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Abstract
The centralized collection of search interaction logs for training
ranking models raises significant privacy concerns. Federated On-
line Learning to Rank (FOLTR) offers a privacy-preserving alterna-
tive by enabling collaborative model training without sharing raw
user data. However, benchmarks in FOLTR are largely based on ran-
dom partitioning of classical learning-to-rank datasets, simulated
user clicks, and the assumption of synchronous client participation.
This oversimplifies real-world dynamics and undermines the real-
ism of experimental results. We present AOL4FOLTR, a large-scale
web search dataset with≈ 2.6 million queries from 10,000 users. Our
dataset addresses key limitations of existing benchmarks by includ-
ing user identifiers, real click data, and query timestamps, enabling
realistic user partitioning, behavior modeling, and asynchronous
federated learning scenarios.

CCS Concepts
• Information systems → Learning to rank; Distributed re-
trieval; Peer-to-peer retrieval.
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1 Introduction
Online Learning to Rank (OLTR) is a widely used technique that
aims to learn a ranker from users’ interactions with search results.
The centralized data collection, however, exposes users to privacy
risks, as query and interaction logs reveal sensitive information,
such as demographic attributes or political views [1, 3, 32]. Fed-
erated learning approaches have been explored to address user
privacy concerns [16, 33, 34, 36]. In Federated Online Learning to
Rank (FOLTR), clients train a local ranking model on their personal
interactions with search results, and collaboratively update a global
model via privacy-preserving protocols. While FOLTR presents
a promising approach for developing privacy-preserving ranking
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models, its evaluation is constrained by the absence of publicly
available datasets. In order to simulate client behavior, existing
work relies on random partitioning of classical offline learning-to-
rank datasets [33], and the simulation of user interactions based
on click models [16, 33, 34]. This is inadequate as users have dif-
ferent document and click preferences [4, 35], giving rise to the
non-IID problem in federated learning [42]. Clients also vary in
usage frequency, i.e., the data quantity they contribute to the global
model. As Wang and Zuccon [35] verified, this heterogeneity in
client data poses a threat to FOLTR, as models learn less effectively.
Moreover, existing work considers synchronous federated learning
settings, which are inflexible and do not scale [39]. Realistically,
individual client updates arrive with varying frequency and burst
patterns. This further impedes model convergence through issues
related to staleness [37] and fairness [23]. Despite the heteroge-
neous nature of real client data, and the asynchronicity of search
interactions, FOLTR is commonly simulated in synchronous set-
tings and with IID data. Accurate simulations demand a dataset
with real user profiles and query timestamps. Existing datasets
typically aggregate data across large user populations to preserve
individual privacy [6, 28].

In this work, we present AOL4FOLTR [11], the first real-world
dataset for FOLTR. It contains more than 2.5 million search interac-
tions from 10 thousand users, including raw queries and documents,
user IDs, timestamps, clicked and non-clicked documents (i.e., re-
sult lists). We base our dataset in the AOL query logs released in
2006 [2]. We scraped the original website content at query time
using the Internet Archive, recovering more than 420 thousand
websites. Furthermore, we used this collection of websites as a ba-
sis for reconstructing top-20 result sets for each query. Finally, we
encoded query-document pairs using 103 features, following con-
ventions from popular learning-to-rank datasets. We believe that
our dataset positions itself as an important baseline for evaluating
both synchronous and asynchronous FOLTR scenarios. Our dataset
and code are made publicly available, along with documentation to
facilitate reproducibility1.

2 Background and Related Work
Traditional (offline) Learning to Rank (LTR) datasets include Mi-
crosoft’s WEB10k/30k [28], as well as datasets from Yahoo [5] and
Istella [7]. In these datasets, each query-document pair is annotated
by humans with relevance scores from 0 (irrelevant) to 4 (highly
relevant), which is used to optimize the ranking model. In OLTR,
the ranking model is continuously updated using real-time user
clicks, which serve as implicit signals.Unfortunately, there is no
publicly available LTR dataset containing real user interaction data
1https://github.com/mg98/aol4foltr
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(i.e., click/no-click) [34]. As a result, researchers often resort to LTR
datasets with simulated user interactions generated by click models
[13, 15, 26]. This approach is also commonly found in the evalua-
tion of FOLTR [16, 33, 34]. In FOLTR, clients train local ranking
models on local data, and occasionally synchronize with a global
model on a centralized server, where client updates are aggregated
through methods like FedAvg [22]. A common challenge in fed-
erated learning is client heterogeneity, as it complicates model
convergence [25, 38, 40]. Nonetheless, this issue remains a blind
spot in current FOLTR research. Evaluations are typically based on
IID random splits of traditional offline LTR datasets [16, 33, 34, 36].
However, this oversimplifies real-world settings where clients are
heterogeneous [4, 35].

Public click datasets are rare. Prior studies have shown that
“anonymized” user IDs can easily be deanonymized [1, 24]. Since
then, companies have become more cautious about releasing new
datasets. For example, when Microsoft released ORCAS [6], a click
dataset derived from search interactions on Bing2, they only in-
cluded queries submitted by at least 𝑘 users, and removed user
IDs and timestamps. Researchers at Yandex [17] took a different
approach by masking query terms and URLs, replacing them with
numeric IDs. Obfuscation techniques like this are effective at pre-
serving user privacy but make it difficult to extract meaningful
features for LTR. The AOL dataset [27], to the best of our knowl-
edge, remains the only publicly available source of raw query logs.
This work is not the first to attempt to reconstruct search result
lists from AOL query logs. Our method builds on the work of Guo
et al. [14], who introduced AOL4PS. Their method was to lever-
age BM25 rankings over the document corpus in order to simulate
result lists. This approach was later picked up in simulations of
OLTR in decentralized (peer-to-peer) settings [10, 12]. We extend
this method with a random offset to debias the results, as well
as the inclusion of “natural candidates”, which we explain in Sec-
tion 3.1.1. Furthermore, we use the Internet Archive3 to retrieve
websites approximately at the time of the query logs (mid-2006).
Our corpus surpasses AOL4PS by 271,392 documents, whilst also
more faithfully reflecting the original state of the websites.

3 Dataset Creation
In 2006, AOL released a dataset of query logs from users of their
web search engine [27]. To this date, it remains the only publicly
available dataset that combines user identifiers, raw search queries,
and the URL of the clicked document [20]. More recently, MacA-
vaney et al. [19] successfully restored the contents of the majority
of documents using the Internet Archive. Their approach ensured
that the recovered content approximates the state of the documents
at the time of the query. Furthermore, they parsed the HTML, ex-
tracting title and body as plain text. This forms the basis for our
dataset. Training and evaluation of a LTR model requires a set of
candidate documents for each query, i.e., the set of search results
from which the user could choose. In OLTR, this means that for
every clicked document, we must also know the documents the
user has decided against. This data is missing from the original
dataset. The reconstruction of result lists forms the core of our

2https://bing.com
3https://archive.org
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Figure 1: Example run of our top-k result list generation
method. Natural candidates are extracted from activities
with redundant queries, and then supplemented with BM25-
matched candidates.

methodology. After reconstructing result lists, we filter our dataset
to only include the top 10,000 users by number of query logs.

3.1 Reconstructing Result Lists
It is not possible to restore the result lists originally presented to
users for each query. To address this limitation, we simulate top-20
result lists for each query log based on the corpus of documents
in the dataset. Our approach exploits redundant queries to extract
natural candidates and then supplements them with a BM25-based
matching strategy inspired by Guo et al. [14]. We illustrate our
approach in Figure 1, and detail its components in the following.

3.1.1 Natural candidates. Each query log comprises the raw search
query, and the clicked document (or target document), among other
metadata. By the raw search query, it is often possible to identify
duplicates across multiple query logs where the same search query
was used and distinct documents were clicked. For 9.3 % of queries,
we could identify at least five distinct clicked documents; for 44.3 %
of queries, it was at least two. We define natural candidates for a
given query log as all documents clicked in any other query log
with the same query, including the target document of the cur-
rent query log. This definition is based on the assumption that
if a document was clicked in one query log, it was also included
in the candidate set for all query logs corresponding to the same
query. We acknowledge that this is a strong assumption, as search
engines often vary result lists based on factors such as user loca-
tion, language preferences, personalization signals, and temporal
dynamics. However, we believe these issues are mitigated by the
fact that the query logs were collected over a relatively short period
of three months and exclusively from users located in the United

https://bing.com
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States. Moreover, personalized search in 2006 was only beginning
to emerge around that time, and was far less advanced than it is
today [8].

3.1.2 BM25-matched candidates. We aimed for exactly 𝑘 = 20
candidates for each query log. Usually, the number of natural can-
didates 𝑛 < 20. In case of 𝑛 > 20, we randomly remove excess
documents from the candidate set, but never the target document
of the query log itself. For the missing 𝑘 − 𝑛 candidates, our ap-
proach leverages BM25 retrieval4. We used pyserini [18] to build
an index of documents based on their title, body text, and URL.
Based on the BM25 search utility in this library, we generated a
top-1000 ranking of documents matching our query. We explicitly
excluded natural candidates from this list, except for the target doc-
ument. A naive approach would be to select the top-ranking items
to supplement the candidate list. We observed that, most of the
time, the target document is not within the top-k documents. This
could create an unintended bias that the ranker might learn during
training. To avoid such bias, therefore, we apply a window around
the target document’s position within the top-1000 ranking. We set
the window size𝑤 = 𝑘−𝑛+1, to account for the missing candidates
and the target document itself. The windowing approach is inspired
from Guo et al. [14], who also used it to reconstruct result lists in
the AOL dataset. Rather than centering the target document within
the window, however, we placed it at a random offset between 0
and 𝑤 − 1. This strategy is again intended to mitigate potential
sources of bias.

3.2 Feature Selection
After reconstructing result lists, we compiled query-document fea-
ture vectors according to the standard LETOR format [28]. For
each candidate document in each query log, we created a train-
ing record consisting of a query ID, a binary relevance label (1 if
the candidate corresponds to the target document, 0 otherwise),
and the feature vector. The feature vector encodes all information
used by the ranker to make relevance decisions. Consequently,
identifying the most informative features is a critical aspect of
LTR [9]. For AOL4FOLTR, we followed the conventions established
by classic LTR datasets. Specifically, we replicated all features from
WEB30k [28] that could be derived from our data. This excludes
features like PageRank or dwell time, over which we have no infor-
mation. In total, we employ 103 features. Our feature selection is
documented in our code repository. Furthermore, our open-source
approach and provision of raw data allow researchers to experiment
by creating and adding new features.

4 Dataset Analysis
Our dataset comprises 2,594,705 query logs (637,996 unique queries)
from 10,000 unique users, who clicked on 428,157 distinct docu-
ments.

Data quantity. As is typical in such datasets, click activity ex-
hibits power-law characteristics, with most clicks generated by a
few users. We display this in Figure 2.

4BM25 is a standard ranking function based on keyword matching [29, 30].
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Figure 2: Cumulative number of users by minimum click
count (log-log). A minority of users account for most clicks.
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Figure 3: Temporal activity patterns for a sample of users.
User activities are bursty and irregular. Each dot represents
activity on a given day, with dot size indicating the volume
of activity.

Temporal patterns. User activity over time is highly variable
and irregular. Typically, users engage in short periods of concen-
trated interactions (often conceptualized as sessions [19]), resulting
in activity bursts. In Figure 3, we visualize these bursts for the five
most active users in our dataset5. Each dot represents user activity
(i.e., clicks) on a given day, with the dot size indicating the number
of clicks.

Feature heterogeneity. Local data heterogeneity is a known
and well-studied problem in federated learning [41, 42]. Specifically,
in the case of online learning to rank, it implies collaborative learn-
ing from clients with dissimilar click preferences with regards to
the features of a search result [4, 35]. We measured this divergence
by comparing the feature-wise probability distribution of clicked
search results between all users. Results are shown in Figure 4.
Wasserstein distance (also known as Earth Mover’s Distance) is a
standard algorithm to measure feature skew in non-IID federated
learning [31, 41].

5 Experimental Evaluation
We evaluate our dataset for its application in both synchronous
and asynchronous FOLTR. To this end, we employ 100 clients cor-
responding to the top 100 users by number of query logs in the
dataset. As a benchmark, we construct an IID variant by randomly
distributing the query logs of the 100 users across all clients. Finally,
we use a temporal split, holding out the latest 20 % for testing.

5User 71845 was excluded due to anomalously high activity.
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Figure 4: Feature distribution divergence of clicked docu-
ments across clients.

Our experiment uses FPDGD [33], the state-of-the-art algorithm
in FOLTR. Each client 𝑐 trains a local model 𝜃𝑐 on every personal
search interaction, i.e., each click results in a local model update.
After a certain number of model updates 𝑛𝑐 , the updated model
𝜃𝑐
𝑡+1 is sent to the server, where model updates from all |𝐶 | clients
are received synchronously. The server then performs a weighted
averaging of all updates, as shown in Equation (1). The weight is de-
termined by the number of queries each client has processed relative
to other clients. In our experiment, we use the original implemen-
tation and hyperparameters used by the authors of FPDGD [33],
including added noise for differential privacy and a constant num-
ber of queries per update 𝑛𝑐 = 4.

𝜃𝑡+1 =
|𝐶 |∑︁
𝑐=1

𝑛𝑐

𝑛
𝜃𝑐𝑡+1, where 𝑛 =

|𝐶 |∑︁
𝑐=1

𝑛𝑐 (1)

Evaluations of FOLTR in the literature have focused on the set-
ting of synchronous federated learning. In real systems, which are
asynchronous, users send updates at different frequencies and at
different times. Specifically, in FOLTR applications, client model
updates are expected once a client has completed a batch of in-
teractions [16, 33]. Asynchronous FOLTR, therefore, must be able
to handle stale updates, as outdated gradients may not align with
the current global model. To this end, we employ FedAsync [37], a
standard algorithm for dealing with staleness in asynchronous fed-
erated learning. In FedAsync, received local updates are weighted
according to staleness, as shown in Equation (2). Staleness is mea-
sured by the number of rounds 𝑟 since the client has synchronized
with the global model.

𝜃𝑡+1 =
1

1 + 𝑟 𝜃
𝑐
𝑡+1 ·

(
1 − 1

1 + 𝑟

)
𝜃𝑡 (2)

In Figure 5, we present results for both synchronous and asyn-
chronous learning of the global model, as measured by Mean Recip-
rocal Rank (MRR)6 and evaluated on the test set after each round.
We stopped the experiment after 10,000 rounds. In both settings,
updates of individual clients are processed in chronological order,
and each client update represents a batch of the client’s 𝑛𝑐 “next”
queries. The synchronous setting, however, does not respect the
global order of client updates. This is because each round 𝑡 pro-
cesses the 𝑡th batch of all clients, despite timelines across clients
not aligning. When a client runs out of batches, it gets skipped. In
6MRR is a standard metric when evaluating ranking quality [21].

the asynchronous setting, a round processes a single client update,
and client updates are processed in the chronological order given
by the timestamp of the last query in the batch. A client’s model
only synchronizes with the global model after it sent its update.
That is, in the synchronized setting, the client models are updated
after every round; in the asynchronized setting, a client’s model
remains stale until the same client sends their next update.

Our experimental results indicate major performance instability
in the asynchronous setting when simulating real user profiles.
This effect is entirely absent from our IID benchmark, which also
exhibits higher overall MRR. Further, we notice only minor differ-
ences with the IID benchmark in the synchronous setting, with
convergence occurring after around 1,000 rounds. We hypothesize
that incorporating features reflecting document content, beyond
abstract keyword-matching metrics, may yield more pronounced
differences, as suggested by the findings of Wang and Zuccon [35].
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Figure 5: Experimental evaluation of our dataset with 100
clients simulating users with the most queries in our dataset.

6 Conclusion
We introduced AOL4FOLTR, a novel online learning-to-rank dataset
based on real user clicks, encompassing user IDs, query timestamps,
and raw query and document contents. This resource sets a new
benchmark for the simulation of heterogeneous and asynchronous
federated learning settings. Our experiments demonstrated the
importance of simulations with real data rather than IID data, as
is found in current literature. Nevertheless, we believe the true
implications extend beyond the results presented here. By releasing
raw queries and document contents, we empower researchers to
derive new LTR features. Because of the availability of our data
and methods, this resource offers broader relevance, with utility in
the study of LTR feature selection, personalization techniques, and
federated or decentralized information retrieval.
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