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Abstract

Accurately predicting enzyme-substrate interactions is critical for applications in drug discovery, bio-
catalysis and protein engineering. Building upon the ProSmith algorithm, a machine learning frame-
work with a multimodal transformer for protein-small molecule interaction prediction, this study intro-
duces protein 3D structural data as an additional modality. To integrate this data, we explore additive
and multiplicative modality fusion strategies without requiring retraining the original transformer from
scratch. Our experiments demonstrate that while the incorporation of structural data does not offer
improved performance in random splits, it has the potential to surpass ProSmith in challenging data
splits involving unseen small molecules. Notably, the model shows better generalization for underrep-
resented substrates.
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I. Introduction

I. Introduction

Predicting the interactions between proteins and
small molecules is a persisting challenge in the
field of bioinformatics. Recent progress in solv-
ing it through machine learning methodologies has
been instrumental in drug discovery and protein
engineering. A survey by Bagherian et al. [2]
provides a broad overview of the techniques uti-
lized for this task, while Zhang et al. [21] point out
the decades of work on each drug and the billions
of dollars spent, challenges such algorithms could
address. A subset of the protein-small molecule
interactions, the enzyme-substrate binding, has
received comparatively less attention but is ap-
plied in biocatalysis for the production of numer-
ous chemicals (Wu et al., 2021 [20]). Addition-
ally, a number of commercially available products
already depend on synthetic biology, where such
algorithms are essential (Voigt, 2020 [17]).

According to Kroll et al. (2023) [10], previous
models lose valuable information when reducing
the protein to a single vector representation and
only after incorporating information about the small
molecule. They suggest a transformer-based al-
gorithm that processes the two input modalities si-
multaneously in a way that facilitates learning inter-
actions between individual amino acids and small
molecule segments.

As a base for our research serves the ProSmith
(PROtein-Small Molecule InTeraction Holistic) al-
gorithm, developed by Kroll et al. [10]. We explore
strategies for incorporating an extra modality to the
input, namely protein 3D structure data. It is well-
established in molecular biology that information
on the 3D structure of biological macromolecules
[...] is essential for the mechanistic understand-
ing of their function” (Carugo et al., 2023[4]). Our
study aims to improve the generalizability and ro-
bustness of ProSmith by enriching the input data
for the algorithm. We analyze modality fusion
methods that do not require retraining of the trans-
former mode and our model shows the potential
to outperform ProSmith when tested against sub-
strates, rarely occurring in the training set.

II. Background

In this section, we are briefly introducing the inner
workings of ProSmith and point out its shortcom-
ings we are about to address with our research.
Additionally, we discuss our choice of modality fu-
sion methods.

ProSmith processes protein-small molecule inter-
action predictions by integrating protein and small
molecule data into a multimodal Transformer net-

work. The modalities being used are a string of
characters representing amino acids and a small
molecule representation in SMILES [18] notation.
ProSmith first takes a protein sequence, tokenized
at the amino acid level and converts these to-
kens into representation vectors (each vector cor-
responding to a single amino acid) using the pre-
trained ESM-1b model [12]. Similarly, the small
molecule, represented by a SMILES string, is to-
kenized and mapped to vectors via the Chem-
BERTa2 model [1]. The protein and SMILES em-
beddings are concatenated into a single input se-
quence, with a classification token (cls) at the
beginning and a separation token (sep) between
the two modalities. This combined input is pro-
cessed by the multimodal Transformer, which up-
dates the embeddings through its attention mech-
anism, outputting an updated cls token that inte-
grates information from both the protein and the
small molecule. Finally, gradient boosting models
are trained on different combinations of three ele-
ments: the updated cls token, the mean of the em-
beddings from the ESM-1b model and the mean
of the ChemBERTa2 embedding vectors. The fi-
nal interaction prediction is generated by taking a
weighted average of the outputs from these mod-
els. The output of the model is in the form of a
value of a biochemical constant describing the in-
teraction or a binary prediction of whether the pro-
tein and small molecule would bind.

A significant drop in the performance of the Pro-
Smith algorithm is reported when tested against
data samples containing a substrate and/or a pro-
tein not seen during the training phase. Further-
more, the results on the same prediction task show
that performance declines significantly, with error
rates increasing approximately threefold when us-
ing a dataset roughly three times larger. Although
these numbers are reported only for a regression
task (refer to Tables 1 and 4 in Kroll et al. [10]), we
assume that a similar trend could be seen in binary
classification. We believe that both of these limita-
tions could be addressed by providing structural
information about the proteins. In this research,
we focus on the binary classification task as the
dataset provided was easier to work with.

A straightforward way to add an extra modality
would be to produce numerical representations for
the 3D structure of the protein and append them
to the rest of the input to the multimodal trans-
former. However, we assume that this approach
would change significantly the input space of the
transformer and would only work if we retrain the
model from scratch. As this is a very time- and
resource-intensive task we aim to use a ProSmith
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model pretrained on the BindingDB [13] dataset
provided by Kroll et al. [10].

Indeed, the state-of-the-art techniques for modal-
ity fusion are attention-based, training transform-
ers on datasets with millions of data points con-
taining both modalities. Models such as the
Chameleon (Team, 2024 [15]) and the Generalist
Agent (Reed et al., 2022 [14]) exemplify the power
of transformers in modality fusion but both of these
have required training on datasets comprising mil-
lions of samples.

Instead, we opted to fuse the amino acid sequence
and the 3D structure embeddings before feeding
them to the multimodal transformer. As described
in Jayakumar (2020) [8], we use Equations (1) and
(2) to approximate the interactions between the
two modalities. A detailed explanation of our ap-
proach can be found in Section Ill Methods: E
(Modality Fusion).

III. Methods

A. Research questions

Our study aims to answer what is the effect of
adding an additional modality to a protein lan-
guage model. Our research’s sub-questions can
be formulated as: (i) how the modality fusion meth-
ods implemented here compare to each other in
different experiment setups, (ii) can adding protein
3D structure data to the input lead to an even bet-
ter performance than the one documented in the
paper by Kroll et al.[10], (iii) can this implementa-
tion generalize better to unseen data and (iv) can
it lead to more robust models performing well in
low-data scenarios. To answer these questions, a
new benchmarking dataset was prepared, along
with a collection of experiments to test the model
in different settings. The new components added
to this study compared to the research of Kroll et al.
are the new dataset that includes graph data, the
selection of a graph embedding algorithm and a
modality fusion module to add to the model. Addi-
tionally, we conduct a brief ablation study with ex-
periments introducing input perturbations and ex-
cluding components of the algorithm. Thus, we
provide a more in-depth understanding of the in-
ner workings of the algorithm.

B. Problem definition

Our algorithm receives two different representa-
tions of a protein and a single representation of a
small molecule as input and outputs a binary pre-
diction of whether this small molecule would inter-
act with the protein. In this study, we test the use
case of enzyme-substrate binding prediction. As

showcased by Kroll et al., such an algorithm could
also generalize to other interactions of proteins
and small molecules such as drug-target affinity
prediction.

C. Input representation

The input format consists of three modalities de-
scribing proteins and small molecules, which is vi-
sualized in Figure 1. To dive into the details of the
input space we start by breaking down the protein
data we use. It consists of strings of amino acid se-
quences and graphs representing the 3D structure
of the proteins.

Amino acid sequence

An amino acid sequence is a string of characters,
each representing a single amino acid. In total, 20
letters from the English alphabet are used to repre-
sent the 20 standard amino acids. The amino acid
sequences are already available in the datasets
published by Kroll et al [10].

Protein graphs

To complement the amino acid information, we
opted to train the algorithm to make use of the
3D structure of the protein. For that purpose, we
create a graph with nodes corresponding to amino
acids for every protein we use. Thus, we can treat
each amino acid as a separate token both in the
sequence and the graph representation of the pro-
tein.

The Python library we made use of is called
Graphein [7]. It can both download 3D structure
data from AlphaFold’s database [9] with coordi-
nates per residue for each protein and convert
it into a graph with nodes representing residues
and edges based on interactions between pairs
of amino acids. The interactions we consider
for creating edges are based on peptide bonds
and distance. Distance is a well-established met-
ric used in protein graphs and in this case, we
use as distance threshold 10 angstroms (10~1°
m), which is on the higher end of the spectrum
with Vendruscolo et al.[16] using a cut-off value
of 8.5 angstroms. However, a second parame-
ter is key when creating the edges and this is
the “long interaction threshold” which is set to
five. This implies that no distance-based edge
will be added between any two nodes unless the
corresponding residues are at least five positions
apart in the amino acid sequence. This ensures
that the distance-based edges are formed only for
residues that are close together due to the way the
protein has folded in space and not due to their
proximity in the amino acid sequence. Addition-
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Figure 1: lllustration of the three input types used in the model: (1) protein structure graphs, (2) protein amino acid
sequences, and (3) small molecule SMILES strings. The amino acid sequences provide linear information, while the graphs
capture the 3D spatial relationships of amino acids. SMILES strings encode the chemical structure of the small molecule.
These inputs are combined to predict interactions between the protein and the small molecule.

ally, the peptide-bond edges ensure that we keep
the information about the sequence and that the
graphs are connected.

SMILES strings

Small molecule data are represented through
SMILES (Simplified Molecular Input Line Entry
System) strings. SMILES notation is a way to
represent chemical structures using short ASCII
strings. Each atom is represented by its atomic
symbol, bonds are implied or represented by spe-
cific characters (e.g., - for single, = for double),
and rings are indicated by numbers. Branching is
shown with parentheses. It provides a compact
format for describing molecules which is easy to
work with for an algorithm. This SMILES string is
tokenized using the Chemberta2 model of Ahmad
et al. [1].

To sum up, the data used as input for each protein-
molecule pair consists of an amino acid sequence,
a graph depicting the 3D structure of the protein
and a SMILES notation describing the structure of
the small molecule.

D. Dataset

We used the dataset created by Kroll et al. in a
study on enzyme-substrate interaction prediction
[11], in which they developed an algorithm they re-
ferred to as ESP (Enzyme Substrate Prediction).
Together with the model, they composed the ESP
dataset which includes positive enzyme-substrate
pairs and negative pairs (with a 1:3 positive-to-
negative ratio), resulting in almost 69 000 data
points. The authors then further expanded the
dataset by including data with phylogenetic evi-
dence in addition to the data with experimental ev-

idence so that the dataset gets to 850 000 data
points. This dataset contains tuples of amino acid
sequences (from around 144 000 unique proteins),
SMILES sequences and binary output values in-
dicating if the enzyme and the substrate bind to-
gether. It is important to note that the dataset the
model was pretrained on has no overlap with ESP.

Structural information about proteins can be
sourced from experimental data or from a com-
puter model - the current state-of-the-art model
being AlphaFold [9]. According to documentation
from the Protein Data Bank (PDB) [3], both options
have their downsides. Experimental structures
can have limitations, such as mismatches with ex-
perimental data caused by errors in model con-
struction, or regions that lack data due to disorder
or movement. Additionally, distortions in atomic
geometry, including deviations in bond lengths or
bond angles may arise from model-building or re-
finement errors. Similarly, computed structural
models (CSMs) also have limitations, including re-
gions of low confidence due to data constraints.
Even though experimental data is preferable in
some cases we opted for only AlphaFold-modelled
structures due to the ease of use of Python li-
braries providing interface to the model.

By using the Graphein library, we went through
the UniProt IDs associated with the proteins in the
ESP dataset and tried to download their 3D struc-
tures, which was successful in only a fifth of the
cases forming a database with 30 248 unique pro-
teins and 185 824 data points in total. Table 1 sum-
marizes the important parameters of the aforemen-
tioned datasets. From now on we will refer to the
‘’expanded ESP’ dataset as 'ESP’, since we do not
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Table 1: Comparison of the datasets used in the study. The two versions of ESP mentioned are provided by Kroll et al. [10]

Dataset Has phylogenetic | Has 3D structure | #total #unique pro-
data data points teins

Original ESP No No 69,000 12,020

Expanded ESP Yes No 850,000 144,000

Our dataset Yes Yes 185,824 30,248

use the original one in the trainings.

It is not clear why the Python library cannot find
all proteins from AlphaFold but we consider the
ones we found enough for conducting our envi-
sioned experiments. A larger dataset would make
the experimentation within the scope of this mas-
ter thesis more challenging given our computa-
tional constraints. Furthermore, we ensured that
the downloaded protein 3D structures come from
high-confidence AlphaFold predictions. The met-
ric provided by AlphaFold for that is the predicted
local distance difference test (pLDDT) which is a
score from 0 to 100 with higher scores indicating
higher confidence in the prediction. It is given on
a per-residue basis so we averaged those out to
obtain a score for each protein. A distribution of
the results is shown in Figure 2. Based on the
AlphaFold documentation, predictions with scores
lower than 50 should be considered unreliable.
We have only about 200 such entries with scores
in the range of 40 to 50, which is less than 1%
of all proteins we use. We chose to keep those
as removing them would have required generat-
ing embedding files from scratch which is time-
consuming. As illustrated in Figure 2, the largest
partition of predicted protein structures has pLDDT
scores of above 90%.

6000 4
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Figure 2: Distribution of average pLDDT (predicted Local
Distance Difference Test) scores generated by AlphaFold
for protein structures in the dataset. The pLDDT score ranges
from 0 to 100, where higher values indicate greater
confidence in the predicted structure. The scores are
provided per amino acid so we average them out for each
protein. A score above 90 suggests a highly reliable structure,
while scores below 50 indicate low confidence.

E. Model architecture
The architecture of the model can be divided into

two phases. The first phase is illustrated in Figure
3.

Generating embeddings

The first stage is creating embedding vectors from
the input tokens. The amino acid tokens and the
SMILES tokens are converted to numerical encod-
ings by the models ESM-1b and ChemBERTa2 re-
spectively. Both are transformer-based pretrained
models commonly used to create embeddings for
protein sequences and SMILES strings. These
models’ weights are frozen during the training. We
decided to use the same encoding models as in
the research by Kroll et al. because we initialize
the multimodal transformer with the weights pro-
vided by them. Thus, we hypothesized that chang-
ing the embedding layers could make it more diffi-
cult for the multimodal transformer to learn the new
embeddings space.

The added graph tokens are encoded using the
Node2Vec algorithm [6]. The mechanism by which
it operates involves generating context for each
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node in the graph through random walks. Con-
text is defined as a set of nodes that are reached
by random walks from the respective node in a
set number of steps. The embeddings are gener-
ated by maximizing the probability that each con-
text is generated from the particular node. Sim-
ilarity is calculated through the dot product of
the embedding vectors, based on the concept
that nodes should resemble other nodes in their
context. Other commonly used graph encoding
techniques are deep learning algorithms such as
Graph Convolutional Networks (GCNs) and graph
factorization methods. However, GCNs are useful
mostly when the algorithm needs to generalize to
unseen nodes which is not the case here and fac-
torization techniques are not performing well with
large graphs. Node2Vec, on the other hand, is
scalable and unlike deep learning techniques, it
does not require pretraining and is not prone to
overfitting.

The created embedding vectors have dimensions
1280 for the graph embeddings and 600 for the
amino acid ones, as can be seen in Figure 3.
Therefore, for each amino acid we have a vector
encoding it as part of the protein sequence and a
vector encoding its position in the protein graph (il-
lustrated in red and yellow in Figure 3).

Modality fusion

We proceed by training a fusion module to merge
the two vectors for each amino acid, representing
the graph and the amino acid sequence embed-
dings, respectively. The reasoning behind this is
that we want to keep the format of the input to
the multimodal transformer as similar as possible.
That way we hope to enrich the information of the
vectors corresponding to each amino acid but not
change completely the embedding space the mul-
timodal transformer was pretrained to get its input
from.

As formalized by Jayakumar et al. [8], in the gen-
eral case for input modalities z and z, given x € R"
and z € R™, the aim is to model an unknown func-
tion fiarget(x,z) € R*. In our case, n = m = k. For
modalities A and B with embedding vectors x4 and
xpg, equation (1) shows a first-order polynomial
describing an additive interaction or a weighted
sum. Through training we obtain one weight vec-
tor per modality, we multiply the embedding vec-
tor by the corresponding weights and sum them.
By adding a third term to the equation as it is in
(2) we end up with a second-order polynomial or
what we call additive and multiplicative fusion (it
includes the terms from (1) and adds a multiplica-
tion term). Here we take into account the element-

wise multiplication of the two embedding vectors.
As described by Woértwein et al. [19], one can
add an arbitrary number of terms to such equa-
tion (e.g. wy4(z% x %)) and higher order functions
have higher expressive power to estimate the in-
teraction between the two modalities. However,
we run into the risk of overfitting. Thus, the or-
der of the equation should be matched to the size
of the training set and the training time. We use
both equations (1) and (2) in separate experiments
and compare the results with regard to the metrics
discussed in the introduction of the results section.
For simplicity, we refer to the model implementing
equation (1) as additive fusion, while the model
implementing equation (2) we refer to as multi-
plicative fusion. However, equation (2) includes
all terms of equation (1) and could also be named
"additive and multiplicative fusion”. See Table 2
for an overview of the performance of these model
variations.

Z2=w1 Oxrast+w®Oxp

(1)

z2=w1 QxatwyOap+ws® (za®zp) (2)
Moreover, in order to account for the different mag-
nitudes in the embedding vectors coming from
ESM-1b and Node2Vec, we devised experiments
with two additional modifications to the algorithm.
First, we test a model that normalizes the embed-
ding vectors from both protein modalities based
on the average size of the embedding vectors
coming from each modality. Second, we opted
for initializing the weight vector corresponding to
the Node2Vec embedding vectors in equation (1)
from a distribution with a mean 6.5 times larger
than its counterpart weight, corresponding to how
much larger the magnitude of the ESM-1b em-
bedding vectors is on average compared to the
graph embedding vectors. We refer to the first
model as "additive/multiplicative fusion with nor-
malized embeddings” and to the second modi-
fication as "additive/multiplicative fusion with bal-
ancing weights”.

After the fusion model, the rest of the algorithm is
structured as in Kroll et al. [10]. As seen in Fig-
ure 3, the vectors encoding protein data and the
SMILES encoding vectors differ in size so they go
through linear layers that project them to a com-
mon embedding space of dimension 768.

Multimodal transformer

The two sets of vectors are used as input to a
Transformer encoder. To mark the end of one
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modality and the beginning of the other, a sepa-
ration token is used which is identical across input
sequences (marked as ’sep’ in the figure). More-
over, a classification token ’cls’ is used to distill
the valuable information from the two modalities
and use this for classification further down the line.
The separation token is initialized as a vector of ze-
ros, while the classification token is initialized as a
vector of ones.

The Transformer Network (level C in Figure 1)
updates each input token through the attention
mechanism, which allows the model to examine
the entire input sequence and selectively focus
on relevant tokens for updates. Once all input to-
kens have been updated for a specified number
of steps, the classification token (cls) is extracted.
This token is then fed into a fully connected neu-
ral network (noted as MLP in Figure 3) that is
trained to predict the interaction between the small
molecule and the protein. By training this part of
the algorithm end-to-end, it learns to encode all
essential information for the interaction prediction
within the cls token.

After training the Transformer Network to predict
protein-small molecule interactions, the cls token
is extracted as a joint representation of the three
modalities. However, given the limited size of the
cls token, Kroll et al. [10] hypothesized that impor-
tant general information might be lost. To address
this, they incorporate direct information from the
protein and small-molecule representation vectors.
These representations are computed by taking the
element-wise mean across the embedding vectors
for each modality, creating an ESM-1b mean vec-
tor and a ChemBERTa2 mean vector. Addition-
ally, we have one more modality, thus we calcu-
late a third element-wise mean vector from the
Node2Vec embeddings. As can been in Figure
4, those vectors are then processed by a gradient
boosting algorithm.

Gradient boosting models

Previous research has shown that using learned
representations from Transformer Networks as in-
puts for gradient boosting models further improves
outcomes over using the model’s predictions di-
rectly. Gradient boosting models use iterative de-
cision trees that reduce the errors of the previous
iterations. This study adopts a similar approach
by using the cls token, ESM-1b, Node2Vec and
ChemBERTa2 mean vectors as inputs for a gradi-
ent boosting model - namely XGBoost [5]. This is
what we refer to as the second phase of the train-
ing.

To enhance model performance, it is common to

train multiple models and use an ensemble of their
predictions, often resulting in more accurate and
robust outcomes. Thus, Kroll et al. hypothe-
size that training multiple gradient-boosting mod-
els with different input representations would im-
prove predictions. They train three models: (i) us-
ing only the cls token, (ii) using the concatenated
ESM-1b and ChemBERTa2 mean vectors, and (iii)
using all three input vectors. The final prediction is
obtained by computing a weighted mean of these
models’ predictions. Our modification to this sec-
tion of the algorithm is to add the mean vector of
the Node2Vec embeddings to the other mean vec-
tors in model (ii).

F. Training of the model
In this section, we discuss the details of the
model’s implementation and training.

Calculating the embeddings

As mentioned before, to encode the protein se-
quences and SMILES strings we use the same
pretrained models as Kroll et al. [10]. Proteins
are encoded by the ESM-1b model which is a
Transformer Network with 33 layers, trained on
about 27 million protein sequences. While the
SMILES strings are processed by ChemBERTa2
- a 3-layer model trained on around 77 million dif-
ferent SMILES strings.

Next, in the fusion module the weights in equations
(1) and (2) are initialized equal, drawn from a nor-
mal distribution with a mean of 1 and a standard
deviation of 0.02.

Furthermore, it's worth mentioning that the max-
imum length for protein sequences is capped at
1024 tokens, and for SMILES strings, at 256 to-
kens. If a sequence exceeds these limits, only the
first 1024 amino acids or the first 256 SMILES to-
kens are retained and passed through the embed-
ding modules. In our dataset, this leads to 9246
protein sequences (incl. duplicates) from the train-
ing set of a random split being trimmed. However,
no SMILES strings are exceeding the respective
limit.

Input to the multimodal transformer

Before entering the multimodal Transformer Net-
work, the embedding vectors pass through single-
layer fully connected neural networks with a ReLU
activation function, which maps them to a common
dimensional space. The input sequence in the
multimodal Transformer Network then follows the
structure shown in Figure 3: it begins with the ‘cls’
classification token, followed by tokens represent-
ing the protein, a separation token, and finally, the
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Figure 3: Transformer model architecture. The model accepts three different types of inputs: (1) amino acid sequences of
proteins, (2) protein structure graphs, and (3) SMILES strings of small molecules. The protein sequence and SMILES tokens
are encoded by the pretrained ESM-1b and ChemBERTa2 models, respectively, into embedding vectors. Simultaneously, the
protein graph is encoded using the Node2Vec algorithm to capture structural information. A fusion module merges the protein
sequence and graph embeddings for each amino acid. These embeddings are then projected into a common dimensional
space. The fused protein and SMILES embeddings are concatenated and fed into a Transformer network, which processes the
combined input through multiple layers of attention and produces an updated classification token ('cls’). This 'cls’ token is used
to make predictions about protein-small molecule interactions. This architecture is trained end-to-end except for the embedding
modules, which are colored in grey.
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Figure 4: Gradient boosting model architecture. The updated 'cls’ token, together with the element-wise means of the
embedding vectors from each modality are used as inputs for multiple gradient boosting models. Each model is trained on
different combinations of these input representations. The predictions from these models are then combined using a weighted
average to generate the final interaction prediction. This ensemble approach helps improve model accuracy and robustness by

leveraging complementary information from different input representations.
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tokens corresponding to the SMILES string. The
‘cls’ token is encoded as a vector of all ones, while
the separation token is encoded as a vector of all
zeros.

The multimodal transformer in Figure 3 is a
BERT (Bidirectional Encoder Representations
from Transformers) model. It was configured with
6 layers, each containing 6 attention heads. It em-
ployed the GELU activation function, a smoother
alternative to ReLU. After processing the input to-
kens through the six layers, a 768-dimensional rep-
resentation of the classification token is extracted
and passed into a fully connected neural network
with a hidden layer of size 32 using the ReLU acti-
vation function (denoted as MLP in Figure 3). The
output layer consists of a single node with a sig-
moid activation function.

Training parameters

The whole pipeline showcased in Figure 3, exclud-
ing the Node2Vec, ESM-1b and ChemBERTa2
models is trained together end-to-end. The learn-
ing rate is established at 10~°. Binary cross-
entropy loss is applied as most commonly used
for binary classification tasks. The training pro-
cess was conducted for 20 epochs, with model
parameters saved at the end of each epoch. Al-
though Kroll et al.’s original implementation was
trained for 100 epochs on the ESP dataset, we ob-
served that our training converged around the 20th
epoch. Kroll et al.’s paper does not provide plots il-
lustrating the training progress, so a direct compar-
ison is not possible. However, we expected earlier
convergence in our training process because our
dataset is approximately five times smaller than
the original ESP dataset. The batch size was kept
at 24 data points as it is in the work by Kroll et al.

Furthermore, the dataset is split into 80% training,
10% validation and 10% test data. During the first
stage of the algorithm (illustrated in Figure 3), the
training and validation sets are used to train the
model for generating the classification token. In
the second stage of the algorithm (Figure 4), the
test set is also used to make an unbiased estimate
of the error.

Batch processing

Storing all protein sequence tokens and SMILES
string tokens simultaneously during training con-
sumes excessive RAM for large datasets. To ad-
dress this, Kroll et al divided the protein sequences
and SMILES sets into smaller subsets of 2,000
each. We stick to that approach and create sets
of graphs that correspond 1:1 with the protein se-
quence sets. During training, only one subset of

tokens from each modality is loaded into RAM at
a time, and the training iterates over all possible
combinations of these subsets. The subsets are
loaded in the same order on every epoch, how-
ever, the data points are shuffled within each sub-
set.

Pre-training of the transformer network

We load a transformer model trained by Kroll et
al. The authors used the Ligand-Target-Affinity
dataset from BindingDB46, focusing on drug-
target pairs with experimentally measured 1C50
values. The dataset they curated has 1 039 565
entries and they trained the algorithm for 100
epochs with a batch size of 192 and a learning rate
of 1.5 x 107°.

Training the gradient boosting models

The research of Kroll et al. [10], includes optimiza-
tion of all hyperparameters for the gradient boost-
ing models: learning rate, maximum tree depth,
lambda and alpha coefficients for regularization,
maximum delta step, minimum child weight, and
number of training epochs. We used the same
implementation based on the Python package xg-
boost[5] and the same hyperparameters as found
optimal by the original paper, except the number
of training epochs which we reduced in half to 250
due to time limitations.

IV. Results and discussion

We evaluate the performance of our algorithm us-
ing the metrics utilized by Kroll et al. [10] in order to
compare to their implementation, as well as intro-
duce new experimental setups to answer all of our
research questions. First, we will briefly discuss
the metrics used.

The metrics used for the final classifier after the
gradient boosting algorithm are accuracy, MCC
(Matthew’s Correlation Coefficient) and ROC-AUC
(Receiver Operator Curve - Area Under the Curve).
Accuracy measures the proportion of correct pre-
dictions out of the total predictions. MCC eval-
uates the correlation between the predicted and
actual binary classifications, providing a value be-
tween -1 and +1, with values close to +1 indicating
a strong positive correlation, values near 0 indicat-
ing no correlation, and values close to -1 indicat-
ing a strong negative correlation. ROC-AUC mea-
sures the extent to which the classifier is able to
separate the two classes, with an area under the
curve closer to 1.0 indicating better discrimination
between the positive and negative classes. For all
three of those metrics, a higher value is desirable.
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In terms of the experiments, we opt out to test the
algorithm in different data split and data size sce-
narios. As discussed in Kroll et al’s paper, the algo-
rithm performance drops significantly when tested
against unseen proteins or molecules. They sug-
gest four splits and we follow the same structure.
First is a random data split which is an arbitrary di-
vision into 80% - 10% - 10% train, validation and
test sets. We then define three additional scenar-
ios: cold protein, cold SMILES, and cold protein
and SMILES. In these cases, 'cold’ indicates that
the test set consists of interactions involving sub-
strates, enzymes, or both that are deliberately held
out from the training and validation sets. For exam-
ple, in the cold protein split, the test set includes
only proteins that were unseen by the algorithm
during training and validation.

The next sections will address each one of our re-
search questions, in the order they have been pre-
sented in section Il Methods A. After, we have
added sections on error analysis and ablation
study.

A. Performance comparison of the
modality fusion strategies

During the first training phase (no gradient boost-
ing) with our strategy, we observe comparable
behaviour to the Prosmith architecture during the
training process, as can be observed from Figure
5, atrend consistent across all fusion strategies we
tested. The data split is irrelevant in this phase of
the training as it only affects the test set and here
only the accuracy of the validation set is plotted.
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Figure 5: Validation set accuracy for the multiplicative fusion
strategy and ProSmith during the first phase of training on the
random split, without embedding normalization or weights
adjustments.

Our results for cold data splits are reported in Ta-
ble 2. We chose to test the performance of our
model extensively on the cold SMILES and cold
protein & SMILES data splits as Kroll et al. [10]

have reported performance degradation for these
specific splits. Furthermore, results for the cold
protein split are in line with the random split perfor-
mance, both for the Prosmith algorithm as well as
our implementation, suggesting that new proteins
do not pose a serious challenge to these models.
Further details on that in subsection B, "Compari-
son of the new implementation against the original
algorithm”.

From the results reported in Table 2, we ob-
serve that the accuracy does not vary significantly
among the different tested setups. However, the
ROC-AUC values are generally higher for the cold
SMILES split. Additionally, all experiments show-
case slightly negative MCC values, the causes for
which we will discuss in the following subsection
C.

Based on these results, the multiplicative fu-
sion model with normalized embeddings performs
slightly better than the rest. However, we highlight
the tiny margins, sometimes only 0.1%, with which
it stands out compared to the second-most accu-
rate model. To have more conclusive results, aver-
aging these values among multiple runs of the ex-
periments is crucial. Due to limited time and com-
puting resources, this study provides results from
single runs of these experiments only.

B. Comparison of the new implementa-

tion against the original algorithm

To have a new baseline to compare our imple-
mentation with, we opted to first run the original
algorithm by Kroll et al. [10] on our newly com-
posed dataset. Naturally, we don’t make use of
the graph data for the ProSmith algorithm, as it
only works on protein amino acid sequences and
SMILES strings. Therefore, the only difference is
in the size and diversity of the datasets and these
are showcased in Table 1. The ESP dataset is the
one thoroughly discussed in Kroll et al.’s paper and
the one to which we compare our results.

The only direct comparison to be made with the re-
sults in Kroll et al.’s paper can be seen in Table 3.
First, we compare their algorithm on the random
split of the ESP dataset and on our dataset. The
results on our dataset are slightly higher in every
metric. Additionally, we select our best-performing
model from Table 2 (multiplicative fusion model
with normalized embeddings) and demonstrate
that its performance on the random split closely
aligns with the original model’s results without sur-
passing them.
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Table 2: Comparison of all fusion techniques with both normalized embedding vectors and balancing weights. All setups are
tested against the "cold SMILES” and "cold protein and SMILES” data splits of our dataset. Additive fusion is abbreviated to A.F.
and multiplicative fusion to M.F.

Setup Data split Accuracy ROC-AUC MCC

A.F. cold SMILES 72.6% 0.400 -0.055

AF. cold protein & SMILES 71.8% 0.258 -0.087

M.F. cold SMILES 72.3% 0.420 -0.049

M.F. cold protein & SMILES 72.1% 0.230 -0.084

A.F. with balancing weights cold SMILES 72.6% 0.404 -0.062
A.F. with balancing weights  cold protein & SMILES 73.9% 0.244 -0.047
A.F. with norm. embeddings cold SMILES 73.0% 0.395 -0.044
A.F. with norm. embeddings cold protein & SMILES 73.2% 0.336 -0.063
M.F. with norm. embeddings cold SMILES 73.0% 0.413 -0.050
M.F. with norm. embeddings cold protein & SMILES 74.0% 0.273 -0.042

Table 3: Results obtained on a random data split.
Performance comparison of ProSmith on the original dataset
(results documented in Kroll et al. [10]) and on our dataset, as
well as our multiplicative fusion model with normalized
embeddings.

Model
ProSmith
ProSmith
M.F. with norm. embeddings

ROC-AUC
0.85
0.993
0.992

MCC
0.972
0.939
0.931

Dataset
ESP
Our Dataset
Our Dataset

Accuracy
94.2%
97.6%
97.3%

The close-to-perfect results can be explained by
the already very high performance of the model in
random data split scenarios and with the smaller
dataset the algorithm can more easily learn. Fur-
thermore, we are introducing a selection bias in
the dataset by having only proteins for which
the Graphein library could download 3D struc-
tures. This could potentially mean that these are
commonly occurring or more well-known proteins.
However, we cannot confirm this theory.

Likewise, Table 4 juxtaposes the multiplicative fu-
sion model with normalized embeddings with the
ProSmith model on the cold protein split. Interest-
ingly enough, the results are very close to the ran-
dom split, indicating the algorithm generalizes very
well to unseen proteins as long as the SMILES
strings in the data points have appeared in the
training. In this data split, ProSmith achieves
an accuracy of 97.0%, while our algorithm trails
slightly with an accuracy that is 0.1% lower.

Table 4: Results obtained on a cold protein data split of our
dataset. Performance comparison between ProSmith and our
multiplicative fusion model with normalized embeddings.

Model Accuracy | ROC-AUC | MCC
ProSmith 97.0% 0.993 0.922
M.F. with norm. embeddings 96.9% 0.992 0.921

Coherently with what has been done by Kroll et al.
as well, we further investigate the contribution of

the different inputs of the gradient-boosting model
to the final performance. In Figure 6 we see the
contributions of each of the models for the Pro-
Smith algorithm as illustrated in Figure 4. We can
examine how these weights change for each data
split. Overall, we can confirm that both the mean
embedding vectors and the cls-token are taken
into account in the final decision in all data splits.
Other than that, no clear correlation can be found
between the weighting of the models and the ac-
curacy of the predictions.

1.04
0.8
06
0.4 4
0.2 4
0.0 4

Figure 6: Model contributions to the optimal classifier in
the gradient boosting phase as part of ProSmith. Bar plots
illustrate the weights assigned to predictions from three
gradient boosting models: cls token only, ESM-1b and
ChemBERTa2 vectors, and all three input vectors combined.

EEm ChemBERTa2 + ESM-1b
EEE cls-token
Bmm ChemBERTa2 + ESM-1b + cls-token

o

Weights

Similarly, Figure 7 illustrates the weight distribution
among the models in the ensemble for the multi-
plicative fusion with normalized embeddings algo-
rithm. One noticeable difference with Figure 6 is
the larger weight on the model relying only on the
mean embedding vectors. This likely means that
the multimodal transformer struggles with learn-



IV. Results and discussion

12

ing the new embedding space with the fused pro-
tein modalities. Thus, the model compensates by
putting a larger weight on the mean embeddings
instead of the classification token produced by the
multimodal transformer.

1.0

0.8

0.6

0.4

“I BN cls-token

0.0 4 u

Weights
o

0.2 { =W ChemBERTa2 + ESM-1b + Node2Vec
B ChemBERTa2 + ESM-1b + Node2Vec + cls-token

Figure 7: Model contributions to the optimal classifier in
the gradient boosting phase as part of the multiplicative
fusion model with normalized embeddings. Bar plots
illustrate the weights assigned to predictions from three
gradient boosting models: cls token only, ESM-1b and
ChemBERTa2 vectors, and all three input vectors combined.

C. Can the new implementation gener-

alize better to unseen data

Although Kroll et al. do not provide results from
their study on other data splits for the ESP dataset,
a comparison of the cold splits for a regression
task can be found in their Supplementary Table 6
[10]. In their analysis, the coefficient of determi-
nation (R?) drops significantly from 0.77 for a ran-
dom split to 0.1 for a cold drug and target split (the
dataset in question pertains to drug-target affin-
ity). This sharp decline in performance ultimately
means that their model is ineffective for this partic-
ular dataset and split.

Therefore, improved performance on such cold
data splits was our main priority with this study.
To compare side by side our most accurate model
from Table 2 with the ProSmith algorithm, we have
composed Table 5. Even if the difference is not
striking, our implementation is performing slightly
better on all three metrics and the accuracy in par-
ticular shows an increase of almost 1% in both
splits.

However, despite the relatively high accuracy, the
MCC values remain slightly below 0 across both
data splits. The reason behind this is the imbal-
anced dataset we are working with. For exam-
ple, the test set of the cold SMILES data split has
75.26% negative data points. The confusion ma-

trix for the test set, presented in Table 6 show-
cases that the model outputs "False” above 96%
of the cases. Even though this is correct roughly
75% of the time, it still causes a large number of
False Negatives (FN) and besides that there are
more False Positives(FP) than True Positives (TP).
For all these reasons, in the computation of the
MCC (Equation 3) we observe that the product of
the off-diagonal elements in the confusion matrix
overcomes the diagonal elements and leads to a
negative value.

Table 6: Confusion matrix of the multiplicative fusion model

with normalized embeddings on the cold SMILES data split.

Abbreviations: TP-True Positive, FP-False Positive, TN-True
Negative, FN-False Negative

Predicted Positive Predicted Negative

Actual Positive 55 3447
Actual Negative 382 10273

(TPxTN)—(FPXFN)
\/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

()

After observing negative MCC values, we verify
if our model performs any better than a random
classifier with knowledge of the prior distribution.
Figure 8 demonstrates the classification power of
the multiplicative model with normalized embed-
ding vectors on the data points involving the top
ten most commonly occurring SMILES in the test
set of the cold SMILES split. Over the bars in
the plot, we see the performance of the ProSmith
model and the random classifier marked with dot-
ted lines. The random classifier achieves lower ac-
curacy in all bins, however, as noted on the right
it has the highest MCC score of the three algo-
rithms. This trend might not hold for less common
SMILES, however, the ones displayed in Figure 8
already account for around 61% of the test set.

MCC =

To analyze further the generalizability of our model,
Figure 9 displays how the MCC changes as a func-
tion of how many times a substrate has occurred in
positive samples in the training set. Our model sig-
nificantly outperforms ProSmith on this metric for
rarely occurring substrates (up to 8 occurrences
in positive samples). This constitutes only 4.3% of
this test set and thus does not make a big differ-
ence towards the overall performance. However,
we highlight the fact that even though this is not a
cold data split, our model reaches very high MCC
values for the underrepresented substrates and
especially striking is the difference in the group of
data points with substrates never occurring in pos-
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Table 5: Performance comparison of ProSmith and the multiplicative fusion with normalized embeddings model on cold

SMILES and cold protein & SMILES data splits.

Model Data split Accuracy ROC-AUC MCC

ProSmith Cold SMILES 72.1% 0.411 -0.056

M.F. with norm. embeddings Cold SMILES 73.0% 0.413 -0.050
ProSmith Cold protein & SMILES 73.1% 0.251 -0.055

M.F. with norm. embeddings Cold protein & SMILES 74.0% 0.273 -0.042
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Figure 8: Performance evaluation of the multiplicative fusion with normalized embeddings model on the top 10 most common

substrates in the cold SMILES split.The performance of the ProSmith model and a random classifier with prior distribution

knowledge are also indicated for comparison.

itive training samples. Given how naturally imbal-

anced such datasets are, we consider this a very

useful property.
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Figure 9: Our model consistently outperforms ProSmith
in classifying data points with substrates that appear in

the training set a limited number of times. MCC

performance as a function of how many times a substrate
occurred in a positive sample in the training set of the random

split.
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D. Performance in lower data scenar-

10S

To answer our final research question of how our
model will perform with limited training data, we
conduct a set of experiments with 20% and 10%
of the available data in our dataset. The ratios of
training, validation and test sets remain the same
at 80% - 10% - 10% respectively. Since we could
not reach a significantly better performance than
a random classifier on the cold SMILES and cold
protein & SMILES, we concluded that reduced
datasets are unlikely to yield meaningful results
on these splits. Therefore, we only worked with
a random and cold protein data split for these ex-
periments. The results from the lower data se-
tups can be seen in Table 7. Due to limited time,
we only tested the multiplicative fusion model with
normalized embeddings as the best-performing
model from our previous experiments. The Pro-
Smith model consistently outperforms our model
across all metrics and scenarios. The differences
in performance actually get larger as the data gets
more scarce, meaning that ProSmith definitely is
to be preferred in such scenarios. This can be ex-
plained by the larger number of parameters in our
model due to the additional modality fusion mod-
ule, which likely increases the risk of overfitting
on smaller datasets. However, more experiments
would be needed to make any strong statements
on these setups. The smaller the data sets, the
more unstable the training gets and the more vari-
able results one obtains normally. Therefore, mul-
tiple runs need to be made in order to draw conclu-
sions.

E. Graph and error analysis

Graphs are a crucial component in our implemen-
tation as they are the new modality we add to
the algorithm’s inputs. Table 8 provides common
graph metrics for our dataset. On average, each
protein graph contains approximately 500 nodes
and 2,858 edges, with substantial variability ob-
served in both metrics. Furthermore, the aver-
age density is low, around 0.03, suggesting that
the graphs are generally sparse. Additionally, the
graph diameters range widely from 5 to 618, with
an average of 39, suggesting that some graphs
are compact while others have much longer paths,
indicating there are proteins not so tightly folded.
Figures A.1 and A.2 in the appendix reveal the dis-
tributions in our dataset of the number of nodes
and edges respectively. Overall, the dataset con-
tains a diverse set of protein graph structures, with
varying degrees of complexity and connectivity.

To investigate the misclassified proteins by our al-

gorithm, we gathered the same statistics as in Ta-
ble 8 for the unique proteins in the misclassified
samples from the test set of the random split, when
using the multiplicative fusion model with normal-
ized embeddings. The statistics obtained are very
close to the ones for all available proteins. None
of the values deviates by more than a standard de-
viation from the respective mean found in Table 8.
A full overview of the statistics on the misclassified
proteins can be seen in Table A.1 of the Appendix.

F. Ablation study

To get a better grasp of the robustness of the
model and its inner workings, we performed an
ablation study. First, we performed modality fu-
sion without our fusion module. Instead of fus-
ing the Node2Vec and the ESM-1b embedding
vectors first and then feeding the output to the
multimodal transformer, we directly concatenated
the Node2Vec embeddings right after the ESM-1b
embeddings in the input sequence to the trans-
former. Thus, we rely on the attention mecha-
nism of the transformer to perform the modality fu-
sion. We opted to conduct this experiment only
with the cold SMILES data split due to time con-
straints. In this run, we observed that the valida-
tion accuracy during the first phase of the algo-
rithm (illustrated in Figure 3) reached 96.5% which
approaches closely the results of the other mod-
els discussed previously. As the test set in the
random data split has the same data distribution
we can expect a performance of above 96% after
the gradient boosting in this data split. However,
the final accuracy of the model tested in a cold
SMILES scenario is 72.7%, falling just 0.3% short
of the best results displayed in Table 2. Although
we lack enough evidence to make a strong argu-
ment about whether this setup performs better or
worse than the one we proposed earlier, we can
conclude that the multimodal transformer demon-
strates remarkable robustness. Even such a major
perturbation in the input sequence does not signif-
icantly impact its performance.

Next, we opted to test the significance of the gradi-
ent boosting section of the model (illustrated in Fig-
ure 4. By default, the models are run against the
test set only after the gradient boosting algorithm.
Therefore, we see a larger difference in the accu-
racies before and after the gradient boosting for
the cold splits where the test set is the challenge.
In this setup, we ran the algorithm on the test set
of the cold smiles data split directly after the first
phase of the training. The accuracy obtained is
71.5% with ROC-AUC standing at 0.5. This shows
a 1.5% drop in accuracy compared to the best re-
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Table 7: Performance comparison of ProSmith and the Multiplicative Fusion model with normalized embeddings in lower data
scenarios. We consider partitions with 20% and 10% of all data points in our dataset.

Model Dataset partition Data Split Accuracy ROC-AUC MCC

ProSmith 20% random 90.0% 0.942 0.734

M.F. with norm. embeddings 20% random 88.1% 0.923 0.678
ProSmith 20% cold protein 89.8% 0.948 0.738

M.F. with norm. embeddings 20% cold protein 89.3% 0.938 0.724
ProSmith 10% random 87.2% 0.906 0.656

M.F. with norm. embeddings 10% random 82.2% 0.844 0.507
ProSmith 10% cold protein 83.8% 0.865 0.565

M.F. with norm. embeddings 10% cold protein 83.8% 0.863 0.567

Table 8: Summary statistics for the graph properties of all proteins in our dataset.

Num Nodes | Num Edges | Density | Average Degree | Diameter
Mean 500.11 2858.14 0.03 11.64 38.96
Std 323.22 1735.41 0.02 2.22 45.86
Min 23.00 35.00 0.00 2.00 5.00
Max 2696.00 17348.00 0.23 17.93 618.00

sult displayed in Table 2, even though the ROC-
AUC value obtained is higher than previous results.
We need to average the results across more runs
of this experiment to make a strong conclusion on
the contribution of the gradient boosting algorithm.
Given our limited data, however, it appears that
the gradient boosting step provides only marginal
added value.

To conclude our ablation study, we experiment
with replacing each of the protein modalities with
noise. We generate noise vectors of the same di-
mensions and magnitude as the embedding vec-
tors from the respective embedding modules -
ESM-1b and Node2Vec. Then, we run the first
phase of the algorithm three times with noise in-
stead of amino acid sequence embeddings and
the same with noise instead of graph embeddings.
We have plotted the average accuracy and stan-
dard deviation across the three runs in Figures 11
and 11. The accuracy curve of the runs with noise
instead of graph embeddings displays a clearer
learning trend, reaching a value of 92% after 13
epochs. Meanwhile, the accuracy achieved with
noisy amino acid sequence embeddings stands
just above 68% after the same number of epochs.
The results suggest that while graph information
adds value, it is not as pivotal as the sequence-
based embeddings. However, it could also be
the case that the model needs significantly more
epochs in order to converge when being trained
with noise instead of ESM-1b embeddings. We de-
cided to further verify whether our model (without
any noise) during training learns to make use of
both modalities or ignores one of them. To test this

we loaded the trained multiplicative fusion model
with normalized embeddings and calculated the
cosine similarity of the fused vectors per amino
acid with each of the corresponding embedding
vectors before the fusion module. When averaged
out over all amino acids of all data points in the
dataset, the results showed that both have a value
of around 0.3 cosine similarity with 1.0 meaning
fully correlated vectors. Therefore, we can confirm
that the model considers both modalities in the fu-
sion step.
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Figure 10: Average accuracy and standard deviation across
three runs of the first phase of the training (illustrated in
Figure 3)with noise instead of graph embeddings.
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Figure 11: Average accuracy and standard deviation across
three runs of the first phase of the training (illustrated in Figure
3)with noise instead of amino acid sequence embeddings.

V. Conclusion

In this study, we explored additive and multiplica-
tive modality fusion strategies for a transformer-
based algorithm aimed at predicting enzyme-
substrate interactions. By extending the ProSmith
architecture, we incorporated graph representa-
tions of protein structures as an additional input
modality and analyzed the effects of additive and
multiplicative fusion techniques, including embed-
ding normalization and balancing weights.

Our experiments revealed that the incorporation of
graph-based information does not significantly im-
pact the performance of the model. The results
suggest that the ProSmith model outperforms our
implementation in random and cold protein data
splits. However, we achieved improvement in the
cold SMILES and cold protein & SMILES splits.

Furthermore, our model exhibited superior perfor-
mance on underrepresented substrates, showcas-
ing its potential for better generalization, particu-
larly in datasets with limited positive samples.

A limitation of our study is the restricted number
of training and testing runs. Conducting signif-
icantly more experiments and averaging the re-
sults with established confidence intervals would
improve the reliability of our conclusions.

Our error analysis did not reveal any correlation
between specific graph properties and higher error
rates, leaving us without a straightforward explana-
tion for the model’'s misclassifications. The abla-
tion study emphasized the robustness of the multi-
modal transformer and its adaptability even when
faced with serious input perturbations. Addition-
ally, while the gradient boosting step contributed
marginally to performance improvements, it was
less impactful than anticipated.

Overall, our findings show the potential of multi-
plicative fusion for integrating additional modalities
into a transformer-based model without retraining
from scratch. Future work should focus on con-
ducting more experimental runs to validate these
results with greater confidence as well as test-
ing higher-order equations for modeling the inter-
actions between modalities. Additionally, efforts
should go in the direction of enriching the small
molecule data in the input as the algorithm strug-
gles more with generalizing to unseen substrates
as opposed to unseen proteins.
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Appendix

Distribution of Number of Nodes
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Figure A.1: Distribution of the number of nodes in the protein graphs in our dataset.
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Node Degree Distribution Across All Graphs
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Figure A.2: Node degree distribution of the protein graphs in our dataset.
Num Nodes | Num Edges | Density | Average Degree | Diameter
Mean 477.60 2788.73 0.03 11.60 33.55
Std 362.54 2788.73 0.02 2.89 42.78
Min 30.00 67.00 0.00 218 5.00
Max 2576.00 17166.00 0.15 16.22 289.00

Table A.1: Summary statistics for the graph properties of the misclassified proteins in the test set of the random split, when
using the multiplicative fusion with normalized embeddings model.
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