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We carry out direct numerical simulations (DNS) of turbulent flow and heat transfer in
pressure-driven plane channels, by considering cases with heating on both walls, as well
as asymmetric heating limited to one of the channel walls. Friction Reynolds numbers
up to Reτ ≈ 2000 are considered, and Prandtl numbers from Pr = 0.025 to Pr = 4,
the temperature field being regarded as a passive scalar. Whereas cases with symmetric
heating show close similarity between the temperature and the streamwise velocity fields,
with turbulent structures confined to either half of the channel, in the presence of one-sided
heating the temperature field exhibits larger regions with coherent fluctuations extending
beyond the channel centreline. Validity of the logarithmic law for the mean temperature
is confirmed, as well as universality of the associated von Kármán constant, which we
estimate to be kθ = 0.459. Deviations from the logarithmic behaviour are much clearer
in cases with one-sided heating, which feature a wide outer region with parabolic mean
temperature profile. The DNS data are exploited to construct a predictive formula for the
heat transfer coefficient as a function of both Reynolds and Prandtl number. We find that
the reduction of the thermal efficiency in the one-sided case is approximately 20 % at unit
Prandtl number; however, it can become much more significant at low Prandtl number.

Key words: turbulence simulation, turbulent boundary layers

1. Introduction

Heat transfer in internal flows is a subject of utmost relevance in mechanical and aerospace
engineering applications. Typical applications include heat management in fuel cells, heat
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pumps, nuclear reactors, rocket nozzles and turbine blades. Accurate prediction of the heat
transfer is necessary for design purposes, but the existing large scatter in experimental data
makes it difficult to quantify the actual accuracy of semi-empirical predictive formulas,
which are believed to have approximately ±9 % uncertainty even for the simple case of
smooth ducts with uniform heating (Rohsenow, Hartnett & Cho 1998). For duct shapes
other than circular, the typical engineering approach is to use the same correlations, by
replacing the pipe diameter with the hydraulic diameter of the duct (Kays & Crawford
1993; White & Majdalani 2006). Although this is found to be rather successful in practice,
it lacks solid theoretical foundations, which reflects into even higher uncertainty, of up to
±20 % (Shah & Sekulib 1998).

Experiments of heat transfer in ducts are focused typically on the idealized case of
uniform heating along the duct perimeter, notable examples including the studies of
Brundrett & Burroughs (1967), Hirota et al. (1997) and Modesti & Pirozzoli (2022).
However, many applications include cooling channels being subjected to non-uniform
heating distributions. This is, for instance, the case for solar receivers (Candanedo,
Athienitis & Park 2011), and for cooling channels of rocket nozzles (Nasuti, Torricelli
& Pirozzoli 2021), in which the coolant fluid receives most heating on one side. Although
reduction of the heat transfer performance in these cases is to be expected on physical
grounds as a result of symmetry breaking, it seems that a full explanation for the
observational data is far from being reached. We believe that these large remaining
uncertainties should be overcome in light of increasing constraints in the efficient use
of energy. Whereas oversizing a thermal management system by 20 % may be reasonable
in some systems where weight is not a concern, it is certainly unacceptable in aerospace
engineering.

High-fidelity numerical simulations of convective heat transfer are good candidates to
support experiments in building fuller understanding of the physical mechanisms at play,
and to sharpen current estimates of the heat transfer rates. Direct numerical simulations
(DNS) have in fact been used extensively in recent years to analyse cases of symmetric
heating, both for physical insight and to derive predictive heat transfer formulas (Pirozzoli,
Bernardini & Orlandi 2016; Abe & Antonia 2017, 2019; Wei 2019; Alcántara-Ávila, Hoyas
& Pérez-Quiles 2021). Specifically, relations for the scaling of the bulk temperature with
the Reynolds number and the wall heat transfer coefficient at Prandtl number close to unity
were derived by Abe & Antonia (2017), whereas Prandtl number effects were considered
by Abe & Antonia (2019), Wei (2019) and Alcántara-Ávila & Hoyas (2021).

Numerical simulations with non-symmetric heating are, on the other hand, quite limited,
mainly dealing with flows inside square or rectangular ducts (Vázquez & Métais 2002;
Sekimoto et al. 2011; Kaller et al. 2019; Nasuti et al. 2021). Nasuti et al. (2021) in particular
was focused on convective heat transfer in a single rectangular cooling channel, with aspect
ratio 3, accounting for conjugate heat transfer within the solid material. The main finding
was a reduction of approximately 12 % of the overall heat transfer as compared to the case
of uniform heating. On the other hand, a recent study dealing with flow in a circular pipe
with non-uniform heat load over the perimeter showed weak if any influence on the global
Nusselt number (Straub et al. 2019). To the best of our knowledge, no DNS study has ever
been carried out for planar channel flow with non-symmetric heating.

Given this background, the goal of the present study is to leverage on DNS to gain
more complete understanding of the mechanisms underlying forced convection in the
presence of non-symmetric heating, and to reduce persistent uncertainties in the prediction
of even the most basic properties, such as the heat transfer coefficient. The case of a planar
channel will be considered herein, with heating concentrated on one of the two walls.
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DNS of one-sided forced thermal convection

Sufficiently high Reynolds numbers are achieved, which are representative of a state of
developed turbulence. The effect of molecular Prandtl number variation is also scrutinized,
in the range 0.025 ≤ Pr ≤ 4. The present study is the continuation of previous efforts
(Pirozzoli et al. 2016, 2022; Modesti & Pirozzoli 2022) targeted to study forced thermal
turbulent convection by means of DNS.

2. Methodology

Numerical simulations of fully developed turbulent flow in a plane channel are carried
out, assuming periodic boundary conditions in the streamwise (x) and spanwise (z)
directions. Several values of the bulk Reynolds number (Reb = 2hub/ν, with ub the bulk
velocity, h the channel half-height, and ν the fluid kinematic viscosity) are considered.
The bulk velocity is kept strictly constant during the simulations through the use of a
time-varying, spatially uniform body force. The incompressible Navier–Stokes equations
are supplemented with the transport equation of passive scalars (hence buoyancy effects
are disregarded), which are characterized in terms of their respective Prandtl number
Pr = ν/α, where α is the scalar diffusivity. Although the study of passive scalars is
relevant in several contexts, the main field of application here is heat transfer, therefore
from now on we will refer to the passive scalar field as the temperature field (denoted T),
and scalar fluxes will be interpreted as heat fluxes. Isothermal boundary conditions are
assumed at the two walls of the channel, in the case of symmetric heating. In the case of
one-sided heating, one of the two walls (y = 0) is isothermal, whereas adiabatic boundary
conditions are assumed at the opposite wall (y = 2h). The passive scalar equation is forced
through a time-varying, spatially uniform source term (constant mean temperature (CMT)
approach), so as to maintain the bulk temperature constant in time. Although the total heat
flux resulting from the CMT approach is not strictly constant in time, it oscillates around its
mean value under statistically steady conditions. Differences between the results obtained
with the CMT and constant heat flux approaches were pinpointed by Abe & Antonia (2017)
and Alcántara-Ávila et al. (2021), which although generally small, deserve some attention.

The computer code used for the DNS is based on the classical marker-and-cell
method (Harlow & Welch 1965), whereby pressure and passive scalars are located
at the cell centres, whereas the velocity components are located at the cell faces,
thus removing odd–even decoupling phenomena and guaranteeing discrete conservation
of the total kinetic energy and passive scalar variance in the inviscid limit. The
Poisson equation resulting from enforcement of the divergence-free condition is solved
efficiently by double trigonometric expansion in the periodic streamwise and spanwise
directions, and inversion of tridiagonal matrices in the wall-normal direction (Kim &
Moin 1985). An extensive series of previous studies about wall-bounded flows from
this group proved that second-order finite-difference discretization, in practical cases of
wall-bounded turbulence, yields results that are by no means inferior in quality to those of
pseudo-spectral methods (e.g. Pirozzoli et al. 2016). The governing equations are advanced
in time by means of a hybrid third-order low-storage Runge–Kutta algorithm, whereby
the diffusive terms are handled implicitly, and convective terms are handled explicitly.
The code was adapted to run on clusters of graphic accelerators, using a combination of
CUDA Fortran and OpenACC directives, and relying on the CUFFT libraries for efficient
execution of fast Fourier transforms (Ruetsch & Fatica 2014; Pirozzoli et al. 2021).

Inner normalization of the flow properties will hereafter be denoted with the ‘+’
superscript, whereby velocities are scaled by the friction velocity uτ = √

τw/ρ (with τw
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the mean wall shear stress, and ρ the fluid density), wall distances are scaled by the viscous
length scale δv = ν/uτ , and temperatures are scaled by the friction temperature

Tτ = α

uτ

〈
dT
dy

〉
y=0

, (2.1)

where brackets denote averages in time and in the homogeneous space directions. In
particular, the inner-scaled temperature is defined as θ+ = (Tw − T)/Tτ , where T is the
local temperature, and Tw is the temperature of the heated wall(s). Note that in this
normalization, the non-dimensional temperature within the channel is positive, despite
the fluid being cooler than at the heated wall. Finally, bulk values of streamwise velocity
and temperature are defined as

ub = 1
2h

∫ 2h

0
〈u〉 dy, Tb = 1

2h

∫ 2h

0
〈T〉 dy. (2.2a,b)

From now on, capital letters will be used to denote flow properties averaged in the
homogeneous spatial directions and in time, and lower-case letters will denote fluctuations
from the mean. Instantaneous values will be denoted with a tilde, e.g. ũ = U + u.

A list of the main simulations that we have carried out is given in table 1, all of which
were computed in a 6πh × 2h × 2πh box. Flow cases from A to D are meant to explore
the effects of friction Reynolds number increase up to Reτ = h/δv = 2000, for unit Prandtl
number. The mesh resolution for these cases is designed based on the criteria discussed
by Pirozzoli & Orlandi (2021). In particular, the collocation points are distributed in
the wall-normal direction so that approximately thirty points are placed within y+ ≤ 40,
with the first grid point at y+ < 0.1, and the mesh is stretched progressively in the outer
wall layer in such a way that the mesh spacing is proportional to the local Kolmogorov
length scale, which there varies as η+ ≈ 0.8 y+1/4 (Jiménez 2018). Based on experience
accumulated in a number of previous studies, the grid resolution in the wall-parallel
directions is set to 	x+ ≈ 8.2, 	z+ ≈ 4.1. Flow case C was considered to address Prandtl
number variations at fixed Reynolds number Reτ ≈ 1000. Six values of the Prandtl number
are considered, from Pr = 0.025 (which is representative of mercury) to Pr = 4 (not far
from the typical value of water), and a finer mesh is used for flow cases DNS-C-2 and
DNS-C-4, so as to satisfy restrictions on the Batchelor scalar dissipative scale, whose ratio
to the Kolmogorov scale is approximately Pr−1/2 (Batchelor 1959; Tennekes & Lumley
1972). According to established practice (Hoyas & Jimenez 2006; Ahn et al. 2015; Lee &
Moser 2015), the time intervals used to collect the flow statistics (	tstat) are reported as a
fraction of the eddy-turnover time (h/uτ ). All the DNS listed in table 1 were also repeated
for the case of symmetric heating, which is considered for reference.

The sampling errors for some key properties discussed in this paper have been estimated
using the method of Russo & Luchini (2017), based on extension of the classical batch
means approach. Additional tests aimed at establishing the effect of streamwise domain
length and grid size have been carried out for the DNS-C flow case. The results of the
uncertainty estimation analysis are very similar to those reported in Pirozzoli et al. (2022),
and are not reported here. Basically, the estimated sampling and discretization errors are
0.2 % for the Nusselt number, 0.4 % for the channel centreline temperature, and 0.7 % for
the peak temperature variance.
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DNS of one-sided forced thermal convection

Dataset Mesh (Nx × Ny × Nz) Reb Reτ Pr 	tstat/τt Line style

DNS-A 256 × 135 × 384 5714 180.59 1 204.0
DNS-B 768 × 307 × 1280 20540 551.75 1 86.5
DNS-C 1536 × 298 × 2304 40582 1002.1 1 63.8
DNS-C-0025 1536 × 298 × 2304 40000 986.4 0.025 24.1
DNS-C-025 1536 × 298 × 2304 40000 989.0 0.25 43.8
DNS-C-05 1536 × 298 × 2304 40000 988.8.2 0.5 36.8
DNS-C-2 3072 × 485 × 4608 40573 1005.2 2 15.5
DNS-C-4 3072 × 485 × 4608 40573 1004.9 4 20.4
DNS-D 3072 × 485 × 4608 88246 1999.1 1 22.4

Table 1. Flow parameters for DNS of channel flow. Cases are labelled in increasing order of Reynolds number,
from A to D. Case C was repeated on various meshes to investigate effects of Prandtl number variation, by
considering Pr = 0.5, 1, 4. Here, Nx, Ny, Nz denote the numbers of grid points in the streamwise, wall-normal
and spanwise directions, respectively. Simulations are performed in a computational domain with size 6πh ×
2h × 2πh, 	tstat indicates the time-averaging interval, and τt = h/uτ denotes the eddy turnover time.

3. Temperature field and statistics at unit Prandtl number

We begin by inspecting the instantaneous temperature fields in a cross-stream plane in
figure 1. As is well established (Kim & Moin 1989; Kawamura et al. 1998; Antonia, Abe &
Kawamura 2009; Pirozzoli et al. 2016; Alcántara-Ávila, Hoyas & Pérez-Quiles 2018), the
organization of the temperature field in the case of symmetric heating (figure 1b) closely
resembles that of the streamwise velocity field (figure 1a). Specifically, large towering
eddies are observed that are attached to the walls and convey low-speed, hot fluid from
the near-wall region towards the channel core. Likewise, return incursions of cold fluid
from the core flow towards the walls are also observed. Similarity is partly impaired in
the presence of one-sided heating (figure 1c). In this case, the temperature field includes
large-scale fluctuations that seem to protrude from the bottom heated wall farther than
the channel centreline, well into the upper half of the channel where temperature is more
uniform.

In order to explain quantitatively the different flow organization in the case of symmetric
and one-sided heating, in figure 2 we show the spectral maps of u, v and θ for the DNS-D
flow case, as a function of the spanwise wavelength (λz) and wall distance. The spectral
densities of the streamwise velocity clearly bring out a two-scale organization of the
flow field, with a near-wall peak associated with the wall regeneration cycle (Jiménez &
Pinelli 1999), and an outer peak associated with outer-layer, large-scale motions (Hutchins
& Marusic 2007). The latter peak is found to be centred around y/h ≈ 0.3, and to
correspond to eddies with typical wavelength λz ≈ 1.5h (Abe, Kawamura & Choi 2004;
del Álamo et al. 2004). Very similar organization is also found for the temperature field
in the symmetric heating case (figure 2c), the main difference being a somewhat less
pronounced large-scale peak. Both the streamwise velocity and the temperature field
exhibit a prominent spectral ridge corresponding to modes with typical spanwise length
scale λz ∼ y, here encompassing over one decade of length scales, which can be interpreted
as the footprint of a hierarchy of wall-attached eddies after Townsend’s model (Townsend
1976; Marisic, Baars & Hutchins 2017). The wall-normal velocity spectrum, shown in
figure 2(b), has a similar organization, however the inner-layer peak occurs farther from
the wall, and no outer-layer peak is visible. Furthermore, relatively more energy is found
at the channel centreline, which is a hint of non-negligible turbulent transport across the
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Figure 1. Flow case D (Pr = 1): instantaneous cross-stream fields of streamwise velocity (a,c) and
temperature (b,d), for symmetric heating (a,b) and one-sided heating from the bottom (c,d), for (a,c) ũ+, and
(b,d) θ̃+.

two parts of the channel. Similarity between u and θ is also confirmed in the near-wall
region for the case of one-sided heating (figure 2d). Clear differences in the temperature
spectra, however, arise far from the wall, as in the symmetric heating case very little
energy is present around the channel centreplane, where the mean temperature gradient
is zero. In the one-sided heating case, a distinct secondary peak of the spectral density is
instead present far from the wall, and energy is still significant at y ≈ h, with structures
that tend to be larger than in the symmetric case. As expected, little energy is found near
the upper wall, where the mean temperature gradient is zero. These marked differences can
be explained as being due to the fact that production of temperature variance is different
from zero throughout the channel, as the mean temperature is decreasing monotonically.
Hence large-scale features may be present in the temperature field that are not present in
the streamwise velocity field.

For all the flow cases, both the mean velocity (see Pirozzoli et al. 2016) and the mean
temperature exhibit near-logarithmic layers, namely

U+ = 1
k

log y+ + B, Θ+ = 1
kθ

log y+ + β(Pr), (3.1a,b)

where β accounts for change of the offset of the logarithmic layer with the Prandtl number
(Kader & Yaglom 1972). The temperature profiles at Pr = 1 are shown in figure 3, which
are both compared with (3.1a,b) by using kθ = 0.459 (same as in pipe flow; Pirozzoli
et al. 2022), with an additive constant resulting from best fitting β(1) = 6.14, a bit less
than in pipe flow. Small deviations of the mean velocity and temperature profiles from a
genuine logarithmic behaviour were observed in a number of previous studies (e.g. Afzal
& Yajnik 1973; Lee & Moser 2015; Pirozzoli et al. 2016; Luchini 2017), in the form of
an additive linear term whose slope decreases in wall units, hence the logarithmic law
should be recovered only in the infinite Reynolds number limit. Despite those deviations,
the logarithmic law is found to provide a very good working approximation for the mean
temperature profile throughout the outer wall layer in the case of symmetric heating.
A logarithmic layer is also distinctly present in the case of one-sided heating; however,
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Figure 2. Variation of pre-multiplied spanwise spectral densities with wall distance for u (a), v (b), and for θ

under symmetric (c) and non-symmetric (d) heating conditions, flow case DNS-D (Reτ = 2000, Pr = 1). Wall
distances (y) and spanwise wavelengths (λz) are reported both in inner units (bottom, left), and in outer units
(top, right). The dashed diagonal line marks the trend λz = 6.1y. Contour levels from 0.2 to 2.0 are shown, in
intervals of 0.2.

deviations are much larger in that case, starting at y/h ≈ 0.2, and the wake region is much
more prominent.

The temperature profiles are shown in defect form in figure 4, referred to either the
centreline temperature in the case of symmetric heating, or the mean temperature at the
adiabatic wall in the case of one-sided heating. In both cases, the reference temperatures
correspond to the maximum values of Θ , which are hereafter denoted with the e subscript.
Tendency towards outer-layer universality is clear – however, starting later (Reτ � 1000)
in the case of one-sided heating. As noted in previous studies (Pirozzoli et al. 2016), the
defect temperature distributions can be represented conveniently in terms of compound
parabolic/logarithmic distributions, namely

Θ+
e − Θ+ = β1 − 1

kθ

log η, (3.2a)

Θ+
e − Θ+ = C (1 − η)2 , (3.2b)

where η = y/h, with matching taking place at η = η∗. The parabolic distribution (3.2b)
well describes the wake part of the profiles, with the exception of the lowest Re case, and
as previously noticed, the associated curvature is much larger in the one-sided heating
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Figure 3. Inner-scaled mean temperature profiles for the case of symmetric (a) and one-sided (b) heating, at
Pr = 1. The dashed line denotes the reference logarithmic law Θ+ = log y+/0.459 + 6.14. See table 1 for
colour codes.
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Figure 4. Defect mean temperature profiles for the case of symmetric (a) and one-sided (b) heating, at
Pr = 1. The dash-dotted grey lines mark a parabolic fit of the DNS data (Θ+

e − Θ+ = C(1 − η)2, with
C = 5.48 in (a), and C = 12.3 in (b)), and the dashed lines mark the outer-layer logarithmic profile
Θ+

e − Θ+ = β1 − (1/kθ ) log η, with β1 = 0.0667 in (a), and β1 = 6.48 in (b). The insets depict the same
distributions in linear scale. See table 1 for colour codes.

Heating k kθ B B1 β1 C η∗ b1 b2

Symmetric 0.387 0.459 4.80 0.354 0.0666 5.48 0.196 10.6 −3.96
One-sided 0.387 0.459 4.80 0.354 6.48 12.3 0.274 10.6 −3.96

Table 2. Values of the universal parameters for mean temperature and streamwise velocity profiles as
extracted from the DNS, to be used in (3.1a,b), (3.2a), (3.2b), (3.3a,b).

case than in the symmetric case. A similar composite representation also fits the mean
streamwise velocity distributions (see Pirozzoli et al. 2016). The parameters for the
universal defect mean velocity and temperature distributions as determined from DNS
data fitting are listed in table 2.
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Figure 5. Maximum (a) and bulk mean (b) values of streamwise velocity (squares) and temperature for
symmetric heating (triangles) and one-sided heating (circles), at Pr = 1. The dashed lines in (a) denote
logarithmic fits of the DNS data after (3.3a,b), with coefficients given in table 2. The dashed lines in (b)
denote logarithmic fits of the bulk values as suggested by Abe & Antonia (2016, 2017).

An important complement of the previous results are the trends of the maximum mean
velocity and temperature with the Reynolds number, which are shown in figure 5(a). As
noted by Schlichting (1979), these properties exhibit logarithmic variation with Reτ , which
follows from combining (3.1a,b) and (3.2a):

U+
e = 1

k
log Reτ + B + B1, Θ+

e = 1
kθ

log Reτ + β(Pr) + β1, (3.3a,b)

with fitting constants given in table 2. Figure 5 visually confirms differences of the von
Kármán constant for the velocity and temperature fields, as well as much larger values
of the maximum temperature in the one-sided heating case. Logarithmic trends of the
bulk velocity and mixed mean temperature were inferred by Abe & Antonia (2016, 2017),
for isothermal walls with Pr ≈ 1, using a global energy balance analysis. They obtained
k = 0.39 and kθ = 0.46, which agree well with the present results. Those authors found
that logarithmic trends of u+

b and θ+
m start at lower Reτ than needed to observe logarithmic

layers in the mean velocity and mean temperature profiles, and attributed the reason to
the presence of a 1/Reτ term in the scaling laws of the energy dissipation and scalar
dissipation rate, which was also considered by Luchini (2017) for the scaling of the
mean velocity, and by Spalart & Abe (2021) for the scaling of the Reynolds stresses and
their budgets terms. Consistent with their findings, figure 5(b) shows a logarithmic Reτ

dependence even at modest Reynolds number.
The temperature variances are shown in figures 6(a,b). In the case of symmetric

heating, the temperature variances exhibit a near-wall peak in the buffer layer, followed
by monotonic decrease towards the centreline. A similar behaviour is here observed in
the one-sided heating case, with near-wall peak amplitudes that increase nearly as the
logarithm of Reτ , and with absolute value that is a bit higher than in the symmetric case
for given Reτ . Another notable feature of the one-sided heating case is the occurrence
of a secondary peak of the temperature variance at y ≈ h, which is not present in the
case of symmetric heating. In order to clarify the reasons for the observed differences,
in figures 6(c,d), we show the distributions of the temperature variance production term
Pθ = −〈vθ〉 dΘ/dy. This quantity seems to be completely unaffected by the thermal
forcing in the near-wall region, where the distributions for the symmetric and one-sided
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Figure 6. Distribution of temperature variances in inner (a), and outer (b) coordinates, at various Reτ

values, for Pr = 1. Solid lines denote cases with one-sided heating, and dashed lines denote cases with
symmetric heating. Refer to table 1 for colour codes. In (c) we show the thermal energy production term
Pθ = −〈vθ〉 dΘ/dy, as a function of y+, for flow case DNS-D, and in (d) the same term is shown in
pre-multiplied form, as a function of η = y/h.

cases are identical. Differences, however, arise far from the wall, and the pre-multiplied
distribution of Pθ attains a peak at y/h ≈ 1 in the one-sided heating case, whose position
matches very well the outer peak observed in the temperature variance. By also recalling
the spectra in figure 2, it is quite clear that the outer peak in the temperature variance is
rooted in the formation of large structures in the temperature field that cannot be present in
the streamwise velocity field, and the higher temperature variance in the near-wall region
is due to long-wavelength energy associated with the outer energy site.

4. Heat transfer coefficients

The primary subject of practical interest in the study of forced convection is the heat
transfer coefficient at the wall, which can be expressed in terms of the Stanton number,

St =
α

〈
dT
dy

〉
w

ub(Tm − Tw)
= 1

u+
b θ+

m
, (4.1)

where Tm is the mixed mean temperature (Kays, Crawford & Weigand 1980),

Tm = 1
2hub

∫ 2h

0
〈uT〉 dy, (4.2)
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Figure 7. Variation of inverse Stanton number (a) and Nusselt number (b), with Reynolds number, for Pr = 1.
The DNS data for the symmetric case are denoted with square symbols, and those for one-sided heating with
circles. The dashed lines denotes the correlation (4.4), the dash-dotted lines the correlation (4.5), and the dotted
lines the predicted heat transfer coefficients obtained from logarithmic fit of u+

b and θ+
m in the case of symmetric

heating (Abe & Antonia 2017).

and θ+
m = (Tw − Tm)/Tτ , or more frequently in terms of the Nusselt number,

Nu = Reb Pr St. (4.3)

Predictive formulas for the heat transfer coefficient can be derived readily based on the
analytical expressions for the mean temperature and velocity profiles developed in the
previous section, by neglecting the presence of viscous and conductive sublayers. As is
evident in figure 7, the proposed expressions fit the data quite well, with the exception
of the lowest Reynolds number case, thus supporting the validity of this assumption. In
particular, inserting (3.2) and (3.3a,b), as well as their counterparts for the velocity field,
into (4.1), an explicit formula can be obtained for the inverse Stanton number as a function
of the friction Reynolds number. With the set of universal constants given in table 2, the
final expression is

1/St = 1.593 + 2.12 β(Pr) + (−0.597 + 2.58 β(Pr)) log Reτ + 5.64 log2 Reτ (4.4)

in the case of symmetric heating, and

1/St = 7.89 + 2.12 β(Pr) + (10.5 + 2.58 β(Pr)) log Reτ + 5.64 log2 Reτ (4.5)

in the case of one-sided heating, with Prandtl number dependence absorbed into the
unknown function β(Pr). A relation similar to (4.4) would be obtained by multiplying
logarithmic relations for u+

b by that for θ+
m , as proposed by Abe & Antonia (2017) for

Pr ≈ 1. In fact, logarithmic fitting of the present DNS data shown in figure 5(b) yields the
dotted line in figure 7, which is virtually indistinguishable from the prediction of (4.4).
However, the latter retains the advantage of incorporating the dependence on the Prandtl
number through the logarithmic offset function β(Pr), which will be discussed next.

5. Prandtl number effects

The effects of Prandtl number variation have been considered by carrying out DNS at fixed
Reτ = 1000, up to Pr = 4 (DNS-C-4). Some qualitative effects are shown in figure 8.
At very low Prandtl number (figure 8a), turbulence is barely capable of perturbing the
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Figure 8. Instantaneous temperature fields in a cross-stream plane for one-sided heating at Reτ = 1000, for
Pr = 0.025 (DNS-C-025, a), Pr = 0.25 (DNS-C-0025, b), Pr = 1 (DNS-C, c), and Pr = 4 (DNS-C-4, d).

otherwise purely diffusive behaviour of the temperature field. As expected, increase of
the Prandtl number yields a reduction of the thickness of the conductive sublayer, hence
large temperature variations tend to be more confined to the wall vicinity. The presence
of details on a finer scale is also evident at increasing Pr, on account of the previously
noted reduction of the Batchelor scale. Other than that, the large-scale organization of the
temperature field is qualitatively similar, reflecting outer-layer similarity.

The effect of Prandtl number variation on the mean temperature profiles is analysed
in figure 9. As expected, universality is not achieved in inner scaling (figure 9a), as the
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Figure 9. Inner-scaled mean temperature profiles (a) and defect temperature profiles (b), for one-sided heating,
at Reτ = 1000. Refer to table 1 for line styles. In (b), the dash-dotted grey line marks a parabolic fit of the DNS
data Θ+

e − Θ+ = C(1 − η)2, with C = 12.3, and the dashed lines mark the outer-layer logarithmic profile
Θ+

e − Θ+ = β1 − (1/kθ ) log η, with β1 = 8.48. The inset depicts the same distributions in linear scale.

asymptotic behaviour in the conductive sublayer is Θ+ ≈ Pr y+ (Kawamura et al. 1998).
As a result, the temperature profiles in the outer layer are offset by a significant amount, as
quantified through function β(Pr) in (3.1a,b). All flow cases exhibit a near-logarithmic
layer, with the exception of the Pr = 0.025 case. The defect representation shown in
figure 9(b) continues to support outer-layer universality, which is robust to both Reynolds
and Prandtl number variations.

In order to derive a convenient expression for the logarithmic offset function β(Pr), we
start from the functional form suggested by Kader & Yaglom (1972),

β(Pr) = b2 + b1 Prα + 1
kθ

log Pr, (5.1)

with α = 2/3, and b1, b2 parameters to be determined from fitting experimental data.
Based on (3.3a,b), we note that fixing Reτ (here we set Reτ = 1000), β(Pr) can be obtained
by fitting the distribution of the maximum temperature Θ+

e , as shown in figure 10. The
fitting coefficients b1, b2, have been determined based on the DNS data for the symmetric
heating case, and are reported in table 2. It is then quite satisfactory that the same function
β(Pr) also yields excellent collapse of the data for the case of one-sided heating, with
no further adjustment. Deviations are limited to the Pr = 0.025 case, which, as observed
previously, does not show a sizeable logarithmic layer. Hence we judge that the minimal
Reynolds number for which the observed scaling based on validity of the log law is valid
is Reτ Pr � 200.

Having estimated robustly the logarithmic offset function, we now go back to (4.4) and
(4.5), to achieve a full representation of the dependence of the heat flux coefficients on Re
and Pr. The predicted variation of the Nusselt number with Pr is compared with the DNS
data in figure 11(a). As expected based on the previous discussion, the quality of the fitting
is excellent, with errors much less than 1 %, with the exception of the Pr = 0.025 case.
Increase of the Nusselt number with Pr is recovered for both symmetric and one-sided
heating, with an overall trend that is quite far from a power law, as surmised in most
semi-empirical formulas (e.g. Kays et al. 1980). Nevertheless, empirical laws developed
for symmetric forced convection at low Pr (Abe & Antonia 2019; Alcántara-Ávila &
Hoyas 2021) fit the DNS data quite well. The ratio of the respective Nusselt numbers
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Figure 10. Maximum values of temperature for symmetric heating (triangles) and one-sided heating (circles),
as a function of Pr, at Reτ = 1000. The dashed lines denote fits of the DNS data from (3.3a,b), with β(Pr) as
given in (5.1), and fitting coefficients as in table 2.

is used in the figure 11(a) inset to provide a measure of the thermal efficiency of the
channel in the presence of one-sided heating, as compared to the case of symmetric
heating. The efficiency is found to be significantly significantly less than unity at low
Prandtl number, and to increase at increasing Pr, as one can deduce easily from (4.4)
and (4.5). The thermal efficiency predicted from the latter equations does in fact provide
a close estimate of the DNS data, provided that Reτ Pr � 200. Figure 11(b) reports the
extrapolated dependence of the thermal efficiency on the Reynolds number. Consistent
with (scattered) data reported in the literature (e.g. Sparrow, Lloyd & Hixon 1966), we
find the thermal efficiency for Prandtl number close to unity to be typically between 80 %
and 85 %, and to increase with the Reynolds number. Significant variation with the Prandtl
number is also observed, with much lower efficiency at low Pr, and higher efficiency (up
to 90 %) at higher Pr, at which sensitivity to Re is also reduced.

6. Conclusions

We have studied turbulent forced convection in plane channel flow for various Reynolds
and Prandtl numbers, considering the cases of both symmetric and one-sided heating.
The latter case has been studied considerably less, although it is probably more relevant
for practical applications, in which heating is often concentrated at one wall. The
instantaneous temperature fields reveal that cases with one-sided heating are characterized
by large-scale organization of the temperature field, which exhibits structures extending
well beyond the channel symmetry plane, whereas in symmetrically heated cases, the
temperature structures are confined to each half of the channel. The occurrence of
large-scale organization of the temperature field is confirmed quantitatively by the
spectrograms and profiles of the streamwise temperature fluctuations, which show a
distinct energetic peak in the outer layer, which is absent in the case of symmetric heating.
Analysis of the temperature variance production term further corroborates that increase of
the inner peak of the temperature variance results from long-range influence of the outer
thermal energy site.

Despite different organization of the outer-layer turbulence, the mean temperature
profiles show many commonalities. All flow cases show the emergence of a logarithmic
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Figure 11. Distribution of the Nusselt number as a function of Pr at Reτ = 1000 (a), and estimated thermal
efficiency as a function of Reb, at various Pr (b). In (a), the DNS data for symmetric heating are denoted with
square symbols, and those for one-sided heating with circles; dotted and dashed lines denote the corresponding
fits, according to (4.4) and (4.5) combined with (5.1). The dash-dotted and solid lines denote the low-Pr fits of
Abe & Antonia (2019) and Alcántara-Ávila & Hoyas (2021), respectively. The inset of (a) reports the thermal
efficiency in the one-sided case (symbols) and the corresponding estimate based on the log law (dashed line).
In (b), predictions are shown only for Reτ Pr � 200, and the line styles are as in table 1.

layer for the temperature profile, with slope similar to that found in pipe flow.
Asymmetrically heated cases feature a much stronger wake region, which is modelled
accurately using a parabolic law in both the symmetric and one-sided heating cases,
although with different fitting constant. Once again, outer-layer similarity is confirmed to
be a robust feature of wall turbulence, which is also found to apply to cases with one-sided
heating, throughout the Reynolds and Prandtl numbers ranges. These universal features are
used to derive analytical approximations for the heat transfer coefficient, whose deviation
with respect to the DNS data is no more than 1 %, and which are used to estimate the
thermal efficiency of one-side-heated channels, as compared to the idealized symmetric
case. We find that the thermal efficiency is reduced substantially (by up to 40 %) at low
Prandtl number, whereas the increasing relevance of turbulent convection tends to level off
the differences at higher Prandtl number, with reduced efficiency of approximately 10 %
at Pr = 4.

The study confirms that DNS at moderate Reynolds number are a valuable tool for
understanding the flow physics, but can also aid the derivation of more accurate predictive
formulas, especially for quantities that are difficult to measure experimentally, such as heat
fluxes. Future efforts will be devoted to studying asymmetric heating in more complex
flow configurations, such as square and rectangular ducts, which are extremely relevant
in engineering. Interestingly, publicly available data (Sparrow et al. 1966) show similar
reduction of efficiency in that case.
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