Figure 2.3
A). In the xzplane, we see that the rays that propagate do not add up ideally at
the focus. Field component in direction orthogonal to the 𝑦𝑧 plane does not cancel,
and as a consequence, depolarization of the field in focus occurs (i.e., the 𝑥 linearly
polarization at the input is decomposed into 𝑥, 𝑦 and 𝑧 polarization components in the
focal plane). The result is that the intensity field distribution in focus is not cylindrically
symmetric anymore but elongated in the 𝑥axis. This has implications for the resolution
of the imaging system, as it is well known in microscopy. In contrast, the contributions
at focus from the different spatial portions of the radially polarized beam (Figure 2.3
B) constructively interfere to create an intense 𝑧component of the electric field at the
focal point. Since the radially polarized input beam is rotation invariant in amplitude
and polarization, the field in focus is cylindrically symmetric. Using the calculations
according to Eq. 2.11 , we show here the absolute value and phase of the electric field
components in the focal plane (𝑥𝑦) for the case 𝑁𝐴 = 0.9 and wavelength 𝜆 = 405
nm.
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Figure 2.4: The field components of the linearly A) and radially B) polarized incident beam on

the focal plane [𝑛𝑚]. For each panel, the upper row is absolute value and the bottom row is the

phase of the 𝐸𝑥, 𝐸𝑦 and 𝐸𝑧 component for the case 𝑁𝐴 = 0.9 and wavelength 𝜆 = 405 nm. In
the center of each field distribution, the sphere/circle particle of 100 nm is indicated. Note that

the colormap is not in the same scale for different field components. For the case of linearly

polarized light along 𝑥axis, the component 𝐸𝑥 is the strongest, and for radially polarized light,
𝐸𝑧 is the strongest.

Figure 2.4 A) for 𝑥linearly polarized beam shows that the |𝐸𝑥| is elliptically shaped
with major axis parallel to 𝑥. The |𝐸𝑦| component has four lobes with maxima along
the ±45 degrees directions. The |𝐸𝑧| component contains two lobes and contributes
to a further broadening of the total electric field in the 𝑥direction. The dominant com
ponent is |𝐸𝑥| with the magnitude ratio of 1 ∶ 0.09 ∶ 0.39 for 𝑚𝑎𝑥(|𝐸𝑥|) ∶ 𝑚𝑎𝑥(|𝐸𝑦|) ∶
𝑚𝑎𝑥(|𝐸𝑧|). For the radial polarization (Figure 2.4 B), the |𝐸𝑥| and |𝐸𝑦| components of
the electric field are the same except for a rotation over 90 degrees, and their sum
results in a cylindrically symmetric, doughnutshaped field distribution. The |𝐸𝑧| is
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rotationally symmetric and dominant where the ratio of the maximum amplitudes of
the three components is 0.59 ∶ 0.59 ∶ 1. The small diameter of |𝐸𝑧| in focus makes it
attractive for applications that require high positional accuracy. The white circle in the
figures represents a spherical particle with diameter of 100 nm in the middle of the
spot. Scanning is required for the focal field components |𝐸𝑦|, |𝐸𝑧| of the 𝑥polarized
beam and |𝐸𝑥| and |𝐸𝑦| focal field components of the radially polarized beam to pro
duce the substantial scattering from the particle.

2.3. Depth of focus and high NA

The high NA of the objective not only causes polarisation effects but also has conse
quences for the effective depth of focus. From the theory on aberration analysis in
the optical system [10], the Rayleigh focal depth is defined by a wavefront deviation
of a quarter wavelength at the rim of the exit pupil of the imaging system, between
the focused wavefront and the defocused one. The equation for the Rayleigh range is
given by

Δ𝑧𝑅 =
𝜆

4[1 − cos𝛼] , (2.12)

where incidence angle is 𝛼 = arcsin (𝑁𝐴). The approximation of cos𝛼 = √1 − sin2 𝛼
up to the first order by developing the square root as √1 − 𝑎 = 1 − 𝑎/2 + ... yields
the result (1 − cos𝛼)−1 ≈ 2(sin2 𝛼)−1. Using this approximated expression gives the
common definition of the Rayleigh focal depth

Δ𝑧𝑎𝑝𝑝𝑟𝑜𝑥𝑅 = 𝜆
2 sin2 𝛼

, (2.13)

The relative error between the approximated and exact formula can be defined as

𝛿𝑍𝑟 =
Δ𝑧𝑎𝑝𝑝𝑟𝑜𝑥𝑅 − Δ𝑧𝑅

Δ𝑧𝑅
. (2.14)

and is shown in the plot below
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Figure 2.5: The normalized error 𝛿𝑍𝑟 between the two formulas Eq. 2.12 and Eq. 2.13 for the
Rayleigh range versus the value of 𝑁𝐴

If 𝛼 is relatively small, for instance smaller than 15 degrees, the error is of the order
of a percentage, see Figure 2.5. However, at 𝛼 = 30 degrees (𝑁𝐴 = 0.5), the error is
already 7%. For 𝑁𝐴 = 0.9, the relative error amounts to ≈ 40%. The ‘exact’ formula
yields a smaller value for the Rayleigh focal depth than the approximated value. At
the limiting maximum aperture of 𝛼 = 𝜋/2, the error is exactly 100%. It is to some
extent arbitrary which definition of the focal length is chosen, however in Chapter 5,
when comparing the sensitivity of the proposed focusing method we will rely on the
vectorial definition.

2.4. A dipole radiation in free space and its farfield
In this section, as a preparatory step for modelling the interaction of a light beam
being focused on an isolated nanoparticle at an interface given in the next section, we
show the mathematical model of dipole in a free space. We first refer to Appendix A,
where we discuss that similarity exists between the formulas for Fourier transform, an
gular spectrum representation (plane wave decomposition) and far field computation
(propagation to the infinite distance). Finally, we show that for the scatterometer in
this thesis, the objective lens performs a Fourier transform up to a multiplicative fac
tor. It is clear thus that in our setup the farfield pattern is revealed at the back focal
plane of the lens, and there is no need to experimentally realize a large propagation
distance to achieve it. The fourier part in coherent Fourier scatterometry stems from
this transformation property of the lens.



2.4. A dipole radiation in free space and its farfield

2

21

Figure 2.6: The dipole moment 𝜇𝜇𝜇 radiates at the origin.

Consider a righthanded Cartesian system (𝑥, 𝑦, 𝑧) with downward propagation di
rection 𝑧. An electric dipole in air with dipole vector 𝜇𝜇𝜇 = (𝜇𝑥 , 𝜇𝑦 , 𝜇𝑧) at the origin
radiates electric field E𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (Figure 2.6). Starting from Maxwell’s law (Eq. A.19) in free
space

∇∇∇ ×𝐻𝐻𝐻 = −𝑖𝜔𝜖0𝐸𝐸𝐸 + 𝐽𝐽𝐽, (2.15)

The current source density 𝐽𝐽𝐽 for the dipole moment 𝜇(𝑡) = 𝑅𝑒[𝜇𝜇𝜇𝑒−𝑖𝜔𝑡] is given by

𝐽𝐽𝐽 = −𝑖𝜔𝛿(𝑟𝑟𝑟 − 𝑟𝑟𝑟0)𝜇𝜇𝜇. (2.16)

Further, because origin coincides with the position of the dipole moment and 𝑟0 =
(0, 0, 0), let’s write delta function as 𝛿(𝑟𝑟𝑟), where 𝛿 is the Dirac delta function. By
applying the curl operator ∇∇∇× using Maxwell’s equation Appendix Eq. A.15 and A.16,
and the identity ∇ × ∇× = −∇2 + ∇∇⋅, the equation 2.15 becomes

𝜔2𝜖0𝜇0𝐻𝐻𝐻 + Δ𝐻𝐻𝐻 = 𝑖𝜔∇∇∇ × [𝜇𝜇𝜇𝛿(𝑟𝑟𝑟)]. (2.17)

The 𝑥component of the RHS of Eq. 2.17 is given by

𝑖𝜔 𝑖𝑖𝑖𝑥 ⋅ ∇∇∇ × 𝜇𝜇𝜇𝛿(𝑟𝑟𝑟) = 𝑖𝜔 𝑖𝑖𝑖𝑥 ⋅ ||
𝑖𝑖𝑖𝑥 𝑖𝑖𝑖𝑦 𝑖𝑖𝑖𝑧
𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧

𝜇𝑥𝛿(𝑟𝑟𝑟) 𝜇𝑦𝛿(𝑟𝑟𝑟) 𝜇𝑧𝛿(𝑟𝑟𝑟).

|| = 𝑖𝜔(𝜇𝑧
𝜕𝛿(𝑟𝑟𝑟)
𝜕𝑦 − 𝜇𝑦

𝜕𝛿(𝑟𝑟𝑟)
𝜕𝑧 ).

(2.18)

With 𝑘 = 𝜔/𝑐0 = 𝜔√𝜖0𝜇0, one can notice that Eq. 2.17 is the inhomogeneous
Helmholtz equation similar to Appendix Eq. A.26. Furthermore, the Green’s function
𝐺, given by 𝐺 = −𝑒𝑖𝑘𝑟/4𝜋𝑟, of the scalar Helmholtz equation satisfies:

[𝜔2𝜖0𝜇0 + Δ]𝐺 = 𝛿(𝑟𝑟𝑟). (2.19)

By comparing the two equations above, and the radiation condition for 𝑟 → ∞, we see
that the 𝑥component of Eq. 2.17 is satisfied if the 𝑥component of the magnetic field
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strength is given by:

𝐻𝑥(𝑟𝑟𝑟) = 𝑖𝜔(𝜇𝑧
𝜕𝐺(𝑟𝑟𝑟)
𝜕𝑦 − 𝜇𝑦

𝜕𝐺(𝑟𝑟𝑟)
𝜕𝑧 ), (2.20)

The other components should be handled in the same manner, so that Eq. 2.17 is
satisfied with

𝐻𝐻𝐻(𝑟𝑟𝑟) = 𝑖𝜔∇∇∇ ×𝜇𝜇𝜇𝐺(𝑟𝑟𝑟). (2.21)

Rearranging Eq. 2.15, using expression Eq. 2.16 for dipole current density gives:

𝐸𝐸𝐸 = −∇
∇∇ ×𝐻𝐻𝐻 + 𝐽𝐽𝐽
𝑖𝜔𝜖0

= 𝑖
𝜔𝜖0

∇∇∇ ×𝐻𝐻𝐻 − 𝜇𝜇𝜇
𝜖0
𝛿(𝑟𝑟𝑟). (2.22)

Substituting Eq. 2.21 into Eq.2.22 gives

𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (𝑟𝑟𝑟) = −∇∇∇ ×∇∇∇ × (
𝜇𝜇𝜇
𝜖0
𝐺(𝑟𝑟𝑟)) − 𝜇𝜇𝜇

𝜖0
𝛿(𝑟𝑟𝑟) = Δ( 𝜇

𝜇𝜇
𝜖0
𝐺(𝑟𝑟𝑟)) −∇∇∇∇∇∇ ⋅ ( 𝜇

𝜇𝜇
𝜖0
𝐺(𝑟𝑟𝑟)) − 𝜇𝜇𝜇

𝜖0
𝛿(𝑟𝑟𝑟)

= −𝑘
2

𝜖0
𝜇𝜇𝜇𝐺(𝑟𝑟𝑟) −∇∇∇∇∇∇ ⋅ ( 𝜇

𝜇𝜇
𝜖0
𝐺(𝑟𝑟𝑟)).

(2.23)

The above equation represents the field of radiation of an electric dipole in air located
at 𝑧 = 𝑧0 = 0. To compute the farfield radiation, we will require the 2D Fourier
transform with respect to the (𝑥, 𝑦)

F[𝐸𝐸𝐸](𝑘𝑥 , 𝑘𝑦 , 𝑧0) =
1

(2𝜋)2 ∬𝑒−𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦]𝐸𝐸𝐸(𝑥, 𝑦, 𝑧0)𝑑𝑥𝑑𝑦, (2.24)

where the wave vector is defined as 𝑘𝑘𝑘 = 𝑘𝑥𝑥𝑥𝑥 + 𝑘𝑦𝑦𝑦𝑦 + 𝑘𝑧𝑧𝑧𝑧. Importantly, let’s also
introduce the inverse 2D Fourier transform because it is essential for plane wave ex
pansion.

𝐸𝐸𝐸(𝑥, 𝑦, 𝑧0) = ∬𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦]F[𝐸𝐸𝐸](𝑘𝑥 , 𝑘𝑦 , 𝑧0)𝑑𝑘𝑥𝑑𝑘𝑦 . (2.25)

N.B. When performed on a uniform spatial grid, the forward and inverse Fourier trans
forms are performed with fast Fourier transform (FFT). Hence, the forward 2D Fourier
transform with respect to the (x,y) variables of Eq. 2.19 is performed

(𝜔2𝜖0𝜇0 − 𝑘2𝑥 − 𝑘2𝑦)F(𝐺)(
𝑘𝑥
2𝜋 ,

𝑘𝑦
2𝜋 , 𝑧) +

𝑑2
𝑑𝑧2F(𝐺)(

𝑘𝑥
2𝜋 ,

𝑘𝑦
2𝜋 , 𝑧) = 𝛿(𝑧). (2.26)

Solving separately for the field in the upper 𝑧 < 0 and lower 𝑧 > 0 halfspace, with
wave vector’s 𝑧components 𝑘−𝑧 = −√(𝑘2𝑛2 − 𝑘2𝑥 − 𝑘2𝑦) and 𝑘+𝑧 = +√(𝑘2𝑛2 − 𝑘2𝑥 − 𝑘2𝑦)
correspondingly, implies

F(𝐺)( 𝑘𝑥2𝜋 ,
𝑘𝑦
2𝜋 , 𝑧) = 𝐴(𝑘𝑥 , 𝑘𝑦)𝑒

−𝑖𝑘𝑧𝑧 , (2.27)
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F(𝐺)( 𝑘𝑥2𝜋 ,
𝑘𝑦
2𝜋 , 𝑧) = 𝐵(𝑘𝑥 , 𝑘𝑦)𝑒

𝑖𝑘𝑧𝑧 . (2.28)

where 𝐴 and 𝐵 are functions that are still to be determined
The Green’s function in Eqs. 2.27 and 2.28 must be continuous and the derivative

with respect to 𝑧 must take a unit jump for 𝑧 = 0. Imposing these conditions implies

𝐴(𝑘𝑥 , 𝑘𝑦) = 𝐵(𝑘𝑥 , 𝑘𝑦) = 1/2𝑖𝑘𝑧 , (2.29)

and therefore,

F(𝐺)( 𝑘𝑥2𝜋 ,
𝑘𝑦
2𝜋 , 𝑧) =

𝑒±𝑖𝑘𝑧𝑧
2𝑖𝑘𝑧

. (2.30)

+ for 𝑧 > 0 and − for 𝑧 < 0. Note that, the z derivative of Eq. 2.30

𝑑
𝑑𝑧F(𝐺)(

𝑘𝑥
2𝜋 ,

𝑘𝑦
2𝜋 , 𝑧) = sgn(𝑧)𝑖𝑘𝑧

𝑒±𝑖𝑘𝑧𝑧
2𝑖𝑘𝑧

= 𝑖𝑘𝑧sgn(𝑧)F(𝐺)(
𝑘𝑥
2𝜋 ,

𝑘𝑦
2𝜋 , 𝑧), (2.31)

where sign function is defined by

sgn(𝑧) = {
1, 𝑖𝑓 𝑧 > 0,
−1, otherwise.

(2.32)

With substitution of 𝑘𝑥�̂�𝑥𝑥+𝑘𝑦�̂�𝑦𝑦+
𝑑
𝑑𝑧 �̂�𝑧𝑧 into the formula 2.23 the for electric field strength

and performing the Fourier transform with respect to 𝑥 and 𝑦 gives

F(EEE𝑓𝑟𝑒𝑒𝑑𝑖𝑝 )(
𝑘𝑥
2𝜋 ,

𝑘𝑦
2𝜋 , 𝑧) = [ − 𝜔

2𝜖0𝜇0𝜇𝜇𝜇

+ [𝑘𝑥𝜇𝑥 + 𝑘𝑦𝜇𝑦 + 𝑘𝑧𝜇𝑧sgn(𝑧)]
⎛
⎜

⎝

𝑘𝑥
𝑘𝑦

𝑘𝑧sgn(𝑧)

⎞
⎟

⎠

] 𝑒
±𝑖𝑘𝑧𝑧

2𝑖𝜖0𝑘𝑧
.

(2.33)

The compact version of Eq. 2.33 above is given by,

�̂̂��̂�𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (
𝑘𝑥
2𝜋 ,

𝑘𝑦
2𝜋 , 𝑧) = −(𝑘

2𝜇𝜇𝜇 − (𝑘𝑘𝑘.𝜇𝜇𝜇)𝑘𝑘𝑘) 𝑒
±𝑖𝑘𝑧𝑧

2𝑖𝜖0𝑘𝑧
. (2.34)

2.5. Field in the detector for a dipole at an interface
excited by the focused spot

The goal of this section is to account for the interaction of the focused spot with the
dipole moment positioned close to the surface. We assume now that the substrate
is flat. Then the reflected field can be derived by considering the reflection by the
substrate of every individual plane wave in the angular spectrum decomposition of
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the field radiated by the dipole. All outgoing electrical field components (Figure 2.7)
are combined in the reference plane (𝑥0, 𝑦0; 𝑧0 = 0), in our case, the focal plane of
the lens that coincides with the centre of the particle (dipole moment), and Fourier
transforming it to achieve the detector plane.

Figure 2.7: The schematic of collimated light beam is focused by a high numerical aperture

objective (OBJ) onto an interface containing an isolated nanoparticle. The dipole moment 𝜇𝜇𝜇 is
located in the geometrical focus of the objective lens and it is excited by the 𝐸𝐸𝐸𝑖𝑛𝑐 focal field. The
outgoing scattered field consists of focal field reflected by the surface 𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡, freespace radiation

of a dipole 𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 , and field of a dipole reflected by the surface 𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑑𝑖𝑝 .

Let’s define the background incident field as 𝐸𝐸𝐸𝑖𝑛𝑐(𝑟𝑟𝑟) that consists of two compo
nents: focal field in free space 𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑟𝑟𝑟), which can be given in the origin plane above
the surface 𝑧 = 𝑧0 (derived in cylindrical coordinates Eq. 2.11) and focal field reflected
from the substrate 𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡(𝑟𝑟𝑟) in the absence of the dipole moment.

𝐸𝐸𝐸𝑖𝑛𝑐(𝑟𝑟𝑟) = 𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑟𝑟𝑟) +𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡(𝑟𝑟𝑟). (2.35)

In order to compute the second term of Eq. 2.35 the defocused field at the surface
must be multiplied with Fresnel reflection coefficients and propagated back to the
reference plane. In fact, the transformation matrix of Eq. 2.11 can be written to
support the 𝑠 and 𝑝  components according to

𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑟𝑟𝑟) = −
𝑖𝑅𝑓
2𝜋 ∫∫Ω′

1
√𝑘𝑘𝑧

𝑒−𝑖𝑘𝑧𝑧[𝑇𝑇𝑇𝑠− +𝑇𝑇𝑇𝑝−] ⋅ 𝐸𝐸𝐸0(𝑘𝑟 , 𝜓) 𝑒𝑖𝑟𝑘𝑟 cos (𝜓−𝜙)𝑘𝑟𝑑𝑘𝑟𝑑𝜓.

(2.36)

transformation matrix 𝑇𝑇𝑇 is replaced with sum of two matrices separately for 𝑠 and
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𝑝components [7] (orthogonal basis perpendicular to the wave vector), defined as

𝑇𝑇𝑇𝑠− = 𝑟𝑠(𝑘𝑥 , 𝑘𝑦)
⎛
⎜

⎝

sin2 𝑘𝜙 − sin 𝑘𝜓 cos 𝑘𝜓 0
− sin 𝑘𝜓 cos 𝑘𝜓 cos2 𝑘𝜓 0

0 0 0

⎞
⎟

⎠

, (2.37)

𝑇𝑇𝑇𝑝− =
𝑟𝑝(𝑘𝑥 , 𝑘𝑦)

𝑘
⎛
⎜

⎝

−𝑘𝑧 cos2 𝑘𝜓 −𝑘𝑧 cos 𝑘𝜓 sin 𝑘𝜓 0
−𝑘𝑧 cos 𝑘𝜓 sin 𝑘𝜓 −𝑘𝑧 sin2 𝑘𝜓 0

−𝑘𝑟 cos 𝑘𝜓 −𝑘𝑟 sin 𝑘𝜓 0

⎞
⎟

⎠

. (2.38)

where for nonmagnetic materials 𝜇1 = 𝜇2 = 1, the Fresnel reflection coefficients are

𝑟𝑠(𝑘𝑥 , 𝑘𝑦) =
𝑘𝑧1 − 𝑘𝑧2
𝑘𝑧1 + 𝑘𝑧2

, 𝑟𝑝(𝑘𝑥 , 𝑘𝑦) =
𝜖2𝑘𝑧1 − 𝜖1𝑘𝑧2
𝜖2𝑘𝑧1 + 𝜖1𝑘𝑧2

. (2.39)

The 𝑘𝑥 , 𝑘𝑦 dependency is due to longitudinal vector is given by 𝑘𝑧𝑖 = √𝑘2𝑖 − (𝑘2𝑥 + 𝑘2𝑦).
Because the position of the surface under the spherical particle is further in the

positive zdirection, the propagation of 𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑟𝑟𝑟) is required to represent the spot field
at 𝑧1. This is achieved with plane wave decomposition method

𝐸𝐸𝐸(𝑥, 𝑦, 𝑧) = ∬�̂̂��̂�𝐸(𝑘𝑥 , 𝑘𝑦 , 𝑧0) exp [𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 ± 𝑘𝑧𝑧)]𝑑𝑘𝑥𝑑𝑘𝑦 (2.40)

where a plus sign is for propagation downwards and minus sign is for propagation
upwards. With 𝑥 = 𝑥0, 𝑦 = 𝑦0 and 𝑧 = 𝑧0 the defocused to the surface freespace
focal filed is defined as

𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑥, 𝑦, 𝑧1) = ∬�̂̂��̂�𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑘𝑥 , 𝑘𝑦 , 𝑧) exp [𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧(𝑧1 − 𝑧) )]𝑑𝑘𝑥𝑑𝑘𝑦 (2.41)

modified by the Fresnel reflection coefficients

�̂̂��̂�𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡(𝑘𝑥 , 𝑘𝑦 , 𝑧1) = 𝑟𝑠/𝑝(𝑘𝑥 , 𝑘𝑦) �̂̂��̂�𝐸𝑓𝑟𝑒𝑒𝑠𝑝𝑜𝑡 (𝑘𝑥 , 𝑘𝑦 , 𝑧1) (2.42)

it is further propagated back to the focal plane

𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡(𝑟𝑟𝑟) = ∬�̂̂��̂�𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡(𝑘𝑥 , 𝑘𝑦 , 𝑧1) exp [𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧(𝑧 − 𝑧1) )]𝑑𝑘𝑥𝑑𝑘𝑦 (2.43)

Further, let’s introduce a dipole at 𝑟𝑟𝑟0 with a dipole moment 𝜇𝜇𝜇 that also has two
components: the free space radiation of dipole 𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (𝑟𝑟𝑟) and the radiation of the dipole
reflected by the surface 𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑑𝑖𝑝 (𝑟𝑟𝑟) given by

𝐸𝐸𝐸𝑑𝑖𝑝(𝑟𝑟𝑟) = 𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (𝑟𝑟𝑟) +𝐸𝐸𝐸
𝑟𝑒𝑓𝑙
𝑑𝑖𝑝 (𝑟𝑟𝑟). (2.44)
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Notice that there is no excitation field interacting with the dipole so far. The alternative
to Eq.2.23 way to represent the field of a dipole in a homogeneous medium, given in
Reference [11], is

𝐸𝐸𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (𝑟𝑟𝑟) = 𝜔2𝜇0𝐺𝐺𝐺0(𝑟𝑟𝑟, 𝑟0𝑟0𝑟0)𝜇𝜇𝜇, (2.45)

here 𝐺𝐺𝐺0(𝑟𝑟𝑟, 𝑟0𝑟0𝑟0) is a Green’s tensor given by

𝐺𝐺𝐺0(𝑟𝑟𝑟, 𝑟0𝑟0𝑟0) =
𝑖
8𝜋2 ∬𝑀𝑀𝑀 exp [𝑖𝑘𝑥(𝑥 − 𝑥0) + 𝑖𝑘𝑦(𝑦 − 𝑦0) + 𝑖𝑘𝑧|𝑧 − 𝑧0|]𝑑𝑘𝑥𝑑𝑘𝑦 , (2.46)

with expression for second rank tensor and the dipole position above the surface

𝑀𝑀𝑀 = 1
𝑘2𝑘𝑧

⎡
⎢
⎢
⎣

𝑘2 − 𝑘2𝑥 −𝑘𝑥𝑘𝑦 𝑘𝑥𝑘𝑧
−𝑘𝑥𝑘𝑦 𝑘2 − 𝑘2𝑦 𝑘𝑦𝑘𝑧
𝑘𝑥𝑘𝑧 𝑘𝑦𝑘𝑧 𝑘2 − 𝑘2𝑧

⎤
⎥
⎥
⎦

. (2.47)

The propagation and reflection of the dipole field must be defined in the same way
that the reflected focal field was. Firstly, the propagation of the freespace dipole field
to the surface plane.

𝐺0𝐺0𝐺0(𝑥, 𝑦, 𝑧1) = ∬�̂�0̂𝐺0̂𝐺0(𝑘𝑥 , 𝑘𝑦 , 𝑧0) exp [𝑖(𝑘𝑥𝑥0 + 𝑘𝑦𝑦0 + 𝑘𝑧(𝑧1 − 𝑧0) )]𝑑𝑘𝑥𝑑𝑘𝑦 , (2.48)

�̂̂��̂�𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (𝑘𝑥 , 𝑘𝑦 , 𝑧1) = 𝜔2𝜇0 ̂𝐺0̂𝐺0̂𝐺0(𝑘𝑥 , 𝑘𝑦 , 𝑧1)𝑒𝑖𝑘𝑘𝑘
− .𝑟0𝑟0𝑟0𝜇𝜇𝜇, (2.49)

�̂̂��̂�𝐸𝑟𝑒𝑓𝑙𝑑𝑖𝑝 (𝑘𝑥 , 𝑘𝑦 , 𝑧1) = 𝑟𝑠/𝑝(𝑘𝑥 , 𝑘𝑦) �̂̂��̂�𝐸
𝑓𝑟𝑒𝑒
𝑑𝑖𝑝 (𝑘𝑥 , 𝑘𝑦 , 𝑧1). (2.50)

Secondly, propagation of the reflected Green’s tensor to the focal plane.

𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑑𝑖𝑝 (𝑟𝑟𝑟) = ∬�̂̂��̂�𝐸𝑟𝑒𝑓𝑙𝑑𝑖𝑝 (𝑘𝑥 , 𝑘𝑦 , 𝑧1) exp [𝑖(𝑘𝑥𝑧0 + 𝑘𝑦𝑧0 + 𝑘𝑧(𝑧0 − 𝑧1) )]𝑑𝑘𝑥𝑑𝑘𝑦

= 𝜔2𝜇0∬𝑟𝑠/𝑝(𝑘𝑥 , 𝑘𝑦) ̂𝐺0̂𝐺0̂𝐺0(𝑘𝑥 , 𝑘𝑦 , 𝑧1)𝑒𝑖𝑘𝑘𝑘
− .𝑟0𝑟0𝑟0𝑒𝑖(𝑘𝑥𝑧0+𝑘𝑦𝑧0+𝑘𝑧(𝑧0−𝑧1) ) 𝑑𝑘𝑥𝑑𝑘𝑦 𝜇𝜇𝜇 (2.51)

= 𝜔2𝜇0𝐺𝐺𝐺𝑟𝑒𝑓𝑙(𝑟𝑟𝑟, 𝑟0𝑟0𝑟0)𝜇𝜇𝜇

So far the dipole moment 𝜇𝜇𝜇 was assumed to be known, however the appropriate
formalism is needed to account for both the total excitation field 𝐸𝐸𝐸𝑒𝑥𝑐(𝑟) = 𝐸𝐸𝐸𝑖𝑛𝑐(𝑟𝑟𝑟) +
𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑑𝑖𝑝 (𝑟𝑟𝑟) and the interaction of the dipole moment with itself. A reasonable approxima
tion of the dipole moment 𝜇𝜇𝜇 is to assume that it is proportional to the local excitation
electric field 𝐸𝐸𝐸𝑒𝑥𝑐(𝑟) at the centre of the nanoparticle with the proportionality factor
given by the complex polarizability 𝛼

𝜇𝜇𝜇 = 𝛼𝐸𝐸𝐸𝑖𝑛𝑐(𝑟0𝑟0𝑟0) + 𝛼𝐸𝐸𝐸𝑟𝑒𝑓𝑙𝑑𝑖𝑝 (𝑥, 𝑦, 0). (2.52)

where, according to Reference [12], 𝛼 has the following relation with the material 𝜖,
radius 𝑟, and surrounding of the particle 𝜖𝑚.

𝛼 = 4𝜋𝜖𝑚𝑟3
𝜖 − 𝜖𝑚
𝜖 + 2𝜖𝑚

. (2.53)
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We can rewrite the second term of Eq. 2.52 by using Eq. 2.51

𝜇𝜇𝜇 = 𝛼𝐸𝐸𝐸𝑖𝑛𝑐(𝑟0𝑟0𝑟0) + 𝛼𝜔2𝜇0𝐺𝐺𝐺𝑟𝑒𝑓𝑙(𝑥, 𝑦, 0)𝜇𝜇𝜇, (2.54)

Rearranging terms and solving for 𝜇𝜇𝜇

𝜇𝜇𝜇 = [𝐼𝐼𝐼 − 𝛼𝜔2𝜇0𝐺𝐺𝐺𝑟𝑒𝑓𝑙(𝑥, 𝑦, 0)]
−1
𝛼𝐸𝐸𝐸𝑖𝑛𝑐(𝑟0𝑟0𝑟0). (2.55)

Finally the total field at the detector is written as

�̂̂��̂�𝐸𝑡𝑜𝑡𝑑𝑒𝑡(𝑘𝑥 , 𝑘𝑦) = �̂̂��̂�𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡(𝑘𝑥 , 𝑘𝑦 , 0) + �̂̂��̂�𝐸𝑓𝑟𝑒𝑒𝑑𝑖𝑝 (𝑘𝑥 , 𝑘𝑦 , 0) + �̂̂��̂�𝐸
𝑟𝑒𝑓𝑙
𝑑𝑖𝑝 (𝑘𝑥 , 𝑘𝑦 , 0)

= �̂̂��̂�𝐸𝑟𝑒𝑓𝑙𝑠𝑝𝑜𝑡(𝑘𝑥 , 𝑘𝑦 , 0) + 𝜔2𝜇0�̂�0̂𝐺0̂𝐺0(𝑘𝑥 , 𝑘𝑦 , 0)𝜇𝜇𝜇 + 𝜔2𝜇0 ̂𝐺0̂𝐺0̂𝐺0
𝑟𝑒𝑓𝑙(𝑘𝑥 , 𝑘𝑦 , 𝑧1)𝑒−𝑖𝑘𝑧𝑧1𝜇𝜇𝜇 (2.56)

One can notice that Green’s tensor Eq. 2.46, contains singularity at 𝑟𝑟𝑟 = 𝑟0𝑟0𝑟0, that is
when |𝑟| = 0. It thus not straightforward to compute the field exactly at the position
of the dipole moment. It has been shown that singularity could be excluded [11] or
the formula could be estimated numerically [13]. Further, Eq. 2.11 is defined in the
cylindrical coordinates and cannot be directly applied in the formula for the coupled
dipole moment Eq. 2.55. The possible solution is to interpolate complex field data
from polar to Cartesian coordinates. It is convenient to compute the first term of Eq.
2.56 by using fast fourier transform (FFT) algorithm defined on the Cartesian grid.

2.6. Numerical modeling
The analytical model of a dipole, as shown in the previous section, gives us insight into
the problem we are dealing with. But, to make the simulation more realistic, one should
consider the effects of finite size and the shape of the particle. Also effects due to thin
layers that could be present on the surface should be considered. The latter is possible
using a straightforward extension of the analytical model to a multilayer substrate
provided that all interfaces are straight and flat. However, when some interfaces are
not flat, a numerical simulation is required.

2.6.1. FDTD
One of the two numerical methods that has been used in this thesis to solve the
Maxwell’s equations is the “Finitedifference timedomain” (FDTD) which abbreviation
coined by Allen Taflove [14]. It can be considered as the method to create “movies” of
the electromagnetic field. The computational volume is divided by the square/cube grid
where the Maxwell’s timedependent differential equations are solved by updating the
electric EEE and magnetic fieldsHHH. To get started, it is necessary to have the Maxwell’s
equations A.1b and A.1a Appendix A written in the finitedifference approximation from
which, we get the the update equations for the fields. Below, in Eq. 2.57 left column is
the derivation of the update forHHH and the right column is the derivation of the update
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for EEE:

∇∇∇ ×EEE = −𝜕B
BB

𝜕𝑡
𝜕HHH
𝜕𝑡 = −

1
𝜇∇∇∇ ×EEE

HHH(𝑡 + Δ𝑡
2 ) −HHH(𝑡 − Δ𝑡

2 )
Δ𝑡 = −1𝜇∇∇∇ ×EEE(𝑡)

HHH(𝑡 + Δ𝑡2 ) =HHH(𝑡 − Δ𝑡2 ) −
Δ𝑡
𝜇 ∇∇∇ ×EEE(𝑡)

∇∇∇ ×HHH = 𝜖𝜕E
EE

𝜕𝑡
𝜕EEE
𝜕𝑡 =

1
𝜖∇∇∇ ×HHH

EEE(𝑡 + Δ𝑡) −EEE(𝑡)
Δ𝑡 = 1

𝜖∇∇∇ ×HHH(𝑡 + Δ𝑡2 )

EEE(𝑡 + Δ𝑡) = EEE(𝑡) + Δ𝑡𝜖 ∇∇∇ ×HHH(𝑡 + Δ𝑡2 )

(2.57)

Notice that the righthand side (RHS) of the last equations from Eq. 2.57 contains
the values computed at the previous time step. The engine of the FDTD is described
in the following diagram, starting from the top left corner:

Figure 2.8: The block diagram of the generic finite difference timedomain (FDTD) algorithm.

The explicit vector notation is applied for visibility instead of the bold symbol.

In Figure 2.8, the algorithm starts with assigning zero values toEEE andHHH. Within the
loop, the following steps occur: update EEE ←HHH andHHH ← EEE, introduction of the source
via overwriting the field values at specific locations on the grid, waves that approach
the simulation boundary go to infinity and not being reflected from the edges at the
volume. It is further possible to incorporate the materials properties into the simulation
by using the constitutive relations forDDD andBBB (Appendix A Eq. A.2 and Eq. A.4). The
equations that account for the material properties, for a diagonally anisotropic material
such as occurs in the perfectly matched layer (PML), can be written as

𝜕EEE𝑧
𝜕𝑦 −

𝜕EEE𝑦
𝜕𝑧 = −𝜇𝑥𝑥𝑐0

𝜕H̃HH𝑧
𝜕𝑡

𝜕EEE𝑥
𝜕𝑧 − 𝜕E

EE𝑧
𝜕𝑥 = −

𝜇𝑦𝑦
𝑐0
𝜕H̃HH𝑦
𝜕𝑡

𝜕EEE𝑦
𝜕𝑥 − 𝜕E

EE𝑥
𝜕𝑦 = −𝜇𝑧𝑧𝑐0

𝜕H̃HH𝑧
𝜕𝑡

𝜕H̃HH𝑧
𝜕𝑦 −

𝜕H̃HH𝑦
𝜕𝑧 = 𝜖𝑥𝑥

𝑐0
𝜕EEE𝑥
𝜕𝑡

𝜕H̃HH𝑥
𝜕𝑧 − 𝜕H̃

HH𝑧
𝜕𝑥 =

𝜖𝑦𝑦
𝑐0
𝜕EEE𝑦
𝜕𝑡

𝜕H̃HH𝑦
𝜕𝑥 − 𝜕H̃

HH𝑥
𝜕𝑦 = 𝜖𝑧𝑧

𝑐0
𝜕EEE𝑧
𝜕𝑡

(2.58)

The tilde represents the normalization of the field values, such that there is the same
order of magnitude for the electric and magnetic field. The group of equations 2.58
can also be extended to have e.g. current density source JJJ such that timedependent
differential equations are solved in the presence of the source that is launched at the
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𝑡 = 0 [10]. Also, the crucial part of algorithm is to rewrite the differential equations
2.58 on the cells of the so called Yee grid [15]. The criteria for the algorithm to
stop (reach the steadystate) is if the difference between maximum and minimum
field values on the “lattice” is small for time steps differing by one period of the light
wave. The algorithm becomes unstable if a sufficiently small time step is not taken.
At the output of the algorithm, the time domain impulse response of the system can
be Fourier transformed to get the frequency response.

2.6.2. FEM
The second numerical method used in this thesis is the finite element method (FEM).
It is particularly suited to solve boundary value problems and scattering problems for
Maxwell’s equations. The simplified scheme of FEM is as follows. From the family of
variational methods, the FEM discretizes the electromagnetic (EM) problem domain Ω
into nonoverlapping small regions called finite elements Ω𝑒. One way of discretizing
the space is by meshing. In 2D, the mesh consists of triangles or quadrilaterals, and
in 3D of tetrahedral, pyramids, hexahedral or prism elements. Suppose, a differential
equation has to be solved 𝐿[𝑓(𝑥)] = 𝑔, where 𝐿 is an operator, 𝑔 is the source term,
and 𝑓(𝑥) is the unknown function to be computed in Ω. In the Galerkin method [16]
the unknown solution 𝑓(𝑥) is approximated by an expansion, set of basis functions 𝑣𝑛
with coefficients 𝑎𝑛, according to 𝑓(𝑥) = ∑𝑛 𝑎𝑛𝑣𝑛(𝑥). The residual 𝑟 = 𝐿[𝑓(𝑥)] − 𝑔 is
formed, and it should be reduced to a minimum. The weighting functions 𝑤𝑚, with
𝑚 = 1, 2, · · ·, 𝑛 are defined for weighting the residual 𝑟 in the form of the inner product
⟨𝑤𝑚 , 𝑟⟩. Note that performing the inner product with the test weighting functions 𝑤𝑚
that are the same as basis functions 𝑣𝑛 is what makes the Galerkin method different
from the generic method of weighted residuals. The final step is to solve the set of
equations ⟨𝑤𝑚 , 𝑟⟩ = ∫Ω𝑤𝑚𝑟𝑑Ω = 0 for coefficients 𝑎𝑛.

Unlike the FDTD method, which requires a mesh of equidistant grid points, the FEM
method does not. In comparison to FDTD, FEM can handle more complex geometries.
One of the primary benefits of the finiteelement method is that subsequent reductions
in the mesh size in the computational volume ensure absolute convergence to the end
result. The practical issue with this is that as mesh size increases, so does memory
and computation time.

2.6.3. Convergence test
It is necessary to set specific optimal discretization of the volume when simulating
electromagnetic problems in order to reduce the error between the numerical output
and the ”true” solution. A fine mesh, especially in 3D (Figure 2.9 A), increases the
simulation time and requires more memory. Most of the time the “true” solution is
unknown. Therefore, certain field values have to be monitored for different values of
the numerical parameters (mesh size, time step etc.) In this thesis, we will mostly
rely on the Lumerical (FDTD) [17], Cyclops 3D (FEM) [18], and JCMWave [19] (FEM)
software to compute the solution of our scattering problem. The approach to check
the convergence of the algorithms was to record the total electric near field at different
locations of the volume. The selected test problem is that of a plane wave normally
incident on the interface between air and glass with PSL sphere of diameter 𝑑 = 50
nm on the glass.
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Figure 2.9: A) The meshing of a 3D domain, a sphere of 𝑑 = 50 nm at an interface (environment
above and, e.g. silicon slab below). B) The convergence test is performed for three positions.

In FEM solvers the parameter of maximum mesh size 𝑚𝑚𝑠 as in figure B) is changed while in
the FDTD case shown in C) the maximum mesh step 𝑑𝑒𝑙𝑡𝑎 is varied. The numerical methods
converged for 𝑚𝑚𝑠 = 40 nm 𝑚𝑚𝑠𝑠𝑐𝑎𝑡 = 4.9 nm for FEM and 𝑑𝑒𝑙𝑡𝑎 = 8 nm for FDTD.

Unlike the square mesh of FDTD, the mesh of FEM is adaptive, meaning it is non
uniform in different regions. Two types of meshing sizes are defined: 1) mesh size
in the regions outside of the scatterer and 2) the mesh size inside the scatterer. For
the mesh inside the scatterer the concept of refinement order is introduced in the FEM
solver. It is to provide finer mesh at the geometry of the scattering object such that the
maximum mesh size for scatterer 𝑚𝑚𝑠𝑠𝑐𝑎𝑡 at the sphere surface is 𝜋𝑑/2𝑛𝑟𝑒𝑓 = 4.9 nm,
with the refinement order 𝑛𝑟𝑒𝑓 = 5. By keeping constant both finite element degree
𝑝 = 2 and hexahedral mesh with 𝑚𝑚𝑠𝑠𝑐𝑎𝑡 = 4.9 nm, we increase the discretization of
the domain outside the particle by decreasing the value of maximum mesh size 𝑚𝑚𝑠
(Figure 2.9 B). In the case of the FDTD, we vary the size of the maximum mesh step
𝑑𝑒𝑙𝑡𝑎, which is uniform in the whole computational volume (Figure 2.9 C). The three
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points of interest for recording the numerically computed electric field are above the
sphere, inside the sphere, and inside the substrate medium (Figure 2.9 B). We notice
that in JCM solver we achieve the convergence (Figure 2.9 D top) at𝑚𝑚𝑠 = 40 nm and
with refinement for a sphere of 𝑚𝑚𝑠𝑠𝑐𝑎𝑡 = 4.9 nm. For the Lumerical FDTD solver, the
convergence is established at 𝑑𝑒𝑙𝑡𝑎 = 8 nm (Figure 2.9 D bottom). The corresponding
converged settings for the Cyclops FEM solver is 𝑚𝑚𝑠 = 25 nm and 𝑚𝑚𝑠𝑠𝑐𝑎𝑡 = 6.25
nm.

2.6.4. Definition of the simulation domain

Figure 2.10: A) The sketch of the 3D geometry for the computational electromagnetic problem.

B) The xz crosssection showing the size parameters of width 𝑤, height ℎ, perfectly matched
layer thickness 𝑑𝑃𝑀𝐿, radius of scatterer 𝑟, and size of the sampling box 𝑠𝑏.

With other computational parameters being fixed, it is expected that if the domain
size increases, the memory requirements will grow in proportion to the number of
elements being meshed. It is desired thus to define a computational domain that
is as small as possible while still capturing all the properties of the EM interaction.
Simulations done in 3D are crucial if one wants to take into account the interaction
with the focused spot, and to compute the directionality of the scattering as well as the
scattering from an object without rotational symmetry. When adjusting the geometry,
there are two things to keep in mind. Firstly, visualizing nearfield interactions is only
possible over the region inside the computational domain. Secondly, the smallest
computational domain for farfield computation, which relies on the nearfield, is such
that the scatterer and, for example, multilayer structure are included in the interior.
There are no other requirements because the PML will ensure that the scattered field’s
outgoing radiation condition is met, even if the domain is very small.

The typical 3D simulation volume used in this thesis is shown in Figure 2.10 A).
The interior domain, which is bounded by the solid line, has the shape of a rectangular
prism, which is divided horizontally by the surface of the substrate, with the air above
and the substrate below the dividing surface. In the case shown, the particle is on the
𝑧axis of the coordinate system with origin in the surface of the substrate and with
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𝑥axis parallel to the scan direction. The incident field is launched from above the
computational volume, and the scattered field from the inhomogenity will propagate
either upward  negative 𝑧 or downward  positive 𝑧. The decay of the outgoing waves
is treated by the perfectly matched layer with thickness 𝑑𝑃𝑀𝐿, dashed line, which
is used to avoid the reflection from the boundaries of the interior domain. In this
thesis, typically we place the sphere of radius 𝑟 right on top of the substrate. If a
userdefined near to farfield propagation is required, the six electric and magnetic
components should be calculated on the faces of the cube that fully surround the
local inhomogenity and is inside the physical volume. The edge size of this cube is
given by 𝑠𝑏 and is shown as the dashdotted line in Figure 2.10 B). The near to
farfield propagation over the computational domain in 2D or 3D in general can not
be computed from a simple FFT because in general the computation domain is too
small. Instead the StrattonChu based formula [18], which is implemented in Cyclops
3D (FEM) [18], or the computation of radiation diagram based on Lorentz reciprocity
theorem [20] should be used. The latter one is based on estimating the planewave
amplitude coefficients for the outgoing waves, based on computing a surface integral
on a closed “box” surrounding the local inhomogeneities. These more sophisticated
descriptions are beyond the scope of this thesis. Finally, in Table 2.2 we summarize
customary parameters for the size of the computational domain.

Table 2.2: Typical values chosen for the geometrical parameters in the numerical parameters

shown in Fig. 2.10.

Geometry parameter Value

w 2𝜆
h 3𝜆

𝑑𝑝𝑚𝑙 𝜆/3
r 𝜆/8 to 𝜆/4
sb 𝜆/2 + 2r
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3
Heterodyne Detection System

for Nanoparticle Detection

We present one of the most important limiting factors of CFS, namely the noise
in detection. In Sections 3.13.3 of this chapter, we point out the importance of
nanoparticle detection, propose the heterodyne detection system for CFS, and
experimentally investigate its capability for noise suppression. Finally, in Sec
tion 3.4 we present the conclusions.

Parts of this chapter have been published in SPIE Proceedings 11056, 110561A (2019) [1]
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3.1. Introduction

As semiconductor devices shrink, the requirement for contamination detection has be
come more stringent, i.e., to the level of deep subwavelength particles (𝑑<< 100 nm).
Contamination can originate, for example, from storage, cleaning, and the handling
of wafers [2, 3]. Additionally, undesirable particles can land on top of (or buried in)
coated surfaces due to multilayer deposition processes. Accordingly, instruments and
techniques for inspection of surfaces have been gaining importance in recent years
[4–6]. Ideally, inspection systems should work fast, be sensitive, and should not ther
mally damage the samples with excessive illuminating power. The scatteringbased
techniques, such as CFS, operating under brightfield illumination can operate at a
lowpower, and it has also been demonstrated that high contrast can be achieved
even when the particle’s index of refraction matches that of the substrate. The latter
makes them also suitable for other applications, such as in biology [7–9]. Given that
the ultimate limit of the technique has not been established yet, there is room for
improvement of its sensitivity. As noise remains one of the critical limitations, in this
chapter, we explore the possibility of suppressing its contribution in order to achieve
a new milestone in nanoparticle inspection.

We demonstrate improvement on the SNR of about 45 dB with our new detection
scheme as compared to the previous detection scheme of CFS [10]. Specifically, we
demonstrate the detection of 80 nm PSL particles (𝑛 = 1.57) on top of a silicon wafer
𝑛 = 5.43 + 𝑖0.34 [11] at wavelength 𝜆 = 405 nm with an SNR > 58 dB. Moreover,
using even lower illumination power in gathering the signal from nanoparticles with
diameters ≥100 nm becomes possible. In order to achieve these figures, we have
merged the original CFS system with the wellknown principle in optics and photonics
called heterodyne detection.

3.2. Methods and materials

In this section, we present the three building blocks of the experimental setup that has
been used to implement heterodyne detection. It consists of the laser source modu
lation, the upconverted experimental signal as measured by the differential detector,
and a lockin amplifier.

Both modulation and external reference signals are provided by the same device,
a HP 8904A multifunction synthesizer. The blue laser diode (wavelength of 405 nm,
maximum power of 60 mW) is used in direct modulation mode by modulating its driving
current. When a binary “one” is given, light is on while binary “zero” means no light
(Figure 3.1 A)). We modulate our laser with a square pulse waveform of either 𝑉𝑝𝑝 = 1
V or 𝑉𝑝𝑝 = 1.4 V so that the peak power at the objective (before being focused on the
substrate) is either 𝑃𝑙𝑜𝑤 = 0.58mW or 𝑃ℎ𝑖𝑔ℎ = 1.64mW, respectively. The same output
powers can also be produced without direct modulation, which is used to perform the
comparative measurements with the no lockin configuration.
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Figure 3.1: The schematic diagram of heterodyne CFS to illustrate the layout for sens

ing/detection of tiny (𝑑 <100 nm, PSL) nanoparticles on top of silicon wafers. A) Represents the
waveform synthesizer that is used to modulate the laser amplitude. B) The modulated probing

light travels further through the optical system, where the interaction between the light with

the scatterer takes place, and is further recorded by the split photodiode (or bicell) at the far

field. C) A higher harmonic of the modulation frequency is used for the reference channel of

the lockin amplifier.

Although direct modulation has the limitation of the maximum applied frequen
cies to be below 3 GHz, it is sufficient to move far from the major noise sources by
applying the modulation in the range of a few tens of kHz. In the preferred embodi
ment, the modulation is in the frequency band from 8 to 12 kHz, suitable for detecting
contamination for multiple reasons. Firstly, at such frequencies, the modulated signal
is sufficiently far from 1/𝑓 noise of the electronic components (typically < 200 Hz),
acoustic and electrical interference (50  60 Hz), and sits at the region of predominantly
white noise. Secondly, we choose a frequency which is not a harmonic (multiple) of
the known noise sources that are present in the system. Hence, in our experiment
𝑓𝑚 = 𝑓𝑟 = 11.111 kHz. The characteristic frequency of the particle’s signal is two
orders smaller than the modulation of the laser. Lastly, one should neither use modu
lation frequencies that are higher than the lockin amplifier can accept nor sample the
signal at a speed that is much lower than the modulation frequency.

Following the schematics of CFS presented in Chapter 2 one can see that the scat
tered signal in the farfield is directed to a split detector where its two halves are inte
grated and subtracted from each other, resulting in a differential signal that changes
as the sample is scanned. This configuration eliminates the background from spurious
reflections from the sample. This is vital for the preliminary suppression of the noise
(Figure 3.1 B)). In our new implementation of CFS, the optical system as well as the
detector remained the same; only laser amplitude modulation is added to the diode
laser in combination with a lockin amplifier (Figure 3.1 C)) with the goal to improve
the SNR of the signal originated from the scattering of nanoparticles. Subsequently,
for comparative studies with the previous CFS configuration, the SNR with and with
out lockin in the detection of nanoparticles was studied under the same ambient and
experimental conditions.

The working principle of the lockin amplifier (EG&G Princeton Applied Research
5101) is shown in Figure 3.2. In this configuration, also called 1𝑓 mode, the carrier
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signal 𝑉𝑠 is connected to the input port of the lockin amplifier, where the initial DC
offset is blocked by the capacitor. The AC signal is further amplified to ensure a
largeenough level of the signal. The second input port takes the reference signal 𝑉𝑟.
Importantly, the phase of the reference signal can be adjusted, which allows us to
control the polarity of the output waveform. The two signals 𝑉𝑠 and 𝑉𝑟 are multiplied
at the mixer to produce the sum and the difference of the corresponding frequency
pairs. Finally, a lowpass filter is applied to reject high frequency components.

Figure 3.2: Working principle behind the lockin amplifier. Signal from the photodetector that

contains the modulated carrier signal 𝑉𝑠 goes to the input channel of the lockin amplifier. The
reference waveform 𝑉𝑟 goes to the reference channel of the lockin. The phase difference

between 𝑉𝑟 and 𝑉𝑠 is controlled by Δ𝜑.

Any phase shift between the reference signal 𝑉𝑟 and the measured signal 𝑉𝑠 will
produce a smaller output than if they were entirely in phase. Hence, we always adjust
the phase in such a way that the lockin amplifier gives the maximum PeaktoPeak
output. One should choose the cutoff frequency of the low pass filter such that on
the one hand it reduces the noise to an “acceptable level” and on the other hand, the
shape of the signal is not distorted. We also analyze the system in the 2𝑓 mode, which
is obtained by doubling the frequency of the reference signal in order to see if higher
SNR gain can be achieved as compared to the 1𝑓 mode [12].

Preparation of the samples
Three samples have been considered in this chapter; these substrates are silicon

wafers covered with PSL nanoparticles. The PSL nanosphere suspension was firstly
stabilized by ultrasonic treatment and shaking and secondly dispersed by spin coating
on the silicon wafer [10]. In Table 3.1, we show the diameters and densities of the
particles.

Table 3.1: Description of the samples: the particle’s material is polystyrene (PSL) with silicon

wafer as substrate.

Sample # Particle [nm] Density of [particles/𝑚𝑚2]
1 200 4100

2 100 26000

3 60 and 80 28000
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The densities are such that the average distance between them is larger than
the focused laser spot on the wafer. In this case, the signal from one particle will
not overlap with the signal of neighboring particles, i.e., they can be considered as
isolated particles. For each sample, we scan arbitrary areas until we detect a few
particles. Essentially, any area of the sample is suitable because the particles are
evenly distributed. When comparing the SNRs with and without lockin, the sample
remains in a fixed position with respect to the probing light and hence the same area
is scanned in both cases.

3.3. Results
In order to estimate the benefit of using the heterodyning technique for particle de
tection, we carried out several experiments. We studied bare silicon wafers covered
with artificial contamination as highlighted in the previous section.

It is well known that, when applying heterodyne technique, any periodic waveform
such as square, sine or triangle can be used for modulating or referencing purposes
[12]. In our case, the reference waveform can be chosen freely. However, the choice
can affect the results, as shown below. For this work, we have considered a square
and a sine reference waveform as well as a lockin configuration in 1𝑓 and 2𝑓 modes.

In order to compare the SNRs with lockin and no lockin configuration, we define
the SNR gain 𝐺 (in dB units) as:

𝐺 = SNR(lockin) − SNR(no lockin), with SNR(.) = 10 log10 (
S(.)
N(.)

). (3.1)

In Table 3.2, we show a quantitative comparison between a square and a sine wave
reference in the 1𝑓 and 2𝑓 modes for the cases of detection of nanoparticles with
100 and 200 nm diameters. Note that the gain 𝐺 can be higher than 10 dB for the
detection of 100 nm spheres with a sin(2𝑓𝑟) reference, and, in all cases, the gain 𝐺 is
more than 3 dB. However, only the sinusoidal 1𝑓 mode shows slight improvement in 𝐺
for the detection of 200 nm nanoparticles, while the other modes give a negative gain.
For this particle size, the original SNR(no lockin) is already high due to large scattering
crosssection of these particles, and so, there is no benefit in using lockin techniques.
For this data, the power of the laser at the objective was 𝑃𝑙𝑜𝑤 = 0.58 mW.

Table 3.2: SNR gain 𝐺 [dB] for the cases of detection of 100 and 200 nm particles, for various

lockin configurations.

sin(𝑓𝑟) square(𝑓𝑟) sin(2𝑓𝑟) square(2𝑓𝑟)
200 nm PSL 1.98 14.03 13.41 18.21

100 nm PSL 4.39 3.34 10.81 10.07

From the results shown in Table 3.2, one can conclude that the sinusoidal reference
waveform is superior to the square one.

We also compare the 𝑓 and 2𝑓 modes for the sample that contains a mixture of
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60 and 80 nm particle sizes. The results presented in Table 3 show that gain in the
SNR can be observed for all the tested modes. If 1𝑓 mode is used we can estimate
the G > 9 dB and G > 25 dB for the 2𝑓 mode. However, for the case of 1𝑓 mode,
the introduced gain is not enough to detect a particle with high reliability as final SNR
for either square or sine reference is < 8 dB. For the detection of 80 nm particles,
the 2𝑓 mode has better performance than the 1𝑓 mode because both sine and square
reference waveform in the 2𝑓 mode can recover the particle’s signals with excellent
SNR > 19 dB. For this data, the power of the laser at the objective was 𝑃𝑙𝑜𝑤 = 0.58
mW.

To illustrate the improvement in SNR for the 2𝑓 mode, we superimpose the signal
from the lockin configuration (red solid line), with the no lockin configuration (blue
dashed line), as shown in Figure 3.3. For this data, the power of the laser at the
objective is 𝑃ℎ𝑖𝑔ℎ. From this figure, one can see that a distinctive gain is achieved
when detecting 80 nm particles (𝐺 of 45 dB). However, we point out that, with this
detection configuration and laser power, the 60 nm particles have not been detected.

Table 3.3: SNR gain 𝐺 [dB] for the detection of 80 nm particles for various configurations of the

lockin system.

80 nm PSL sin(𝑓𝑟) square(𝑓𝑟) sin(2𝑓𝑟) square(2𝑓𝑟)
SNR [dB] 9.89 5.45 25.11 20.23
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Figure 3.3: The normalized differential signal that originates from 80 nm particles with lock

in configured in 2𝑓 mode and sinusoidal reference (solid line, red) compared to no lockin
configuration (dashed line, blue). The gain 𝐺 in SNR is of 45.17 dB.

In view of the achieved improvement in SNR, we emphasize that when dealing
with larger particles such as 100 and 200 nm spheres and knowing that scattering
varies linearly with the light intensity [2], the power of the laser can be much lower,
since the SNR ratio is large enough for these particles in the present configuration
of our system. That could be of benefit in applications that require gentle treatment
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of inspected surfaces (e.g. polymers, biological samples). However, the detection of
particles smaller than 80 nm still requires sufficient power to overcome the noise at
the detector (> 1.5 mW), due to the smaller scattering crosssection [13, 14].

3.4. Conclusions
In this chapter, we applied lockin amplifier techniques to CFS to increase the SNR of
the detection of PSL nanoparticles. Compared to the previously available conventional
operational regime of the CFS [10], our new implementation has led to an improvement
in the SNR of about 45 dB for the detection of nanoparticles with diameters of 80 nm
(≈ 𝜆/5) deposited on a silicon wafer. Given the improvement in SNR, one can also
explore the possibility of using lower illumination power, which could be beneficial for
biological applications or inspection of plastic substrates, where too much power would
mean damage of either the substrate or the specimen, or both. An improvement of
the SNR will also help when dealing with samples where the contrast between the
nanoparticles and substrate is very low, such as index matching PSL nanoparticles
on glass. Although the proposed heterodyne CFS technique already shows excellent
performance for detection of polystyrene nanoparticles on silicon wafer, there is still
room for improving the sensitivity towards even smaller particles with the upgrade for
splitdetector schematic (see Appendix B).
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4
Polarization effects in

evanescent wave amplification
for particle detection

This chapter focuses on the indexmatched particlesubstrate problem. If the
substrate has single or multiple thin layers on its surface, the sensitivity can be
improved by engineering the nearfield enhancement mechanism. We consid
ered a thin dielectric layer added to the top of the original substrate making a
2layer structure. Also, given the fact that we use focused light on the sample,
polarization effects play an essential role. With numerical simulations that have
been confirmed by experiments, we were able to arrive at a comprehensive un
derstanding of the problem as well as suggest the most suitable materials for
the cover layer and input polarization state.
Recent literature [1] has shown improvement to biodetection by adding a thin
layer of dielectric on the substrate. Although the enhancement mechanism is
different from the one proposed here, we believe that our work could have a
contribution in this area. Thus, in this chapter, we start with a discussion on
applying CFS in the context of the detection of particles in biological specimens.
Then, in Section 4.2 we outline the evanescent wave amplification (EWA) en
hancing mechanism. Further, in Section 4.3 and Section 4.4, we investigate the
design of the dielectric layer, farfield gain due to cylindrically or conventionally
polarized beams, and the robustness of the EWA. In Section 4.5, we present the
experimental results for the detection of 𝜆/8 particles on the 2layer structure.
In Section 4.6, we finalize the chapter with discussions and conclusions.

Parts of this chapter have been published in OSA Continuum 3, 742758 (2020) [2]
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4.1. Introduction

The need for the detection and size identification of (bio) nanoparticles has been one
of the main driving forces for a number of the nearfield and farfield optical techniques
in the last few decades. In turn, single molecule detection is one of the significant chal
lenges of optics applied to modern biology [3]. The behavior of individual particles and
molecules can have significant implications for both properties of individual cells and
biochemical processes [4]. Notably, bionanoparticles such as exosomes or viruses
are known to be important biomarkers for a range of medical experiments [5]. They
are challenging to visualize by optical means because they are indexmatched with the
substrate [6]. Additionally, their size is small: the diameters of viruses range from 18
to 300 nm and of exosomes from 30 to 100 nm [7]. When imaging nanoparticles with
diameters < 𝜆/8, the diffraction limit of optical systems becomes a prohibiting factor
[1]. Existing labeling techniques found in fluorescence microscopy can overcome the
diffraction limit. For example, widefield epiillumination confocal microscopy com
bined with fluorescence are popular methods for single particle detection. A review of
these methods can be found in Ref. [7]. However, such techniques have drawbacks
due to the complexity of sample preparation and labeling [5]. Another popular ap
proach is near field optical microscopy (NSOM). But this also has difficulties because
of tip perturbations, risk to add contamination of the sample, and limited throughput
[7].

In the last few years, new detection schemes have been introduced that eliminate
the need of fluorophores and work in the far field. For instance, the technique called
common path widefield interferometric microscopy [1] uses a layered substrate. It
works in reflection mode, and the function of the extra layer is to eliminate the back
ground due to destructive interference. The strength of this technique is that the
detection is in the farfield and is very sensitive to subwavelength nanoparticles with
small optical contrast [8].

The use of layers on the substrate as extra “tool” to allow subwavelength detection
of single particles is also at the heart of the technique that is discussed in this chapter.
However, the principle is quite different than common path interference microscopy.
Essentially, our method is based on exploring the interaction between the incoming
light with the nanoparticle and the substrate with the latter having a thin layer of
dielectric material deposited on it. This interaction results in evanescent wave ampli
fication in the near field and enhancement of the scattering to the far field [9, 10].
In this chapter, we go one step forward with this method by presenting a study of
appropriate materials (dielectric) and appropriate thicknesses for the thin layer and an
analysis of the influence of the polarization state of the input light. We show that by
optimizing the system, one can drastically improve the sensitivity of the detection of
nanoparticles. Further, we demonstrate the detection of 40 nm PSL nanoparticles in
diameter with a wavelength of 405 nm.
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4.2. Enhancement mechanism
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Figure 4.1: Left: the scattered and reflected components that contribute to the far field signal

and evanescent modes decay quickly in the substrate and in air. Right: evanescent waves at

the interface due to the presence of a thin layer on the substrate are amplified and rescattered

by the particle.

The light at the split detector is a superposition of mainly three contributions (see Fig
ure 4.1 left): the mirrorlike reflected field from the substrate (1), the direct scattered
field by the particle (2), the field scattered by the particle that is further reflected from
the substrate (3). The scattering from the particle on top of substrate can generate
the weak evanescent mode that decays very fast and cannot reach the detector. When
switching to, e.g. the 3layer system (air, enhancement layer, substrate with refractive
indices 𝑛1, 𝑛2 and 𝑛3), a fourth channel (4) can be invoked; firstly, the particle couples
light to the modes that can propagate in the layer (Figure 4.1 right), hence it is critical
that 𝑛2 > 𝑛1 and 𝑛2 > 𝑛3, and secondly, the generated decaying tail is converted to
the propagating modes by rescattering from particle [9, 10]. It is crucial to create
such an enhancement layer that the amount of the decay towards the first medium is
maximum.

We believe that the evanescent wave amplification that we employ is highly relevant
for biological applications because it manifests itself even with low power illumination
such as in the range of smaller than 1 mW, as we will show experimentally. Low
illumination power is important in systems where the specimen could be damaged
through heat [11]. Our approach is more efficient than only using the massive power
of illumination for one more reason: in the proposed mechanism, we can amplify a
characteristic signal from the particle rather than from its surroundings. To overcome
the noise level, we introduce and tune the thickness and material of the enhancement
layer until it has a sizable contribution to the evanescent field, and this light is being
rescattered specifically by a sphere.

4.3. Thin film material analysis
One should choose a suitable material to achieve enhanced scattering. Firstly, for
the probing wavelength of interest, the layer should have both a higher refractive
index than the substrate surface 𝑛2 > 𝑛3 and low absorption to allow the guiding.
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Secondly, in applications in which the transmission properties of the resulting stack
should be high, the enhancement layer should be very thin (of the order of a few tens
of nanometers) in order to avoid much light loss because of absorption. Finally, the
thickness should be tuned so that the most substantial evanescent part of the spectra
builds up near the interface between the host medium 𝑛1 (e.g. air) and top layer 𝑛2.

Enhancing the farfield response by coating the glass or plastic substrate with a
single layer of dielectric is convenient because, in the visible regime, it is relatively
straightforward to find materials that do have a higher refractive index than glass or
plastic. See, for example, the set of common dielectric and semiconductor materials
shown in Table 4.1.

Table 4.1: Examples of dielectric and semicon. materials that can act as single layer EWA.

The optical properties are defined for the wavelength 405 nm. The substrate should have

a lower refractive index than a cover layer to allow the guiding. Deposition processes are

Evaporation: conventional thermal evaporation in high vacuum, EPVD: Electronbeam physical

vapor deposition, CVD: chemical vapor deposition techniques, ArcPVD: cathodic arc plasma

deposition. Ext. coeff. refers to extinction coefficient.

Material Index Ext. coeff. Process

TiO2 2.66 1e3

Evaporation

+

ArcPVD

Ta2O5 2.15 1e4 EPVD

Si3N4 2.09 ≈ zero CVD

cSi 4.4 or 5.437 2.3 or 0.34 CVD

GaP 4.15 0.25 CVD

Ge 4.11 2.18 Evaporation

InSb 3.39 2 CVD

alphaSi 3.8
2.5 or 0.5

process dependent
EPVD

Our goal is to maximize the scattering that reaches the detector. In the case of
very small particles, it is crucial that the surface under the particle is smooth and does
not introduce too much scattering. Dielectric materials are favored because they allow
large area and homogeneous deposition with high levels of smoothness.

In addition, one should add that the enhancement mechanism considered here is
different from conventional ways of getting greater optical response from the surface
under inspection such as high reflecting surfaces by introducing singlelayer metal or
by producing multilayer reflectors. By using one single dielectric layer, our approach
offers the elegance regarding both simplicity and surface uniformity. The selection of
the dielectric materials which have sufficiently high real part of the refractive index
and small absorption (low imaginary part), yields the effect that is similar to metal
covering layers while it also contributes to the enhancement of the evanescent waves.
The concept of the enhancement of evanescent energy will hold for any combination
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of the considered substrate and cover layer (as given in Table 4.1), while the medium
between the layered substrate and lens is either air, water or oil (the latter two for
immersion applications), so that, together, it creates an asymmetric waveguide 𝑛2 > 𝑛1
and 𝑛2 > 𝑛3. A minimum thickness of the dielectric layer is also required for the
existence of a guided wave.

The introduction of the covering layer of large (compared to the wavelength) thick
ness is a nogo solution. The original properties of the substrate, such as transmission,
will be hindered if the covering layer is too thick. Conversely, thin films of approxi
mately 𝜆/20 which allow for guiding of at least one mode and consequently boost of
the evanescent field, keep the design simple and compact [12].

Another important issue in the choice of materials is the deposition process. In
Table 4.1, we include, for each material, the traditional deposition processes. The fab
rication accuracy and the temperature requirement vary. So, for instance, CVD pro
cesses run at much higher temperatures than PVD processes (usually between 300∘C
and 900∘C) which can be inappropriate to cover glass or plastic substrates directly
because they cannot tolerate such temperatures. Also, PVD has a distinct advantage
because it has a more precise film thickness control, in the order of subnm precision.
This is important in our application, considering the required thickness of the thin film
(around 1020 nm).

4.4. Numerical Results
For the simulations, we performed both the 1D multilayer method [13] to analyze
the Fresnel reflection coefficients when the substrate plus layer system is excited by
evanescent waves, and rigorous 3D vectorial simulations using a homemade finite el
ement method [14] to analyze the scattering enhancement due to a the presence of
a particle on the top of the substrate plus layer system. In both 1D and 3D problems,
the substrate roughness is neglected. The 1D simulations give insight about the back
ground field that would be created if either an 𝑠 or 𝑝polarized plane wave is incident
at the interface in the absence of a scattering object. This step is necessary to deter
mine the thickness that maximizes the evanescent components at the interface where
the particle will lie. It is also important to look at both polarization components, 𝑠 and
𝑝, because the incident field will include them both, for example, a tightly focused
linearly polarized beam. The complex refractive index 𝑛 = 𝑛 + 𝑖 ∗ 𝑘 for a thin film of
varying thickness that accounts for small changes in absorption is simulated through
the software package OpenFilters [15]. The simulations are done for the wavelength
of 405 nm, and the numerical aperture of the system (for the 3D simulations) was
equal to 𝑁𝐴 = 0.9.

Corresponding to the 3layer system introduced in the Figure 4.1 B), we show the
cavity in Figure 4.2 A). We consider a middle layer whose index of refraction is 𝑛2 and
thickness is 𝑑2 surrounded by an input medium of index 𝑛1 and an output medium
with 𝑛3. We have incident wave 𝑘𝑘𝑘1 = 𝑘𝑘𝑘𝑧1 +𝑘𝑘𝑘𝑥 where 𝑘𝑘𝑘𝑧1 and 𝑘𝑘𝑘𝑥 are the normal and
tangential wave vectors (incident from the left in Figure 4.2 A).
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Figure 4.2: A) Incident reflected and transmitted waves for three media layered structure. B)

Scheme of the simulation system. Fresnel reflection coefficients for the three layer medium

(air as input medium, TiO2 as thin layer and glass as substrate). C) and D): absolute value of

the Fresnel reflection coefficients as a function of the thickness of the TiO2 layer for 𝑝 and 𝑠
polarizations, respectively, when the thickness of the covering layer changes from 17 to 23 nm.

For the case of 21 nm thick TiO2 layer, we show in E) and F) the Fresnel reflection coefficients

with (red) and without (blue) the thin layer.

The incident wave is partially reflected and partially transmitted through the layer.
The transmitted part reaches subsequently the second interface and will either be
reflected or transmitted again. According to the literature [13] and [16] by adding all
the coherent amplitudes for reflection or for transmission, we arrive at the equations
known as FabryPerot (FP) formulas for a single cavity which are exact, valid for the
input of evanescent waves, work with any thickness of 𝑑2. Here we only use the
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reflected part:

𝑟 = 𝑟𝜈12 +
𝑡12𝑡23𝑟23𝑒𝑥𝑝(𝑖𝑘𝑧2𝑑2)
1 − 𝑟23𝑟21𝑒𝑥𝑝(𝑖2𝑘𝑧2𝑑2)

, (4.1)

where superscript 𝜈 = 𝑠, 𝑝 defines either 𝑠 or 𝑝 polarization, 𝑘𝑧2 = √𝑘20𝑛22 − 𝑘2𝑥 is
the 𝑧 component of the wavevector in the medium 2 and the 𝑟𝜈𝑗𝑚 (𝑡𝜈𝑗𝑚) with 𝑗 and 𝑚 ∈
1, 2 or 3 is the reflection (transmission) coefficient corresponding to the wave reaching
the interface from medium 𝑗 to medium 𝑚. We have

𝑟(𝑠)𝑗𝑚 =
𝜇𝑚𝑘𝑧𝑗 − 𝜇𝑗𝑘𝑧𝑚
𝜇𝑚𝑘𝑧𝑗 + 𝜇𝑗𝑘𝑧𝑚

, 𝑟(𝑝)𝑗𝑚 =
𝜖𝑚𝑘𝑧𝑗 − 𝜖𝑗𝑘𝑧𝑚
𝜖𝑚𝑘𝑧𝑗 + 𝜖𝑗𝑘𝑧𝑚

, (4.2)

𝑡(𝑠)𝑗𝑚 =
2𝜇𝑚𝑘𝑧𝑗

𝜇𝑚𝑘𝑧𝑗 + 𝜇𝑗𝑘𝑧𝑚
, 𝑡(𝑝)𝑗𝑚 =

2𝜖𝑚𝑘𝑧𝑗
𝜖𝑚𝑘𝑧𝑗 + 𝜖𝑗𝑘𝑧𝑚

, (4.3)

where 𝜖 is the material’s relative permittivity, and 𝜇 is its relative permeability. One
notices that a particular combination of 𝑘𝑥 > 𝑘0𝑛 will render the imaginary value for
𝑘𝑧 that represents an evanescent wave. Since we are interested in maximizing the
evanescent wave in the reflection mode next to the particle, i.e. in the medium of air
with 𝑛1 = 1, we will study the reflection as the function of inplane wavevector not only
for the propagating modes 𝑘𝑥 < 𝑘0𝑛1 but also higher spatial frequencies 𝑘𝑥 > 𝑘0𝑛1.
Further, the wavevector in the first medium is written as 𝑘1 = 𝑘0𝑛1 = 𝑘𝑎𝑖𝑟. Here we
show simulations for TiO2 as a thin layer on glass; the same procedure was used for
the Ta2O5. For Ta2O5, the Sellmeir equation [17] is used to approximate the real part
of refractive index and Urbach absroption tail Eq. (4.4) to model the imaginary part of
the weakly absorbing thin film:

𝑛2(𝜆) = 1 + 𝐵1𝜆2
𝜆2 − 𝐶1

+ 𝐵2𝜆2
𝜆2 − 𝐶2

+ 𝐵3𝜆2
𝜆2 − 𝐶3

𝑘(𝜆) = 𝐷 exp [𝐸(12400(1𝜆 −
1
𝐹))]

(4.4)

with 𝐵1 = 3.3, 𝐶1 = 0.005[𝜇𝑚2], 𝐵2 = 0.2, 𝐶2 = 0.01[𝜇𝑚2] and 𝐵3 = 0.1, 𝐶3 =
0.02[𝜇𝑚2] and for absorption 𝐷 = 180e−9, 𝐸 = 8[𝜇𝑚], 𝐹 = 4000[𝜇𝑚].

The CauchyUrbach dispersion model [18, 19] Eq. (4.5) is used for the TiO2 film:

𝑛(𝜆) = 𝐴 + 𝐵
𝜆2 +

𝐶
𝜆4 (4.5)

with 𝐴 = 2.1959, 𝐵 = 0.025614[𝜇𝑚2], 𝐶 = 0.0059846[𝜇𝑚4] and 𝐷 = 0.0025745, 𝐸 =
8.508[𝜇𝑚], 𝐹 = 4000[𝜇𝑚] The choice for this configuration is obtained by selecting
the system with the strongest contribution of the evanescent waves.
For a three layer system (airthin layerglass, see scheme in subfigure 4.2 B), we plot
in subfigures C) and D) of Figure 4.2 the Fresnel reflection coefficients of 𝑠 and 𝑝
input polarization for layer thicknesses ranging from 17 to 23 nanometers for the case
of TiO2 as thin layer. In subfigures E) and F) we show the comparison between the
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absolute value of the Fresnel reflection coefficients for the bare (no thin layer) and
covered substrate with 21 nm of TiO2.

Specifically, the region of spatial frequencies 𝑘𝑥/𝑘𝑎𝑖𝑟 > 1 is interesting because it
represents the nonpropagating waves, where for values of r𝑝 and r𝑠 > 1, it means
amplification. It is evident that the presence of a thin layer such as TiO2 results in
a growth of the evanescent field that correspond to a guided mode. Moreover, the
reflected amplitude 𝑘𝑥/𝑘𝑎𝑖𝑟 < 1 is also higher with the layer than without, but not as
much as the evanescent part. This effect is expected because the contrast between
air and TiO2 is higher than contrast between air and glass 𝑛𝑇𝑖𝑂2 > 𝑛𝑔𝑙𝑎𝑠𝑠 > 𝑛𝑎𝑖𝑟.

Once the thickness of the TiO2 layer is selected to be 21 nm, we consider the
full 3D configuration to evaluate the effects of the polarization states of the probing
focused light with and without the particle on it. This leads us to perform 3D rigorous
simulation with the incident light focused at the top layer, and including a nanoparticle
at the center of the focused beam (see Figure 4.3 B).

A)

B) C) D)
linear (no layer)

linear (layer)

linear (no layer)

linear (layer)

radial (no layer)

radial (layer)

kx/kairky/kair

kx/kairky/kair

kx/kairky/kair

kx/kairky/kair

Figure 4.3: A) Linearly (left) and radially (right) polarized light focused on the substrate (electric

field in focus in red). B) The near field when linearly, along the 𝑥axis polarized light is focused
onto a 50 nm PSL nanoparticle on top of the substrate, without (top) and with (bottom) en

hancement layer. C) and D) The far fieldmaps without (top) and with (bottom) layer for the

case of linear polarization and radial polarization, respectively. The enhancement layer is 21
nm of TiO2, the wavelength is 405 nm and NA = 0.9. The colorcode is such that the observed

intensity is normalized by the maximum value of the farfield when the TiO2 layer is present.

The field components as part of the illumination cone interact with both particle
and substrate. The diameter of the polystyrene (PSL) nanoparticles with refractive
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index 𝑛 = 1.57 at 𝜆 = 405 nm is either 50 or 40 nm. When the beam is focused,
all incident angles and polarization components within the numerical aperture of the
objective should be considered. We calculate the scattered near and the farfield
of the particle on top of the bare substrate and the substrate covered with the thin
layer illuminated by the focused laser beam. The scattered field due to the particle is
computed by subtracting the portion that is caused by the given incident field when
only the multilayer is present from the total field in the presence of the particle. The
different polarization states are used: linear, circular, radial, and azimuthal. The boost
in the near (all planes) and far field is evident and present in all four cases. The total
near field in the 𝑥𝑧 plane for the case of linear polarization along the 𝑥axis is shown
in Figure 4.3 B) and the far field within the NA of the objective for linear and radial
polarization is shown in Figure 4.3 C) and D). The colorcode is such that the observed
intensity is normalized by the maximum value of the farfield when the TiO2 layer is
present. Following the nearfield enhancement as in Figure 4.3 B), we observe that
linear polarization causes the far field to grow and remarkably changes its angular
distribution in 4.3 C). In the case of radial polarization, the far field is also enhanced
but does not considerably change in shape (4.3 D)). The central part of the far field
map is reduced compared to no layer case and it is biggest in the region where spatial
frequencies exceed approximately 𝑘𝑥/𝑘𝑎𝑖𝑟 > 0.2, corresponding to acceptance angles
higher than 11.5° with respect to the normal. The angular distribution of the farfield
can be firstly explained by the shape of the focused spot in the focal plane. The 𝑥
linearly polarized beam, left 4.3 A), has the focal spot elongated along the polarization
axis, leading to the far field map that is also a bit wider in the 𝑥direction than in the 𝑦
direction, hence there is no rotational symmetry. For the focusing of radially polarized
light, (4.3 A, right side), the strong longitudinal component of the electric field at
the optical axis is responsible for the hollow central part of the farfield map and the
rotational symmetry of the spot also translates to the scattered farfield. Secondly, due
to the sole 𝑝 or joint 𝑠 and 𝑝 polarization content of the radially and linearly polarized
beams, respectively, after the scattering from the particle on the enhancement layer,
(4.3 C) and D), bottom), the propagating and evanescentconverted components lead
to destructive or constructive interference in different parts of the optical pupil.

Next, to quantitatively evaluate the enhancement of the scattered far field within
the NA of the detector that each polarization produces, we introduce the farfield gain
factor 𝐺. In the equations below Eqs. (4.64.8) , we look at two metrics: 𝐺𝑖𝑛𝑡 and
𝐺𝑚𝑎𝑥. The 𝐺𝑖𝑛𝑡 is the ratio of the total scattered detected intensity in the case of the
covered substrate and that of the bare substrate. Similarly, 𝐺𝑚𝑎𝑥 is the ratio of the
maxima of the scattered intensities over the detector.

𝐺𝑖𝑛𝑡 =
𝐼𝐶𝑜𝑣_𝑖𝑛𝑡
𝐼𝐵𝑎𝑟𝑒_𝑖𝑛𝑡

,

𝐼 = ∫
𝑛𝑟𝑜𝑤𝑠

𝑛=1
∫
𝑛𝑐𝑜𝑙

𝑚=1
𝐼(𝑛,𝑚)𝑑𝑛𝑑𝑚,

(4.6)
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𝐺𝑚𝑎𝑥 =
𝐼𝐶𝑜𝑣_𝑚𝑎𝑥
𝐼𝐵𝑎𝑟𝑒_𝑚𝑎𝑥

,

𝐼𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐼(𝑛,𝑚)),
(4.7)

𝐼(𝑛,𝑚) = (|𝐸𝑥(𝑛,𝑚)|2 + |𝐸𝑦(𝑛,𝑚)|2). (4.8)

The integrals above are calculated by the trapezoidal method. With both metrics that
we used, either integral or based on the maximum value, the gain factor expected
by the cylindrically polarized light (radial and azimuthal) is superior to conventionally
polarized beams, as shown in Table 4.2.

Table 4.2: The gain factors indicate that cylindrically polarized light produces higher gain in the

farfield than the conventional polarizations. The material TiO2 shows better performance than

Ta2O5. The maximum gain in each column is given in bold. The diameter of the particle is 50

nm.

Polarization 𝐺𝑚𝑎𝑥 𝐺𝑖𝑛𝑡
state Ta2O5 TiO2 Ta2O5 TiO2

Linearly X 1.13 1.32 1.65 1.97

Radially 2.04 2.91 2.49 3.76

Azimuthally 2.08 2.86 2.47 3.53

Cicularly 1.04 1.13 1.65 1.97

For both linear and circular polarization, the central part of the farfield angular
distribution is barely larger than at the pupil’s edges, whereas for azimuthal and radial
polarization, the enhancement occurs at all angles. However, for all polarizations, the
position of the maxima of the distribution lies in the high angular range 𝑘𝑥/𝑘𝑎𝑖𝑟 > 0.2.
This is one reason why we have introduced 𝐺𝑚𝑎𝑥 ratio. For example, the 𝐺𝑚𝑎𝑥 param
eter for the TiO2 layer and particle of 50 nm is equal to 2.91 for radial polarization.
This suggests that for highenough SNR, applying an annular aperture at the detector
plane can yield better sensitivity. In fact, the benefit of the detection with an annular
aperture was demonstrated in previous research [20]. In that reference, it was antic
ipated that the collected far field at higher angles of the aperture are more influenced
by the presence of the particle, and this is confirmed here by the far field simulations.

As can be seen from Table 4.2, we also introduce Ta2O5 as enhancing layer, which
has lower refractive index as compared to TiO2. Following the same procedure as
before we find again that the most suitable thickness is 20 nm. Due to slightly higher
absorption, the evanescent amplification that surrounds the particle is lower so both
𝐺𝑚𝑎𝑥 and 𝐺𝑖𝑛𝑡 are smaller than for the TiO2 layer.
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Figure 4.4: A) Crosssection of the far field intensity along the 𝑥axis when the input beam is

radially polarized and focused on a 30 nm nanoparticle. The middle zone in blue corresponds

to the center of the pupil |𝑘𝑥/𝑘𝑎𝑖𝑟| ≤ 0.2 and the surrounding hollow cone in red corresponds
to 0.2 < |𝑘𝑥/𝑘𝑎𝑖𝑟| < 0.9. B) Point per point gradient of the integrated electric field intensity of
the blue and red regions of the far field as a function of the real index of refraction with the

imaginary part kept at the value of 0.133, C) as function of the imaginary part of the index of

refraction with the real part kept at the value of 2.6. D) and E) profile of the field distributions

corresponding to the left and rightmost values of the refractive indexes of plots B) and C),

respectively. Black lines mark the center of the crosssection 𝑘𝑥/𝑘𝑎𝑖𝑟 = 0 that corresponds to
the beginning of refractive indexes sweep.

Further, to understand whether the evanescent wave conversion mechanism may
explain the superior detection performance, we have studied how the value of the
real and imaginary part of the index of refraction of the enhancement layer influences
the farfield increase. In order to do that, we perform a parametric sweep. A radially
polarized beam focused at the center of the particle of diameter 30 nm, 𝑁𝐴 = 0.9 and
enhancement layer with fixed thickness of 21 nm of a fictitious material is considered.
We show in Figure 4.4 the far field as the values of the real or imaginary part of the
refractive index varies. In Figure 4.4 B) the imaginary part of the refractive index
remains fixed as 𝑘 = 0.133 and 𝑛 changes from 2.6 to 4 in 15 steps. In Figure 4.4
C), the real part of the refractive index is 𝑛 = 2.66 and 𝑘 changes from 0.004 to 1.5
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in 15 steps. Note that for the farfield crosssections (4.4 D) and E)) the scattered
field is cylindrically symmetric (as in 4.3 D)). The crosssection curves D) and E) are
normalized to unity by the maximum value of the far field intensity of the corresponding
parametric sweeps. For instance when 𝑛 = 4 + 𝑖 ∗ 0.133, that corresponds to the
rightmost value in the parametric sweep B), the farfield crosssection (bottom of
Figure 4.4 D) ) has the maximum value of 1 thus the enhancement is the highest.

In order to emphasize the region of the pupil where either propagating or coupled
evanescent components contributes, we integrate the farfield intensity by two zones:
|𝑘𝑥/𝑘𝑎𝑖𝑟| ≤ 0.2 and 0.2 < |𝑘𝑥/𝑘𝑎𝑖𝑟| < 0.9, seen as blue and red color of the cross
section in Figure 4.4 A). The integral for total field intensity of both zones is calculated
by applying the trapezoidal rule and on top of that we compute the derivative w.r.t
𝑛 or 𝑘. From the profiles B) and C), one can see that the amount of energy that
scatters to the outer parts of a pupil is greatly boosted when absorption is low (as can
be seen in the region where 𝑘 ≤ 0.5), whereas when the real part of the refractive
index (𝑛 ≥ 2.6) is increased, the central and side contributions raise almost linearly.
The index of refraction properties are varied separately because they have a major
influence on either the propagating modes or the coupledevanescent components.
Also, in Figure 4.4 B), the growing behavior of the gradient can be characterized by
an almost linear behavior of the intensity in both central (blue curve) and outer part
of the pupil (red curve). In contrast, if the absorption decreases from 𝑘 = 1.5 to
𝑘 = 0.133 (see Figure 4.4 E) top and bottom, respectively)), the intensity in the center
of the pupil remains almost constant while the slope a curve grows more rapidly at
the lobes in lowest absorption value. In other words, allowing for the absorption
to be as low as possible is the key mechanism to increase the ratio between the
scattering at the higher angles as compared to the lower ones. This behavior seems
to be achieved mainly by the evanescent components at the interface converted to
propagating modes by the presence of the isolated particle on top of the covering layer.
The topographical contrast of optical detection is of significant interest for techniques
that rely on differential detection principle, such as the one we propose. Equally
important, by considering materials with large real part of refractive index, one can
achieve large enhancements of the full farfield distribution. That is important for
applications that benefit from low power of illumination.

Finally, we point out that the gradient profiles for the azimuthally polarized light are
very close to those of the radially polarized ones. The major differences in directional
tendency are observed in the sweep of the real value of the refractive index for both
linear and circular polarization.
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Figure 4.5: Point per point gradient of integrated electric field intensity as function of the real

and imaginary parts of the refractive index for the case of linear polarization along the 𝑥direction
when A) the real part changes from 2.6 to 4 while the imaginary remains fixed at 0.133, and B)

when the real part remains fixed at 2.66 while the imaginary part changes from 0.0004 to 1.4. C)

and D) crosssections of the total farfield pattern corresponding to the maximum and minimum

values of the refractive indices of plots A) and B), respectively. The curves are normalized to

unity by the maximum value of the distribution belonging to the particular parameter sweep.

Black lines mark the center of the crosssection 𝑘𝑥/𝑘𝑎𝑖𝑟 = 0 that corresponds to the beginning
of refractive indexes sweep.

Further, we calculate the gradient of the integrated farfield intensity by two zones,
central and the outer part of the pupil for linear polarization as shown in the Figure
4.5. In the case of the linear polarization gradients with respect to both the real and
imaginary parts of the refractive index is different from the gradients in the case of
radially polarized light. Also, because of the absence of rotational symmetry, we show
in Figure 4.5 C) and D) the profiles in the 𝑦direction. For minimum (top) and maximum
(bottom) value of 𝑛 in C), and maximum (top) and minimum (bottom) 𝑘 value in D).
From the gradients in Figure 4.5 B), one can see that the behavior is such that the
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energy grows faster towards the lobes and slower towards the center. But in 4.5 A),
when 𝑛 ≥ 3.2, it levels out. This can be attributed to the fact that linear polarization
has a mixture of 𝑠 and 𝑝 components in focus. Similar behavior is observed for circular
polarization.

We have also studied the robustness of the enhancement process for variations on
the thickness of the single layer. This is an important parameter that should be taken
into account since because it is almost unavoidable that the actual thickness will vary
as compared to the nominal one. The results of this analysis highlight the advantage
of the evanescent waveamplification method in terms of robustness. In Figure 4.6,
the behavior of the total scattered farfield intensity as function of the covering layer
thickness is shown (integration over the full pupil according to the trapezoidal method.)

S
c
a
tt

e
r
e
d

 i
n

te
n

s
it

y
 [

a
.u

.]

Covering layer d [nm]

0 50 100 150 200
0

1

2

3

4

5

6
TE0 TE1TM0 TM1 TE2

15nm35nm 106nm 131nm 197nm

Figure 4.6: The total scattered farfield intensity integrated over the pupil for linearly polarized

(red) and radially polarized light (blue). The positions of the minimum thickness for which a

particular guided mode appears in the threelayer 1D slab are indicated in purple, and the

positions of maxima and minima in reflection for the normally incident light in black solid and

dashed lines correspondingly.

The cover layer material in this case is TiO2, having refractive index of 𝑛 = 2.6632,
𝑘 = 0.00423 [21] and layer thicknesses that vary from 0 to 200 nm. The diameter of
the nanoparticle is 30 nm with the refractive index of 𝑛 = 1.58 for the wavelength of
illumination of 405 nm. From Figure 4.6, one can see that the deviation around the
maximum of scattering for linear and radial polarization is about 0.84% and 0.71%
per nm, meaning that the system is robust for a few nm thickness variations.

The same Figure 4.6 can be used to show the influence of the thickness of the
thin layer as it becomes much larger than the values we have considered so far.The
maxima and minima fluctuations may be caused by the excitation of modes by the 1D
cavity that is formed by the 3layer system without the presence of the particle. In
the vertical lines found in Figure 4.6, we show the positions of the minimum thickness
for which either 𝑇𝐸 modes and 𝑇𝑀 modes (in purple) appears. We pick truly guided
modes, whose spatial frequency 𝑘𝑥/𝑘𝑎𝑖𝑟 is between the two highest indices inherent
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to the 3layer structure. The first two modes, namely 𝑇𝐸0 and 𝑇𝑀0, supported in
the waveguide are in good correspondence with the maxima of the farfield scattering
for linearly and radially polarized light, respectively. Further, we see the agreement
between the minima of the reflected field of the 3layer stack without a particle (black
dashed lines of Figure 4.6) and the farfield scattering profiles in the presence of the
particle. The reflectance of the substrate is minimized due to destructive interference
in the 3layer system. As a consequence, the scattered field of a particle reflected
by the substrate is also minimized. It becomes clear that for the particular design of
the enhancing layer, maximum of scattering can be achieved when the layer supports
just one mode that does correspond to the spectrum of excitation (evanescent waves
generated from the particle illuminated by the incident light). Further increasing of
the thickness of the layer can have a drawback of falling into the local minima of
reflectance or having destructive interference upon interaction with particle due to the
multiple modes of the waveguide. This simulation allows us to support the idea that the
enhancement in scattering is due to the evanescent wave amplification, which becomes
possible in the scenario when the probing light excites the dipolarlike response of the
sphere at an interface. When exciting with linearly or radially polarized light, the dipole
vector will be mainly horizontally or vertically directed, respectively. Coupling is only
possible if the radiation of dipole excites the mode supported by the waveguide. If the
requirement is fulfilled, modes will propagate in a slab and the evanescent part of the
field is maximized, and so it can be rescattered to the far field by the particle.

Finally, we point out that the shape of the farfield distribution is wavelength depen
dent, and also the size of the particle influences the angles of the scattering. There
fore, the result cannot be generalized for other wavelength regimes and particle sizes.
However, for particles in the regime of 𝜆/9 and all the states of polarization, the boost
related to the evanescent amplification occurs.

4.5. Experimental Results

The enhancement due to the guided mode excitation can be experimentally shown
by performing the same experiment with covered and uncovered substrates with the
same nanoparticle material and size. In the case of a covering/nolayer, a relative
comparison of scattering intensities is insufficient because only an experiment can
reveal whether the measured scattered intensity is significantly higher than the back
ground noise. Thus, it is difficult to predict the ultimate limit of this technique. In any
case, in order to verify the validity of the calculations, we carried out several exper
iments. We use the setup earlier introduced and explained in Figure 2.1. The liquid
crystal polarizator converter is placed before the objective to generate either radial
or azimuthal polarization. To get the same incident power for the linearly polarized
beam the neutral density filter with ≈ 80% transmission is installed. In Table 4.3, the
fabricated samples are shown. For each sample, we find an isolated nanoparticle of
the nominal size and then collect the far field maps for different polarization states
such as linear, radial and azimuthal.
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Table 4.3: Summary of the fabricated samples. The thickness of the layers has been measured

with an ellipsometer.

Sample # Design

1 glass + 40 nm spheres

2 glass + 50 nm spheres

3 glass + 20.3 nm Ta2O5 + 50 nm spheres

4 glass + 20.3 nm Ta2O5 + 40 nm spheres

5 glass + 22 nm TiO2 + 40 nm spheres

Each far field map is the result of averaging two repeated scans (Figure 4.7). As
the detection is done using the heterodyne technique [22], we modulate our diode
laser with a square waveform of either 𝑉𝑝𝑝 = 1.7 V or 𝑉𝑝𝑝 = 1.8 V , so that the power
on the substrate is either 𝑃𝑙𝑜𝑤 = 0.02 mW or 𝑃ℎ𝑖𝑔ℎ = 0.026 mW, respectively. The
higher power is used for the detection of the 40 nm spheres.
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Figure 4.7: The raw farfield signal maps of the glass sample without and with the enhancement

layer of Ta2O5. Isolated PSL particle, localized with black circle, of 50 nm and A) linear, B) radial,

C) azimuthal input polariziation of the beam. Each map is 2.7𝜇𝑚 × 0.5𝜇𝑚.

In order to compare the SNR with and without the thin layer, we define the SNR
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gain 𝐺 (in dB units):

𝐺 = SNR(layer) − SNR(no layer). (4.9)

The SNR (defined in Eq. 3.1 Chapter 3) is estimated based on the profile with the
highest amplitude, which corresponds to a probing beam scan across the center of
the spherical particle. Table 4.4 summarizes the measured gain enabled by the cover
layer for different polarizations. All tested cases show that the enhancing layers do
improve the detection of the low refractive index nanoparticles. The gain results are
consistent with the simulations done previously that predicted that TiO2 is a better
material to enable evanescent wave amplification.

Table 4.4: SNR gain G [dB] due to evanescent wave amplification for the cases of detection

of 50 and 40 nm particles on top of Ta2O5 or TiO2 layers on glass (compared to glass with no

layer), for various polarization configurations.

SNR gain G [dB]

Polarization State d = 50 [nm] d = 40 [nm] d = 40 [nm]

Ta2O5 TiO2 Ta2O5

Linearly X 7 11.8 11.5

Radially 5 9.3 6

Azimuthally 2.8 11.1 6.5

There is an evident relationship between the size of the particle and the gain that
is achieved with the layer. The smaller particles become visible, compared to the very
low signal in the absence of the layer, while the bigger particles have already a SNR
> 18 [dB] even without the layer. The reason for that is because the scattering cross
section is larger for 50 nm particles than for 40 nm. Below, we show the measured
farfield signal maps, without/with layer of Ta2O5 (samples number 2 and 3) for the
case of 𝑑 = 50 nm PSL particle and three input polarizations as according to the first
column of Table 4.4.

The results show that the cylindrically polarized beams can contribute to a relatively
big gain (𝐺 of 9.3 [dB] or 11.1 [dB]), yet, it is important to highlight that we have ob
served experimentally that the use of linearly polarized light is superior to cylindrically
polarized light. In Figure 4.8 we show the results for sample number 5. Even though
the particle of 40 nm diameter is visible when radially or azimuthally polarized beams
are used (Figure 4.8 B) and C)), one can clearly see that for the linearly polarized light,
the signal is much stronger (Figure 4.8 A)).
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Figure 4.8: SD signal as a function of particle position w.r.t. the focused field as the particle

is scanned in the 𝑥direction. The particle is on a glass sample with the enhancement layer of
TiO2 and 40 nm PSL with the A) linear, B) radial, and C) azimuthal polarization of the probing

beam. The color scheme is defined by the maximum and minimum of differential signal for the

linearly polarized beam. D) The corresponding signal crosssections are compared.

4.6. Discussion and Conclusion
In this work, the wavelength of the probing light was chosen in accordance with our
experimental settings, but in general, this parameter can also be optimized together
with the others. Using a resonant wavelength combined with evanescent wave ampli
fication can extend the application of our technique to a wide range of applications.
As predicted by numerical computations, our experiments demonstrate gain in the far
field due to the rescattered evanescent field generated by the particle at a layered
structure. We did not find a significant benefit to changing the polarization of the
probe to cylindrical polarization, contrary to expectations. We observed a lower SNR
as compared to linear polarization, even in the case of no thin layer on top of the sub
strate. A possible explanation could be the complexity of the experiment. Producing
and focusing radial/azimuthal polarization is more difficult than linear polarization. For
instance, with radially polarized light, the alignment of the beam w.r.t. the objective as
well as the quality of the radial (azimuthal) polarization are extremely critical in order
to obtain a very tight symmetrical focused spot.

In this chapter, we studied the enhanced farfield scattering of single spherical PSL
particles deposited on top of a glass substrate covered with a thin layer of dielectric
material. The key to the farfield enhancement effect is to achieve first substantial
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field enhancement in the nearfield. By simply looking at the interface between the air
and the top surface of the bare/covered substrate, we concentrate our attention on
maximizing the spatial frequencies that correspond to the enhancement of evanescent
waves. The ultimate sensitivity of the detection is limited by the amount of evanescent
waves that are converted to propagating waves.

From the research that has been conducted, a gain factor greater than 5 dB has
been experimentally observed for different polarizations (linear, radial, azimuthal).
Furthermore, in the experiment, the use of linearly polarized light has shown superior
performance for the detection of 40 − 50 nm nanoparticles. Our analysis has shown
that for evanescent wave amplification, the values of 𝑛 and 𝑘 of the material are im
portant, with a significant real part of the refractive index and low absorption giving
higher enhancements. Our technique is robust to the deviations of the thickness of the
cover layer. For the particular design of the enhancing layer, the maximum scattering
is achieved when the layer supports just one guided mode. Due to the multiple modes
of the waveguide destructively interfering after interaction with particle, or, simply,
due to the local minima of reflectance, the high thickness of the covering layer is un
desired. Due to the directionality of the scattering from the nanoparticle, applying an
annular aperture at the detector can be beneficial.

The proposed technique can be successfully used in applications such as bionano
detection and contamination detection in the semiconductor or flexible electronics in
dustry. For instance, 𝑆𝑖3𝑁4 silicon nitride (𝑛 ≈ 2 and almost zero absorption at 405 nm)
is present as a top layer of polysilicon pellicle [23] or in PET plastic substrates [24], if
contaminated with small particles could exhibit EWA. Furthermore, there is a potential
for this technique to be implemented in interference reflectance imaging techniques
such as IRIS and iSCAT. In these labelfree techniques, the excellent smoothness and
flatness of the substrate are crucial [5]. Finally, one can also mention spinning bio
disks for labonchip devices, where the dipolarlike scattering of the particle near the
surface is required to be maximized [25].
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5
Highlysensitive laser focus

positioning method with
submicrometer accuracy.

In this chapter, we analyze the effect of defocus on particle detection. Firstly, in
Section 5.1, we describe the degradation of the particle signal SNR associated
with nonideal focusing. Curiously, the fact that the signal is very sensitive to
the focus position leads us to propose a novel method to determine the focus
position. Thus, in section 5.2 we describe the method by defining an Scurve for
focus determination. We numerically study the phase in the nearfield close to
the interface and investigate the uncertainty in determining the position of the
surface under the particle. In Section 5.3, we investigate the sensitivity of the
proposed method and put it in the context of the existing focusdetermination
techniques. In the last section we present discussions and conclusions.

Parts of this chapter have been published in Meas. Sci. Technol. 31 (6) 064007 (2020) [1]
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5.1. Introduction
Focused light plays a vital role in modern technology in the fields of optical lithography,
micromachining, optical data storage, nanostructure characterization and biology [2,
3]. The inability to define and maintain the focal plane position on the sample or
surface results in degradation of resolution [4], nonoptimal energy use of the focused
field [5], damage of the sample [6], failure to store data [7, 8], uncertainty in the
localization of cells or lack in reproducibility of biological results [9, 10].

While the problem of determining the focus position in an accurate way is essential
for many applications such as the ones mentioned above, there is no single general
solution, and in the literature, one finds various techniques that are applied depending
on the limitations and other conditions of the experimental setup. These limitations
might include sensitivity to vibrations and shocks, the ability to work inline scan speed,
ease of use, etc.

For coherent sources of illumination, monochromatic confocal systems are com
monly used to measure the surface position or to simply define the focus position
[6, 11]. In a confocal system, the light is focused on the object plane and this plane
is imaged on the point detector (usually an optical fiber) or a pinhole.The 𝑧−scanning
should return the peak intensity in reflection when the focal position matches the in
terface.

This chapter proposes a novel sensitive focus finding method based on the detec
tion of nanoparticles on surfaces using CFS. As a spinoff of the method, the position
of the surface under the particle can be determined with submicrometer accuracy in
a noncontact manner. With the aid of differential signal readout, we can sensitively
localize the position of the nanoparticle both in horizontal and vertical planes. While
the idea of detecting the focus position on the surface with the aid of differential de
tection is not new [7, 12], however, to the author’s best knowledge, exploiting an
isolated particle at the surface to find the surface position has never been proposed.
Experimentally, the presented focusfinding technique allows to generate the error S
curve with a linear region that is a few times higher than the corresponding vectorial
Rayleigh range 𝑆 ≈ 3.8𝑍𝑟 for the case of a PSL of 50 nm in diameter deposited on a
silicon wafer and a linear region of 𝑆 ≈ 5.6𝑍𝑟 for a glass substrate containing a 100
nm PSL nanoparticle. Further, three sizes of PSL nanoparticles, namely 200, 100, and
50 nm in diameter are tested, where it was observed that the increase in sensitivity
was inversely proportional to the particle size.

5.2. Methods
5.2.1. Measurement Approach
In CFS, the position and size of the nanoparticle can be obtained from the raster
scanning procedure over the surface of interest. When the sample on the piezostage
is scanned in a raster fashion (line scan along the 𝑥axis with an increment in the
𝑦axis between the lines), the scattering from a single isolated particle contributes to
the differential signal of the split detector (LR) over multiple scanning lines (signal
group) as shown schematically in Figure 5.1 A).
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Figure 5.1: A) Schematic showing the raster scanning of the substrate containing one isolated

nanoparticle. The scan is line per line, along the 𝑥direction. B) Differential signal of a single
scanning line along 𝑥 through the spherical particle. The zero signal refers to the center of the
particle.

The full area of the scan map is 𝐴 = 𝑋∗𝑌 [𝜇𝑚2], where 𝑋 and 𝑌 are chosen to be a
few times larger than the size of the scanning spot. Importantly, a step displacement
Δy of the stage along 𝑦direction is recommended to be smaller than the diameter of
the sphere. The orthogonal direction, where the sampling of the signal should be high
to give a valid representation in the time span, defines the width of the scan in the
𝑥direction. If there is only one of such group of signals in the scanned area 𝐴, we
can assume that the particle is isolated. Within one scanning map, the 𝑌𝑐𝑒𝑛𝑡𝑒𝑟 position
is defined when the signal group amplitude is maximum, and the 𝑋𝑐𝑒𝑛𝑡𝑒𝑟 position is
attributed to the zerocrossing of the corresponding particle profile (Figure 5.1 A) and
B)).

The working principle of the focus determination system is described via flowchart
Figure 5.2 A). Firstly, the downward scanning axis 𝑧 needs to be aligned with the
“center” of the particle. The coordinate pairs in the 𝑥𝑦 plane referring to the center
of the particle in the lateral direction is obtained by averaging the coordinate 𝑋, 𝑌
in all 𝑧 planes that corresponds to zero intensity at the detector in (see Figure 5.1
B)), i.e., (𝑋𝑟𝑒𝑓 , 𝑌𝑟𝑒𝑓) = (𝑋𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑌𝑐𝑒𝑛𝑡𝑒𝑟)𝑍𝑗. The next two steps are: 1) move on

the optical axis to a plane above the particle defined as 𝑍0 and 2) performing single
line scans in the 𝑥direction around the point (𝑋𝑟𝑒𝑓 , 𝑌𝑟𝑒𝑓) for different values of 𝑍.
Collecting only one profile at a time allows us to keep the method timeefficient. The
stage moves downwards the predetermined amount of lines 𝑛𝑙𝑖𝑛𝑒𝑠, which has to be
big enough to go through the optimal focus. In our experiment, the steps in the 𝑧
direction were Δ𝑧 = 5nm (closedloop resolution of P622.ZCD is 1nm), rendering the
complete throughfocus distance of Δ𝑍 = 𝑛𝑙𝑖𝑛𝑒𝑠 ∗ Δ𝑧. A scheme of this procedure is
shown in Figure 5.2 B). Essentially, the scanning is performed in a raster fashion, but
now in the plane 𝑥𝑧. The obtained differential signal for each scan line is crossing
the DClevel (set to zero) when the particle is centered w.r.t. the focused spot and
is positive or negative when the particle is either on the left or on the right of the
focused spot along the 𝑥axis. It has also been observed that the relative intensity of
the differential signal corresponding to the left or right side changes with the chosen
𝑍 plane.
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Figure 5.2: A) Flowchart of the proposed focus finding method. B) Spot moves to positive 𝑧 as
the piezo steps in the opposite direction. For each position along 𝑧, a line scan is performed
along 𝑥. The plane 𝑥𝑧 is at the middle of the sphere of radius R.

At one particular 𝑍 plane, the maximum intensities of the differential signal for 𝑋
positions located on the left and on the right of the center of the particle are balanced
(“same” intensity, opposite signal), defined as the CP (critical point) in Figure 5.2 B).
At other 𝑧 planes, the maximum left/right intensities are different, i.e., the signal is
unbalanced. The distance from the initial plane to the position of CP can be computed
by adding the initial position with the distance to the critical point and including the
error.

In Figure 5.3 A) we show schematically these situations (see signals on the 3
squares) as a function of the defocus position. Also in Figure 5.3 A) we show that
if we plot the unbalance between the right and left maximum intensities, defined as
|𝐼𝑚𝑎𝑥| − |𝐼𝑚𝑖𝑛| as a function of the 𝑧 displacement, one obtains a Scurve.
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Figure 5.3: A) The measure of unbalance of the lateral scan line as a function of the defocusing

Δ𝑍. Scurve for the through focus error signal. B) The maximum in the amplitude of the

simulated through focus differential signal occurs when the focus is located under the spherical

particle, i.e., defocus Δ𝑍 = 0 (𝑦axis).
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This focus error signal changes from its maximum negative to its maximum positive
value over a distance that typically is a few vectorial Rayleigh ranges and the slope
depends inversely on the diameter of the particle.

The farfield nanoparticle scattering is simulated for the defocus distance of 1𝜇m
and for linearly polarized focused spot. In Figure 5.3 B), the maximum in the amplitude
of the differential signal that is obtained for each 𝑥scan at one fixed defocus position
is plotted against the defocus position. In the plot, zero defocus means that the focal
plane is set to interface (air/substrate). As it can be seen in the figure, the maximum
amplitude of the differential signal occurs when the focal plane is set at the interface,
i.e., under the particle. This result suggests that the zero crossing of the Scurve is not
only a position to keep the instrument infocus for nanoparticle detection but also the
location of the surface under test in the 𝑧direction. We also observed that the smaller
particles are, the steeper is slope of Scurve. More details about the simulations that
lead to the result in Figure 5.3 B) are given in the next section.

5.2.2. Positiondependent phase

In order to understand the influence of the focus position in the nanoparticle/interface
scattering, we have performed rigorous 3D vectorial simulations. In the first set, we
calculated the focused field without a nanoparticle on a interface using the Richards
and Wolf integral. The implementation of the spot is explained in details in Ref. [13].
The results shown in Figure 5.4 are calculated for linearly polarized (along the 𝑥axis)
uniform amplitude focused field, where on the left colunm we plot the modulus of the
amplitude of the |(𝐸𝑥(𝑧)| and the |(𝐸𝑧(𝑧)| components and on the right colunm their
corresponding phases as the function of −5𝜆 ≤ 𝑍 ≤ 5𝜆. The numerical aperture is
𝑁𝐴 = 0.9 and the wavelength 𝜆 = 405 nm. The interface is between air (𝑍 < 0)
and silicon (𝑍 > 0) and the focal plane is set at the interface (𝑍 = 0). Notice that
in the case of the 𝑥linearly polarized focused spot, the 𝐸𝑦 component is not shown
since this is negligible. To determine the phase change, firstly, we estimate the on
axis (𝑧) positions of the first two minima close to the interface in the amplitude of the
focused field components. Secondly, we compute the phase difference between the
minima based on the corresponding phase slices. For the 𝐸𝑥 component, we estimate
that the 𝜋 phase difference occurs over the distance Δ𝑍 = 1.049𝜇m and for the 𝐸𝑧
component Δ𝑍 = 0.73𝜇m. This phase change suggests that when the particle on the
silicon surface will be moved along the 𝑧direction, the collected signal will have the
reverse in the polarity over the certain vertical distance. It is important to note that
we only show the slices of the phase map in the normal direction to the interface.
The farfield result of the nearfield focused spot interaction is more complicated and
accounts for every angular direction within the numerical aperture.
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Figure 5.4: Simulated amplitude and phase distributions of the focused field in the 𝑥𝑧 plane. The
middle part of each panel represents the crosssection of either amplitude or phase (red arrows)

and dashed lines represent the minima of amplitude. The absolute values of the amplitude 𝐸𝑥 in
A) and 𝐸𝑧 in C), the corresponding phase in B) and D). The 𝑁𝐴 = 0.9, the wavelength 𝜆 = 405
nm, and the interface is between air (𝑍 < 0) and silicon (𝑍 > 0).

Further, to demonstrate the interaction of the particle with the positiondependent
phase of the focused field we will consider two situations. Firstly, we set the focal
plane right above a 100 nm diameter PSL particle, i.e., at 𝑍 = −0.11𝜇m, as shown
in Figure 5.5 A) and C), and secondly, the focal plane is set inside the silicon slab at
𝑍 = +0.11𝜇m in B) and D). Further, we show the total near field for the 𝐸𝑥 and 𝐸𝑧
components if the nanoparticle is displaced in the 𝑥axis by 0.4𝜇m w.r.t. the center
of the beam, which is located at 𝑋 = 0. We are interested in the particle position that
corresponds to the maximum in the differential profile such as when 𝑋 = −0.4 𝜇m.
Here, the numerical analysis is based on the FDTD method by Lumerical, which allows
simulating a spherical particle on a surface, illuminated with a focused beam. As the
incident field, we use the focal spot with the linear polarization.
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Figure 5.5: The phase distributions in the 𝑥𝑧 plane of 100𝑛m PSL particle on top of silicon. Left

panel A) and C) the focal plane is set at 𝑍 = −0.11𝜇m. Right panel: B) and D) the focal plane
is set inside the slab at 𝑍 = 0.11𝜇m. The particle in the 𝑥axis is positioned at 𝑋 = −0.4𝜇m

The opposite (at 𝑍 = −0.11𝜇m and 𝑍 = 0.11𝜇m) phase distributions for the 𝑥
component 𝑎𝑟𝑔(𝐸𝑥) for the two extrema look similar. The 𝑎𝑟𝑔(𝐸𝑧) component, on the
contrary, changes both in magnitude and spatial distribution. We can conclude that,
presumably, the phase changes in the 𝑧component of the incident field are responsible
for the scattering from the symmetric object producing the unbalanced amplitude at
the farfield.

We proceed with simulation of an aspherical particle, i.e., an oblate spheroid.
Oblate spheroid with half axes of horizontal 𝑟1 = 𝑟2 = 0.05𝜇m and vertical 𝑟3 =
0.0125𝜇m made of PSL that is placed on the surface of a silicon wafer.

A)

z = -0.11 mz = -0.11 m z = 0.11 m

B)

-

Ez

Figure 5.6: The 𝐸𝑧 phase distributions in the 𝑥𝑧 plane of an elliptical PSL particle 𝑟1 = 𝑟2 =
0.05𝜇m and vertical 𝑟3 = 0.0125𝜇m on top of silicon. A) 𝑍 = −0.11𝜇m and for B) the 𝑍 =
0.11𝜇m. The particle in the 𝑥axis is positioned at 𝑋 = −0.4𝜇m

Similarly to the Figure 5.5 we look at nearfield 𝐸𝑧 phase distributions above and
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below the focus, but now with the particle shape changed to an ellipsoid (Figure 5.6.)
Similarly to the Figure 5.5 the phase changes in the 𝑧component are more pronounced
than the other polarization components, by looking at different 𝑧positions both in mag
nitude and spatial changes of the phase of the near field are observed. If compared
to the results from Figure 5.5, the change of particle shape renders a nonnegligible
effect on the phase distribution. Since the proposed focusfinding technique relies
only on the difference between the peaks in the measured signal |𝐼𝑚𝑎𝑥| − |𝐼𝑚𝑖𝑛| as a
function of the 𝑧displacement, nonspherical particles could also be considered in our
technique.

5.2.3. Uncertainty Estimation
The distance from the initial position, somewhere above the surface, to the final po
sition, at the surface, is defined from the zerocrossing of the Scurve. The exact
location of this point depends on multiple sources of measurement uncertainty. The
process of calculating the uncertainty 𝑈 includes two steps. Firstly, we determine di
rectly measured uncertainties and also take into account the uncertainties given by
manufacturers. Secondly, we combine those individual uncertainties in root sum of
squares. We use the type A evaluation process from guide to the expression of uncer
tainty in measurement (GUM) [14] to estimate the axial shifts along 𝑥, 𝑦, and 𝑧 of the
zero crossing position 𝑍𝑐𝑝. To find the “center” of the sphere, the maps over multiple
vertical positions are acquired and the average reference position that corresponds to
the maximum amplitude of the differential signal is stored. First, two uncertainties
associated with this process are standard deviations 𝜎𝑥 and 𝜎𝑦 of separately 𝑋 and 𝑌
coordinates, that describe the fluctuation versus the reference pair (𝑋𝑟𝑒𝑓 , 𝑌𝑟𝑒𝑓). The 𝜎𝑥
has no contribution to final uncertainty as long as 𝜎𝑥 < Δ𝑋/2, where Δ𝑋 is total width
of the scan along 𝑥 (typical number is Δ𝑋 = 20𝜇m.) Hence, for our method, the effect
of misaligning the particle with respect to the focused spot in the horizontal plane is
described by 𝜎𝑦. Deviation from the particle’s true center described by 𝜎𝑦 translates to
the apparent vertical offcenter distance to the surface that is shorter than if it would
had been estimated exactly through the center. Next, based on the repeated one line
scan measurements along the 𝑧axis line, from the resulting Scurve, the 𝜎𝑧 can be es
timated. For the final calculation of 𝑈, the 𝜎𝑧 corresponding to the zero of curve 𝑍𝑐𝑝 is
used. Both 𝜎𝑥 and 𝜎𝑦 are calculated by averaging the (𝑋𝑐𝑒𝑛𝑡𝑒𝑟 , 𝑌𝑐𝑒𝑛𝑡𝑒𝑟)𝑧𝑗 coordinates
of ten signal maps across the total vertical distance of one micrometer, starting close
to the focus position, with steps of 100 nm. The standard deviation 𝜎𝑧 is computed for
the zerocrossing points of the Scurves by averaging 4 repeated profiles, each with
a step of 5 nm between parallel scanning lines over the distances that are different
for different particle diameters, ranging from 1.5 𝜇m to 2.6 𝜇m. Following that, from
the data sheet for the 𝑧translator stage (P620.ZCD), we take the approximated ac
curacy error on the linearity of the 𝑧displacement as double. For example, a 0.02%
linearity for the full range of 50 𝜇m is a 10 nm maximum deviation. Hence, the ap
proximated accuracy error is 20 nm pkpk or 𝜎𝑠𝑧 = 0.02 𝜇m. In order to build up the
errorcurve profiles, the raw sampled data from the split detector is interpolated using
Friedman’s algorithm [15] with high coefficients of determination for all the studied
particles diameters of 200, 100 and 50 nm (𝑅2100𝑎𝑛𝑑 50 > 0.95 and 𝑅2200 > 0.85).
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Moreover, as a sample is fixed on top of the stack that is comprised of a 𝑧translator
stage attached to a 𝑥𝑦translator stage, it is important to check the correlation between
the axial contributions of uncertainty. We choose a DIC (Digital Image Correlation)
method [16, 17] applied to 2D CCD images of the reflected focused spot at different
axial positions, with these being close to the true focus. The core of the algorithm
is to take two closely separated (Δ𝑧 = 5 nm) images and take the normalized cross
correlation between the subsets of corresponding numerical arrays 𝐴 and 𝐴Δ𝑧. The
raw intensity images at the CCD 1024×1280 size are cropped to the central pupil part
of 550×641 or generally 𝑘 ×𝑚 pixels. For a single reference infocus cutout image 𝐼
the 1×(𝑛+1) vector 𝑟𝑦𝑧𝑟𝑦𝑧𝑟𝑦𝑧 is computed based on crosscorrelations with shifted cutouts
𝐼Δ𝑧 in 𝑦−direction (circular shifts of array along first dimension). The dimensions of
correlated cutout images are 𝑛 × 𝑛 and the range of 𝑦 displacement is [−𝑛/2, 𝑛/2],
where 𝑛 = 20. The normalized crosscorrelation (corr2 function in MatLab) is defined
as

𝑟 =
∑
𝑖
∑
𝑗
(𝐼𝑖𝑗 − 𝐼)(𝐼Δ𝑧𝑖𝑗 − 𝐼Δ𝑧)

√(∑
𝑖
∑
𝑗
(𝐼𝑖𝑗 − 𝐼)

2
)(∑

𝑖
∑
𝑗
(𝐼Δ𝑧𝑖𝑗 − 𝐼Δ𝑧)

2
)

. (5.1)

The shifted cutouts are necessary to check whether the correlation throughout pairs
of subsets grows with respect to the nonshifted position. If this is the case, the
vertical displacement of the wafer surface by Δ𝑧 translates to the displacement Δ𝑦. To
stay on the conservative side of the uncertainty estimation the maximum value of the
crosscorrelation vector of the single reference cutout image 𝑟𝑦𝑧𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝑟𝑦𝑧𝑟𝑦𝑧𝑟𝑦𝑧} is
stored in the crosscorrelation vector 𝑐𝑐𝑐 over complete field of view and that is formed
based on comparing total of 𝑡 = (⌊2 ∗ 𝑘/𝑛⌋ − 1) ∗ (⌊2 ∗ 𝑚/𝑛⌋ − 1) reference cutouts
with their yshifted counterparts. Finally, we compute the correlation coefficient 𝑅𝑦𝑧
as :

𝑅𝑦𝑧 = (arctanh(𝑐𝑐𝑐))
−1
= (arctanh (𝑟𝑡𝑦𝑧𝑚𝑎𝑥))

−1
(5.2)

Based on the two images of a large random defect > 5𝜇m in the silicon wafer,
we estimate the crosscorrelation between the 𝑦 and 𝑧displacement as 𝑅𝑦𝑧 = 𝑅𝑧𝑦 =
0.6331.

We put together the uncertainty contributions according to the following equation
for the combined standard uncertainty

𝑈𝑝𝑎𝑟𝑡𝑐 = √𝜎2𝑦 + 𝜎2𝑧 + 2𝑅𝑦𝑧𝜎𝑦𝜎𝑧 + 𝜎2𝑠𝑧 , (5.3)

In addition to the standard uncertainties reported with the partial correlation 𝑈𝑝𝑎𝑟𝑡𝑐
between 𝑦 and 𝑧 contributions, we include more conservative estimates assuming the
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full (positive) correlation [18].

𝑈𝑝𝑜𝑠𝑐 = √(𝜎𝑦 + 𝜎𝑧)
2 + 𝜎2𝑠𝑧 . (5.4)

Finally, to establish a more reasonable accuracy of the technique, we use the expanded
uncertainty 𝑈 given by 𝑈 = 𝑘 ∗𝑈𝑝𝑎𝑟𝑡𝑐/𝑝𝑜𝑠𝑐, where 𝑘 is coverage factor and 𝑈𝑝𝑎𝑟𝑡𝑐/𝑝𝑜𝑠𝑐
is the combined standard uncertainty. We take the value of the coverage factor to be
𝑘 = 2, which is equivalent to approximately 95% coverage for a normal distribution.
Importantly, to collect the data, we have used two settings of optical power; the peak
power at the objective (before being focused on the substrate) is either 𝑃𝑙𝑜𝑤 = 0.58
mW or 𝑃ℎ𝑖𝑔ℎ = 1.64 mW. For the cases of 200, 100 nm PSL particles on silicon and
200 nm PSL particles on glass, we have used the power 𝑃𝑙𝑜𝑤, while for the 50 nm PSL
particles on silicon and 100 nm PSL particles on glass, we have used 𝑃ℎ𝑖𝑔ℎ. For most of

Table 5.1: Expanded uncertainty contributions for computing the surface position. Upper panel:

PSL particle on silicon wafer and Lower panel: PSL particle on glass.

PSL diameter [nm]
2 ∗ 𝑈𝑝𝑎𝑟𝑡𝑐 [𝜇𝑚] 2 ∗ 𝑈𝑝𝑜𝑠𝑐 [𝜇𝑚]

Silicon surface

200 ±0.7392 ±0.8110
100 ±0.2301 ±0.2494
50 ±0.0864 ±0.0936

Glass surface

200 ±1.007 ±1.1833
100 ±0.3067 ±0.3374

the demonstrated cases, at wavelength of 𝜆 = 405 nm, we estimate submicrometer
accuracy in finding the position of the surface (Table 5.1). The exception is the 200
nm PSL particle on top of the glass surface, where the uncertainty is slightly above
1 𝜇m. It is thus not recommended to use such a big diameter for focussearching
purposes with materials of low reflection. The obtained results are comparable to
focus searching methods used in micromachining applications such as the one based
on a nonlinear harmonic generation [19].
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5.3. Results

Figure 5.7: Measured mean Scurve of the through focus scan of a (nominal) 46 nm PSL sphere

on top of a silicon wafer (red curve). Sky blue color indicates one standard deviation with respect

to the mean over 4 data sets. Black vertical lines define the region where 50% PkPk of the

curve lies and red vertical lines the region over which the slope 𝑆 is estimated as compared to
the one Rayleigh range (blue dashed lines). For this data, the slope 𝑆 ≈ 3.8𝑍𝑅.

Figure 5.7 shows the Scurve obtained from the through focus signal for a sample of
monodisperse polystyrene calibrated spheres (PSL) that have been spin coated on top
of a silicon wafer. For this plot, the scanning with the focused spot is done through
an isolated sphere of nominal diameter 𝑑 = 46 ± 2 nm. For the acquired Scurve,
100% (peaktopeak) of the slope lies within 𝑆 ≈ 3.8𝑍𝑟, where 𝑍𝑟 is the Rayleigh
range calculated from the vectorial diffraction theory according to the formula 𝑍𝑟 =
𝜆/4[1− 𝑐𝑜𝑠(𝛼)], where 𝛼 = 𝑎𝑠𝑖𝑛(𝑁𝐴). N.B. This Rayleigh range is almost three times
smaller than paraxial one (Section 2.3 of this thesis) [20]. Notice how the middle 50
percent of the curve is slightly bigger than the Rayleigh range. Remarkably, in the right
half of the Scurve, the region after its maximum positive value decreases slower than
the corresponding region in the left half of the Scurve. The most likely explanation for
this result is the scattering from the background that increases balance in the collected
signal as we scan below the focus, deeper under the particle. Further, we investigate
the effects of the particle diameter on the sensitivity of the acquired Scurve (see Table
5.2). The motivation for this is to show that this method is compatible with several
particle sizes as it is not always possible to add a particle with a known size. Secondly,
as our prototype includes custommade electronics for the detector, which allows us
to detect particles of < 80 nm (low dark noise and with a design to minimize pickup
from environment), in contrast, when using an offtheshelf photodetector, there will
be considerably more noise and it will be hard to detect small scattering signals from
the spheres < 100 nm in diameter. In this case, slightly larger particles could be used.
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Table 5.2: Comparison between 200, 100 and 50 nm PSL nanoparticles studied in the through

focus measurements. The middle 100% of the Scurve for each measurement fall within 𝑆[𝜇𝑚].

PSL diameter [nm]
The linear region of Scurve

𝑆 ± 𝜎 at 100% PkPk [𝜇𝑚]
Silicon surface Glass surface

200 1.1618 ± 0.0167 1.2817 ± 0.0429
100 0.8016 ± 0.0104 1.0116 ± 0.0033
50 0.68273 ± 0.0088

For the sensitivity comparison, the Scurves were acquired for the same experi
mental conditions of sampling, scanning speed, vertical and horizontal displacement
steps. Each profile is based on the averaging of at least four data sets for each particle
size. Evidently, the slope of the Scurve increases when smaller particles are studied.
For a sphere of 50 nm diameter, as compared to other samples, the variation of the
linear region extent, as projected to the vertical axis ΔZ ±𝜎, the mean distance 𝑆 is
the smallest. The main reason is shorter acquisition time needed to record multiple
data sets for averaging, during which, the whole system is less perturbed as compared
to longer scans for larger particles. Next, the decrease of the particle diameter does
not linearly improve the sensitivity of the acquired curve. As from the electromag
netic point of view, we are not dealing with physical objects but rather with collection
of emitting sources. The behavior can be better understood from a perspective of
scattering by a sphere on a substrate [21].

Table 5.3: Sensitivity comparison Ratio G = 𝑇′/𝑇 of the presented method to various imple
mentations of the known astigmatism method. T’,T are the ratio of the linear region of each

Scurve to the corresponding Rayleigh range for each implementation. The reference 𝑇 used
for the comparison is the value obtained in this chapter for a 50 nm particle, which is 𝑇 = 3.8𝑍𝑟.

Linear region

Scurve 𝑆 [𝜇𝑚]
Details Rayleigh range Zr’ [nm] Ratio T’ = S/Zr’ Ratio G = T’/T Reference

6
𝜆 = 633𝑛𝑚,
NA = 0.6

791.25 7.6 2 [22]

4
𝜆 = 405𝑛𝑚,
NA = 0.65

421.7 9.48 2.5 [23]

3
𝜆 = 405𝑛𝑚,
NA = 0.85

214 14.02 3.67 [24]

2
𝜆 = 405𝑛𝑚,
NA = 0.85

214 9.34 2.45 [25]

For a horizontal dipolelike particle at interface, the slope in the scattering response
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as a function of the particle size is fairly small for the particles in the domain < 𝜆/4.
At the same time, a change in slope is rather drastic for the bigger particles > 𝜆/4.
Thus, in order to benefit from tiny particles in focus searching purposes, the sensitivity
of the detector should be suitable to record small changes in the scattered intensity.
In addition, we observed that the slope of the Scurve for a 50 nm particle is close
to the slope of a 100 nm sphere 𝑆100𝑛𝑚𝑃𝑆𝐿 = 0.8, 𝑆50𝑛𝑚𝑃𝑆𝐿 = 0.68. Thus, we expect
that the sensitivity will not improve dramatically if < 50 nm particles would be used.
It follows from Table 5.3 that the sensitivity of the proposed technique outperforms a
set of results demonstrated by several implementations of one of the most commonly
used techniques for focus control, namely, astigmatism.

For the published results mentioned in Table 5.3, the extents of the linear region 𝑆
for the corresponding Scurves (first column) were taken directly from the publication,
while the corresponding Rayleigh ranges were computed by the authors of this chapter.
Since the benchmark results were based on systems with 𝑁𝐴 ≥ 0.6, the formula for
the Rayleigh range was also computed according to the vector diffraction theory.

5.4. Discussion and Conclusions
This chapter shows that high sensitivity in focus positioning can be achieved using
the scattering from a nanoparticle on a surface. An immediate consequence is that
the user might need to deposit a particle on the surface of interest, which may be
unwanted. However, it is important to highlight that many application areas may not
require depositing the isolated spheres but rather may use nanoparticles that could
already be present in the sample. For example, in the domain of the semiconduc
tor manufacturing, silicon wafers that come immediately from the producer are not
completely clean and do contain particles in the size domain from 30 to 100 nm. Ad
ditionally, during the lithography process, contamination is unavoidable [26]. If the
assumption that the contamination has a shape close to a sphere or an oblate spheroid
can be made, the technique is directly applicable. In the case of biological samples,
metal particles are sometimes present to stimulate resonance, so the smaller features
of the neighboring molecules or viruses become visible [27]. Next, in the fine ma
chining stages of laser material processing, the surface will have low roughness, but
locally tiny scratches, pits or dust [28]. All these little isolated features could be used
in our method.

We emphasize that in order for the technique to work, the particle diameter should
be smaller than the depth of the focus of the given optical system. In our case, the
𝐷𝑂𝐹 ≈ 360 nm whereas the maximum diameter of the studied particle was 200 nm.
The DOF is defined as double the Rayleigh range 𝐷𝑂𝐹 = 2𝑍𝑟. On the other hand,
the smallest suitable particle is defined by both resolution of the vertical translation
and the detection sensitivity of the technique itself. In order to build up the error
curve, the differential signal should be recorded at least, at three vertical positions,
when in practice one or two orders higher sampling is necessary. Further, the studied
sphere upon interacting with the focused spot should produce sufficient scattering to
overcome the inherent experimental noise, specifically the noise floor at the detector.
The strength of the collected signal, given a constant power of illumination and fixed
particle diameter, depends both on the reflectivity of the sample and the material of
the particle.
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This technique could be extended to determine the tilt of a large surface such as a
wafer by having a few nanoparticles distributed on the surface (spherical or elliptical),
and determining the position of the surface at each point. In principle, to determine
the 2D tilt, three spheres distributed as a triangle would suffice.

We observed that the asymmetry in scattering from the nanoparticle that occurs
when the focal plane is moved away or towards the surface could be used to gen
erate the Scurve error signal and consequently the position of the focal plane w.r.t.
the reflecting surface. According to rigorous numerical simulations, we found that the
zero in the Scurve occurs when the focal plane is set at the plane of the surface,
i.e., directly under the nanoparticle. The obtained experimental results indicate that
method is suitable for both silicon and glass surfaces. The reflectance of the surfaces,
estimated for the contributing angles within the NA, varies between 20% and 72% for
the glass and silicon respectively. The achievable accuracy of the method is in the sub
micrometer range with major contribution due to the translation stage (reported as the
2𝜎 measurement uncertainty.) Moreover, several comparisons between the sensitivity
of the presented method and various implementations of the astigmatism method for
an errorcurve generation, have been reported. We believe that the proposed method
can find applications in microscopy, micromachining, laser writing, optical lithography
and highly sensitive alignment systems.
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Intermission

So far, we have shown that the improvements in the detection system using heterodyne
techniques, optimization of the input light polarization and analysis of the defocusing
effect can boost the performance of CFS for sensitive nanoparticle detection. The
reason for the improved performance is the adoption and development of hardware
solutions and measurement approaches that rely on the numerical simulations and
analytical studies.

After mitigating the limitations emerging from experimental noise, nonoptimal il
lumination and defocus, in the second part of the thesis, we start to investigate the
constraints of the algorithms and software that extracts the relevant information from
the scatterometry data. We concentrate on developing a robust framework for semi
automatic processing of the surface scan maps that contain the particle signals in the
presence of background signals and artefacts in the data. We applied novel techniques
known from computer vision to discriminate particle sizetypes and particle counting.
The concepts and validation experiments are the themes of the following chapters of
this thesis.
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Efficient signal processing

with the aid of Machine
Learning.

Detection, classification, localization, and counting particles based on the scat
tered maps of CFS are complicated processes because of the problem of particle
clustering, the variety of particle sizes and densities. In this chapter, we present
the preprocessing of the data and a supervised approach for automatic detec
tion of the differential voltage particle signal in the 2D raster scan dataset.
The chapter is organized as follows. In Sections 6.16.3, we explain the poten
tial causes of data distortion in offline and inline measurements obtained with
the particle scanner, the creation of a CFS dataset, and the required stages for
the data processing workflow. Then, in Section 6.4, we propose digital filters
that minimize the measurementinduced artifacts in the scatterometry results,
develop a signalsearch algorithm that targets datasets with a large density of
particles, and finally modify the clustering algorithms and analyze their pre
cision, computational complexity and robustness for datasets with a different
size of the particles and distorted signals. The experimental findings and con
clusions are accordingly summarized in Sections 6.5 and 6.6.

Parts of this chapter have been published in Optics Express 28, 1916319186 (2020) [1]
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6.1. Introduction

For the detection of very small particles using CFS, it is crucial to optimize the entire
system. In this regard, we mean both improvements directed to the system itself as
well as advancement to the data processing framework.

As we have shown in earlier chapters, in order to validate the results of the particle
detection, reliable numerical tools need to accompany the measurements process. An
example here can be rigorous simulation using full electromagnetic solvers or tools that
process the experimental data. However, scatterometry data become less powerful
if the algorithm that treats the data cannot effectively discriminate between different
sizes of the particles present on a particular surface. One of the complicating factors
is that, besides the inherent noise related to the detection of light, in a production
environment, data can be corrupted with several other sources of noise and artifacts.
The presence of extensive sizerange contamination severely complicates the analysis
of individual particles. In the worstcase scenario, if the measured data are examined
in the wrong way, this can lead, for example, in the case of lithography, to a drop
in system productivity. Finally, taking into account the growing amount of data, the
techniques such as CFS lack the tools of being able to process raw datasets semi
automatically and effectively. Recently, to overcome the challenges of detection and
classification of smaller particles, machine learning methods, including the regularized
matrixbased imaging framework [2], principal component analysis [3], and convolu
tional neural networks [4] were applied to imagebased defect detection.

The objective of this chapter is to develop a full framework for particle size classifi
cation in scatterometry data that includes the pipeline of preprocessing, signal search
and histogram formation with an algorithm that can be directly targeted at data that
are corrupted with noise and drift, as well as including mixedsize particles per sam
ple. For this framework, we relied on the established noiseremoval and unsupervised
clustering techniques and adapted them to detect the nanoparticles. We developed a
parameterized search by thresholding that picks the differential signal shape (raw data
from the scatterometer) and relates it to the detection information (size distribution
and location of the particles). By using these techniques, we show that nanoparticles
could be accurately quantified, even in the case of high densities. With sufficient res
olution, an experimental sample containing a mixture of nanoparticles with 60, 80 and
100 nm was distinguished in conditions where the dataset had a lot of noise and drift
due to the scanning of the surface. The framework enables the demanded automatic
analysis of the scatterometry data and facilitates the validation of the detection results.

The summary of the functions used in this chapter is given in Table 6.1.
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Table 6.1: Glossary of the main functions used in this chapter.

name explanation mathematical description

detrend
Trend can be modeled and removed from

the time series

minimize 𝐽 = ∑𝑥 [𝑦𝑥 − (𝑎𝑥 + 𝑏)]
2

where measured data values 𝑦𝑥 in time 𝑥
and 𝑎, 𝑏 are chosen to minimize 𝐽

abs Modulus of the real number |𝑦| = {𝑦, if 𝑦 ≥ 0
−𝑦, if 𝑦 < 0

ceil Round up or round towards plus infinity 𝑦 = 𝑐𝑒𝑖𝑙(𝑥) = ⌈𝑥⌉ = −⌊−𝑥⌋

dist
The Euclidian distance between

a point 𝑥𝑛 and 𝜇
dist(𝑥𝑛 , 𝜇) = √(𝑥𝑛 − 𝜇)2

ind1

ind2

Sampling points of the signal at which

the amplitude is maximized/minimized

argmax𝑥 𝑦(𝑥)
argmin𝑥 𝑦(𝑥)

size
Size or cardinality of a set is a measure for

the number of elements of the set 𝑛
𝑐𝑎𝑟𝑑(𝑦𝑥) = 𝑛
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Figure 6.1: A) 2D raster scanning showing scan lines in the 𝑥dir. separated by 𝑦 = 10 nm
in 𝑦dir. The geometrical size of particle is 𝑑 = 50 nm. On the left  the first scanning line
coincides with the edge of the particle, and consequently the differential signal will appear in

5 consecutive lines, with the red lines providing small amplitude of the signal. On the right  if

there is an offset between the first scanning line and the edge of the particle, the signal due

to this particle will be spread in fewer lines. B) The recorded diff. signal as one line containing

the particle is scanned  first maximum and then minimum when the positive lobe is equal to

the negative lobe (balanced signal). Red lines constrain the features of width 𝜏 and amplitude
𝑉𝑝𝑘−𝑝𝑘 of the diff. signal. C) A particle response as a collection of similar patterns is called a
scattered map.
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In CFS the recorded signals from the photodetector are the basis for the signal maps
(one voltage value (photocurrent to voltage) for every scanning position reshaped to
2D 𝑥𝑦 distribution). When the probe is focused on the interface, scanning of the
spherical nanoparticle on the surface will render the socalled balanced pulse (positive
lobe is equal to the negative lobe of the signal). The zerocrossing of this pulse refers
to the perfect alignment between the center of the nanoparticle and the focused spot
(green point in Figure 6.1 B)). The effect of the defocus produces unbalance of the
signal as well as a drop in the SNR, as demonstrated in Chapter 5. When analyzing the
surface in a raster scanning fashion, one needs to choose the proper Δ𝑦 displacement
step between the parallel lines of scanning. The bigger the step, the lesser the time
it takes to cover the complete area, but the downside is that particles can be missed.
The simplified picture showing the relationship between the scanning step Δ𝑦 and
the particle size is shown in Figure 6.1 A). Experimentally, if one wants to detect
subwavelength contamination of e.g. 50 nm, the step between lines of the scanning
should be set lower than the particle diameter, for instance Δ𝑦 = 10 nm. For relatively
big particles, one can expect that every time the probe interacts with the particle,
a highenough scattering will be produced and thus the estimate for the amount of
lines where the particle is visible equals to 𝑛 = 𝑑/Δ𝑦, with 𝑑 being the diameter of
the particle. N.B. the SNR is the defining factor for the effective amount of lines and
the influence area of the particle is bigger than the physical size as according to its
scattering crosssection. Yet, the outlined picture highlights the idea that there is
a certain minimum and maximum expected number of beneficial signals that would
emerge from using the different settings of Δ𝑦. For the tiny particles < 80 nm with
𝜆 = 405 nm, one can expect that the scanning lines that would go through the edges
of the particle have much less of an SNR (see Figure 6.1 A) and C)), because the
amplitude of the scattering becomes small as the probe position goes away from the
center of the particle. Furthermore, mismatches between the position of the particle
and the scanning step might occur (dashed lines Figure 6.1 A)) and in this case, even
fewer lines containing signals due to the particle are made. The rule of thumb is
to have at least two signals that come from an isolated particle that is distinguished
from the background. Finally, the nanoparticles are generally classified based on their
dimensionality, where the size of the calibrated sphere is associated with the features
of 𝑉𝑝𝑘−𝑝𝑘 amplitude or timewidth 𝜏 of the measured differential signal (Figure 6.1 B)).

6.3. Subproblems
The task of detection and classifying the particles using scatterometry data can be split
into subproblems. In this section, we discuss these subproblems: preprocessing of
data, finding the particlelike signals, estimation of the width and cluster assessment.

6.3.1. Preprocessing
The goal of the preprocessing task is to prepare the raw sampled data for further
steps. Commonly, a DC bias and sometimes baseline fluctuations in the signal at
the detector can occur due to vibrations and other experimental factors. For the
removal of the various electronic noise, lowpass (LP), notch filtering and wavelet
based subtraction were applied.
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6.3.2. Selection of suitable Amplitude and Width
We use two parameters for the object detection: the 𝐴 amplitude (𝑉𝑝𝑘−𝑝𝑘/2) and the
𝜏 width of the complete differential signal due to a single particle in the timedomain
(see Figure 6.1 B)). We look for an algorithm that is robust to nonparticle signals that
can be present in the data. Examples of such signals include environmental vibrations
or large defects present on the surface of the material, which we can consider as
falsedetections.

In the scan direction 𝑥, multiple particles may be present on one scan line since
the density of particles can be high in some areas of the surface. Multiple maxima and
minima needs to be determined on a scan line, sorted and the relative distance be
tween pairs needs to be determined. Each “transition” between maxima and minima
is associated with the corresponding zerocrossing position at the middle of the signal.
Finally, fine adjustment is needed to define the width of the particlelike signal accu
rately; this is done by parameterizing it such that it can be distinguished from noise
or another signal in the dataset. Next, one needs to take care of the particle signal
appearing at the border of the scan line. In this case, if the signal was sampled for one
of the two lobes (positive or negative), the algorithm should estimate the complete
width of the pulse.

6.3.3. Multiple line particle detection identification
A particlelike signal is distinguished from a false detection if the centroid of the signals
(position of the zero between maxima and minima) has the same 𝑋 position over
multiple lines (see Figure 6.1 C)). A false detection is identified when the particlelike
signal is observed in only one scan line, and is further removed from the data. Finally,
per cluster, the most clear particlelike signal and its features (see Figure 6.1 C)) are
stored for the histogram. The pulse with the biggest 𝑉𝑝𝑘−𝑝𝑘 is a good representative
because it corresponds to the center of the particle in the 𝑥 and 𝑦 directions.

There are many wellknown algorithms for cluster determination, such as hierar
chical clustering, Kmeans, DBSCAN [5–7]. Almost every clustering algorithm can be
tuned to penalize one error more than the other according to the requirements. For
instance, we can use the predefined vertical step of Δ𝑦 and set the expected num
ber of zerocrossings associated with a single particle. Additionally, the clusters of
zerocrossings (pair of 𝑥, 𝑦 coordinates) can have a characteristic spread of 𝜎.

6.4. Algorithm
In this section, we show the specific tools and algorithms we have used to solve the
subproblems shown above. We also mention the computational efficiency and some
other aspects of the algorithms.

6.4.1. Preprocessing
Among various noise sources that might be present in our experiment [8], the power
line interference and the baseline wandering can strongly affect the further detection
and classification of particle signals. The 50 Hz local powerline frequency (bandwidth
of < 1 Hz) can be removed digitally using the notch filter. However, the baseline
wandering is not easy to be suppressed by analogue circuits. Hence we take the
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notchfiltered waveform and subtract the wavelet decomposed version of the same
signal to recover the clean particle signal. This step effectively introduces the point
by point correction to the wandering profile. Finally, an average filter (LP) is applied
to remove glitches. This approach can be considered as more rigorous because it
relies on the sampling frequency used in the experiment. Therefore, the inputoutput
description of the digital filter operation on an input signal vector 𝑥(𝑛), where 𝑛 is the
number of samples, can be expressed in the form of the difference equation:

𝑎(1)𝑦(𝑛) = 𝑏(1)𝑥(𝑛) + 𝑏(2)𝑥(𝑛 − 1) + ... + 𝑏(𝑛𝑏 + 1)𝑥(𝑛 − 𝑛𝑏) − 𝑎(2)𝑦(𝑛 − 1) − ...
−𝑎(𝑛𝑎 + 1)𝑦(𝑛 − 𝑛𝑎),

(6.1)

where 𝑛𝑎 is the feedback filter order, and 𝑛𝑏 is the feedforward filter order. We design
a secondorder notch digital filter, thus 𝑛𝑎 = 𝑛𝑏 = 2 and Eq. 6.1 becomes:

𝑎(1)𝑦(𝑛) = 𝑏(1)𝑥(𝑛)+𝑏(2)𝑥(𝑛−1)+𝑏(3)𝑥(𝑛−2)−𝑎(2)𝑦(𝑛−1)−𝑎(3)𝑦(𝑛−2), (6.2)

with the notch at frequency 50 Hz and a bandwidth at the 3 dB level (qfactor of 35),
we have notch frequency 𝑊 = 50/(𝑓𝑠/2) (specified as a positive scalar in the range
(0.0, 1.0), where 1.0 corresponds to 𝜋 radians per sample in the frequency range)
and bandwidth 𝐵𝑊 = 𝑊/35. Thus, e.g. for sampling frequency 𝑓𝑠 = 3 kHz, the
coefficients are b = [0.998,−1.986, 0.998] and a = [1,−1.986, 0.997]. The local power
line frequency is removed from the data set and 𝑦𝑛𝑜𝑡𝑐ℎ = 𝑎(1)𝑦(𝑛). Further, we
subtract the wavelet decomposed version of the signal 𝑦𝑤𝑑 from the filtered waveform
𝑦𝑛𝑜𝑡𝑐ℎ effectively introducing the point by point correction to the profile. The discrete
wavelet transform (DWT) of signal 𝑦𝑤𝑑(𝑛) is defined as a combination of a set of basis
functions:

𝑦𝑤𝑑(𝑛) =
∞

∑
𝑘=−∞

𝑐𝑗(𝑘)𝜙𝑗,𝑘(𝑛) +
𝐽

∑
𝑗=1

∞

∑
𝑘=−∞

𝑑𝑗(𝑘)𝜓𝑗,𝑘(𝑛), (6.3)

Where
𝜙𝑗,𝑘(𝑛) = 2𝑗/2𝜙(2𝑗𝑛 − 𝑘),
𝜓𝑗,𝑘(𝑛) = 2𝑗/2𝜓(2𝑗𝑛 − 𝑘).

(6.4)

In Eq. 6.3, 𝜙𝑗,𝑘(𝑛) is the scaling function, 𝜓𝑗,𝑘(𝑛) is the wavelet function, 𝑐𝑗(𝑘) are the
scaling and 𝑑𝑗(𝑘) are detailed coefficients. In this chapter, the Daubechies 6 scaling
and wavelet functions were used because it has been proved to be excellent in analysis
of signals that contain baseline wandering [9, 10]. For computing the 𝑐𝑗(𝑘) and 𝑑𝑗(𝑘)
coefficients, the lowpass (LP) and highpass (HP) filters are being recursively applied
to a signal. When the signal is processed for the first time, the HP filtered data gives
the details and LP filtered data gives the scaling coefficients at level 1. The more
times the filters are applied, the more detailed levels of the signal representation can
be achieved. In this chapter, we have used the decomposition level of 𝑗 = 10 and
have applied the translation factor of 𝑘 = 8 for the scaling and wavelet function. The
baseline wandering is removed and 𝑦𝑏𝑐𝑜𝑟 = 𝑦𝑛𝑜𝑡𝑐ℎ − 𝑦𝑤𝑑.
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Finally a simple moving average filter is applied according to Eq. 6.5.

𝑦′𝑖 =
1
𝑀

𝑀−1

∑
𝑗=0

𝑦𝑏𝑐𝑜𝑟[𝑖 + 𝑗]. (6.5)

The output signal 𝑦′𝑖 is a result of averaging the points in the input signal 𝑦𝑏𝑐𝑜𝑟, and
𝑀 = 5 is the number of points used in the moving average. A less accurate way of
dealing with the offset in the data can be MatLab’s detrend function that removes the
best straightfit line from the data in a vector of the sampled points.

6.4.2. Selection of suitable Amplitude and Width

Hyperparameters:
𝐴, τ, 𝑁𝑢𝑙𝑙𝑖𝑛𝑔𝑅,𝑊𝑖𝑛𝑑𝑜𝑤𝑦

These are userdefined parameters of expected threshold amplitude 𝐴 and width τ.
Since the multiple expected amplitudes and widths are passed iteratively, the results
from the previous search should not translate to the consecutive one. Let’s consider
the 2D measured data I𝑖𝑗 with each row representing a single scan line (𝑦 and column
representing the sampling point over the width (𝑥 of the Figure 6.1 C). The differential
signal at the detector for the 𝑖 = 4 scanning lines and with 𝑗 = 4 samples in horizontal
direction of scan is given in Eq. 6.6a.

I4𝑥4 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐼11 𝐼12 𝐼13 𝐼14
𝐼21 𝐼22 𝐼23 𝐼24
𝐼31 𝐼32 𝐼33 𝐼34
𝐼41 𝐼42 𝐼43 𝐼44

⎤
⎥
⎥
⎥
⎥
⎦

, (6.6a) I′4𝑥4 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐼11 𝐼12 𝐼13 𝐼14
𝐼21 0 0 0
𝐼31 0 0 0
𝐼41 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

. (6.6b)

The parameters of 𝑁𝑢𝑙𝑙𝑖𝑛𝑔𝑅,𝑊𝑖𝑛𝑑𝑜𝑤𝑦 represent the halfwidth and length of the re
gion to be zeroed w.r.t reference sampling point. Hence, for measured data, if 𝐼33 is
the reference position (center of the particle), the 𝑁𝑢𝑙𝑙𝑖𝑛𝑔𝑅 = 1 and 𝑊𝑖𝑛𝑑𝑜𝑤𝑦 = 3
dataset becomes Eq. 6.6b

Thus by, 𝑁𝑢𝑙𝑙𝑖𝑛𝑔𝑅 and 𝑊𝑖𝑛𝑑𝑜𝑤𝑦, the user can zero the lines that are close to
the reference detected particle. Per line, the algorithm looks for the multiple peaks
and minima and checks whether their absolute values fall under the amplitude 𝐴. The
retrieval of secondary peaks and minima allows increasing the overall accuracy of the
algorithm. By default, we assume every particlelike looking signal to be a forward
signal (Figure 6.1 B)). The reverse signal can be stored separately or included in the
estimation process. Some key reasoning are highlighted in the following bulletpoints
and also shown in Figure 6.2.



6.4. Algorithm

6

85

Figure 6.2: Block diagram of the signal search algorithm that starts with the 𝑁 signal line.

• Find and store the values and indices of global line maxima 𝑖𝑛𝑑1 and global line
minima 𝑖𝑛𝑑2. Next, check the amplitude condition 𝑎𝑏𝑠(𝑚𝑎𝑥1) > 𝐴 𝑂𝑅 𝑎𝑏𝑠(𝑚𝑖𝑛1) >
𝐴. Store True or False for the first condition.

• Define whether the signal is forward (maxima appears before minima), choose be
tween ignoring or flipping the reverse pulses. Check whether the distance between
2 indices 𝑎𝑏𝑠(𝑖𝑛𝑑2 − 𝑖𝑛𝑑1) < 𝜏 fits the condition of the timewidth. Store True of
False for the second condition.

• When both conditions are true, a particle is roughly detected. We calculate the posi
tion of the particle’s signal zerocrossing by taking the average between maxima and
minima position 𝑚𝑖𝑑𝑑𝑙𝑒 = 𝑐𝑒𝑖𝑙(𝑎𝑏𝑠(𝑖𝑛𝑑1 + 𝑖𝑛𝑑2)/2) (ceil function rounds towards
plus infinity). Perform the fine adjustment (next section) and remove the signal
from the dataset. The 𝑁𝑢𝑙𝑙𝑖𝑛𝑔𝑅 is global parameter that represents halfdistance
in indices to replace with zeroes about the 𝑚𝑖𝑑𝑑𝑙𝑒 of the signal. The rule of thumb,
in this case, is that region to be zeroed should not exceed the time width of the
particles you are looking for.

• If only the amplitude condition is satisfied, the indices of multiple minima (above
threshold) that belong to the current line are checked to fall closer to the 𝑖𝑛𝑑1 than
𝑖𝑛𝑑2. If other minimum falls closer, reassign the 𝑖𝑛𝑑2 and repeat the width check.
If both conditions are satisfied, remove the signal from the dataset and apply the
𝑁𝑢𝑙𝑙𝑖𝑛𝑔𝑅

• The multiple particle search routine is to find numerous maxima (above threshold),
sort them in descending order, and, maximum by maximum, follow the steps outlined
previously. If there are multiple particles on a single line, the algorithm returns x’s
corresponding to the particles middles.
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Throughout this chapter, we will use the terms “zerocrossing” and “middle” inter
changeably, following the variable name of 𝑚𝑖𝑑𝑑𝑙𝑒𝑠 as defined in the MatLab soft
ware.

6.4.3. Fine adjustment for the boundaries of particle’s signal
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Figure 6.3: The sketch demonstrating the margins of the signal separating it from the back

ground. The fine adjustment algorithm is to go from 𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛 to 𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛′.

Fine adjustment is the part of the search process right after the width, and amplitude
conditions are satisfied. We assume that from the𝑚𝑖𝑑𝑑𝑙𝑒 position, the particles’ signal
occupies the same amount of samples on both sides of the signal (spherical object).
The initial guess for the left margin for the signal is 𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑚𝑖𝑑𝑑𝑙𝑒𝑠𝑖𝑛𝑑−𝜏/2. To
make sure that signal does not go outside the indexing in Matlab, i.e., 𝑚𝑖𝑑𝑑𝑙𝑒𝑠𝑖𝑛𝑑 −
𝜏/2 <= 0, we rewrite the left margin as index 1. In this case, in the procedure
that follows, we should rely on the 𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑟𝑔𝑖𝑛 to be defined accurately and then
𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛 is recomputed based on it. Analogously the right margin is calculated
as 𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑚𝑖𝑑𝑑𝑙𝑒𝑠𝑖𝑛𝑑 + 𝜏/2. If a signal appears close to the right border,
we rewrite right margin as the last index of the sampled voltage vector. The crucial
part of the fineadjustment step is to cutout the region of signal for zoomin study,
i.e. from 𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛 to 𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑟𝑔𝑖𝑛. The secondary minima of the cutout region
are checked to fall closer to the middle position, compared to the initial 𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛.
If there is a closer point, it is redefined as 𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛′ . The reason for this is an
observation that typically there is a small dip in the signal preceding the quick rise in
amplitude of the particle pulse. Further, we reassign the 𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑟𝑔𝑖𝑛 of signal to be
the same separation as to the left 𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑟𝑔𝑖𝑛 = 𝑚𝑖𝑑𝑑𝑙𝑒𝑠𝑖𝑛𝑑 + 𝑎𝑏𝑠(𝑚𝑖𝑑𝑑𝑙𝑒𝑠𝑖𝑛𝑑 −
𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛′). Finally, the 𝑠𝑖𝑔𝑛𝑎𝑙𝑆𝑖𝑧𝑒 = 𝑎𝑏𝑠(𝑟𝑖𝑔ℎ𝑡𝑚𝑎𝑟𝑔𝑖𝑛 − 𝑙𝑒𝑓𝑡𝑚𝑎𝑟𝑔𝑖𝑛′), and one
can notice that in our procedure the estimator can generalize outside the original size
of the sampled vector.
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6.4.4. Clustering of data from one single particle

The steps of the algorithm presented previously result in an array of coordinate pairs
for (𝑋, 𝑌𝑋, 𝑌𝑋, 𝑌), that correspond to the position of the 𝑚𝑖𝑑𝑑𝑙𝑒𝑠 (zerocrossings) of each
signal and has dimensionality 2 × 𝑁, where 𝑁 is the number of 𝑚𝑖𝑑𝑑𝑙𝑒𝑠. Since one
particle results in a few signals at consecutive lines of the scan, one should recognize
a group of the particlelooking signals as a centroid that represents this particle. In
this way, the particlesize distribution histogram will identify one particle on the sample
corresponding to one cluster of signals. The centroid of the cluster will correspond to
the line with the highest 𝑉𝑝𝑘−𝑝𝑘 of the cluster, and consequently the particle’s center.

We modify a wellknown machine learning algorithms of Kmeans and DBSCAN to
recognize the clusters of the particlelooking signals and use prior information that can
help to spot the isolated particles. One complicating factor that can be present in the
data is the random drift between the lines when sampling. The drift manifests itself
in the shift of the signal zerocrossing position in the 𝑥direction between consecu
tive lines (see Fig. 6.1 C). Now, we will define several algorithms that can account
for the drift in the data. We will compare the computational complexity of the modi
fied Kmeans to the algorithm of DBSCAN. Besides, we will highlight the sensitivity of
algorithms to initialization parameters.

Modified Kmeans, DBSCAN and comparison.

Given, for instance, the 𝑚𝑖𝑑𝑑𝑙𝑒𝑠 coordinates (𝑋, 𝑌𝑋, 𝑌𝑋, 𝑌), Kmeans clustering, can converge
to a 𝐾 amount of clusters, among which per cluster we know the distance between
each point and the position of the cluster centroid mean 𝜇. The first two algorithms
are used to treat the outliers in the clusters 𝐾, where 𝑛 being the number of points in
a cluster with indices 𝑖𝑖𝑖:

Algorithm 1 Sort in descending order

1: procedure sort(𝑋𝑛) 𝑊ℎ𝑒𝑟𝑒 𝑥1, 𝑥2, ..., 𝑥𝑖𝑖𝑖 ∈ ℝ
2: 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 = 0
3: for 𝑖𝑖𝑖 𝑖𝑛 1 ∶ 𝑛 do
4: for 𝑗𝑗𝑗 𝑖𝑛 1 ∶ 𝑖𝑖𝑖 do
5: if 𝑋(𝑖𝑖𝑖) > 𝑋(𝑗𝑗𝑗) then
6: 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 = 𝑋(𝑖𝑖𝑖)
7: 𝑋(𝑖𝑖𝑖) = 𝑋(𝑗𝑗𝑗)
8: 𝑋(𝑗𝑗𝑗) = 𝑖𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠
9: end if
10: end for
11: end for
12: return 𝑋
13: end procedure
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Algorithm 2 Remove if 𝜎 improves
1: Input: (𝑋, 𝑌)𝑖𝑖𝑖 ∈ 𝐾 In cluster each middle (𝑋, 𝑌) is associated with dist to 𝜇
2: Output: Nremove
3: 𝑠𝑒𝑡 𝑁𝑟𝑒𝑚𝑜𝑣𝑒 𝑡𝑜 𝑧𝑒𝑟𝑜 (𝑟𝑒𝑡𝑢𝑟𝑛 𝑖𝑓 𝑖𝑖𝑖 < 2)
4: 𝑆𝑜𝑟𝑡 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑏𝑦 𝑑𝑖𝑠𝑡 Descending order Alg. 1
5: for 𝑏 ← 2 to 𝑖𝑖𝑖𝑑𝑖𝑠𝑡 do
6: 𝑚 ← 𝐸𝑞.(6.7)
7: if 𝑚 < 0.1 then
8: 𝑁𝑟𝑒𝑚𝑜𝑣𝑒 ← 𝑏 − 1
9: return 𝑁𝑟𝑒𝑚𝑜𝑣𝑒
10: end if
11: end for

Where the metric 𝑚, standard deviation 𝜎, and average 𝜇 are computed according
to Eqs. (6.7  6.9). For a random variable vector 𝑀 made up of 𝑆𝑜 scalar observations

𝑚 = 𝜎(𝑋, 𝑌)𝑖𝑖𝑖
𝜎(𝑋, 𝑌)𝑖𝑖𝑖−1

− 1, (6.7) 𝜎 = √ 1
𝑆𝑜 − 1

𝑆𝑜
∑
𝑖=1
|𝑀𝑖 − 𝜇|2, (6.8) 𝜇 = 1

𝑆𝑜

𝑆𝑜
∑
𝑖=1
𝑀𝑖 . (6.9)

Example of such an algorithm (Alg. 2) applied to an arbitrary cluster is shown in
Figure 6.4 A). The idea is to remove the points that are too far from the mean, and we
use the constant of 10% decrease in standard deviation (STD) to reject the outliers.
The initial 8 points in cluster 𝐾 are sorted in descending order by the distance from the
mean 𝜇. When removing the first two points, the metric 𝑚 > 0.1, but not when we
remove the third, 𝑚 < 0.1 thus cluster will be reduced to the most packed 6 points.

σ

σ
1

2

A) B) C)

nmax = 4

3

Figure 6.4: A) Per cluster the outliers are removed according to predefined 10% decrease in

STD. Only the first two points will be moved to the outliers because the 3rd point is close together

with the other points; B) Global parameter of 𝜎𝑡ℎ𝑟𝑒𝑠ℎ in red and, per cluster, the estimated 𝜎 in
green, is either below or outside the expected range; C) Maximum number of points per cluster

𝑛𝑚𝑎𝑥, and 𝑛𝑝𝑘 < 𝑛𝑚𝑎𝑥 is the number of points in cluster

When the outliers are removed we want to reject the clusters that are overly spread
for instance due to the drift. In our approach, the spread of particular cluster has to
be below 𝜎𝐾 < 𝜎𝑡ℎ𝑟𝑒𝑠ℎ and it is computed according to Algorithm 3.
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Algorithm 3 Compute spread

1: X←X − 𝜇 (X)
2: Y←Y − 𝜇 (Y) 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑐𝑒𝑛𝑡𝑒𝑟𝑡𝑜𝑍𝑒𝑟𝑜(𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
3: 𝜎𝐾 = 𝜎(𝐾(∶)) 𝐸𝑞. 6.8 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐾

The idea here is that the user selects a single cluster that with a big confidence
corresponds to an isolated particle and passes the corresponding recommended limit
of 𝜎𝑡ℎ𝑟𝑒𝑠ℎ. The example of the thresholding by spread 6.4 B) shows that such a limit
will be met by the set of black points but not by the red set. Finally, based on the
geometric considerations outlined in Section 6.2 of this Chapter, we add a prior on
the resultant amount of points that contribute to a single cluster. For a target particle
diameter of the 𝑑, the amount of the zerocrossing points (𝑋, 𝑌)𝑛 ≤

𝑑
Δ𝑦 .

Algorithm 4 Kmeans with prior

1: procedure Kmeansp(𝑝𝑎𝑠𝑠𝑝, 𝑠𝑡𝑑𝐿𝑖𝑚𝑖𝑡, 𝑡ℎ𝑟𝑒𝑠ℎ)
2: 𝑝𝑎𝑠𝑠𝑝 ∶ 𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑖𝑛𝑡𝑠 (𝑋, 𝑌), 𝑠𝑡𝑑𝐿𝑖𝑚𝑖𝑡 ∶ 𝜎𝑡ℎ𝑟𝑒𝑠ℎ , 𝑡ℎ𝑟𝑒𝑠ℎ ∶ 𝑛𝑚𝑎𝑥
3: while 𝑠𝑖𝑧𝑒(𝑝𝑎𝑠𝑠𝑝) > 0 do
4: 𝐾 ← 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝐾 Defined by elbow method
5: 𝑘𝑚𝑒𝑎𝑛𝑠(𝑝𝑎𝑠𝑠𝑝, 𝐾) Apply classical Kmeans
6: for 1 ∶ 𝐾 do For each cluster
7: if 𝑁𝑟𝑒𝑚𝑜𝑣𝑒 ≠ 0 then Remove outliers in cluster, Algorithm 2
8: 𝑠𝑒𝑡 𝑠𝑝 = 𝑠𝑜𝑟𝑡𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑠(1 ∶ 𝑁𝑟𝑒𝑚𝑜𝑣𝑒) 𝑓𝑎𝑙𝑠𝑒 Defining outliers
9: 𝑁𝑜𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑜𝑟𝑡(𝑠𝑝)
10: end if
11: if 𝑠𝑝𝑟𝑒𝑎𝑑(𝑐𝑙𝑢𝑠𝑡𝑒𝑟) > 𝑠𝑡𝑑𝐿𝑖𝑚𝑖𝑡 then Find sparse clusters
12: ℎ𝑖𝑔ℎ𝑆𝑝𝑟𝑒𝑎𝑑 ← (𝑠𝑝𝑟𝑒𝑎𝑑(𝑁𝑜𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠) > 𝑠𝑡𝑑𝑙𝑖𝑚𝑖𝑡)
13: end if
14: if 𝑠𝑖𝑧𝑒(𝑐𝑙𝑢𝑠𝑡𝑒𝑟) > 𝑡ℎ𝑟𝑒𝑠ℎ then Find dense clusters
15: 𝑀𝑎𝑛𝑦𝑃𝑜𝑖𝑛𝑡𝑠 ← (𝑠𝑖𝑧𝑒(𝑁𝑜𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠) > 𝑡ℎ𝑟𝑒𝑠ℎ)
16: end if
17: 𝑔𝑜𝑜𝑑𝑃𝑜𝑖𝑛𝑡𝑠 ←∼ 𝑁𝑜𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠(ℎ𝑖𝑔ℎ𝑆𝑝𝑟𝑒𝑎𝑑 AND 𝑀𝑎𝑛𝑦𝑃𝑜𝑖𝑛𝑡𝑠)
18: 𝑏𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑠 ← 𝑁𝑜𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠(ℎ𝑖𝑔ℎ𝑆𝑝𝑟𝑒𝑎𝑑 AND 𝑀𝑎𝑛𝑦𝑃𝑜𝑖𝑛𝑡𝑠)
19: if 𝑠𝑖𝑧𝑒(𝑔𝑜𝑜𝑑𝑃𝑜𝑖𝑛𝑡𝑠 ≤ 1) then Remove single/zero point clusters
20: 𝑅𝑒𝑚𝑜𝑣𝑒 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑
21: end if
22: 𝑝𝑎𝑠𝑠𝑝 ← 𝑏𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑠 Send not suitable points to new iteration
23: end for
24: end while
25: end procedure

Hyperparameters: 𝑛𝑚𝑎𝑥 , 𝜎𝑡ℎ𝑟𝑒𝑠ℎ
We modify the Kmeans [6, 11] such that it can accurately establish the isolated par
ticles. For validation purposes, the density of spheres is crucial, thus the algorithm
needs to overcome its inherent tendency to overestimate clusters. One difference to
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the original Kmeans is that we introduce the outliers. The outliers include: A) clusters
with single particle; B) empty clusters; C) distant points previously included in a clus
ter. The option C) is treated by Algorithm 2. The second difference is conditioning of
the assigned clusters. Clusters are considered to be valid if 𝑛𝑝𝑘 < 𝑛𝑚𝑎𝑥 (Figure 6.4 C))
and 𝜎′([𝑋, 𝑌]) < 𝜎𝑡ℎ𝑟𝑒𝑠ℎ, where 𝜎′([𝑋, 𝑌]) is 𝑠𝑝𝑟𝑒𝑎𝑑 computed for the set of points,
with a mean moved to the zero and the distance normalized to unity (Algorithm 3).
After Kmeans convergence (one epoch), if there are points that fail on both condi
tions 𝑛𝑚𝑎𝑥 and 𝜎′([𝑋, 𝑌]), they are passed through the Kmeans again. The algorithm
stops if all points are assigned to either cluster or an outlier. In every epoch of the
Kmeans, the optimal amount of clusters is defined from the elbow method based on
the average of 3 random initializations. Hence, in our implementation, the Kmeans is
described via Algorithm 4.
DBSCAN
Hyperparameters: 𝑛𝑚𝑖𝑛 , 𝜖
The densitybased clustering algorithm (DBSCAN) [7, 12] has a straightforward advan
tage in taking care of the obscure points, such that all points that are not reachable
from any other point are outliers or noise points. The two hyperparameters are inclu
sion radius 𝜖 and minimum number of points in the cluster 𝑛𝑚𝑖𝑛. The input for the
𝑛𝑚𝑖𝑛 is straightforward, such that it can be any number between 1 < 𝑛𝑚𝑖𝑛 < 𝑛𝑚𝑎𝑥.
For the 𝜖 recommendation, we use the following routine:

• Normalize the complete data set of 𝑚𝑖𝑑𝑑𝑙𝑒𝑠 to the unity, such that 𝑛𝑜𝑟𝑚X =
X

𝑚𝑎𝑥(X) and 𝑛𝑜𝑟𝑚Y =
Y

𝑚𝑎𝑥(Y) .

• Select the set of points that with a high confidence forms a cluster, via visual
inspection, 𝑐𝑜𝑛𝑓𝑋 = {𝑛𝑜𝑟𝑚X} and 𝑐𝑜𝑛𝑓𝑌 = {𝑛𝑜𝑟𝑚Y}. Center this cluster to the
zero 𝑐𝑒𝑛𝑡𝑒𝑟𝑡𝑜𝑍𝑒𝑟𝑜(𝑐𝑜𝑛𝑓𝑋, 𝑐𝑜𝑛𝑓𝑌) (first two lines of Algorithm 3)

• Determine the average distance between points. Includes computation of Eu
clidian distance between each pair of observations in separately X and Y and
taking average of each vector.

As a result of Kmeans or DBSCAN, one can pick up the converged clusters and
either: A) Pull the features of 𝑠𝑖𝑔𝑛𝑎𝑙𝑆𝑖𝑧𝑒 specifically for the highest 𝑉𝑝𝑘−𝑝𝑘 from cor
responding pulses in a cluster; B) Average of the corresponding timespans τ of points
in clusters (Eq. 6.10); C) The full amplitude of a signal itself 𝑉𝑝𝑘−𝑝𝑘.

τ =
∑𝑛𝑐𝑖=1 τ𝑖
𝑛𝑐

. (6.10)

Where 𝑛𝑐 is number of points assigned to the cluster. Correspondingly, the centroids
of clusters are stored for the mapping of the particle positions.
On computational complexity of algorithms. Comparing two algorithms
The classical Kmeans algorithm has a complexity 𝑂(𝑇𝐾𝑛), where 𝑛 is the number of
input points, 𝐾 is the desired number of clusters, and 𝑇 is the number of iterations
needed for convergence. It is also observed that approximately 𝑇 ∝ 𝑛 [13]. Hence,
the effective time complexity becomes 𝑂(𝑛2). The Kmeans is a greedy algorithm since
it can produce both empty and overpopulated clusters. Another drawback is the large
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dependence on the initialization of cluster centers. As according to the quadratic time
complexity, it should not be used in extremely large data applications [14]. Implemen
tation of the Kmeans with prior in this chapter has 𝑂(𝑛3) time complexity or worst
time complexity of higherlevel polynomial 𝑂(𝑛𝑐).
In the DBSCAN implementation, for each of the points of the input data, we have at
most one region query. Thus, the average run time complexity of DBSCAN is query of
log 𝑛 times the amount of points 𝑛, 𝑂(𝑛 ⋅ 𝑙𝑜𝑔𝑛) or worst time complexity of 𝑂(𝑛2).
Sensitivity of Kmeans and DBSCAN algorithms
Sensitivity analysis was used to explore how the accuracy of algorithms would change
with slight variations in the hyperparameters. The green point in every plot represents
the most preferred initial value that yields the highest accuracy, while the offset from
this point defines the sensitivity (see Fig. 6.5).
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Figure 6.5: Sensitivity analysis of isolated changes of hyperparameters for Kmeans and DBSCAN

algorithms. The accuracy changes as a function of A) 𝜎𝑡ℎ𝑟𝑒𝑠ℎ and B) 𝜖, with fixed 𝑛𝑚𝑎𝑥 = 13 and
𝑀𝑖𝑛𝑃𝑡𝑠 = 4 and, as a function of C) 𝑛𝑚𝑎𝑥 and D) 𝑀𝑖𝑛𝑃𝑡𝑠 with 𝜎𝑡ℎ𝑟𝑒𝑠ℎ = 0.056 and 𝜖 = 0.013 in
C) and D).

6.5. Results
Throughout this section we experimentally study three different samples of the PSL
particles spincoated on the silicon wafer. The first sample includes particles with
diameters of 50 nm, the second 100 nm, and the third a mixture of 60, 80 and 100
nm. The details on sample preparation are outlined in the Appendix C.

6.5.1. Preprocessing and search.
In the IC manufacturing double side polished wafers are used. The block of pure
crystalline 𝑆𝑖 is diced and polished right before the resist deposition. Due to the lack
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of precision in the wafer holder, unstable rotation and heat deformation, the polishing
can affect the flatness of the wafer. Additionally, the thickness of the wafer is not
uniform across the sample [15]. This effect mostly occurs at the edges of the wafer.
Nevertheless, the scanners need to provide information over the entire wafer under
the study. For sensing or particle detection applications using CFS, the probing light
should be focused on the interface between air and top surface.
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Figure 6.6: A) Top  the side view (along 𝑦 of the raw sampled data wherein the baseline

wandering is present. Bottom  the corresponding data after the baseline wandering is removed.

B) Top view on the same scan with the red points representing the detected zerocrossings.

C) Histogram representing the particle size distribution, based on time width 𝜏 from detected

pulses. The inset shows the calibration of size of the particle as a function of the time width of

the signal. D) Example of the line from the data set, the dashed line is an initial guess for the

timewidth and left  L and right  R boundary is returned from the fineadjustment step. The

scan width of 20 microns corresponds to 100 [ms].

Due to several experimental factors during the scanning, the baseline (differential
signal when no particle is present) may fluctuate or drift from the expected zero value.
Hence, occasionally, the data set might include DC offsets mixed with low frequency
noise (baseline wandering) [16, 17]. This problem can be corrected as shown in the
data presented in Figure 6.6 A) raw data (top), and with baseline correction (bottom).
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Further, the scattered map from the bottom Figure 6.6 A) is analyzed with the search
algorithm (Section 6.4.2) to produce the particlemapping data that is seen on the 6.6
B). Here we analyzed a random area from the calibrated sample and the histogram
nicely peaks at the position of the 𝜏 = 7.05 [ms] that corresponds to PSL particle
with 50 nm in diameter as according to the recipe of the first sample. For the area
that contained only a few particles, one can notice a relatively high amount of counts,
and this is because all the localized zerocrossings contribute to the output histogram.
The SNR ratio for this dataset is low 𝑆𝑁𝑅 = 7.14 [dB] while the algorithm can still
localize the particle detections, including the one that resides at the border of the
scan, thus generalizing beyond the input data. N.B. The particle classification in CFS is
based on the width of a timedomain particle signal. The quantitative limit of the post
processing framework for discrimination between the differentsize particles is defined
by the accuracy of the fineadjustment routine of Section 6.5.1. More specifically, in
the ability to find the minima closest to the rising edge of the differential signal. If
we assume the infinite sampling of the signal and low noise, there are virtually no
limitations on how accurate the position of minima can be defined, aside from those
emerging from the numerics or computational effort [18]. On the practical side, there
is a limitation in the manufacturing of the monodisperse PSLs. The target size of the
particle diameter has the uncertainty in the range of 1 − 2 nm [19].

6.5.2. Comparing the accuracy of clustering routines on a dataset
with drift.
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Figure 6.7: A) The start sampling point (red cross) has fluctuation in time  above (asyn

chronous). The primitive of the voltage waveform for moving the piezo along one axis forth

and back  below. The timeconstant 𝑡𝑐 tries to match the start of the piezo movement (upris
ing edge of the waveform) with the sampling start. Example of the isolated nanoparticle with

diff. amount of drift present. The nondrift image B), an increasing amount of drift from 100,

90, 50 ms scanning time per line, C), D) and E) correspondingly.

The source of the drift originates from the sampling at the detector being an asyn
chronous process with respect to the piezo stage movement. When the piezo controller
passes the initialization signal to the computer, the jitter and USB connection produce
a random time delay before the sampling will actually start. One can mitigate the prob
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lem by introducing the constant wait time 𝑡𝑐 (empirical estimate) at the piezo before
the voltage will be increased (Figure 6.7 A)). Yet, the random nature of the delay will
not be equal to the introduced 𝑡𝑐. When faster scanning is performed, the drift in the
dataset gets worse. Figure 6.7 B)  E) shows the same isolated nanoparticle scanned
at a different speeds: 100, 90 and 50 ms per line, demonstrating an increasing amount
of the distortion in the dataset.

We take the data corrupted with the drift and compare the accuracy (Eq. 6.11) of
two clustering algorithms as the average result of 100 random initializations (not to be
confused with the classification accuracy of the next Chapter.)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − |1 − 𝑁𝑑𝑒𝑡
𝑁𝑡𝑟𝑢𝑒

| . (6.11)

where 𝑁𝑑𝑒𝑡 is a number of detected clusters, hence isolated particles, and 𝑁𝑡𝑟𝑢𝑒 the
actual amount of particles on the sample. This formula ignores the difference between
the over and underestimate in the 𝑁𝑑𝑒𝑡.

Figure 6.8: The true number of particles (ground truth) in red. Comparison of the DBSCAN (in

blue) and modified Kmeans algorithm (in black) for the three levels of drift. 100 drift represents

the least distorted dataset, 90 drift dataset with average distortion, 50 drift is the dataset with

severe distortion. A) Recommended and C) tuned hyperparameters. B) Result of 81% accurate

convergence by the DBSCAN for the case of 50 drift present.

We will use the nondrift corrected “image” as a ground truth for this comparison
providing us the number for 𝑁𝑡𝑟𝑢𝑒. The nondrift “image” is achieved by establishing a
new synchronization approach with the trigger pulse generated at the piezo controller
through analogue output upon each beginning and end of the scanning line.

The first test is to use some of the global parameters such as 𝑛𝑚𝑖𝑛 , 𝜖, 𝑛𝑚𝑎𝑥 , 𝜎𝑡ℎ𝑟𝑒𝑠ℎ
according to the reasoning outlined in the Section 6.4.4. Recommended hyperpa
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rameters come from showing the program once what the “good cluster” looks like.
A number of 100 random initializations were needed to get an idea of how the K
means algorithm will suffer from random initialization, specifically the starting number
of clusters 𝐾 and their positions are randomly initialized. On the contrary, the DBSCAN,
regardless of initialization, always converges to the same result (see Figure 6.8). This
test reveals that both algorithms can achieve relatively high accuracy > 70%. As
expected, accuracy on the data that contains less drift is higher and contains less un
certainty. On average, accuracy does not exceed 84% for the case of the DBSCAN
and the algorithm produces the same amount of clusters at every iteration. When
the input data is shuffled, the only “nondeterministic” behavior is in the label for the
cluster being assigned, but not the composition of the cluster itself. The behavior was
firstly highlighted in the original paper of DBSCAN [7] where the authors claimed that
convergence result is independent of the order in which the points of the database are
visited expect the “rare” situations. This “rare” situations occur when border points
belong simultaneously to two clusters. This border point will be assigned to the cluster
that is considered first to avoid the overlap. In other words, there is always the same
amount of densityreachable points from a reference point, hence the same amount
of the assigned clusters is constant.

In the next test for both algorithms, the global parameters were manually adapted
to yield higher accuracy (Figure 6.8 C)). The adjustments to the 𝐾, the desired number
of clusters in Kmeans can be set higher than the elbow method recommends, and for
the DBSCAN algorithm the 𝜖 parameter is crucial. This test demonstrates that with the
aid of completely manual tuning, higher accuracy > 80% for any type of dataset can
be achieved. Even more, the 𝜖 parameter in the DBSCAN can be chosen to recover the
100% accuracy on the dataset with the minor drift. N.B. The average convergence time
for the DBSCAN algorithm is 0.01 second and for the Kmeans algorithm 47 seconds
on laptop Dell Inspiron 7577.

6.5.3. Benefit of the centroids reassignment

For the domain of the semiconductor industry, specifically for the lithography process,
it is crucial that cleaning can be performed if contamination above a certain size is
present on the sample. In this way, for instance, the very small particles are of minor
importance for the pellicle layer above the UV mask, and only if the bigger particles
are present, cleaning action needs to be taken. In the absence of the pellicle, on
the contrary, one should only be concerned with the small contamination landing on
the mask [20]. The quantitative description of the surface, provided by the surface
scanner in this regard becomes very crucial. The confusion between the different sizes
of the scatterers on the sample should be minimal. For our system, the width of the
signal changes as scanning through the spherical particle is performed (Figure 6.9).
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Figure 6.9: Sketch of the signal from an isolated spherical particle visible over three consecutive

line scans. The red region represents the increase in the τ width of the signal when the scan line
passes through the center of the particle as compared to other consecutive lines ±Δ𝑌 (signals
as dotted lines).

In the first approximation, all the detected signals can be fed to the histogram as it
was done in Section 6.5.1. This approach would work properly if the dataset includes a
single particle size or if the contamination is reasonably different. Realistically, samples
contain a wide range of particle sizes.
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Figure 6.10: A) Zerocrossings of the diff. signals by the search alg. and B) the corresponding

isolated particles by converged DBSCAN. The dataset includes minor drift where one scanning

line of Δ𝑋 = 25𝜇𝑚 takes 100 ms. C) Histogram includes all particlelooking signals and D) when

the signals corresponding to one particle are clustered, and only one signal per particle (highest

𝑉𝑝𝑘−𝑝𝑘) is taken.
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If the pulses on the edges of the particle scan are included in the estimation his
togram, they will contribute to the interclass confusion.

In the Figure 6.10 we demonstrate the outputs from the signal search algorithm
and corresponding clusters defined by the DBSCAN algorithm. This algorithm was
chosen since the convergence time is faster than the modified Kmeans, and it had
achieved higher accuracy at the previous test. The region of the sample under study is
a good representative of the multiclass sample where additionally to the nominal 60
and 80 nm PSL particles, there are isolated particlelooking signals that are treated as
outlier by the algorithm as well as the contamination of bigger particles ≈ 100 nm in
diameter. The first approximation histogram includes the side detection from the class
of the 100 and 80 nm contributing to the class of 60 nm as well as features between
the classes and it seems that there is only a single class present in the data (see Fig.
6.10 C). When all signals that corresponds to one particle are clustered and only the
highest 𝑉𝑝𝑘−𝑝𝑘 pulses from each cluster is assigned as being one particle (Fig. 6.10
B), we observe three separable classes in the histogram (Fig. 6.10 D), showing that
this strategy solves the problem of particle size confusion.
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Figure 6.11: A) The zerocrossings of the differential signals by the search algorithm and B)

the corresponding isolated particles (after clustering) obtained by converged adapted Kmeans

algorithm. The data set includes minor drift where one scanning line of Δ𝑋 = 25𝜇𝑚 takes 100

ms. Histograms obtained when C) all the particlelooking signals contribute to the histogram,

and D) when the signals are clustered and only one centroid (with maximum 𝑉𝑝𝑘−𝑝𝑘) is assigned
to represent the particle.
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In addition to the better performing algorithm of DBSCAN presented above, we
demonstrate the output of the modified Kmeans algorithm 6.11 B). The difference
with the DBSCAN algorithm is a tendency to merge the clusters that would easily be
separated by the human eye. Such cluster can be seen as cluster n. 3, which contains
two separable groups of points. The solution for this problem can be to reinitialize
the algorithm multiple times until the cluster is assigned correctly. Nevertheless, it is
more informative to present an average initialization result. The algorithm is capable
of separating three classes of particles, as shown in 6.11 D), which is much better than
the result of using all the detected signals 6.11 C).

6.6. Discussion and Conclusions
The approach of clustering the data has a downside, namely, the risk of losing the
beneficial signals that correspond to very tiny particles. These particles may produce
only single scan line with a sufficient SNR, if the selected step between the scan lines Δ𝑦
is too big. To improve the sensitivity of the algorithm even further, a separate routine
could reconsider the outliers. This step could include adding a collection of matched
filters operating in the time domain to filter out signals with the expected duration.
Alternatively, one can try to establish spectral differences between the particle and
nonparticle signals (multiple wavelength approach).

While this study considered the detection of polystyrene particles, the technique
could also be applied to extract features from a measurement of particles of different
materials. Scatterometry is not an imaging technique, and some other features (such
as material) can be recovered if one can model them and obtain more diversity in
the experimental data. For example, instead of only looking at the time span of the
particle signal (related to the size of the particle), one can add its magnitude, which is
proportional to the diameter and material of the particle [21]. Another example is the
work of Potenza et al. [22] where using a similar technique, they were able to recover
the complex index of refraction of the particles, and in this way, reveal their material.

DBSCAN can yield higher accuracy than the Kmeans subroutine in the case of when
the scale of the data is well understood. Also, the convergence of DBSCAN algorithm is
fast. Nevertheless, there is still room for implementing the Kmeans routine because
the sensitivity to the hyperparameters is much higher in the case of the DBSCAN,
including the complete failure in defining the clusters from the initial data. The K
means, on the contrary, can be considered as a more robust algorithm that yields
relatively high accuracy, and at any initialization will always define a certain amount of
clusters. The Kmeans algorithm is scalable to large datasets while the DBSCAN can
suffer from the curse of dimensionality [23]. A final point to consider is when working
on datasets with severe drift and wide range of the particle sizes, the DBSCAN can fail
to cluster data with significant differences in densities [24].

Throughout the IC manufacturing process, large amounts of data need to be mined
in a fully automated mode [25]. With a growing amount of the data, we can envision
that the linebyline analysis of the dataset can become computationally slow. Also,
the total amount of hyperparameters is significant. Search and clustering routine in
total has up to 6 parameters fed by the user. Hence, in the next chapter, we will
explore the potential of methods for handling big data, such as deep learning and
CNN [26, 27].
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In this chapter, we have developed a generalized framework that accurately extracts
features of the differential signal produced by the scattering of a nanoparticle and
uses these features for particle location and size determination. We have combined
preprocessing with search algorithms based on thresholding, such as peaktopeak
amplitude, and the width in time of the signal. The proposed method makes use
of unsupervised clustering techniques to separate particles with high density on the
samples. We adapt algorithms of DBSCAN and Kmeans and use them together with
the simple prior.

We have tested the framework for the dataset with high density of the particles,
presence of large experimental noise, and drift present in the dataset. The accuracy
of the algorithm resulted in the 84% for the hyperparameters set semiautomatically,
and the 100% accurate result for manuallytuned parameters. The algorithm of DB
SCAN is a goto solution because it works much faster than Kmeans. However, the
latter is more robust because it is less sensitive to the change on the input param
eters. While we tested the framework for the particular case of experimental data
obtained with CFS, this method can be generalized to other experiments that involve
measurements with differential detection, such as coherent timeaddressed optical
CDMA systems [28] and ferromagnetic resonance spectrometers (VNAFMR) [29]. In
these techniques, the data set might include mechanical vibrations or other exper
imental fluctuations, similar to the drift studied in this chapter. We believe that the
proposed framework is an essential addition to the nanoparticle detection experimental
community.
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7
Convolutional Neural Network

applied for nanoparticle
classification

In this chapter, we investigate the effectiveness of the novel concepts from the
domain of computer vision, such as deep neural networks and anomaly detec
tion when they are applied to the datasets of CFS.
We encourage interest in deep learning techniques in Section 7.1. In Section
7.2, the architecture of the multioutput classification of the convolutional neural
network is proposed and configured. Furthermore, in Section 7.3, we practice
and examine the ability of the trained model to refuse unknown inputs if we
change the penultimate layer of the network. We further conduct a comparative
test with the ML method of Chapter 6. Finally, we provide Conclusions and
Discussion in Section 7.4.

Parts of this chapter have been published in Applied Optics 59, 84268433 (2020) [1]
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7.1. Introduction
Recently, there has been a growing interest in deep learning which has demonstrated
its feasibility to significantly improve optical microscopy, enhancing its spatial resolu
tion over a large field of view and depth of field [2], analysis of medical images [3],
analyzing ThroughFocus Scanning Optical Microscopy (TSOM) images of nanostruc
tures [4], detecting and localizing holographic features [5] and many other application
areas in optics and physics [6, 7]. Deep learning algorithms are part of a broader fam
ily of machine learning algorithms, which can be considered as a network consisting
of multiple neural layers with the idea to progressively extract higher level features
from the raw input, otherwise known as learning on the representation of the data
[8]. Examples include: deep neural network DNN [9], recurrent neural network RNN
[10, 11], long shortterm memory LSTM [12] and convolutional neural network CNN
[13, 14]. The feasibility of CNN has been demonstrated by wafer map defect pattern
classification using simulated wafer maps (synthetic data) [15], relying on scanning
electron microscope (SEM) images for classification of defects and contamination [16]
and recently defining the chemical composition of particle defects on semiconductor
wafers by merging the SEM image data with Energy Dispersive Xrays Spectroscopy
(EDX) spectral data as input [17].

In the previous chapter, the 2𝐷 scattered maps generated by the CFS technique
have been studied with linebyline search algorithms resulting in histograms that rely
on the features of characteristic electronic signals that are generated when a particle is
detected. The cumbersome search routines are associated with the hyperparameters
defined by the user for each specific input dataset, e.g. an expected amplitude and
width of the characteristic signal, density and number of points in a cluster of isolated
particles, and the zeroing parameters for different iterations of the search [18]. There
is still a need for discussion on minimization of useralgorithminteraction [19, 20].
However, it is true that considering a growing amount of data and pressure to inspect
data more quickly, the linebyline analysis of the data set can become computationally
slow. The additional challenge is the precise categorization of killerparticles using au
tomated contamination or defect classification. In other words, the confusion between
the different sizes of the particles on the sample should be minimal. Moreover, while
there are solutions to all of these problems, there is a cost associated with each of
them. For instance, the application of neural networks requires retraining the network
when the physical parameters change, which will consume a lot of resources and time.
On the other hand, when pretrained and deployed, the classification runs almost at
no time and virtually no apriori parameters nor additional tuning of the network are
required.

In this chapter, we propose a method to classify the scattered maps of isolated
nanoparticles using CNN. We utilize calibrated samples of PSL spincoated on wafer,
with diameters ranging from 40 to 80 nm to collect the training data. Polystyrene
particles are standard for the calibration of surface inspection tools because they have
wellcharacterized optical properties (low index of refraction, thus most challenging
to detect) and a very tight monodisperse size distribution [21]. Furthermore, for the
classification, we study the areas of the wafer where the particle is absent, contributing
to the “background” class. We also target at a novelty detection, by looking at ways
for the network to separate the “unknown” class from the input data, i.e., classes that
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have been unseen in the training. In order to do that, we rely on a simple approach
of baseline and also a more sophisticated approach of introducing the OpenMax layer
[22]. We carried out an experiment by adding noise to the scattered maps (degrading
thus the SNR), fooling images as well as some unfamiliar (reversal) images to the
network. As one of the main goals for the CNN is to accurately discriminate between
classes, we study not only the monosized but also samples that contain multiple classes
of PSL particles with diameters of 40 and 50 nm, 50 and 60 nm, 60 and 80 nm
(see preparation of samples at Appendix C). The results show that our model can
successfully discriminate between the proposed 5 classes with an accuracy up to 95%.
By providing the samples that were unseen during the training, our results for the first
time highlight the importance of the novelty detection to capture the confusing inputs
in a contamination detection problem. The results show that the proposed method has
superior capabilities compared to the classification with the traditional search algorithm
[18]. The dataset and the codes used to generate the typical results of this chapter
are available online [23, 24].

7.2. Method
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Figure 7.1: A) Example of 2D map with the signal that is obtained when an isolated particle is

recorded by the balanced detector. B) Schematic process of the CNNbased classification. The

dotted red boxes indicate that the images are cut out. The input to the CNN are cutout farfield

maps containing the detection of nanoparticles; the output of the CNN is the label of the particle

diameter 1, 2, ...𝑁. The example image size is 40𝑥15 𝜇𝑚2 represented by arrows.

The proposed CNN algorithm takes a set of “images” (signal intensity maps) as the
network input and outputs the class labels (see Figure 7.1 B). The discretization of the
data is due to the sampling speed of the NI 5922 acquisition board and selection of
the scanning step between lines. The scale in the Figure 7.1 A) (150x150) is given in
pixels with each pixel corresponding to 2 nm in 𝑥direction and 4 nm in the 𝑦direction.
The intensity maps (2D scan maps) generated from the data points arranged line per
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line, according to the raster scan pattern.

The raw data yields the detection of numerous isolated particles. The density of
deposited particles has been chosen in order to have a considerable number of de
tected particles in a scan area of e.g. 40𝑥15 𝜇𝑚2 (Figure 7.1 B). Other signals are also
present, corresponding to clusters of particles, particle deposition residues and possi
bly crosscontamination. Since directly using all particlelike detections from a sample
are not always possible and would not give a highquality dataset, we performed man
ual labeling. The type of the particle signal that is present with the highest density
inside the global scan area is the representative for the nominal size. The bounding
box is placed such that the particle signal is fully visible in the region of interest (the
dotted red boxes Figure 7.1 B). This square cut is centered about the position of the
maximum amplitude of the differential signal. For the background class, the particle
signal pattern (positive and negative amplitude) of the particle should be absent. We
have grouped the images into the classes of 40, 50, 60 and 80 nm particles and the
“background” class that corresponds to the areas of the sample without particles (see
Fig. 7.2 A)). We created a classbalanced dataset (see Table 7.1) with roughly 260
images per class. The total amount of 1302 images are fed to the network, and we
use the 60 − 20 − 20 split for training, validation and testing. Here we ensure that all
three sets contain representative examples by randomly splitting data from each class
into three parts and then merging to form the unbiased sets.

Table 7.1: The amount of images per class (original dataset).

Class 40 nm 50 nm 60 nm 80 nm background total

#

of

images

254 253 276 272 247 1302

We use the holdout method for validation, meaning that after each epoch, the
validation dataset is passed through the network. When the training is complete, we
show the test set to the network for a single time. The amount of images required
for the training of the network, contrary to the expectations, turn out to be relatively
small, presumably due to the simple pattern of the particle signal. We did not apply any
geometric transformation to the experimental data, thus the input data only contains
the diversity of examples due to the inherent experimental conditions. As shown
in Fig. 7.2 B) we use the network architecture where no manual feature selection
is necessary. The simple deep neural network was composed of repeated units of
convolutional layers, which number and sizes are chosen to have a balance between
speed and low 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 = (1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦) (Figure 7.2 C).
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Figure 7.2: A) Examples of the five output classes. B) The architecture consists primarily of

convolutional layers capable of extracting relevant features of the input samples. Three fully

connected layers at the end serve as a decision layer, mapping the automatically extracted

features to the desired output class. C) Error rate as a function of the number of convolution

layers and batch sizes. From the plots, we see that 2 convolution layers and batch size of 15

are the optimal choice for the architecture, since they introduce a good balance of training time

and lowenough error rate

The final architecture includes input size of 150 × 150 pixels and two convolution
layers operating with filter (kernel) sizes of 5 × 5 pixels. The amount of filters in the
first convolutional layer is 5 and in the second is 8, stride is 1. In between and after
the convolutional layers, we have inserted two maxpooling layers with size of 2 × 2
pixels and stride 2, effectively reducing the image resolution by a factor of 2 at each
step. The purpose of these layers is to reduce computation for consecutive layers
and to provide a form of translation invariance. All convolutional layers have rectified
linear unit (ReLU) activation. Each ReLU in the network is followed with the Batch
normalization [25]. The final maxpool layer is fed into three fully connected layers of
size 120, 84 and 5 respectively. Final layers are necessary to learn the relationship
between the learned features and the sample classes, which is in our case is five.
Finally, the logits are converted to the probability scores by the SoftMax function.
The network’s output is used to compute the meansquare error between the true
label and the predicted label, also known as the cross entropy loss. We used the
Adam optimization scheme with a global learning rate of 0.001 to minimize this loss
function. The total number of weights in the network that are being updated during
the training process is 1326087. We built a Pytorch [26] implementation and move it
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to the GPU (NVIDIA GTX1050 Ti) calculation with tensors. More information about the
implementation can be found in Ref. [23, 24].

7.3. Results
7.3.1. Closed set classification
The best model has to be selected based on the Accuracy metric calculated on the
test data. For the closed set of five classes, as according to Table 7.1, we found that
after approximately 12 epochs (12 times through all the training examples), the loss no
longer decreased significantly (Figure 7.3 A). The top performing network (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
95%) was stored to be used in further tasks.

Figure 7.3: A) The training and validation loss  left and accuracy  right, is evaluated across

different number of epochs based on the optimal parameters (Figure 7.2 B) architecture of the

CNN model. B) The accuracy for the test set in the confusion matrix. C) 2D visualization of

the loss surface of the CNN model with the projected learning trajectories using normalized PCA

direction (batch size of 20, Adam optimizer and 15 epochs of training).

In order to see which classes the network struggles to distinguish and to what
degree, we built the confusion matrix (Figure 7.3 B). The horizontal axis represents
the particle classes predicted by our model, and the vertical axis represents the true
input image labels. For example, the 80 nm row (the 4th row in the matrix) indicates
that 92.6% of the images labeled with 80 nm are correctly predicted as 80 nm; 1.9% of
them are incorrectly predicted as 60 nm; 5.6% of them are predicted as “background”.
Our experiment shows that 50 is often confused with 40 nm. The reason is that
there is a small difference between the scattering crosssections generated by these
two particle sizes (the scattering varies by the sixth power of the diameter [21]). It
is clearly visible that most misclassification involves the background class. Finally,
we built the landscape [27], where we demonstrate the convergence to minima as
our learning procedure follows the loss in a gradual manner. The projected learning
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trajectory is estimated using normalized principal component analysis (PCA) directions.
The squared nature of the loss function leads to mostly convex loss landscape (Figure
7.3 C).

7.3.2. Comparison with thresholding classification method
We compared the performance of our CNN classifier, pretrained on the five classes
(Section 7.3.1) with a method of the previous chapter. We did that on new test sets of
separately 40, 50, 60 and 80 nm particles, with roughly 40 cutout images per class.
The thresholding classification method can be summarized as:

• Search linebyline for signals that have characteristic shape (positivenegative
pulses) and that are close to the expected amplitude and timewidth of the par
ticle in question;

• Use the Densitybased spatial clustering of applications with noise (DBSCAN)
algorithm to define the group of signals that are attributed to a single scatterer
and return the estimate of the timewidth from centroid. By group of signals,
we mean that the signal should repeat itself at the same 𝑋 position in a few
consecutive scan lines (in the 𝑦direction);

• Use a calibration curve based on the timewidth of the signal as a function of the
particle size to return a class label for the particle.

This method operates on the reference positions of the cutout images from the cor
responding raw scan maps. We keep the number of the output classes equal to five to
provide a fair comparison hence in the thresholding method instead of the background,
the class of 100 nm particle is present.

Table 7.2: Comparison of accuracy per class between the proposed CNN and method based on

thresholding and search.

40 nm

(35 images)

50 nm

(37 images)

60 nm

(37 images)

80 nm

(46 images)

Thresholding 0.37 0.43 0.63 0.82

CNN 0.97 0.94 1 1

In Table 7.2, we present the classification performance of thresholding and CNN
approaches on the four test sets. From the results, we can see that the classifier based
on the neural network achieves better performance as compared to the classical search
routine. Both approaches perform very accurate on the data of 80 nm particle class,
but when reducing the size of a particle, the accuracy drops much faster in the case
of the thresholding method.

It is critical to note that both approaches can consider the 2D local information
inherent to our measured data. In the case of the thresholding approach, positive
negative signals that are present in consecutive scan lines at the same 𝑋 positions are
clustered and considered as a single particle (see Fig. 7.1). In the case of CNN, the
convolution filter can extract the spatiallyconnected information by walking over the
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image. It is unlikely thus that improved classification accuracy is due to the 2D nature
of convolutional kernels. The essential difference is the ability of CNN to extract the
higherlevel representation by cascading the filters and learning on these representa
tions. On the contrary, classification based on the calibration curve (signal feature as
a function of a particle diameter) always relies on the representation of the data that
are manually engineered.
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Figure 7.4: Confusion matrices comparing classification tendencies between predicted and true

labels by A) thresholding and B) CNN approach. Squares are colored based on the value of the

cell, with darker colors indicating more matches. Values along the diagonal of each confusion

matrix represent the images classified correctly, while values in offdiagonal regions represent

blurring between types of classes.

To address further the classification tendencies as they appear in methods un
der comparison, we demonstrate the confusion between the classes. The clustering
method performed a lot worse, where the overall accuracy was 56%, with relatively
accurate results for the 60 and 80 nm classes yet with a lot of confusion on the 40 and
50 nm classes. Evidently, in both approaches, the confusion between the neighboring
classes is present (see Figure 7.4). For the thresholding method, it is clear that the
steeper the calibration curve would become, the less confusion would be present. In
herently, this reference method relies on the time width, that showed to be a sensitive
parameter for the case of particles ≥ 100 nm [28]. We point out that classification
of the single particle image takes 0.89 [s] for the case of the thresholding algorithm
and 0.02 [s] for the pretrained network of this chapter. Generally speaking, other
features can be selected in order to allow for better discrimination, which addresses
the topic of feature engineering. At the same time, not so deep CNN is enough to
pick up on patterns in many different features of an input. Features extracted by the
network extend far beyond these that make sense to the human eye, such as, max
ima, minima or the pattern size. A CNN trained to recognize particles might find other
features such as patches of color, topography or background, which can become even
stronger predictors.
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7.3.3. Towards Multiclass Open Set Classification
Making alterations to the regular input data even in the form of tiny changes that are
typically invisible to humans can mislead the best neural networks. These problems
are not easy to solve because CNNs are fundamentally fragile. As shown in the pre
vious two sections, the accuracy in classification is very high, but this is possible until
networks are taken into unfamiliar territory where they can break in unpredictable
ways. To bring a spotlight on the problem of confusion by the so called “adversarial
examples” [29], scientists have evolved images that look like an abstract pattern but
which the DNNs see as familiar objects [30, 31]. In the context of CNN applied for
the classification of the different particle sizecontamination, we should envision that
distorted measurement data or other types of untrained particles could also be spotted
by the proposed network.

The output layer of the original architecture at Figure 7.2 B) is SoftMax layer that
contains the vector of probabilities

𝑃(𝑦 = 𝑗|x) =
𝑒𝑥𝑝(v𝑗(𝑥))

∑𝑁𝑖=1 𝑒𝑥𝑝(v𝑖(𝑥))
, (7.1)

where 𝑥 is the sample image and v(x) is the corresponding activation vector. The
number of classes is 𝑗 = 1, ..., 𝑁 and 𝑖 is the index that goes over the classes. Due to
the summation in the denominator, the probabilities are normalized and sum up to one.
We want to build a (𝑁+1)classifier 𝑓(𝑥) with the classes 𝐶 = {𝑑1, 𝑑2, ..., 𝑏, 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛}.
The most straightforward approach of a novelty detection is to introduce the baseline
value for the scores of the SoftMax layer. If the probability of the output classes is not
highenough, the input image is assigned with the unknown label. The novelty score
𝑁𝑆 is defined as

𝑁𝑆 = 1 −𝑚𝑎𝑥(𝑃(𝑦 = 𝑗|x)). (7.2)

The procedure of computing the OpenMax probabilities includes 4 steps:

1. For each class 𝐶 = [𝑐𝑗,...,𝑁], the mean activation vector is computed 𝑀𝐴𝑉 =
[𝜇𝑗,...,𝑁], where 𝜇𝑗 = 𝑚𝑒𝑎𝑛(𝑣𝑗(𝑥𝑖,𝑗)) and 𝑥𝑖,𝑗 represents the correctly classified
sample.

2. Per class, fit the Weibull model with parameters 𝑝𝑐𝑗 = (𝑡𝑐𝑗 , 𝜆𝑐𝑗 , 𝑘𝑐𝑗) to the dis
tance between the input sample and the mean of the set of 𝜂 number of outlier
examples of class 𝑗. 𝑡𝑐𝑗 is used for shifting the data, 𝜆𝑐𝑗 and 𝑘𝑐𝑗 are the scale
and shape parameters derived from the training data of the class 𝑐𝑗 and control
the cumulative density function (CDF). For more details on Weibull distribution
and Extreme value theory, see the Reference [32].

3. Estimate the Weibull CDF probability on the distance between sample 𝑥𝑖 and
known class’ mean activation vector: 𝑀𝐴𝑉[𝜇𝑗,...,𝑁] defined as w(x). Recalibrate
activation vector by �̂�(𝑥) = v(x)∘𝑤(x). To allow the novelty detection, augment
output to 𝑁 + 1 classes by �̂�𝑁+1(𝑥) = ∑𝑖 �̂�𝑖(𝑥)(1 − 𝑤𝑖(𝑥)).

4. To support explicit rejection, pseudoprobability of an unknown class is estimated
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from known class’s activation scores

�̂�(𝑦 = 𝑗|x) =
𝑒𝑥𝑝(v̂𝑗(𝑥))

∑𝑁𝑖=0 𝑒𝑥𝑝(v̂𝑖(𝑥))
, 𝑗 = 1, ..., 𝑁 + 1. (7.3)

The third way of dealing with the unknown input is similar to OpenMax; however, it is
much simpler and essentially relies on the mean activation vector:

1. Calculate the 𝑀𝐴𝑉 for the correct classifications of each class.

2. For each image 𝑥 in the train and validation sets, obtain the activation vector
𝑣(𝑥) and predicted class 𝑐(𝑥). Then, calculate the distance to the 𝑀𝐴𝑉 with
𝑑 = ||𝑣(𝑥) − MAV𝑐(𝑥)||. Save values of 𝑑 separately for correct and incorrect
classifications.

3. For each image in the test set, calculate 𝑑 in the same way, and if it is above
some threshold, reject the classification (thus classifying it as unknown).

Thus, we utilize and compare three approaches of “Baseline”, OpenMax, and distance
to MAV approach in order to catch open set examples each time showing the unseen
images to the network without additional training. We introduce an input sample
with high noise, where the Gaussian and 1/𝑓 noise were added to every image. For
instance, samples that corresponds to the 80 nm (see Figure 7.5 A) were modified
such that the SNR decreased by −9.7 dB (1.5 times), fooling images of an elephant
from 𝐴𝑛𝑖𝑚𝑎𝑙 − 10 dataset [33], and finally, the mirrored image along 𝑥 axis of the
2D scattered maps with detected particles, which is representative for the image of a
defect such as a small pit. It is not rare that studies on detecting fooling/adversarial
images have a narrow focus on optimizing the output or penultimate layer of the
network such that the probability for an unknown image is low. This is something of a
pitfall because it is possible to optimize the score of rejecting the unknown class with
the cost of losing a significant number of the correct images. With this intention, when
making the comparison, we apply the network with different output layers for both the
original and fooling dataset. In different scenarios, we observe similar behavior. The
vast majority of the original images lie in the shallow uncertainty region, which is
an indication of a highly accurate network. However, the incorrect ones span nearly
the same range as the correct ones, meaning we cannot completely dismiss incorrect
classifications by thresholding uncertainty. No matter what threshold we would set, we
would always have some incorrect classification. Further, we chose this threshold such
that we reject approximately 10% of standard data. This is an arbitrary value, since
the acceptable maximum rejection of standard data would depend on the application,
and on how frequently images appear in the data that should be rejected.
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Figure 7.5: A) Three types of openset examples: image of defect, the fooling image of the

elephant, the noisy particle image. B) Summary of comparison between three unknown detec

tion methods as applied to the openset examples ≈ 1090 images per type. Inset: Example of
the best performing case, where the “Distance to MAV” method is applied to the fooling set of

elephants. Blue points represent the complete original set passed through the network and the

orange points represent the fooling set. If the threshold (in red) is set such that only the 10%
of the ”good” images are dropped, then the same network can capture 80% of the unknown

images.

As a result, we compare the amount of rejection in openset examples by the
three supervisor approaches in Figure 7.5 B). In particular (inset figure), for the fool
ing dataset, the best performing algorithm is the one based on the distance to MAV,
where, we can see how it possible to separate the 80% of the fooling images. We
pass the entire original dataset (blue points) and the whole fooling elephant dataset
(orange points) through a trained network and set the threshold based over the in
formation from the mean activation vectors. The additional information gained from
using the entire vector of outputs rather than just the maximum (novelty score) helps
with rejecting unknown inputs there. For the defect set, it performs no better than
the Baseline approach, and on the noise set, it performs significantly worse. Finally,
the OpenMax gave us poor results on all sets.

7.4. Discussion and Conclusions
The Weibull model is the core of the OpenMax approach. As an essential part of the
algorithm, the method selects the𝑚 highest activations per activation vector. Our data
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has only 5 classes, meaning our activation vectors have only 5 entries. There is not
much selection possible in this case. The original paper of OpenMax [22] visualizes
activation vectors for a 450 class system and provides some intuition about where the
information resides that is used in OpenMax. It is thus clear that, with low amount of
classes, the CDF distribution would be very discrete, and a lot less information could
be gained from it.

Instead of having the supervisor in the network, such as baseline or 𝑀𝐴𝑉, one
can include the fooling images as a part of the training data; in particular, to regularly
expose the network to problematic cases. In this form, the output layer would explic
itly contain the desired class. However, training a network to withstand one kind of
“unknown” image could weaken it against others [34].

In case the network performs poorly, inspecting the images that contribute to the
offdiagonal elements of the confusion matrix allows us to study the data better and,
if required, remove inputs from the dataset to get to the higher accuracy. There are
also existing approaches where the subsets of outlier images are removed from the
training or test data. These are the interactive learningbased methods for curating
datasets using userdefined criteria [35, 36].

To deploy the network in the inline fab inspection scenario, more output classes
should be provided, approaching the realworld situation with a variety of particle sizes
on the surface. The synthetic data could replace the types of particles not available
experimentally for calibration.

In this chapter, we have applied CNN to 2D maps obtained using coherent Fourier
scatterometry for nanoparticle detection and classification. We trained a convolutional
neural network to recognize four classes of nanoparticles and surface background
class. Based on a total of 1302 experimental images rather than synthetic data, with a
simple CNN with two convolutional layers and batch normalization, we demonstrated
95% accuracy on the test data. The proposed approach outperforms existing algo
rithm for the analysis of the scattered maps that is based on thresholding and search
[18]. For relatively small particles, with diameters (classes) of 40 and 50 nm, the
accuracy has been improved by a factor of 2. Besides, when studying the amount of
misclassification presented by both methods, we see that the CNN can cope better in
separating the nanoparticles that produce very similar scattering crosssection (such
as particles with diameters of 40 and 50 nm). The demonstrated increase in accu
racy and minimized confusion could be attributed to the fact that CNN automatically
extracts the features from the proposed data, while the search approach only looks
at manually engineered features. Further, we experimented with selecting the best
approach to capture the images unseen during the training of the network. The output
layer of the proposed CNN can be augmented with a method based either on mean
activation vectors, OpenMAX or simple baseline approach. Depending on the need,
the threshold value for the uncertainty of the unknown images can be introduced such
that as we show experimentally, e.g. 80% of the fooling images of an elephant can
be neglected at the cost of only dropping 10% of the particletype dataset. We be
lieve that the proposed CNN is an essential addition to the nanoparticle detection and
classification.
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8
The limits of detection

In this chapter, we analyze the limits of CFS for nanoparticle detection. We
will demonstrate that in standard optical laboratory conditions it is possible to
detect a lowindex particle as small as 𝜆/14 in diameter.
After a short introduction, in Section 8.2, we present the experimental detec
tion results of the fabricated samples containing nanoparticles made of resist.
Further, in Sections 8.3  8.6, we analyze background surfaces with AFM and
CFS; numerically estimate the roughness contribution to the signal; analyze the
electronic noise from the detector circuit and the influence of environmental vi
bration. In Section 8.7 we analyze the limits of detection and in Section 8.8 we
present results of the pellicle sample. In Section 8.9, we present the conclusions.

Parts of this chapter have been published in Optics Express 29.11 (2021): 1648716505 [1]
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8.1. Introduction

In previous chapters, the samples were made of spincoated particles. However, to
investigate smaller particles, there are limitations to this samplefabrication approach.
An important limitation is the clustering of particles when they are < 40 nm in diameter.
Namely, the mean distance between isolated particles is less than 1 𝜇m [2, 3]. Further,
the full traceability of the results for such samples is difficult, because particles are
randomly distributed on the surface. In order to be sure about the detection and
localization of all individual particles, one would like to compare the scanned area with
the corresponding image obtained by a highresolution imaging technique, such as
SEM.

To address the issue of producing lowindex < 40 nm particles with mean separa
tion of ≥ 1 𝜇m, we fabricated resistmade nanoparticles using electronbeam lithogra
phy (EBL). We combine the analysis of such samples with > 40 nm particles made in
spincoating. After reaching the detection of 𝜆/14 particle for 𝜆 = 405 nm at 𝑆𝑁𝑅 ≈ 4
dB, we present a thorough analysis of the CFS scatterometer. We show a study of the
substrate roughness for both the spincoated samples and the roughness of chem
ically developed silicon surface from the EBL sample. Furthermore, we analyze the
electronic noise emerging from the circuit of the differential detector, and investigate
the vibration sources that distort the measured data. Finally, we fit the experimentally
acquired signals for the studied particle sizes and extrapolate towards the detector
noise level to indicate that the limit of the CFS setup was reached.

8.2. Experimental results on the minimum size limit
of particle detection

As discussed above, in order to be sure about the detection and localization of all
individual particles, one would like to compare the scanned area with the corresponding
image obtained by a highresolution imaging technique, such as scanning electron
microscope (SEM). To address the issue of producing lowindex < 𝜆/10 particles with
a mean separation of ≥ 1 𝜇m, we have fabricated resist nanoparticles on silicon wafers
using EBL. We used negative resist samples made with EBL because it allows for the
precise control of the particle size as well as the separation between the isolated
nanoparticles. We write the enclosed reference structure and the particle array of
tiny pillars with two spot sizes to improve upon the writing speed. After the surface
scan of the reference structure with CFS is performed, the sample is analyzed with a
SEM, to provide the comparison. The array of 4 × 4 resist particles on top the silicon
wafer is shown in SEM image (Figure 8.1). The size of the manufactured array is a
compromise between the time it takes to fabricate/analyze the sample and the number
of available targetsize particles. Depending on the magnification of the SEM, it is easy
to locate the rectangular edge structure Figure 8.1 A) or the star marker C). Performing
ellipsometric measurements before developing the resist, we measured the height of
the resist giving as result ℎ𝑟𝑒𝑠𝑖𝑠𝑡 = 25 nm.
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Figure 8.1: A) Scanning electron microscope (SEM) image of the reference structure. B) The

CFS scattered map of the reference region with the closeup G) of all 16 particles that have

been detected in a single scan of 34.6×37 𝜇𝑚. C) An SEM image of the star (marker) of ≈ 700
nm next to the 50 nm cylinder. The nanoparticles separated by 9 𝜇𝑚 with the square prisms

and cylinders in the upper and bottom rows D). SEM images of the 50 nm square and cylinder

E) and F), respectively.

Figures 8.1 E) and F) show the SEM images of the isolated resist nanoparticles
with either square prism or cylindrical shapes. The Latex Sphere Equivalent (LSE) of
these particles are 46 and 42.5 nm for nominal 50 nm square prisms and cylinders,
respectively. The resulting differential signal maps obtained with CFS show that all
particles within the reference region have been detected (Figure 8.1 B and G). The
𝑆𝑁𝑅 ≈ 16 dB is sufficiently high to localize all 16 particles. The noise level is computed
based on a differential signal of no particle region scanning.

In order to check the ability of the CFS system to detect smaller particles, we
fabricated another sample containing guiding lines of 4 × 0.5 𝜇𝑚 and 25 nm resist
cubes. The lines made of resist facilitate the localization of the nanoparticles both
with SEM and CFS.
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Figure 8.2: A) CFS scattered map of the reference region where the three cube nanoparticles

are visible (17.2×17.2 𝜇𝑚). B) Scanning electron microscope (SEM) image of the ≈ 25 nm cube

nanoparticle. In the inset, we see the crosssections of the particle image in two orthogonal

directions

Figure 8.2 A) displays the measurement with CFS where the three cube nanopar
ticles have been detected. The exact size of these nanoparticles is confirmed with the
SEM image shown in Figure 8.2 B). With this measurement, we validate the detection
of nanoparticles of diameter 𝐿𝑆𝐸 ≈ 29 nm (resist cube of 25 × 25 × 25 nm). For an
incident power level of 𝑃 ≈ 20 𝜇W, a 𝑆𝑁𝑅 ≈ 4 dB has been obtained. We remind that
the wavelength used in these measurements was 𝜆 = 405 nm.

8.3. AFM for background surface and no particle CFS
scans

The summary of three studied surfaces is shown in Table 8.1.

Table 8.1: The summary of AFM Park NX20 scan for three types of surfaces: blank silicon wafer

and no particle regions of spincoated and developed EBL silicon wafer.

Silicon surface type Combined measurement area [𝜇𝑚2] ℎ𝑟𝑚𝑠 [nm]
blank 2.43x2.43 0.4959 ± 0.0016

spincoated 1.8x1.8 0.6920 ± 0.0006
developed EBL 11x11 0.2524 ± 0.0002

For each sample we rely on the region where the target particles are absent. Fur
ther, looking at the three types of processed silicon surfaces (Figure 8.3) indicates that
none of the samples is completely clean.
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Figure 8.3: A) The AFM Park NX20 scan of a random 0.5 × 0.5 𝜇m region from three types of

samples. The ℎ𝑟𝑚𝑠 ≈ 0.5 nm of blank silicon wafer, B) the ℎ𝑟𝑚𝑠 ≈ 0.7 nm of no particle region

from spincoated sample, and the C) ℎ𝑟𝑚𝑠 ≈ 0.25 nm of no particle region from EBL fabricated

sample.

The bumps or defects in the size range from 12 nm to 80 nm are present. With
the smallest ℎ𝑟𝑚𝑠 ≈ 0.25 nm demonstrated for the sample made with EBL (Figure 8.3
C) we approach the surface roughness of the highend blank wafers used in industry
(≈ 0.1 nm) [4]. The possible reason why this sample contains the unwanted particles
of ≈ 12 nm transverse dimension, bottom right in Figure 8.3 C), is the remainder of
resist after the development stage. It is also clear that after the blank wafer (Figure
8.3 A) is spincoated (Figure 8.3 B) there is contamination due to the dilution with DI
water and the solution in which the PSL is contained. Hence one gets the increased
from ℎ𝑟𝑚𝑠 ≈ 0.5 nm to ℎ𝑟𝑚𝑠 ≈ 0.7 nm levels of roughness and the amount of unwanted
particles.

Figure 8.4: The scattered maps of noparticle regions. The same region is revisited in left to

right and right to left scanning. Developed EBL and spincoated sample in upper and lower

panel respectively.

Further, we analyze “clean” surface regions of no target particle for samples of
Figure 8.3 C) and B) type. For the incident power level 𝑃 ≈ 20 𝜇W we look at the
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region of 34 × 3 𝜇m for developed and the region of 25 × 3.45 𝜇m for spincoated
sample (Figure 8.4 upper and lower panel respectively).

It is evident that the surface roughness difference for two types of samples ℎ𝑟𝑚𝑠 ≈
0.25 nm and ℎ𝑟𝑚𝑠 ≈ 0.7 nm does not render a substantial change to the signal level
𝑉𝑝𝑝 = 0.25 V and 𝑉𝑝𝑝 = 0.29 V respectively. Here, we performed the scanning slowly (1
second per 25 micrometers of scan). The important observation is the repeated shape
of the signal surface upon the scanning in two opposite directions upper or lower panel
of Figure 8.4. This observation is also valid when the stepping mode in scanning is
performed over another region of spincoated sample Figure 8.5.

Figure 8.5: The scattered maps of noparticle regions from spincoated sample the three left to

right scans each 25 × 1.25 𝜇𝑚2 are performed in stepping mode.

In Figure 8.5 the top scan has starting coordinates of 𝑋 = 745, 𝑌 = 750, middle
scan has starting point 𝑋 = 750, 𝑌 = 749.5, and bottom scan has staring coordinates
𝑋 = 755, 𝑌 = 750. With the red circle of Figure 8.5 we mark the defect on a studied
region. One can see that there is a returning pattern, visible at the three scans,
indicating that specific noparticle structures are measured at the scanning epoch. A
possible explanation for this is the microscale elongated structures of the polished
silicon, as an example demonstrated in [5], systematic error in the system or the
speckle effects.

8.4. Effects of the roughness of the surface
The differential detection mode is sensitive to irregularities in reflection from the sur
face of the substrate. These irregularities can come in the form of, e.g. surface
roughness, contamination or defects around the particles. For the same optical prop
erties of surface and particle (height of the surface roughness reaches the diameter of
the particle ℎ𝑅𝑀𝑆 ≈ 𝑑) the signal from the particle will be in the order of the signal from
the surface. For the case of particles or contamination with low refractive index on a
high refractive index silicon substrate, the reflectance can be monitored. Compared to
the perfectly flat interface, the reflectance will drop if multiple particles or roughness
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are present.
In order to understand the influence of roughness, we have performed some rigor

ous simulations. Within the FEM solver [6], twodimensional rough surfaces can have
variations along the lateral directions. The rough surface height profile is based on a
centralized Gaussian distribution in space given by:

𝑔(𝑥, 𝑦) = 𝑒−
1
2 (

𝑥
𝑐𝑥
)2− 12 (

𝑦
𝑐𝑦
)2 , (8.1)

which is randomly displaced while summed and normalized. This operation can be
written in terms of a 2D forward F and inverse F−1 Fourier transform:

ℎ(𝑥, 𝑦) = 𝐶F−1[F[𝑔(𝑥, 𝑦)]𝑒𝑖𝜙(𝑘𝑥 ,𝑘𝑦)], (8.2)

where the scaling factor 𝐶 is determined such that the

ℎ2𝑅𝑀𝑆 = lim
𝑙→∞

∫𝑙−𝑙 ∫
𝑙
−𝑙 ℎ2(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∫𝑙−𝑙 ∫

𝑙
−𝑙 1𝑑𝑥𝑑𝑦

. (8.3)

The displacement is according to the deterministic pseudorandom number generator
that affects the phase function 𝜙(𝑘𝑥 , 𝑘𝑦). The resulting roughness of the scattering
structure is statistical in nature; thus, the average results of the simulations should be
considered.
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Figure 8.6: 3D FEM simulation volume with dimensions of 600 × 600 × 800 nm. The interface
between two media is defined as the rough surface with two parameters: height ℎ𝑅𝑀𝑆 and
correlation length 𝐿𝑐. Fixed 𝐿𝑐 = 50 nm with varying ℎ𝑅𝑀𝑆 in the upper panel, and fixed ℎ𝑅𝑀𝑆 = 9
nm with varying 𝐿𝑐 in the bottom panel.
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The effect of varying one of the surface parameters 𝐿𝑐 = [𝑐𝑥 , 𝑐𝑦] (correlation length)
with the other being fixed ℎ𝑅𝑀𝑆, and viceversa is displayed in Figure 8.6. The varia
tion of ℎ𝑅𝑀𝑆 can be intuitively understood, while the surface correlation describes the
statistical independence of two points on the surface and increases with the correlation
between two neighboring points. For a smooth surface 𝐿𝑐 = ∞.

Further, periodic boundary conditions are necessary for the horizontal directions
to account for the scattering out of the sides of the unit cell. Another reason is to
mitigate the drawbacks related to the finite surface size such as the reduction in the
angular resolution of scattered fields, as well as the potential influence of scattering
and diffraction from the surface edges [7].

We estimate the influence of ℎ𝑅𝑀𝑆 on the reflection from the silicon surface assum
ing an refractive index of 𝑛𝑆𝑖 = 5.43+ 𝑖 ∗0.34 at 405 nm. The rough silicon is normally
illuminated by the plane wave with 𝑠 and 𝑝 polarization. For periodic cells, as one
in Figure 8.6, the Fourier transform postprocess yields the discrete diffraction modes
(amplitudes of the reflected diffraction orders). The amplitudes of the electric plane
wave 𝐸(𝑘) exp(𝑖𝑘𝑥) and the magnetic plane wave 𝐻(𝑘) exp(𝑖𝑘𝑥) can be converted to
the the power flux density according to 𝑃 = 1

2E×H
∗ = 1

2√
𝜖
𝜇 ||E||

2k∗/||k||. Further, the
power fluxes in discrete directions of the reflected fields 𝑃𝑟 can be divided by the power
fluxes of the incoming plane wave 𝑃𝑖 to obtain the reflectance 𝑅𝑠 ≡

𝑃𝑠𝑟
𝑃𝑠𝑖
and 𝑅𝑝 ≡

𝑃𝑝𝑟
𝑃𝑝𝑖
.

The total reflectance is obtained from the average of both polarizations 𝑅 = 𝑅𝑠+𝑅𝑝
2 .

The real lattice vectors defined for our cell with period Λ = Λ𝑥 = Λ𝑦 = 600 nm
are a1 = [Λ, 0, 0] and a2 = [0, Λ, 0]. The corresponding reciprocal vectors b1, b2 are
defined such that 𝑏𝑖 ⋅ 𝑎𝑗 = 2𝜋𝛿𝑖𝑗. Hence the reciprocal vectors are b1 = [

2𝜋
Λ , 0, 0] and

b2 = [0, 2𝜋Λ , 0], such that a1 ⋅ b2 = 0 and a1 ⋅ b1 = 2𝜋. The Fourier modes available
for the observation are linked to the reciprocal grid in kspace, where the transversal
components of the kvector in the pupil are defined as k⊥,𝑛1 ,𝑛2 = 𝑛1b⊥,1 + 𝑛2b⊥,2.
The remaining normal components 𝑘𝑧 are determined by 𝑘𝑧 = √𝑘2𝑚 − |k⊥|, where
the wave number in the material is given by 𝑘𝑚 = 𝑘0𝑛𝑆𝑖 and freespace wavenumber
𝑘0 = 2𝜋/𝜆. To compute the total number of orders, one needs to determine all the
integers 𝑛1, 𝑛2 such that the corresponding kvectors are propagating 𝑅𝑒{𝑘𝑧} > 0.
Alternatively, if the pupil plane is limited by the 𝑁𝐴, the following criteria should be
satisfied: 𝑅𝑒{|k⊥|/𝑘0} ≤ 𝑁𝐴. It is evident that the only five modes will propagate
within the NA (see Figure 8.7 A), such that the following combinations of the 𝑛1,
𝑛2 are possible n1 = [−1, 0, 0, 0, 1] and n2 = [0,−1, 0, 1, 0]. We are not interested
in reflectance in the normal direction 𝑅𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑅0,0 with 𝑛1 = 𝑛2 = 0. For the
remaining diffraction into the higher orders 𝑅𝑠𝑐𝑎𝑡 = 𝑅−1,0+𝑅0,−1+𝑅0,1+𝑅1,0 with the
good alignment of the differential detector, one could still expect to get a zero signal.
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Figure 8.7: A) The Fourier space showing the propagating wave vectors for the air/silicon inter

face at 𝜆 = 405 nm and periodic cell of Λ = 600 nm. B) The average reflectance coefficient for
the nonnormal direction within the pupil.

Thus, in our worstcase scenario estimate, small roughness scattering is coming
fully to one half of detector, we will rely on 𝑅𝑠𝑐𝑎𝑡 = 𝑅−1,0. For the rough surface of
𝐿𝑐 = [50, 50] (𝑥 and 𝑦 direction), the parametric sweep of the ℎ𝑅𝑀𝑆 from 0.25 to 10
nm, 𝑁𝐴 = 0.9, and 𝜆 = 405 nm as the average result of 400 initializations is shown in
Figure 8.7 B). When estimating the peaktopeak amplitude emerging from the surface
roughness, we will rely on the reflectance coefficients of Figure 8.7B) combined with
average roughness height from the AFM.

With the growing height of the roughness, the reflectance into the upper half space
orthogonal to the surface 𝑅0 decreases. At the same time, the reflectance into the
higher angles 𝑅𝑠𝑐𝑎 increases. It is fair to assume that the scattering into the higher
angles will define the amplitude of the differential signal. For our optical setup, the
power at the detector 𝑃𝑑𝑒𝑡 can be estimated as:

𝑃𝑑𝑒𝑡 = 𝑃𝑓𝑅𝑠𝑐𝑎𝑡𝑇𝑜𝑝𝑡 , (8.4)

where 𝑃𝑓 is the power incident on the surface and 𝑇𝑜𝑝𝑡 is the transmission through
beamsplitter and other optics; 𝑇𝑜𝑝𝑡 ≈ 0.28 in our case. Further, taking into account
the properties of the detector, the output amplitude is equal to:

𝑉𝑜𝑢𝑡 = 𝑃𝑑𝑒𝑡𝑆𝐺 (8.5)

where 𝑆 is the responsivity of the detector and 𝐺 is the gain of the differential detector
circuit.
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8.5. Accessing the noise level of the detector

Figure 8.8: A) Sketch of the differential detector circuit. The current from each photodiode is

converted to voltage by the transimpedance amplifier with a gain 𝐺𝑇𝐼𝐴 ≈ 32𝐾. B) The voltages
of each TIA are subtracted and amplified with a combined gain of 𝐺𝑂𝑃𝐴 ≈ 513. The bandwidth
of the circuit is 𝐵𝑊 = 50 𝑘𝐻𝑧. C) Sketch for modeling of the noise of a single photodiode and
TIA circuit. 𝑅𝑠 = 300 𝑀Ω, 𝐶𝑗 = 30 𝑝𝐹, 𝐶𝑓 = 33 𝑝𝐹, 𝑅𝑓 = 100 𝐾Ω.

The circuit of the differential detection (Figure 8.8) is optimized for smallsignal am
plification. The split detector (𝑂𝐷𝐷 − 3𝑊 − 2) has a common ground that minimizes
the pickup of the environmental noise. The photocurrent measured from each diode is
converted to a voltage with a transimpedance amplifier (TIA) with a gain 𝐺𝑇𝐼𝐴 ≈ 32𝐾
(Figure 8.8 A). It is advantageous to amplify each photodiode signal separately by
having two TIAs instead of subtracting the photodiodes currents, amplifying and con
verting to voltage. The latter is more susceptible to pickup noise. Further, the subtrac
tion of the two signals and adding additional gain is accomplished by two operational
amplifiers. The total gain of this stage is 𝐺𝑂𝑃𝐴 ≈ 513 Figure 8.8 B). Accordingly,
the complete gain of the circuit is 𝐺 ≈ 16 ⋅ 106. The bandwidth of the circuit is set to
𝐵𝑊 = 50 kHz. Since we perform particle detection in the time domain, it is convenient
to express the noise in terms of either peaktopeak (pp) or RMS values. The figure
of merit of 𝑉𝑟𝑚𝑠 should be multiplied by 6.6 to get to the estimate of the peaktopeak
value. The parameters of the SD photodiode are summarized in Table 8.2.
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Table 8.2: Parameters of the split detector(s): ODD3W2 BiCell Silicon Photodiode

Active area 2 × 3.1 𝑚𝑚2

Dark Current 0.9 nA

Responsivity 0.36 (633nm) and 0.1 (405nm)

Noise Equivalent Power 2.5 × 10−14 𝑊/√𝐻𝑧
Response time ≈ 190 ns

We start by computing the shot 𝐼𝑠 and Johnson noise 𝐼𝑗 of the photodiode:

𝐼𝑠 = √2𝑞(𝐼𝑝 + 𝐼𝑑)𝐵𝑊, (8.6)

where 𝑞 is the electron charge, 𝐼𝑝 the photocurrent, 𝐼𝑑 the dark photocurrent, and 𝐵𝑊
the bandwidth.

𝐼𝑗 = √
4𝑘𝐵𝑇𝐵𝑊
𝑅𝑠

, (8.7)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 the temperature in Kelvin (estimated for tem
perature 25∘), 𝑅𝑠 is the Shunt resistor of photodiode.

The total noise at the photodiode is given by:

𝐼𝑡𝑝 = √𝐼2𝑠 + 𝐼2𝑗 , (8.8)

and the associated voltage noise at the output of TIA can be written as:

𝐸𝑛𝑝 = 𝐼𝑡𝑝𝐺𝑇𝐼𝐴. (8.9)

It is convention to compute the RMS noise of the fieldeffect transistor (FET) TIA
(Figure 8.2 C) using a piecewise approach [8]. The voltage noise is computed for
the low, medium and high frequency region, and the coefficients for the voltage noise
density 𝐾1 = 7, 𝐾2 = 3.3 and 𝐾3 = 2.1 𝑛𝑉/√𝐻𝑧 are taken from the data sheet for the
TIA (ADA46251). In the first region, from 𝑓1 = 0.01 Hz to 𝑓𝑐 = 100 Hz

𝐸𝑛1 = 𝐾1[1 +
𝑅𝑓
𝑅𝑠
]√ln (𝑓𝑐𝑓1

), (8.10)

in the second region, from 𝑓𝑐 to 𝑓𝑎 = 1 kHz

𝐸𝑛2 = 𝐾2𝐾3√
𝑓3𝑐
3 − 𝑓

3𝑎
3 , (8.11)
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and the third region from 𝑓𝑎 to 𝑓3 = 50 kHz

𝐸𝑛3 = 𝐾2(1 +
𝐶𝑗
𝐶𝑓
√(𝜋2)𝑓3 − 𝑓𝑎). (8.12)

The output voltage component due to the current noise, with the corresponding coef
ficient for the current noise density 𝐾4 = 4.5 𝑓𝐴/√𝐻𝑧 is equal to:

𝐸𝑛𝑖 = 𝐾4[1 +
𝑅𝑓
𝑅𝑠
]√𝑓3 − 𝑓1. (8.13)

Next, the contribution of the resistor noise of the TIA circuit is given by:

𝐸𝑛𝑅 = √4𝑘𝐵𝑇𝑅𝑓𝐵𝑊, (8.14)

The total noise at the output of TIA is given by:

𝐸𝑛𝑡𝑜𝑡𝑎𝑙 = √𝐸2𝑛𝑝 + 𝐸2𝑛1 + 𝐸2𝑛2 + 𝐸2𝑛3 + 𝐸2𝑛𝑖 + 𝐸2𝑛𝑅 . (8.15)

Finally, after the differentiation of two diodes and the remaining gain of the circuit the
RMS noise can be estimated for the complete circuit

𝐸𝑛𝑜𝑢𝑡 = 𝐺𝑂𝑃𝐴√2(𝐸𝑛𝑡𝑜𝑡𝑎𝑙)2. (8.16)

In Table 8.3 we summarize the different noise contributions.

Table 8.3: The noise budget of the detector circuit in 𝜇𝑉𝑅𝑀𝑆

Noise Contribution 𝐸𝑛𝑅 𝐸𝑛3 𝐸𝑛𝑝 𝐸𝑛1 𝐸𝑛2 𝐸𝑛𝑖
𝜇𝑉𝑅𝑀𝑆 11.37 1.75 0.133 0.02 0.002 2.25e4

The analytical estimate for the total output noise with no incident light at the split
detector (𝐼𝑝 = 0) is 𝐸𝑎𝑏𝑛𝑜𝑢𝑡 = 8.34 𝑚𝑉𝑅𝑀𝑆 which roughly agrees with the experimental
values 𝐸𝑒𝑏𝑜𝑢𝑡 = 7.8 𝑚𝑉𝑅𝑀𝑆, measured with a RMS voltmeter R&S URE3. Further, the
estimate of the noise with the detector unblocked and no laser light is 𝐸𝑒𝑛𝑜𝑢𝑡 = 14
𝑚𝑉𝑅𝑀𝑆. The increased level is due to ambient noise that is not considered in the
analytical model.

8.6. Noise originating from vibrations
The scanning piezo stage used in the setup (P629.2CD by Physik Instrumente) is
mounted on a optical table, and not directly attached to the vertical breadboard con
taining the optical CFS elements. In closedloop operation, a builtin sensor is used to
monitor the position of the stage in real time. The error signal is sent to the controller
to provide accurate nanopositioning. External vibrations can affect the piezo position
in both horizontal and vertical directions. Based on the steadystate observation of
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the feedback signal, one can identify the spectral characteristics of the vibrations of
the setup (Figure 8.9).

Figure 8.9: The timedomain (left) and corresponding frequency domain (right) mechanical

noise of the piezo stage. A) and B) the current state of the piezo noise. C) and D) an example

of how the controller of the piezo stage compensates for the multiple sources of the vibration:

43, 47 and 100 Hz.

From the timedomain signal of the 𝑥 and 𝑦  axis position (Figure 8.9 A) there
is up to 25 nm displacement from the target zero position. The residual noise Figure
8.9 A) and B), is caused by the electronic itself due to the highfrequency components
that the piezo actuator is not able to convert into motion. The effect of this noise
is a horizontal mismatch between the peaks of the signal in consecutive scans that
is estimated to be 16 nm (right image of Figure 8.10 A). This could be considered
as the piezoinduced limit for the particle positioning accuracy. As a comparison, in
the 𝑥 and 𝑦  axis position (Figure 8.9 C) there is up to 40 nm displacement from
the target zero position. The cause is understood from the corresponding frequency
domain representation (Figure 8.9 D) where there are spectral contributions of 43 Hz,
47 Hz, and 100 Hz. After investigation, the 43 Hz was attributed to vibrations induced
by the lockin amplifier that was situated on the same optical table. Further, one of
the air pressured legs from the optical table was incorrectly placed such that there was
a mechanical contact between one of the legs and the table. This allowed building
vibrations to pass around to the table. After removing the lockin amplifier from the
optical table and readjusting the table leg, the 43 and 47 Hz peaks disappeared (Figure
8.9 B).

The influence of the investigated vibration to the measured data is summarized in
Figure 8.10.
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Figure 8.10: Vibrational sources couple to the measurement in the form of an horizontal offset

for the particle signal (left). The reference and maximum offset signals are shown in black

and red color (middle), and the remaining mechanical noise of the stage (right). A) The raster

scanning of the particle in Δ𝑥 and Δ𝑦 in and B) repeated scanning only in Δ𝑥. The scanned
particle is a 60 nm PSL sphere.

The 2D, Δ𝑥 and Δ𝑦, (Figure 8.10 A) and 1D repeated scans of Δ𝑥, (Figure 8.10 B)
for an isolated particle (in this case a PSL sphere of diamater of 60 nm) are compared
between the situation before after removing the above mentioned vibration sources.
Following the data processing workflow, the sampled data points are arranged line
per line, according to the raster scan pattern to provide the scan map. With the
initial situation, the controller of the piezo will over or undershoot the target position
thus introducing a mismatch in 𝑋 and 𝑌 between scan lines. With both 43 and 47
Hz sources that corrupt the measurement process, there is an apparent ripple on the
intensity of the differential signal (left part of Figure 8.10). By slicing the scan map
in two places (black and red lines in Figure 8.10 left), the maximum offset between
the zerocrossings of particle signal can be estimated as 38 nm for 2D and 34 nm for
1D case. This indicates the minor influence of the vibration in 𝑦direction, with the
dominant error in 𝑥direction.

Apart from the horizontal displacement of the piezo table due to vibrations, the
latter could also affect the 𝑧position of the sample with respect to the focusing ob
jective. The effect of a defocus on the simulated peak of LR profile is demonstrated
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in Figure 8.11

Figure 8.11: Normalized simulated defocus signal. The particle offset position 𝑋 = −200nm
combined with a 𝑧defocus.

We can give an estimate that on average the 𝑉𝑝𝑝 drops by 𝑐𝑧 = 0.13% per one
nanometer of defocus. Further, the possible zdisplacement can be computed as Δ𝑧 =
𝜎(𝑉𝑝𝑝)/(𝑐𝑧𝑉𝑝𝑝). For the observed 60 nm PSL on silicon sample signal, amplitude
fluctuation renders the defocus of Δ𝑧′ = 25.3 nm which has been reduced to Δ𝑧 =
16.15 nm when the remaining fluctuation due to vibration sources were removed.

8.7. Limit of detection

In order to establish the smallest LSE diameter particle that can be detected by means
of the developed CFS system, we measured two types of samples. The first type are
PSL nanospheres that have been spincoated on 1inch wafers with a mean separation
of ≥ 1 𝜇m between the isolated particles, and the second type are negativeresist
square prisms or pillars made with the EBL. A summary of the fabrication and types
of samples is presented in Appendix C.

For each sample, we performed at least four runs (different measurement days)
accessing more than three areas on the sample (in case of PSL samples), and analyzed
the signal in the time domain with the aid of the search approach, outlined in reference
[9], resulting in individual amplitude labeling of hundreds of particles. Also, we study
areas without particles to provide the background level estimates for the two types
of samples. Figure 8.12 summarizes the overall analysis. For the detected particles
sizes, the blue diamonds indicate the average value of the 𝑉𝑝𝑝 with a standard deviation
shown in gray error bar. Error emerges mostly from the nonuniformity of particle sizes
and vibrations in the setup. In case of the negativeresist particles the sigma is smaller
due to limited amount of fabricated structures.
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Figure 8.12: The peaktopeak amplitude of the signal (blue diamonds with error bar of 𝜎),
fitted powerlaw (red curve) as function of the latex sphere diameter. Inset shows experimental

background level of the spincoated particles samples (black line) and samples with particles

fabricated with the EBL (magenta line). The background level is further split into the detector

noise in light cyan, shot noise in green, and worstcase scenario roughness signal from the

EBLmade and spincoated sample in yellow and purple respectively.

The solid red line in the plot is the fourthpower law curve with the best fit based on
the error sum of squares criterion. The correction is done by normalizing to unity and
multiplying with the maximum value from the experimentally acquired peaktopeak
amplitudes and adding the offset of the shot noise level 𝑈𝑠.

𝑈′ =max𝑈𝑒𝑥𝑝
𝑈
|𝑈| + 𝑈𝑠 (8.17)

Furthermore, we include the experimental background levels of the surface signal
with no particles for spincoated and EBL fabricated structures on silicon substrates,
represented in the figure by black and magenta horizontal lines, respectively. We
color the amplitude region of the complete detector noise with cyan, shot noise part
in green. On top, the estimated 𝑝𝑝 signals from the surface roughness of 0.25 nm (in
yellow) and of 0.7 nm (in purple) attributed to the developed surface of the EBL sample
and spinresidue surface of PSL sample respectively. The crossing between the fitted
power curve and the background measured for the EBL sample indicates the smallest
detected particle that comes close to experimental one 𝑑𝑝𝑟𝑒𝑑𝐸𝐵𝐿 = 31 nm. Assuming a
perfectly flat surface, the intersection between the fitted power law curve and present
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detector noise is at 𝑑𝑝𝑟𝑒𝑑 = 24 nm particle. Note that the fact that we obtain a larger
pk to pk amplitude than the one expected by the power law suggests that the latter
may not be the only contribution to the detected signal, since the combined signals
coming from the light scattered by the particle and the one coming from the reflection
by the surface may constructively interfere, leading to a stronger signal. In addition,
other high order scattering effects and resonances may also occur. This leads to the
conclusion that with our present system, even smaller particles could be detected.

8.8. Analysis of pellicle sample
Samples of polysiliconbased EUV pellicle with the thickness of the freestanding film
about 400 − 500 nm thick were analyzed. The pellicle has 24 × 24 𝑚𝑚 (outer dimen
sions) and 10 × 10 𝑚𝑚 (inner dimensions) and the total thickness of the sample is
about 700 𝜇𝑚. The sample is contaminated with unknown material. The Figure 8.13
shows a digital microscope image of the pellicle’s inner part scan, where red boxes
address specific regions analyzed with the CFS prototype, where the swordshaped
piece of the pellicle film is used as a reference. The image in Fig. 8.13 is obtained
with a digital microscope (VHX KEYENCE, model VHX6000), with magnification factor
of 300, and the scale is marked on the figure.

Figure 8.13: Image of the reference region of the pellicle’s inner part, and the two reference a)

and b) positions where the scans were performed as indicated with red boxes.

The measured timesignals in the scan area of total 338 × 15 𝜇𝑚 in the reference
subarea (marked as “a” in Figure 8.13) and a total of 25 × 500 𝜇𝑚 in the reference
subarea “b” are stored together and analyzed to produce the histogram of particle
counts (Figure 8.14 left). The xaxis represents the time span of the particle’s signal
that is centered about a position of 8.4 ms pulse. In order to estimate the particle size
distribution, we use the calibration curve, see Appendix C. Based on the time span of
particles detected on the pellicle structure we conclude that the size of the particles is
in the range of 60 − 80 nm in diameter.
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Figure 8.14: The size distribution of the particle scatterers based on pulsewidth of the detected

particles from the pellicle sample. Time width of the measured pulse in seconds (𝑥axis)  left.
The typical signal as detected from the reference region a). The SNR is 10.21dB and the pulse
width is 9.2 ms  right.

The oneline scan profile over the single detected particle at the reference area “a”
suggests that sample is rough (Figure 8.14 right). Compared to another sample we
have (silicon wafer sample covered with 60 and 80 PSL spheres), the SNR achieved for
the pellicle sample is lower. Nonetheless, all the collected signals for histogram above
were thresholded to have at least 10dB SNR.

8.9. Conclusions
We conclude that the detection limits of our system are dictated by multiple factors.
Firstly, the presence of inherent mechanical noise of the piezo stage (Section 8.6).
With the current model of the piezo stage, the uncertainty for particle localization in
our setup is Δ𝑥 ≈ 16 nm. Further, the peaktopeak fluctuation of the signal indicates
the vibrationinduced uncertainty of the focal position that is estimated to be Δ𝑧 ≈ 16
nm. Accordingly, the design of the setup could be improved to reduce vibrations that
couple to the system. For systems requiring faster 2D scan, beam steering combined
with 1D piezo scan could be an interesting option.

Next, the investigated electronic noise of the detector is bigger than the one with
the Poisson distribution statistics. Based on the analysis of the differential detector
circuit (Section 8.5), we identify the total noise, including all the noise components
using the root sum of the squares. The shunt resistance 𝑅𝑠, junction capacitance 𝐶𝑗 of
a photodiode, feedback resistance 𝑅𝑓 and capacitance 𝐶𝑓 of the TIA are the primary
parameters used in the noise analysis. In our case, the TIA’s feedback resistor noise
is the dominant noise source. The theoretical estimate of the resulting noise matches
the experimentally measured value for the 𝐸𝑒𝑛𝑜𝑢𝑡 = 14 𝑚𝑉𝑅𝑀𝑆.

Finally, the small scattering crosssection from isolated nanoparticles contributes
to the low SNR of the detector signal as the particle diameter decreases. In this work,
we demonstrate detection of nanoparticles with m 𝑑 ≈ 𝜆/14 LSE diameter, where
the main noise sources were due to the combined effect of detector noise and silicon
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surface roughness ℎ𝑅𝑀𝑆 = 0.25 nm. We verified the reliability of the CFS bright field
scanner by comparing the number of detected scatterers inside the wafer reference
region with that of a benchmark SEM measurement. The detection of 𝐿𝑆𝐸 ≈ 29 nm
particle is achieved with 𝑆𝑁𝑅 ≈ 4 dB. This result complies with the requirements for
surface inspection in the semiconductor industry (SNR needs to be greater than 3 dB)
[10]. The demonstrated detection is promising for initial inspection of a wafer in a
fabrication environment, testing a reticle blank, or during the production flow (the
pellicle membrane) where nondestructive surface scanning is required.
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9
Conclusion and Outlook

9.1. Conclusion
In the beginning of the thesis we gave an overview of scattering in the context of
optical metrology, described the theory that is necessary to explain the interaction of
the light with the particle on the surface and provided a comparison of CFS and other
surface inspection techniques and tools. Further, in the main contribution of the thesis,
we have investigated different limiting aspects of the particle detector based on CFS:

• noise in the system wherein we experimentally investigate the capability for noise
suppression with a heterodyne detection system for CFS (Section 3.2);

• accurate focus positioning wherein we propose the novel method of the focusing
error Scurve generation (Section 5.2);

• particle signal retrieval wherein we develop and test data processing workflow
for the CFS particle detector (Section 6.5);

• particle signal classification wherein we examine the ability of the trained CNN
model to refuse unknown inputs (Section 7.3.3);

• remaining noise in the system wherein we experimentally verify the smallest
particle that can be detected with our system. (Section 8.7)

The CFS scheme allows the use of low power lasers (as compared to darkfield tech
niques) and is suitable for detection of low optical contrast subwavelength nanopar
ticles. In Chapter 4, we provided a discussion on applying CFS in the context of de
tecting biological particlelike specimens and experimental validation of biomimicking
samples.

By improving the particle scanner tools, such as one presented in this thesis, we
believe we are contributing to the improvement of the process of IC’s manufacturing
towards microchip size reduction, and with that a better technology for our lives.

135
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9.2. Outlook 1. Detection below the background level
One important aspect that has been shown in this thesis is the conclusion that limit
on the smallest particle size that can be detected is given by the roughness of the
substrate surface. This limit comes from the fact that as the particle gets smaller, the
amplitude level of the differential background signal is comparable to the signal from
the particle. We propose here three approaches to retrieve the location of the particles
that produce comparable scattering crosssection as the background roughness.

Firstly, unless the correlation length of the roughness reaches the size scale of the
particle (transverse direction), it is envisioned that the frequency content of the parti
cle and roughness can be separated. By performing Fourier transformation, applying
bandpass or cascade filters that are set to the expected particle frequency, and in
verse Fourier transform, the useful signal can be recovered. Secondly, the template
particle signal (synthesized) can be convolved with the global scan. In this case, the
entire “image” is toned down, except for the region of interest. One will get a strong
response where the correct particle location is. Thirdly, relying on the feature space
representation, rather than in pixel (spatial) space, the background and particle could
be separated.

Figure 9.1: The schematic of the region on the wafer with known particle sizes. A) Imaged

with highresolution instrument and B) corresponding scattered map generated with CFS. C)

The pretrained neural network should generalize and return the label of zero for background

roughness input (blue square), and return label of one for background plus particle region (red

square).

The concept here is to monitor the layer in the deep neural network (NN) where
these particle images + background are far away from the background example. The
penultimate layer of the NN in this regard can become the right candidate. Alterna
tively, the activation patterns at the convolution layers can be monitored. The main
difference between NN and straightforward approach of using the convolutions is the
availability of training data, trainable randomized kernels, as well as the presence of
nonlinear activations. With all three approaches being viable candidates, we concen
trate on describing the idea of the proofofconcept experiment with the aid of NN.

“We don’t see a particle, but we know that it is there” is the summary of training
the network based on the data of low a SNR or a signaltobackground ratio (SBR).
Additionally, to the target design, SEM analysis can be used to confirm that the fab



9.3. Outlook 2. Nanoparticle shelllayer quantification

9

137

rication was successful Figure 9.1A). Furthermore, the analysis of the same region of
interest is performed with CFS as shown in Figure 9.1B). Due to the fact the position
of the particle is known in CFS data, the cuts can be performed over the positions
from (𝑥1, 𝑦1) to (𝑥𝑛 , 𝑦𝑛). All the other positions are considered to be purely the rough
ness of the sample, such as (𝑥𝑟 , 𝑦𝑟). The network is trained to classify between the
data from (𝑥𝑛 , 𝑦𝑛) and the data from (𝑥𝑟 , 𝑦𝑟) positions. At a test time, the network
should succeed to provide the highlyaccurate results for the true positions of the tiny
particles that were never showed to the network at the training time. N.B. aiming at
the particle detection with highdensity on the surface, similar training of the network
should be performed on the singlepixel level, rather than on the cutout boxes, thus
imposing higher load on the creation of the training dataset.

9.3. Outlook 2. Nanoparticle shelllayer quantifica
tion

In the model derived in [Roy, S., et al. ”Radially polarized light for detection and
nanolocalization of dielectric particles on a planar substrate.” Physical review letters
114.10 (2015): 103903.] the expressions for the scattered amplitude of the dipole
embedded in the surface and measured at the farfield detector for 𝑠 and 𝑝 polarization
was presented.

𝐴𝑑𝑖𝑝𝑠 = F(𝐸𝐸𝐸)(𝑘𝑥 , 𝑘𝑦 , 0) ⋅ �̂�𝑠𝑠(𝑘𝑘𝑘) = −
𝑘2

2𝑖𝜖0𝑘𝑧
𝜇𝜇𝜇 ⋅ �̂�𝑠𝑠(𝑘𝑘𝑘) + 0

= − 𝑘2
2𝑖𝜖0𝑘𝑧

⎡
⎢
⎢
⎣

1

√𝑘2𝑥 + 𝑘2𝑦
(𝜇𝑥𝑘𝑦 − 𝜇𝑦𝑘𝑥 + 0)

⎤
⎥
⎥
⎦

(9.1)

= 1
2𝑖𝜖0

𝑘/𝑘𝑧
√𝑘2𝑥 + 𝑘2𝑦

[𝑘𝑘𝑥𝜇𝑦 − 𝑘𝑘𝑦𝜇𝑥]

𝐴𝑑𝑖𝑝𝑝 = F(𝐸𝐸𝐸)(𝑘𝑥 , 𝑘𝑦 , 0) ⋅ �̂�𝑝𝑝(𝑘𝑘𝑘) = −
𝑘2

2𝑖𝜖0𝑘𝑧
𝜇𝜇𝜇 ⋅ �̂�𝑝𝑝(𝑘𝑘𝑘) + 0

= − 𝑘2
2𝑖𝜖0𝑘𝑧

⎡
⎢
⎢
⎣

1

√𝑘2𝑥 + 𝑘2𝑦𝑘
(±𝜇𝑥𝑘𝑥𝑘𝑧 ± 𝜇𝑦𝑘𝑦𝑘𝑧 − 𝜇𝑧(𝑘2𝑥 + 𝑘2𝑦))

⎤
⎥
⎥
⎦

(9.2)

= 1
2𝑖𝜖0

𝑘/𝑘𝑧
√𝑘2𝑥 + 𝑘2𝑦

[∓𝑘𝑥𝑘𝑧𝜇𝑥 ∓ 𝑘𝑦𝑘𝑧𝜇𝑦 + (𝑘2𝑥 + 𝑘2𝑦)𝜇𝑧]

We expanded the electric field vector of the plane wave with wave vector 𝑘𝑘𝑘 on the
orthonormal basis �̂�𝑠𝑠(𝑘𝑘𝑘), �̂�𝑝𝑝(𝑘𝑘𝑘), where we have used Eq. 2.34 for the Fourier transform
of dipole field and the orthogonal basis 𝑠 and 𝑝 defined in Eq. 2.10 that is perpendicular
to the wave vector can be rewritten using definition of 𝑘 Eq. 2.2
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�̂�𝑠𝑠(𝑘𝑘𝑘) = 1

√𝑘2𝑥 + 𝑘2𝑦

⎛
⎜

⎝

𝑘𝑦
−𝑘𝑥
0

⎞
⎟

⎠

, �̂�𝑝𝑝±(𝑘𝑘𝑘) = 1

√𝑘2𝑥 + 𝑘2𝑦𝑘

⎛
⎜

⎝

±𝑘𝑥𝑘𝑧
±𝑘𝑦𝑘𝑧
−𝑘2𝑥 − 𝑘2𝑦

⎞
⎟

⎠

(9.3)

It is known that the field at the focus of a radially polarized pupil distribution has a large
longitudinal component. If the dipole moment is oriented along 𝑧, �̂�𝜇𝜇 = 𝜇𝑥�̂�𝑥𝑥+𝜇𝑦�̂�𝑦𝑦−𝜇𝑧�̂�𝑧𝑧,
with 𝜇𝑥 = 𝜇𝑦 = 0, where the detector is located above the surface at the negative
𝑧 position, then the electric fields of the plane waves radiated by the dipole has only
𝑝component:

𝐴𝑑𝑖𝑝𝑝 = − 1
2𝑖𝜖0

𝑘√𝑘2𝑥 + 𝑘2𝑦
𝑘𝑧

𝜇𝑧 (9.4)

The simpler than in Eq. 2.52 version of the dipole moment excitation by the incident
field at the focal plane 𝑧0, can be written without the dipole’s selfcoupling.

𝜇𝜇𝜇 = 𝛼𝐸𝐸𝐸𝑖𝑛𝑐(𝑟0𝑟0𝑟0) (9.5)

Under assumption that the focus field is barely displaced 𝑥 ≪ 𝜆, incident focal field
is represented with 𝐸𝐸𝐸𝑖𝑛𝑐(𝑟0𝑟0𝑟0) ≈ 𝐸𝑖𝑛𝑐(0). Following the shift properties of the Fourier
transform, if we shift the nanoparticle in the focal plane along the 𝑥 axis by 𝑟 = 𝑋,
then there will be a corresponding phase shift of 𝑖𝑘𝑥𝑋 in the scattered farfield.

𝐴𝑑𝑒𝑡𝑠 ≈ 0 (9.6)

𝐴𝑑𝑒𝑡𝑝 ≈ 𝑟𝑝𝐴𝑖𝑛𝑐𝑝 − (1 + 𝑟𝑝)
𝛼
2𝑖𝜖0

[
𝑘√𝑘2𝑥 + 𝑘2𝑦

𝑘𝑧
]𝐸𝑖𝑛𝑐(0)𝑒𝑖𝑘𝑥𝑋 (9.7)

The goal of classification with CFS is to relate the signal recorded at the split detector
with the diameter of the particle (known material and in scanning). In principle, the
bigger the 𝐸𝑖𝑛𝑐(0) the bigger the signal is due to the particle (second term in Eq.
9.7). Assuming the ideal detector and perfect flatness sample, if the excitation field
is increased, the signal of the particle can always overcome the limit emerging from
the fundamental physical phenomenon of photon noise. If one would keep the light
level constant while reducing the particle size, the detection will eventually be limited
by the Poisson noise.

For applications in biology, the labelfree disease sensing requires identification and
quantification of various bioparticles such as DNA, RNA, proteins, viruses, exosomes,
and bacteria. In established techniques of surface plasmon resonance or noble metal
nanoparticlebased sensor, a typically gold particle is immobilized on a glass surface
and functionalized with receptor strands to capture analyte (DNA). From the CFS per
spective, to detect these strands, the change in the size of the shell that they cause
of the coreshell particle has to be estimated.
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Figure 9.2: A) The schematic of the uncoated core particle and B) same core but with the shell

layer on top. C) The expected signals at the detector of CFS.

The workflow is to calibrate the signal for the changes in the shell layer of the
known material. In Figure 9.2, the substrate hosts the fixed diameter known material
core particle A) and the same core particle with a shell layer of controlled thickness
B), where, at the detector, the characteristic change of the signal is observed C).

The multipolar polarizability of spherical geometry which contains dipole for 𝑙 = 1,
𝑙 = 2, and octapole 𝑙 = 3, and so on, defined for the coated nanosphere is given by

𝛼𝑙 =
𝑙[(𝜖𝑐 − 𝜖𝑚)(𝑙𝜖 + (𝑙 + 1)𝜖𝑐)𝑟2𝑙+1𝑐 + (𝜖 − 𝜖𝑐)(𝑙𝜖𝑚 + (𝑙 + 1)𝜖𝑐)𝑟2𝑙+1]

(𝑙𝜖𝑐 + (𝑙 + 1)𝜖𝑚)(𝑙𝜖 + (𝑙 + 1)𝜖𝑐)𝑟2𝑙+1𝑐 + 𝑙(𝑙 + 1)(𝜖 − 𝜖𝑐)(𝜖𝑐 − 𝜖𝑚)𝑟2𝑙+1
𝑟2𝑙+1𝑐

(9.8)
where, 𝜖 and 𝜖𝑐 are the complex dielectric constants of the core and the coating layer
and 𝜖𝑚 is the dielectric constant of surrounding medium. Further 𝑟 is the radius of
the core and 𝑟𝑐 the radius of the core plus coating layer. For the sphere coated with
different material, the dipolar polarizability 𝑙 = 1 becomes:

𝛼𝑑 = 4𝜋𝜖𝑚𝑟3𝑐 [
(𝜖𝑐 − 𝜖𝑚)(𝜖 + 2𝜖𝑐)𝑟3𝑐 + (𝜖 − 𝜖𝑐)(𝜖𝑚 + 2𝜖𝑐)𝑟3
(𝜖𝑐 + 2𝜖𝑚)(𝜖 + 2𝜖𝑐)𝑟3𝑐 + 2(𝜖 − 𝜖𝑐)(𝜖𝑐 − 𝜖𝑚)𝑟3

]. (9.9)

Using estimation theory, the limit of the technique can be found from the lower bound
on the variance of the value of 𝑟𝑐 when the scattered intensity is measured, assuming
Poisson noise. N.B. The proposed CFS method applied to detection of bioparticles is
intended to operate outside the resonance regime in such a way that sudden changes
in the signal properties are absent and will not affect the calibration.



A
Theoretical background

A.1. Maxwell equations, boundary conditions, time
harmonic fields and Green’s function

In this thesis, we study the interaction of light with subwavelength nanoparticles using
electromagnetic theory. One approach is to quantify this interaction analytically. An
other method is to solve the governing equations numerically as the geometry of the
problem increases in complexity. In both cases, Maxwell’s equations must be solved
[1, 2]

∇∇∇×HHH = JJJ+𝜕DDD/𝜕𝑡,
(A.1a)

∇∇∇×EEE = −𝜕BBB/𝜕𝑡,
(A.1b)

∇∇∇ ⋅BBB = 0,
(A.1c)

∇∇∇ ⋅DDD = 𝜌.
(A.1d)

where HHH is the magnetic field, JJJ is the density of free current, DDD is the electric dis
placement, 𝑡 is the time variable, EEE is the electrical field, BBB is the density of magnetic
flux and 𝜌 is the density of free electrical charge.

The following constitutive relations are presumed to hold,

DDD = 𝜖0EEE+PPP𝑒 = 𝜖0(𝐼𝐼𝐼 + 𝜒𝑒)EEE = 𝜖0𝜖EEE, (A.2)

HHH = BBB

𝜇0
−PPP𝑚 =

BBB

𝜇0
− 𝜒𝑚HHH, (A.3)

BBB = 𝜇0(𝐼𝐼𝐼 + 𝜒𝑚)HHH = 𝜇0𝜇HHH. (A.4)

where 𝜖0 is the electric permittivity of vacuum, PPP𝑒 is the electric polarization, 𝜒𝜖 the
electric susceptibility and 𝜖 the electric permittivity of the medium. Therefore, in Eq.
A.2 the electrical displacement is replaced by mediumdependent electrical permittivity
times of the electric field as light interacts with a linear media. For linear media,
the constitutive relationship explains also a magnetic induction. With 𝜇0 magnetic
vacuum permeability, PPP𝑚 magnetic polarization, the magnetic susceptibility of 𝜒𝑚 and
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the medium’s magnetic permeability of 𝜇 (Eq. A.3) and Eq. A.4). Constituent relations
account for inhomogeneous media if 𝜖 and 𝜇 are position functions.

Next, Ohm’s law describes a linear relationship between the free current in a
medium and the em field. Current can be split into a source current density JJJ𝑠 and
induced conductive current density JJJ𝑐. The latter is written in terms of the electrical
conductivity of the medium 𝜎.

JJJ = JJJ𝑠 + JJJ𝑐 = JJJ𝑠 + 𝜎EEE. (A.5)

In the case where two media share an interface, the first medium with 𝜖1 and 𝜇1 and
the second with 𝜖2 and 𝜇2, the tangential and normal fields must, as a consequence
of the Maxwell’s equations, fulfill the boundary conditions at the interface. Remember,
for example, Eq. A.1c, with the Theorem of Gauss

∫
𝑉
∇∇∇ ⋅BBB𝑑𝑉 = ∮

𝜕𝑉
BBB ⋅ �̂̂��̂�𝑛𝑑𝑆, (A.6)

where the surface that encloses a volume 𝑉 is 𝜕𝑉 and �̂̂��̂�𝑛 is the normal unit vector to
an interface pointing to medium two. The following boundary condition is identified,

�̂̂��̂�𝑛 ⋅ (BBB2 −BBB1) = 0, (A.7)

Equation A.1d (Poisson’s) gives, in a similar manner,

�̂̂��̂�𝑛 ⋅ (DDD2 −DDD1) = 𝜌𝑠 . (A.8)

where the surface charge density on the interface is 𝜌𝑠 The Stoke’s theorem,

∫
𝑆
∇∇∇ ×EEE ⋅ 𝑑𝑆 = ∮

𝜕𝑠
EEE ⋅ 𝑑𝑙, (A.9)

The curve enclosing a surface 𝑆 is 𝜕𝑆, when applied to Eq. A.1b (Faraday’s Law),
produces,

�̂̂��̂�𝑛 × (EEE2 −EEE1) = 0, (A.10)

And similarly, when applied to Eq. A.1a (Ampere’s law), gives

�̂̂��̂�𝑛 × (HHH2 −HHH1) = JJJ∫. (A.11)

Here, JJJ𝑓 defines the current on the interface between medium one and two.

Further, timeharmonic sources with a fixed angular frequency 𝜔 are essential in
optics. We now consider EM sources and fields which, by implication, contain time
dependence in the form of 𝑒−𝑖𝜔𝑡 and by convention, define the physical quantity of
the electrical and magnetic field with the real part of the complex timedependent
quantity.

EEE(𝑟𝑟𝑟, 𝑡) = 𝑅𝑒[𝐸𝐸𝐸(𝑟𝑟𝑟)𝑒−𝑖𝜔𝑡], (A.12)

HHH(𝑟𝑟𝑟, 𝑡) = 𝑅𝑒[𝐻𝐻𝐻(𝑟𝑟𝑟)𝑒−𝑖𝜔𝑡]. (A.13)
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As a result, Maxwell’s equations combined with constitutive relations (Eq. A.1a  Eq.
A.4) are rewritten as

∇∇∇ ⋅ 𝜖𝜖0𝐸𝐸𝐸 = 𝜌, (A.14)
∇∇∇ ×𝐸𝐸𝐸 = 𝑖𝜔𝜇𝜇0𝐻𝐻𝐻, (A.15)
∇∇∇ ⋅ 𝜇𝜇0𝐻𝐻𝐻 = 0, (A.16)

∇∇∇ ×𝐻𝐻𝐻 = JJJ𝑠 + 𝜎𝐸𝐸𝐸 − 𝑖𝜔𝜖𝜖0𝐸𝐸𝐸. (A.17)

Similarly, let JJJ(𝑟𝑟𝑟, 𝑡) and 𝐽𝐽𝐽(𝑟𝑟𝑟) be the real and complex current densities.

JJJ(𝑟𝑟𝑟, 𝑡) = 𝑅𝑒[𝐽𝐽𝐽(𝑟𝑟𝑟)𝑒−𝑖𝜔𝑡]. (A.18)

Thus the alternative form for the Eq. A.17 is

∇∇∇ ×𝐻𝐻𝐻 = −𝑖𝜔𝜖𝜖0𝐸𝐸𝐸 + 𝐽𝐽𝐽. (A.19)

These are complex Maxwell equations for timeharmonic fields in vacuum. If we
apply ∇∇∇× to Eq. A.15 and Eq. A.17, and multiplying corresponding equations with 𝜇−1
and 𝜖−1) respectively one gets

∇∇∇ × 𝜇−1∇∇∇ ×𝐸𝐸𝐸 − 𝑘20𝜖𝐸𝐸𝐸 = 𝑖𝜔𝜇0JJJ𝑠 , (A.20)

∇∇∇ × 𝜖−1∇∇∇ ×𝐻𝐻𝐻 − 𝑘20𝜇𝐻𝐻𝐻 = ∇∇∇ × 𝜖−1𝐽𝐽𝐽. (A.21)

with the vacuum wave number being 𝑘0 = 𝑤/𝑐 and the complex dielectric [𝜖 +
𝑖𝜎/𝑤𝜖0] → 𝜖. To describe the electromagnetic field interacting with matter one needs
to solve the equations above. These are secondorder differential equations called
vector Helmholtz equation for the electric and magnetic fields.

Lastly, we need to introduce the solution of the wave equation written in a complex
form for a potential. Its impulse response is known as the Green’s function of the wave
equation. Consider timeharmonic vector potential 𝐴𝐴𝐴 and the scalar potential 𝜙 in an
infinite and homogeneous space characterized by the constants 𝜖 and 𝜇:

𝐸𝐸𝐸(𝑟𝑟𝑟) = 𝑖𝜔𝐴𝐴𝐴(𝑟𝑟𝑟) − ∇𝜙(𝑟𝑟𝑟), (A.22)

𝐻𝐻𝐻(𝑟𝑟𝑟) = 1
𝜇0𝜇

∇ ×𝐴𝐴𝐴(𝑟𝑟𝑟), (A.23)

∇ ⋅ 𝐴𝐴𝐴(𝑟𝑟𝑟) = 𝑖𝜔𝜇0𝜇𝜖0𝜖𝜙(𝑟𝑟𝑟). (A.24)

Where the Eq. A.24 is the Lorentz gauge, a procedure to cope with redundant
degrees of freedom in field variables. We can plug Eq. A.22 and Eq. A.23 into Maxwell
equation A.19, multiply both sides by 𝜇0𝜇 and obtain

∇ × ∇ ×𝐴𝐴𝐴(𝑟𝑟𝑟) = 𝜇0𝜇 𝐽𝐽𝐽(𝑟𝑟𝑟) − 𝑖𝜔𝜇0𝜇𝜖0𝜖[𝑖𝜔𝐴𝐴𝐴(𝑟𝑟𝑟) − ∇𝜙(𝑟𝑟𝑟)] (A.25)

With the aid of identity ∇× ∇× = −∇2 +∇∇⋅, 𝑘 = 𝜔√𝜖𝜖0𝜇𝜇0 , and Eq. A.24 the Eq.
A.25 is rewritten as

[∇2 + 𝑘2]𝐴𝐴𝐴(𝑟𝑟𝑟) = −𝜇0𝜇𝐽𝐽𝐽(𝑟𝑟𝑟). (A.26)
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which is the inhomogeneous Helmholtz equation and holds independently for each 𝐴𝑖
of 𝐴𝐴𝐴. Skipping the derivation, the equation for the scalar potential 𝜙 is given by

[∇2 + 𝑘2]𝜙(𝑟𝑟𝑟) = −𝜌(𝑟𝑟𝑟)/𝜖0𝜖. (A.27)

This typical form of scalar Helmholtz equation (Eq. A.27) can be set to have a single
point source term −𝛿(𝑟𝑟𝑟−𝑟′𝑟′𝑟′) (RHS) and the scalar potential is replaced with the scalar
Green’s function 𝐺0(𝑟, 𝑟′𝑟, 𝑟′𝑟, 𝑟′) (LHS). The idea is 𝑟𝑟𝑟 denotes the location of the field point, i.e.
the point at which the fields are to be evaluated, whereas the coordinate 𝑟′𝑟′𝑟′ designates
the location of the point source. In freespace, the solution to such equation is given
by

𝐺0(𝑟𝑟𝑟, 𝑟′𝑟′𝑟′) =
𝑒±𝑖𝑘|𝑟𝑟𝑟−𝑟′𝑟′𝑟′|
4𝜋|𝑟𝑟𝑟 − 𝑟′𝑟′𝑟′| . (A.28)

The solution with the plus sign denotes a spherical wave that propagates out of the
origin whereas the solution with the minus sign is a wave that converges towards the
origin. Since we are going to reuse the freespace Green’s function, the simpler
notation for the large distance is 𝐺(𝑟) = − 𝑒

𝑖𝑘𝑟

4𝜋𝑟 with 𝑟 = |𝑟𝑟𝑟|.

A.2. Angular spectrum representation, farfield and
Fourier transform by a lens

Here we outline the important relations from nano and Fourier optics available in
references [3, 4]. For the homogeneous media such as air or silicon substrate, the
powerful technique called angular spectrum representation can be used to represent
the optical fields. The series expansion of an arbitrary field gives a superposition of
plane waves with variable amplitudes and propagation directions. Provided the electric
field 𝐸𝐸𝐸(𝑟𝑟𝑟) at some point 𝑟𝑟𝑟 = (𝑥, 𝑦, 𝑧) in space and propagation axis 𝑧, we can calculate
the 2D Fourier transform at known source plane 𝑧 = 𝑐𝑜𝑛𝑠𝑡, further the field can
be propagated and reconstructed through an inverse spatial Fourier transform in the
destination plane.

The 2D Fourier transform is written as F(.) , for the general case of three spatial
variables the notation of ̂ is used. With, 𝑘𝑘𝑘 = 𝑘𝑥�̂�+𝑘𝑦�̂�+𝑘𝑧�̂�, 𝑘 = 𝑤𝑛/𝑐 = 𝑤√𝜖𝜇/𝑐, and

wave vector’s 𝑧component 𝑘𝑧 ≡ √(𝑘2 − 𝑘2𝑥 − 𝑘2𝑦), Cartesian transverse coordinates
(𝑥, 𝑦) and the corresponding spatial frequencies (𝑘𝑥 , 𝑘𝑦) the 2D forward and inverse
Fourier transforms are represented by the following two equations.

�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧) =
1
4𝜋2

∞

∬
−∞

𝐸𝐸𝐸(𝑥, 𝑦, 𝑧)𝑒−𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦]𝑑𝑥𝑑𝑦, (A.29)

𝐸𝐸𝐸(𝑥, 𝑦, 𝑧) =
∞

∬
−∞

�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧)𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦]𝑑𝑘𝑥𝑑𝑘𝑦 . (A.30)

N.B. When performed on a uniform spatial grid, the forward and inverse Fourier trans
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forms are performed with FFT’s.
We should assume that the medium is homogeneous, isotropic, linear and source

free in the transverse plane. Then a timeharmonic, optical field of angular frequency
𝜔 has to fulfill the vector Helmholtz equation (similar to Eq. A.26).

[∇2 + 𝑘2]𝐸𝐸𝐸(𝑟𝑟𝑟) = 0. (A.31)

Assuming the timedependence according to Eq. A.12, the solution of the Eq. A.30
can be plugged back to a Helmholtz equation A.31, changing the operation in square
brackets [.] and integration, becoming

∞

∬
−∞
[∇2 + 𝑘2][�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧)𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦]]𝑑𝑘𝑥𝑑𝑘𝑦 = 0, (A.32)

Further,

∞

∬
−∞

[(−𝑘2𝑥 − 𝑘2𝑦 + 𝑘2)�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧) +
𝜕2�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧)

𝜕𝑧2 ] 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 = 0. (A.33)

The equation above holds for all 𝑥 and 𝑦 thus the term under the square brackets
is required to be zero. The function �̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧) satisfies the differential equation

𝜕2�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧)
𝜕𝑧2 + (𝑘2 − 𝑘2𝑥 − 𝑘2𝑦)�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧) = 0, (A.34)

The general solution to this differential equation, with 𝐴(𝑘𝑥 , 𝑘𝑦) and 𝐵(𝑘𝑥 , 𝑘𝑦) being
arbitrary functions is given by

�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 𝑧) = 𝐴(𝑘𝑥 , 𝑘𝑦)𝑒𝑖𝑘𝑧𝑧 + 𝐵(𝑘𝑥 , 𝑘𝑦)𝑒−𝑖𝑘𝑧𝑧 = �̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 0)𝑒±𝑖𝑘𝑧𝑧 . (A.35)

The plus sign in the exponential term is defined for the propagation into the upper
halfspace 𝑧 > 0 and the minus sign for the propagation into the lower halfspace
𝑧 < 0. The Eq. A.35 (propagator) is used to propagate the field spectrum in the
spatial frequency domain. Inserting the Eq. A.35 in Eq. A.30 gives

𝐸𝐸𝐸(𝑥, 𝑦, 𝑧) =
∞

∬
−∞

�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 0)𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦±𝑘𝑧𝑧]𝑑𝑘𝑥𝑑𝑘𝑦 . (A.36)

The equation above gives angular spectrum representation (ASR) also called an
gular spectrum or plane wave decomposition. By inspecting the Eq. A.36 and Eq. A.30
we notice that ASR is the inverse Fourier transform when 𝑧 was set to zero and the
propagation 𝑒±𝑖𝑘𝑧 was included in the integral to represent the backward or forward
moving waves.

It is handy to use ASR to demonstrate how the propagation can be done to the far
field regime where 𝑟𝑟𝑟 = 𝑟∞𝑟∞𝑟∞. With unit vector 𝑣𝑣𝑣 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) = (𝑥/𝑟, 𝑦/𝑟, 𝑧/𝑟), where
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𝑟 = √𝑥2 + 𝑦2 + 𝑧2

𝐸𝐸𝐸∞(𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) = lim
𝑘𝑟→∞

𝐸𝐸𝐸(𝑥, 𝑦, 𝑧) = ∬
(𝑘2𝑥+𝑘2𝑦)≤𝑘2

�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 0)𝑒
𝑖𝑘𝑟[ 𝑘𝑥𝑘 𝑣𝑥+

𝑘𝑦
𝑘 𝑣𝑦+

𝑘𝑧
𝑘 𝑣𝑧].𝑑𝑘𝑥𝑑𝑘𝑦

(A.37)
Here the integration range is reduced to the (𝑘2𝑥+𝑘2𝑦) ≤ 𝑘2 because the evanescent

waves don’t reach the far field zone. If for the source plane one sets 𝑘𝑥 → 𝑘𝑣𝑥 , 𝑘𝑦 →
𝑘𝑣𝑦 then unit vector can be written as

𝑣𝑣𝑣 = (𝑘𝑥/𝑘, 𝑘𝑦/𝑘, 𝑘𝑧/𝑘). (A.38)

Since the double integral of Eq. A.37 is given in the form

𝐹(𝑘) = ∬
𝐷
𝑓(𝑥, 𝑦)𝑒𝑖𝑘𝑔(𝑥,𝑦)𝑑𝑥𝑑𝑦, (A.39)

with real functions of 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) of the real variables 𝑥, 𝑦, 𝐷 closed domain
which is simply connected. The asymptotic approximation to 𝐸𝐸𝐸∞(𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) is given by

𝐹(1)(𝑘) ∼ 2𝜋𝑖𝜎𝑐
𝑘√|Δ|

𝑓(𝑥1, 𝑦1)𝑒𝑖𝑘𝑔(𝑥1 ,𝑦1). (A.40)

indices 1 for the stationary points, determinant Δ ≠ 0, with 𝜎𝑐 taking values 𝜎𝑐 = ±1 or
𝜎𝑐 = −𝑖. The 𝜎𝑐 = −1 for the farfield approximation [5]. Accordingly, the asymptotic
solution to Eq. A.37 is given by

𝐸𝐸𝐸∞(𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) = −2𝜋𝑖𝑘𝑣𝑧�̂�𝐸𝐸(𝑘𝑣𝑥 , 𝑘𝑣𝑦; 0)
𝑒𝑖𝑘𝑟
𝑟 , (A.41)

With the definition of the unit vector as Eq. A.38 and the solution from Eq. A.41, the
Fourier representation is written in terms of the far field approximation as

�̂�𝐸𝐸(𝑘𝑥 , 𝑘𝑦; 0) =
𝑖𝑟𝑒−𝑖𝑘𝑟
2𝜋𝑘𝑧

𝐸𝐸𝐸∞(𝑘𝑥 , 𝑘𝑦). (A.42)

This relation substituted back to the ASR Eq. A.36 gives

𝐸𝐸𝐸(𝑥, 𝑦, 𝑧) = 𝑖𝑟𝑒−𝑖𝑘𝑟
2𝜋 ∬

(𝑘2𝑥+𝑘2𝑦)≤𝑘2
�̂�𝐸𝐸∞(𝑘𝑥 , 𝑘𝑦)𝑒𝑖[𝑘𝑥𝑥+𝑘𝑦𝑦±𝑘𝑧𝑧]

1
𝑘𝑧
𝑑𝑘𝑥𝑑𝑘𝑦 . (A.43)

Having a close look at Eq. A.43 for the propagating within 𝑁𝐴 (𝑘2𝑥 + 𝑘2𝑦) ≤ 𝑘2 waves,
assuming 𝑘𝑧 ≈ 𝑘 to remove factor 1/𝑘𝑧, the field on the LHS and RHS form a Fourier
transform pair given 𝑧 = 0. Finally, let’s consider a lens which has 𝑧 as optical axis,
and finite extension in transverse 𝑥𝑦 plane. Under the assumption of the thin lens
and paraxial approximation, the lens is characterized by a transmittance function that
introduces a parabolic phase delay to the wavefront. The goal is to get a focal plane
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representation of the input located 𝑑𝑖 before the lens. Input is seen as certain trans
mittance function 𝑡𝐴(𝑥, 𝑦) modified by the plane wave of amplitude 𝐴𝑖. By combining
the transfer function representation of the Fresnel diffraction, i.e. spatial frequency
representation of the light from the source plane incident on the lens, and free space
propagation by the distance 𝑧 = 𝑓, the complex amplitude in focal plane 𝑈𝑓(𝑘𝑥 ,𝑘𝑦) of
the lens is given by

𝑈𝑓(𝑘𝑥 ,𝑘𝑦) =
𝑒𝑖

𝑘
2𝑓(1−

𝑑𝑖
𝑓 )(𝑘2𝑥+𝑘2𝑦)

𝑖𝜆𝑓

∞

∬
−∞

𝐴𝑖𝑡𝐴(𝑥, 𝑦)𝑒𝑥𝑝 [−𝑖
2𝜋
𝜆𝑓 (𝑘𝑥𝑥 + 𝑘𝑦𝑦)] 𝑑𝑥𝑑𝑦, (A.44)

With the input to the lens placed exactly at the distance 𝑑𝑖 = 𝑓, the formalism
becomes

𝑈𝑓(𝑘𝑥 ,𝑘𝑦) =
1
𝑖𝜆𝑓

∞

∬
−∞

𝐴𝑖𝑡𝐴(𝑥, 𝑦) 𝑒𝑥𝑝 [−𝑖
2𝜋
𝜆𝑓 (𝑘𝑥𝑥 + 𝑘𝑦𝑦)] 𝑑𝑥𝑑𝑦. (A.45)

This formula is valid to describe the inputoutput relation for the lens of the CFS
setup because paraxial approximation is satisfied. Namely, in CFS to make use of the
full NA, we provide uniform illumination over the back focal plane of microscope objec
tive by making the incident beam diameter much larger than the aperture. Inspecting
the Eq. A.45 we see the forward Fourier transform with a multiplicative factor.
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B
Schematic of the legacy split

detector

Figure B.1: The initial schematic design of the differential detector circuit. Two photodiodes

are connected in reverse and are not grounded. Two coaxial cables of 𝐿 ≈ 10 cm transmit the

photocurrent from each photodiode, connecting to the transimpedance amplifier (TIA).

The detector circuit (Figure B.1) is suitable for the detection of 𝑑𝑝𝑠𝑙 ≈ 100 nm. As
the scattering from the particles 𝑑𝑝𝑠𝑙 > 100 nm renders high SNR, the initial design
would still allow for pickup of electric hum and other noise sources. The reason is
the absence of the ground for the photodiodes connected in reverse as well as the
presence of the coaxial cables leading to the transimpedance amplifier (TIA).

In the new design (shown in Chapter 8), the two TIAs were moved closer to the
photodiodes, providing better shielding for hum noise is provided. The drawback of
having a single TIA is a high impedance circuit which is generally more sensitive to
noise. This is because a small current induced on a high impedance circuit (𝐼 times 𝑍)
results in a higher noise voltage.
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C
Fabrication of experimental

samples

C.1. Spincoated PSL particles

In this dissertation, two types of samples were used: spincoated PSL nanoparticles
and negative resist (EBL) deposited on silicon wafers (further called as type 1 and
type 2, respectively). Samples were prepared in a clean room class ISO 6 and high
quality 1 inch wafers from Ultrasil were used. The general procedure for the sample
preparation is outlined below:

• Clean UV/Ozone apparatus with IPA wipe and switch on for 15 minutes
• Prepare solution
• Place solution in ultrasonic bath
• Clean 1inch Si wafer in UV Ozone for 5 minute
• Spin 0.5 ml solution on wafer @ 6100 RPM
• Place wafer in box
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Table C.1: Recipes for spincoating PSL particles that have been used for both glass and silicon

substrates.

Sample # and date Recipe. Solution of Particles.

1 22/03/2019

100 nm

3 droplets 100 nm PSL dispersion (Thermo scientific, Nanospheres, 3100A)

in 0.5 ml demi water (from Merck Simplicity UV water purification system)

dilute 80 µl in 5 ml IPA (SigmaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking

2 22/03/2019

80 nm

3 droplets 80 nm PSL dispersion (Thermo scientific, Nanospheres, 3080A)

in 0.5 ml demi water (from Merck Simplicity UV water purification system)

100 µl in 5 ml IPA (SigmaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking

3 22/03/2019

60 nm

3 droplets (Thermo scientific, Nanospheres, 3060A)

in 0.5 ml demi water(from Merck Simplicity UV water purification system)

60 µl in 5 ml IPA (simaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking

4 22/03/2019

50 nm

3 droplets (Thermo scientific, Nanospheres, 3050A)

in 0.5 ml demi water(from Mecrk Simplicity UV water purification system)

50 µl in 5 ml IPA (simaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking

5 22/03/2019

40 nm

3 droplets (Thermo scientific, Nanospheres, 3040A)

in 0.5 ml demi water (from Merck Simplicity UV water purification system)

40 µl in 5 ml IPA (simaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking

6 13/11/2019

Lower density 50

Adapted recipe from above. Steps above are followed by an

additional dilution step 500 microliter of the second dispersion were added to 5 ml IPA.

7 13/11/2019
Lower density 40

As in 6th sample

8 10/12/2019

Mixed 80 and 60 nm

* 2 droplets 80 nm PSL dispersion (Thermo scientific, Nanospheres, 3080A)

and 1 droplet 60 nm PSL dispersion (Thermo scientific, Nanospheres, 3060A)

in 0.5 ml demi water (from Merck Simplicity UV water purification system)

* Dilute 70 µl in 5 ml IPA (SigmaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking

9 10/12/2019

Mixed 60 and 50 nm

* 2 droplets 60 nm PSL dispersion (Thermo scientific, Nanospheres, 3060A)

and 1 droplet 50 nm PSL dispersion (Thermo scientific, Nanospheres, 3050A)

in 0.5 ml demi water (from Merck Simplicity UV water purification system)

* Dilute 70 µl in 5 ml IPA (SigmaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking

10 10/12/2019

Mixed 50 and 40 nm

* 2 droplets 50 nm PSL dispersion (Thermo scientific, Nanospheres, 3050A)

and 1 droplet 40 nm PSL dispersion (Thermo scientific, Nanospheres, 3040A)

in 0.5 ml demi water (from Merck Simplicity UV water purification system)

* Dilute 70 µl in 5 ml IPA (SigmaAldrich, 2Propanol, anhydrous, catalogusnummer 2784751L)

under vigorous shaking
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C.2. Protocol for PSL sample analysis
The time span of the influence of the particle in the split detector signal depends
on the particle size and has been calibrated for isolated particles of several sizes.
The determination of the calibration curve is an iterative process where every new
sample goes through two steps. Firstly, samples are validated to contain the target
particle sizes with the highest density and, secondly, fitting and extrapolation is used
to check whether the new samples are consistent with the previous measurements.
The following validation procedure for the wafers from the same batch was used to
make sure that after deposition the sample indeed contains the targetsize particles:

• Clean the substrate firstly with pure water, and secondly with acetone, and finally
with ethanol. If the supplier is trusted cleaning is not necessary. Scan the blank
wafer.

• Deposit the spin liquid on the sample, with no particles in the solution, and repeat
the scan.

• Make a spincoating of the third wafer sample and make a final scan.

Figure C.1: Comparison between blank, blank plus spin coated, and blank plus 50 nm PSL

particles of sample number 4 of the Table C.1.
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We analyze reference surfaces of clean 1inch wafer sample that comes from the
manufacturer (blank), wafer sample with solvent (blank + spin), and sample with par
ticles e.g of 50 nm (spincoated spheres.). The following detection maps are acquired
for the sample number 4 of the Table C.1.

Results shown in Figure C.1 demonstrate that wafers coming from the manufacturer
are not clean on the level we do the detection. However, this additional contamination
is quite sparse. A spin sample also adds the particles in the range we want to detect.
Finally, the sample with nominal 50 nm particles includes a high density of particles
with the peak that corresponds to 50 nm based on the calibration curve. However,
the problem of the final sample (with 50 nm nanoparticles) was that there were too
many particles and for this reason we detected a lot of clusters. For the next iteration
of samples number 5 and 6 of the Table C.1 the density of particles was reduced so
that the clustering could be minimized. The Figure C.2 on the right side shows the
raw scans, and on the left side, the corresponding histograms.

Figure C.2: Histograms (left) and raw scan (right) of the samples with 40 nm (top) and 50 nm
(bottom). The scan area is 20 × 20 𝜇𝑚2. Sample number 5 and 6 of the Table C.1

For the sample with nominal 50 nm particles, we can discriminate about 9 − 12
#𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
𝑎𝑟𝑒𝑎 , whereas for the sample of nominal 40 nm, 26 − 28 #𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑎𝑟𝑒𝑎 . This density
was considered satisfactory and was used for the deposition of particles on the glass
samples with and without an enhancing layer (Section 4.5). Note that although the
deposition of 30 nm particles was planned, after some iterations with TNO, we decided
not to do that because it has been observed that smaller particles (< 30 nm) tend to
form clusters and thus were not suitable for calibration purposes of our scatterometer.

In the following example of calibration curve the particles have refractive index of
𝑛 = 1.58 (PSL) and experimental curve acquired for 40, 50, 60, 80 and 100 nm diameter
spheres on top of silicon wafer with cubic interpolation towards 30 nm particle (Figure
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C.3).

Figure C.3: The calibration curve for the CFS prototype. Time width of the measured pulse as

function of PSL particle diameter.

Every experimental point is the mean from the histogram of the onesize sample
and the fit is defined based on Error Sum of Squares (SSE) metric.

C.3. Negative resist particles
We continue by describing the fabrication of the type 2 (resistsamples).

• The wafer was cleaved to smaller pieces (1 × 1 or 2 × 2 𝑐𝑚).
• Chips were spun with the HSQ XR1541 diluted in MIBK resist at different speed
to control the thickness.

• EBeam exposure: 100 kV Raith ebeam lithography system, beam current of 112
pA (estimated spot size of 1.9 nm). The dose is 7250 𝜇𝐶/𝑐𝑚2 for the 50×50×25
𝑛𝑚 sample and 9500𝜇𝐶/𝑐𝑚2 for 25 × 25 × 25 𝑛𝑚 sample.

• Development: MF322 (1 min) , MF322: 𝐻2𝑂 ∼ 1:5 (30 sec), 𝐻2𝑂 (1 min).

It is crucial to make a dilution of the ebeam resist and perform the spinning at different
speed, to optimize for the heights of the future pillars. Table C.2 summarizes the de
veloped recipes and shows the results of the thickness measured with an ellipsometer
(Woollam M5000).

Table C.2: HSQ XR1541 was diluted with MIBK. And spun with different speeds

Recipe # Dilution HSQ:MIBK (by volume) Spinning speed (RPM) Measured thickness [nm]

1 1:2 4000 53

2 1:2 6000 47

3 1:3 6000 25

Given that the refractive indices 𝑛 are 1.57 (PSL) and 1.45 (resist) at room tem
perature with a probe wavelength of 405 nm, we estimate the LSEs in Table C.3 for
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the square prism and cylinder resist particles using the formulas for their volumes and
deducing the equivalent sphere diameter:

1
6𝜋𝑑

3 = 𝑤𝑙ℎ𝑟𝑒𝑠𝑖𝑠𝑡 =
𝜋
4𝑑

′2ℎ𝑟𝑒𝑠𝑖𝑠𝑡 , (C.1)

𝑑𝑠𝑝ℎ𝑒𝑟𝑒−𝑒𝑞𝑢𝑖𝑣 = (
6
𝜋𝑤𝑙ℎ𝑟𝑒𝑠𝑖𝑠𝑡)

1
3
= (32𝑑

′2ℎ𝑟𝑒𝑠𝑖𝑠𝑡)
1
3
, (C.2)

where 𝑤 and 𝑙 are the width and the length of the resulting rectangular prism (𝑤 = 𝑙
for our fabricated structure), 𝑑′ and ℎ𝑟𝑒𝑠𝑖𝑠𝑡 are the diameter of cylindrical particle and
the height of the resist. Finally, we compute the Latex Sphere scattering Equivalent
for CFS setup:

𝐿𝑆𝐸 = 𝑑𝑠𝑝ℎ𝑒𝑟𝑒−𝑒𝑞𝑢𝑖𝑣 ∗ (
(𝑚2𝑟𝑒𝑠𝑖𝑠𝑡 − 1)(𝑚2𝑝𝑠𝑙 + 2)
(𝑚2𝑟𝑒𝑠𝑖𝑠𝑡 + 2)(𝑚2𝑝𝑠𝑙 − 1)

)
1/3

. (C.3)

Table C.3: Resit particle types for which the LSE is estimated

Volume of

resist particle [𝑛𝑚3]
Shape of particle Sphere diam. equiv. [nm] LSE [nm]

50x50x25 Square Prism 49.23 46

50x25 Cylinder 45.42 42.5

25x25x25 Cube 31.02 29
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