Architecture and Task

Plan Co- Ada‘TﬂDN\\
with Metgplan 101

—/

\—/

n

i)

manned .
derwater Vehicles

MSc. Thesis

- J. Zwanepol

Architecture and Task
Plan Co-Adaptation

with Metaplan for

Unmanned Underwater
Vehicles

MSc. Thesis

by

J. Zwanepol

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Tuesday March 28, 2023 at 1:00 PM.

Student number: 4472764
Project duration: December 1, 2021 — March 28, 2023
Thesis committee: Dr. Ir. C. Hernandez

G.R. Silva

Dr. Ir. J. Kober

Dr. |. Gerostathopoulos

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

Acknowledgement

This is my opportunity to become a bit sentimental and reminisce about my time at the TU Delft. | am
really grateful for receiving the opportunity to study Robotics at the TU Delft. My cohort had the oppor-
tunity to take the Robotics master on its maiden voyage, and although there were definitely hiccups due
to this and the effects of the Covid-19 pandemic, | felt the staff involved with organizing the program put
their heart and soul into it. | want to especially thank Karin van Tongeren for her passion in organizing
in-person events whenever possible and always trying to interact with students to ensure they are well
looked after.

During my master’s degree, | had the opportunity to meet a myriad of inspirational and kind people,
who helped me grow academically and as a person. There are a few people | would like to thank
in particular for their support and kindness during my Robotics journey. First and foremost, thank you
Godwin, for being a brother to me and sharing times of great stress (Machine Learning project) and great
joy (too many things to mention), and stuffing me with biryani beyond what my stomach could handle.
Second, | want to thank Zhengping for being a great friend and always being up to grab lunch/coffee
and letting me taste delicious Chinese dishes. Thank you Sriman, for inviting me into your home for
delicious meals and being an inspiration for academic excellence. Thank you Stan, for starting your
thesis track earlier, such that | could look over your shoulder and learn from your experiences, this was
a great help to me. Thank you also for being always interested and offering your help where you could.
Thank you Mariano and Giovanni for obsessing over the ERF hackathon and writing a paper with me
and testing my leadership skills by your endless zeal for implementing ’trivial’ improvements. Finally, |
want to thank the people of the office | had the privilege to work in. Thank you Juliane, Julian, Leandro,
Lorenzo, Irene, Ashwin, and Micah for baking delicious things, talking with me, providing me with coffee,
offering help, and distracting me from the endless thesis work. Honestly, there are too many people
to thank, therefore | present a (probably incomplete) list of honorable mentions, in no particular order:
Shawn, Wouter Meijer, Denzil, Nander, Cilia, Anish, Berry, Darshan, Joseph, and Georgios.

As for the supervisors of my thesis, | want to thank you for all the support and feedback you have
given me. | want to thank Carlos for always trying his best to schedule time whenever | asked for this,
and for all the discussions helping me clarify ideas and ultimately help me form my thesis. Furthermore,
| want to thank Gustavo for helping me persevere in my thesis. You have been such a great help for me
throughout my thesis process. You have helped me with providing feedback, debugging, challenging
me, and encouraging me to come to where | am now. | appreciate all the coffees we got together and
all the non-thesis related talks. Thank you for involving me in the publication of the SUAVE exemplar
paper and pushing me to be a better student. Furthermore, | want to thank all the members of the KAS
lab for providing feedback and challenging my ideas.

Lastly, | want to thank all the people that have walked alongside me during my graduation process,
supporting me with distractions, care, and prayer. Thank you Thijs, Hendrik-Jaap, Ries, Stijn, and
Constantijn for all the lunchtime distraction you provided me. Thank you Timo and Lisanne for your
sympathy, care, and encouragements and for being good friends. Thank you Jacob, for welcoming
us into your home for a short recharge vacation. Thank you Chiem, for being a great flatmate at the
start of my degree helping me where possible and for being a good friend. Thank you Max for being
a good friend and looking out for me. Thank you to my family and in-law family, for all the support
you have given me. Thank you for sending messages to check in on me, inquiring about my progress,
providing much-needed distractions, and caring about me. Thank you mom and dad, for the financial
support, hugs, prayers, laughs, distractions, home-cooked meals, care-packages, and so much more.
And finally, the most important person of all, thank you to my wife Maaike. Words fail to express my
gratitude to you. Thank you for all your endless support in all my endeavors. Thank you for challenging
me to be a better person, and looking out for my health when | could sometimes neglect it. To close, |
am grateful for this journey and all the blessings | received from God along the way.

J. Zwanepol
Delft, March 2023

Architecture and Task Plan Co-Adaptation with
Metaplan for Unmanned Underwater Vehicles

J.M. Zwanepol*
Technical University of Delft

ABSTRACT

Unmanned Underwater Vehicles (UUVs) oper-
ate in complex environments and need to be
able to adapt to sudden failures, or changes in
the environment. To achieve autonomous oper-
ation, UUVs must have the ability to self-adapt
in such cases. To effectively handle component
failures and unexpected events, self-adaptation
must be applied to both the architecture and
task plan of the UUV. This allows the UUV to
modify its architecture to accommodate com-
ponent failures and adjust its task plan in re-
sponse to unforeseen events that may render the
current plan infeasible. The mutual dependen-
cies between architectural adaptation and task
planning pose a significant challenge when de-
termining how to apply adaptation. As a re-
sult, the task planner must take into account
the implications of architectural adaptation when
generating a plan. This paper proposes Meta-
plan, a modular ROS2-based framework for ap-
plying architectural and task plan co-adaptation
in a reusable way. Metaplan extends Meta-
control, an architectural self-adaptation frame-
work, with a task planner based on Planning Do-
main Definition Language (PDDL). The effec-
tiveness of Metaplan is demonstrated by evalu-
ating it on SUAVE, an exemplar for evaluating
self-adaptation frameworks for UUVs. Metaplan
is shown to outperform a baseline which only
makes use of a task planner. Architecture and
task plan co-adaptation is demonstrated by pre-
senting the UUV with a sudden drop in battery
level, requiring the UUV to adapt both its ar-
chitecture and its task plan. Furthermore, the
reusability of Metaplan is showcased by apply-
ing it to a mobile manipulator scenario.

1 INTRODUCTION

The interest in researching Unmanned Underwater Vehi-
cles (UUV) is increasing, resulting in significant advances in
this field [1, 2]. Common applications of UUVs are perform-
ing reconnaissance, inspection, and mapping [3], as well as
performing “smart” guided attacks in the military context [2].

*Email address: j.m.zwanepol @student.tudelft.nl

UUVs operate in complex environments, due to nonlin-
ear dynamics, uncertain models, and difficult to model dis-
turbances [4]. Moreover, due to their application in sea/o-
cean environments, UUVs are not easily retrievable when
they have a failure. This means that a UUV needs to han-
dle this complex environment, as well as guarantee safe ren-
dezvous/mission fulfillment in the case of faults.

Aside from the aforementioned, software systems are be-
coming more complex and, according to a manifesto pub-
lished by IBM, a continuation of this trend will make it im-
possible for humans to manage these complex software sys-
tems [5]. Therefore, a new way of managing software sys-
tems, such as UUVs, is needed, one where software sys-
tems can manage themselves. Self-managing systems allevi-
ate the need for human management it, only requiring high-
level objectives from administrators [6]. One form of self-
management is self-adaptation [7], which will be the focus of
this work.

Self-adaptation has been applied by switching between
(software) components being used through use of an ab-
stracted model of the system. This is also referred to as
architectural self-adaptation [8]. A system that makes use
of an architectural self-adaptation framework can be broken
down into a managed and a managing sub-system. The man-
aging sub-system is the architectural self-adaptation frame-
work and requests adaptation of the managed subsystem.
Metacontrol [3] is an architectural self-adaptation framework.
Metacontrol has been applied to a UUV by adapting which
thrusters are being used in the case of thruster failures, ex-
ploiting the thruster redundancy of the UUV. Self-adaptation
has also been applied on the task planning level. Task plan-
ning is the generation of a sequence of actions which tran-
sition the system from an initial state to a goal state. The
Situational Evaluation and Awareness (SEA) framework [9]
is a task plan adaptation framework which has been applied
to a UUV. SEA makes use of task plan adaptation in order to
create a continuous map of an object, despite the UUV losing
self-localization while mapping an object.

When deviations from initial/expected situations occur,
i.e., failures, it is important to consider both the architecture
and task plan of the robot when adapting. When applying
this to a UUV use case, the UUV would need to adapt both
its task plan and its architectural configuration if it is per-
forming a search action and a sudden drop in battery level
prohibits the UUV from reaching a charging station with its
current configuration. Its task plan would need to change by

requiring a recharge action at the start of the plan, and its
architectural configuration would need to change by switch-
ing to a configuration that uses less battery. Therefore, archi-
tecture and task plan co-adaptation contributes to achieving
long-term, reliable deployment of autonomous robots, such
as a UUV [10].The mutual dependencies between architec-
tural adaptation and task planning pose a significant challenge
when determining how to apply adaptation [|1]. As a result,
the task planner must take into account the implications of
architectural adaptation when generating a plan. The frame-
works presented in [12, 11] focus on combining architectural
and task plan adaptation. Although these frameworks do ar-
chitecture and task plan co-adaptation, the planning solution
of both frameworks is tailored to the specific application it is
made for and is not reusable for a new application.

This paper proposes Metaplan, a modular ROS2-based
framework for applying architectural and task plan co-
adaptation in a reusable way. Similar to [1], this work takes
an architectural self-adaptation framework and extends this
with task planning. Metacontrol is selected as the framework
used for architectural self-adaptation, because it has an open-
source ROS2 implementation available, called MROS! [13],
and an application of MROS to the SUAVE exemplar is pub-
lically available?.

Like Metacontrol, Metaplan makes use of an ontology to
store information about the system architecture. Metaplan
uses the information queried from the ontology to update the
task planning problem, which is formulated in PDDL, similar
to [9]. Metaplan makes use of the Plansys2? [14] package for
handling plan generation and execution.

The main contribution of this paper is combining archi-
tecture and task plan adaptation with a reusable task plan-
ner. Metaplan considers architectural adaptation as part of the
task planning problem. Architectural adaptation is done at the
start of an action, reconfiguring the robot to use the optimal
configuration for each action. As such, multiple architectural
adaptations can be incorporated in a plan. The reusability of
Metaplan is demonstrated by applying it to a new application.

Furthermore, Metaplan maintains the reusability of Meta-
control, while expanding the self-adaptation options of Meta-
control. Metaplan allows for both the architecture and task
plan adaptation parts to be reusable for different tasks. The
reusability of the architectural adaptation is maintained from
the Metacontrol framework, and the use of PDDL allows the
framework to be reusable for different task planning prob-
lems. Furthermore, Metaplan makes use of ROS2, allowing
for easy communication with other ROS2 systems. The func-
tionalities of the system are achieved by ROS2 nodes, allow-
ing for easy re-use of one or more of these nodes for a differ-

Ihttps://github.com/meta-control/mc_mros_
reasoner

2https://github.com/kas-lab/suave

3https://github.com/PlanSys2/ros2_planning_
system

ent system. Furthermore, PDDL is the most popular language
in the planning community [!5], allowing for easy re-use of
open-source PDDL specifications.

The following section presents the research done in the
area of architecture and task plan co-adaptation. section 3
gives background information on the frameworks used to de-
velop Metaplan. section 4 presents the scenario to which
Metaplan is applied. Afterward, section 5 explains Meta-
plan and how it works. Next, section 6 Metaplan is evaluated
through three experiments. section 7 contains a discussion on
the results obtained in the evaluation section, and finally, sec-
tion 8 contains the conclusions which can be drawn from this
work and recommendations for future works.

2 RELATED WORKS

Previous work on Metacontrol mentions the need for ar-
chitecture adaptation to be combined with task plan adapta-
tion [16].

This multi-level concern is first addressed by the MORPH
architecture [17]. A divide and conquer approach is proposed
such that both the reconfiguration and behavior strategies do
not require explicit knowledge about each other in order to
make a decision. The authors propose a three-tier hierarchical
architecture following the MAPE-K loop* [6].

The top layer is the Goal management layer. The main
concern of this layer is anticipating changes in goals, envi-
ronment, and system capabilities by pre-computing generat-
ing behavior and reconfiguration strategies to be used in the
subsequent layers.

The middle layer is the Strategy management layer, where
the computed behavior and reconfiguration strategies are se-
lected to be sent to the Strategy Enactment layer. Here, the
behavior and reconfiguration strategies are checked for con-
sistency.

The bottom layer is the Strategy Enactment layer. It ex-
ecutes the selected behavior and reconfiguration strategies
while monitoring the managed system.

The high level strategic concerns are handled in the top
layers and the tactical adaptation of components is handled in
the lower level.

Although MORPH is a framework for applying architec-
ture and task plan co-adaptation, only a concept is presented.
There is no open-source code available and no implementa-
tion example is given. All the architectural elements are ex-
plained briefly, but no in-depth implementation detail is pro-
vided.

Like MORPH, [! 1] presents a framework for applying
adaptation on both the architecture and task planning levels.
In similar manner, it does this by separating the architecture
reconfiguration from the task planning problem, while taking
their mutual dependency into account. The framework makes
use of an Alloy [!8] specification together with the PRISM

4MAPE-K stands for Monitor, Analyze, Plan, and Execute through
Knowledge

https://github.com/meta-control/mc_mros_reasoner
https://github.com/meta-control/mc_mros_reasoner
https://github.com/kas-lab/suave
https://github.com/PlanSys2/ros2_planning_system
https://github.com/PlanSys2/ros2_planning_system

[19] model checker in order to adapt the architecture and task
plan of the system.

The framework is specifically designed for robotic nav-
igation in a map with multiple traversable corridors. This
problem can be modeled as a graph where the arcs represent
the corridors. The robot has a limited set of action primitives,
such as move, with which to traverse from an initial position
to a goal position. The MoveBase [20] package is used for
navigation and communication is done using ROS.

Alloy is used to define the components, connectors, and
architectural constraints. The Alloy specification is used in
order to generate the legal configurations. A first PRISM
specification is subsequently used to generate reconfiguration
plans with the according energy cost using the legal config-
urations. The Dijkstra algorithm is then applied to the graph
representing the map to generate all possible paths from the
initial node to the goal node. Afterward, another PRISM
specification is used which takes the legal configurations and
the set of possible paths to the goal position and decides on
the best configuration and path combination to reach the goal
position according to the defined metrics timeliness, safety,
and energy efficiency.

This framework achieves architectural and task plan co-
adaptation for the scenario used in the example, however does
not generalize to new scenarios. Architectural adaptation is
done using Rainbow [21], and is relatively easy to apply to
a new situation by providing new domain knowledge. How-
ever, task planning is done using a very specific solution for
navigation on a graph like map. Applying this solution to a
new task planning scenario would require extensive changes.
Furthermore, task planning does not take into account that an
action might become unavailable when there is no architec-
tural configuration solving the action.

Another framework applying architectural and task plan
co-adaptation is TeMoto [12], an open-source ROS-based
framework for adaptive autonomous robots. The generation
of task plans is done separately from the architectural adapta-
tion, thereby also applying a separation of concerns. TeMoto
also allows for multi-robot collaboration, with multiple in-
stances of TeMoto running on each robot. The framework is
tested and validated using a real robot.

The backbone of the TeMoto framework is the Resource
Registrar (RR). A resource is a component or action of the
system. This subsystem requires or provides resources, while
keeping track of the clients making use of a resource and its
sub-resource dependencies. A resource manager keeps track
of a certain resource type and updates the information con-
tained in the RR. Actions contain developer-defined logic for
tasks, and are executed by the Action Engine. Tasks such
as moving an object can consist of multiple actions, in this
case that would be ’picking an object’, 'moving to desired
object location® and ’placing the object‘. These tasks are user
defined and can be dynamically loaded to TeMoto for execu-
tion.

TeMoto provides a fully developed framework for which
to program robot autonomy on task management and re-
source (architecture) management. However, like the pre-
vious framework, generalizability of task planning is lack-
ing. At design time, a task plan for handling each uncertainty
needs to be programmed. If the system were to encounter
a new scenario, the robot would not be able to generate an
appropriate task plan.

Currently, the architectural and task plan co-adaptation
approaches are limited with regard to re-usability of task
planning. Applying the frameworks mentioned above would
require considerable overhead to handle new scenarios. A
new framework which can be applied to multiple scenarios
with minimal overhead is therefore needed to handle archi-
tectural and task plan co-adaptation.

Task planning is done by devising a sequence of actions
to achieve a goal [22]. Off-the-shelf task planners exist for
solving robotics task planning problems. These task planners
make use of a planning language to define the actions and
world states of the planning problem. Important considera-
tions in selecting a planning language is that a task plan needs
to be able to deal with non-deterministic, dynamic environ-
ments. This is because in many robotic scenarios, the robot
oftentimes operates in a dynamic environment with stochas-
tic outcomes to actions. Therefore, a task planning approach
which takes these points into consideration is needed.

Non-deterministic problems can be solved through a
probabilistic planner, or through replanning. Probabilistic
planners consider state transitions through actions to happen
with a certain probability. The output of a probabilistic plan-
ner is a contingency plan, which consists of multiple trajec-
tories. A replanning approach makes use of a deterministic
planner to generate a task plan to reach the goal state. When-
ever a deviation occurs with respect to the state it is expected
to be in and the state it is actually in, replanning is done. This
generates a new task plan from the current state to the goal
state. For many problems, it was found that a replanning ap-
proach outperforms a probabilistic planner, especially when
a task planning problem contains no dead-ends [23].

Furthermore, through the use of a replanning approach,
dynamic environments can also be taken into consideration.
In the case of a change in the environment, the state informa-
tion can be updated and replanning can be done. The newly
generated plan would take into consideration the change in
environment, and perform a different sequence of actions.

Multiple deterministic planners are available using dif-
ferent planning languages. Two such languages are Plan-
ning Domain Description Language (PDDL) and Answer Set
Programming (ASP). Empirical evidence shows that PDDL-
based planners perform better on problems with longer solu-
tions, whereas ASP-based planners perform better on tasks
with a large number of objects [15]. PDDL is the de facto
standard for representing classical planning problems, and
has multiple extensions allowing for more expressive plan-

ning models [24].

Since PDDL has many extensions and is the de facto plan-
ning language, it is selected as the task planning language
used. More specifically, PDDL2.1 is used as this allows for
the use of numeric properties and temporal constraints, which
are used for the modeling of the UUV use case [25]. These
properties allow for the task planner to take into consideration
the time needed to complete actions, and select the actions
minimizing overall time. Combining PDDL with Metacon-
trol combines architecture and task plan co-adaptation with
the benefit of having a re-usable task planner.

3 BACKGROUND

Extending Metacontrol with a PDDL planner allows
for architecture and task plan co-adaptation while ensuring
reusable and extendable task planning. Both Metacontrol and
PDDL are expanded upon in this section, and an explana-
tion of the Metacontrol framework and PDDL task planner
are given.

3.1 Metacontrol

Metacontrol [3] is a framework for applying architec-
tural self-adaptation. Metacontrol uses an ontology as a
knowledge base for reasoning about the managed sub-system.
TOMASYys (Teleological and Ontological Model for Au-
tonomous Systems) is the metamodel used by Metacontrol,
to specify the structure of the ontology. An application spe-
cific ontology is defined following the TOMASYys structure,
describing the functionalities specific to the domain of the
self-adaptive system. The Metacontrol Reasoner takes the in-
formation from the ontology and adapts the system to main-
tain the functionality required at runtime.

The Metacontrol Reasoner implements the MAPE-K
loop. The Monitor step keeps track of the relevant param-
eters of the system and the environment. The Analyze step
checks the architectural model of the system to see if the cur-
rent configuration is still the best configuration for fulfilling
the desired functionality of the system. If a change in config-
uration is needed, the Plan step selects the new configuration
according to the selected performance metrics. Finally, the
execute step reconfigures the system to use the best configu-
ration chosen at the Plan step.

TOMASys TOMASYys is the metamodel used to describe
the application specific ontology of Metacontrol. The classes
and connections specify how functionalities of the system
are linked to each other and which components need to be
used in order to obtain these functionalities. For the pur-
pose of capturing requirements based on environment at-
tributes, the TOMASys metamodel is extended with environ-
ment attributes. Figure 1 shows a simplified version of the
TOMASYys formulation.

Functions F' describe the high level functionalities of
the managed sub-system. One or more function designs

Design Time Runtime
. is of type L
Function Objective
solves solves
Function is of type Function
Design Grounding
eXpeCted Qua“ty measured
Attribute i
requires LEGRIES
requires ¢
Environment |
Component Attribute | measured

Figure 1: A simplified representation of the TOMASys ele-
ments

FD(F,C, QAP E£A"°?) solve a function F. These func-
tion designs capture the architectural variations which can be
used for self-adaptation. A function design is a specification
of how a system is supposed to solve the associated func-
tions. A function design requires a set of components to solve
a function. Furthermore, a function design has an associated
set of expected quality attributes QA®*P, which define how
well a function design is expected to solve a function. The re-
quired environment attributes £ A"? represent a requirement
that must hold in order for that function design to be available.

An objective O(F, Sp, QA7) is a runtime instantiation
of a function F'. When an objective is set at runtime, Meta-
control will manage the system such that it realizes the asso-
ciated function. The objective status So indicates whether the
objective is being realized or is in error. The required quality
attributes QA"°? indicate the value a quality attribute needs
to have in order to fulfill the objective.

The function design F'D in use is represented by the func-
tion grounding FG(O,FD, Spg, QA™** EA™®). The
function grounding is a runtime instantiation of the associ-
ated function design and solves the objective O that is set
at runtime. The function grounding status S indicates
whether the function grounding is still solving the objective or
is in error. The measured quality attributes QA"°** and the
measured environment attributes £A™¢*® indicate the actual
measured value of the quality attributes and environment at-
tributes. The measured quality attributes represents how well
the current function design is solving the objective, and the
measured environment attribute represents the current mea-
sured value of the environment attribute [26].

3.2 PDDL

PDDL is a planning language for deterministic task plan-
ning. PDDL is an expressive language and can solve many
challenging planning problems [25]. PDDL operates under
the closed world assumption. This means that any PRED-
ICATE not specified is assumed to be false. Furthermore,
PDDL is a monotonic language, which means that previously
made conclusions remain despite new information becoming
available. A deterministic task planning problem can be de-
fined as:

« A finite set of state variables S
¢ An initial state s € S
e Asetof goalstatesG C S

* A finite set of actions 4. Each action a € A is a tu-
ple (pre,add, del, d) and influences the (intermediate)
state. The preconditions pre(a) C S of an action ex-
press the need for certain states to hold before this ac-
tion can be selected. The add add(a) C S effect of an
action defines the states that will be added as a result of
the action. The delete del(a) C S effect of an action
defines the states that will be removed as a result of the
action. Finally, the duration d(a) € R* indicates the
time needed to execute that action.

A PDDL formulation consists of two files, a problem
and a domain file. A domain description can be combined
with different problem descriptions to solve different plan-
ning problems. The domain file contains information on the
TYPES, CONSTANTS, PREDICATES, FUNCTIONS, and AC-
TIONS of a planning problem. The problem file consists of
OBJECTS, an (sg) INITIAL STATE, and a (G) GOAL STATE.

The TYPES in the domain file specify the types of OB-
JECTS that can be present in a problem description. CON-
STANTS specify predicates that hold across multiple problem
instances. The PREDICATES are used to define the PRECON-
DITIONS and EFFECTS of ACTIONS, as well as the INITIAL
STATE and GOAL STATE of the problem file. PREDICATES
represent the (S) state variables of the planning problem. The
FUNCTIONS can be used to express numerical values and DU-
RATIONS of actions. ACTIONS (A) specify how the planner
can transition between states to get from the INITIAL STATE
to the GOAL STATE.

4 MOTIVATING SCENARIO

This section explains the scenario which is used to vali-
date the adaptive capabilities of Metaplan. A UUV pipeline
inspection scenario with a battery failure is considered as
this demonstrates the need for architecture and task plan co-
adaptation.

The goal of the UUV is to inspect a pipeline close to
where it is deployed. The UUV shall inspect the pipeline as

fast as possible, while ensuring there is enough battery avail-
able to complete the mission. For recharging, the UUV has
access to a recharge station.

The UUV has a set of actions available with which it can
reach the desired goal state. These actions are search pipeline,
follow pipeline, and recharge. The UUV searches for the
pipeline by following a spiral pattern originating from the
place where it is deployed. The UUV follows the pipeline
by moving along the pipeline at a fixed distance from the
pipeline. The UUV recharges going from its current position
to the recharge station in a straight line. The recharge action
is simplified by just requiring the UUV to go to the recharge
station, without actually recharging.

In order for the UUV to inspect the pipeline, first the
pipeline needs to be found. After finding the pipeline, the
UUYV needs to follow it until the desired end point. If at any
time the battery falls below a critical level, the UUV needs to
go to a charging station and recharge. Each action requires a
different set of functionalities and therefore different config-
urations of the UUV.

Uncertainties arise during execution of the mission, re-
quiring the UUV to adapt. The UUV needs to be able to han-
dle two types of uncertainties: changing water visibility and a
sudden drop in battery level. These uncertainties require the
UUV to adapt its task plan or architectural configuration, or
in some cases both.

The UUV has the capability of setting its speed to low,
medium, or high. A high speed allows the UUV to reach its
goal state faster, however, it also consumes more energy and
requires the UUV to have enough battery for this. Lastly,
the robot is also able to adjust the height at which it searches
for the pipeline. There are three different heights the UUV
can search at, namely low, medium, and high. A high search
height allows the robot to detect the pipeline faster, however
the UUV will not be able to see the pipeline if the water visi-
bility is low.

5 METHODOLOGY

To enable architecture and task plan co-adaptation with a
reusable task planner, this work extends Metacontrol with a
generic task planner based on PDDL. The Metacontrol frame-
work relies on an application specific ontology based on the
TOMASys metamodel for reasoning, whereas PDDL is a
planning language for autonomous task plan generation. This
section presents Metaplan to enable architecture and task plan
co-adaptation. Metaplan is alongside applying it to the UUV
pipeline inspection scenario presented in section 4. Figure 2
depicts an overview of the system architecture of Metaplan.

Metaplan allows for the generation of task plans to transi-
tion the managed sub-system from its initial state to the goal
state autonomously, performing architecture and task plan
adaptation when necessary. In the case presented in this work,
Metaplan is used to transition the UUV from an INITIAL
STATE where the pipeline location is unknown, to the GOAL

.', Design Time

Runtime

Action Feedback:

Set/Remove O i
(Un)ground FD e

Legend

Load Information
_—>

ROS2 Topic
e

ROS2 Service
_—>

ROS2 Node

)

: L.

Problem | :

E File

: L] i E Request Action,
E \ Domain h \ Cancel/Start (FFD)
PRl [T Plan

: Plan Handler

\ ; E E Request

E [H Plan

: ! Agpl;cceizflitgn P Metacontrol

o Or‘w)tology v Reasoner

File

0

Managed Subsystem

Function 2

Function n

I H \

i .

L (Un ground FD —rt
H) QA

Observer 1

Observer 2

Observer n

Figure 2: System Architecture of Metaplan. The system is split into a section containing the managed subsystem and a section

containing the managing subsystem.

STATE where the pipeline is inspected. Moreover, while per-
forming its task plan, if the battery falls below a safety thresh-
old, then the UUV shall go to a recharge station. In order
to achieve this, the UUV must be able to perform three ac-
tions, namely, SEARCH_PIPELINE, FOLLOW_PIPELINE, and
RECHARGE.

These ACTIONS express capabilities of the system. In
TOMASYys, the capabilities of an ACTION can be captured
by a set of functions. An ACTION can require one or multi-
ple functions to be solved. Metaplan handles the execution
of ACTIONS through setting of objectives for the functions
associate to that ACTION, and function grounding for the se-
lected function designs solving these functions. In order for
the UUV to execute each ACTION, the UUV needs to be able
to control its motion and generate a path. These capabilities
are formulated as functions.

This work proposes replacing the Metacontrol adaptation
planning step, only taking architectural adaptation into con-
sideration, with a task planner taking both task plan and archi-
tecture adaptation into consideration. This way, the planning
step does not only handle the selection of a configuration,
as is the case for Metacontrol, but also devises the task plan
to achieve the GOAL STATE. The task planner is provided
with information on which function designs are available and

the function each function design solves. The ACTIONS can
only be executed if there are function designs available which
solve the functions it requires. The task planner selects the
function designs for each ACTION based on which has the
shortest duration.

5.1 Design Time

At design time, the application specific ontology and
PDDL formulation, consisting of a domain and problem file,
are defined. The application specific ontology captures the
system functionalities, and the PDDL formulation captures
the task planning logic of the system. The domain file cap-
tures the ACTIONS available to the system, and the problem
file captures the INITIAL STATE and GOAL STATE of the sys-
tem.

Application Specific Ontology The application specific
ontology specifies the functions, function designs, quality
attributes, and evironment attributes of the system. An
overview of the elements of the application specific ontology
for the UUV use case can be seen in Table 1.

The function for controlling motion is (F})
f-maintain_motion. The type of path needed for each ACTION
differs, requiring each ACTION to have a unique function

for generating path waypoints. For SEARCH_PIPELINE
the required function is (Fa) f.search_pipeline_wp,
for FOLLOW_PIPELINE the required function is (F3)
ffollow_pipeline_wp, and for RECHARGE the required
function is (Fy) f-recharge_wp.

As explained in the section 4, the UUV can search for
the pipeline at three different heights. The function designs
associated to F, generate a spiral pattern originating from
where the robot is deployed. The function designs specify
at which height these waypoints are generated, these function
designs are (F'Dy) fd_spiral_low, (F Ds) fd_spiral_medium,
and (F'Dg) fd_spiral_high. The functions Fs and F, only
have one function design solving it, and do not have any
alternative for generating waypoints. The function design
for F3 is (F'D7) fd_generate_follow_wp and generates way-
points along the pipeline. The function design for Fj is
(F'Dg) fd_generate_recharge_wp and generates waypoints in
a direct line from its current location to the charging station.
The function F has three alternatives for the speed at which
the UUV moves. These three function designs are (F'D1)
fd_set_speed_low, (FDs) fd_set_speed_medium, and (F'D3)
fd_set_speed_high.

The quality attribute associated with the system is (Q A1)
QA _time. This quality attribute indicates how time efficient
each function design is. The function design which require
the most time to complete an ACTION are given a high Q A,
value, like is the case for F'D,.

The environment attribute associated with the UUV is
(EAy) EA_water_visibility. This environment attribute indi-
cates the value the measured water visibility needs to be in
order for the UUV to be able to use a function design. The
only function designs that make use of this environment at-
tribute are F' Dy, F'Ds, F'Dg, and F' D7, as the UUV needs to
be able to see the pipeline.

Domain File The PDDL domain file is also defined at de-
sign time, capturing the task planning logic of the system
through specification of the ACTIONS. This domain file is
sent to the Planner at startup.

The set of ACTIONS (A) required for the UUV use case
are defined in PDDL. The PARAMETERS, DURATION (d(a)),
PRECONDITIONS (pre(a)), and EFFECTS (add(a),del(a))
are specified for each ACTION (a). The definition for
SEARCH_PIPELINE is presented in Listing 1, with the other
ACTIONS having a similar format. The listings for the other
actions can be seen in Appendix A. For all ACTIONS, the DU-
RATION is dependent on the expected () A; value provided by
the selected function designs. Every ACTION used by Meta-
plan has PRECONDITIONS (1) specifying which functions it
requires, (2) which function designs are available, and (3) the
functions each function designs solve.

The SEARCH_PIPELINE ACTION should be executed in
the case that the pipeline is not found yet and not yet in-
spected, since we would then want to find the pipeline such

Listing 1: PDDL search_pipeline action.

(: durative —action search_pipeline
:parameters (?auv — uuv
?7f1 ?7f2 — function
?7fd1l ?7fd2 - functiondesign
?7pl - pipeline
7a — action)
:duration (= ?duration
(+ (time ?fdl)(time ?fd2)))
:condition (and
(at start
(search_a ?a)
(at start
(a_req-f ?a 7fl
(at start
(fd_available ?fdl)
(at start
(fd_available ?fd2)

712))

(at start

(fd_solve_f ?2fdl ?f1))
(at start

(fd_solve_f ?fd2 ?7f2))
(at start

(pipeline_not_found ?pl))
(at start

(pipeline_not_inspected ?pl))
(at start
(charged 7auv))

)
effect (and
(at end
(pipeline_found ?pl))
(at end (not
(pipeline_not_found ?pl)))
)

that we can explore it. Lastly, the ACTION requires the UUV
to be charged. This information is captured in the PRECONDI-
TIONS. The result of the SEARCH_PIPELINE ACTION is that
the pipeline is found, which is captured in the EFFECTS.

The PRECONDITIONS of FOLLOW_PIPELINE specify it
should be executed in the case that the pipeline is found and
not yet inspected. Moreover, the ACTION requires the UUV
to be charged. The EFFECT of FOLLOW_PIPELINE specifies
that the pipeline is inspected.

Finally, RECHARGE should be executed in the case that a
recharge is required. This is defined in the PRECONDITIONS
of the ACTION. The result of RECHARGE is that the UUV is
charged, which is specified in the EFFECTS.

Table 1: Function Designs with Corresponding Functions and Quality Attributes

Function Design Function Component | Quality Attribute | Environment Attribute

FD,(F1,2,{QA7"" = 40}, 2) F Dy=fd_set_speed_low F=f_maintain_motion - QA1=QA _time -
FDy(Fy,2,{QAT"" = 30},) F Dy=fd_set_speed_medium Fy=f_maintain_motion - QA=QA _time -
FD3(Fy,2,{QAT™" = 20}, 2) F D3=fd_set_speed_high Fy=f_maintain_motion - QA=QA _time -

FDy(F>, @, {QAT™ = | FD,=fd_spiral_low F,=f_search_pipeline_wp | - QA=QA _time E A1=EA _water_visibility
20}, {EAT = 1.25})

FD5(Fs, 2, {QAT™ = | FDs=fd_spiral_medium F,=f_search_pipeline_wp | - QA=QA _time E A1=EA _water_visibility
10}, {EATY = 2.25})

FDg(Fy, 2, {QAT™” = | FDg=fd_spiral_high F,=f_search_pipeline_wp | - QA1=QA _time E A;=EA_water_visibility
5}, (AT — 323))

FD7(Fs,2,{QAT" = | FD=fd_generate_follow_wp Fs=f_follow_pipeline_wp | - QA;1=QA _time E A=EA _water_visibility
5}, {EAL = 1.25))
FDg(Fy,2,{QAT"" =5}, 9) F Dg=fd_generate _recharge_wp | F,=f_recharge_wp - QA1=QA _time -

Problem file The last part that is defined at design time is
the problem file. When the system is started, the Planner
loads the problem file. The problem file of the Planner can
also be updated at runtime. This is done in Metaplan with
information about which function designs are available. This
way, the task planner has up-to-date information before plan-
ning. This also allows for GOAL STATES to be added dynam-
ically by a user. This is however not done in the use case,
since the use case does not require this.

Listing 2: PDDL problem information.
(:init
(pipeline_not_found pll)
(pipeline_not_inspected pll)
(search_a search)
(follow_a follow)
(recharge_a recharge)
(a_req_f
search
f_maintain_motion
f_search_pipeline_wp)
(a_req-f
follow
f_maintain_motion
f_follow_pipeline_wp)
(a_-req-f
recharge
f_maintain_motion
f_recharge_wp)
(charged bluerov)

)

(:goal (and
(pipeline_inspected pll))

)

The problem file specifies the OBJECTS present in the
system and environment, as well as the INITIAL STATE and

GOAL STATE. The INITIAL STATE and GOAL STATE of the
UUYV use case is specified in Listing 2. The INITIAL STATE of
the UUV is that the pipeline is not found or inspected yet and
that the UUV is charged. Moreover, the functions required by
each ACTION are also specified in the INITIAL STATE. The
GOAL STATE specifies the goal of the UUV, which is to have
inspected the pipeline.

5.2 Runtime

Upon startup, the information from the application spe-
cific ontology, the domain file, and the problem file is loaded
by the corresponding nodes. The Metacontrol Reasoner
uses the information obtained from the application specific
ontology to start monitoring all relevant parameters. In the
scenario of the UUYV, this would entail checking if the battery
level is adequate, and measuring £ A;. The Metacontrol
Reasoner uses this information to analyze the ontology
to check if objectives are in error or function designs are
available or unavailable, and request a new PLAN from the
Plan Handler node when this is the case. Before the
Metacontrol Reasoner requests a new PLAN from the
Plan Handler, the Planner is updated with information
on function designs available, together with the function they
solve and their expected quality attribute(s).

A PLAN needs to be generated when there is (1) no PLAN
yet, (2) when an objective is in error, or (3) when a function
design becomes available or unavailable. This is because (1)
when there is no PLAN yet, the Planner needs to generate a
plan, such that the system can start performing ACTIONS in
order to reach its GOAL STATE. Alternatively, this is needed
(2) when an objective becomes in error, because the current
function grounding is not solving the objective (well enough).
A new PLAN needs to be generated, selecting a new func-
tion design for the required functions of that ACTION. Lastly,
this is because (3) when there is a change in availability of a
function design, a PLAN might be rendered unfeasible. This
happens when a function design needed by an ACTION later
on in the PLAN becomes unavailable. On the other hand, a
function design might become available again. Generating a
new PLAN might result in a better solution than the previous

search_pipeline

function: f_search_pipeline_wp
function design: fd_spiral_high
function: f_maintain_motion
function design: fd_set_speed_high

Y
follow_pipeline

function: f_follow_pipeline_wp
function design: fd_generate_follow_wp
function: f_maintain_motion
function design: fd_set_speed_high

Figure 3: First Plan Generated

PLAN.
Listing 3: PDDL available fds.
(:init
(fd_available fd_generate_follow_wp)
(fd_solve_f

fd_generate_follow_wp
f_follow_pipeline_wp)
(= (time fd_generate_follow_wp) 0)

For the sake of providing an example, it is assumed that
the observer node for £A; measures a water visibility of
3.5 meters and the Observer node for monitoring the bat-
tery level measures that it is adequate. The analysis of the
ontology done by the Metacontrol Reasoner leads to all
function designs being available and no objectives being in er-
ror. The available function designs, together with the function
they solve and the expected quality attributes, are then sent
by the Metacontrol Reasoner tothe Planner. The list of
predicates added for each function design is presented in List-
ing 3 for the case of F'D;. The Metacontrol Reasoner
then requests a new PLAN from the Plan Handler.

Upon request of a new PLAN, the Plan Handler first
cancels the execution of the previous PLAN, in the case it
was already executing a PLAN. Then, the Plan Handler
generates a PLAN. Since in this example, this is the first
PLAN generated, no PLAN can be canceled. Therefore, only
a new plan is generated. Since the PDDL planner opti-
mizes DURATION, the function designs with the best QA
are selected for each ACTION of the PLAN. In this case,
the PLAN consists of SEARCH_PIPELINE, such that the IN-
TERMEDIATE STATE is updated to PTIPELINE_FOUND, and af-
terward FOLLOW_PIPELINE, such that the GOAL STATE of
PIPELINE_INSPECTED is achieved. The PLAN can be seen
in Figure 3.

Once a PLAN is generated, the Planner starts execut-
ing it by sending the first ACTION, together with the func-

tions the ACTION requires and the selected function designs,
to the corresponding Action node. In this case that is
SEARCH_PIPELINE.

At the start of an ACTION, the Action node first sends a
request to the Metacontrol Reasoner with the objectives
for the functions to be set, together with the function ground-
ings for the selected function designs to be grounded. For the
pipeline use case objectives are requested for F and F5 re-
spectively. Furthermore, function groundings are requested
for F'D3 and F' Dg.

The Action node runs until some criteria is met indi-
cating that the ACTION is finished. For SEARCH_PIPELINE
the criteria is met when the pipeline is found. The Action
node notifies the Planner that it is finished, such that the
next ACTION can be started. Furthermore, when the AC-
TION is finished or the PLAN is canceled, a request is sent to
the Metacontrol Reasoner to remove the objectives and
function groundings for that ACTION.

The Metacontrol Reasoner sets and removes function
groundings by changing the mode of the Function nodes
whenever it receives a request from the Action nodes. The
Function node continues execution in the selected until a
new PLAN is requested, or the ACTION is finished.

For the sake of showcasing reconfiguration and replan-
ning, it is assumed that the battery level becomes inade-
quate during the execution of SEARCH_PIPELINE while F A
stays 3.5 meters. Furthermore, F'D, and F'Ds consume
too much energy and are therefore unavailable. The current
PLAN is canceled and therefore SEARCH_PIPELINE is can-
celed. This results in the objectives for F; and F5 to be re-
moved, as well as the function designs for F'D3 and F Dg.
A new PLAN is then generated using this updated informa-
tion from the Planner, resulting in the PLAN from Figure 4.
The RECHARGE ACTION uses F'D, and F'Dyg, since these
are the only function designs available for the functions they
solve. After RECHARGE, all function designs become avail-
able again, resulting in the selection function designs for the
rest of the PLAN of Figure 4.

The first ACTION of the new PLAN would be executed,
setting the associated objectives and function groundings.
After this ACTION is completed, the objectives and func-
tion groundings are removed and the objectives and function
groundings of the next ACTION will be set, repeating until the
PLAN is completed, or a new plan is generated.

6 EVALUATION

This section explains how Metaplan is validated. It is hard
to compare Metaplan with the other architecture and task plan
co-adaptation frameworks presented in [11, 12], since the
evaluation results are dependent on the application used for
evaluation. Therefore, the first experiment evaluates Meta-
plan using the SUAVE exemplar [26], an exemplar for test-
ing self-adaptive systems on a UUV pipeline inspection sce-
nario. The use of this exemplar allows future co-adaptation

recharge

function: f_recharge_wp
function design: fd_generate_recharge_wp
function: f_maintain_motion
function design: fd_set_speed_low

A 4
search_pipeline

function: f_search_pipeline_wp
function design: fd_spiral_high
function: f_maintain_motion
function design: fd_set_speed_high

Y
follow_pipeline

function: f_follow_pipeline_wp
function design: fd_generate_follow_wp
function: f_maintain_motion
function design: fd_set_speed_high

Figure 4: New Plan Generated

frameworks to compare with the results obtained in this paper.
The metric used for evaluation is the time needed to complete
the mission of inspecting 5 meters of pipeline. To show that
Metaplan improves robot autonomy through architecture and
task plan co-adaptation, Metaplan is compared with a base-
line using only task planning, without plan adaptation. For
this experiment, the battery failure is not simulated, as the
approach using only a task planner cannot handle this sce-
nario.

Furthermore, the ability of Metaplan to deal with archi-
tecture and task plan co-adaptation is demonstrated by ex-
tending the previous experiment with a battery failure. This
problem will require the task planner to adjust both its archi-
tecture to use less battery and its task plan to go to the charg-
ing station when required. The plans generated by Metaplan
are presented before and after a recharge required notification
occurs.

Lastly, the reusability of Metaplan is demonstrated by ap-
plying the framework to a new task planning scenario. The
task planning scenario which is selected is the same as the
scenario presented in [1 1], where a mobile service robot is
to navigate from an initial waypoint to a goal waypoint. The
setup for testing this scenario in simulation is not provided,
therefore only the adaptation logic is implemented to show-
case the self-adaptive behavior of Metaplan.

6.1 Pipeline Inspection Experimental Setup

The pipeline inspection scenario is simulated using
Gazebo’, an open-source robotics simulator, and can be seen
in Figure 5. Furthermore, Metaplan makes use of two pack-
ages, MROS2 and PlanSys2. Both of these packages are
based on ROS2, allowing for easy communication between
the two. MROS?2 is the ROS2 implementation of Metacontrol

Shttps://gazebosim.org/home

10

Figure 5: Gazebo simulation with UUV and Pipeline

and handles the monitoring and analysis of the system. Plan-
Sys2 makes use of POPF, a PDDL solver, and can handle the
execution of a plan. POPF is used as this supports the use of
durative actions with PDDL2.1 [27].

ROS2 nodes are created to incorporate the action logic
and functionalities of the UUV. The Action nodes in-
corporate the logic stating when an ACTION is finished.
SEARCH_PIPELINE is finished when the pipeline observer
node indicates that the pipeline is found, FOLLOW_PIPELINE
is finished when 5 meters of the pipeline is inspected, and
RECHARGE is finished when the UUV reaches the recharge
station. Furthermore, the Function nodes are also created to
capture the functionalities of each function.

For the experiment, the UUV is deployed at a predeter-
mined position and does not know the location of the pipeline.
The goal of the robot is to inspect 5 meters of pipeline as
fast as possible. An Observer node monitors F'A; which
changes according to a cosine function given in Equation 1.
For all experiments, the periodicity is set to 80 seconds, the
minimum and maximum water visibility values are set to 1.25
and 3.75 meters, and the node is set to publish every 0.2 sec-
onds.

(3.75 — 1.25)

2
EATe® — 125+ * (1 + COS(% * t)) (D

6.2 Metaplan vs. Task Planning

For the experiment comparing Metaplan with a task plan-
ning baseline, the Function node for F} only makes use of
FDs. This is because when battery usage is not considered,
the UUV will always select the function design with the high-
est speed. Furthermore, the UUV will need to be able to de-
tect the pipeline regardless of the water visibility. Therefore,
the only function design solving F5 available to the UUV in
the baseline case is F'D4. Metaplan will have all three func-
tion designs available to switch between when necessary. The
three different heights the UUV has the option to switch be-
tween for searching for the pipeline are: ['Dy,, at a height of

https://gazebosim.org/home

Table 2: Mission results for 10 runs of each experiment

Search time (s)

Mean | Std
Task Planning | 155.87 | 20.08
Metaplan 145.51 | 26.89

1 meter from the sea bed, F'Ds, at a height of 2 meters from
the sea bed, and F'Dg, at a height of 3 meters from the sea
bed.

The experiments are run 10 times each for the baseline
and the Metaplan implementation. The experiments are per-
formed with the same starting location and function for E'A;.
The time needed to complete the mission of inspecting 5 me-
ters of the pipeline is recorded for each experiment. The mean
and standard deviation are calculated for both approaches and
presented in Table 2. The results show that Metaplan com-
pletes the pipeline inspection mission on average 10 seconds
faster than the approach using only a task planner. The stan-
dard deviation is higher for Metaplan, however.

6.3 Experiment Battery Drop

This experiment is simulated in the same way as the pre-
vious experiment. However, a few additions are made to the
Metaplan formulation. First, the three function designs solv-
ing f-maintain_motion are incorporated in the application spe-
cific ontology. Second, when recharge is required, the pred-
icate RECHARGE_REQUIRED is added to the INITIAL STATE
of the task planning problem and the options of setting the
speed of the UUV to medium or high are set to be unavail-
able, since these are considered to consume too much energy.

Initially, the drop in battery level was modeled using
inequality preconditions, as is available in PDDL2.1 [25].
However, the plan execution framework of Plansys2 does not
support these preconditions yet. Therefore, an approach using
only predicates for the preconditions was used. The imple-
mentation with inequality preconditions can be seen in Ap-
pendix B.

In this experiment, after 30 seconds of execution, Meta-
plan receives a notification stating that battery recharge is re-
quired. This results in the predicate RECHARGE_REQUIRED
being added, and consequently F'Dy and F'D3 being made
unavailable.

During execution of the battery drop experiment, the
UUYV behaves similar to the previous experiment. One sec-
ond before Metaplan is notified that recharge is required, the
water visibility is measured to be low, and the current task
plan is presented in Figure 6. This plan requires the UUV
to search at a low altitude with a high speed, and afterward
follow the pipeline with a high speed. After receiving the
notification that recharge is required, Metaplan re-plans and
generates a new task plan, as depicted in Figure 7. This plan
requires the UUV to first go to the recharge station with a low
speed, then search for the pipeline at a low altitude and high

11

search_pipeline

function: f_search_pipeline_wp
function design: fd_spiral_low
function: f_maintain_motion
function design: fd_set_speed_high

A 4

follow_pipeline

function: f_follow_pipeline_wp
function design: fd_generate_follow_wp
function: f_maintain_motion
function design: fd_set_speed_high

Figure 6: Generated Plan Before Recharge Required.

recharge

function: f_recharge_wp
function design: fd_generate_recharge_wp
function: f_maintain_motion
function design: fd_set_speed_low

Y

search_pipeline

function: f_search_pipeline_wp
function design: fd_spiral_low
function: f_maintain_motion
function design: fd_set_speed_high

Y

follow_pipeline

function: f_follow_pipeline_wp
function design: fd_generate_follow_wp
function: f_maintain_motion
function design: fd_set_speed_high

Figure 7: Generated Plan After Recharge Required.

speed, and finally follow the pipeline with a high speed.

The experiment shows that architecture and task plan co-
adaptation is successfully applied. Plan adaptation is done by
generating a new task plan, making use of different ACTIONS
from the previous task plan. Furthermore, architectural adap-
tation is also applied, since the UUV first make use of F' D3
to solve F} and after replanning makes use of F'D; to solve
Fy.

6.4 Reusability

Metaplan is applied to the mobile service robot applica-
tion presented in [1] to demonstrate its reusability. In this
scenario, the robot has to navigate from an initial position
to a goal position in the least amount of time and as safely
and efficiently as possible. When the robot encounters obsta-
cles or changing lighting conditions, the robot needs to adapt.
The robot has three sensors, lidar, kinect, and camera, and
makes use of three localization algorithms, AMCL, MRPT,
and Aruco. AMCL and MRPT make use of the lidar and
kinect for localization, and the aruco algorithm makes use of
the camera. Moreover, the camera can only be used in a dark
corridor in combination with a flashlight.

wp7 wp8

wp5 wpb wp9 wpl0

wpl wp2 wp3 wp4

Figure 8: Map of Mobile Service Robot Scenario.

The environment the robot has to navigate in can be con-
sidered as a graph, with vertices representing the intersec-
tions, and corridors representing the arcs between vertices.
The robot has information about the layout of the map, and
which corridors are dark or contain obstacles. The robot also
has information on the likelihood of bumping against an ob-
stacle for each configuration of the robot. A simplified ver-
sion of the map can be seen in Figure 8. Note that the corridor
between wp6 and wp9 is dark, and the corridor between wp2
and wp5 contains obstacles.

In order to apply Metaplan to the mobile service robot
use case, first, the application specific ontology is defined.
In this scenario, three ACTIONS are defined, namely MOVE,
MOVE_WITH_OBSTACLE, and MOVE_DARK. These actions
are solved by (F1) flocalization.

There are six function designs which solve F}, namely
(FDy) fd AMCL lidar, (FDsy) fd AMCL kinect, (F'Ds3)

12

fd_MRPT lidar, (FD,) fd_MRPT kinect, (FDs) fd_aruco,
and (F' D) fd_aruco_with_light. These function designs make
use of the components (Cy) c_lidar, (C3) c_kinect, (C3)
c-aruco, and (Cy) c_headlamp. The quality attribute of the
system is (Q A1) QA_battery_usage and represents the bat-
tery usage per meter of that function design. Not that time
is not considered a quality attribute of the system, since the
function designs do not influence the execution time of AC-
TIONS. The environment attribute are (E A1) EA_light and
(F A3) EA_safety. The values for each quality attribute and
environment attribute are presented in Table 3.

Second, the PDDL formulation of the application is spec-
ified. For this, first the domain file is created specifying
the PRECONDITIONS, EFFECTS, and DURATION of each AC-
TION. These actions are all very similar, only differing in the
predicates specifying the types of corridors. The PDDL defi-
nition of MOVE can be seen in Listing 4. The other ACTIONS
are presented in Appendix A.

In order for the robot to move from wpl to wp2, the robot
needs to be at wpl, and wpl and wp2 need to be connected.
Furthermore, the type of corridor needs to be specified for the
robot to know which function designs are available. Besides
this, the battery level of the robot needs to be 5% more than
what is required for applying the ACTION. The robot con-
sumes battery equal to the distance it has to move times the
battery usage per meter of the selected function design. The
result of the ACTIONS is that the robot is now at wp2 and the
duration of the action is equal to the distance between the two
waypoints.

Afterward, the problem file is created specifying the OB-
JECTS present in the scenario and the INITIAL STATE and
GOAL STATE of the task planning problem. The INITIAL
STATE and GOAL STATE is presented in Listing 5 and con-
tains information about all corridors between two waypoints
and the type of each corridor. Furthermore, the problem file
also contains information on which functions the ACTIONS
require, the current location of the robot, the battery level of
the robot, and the goal location of the robot. This informa-
tion will be complemented with information on availability
of function designs and the associated functions and quality
attributes.

The design of the Action and Function nodes is not
considered, since solely defining the application specific on-
tology and the PDDL formulation is enough to demonstrate
the self-adaptive capabilities. The robot updates the function
designs available based on the EA_light and EA_safety, and
specifies if they are available for a certain corridor type. The
measured EA_light is O for the dark corridors and 1 for the
other corridors, and the measured EA _safety is O for the corri-
dors with obstacles and 0.8 for the other corridors. Note that
the measured safety indicates the level of safety required to
pass through that corridor, so the robot needs a req EA_safety
of more than 0.8 to pass through those corridors.

For this experiment, the battery level is initially set to

Table 3: Function Designs with Corresponding Functions and Quality Attributes of the Mobile Service Robot Scenario

0, A} = 0.9})

Function Design Function Component Quality Attribute Environment
Attribute
FDy(F,{C1},{QA" = 4}, {FA]® = | FD,=fd_AMCL_lidar Fy=f_localize | C;=c_lidar QA1=QA Dbattery_usage | FA;=EA light
0, EAY* =0.4}) EA>=EA safety
FDy(F1,{C2},{QAT™ = 2}, {FA[** = | FDy=fd_AMCL kinect Fy=flocalize | Cy=c_kinect QA1=QA battery usage | FA;=EA light
0,EA* =1}) E Ay=EA safety
FD3(F1,{C1},{QA}"" = 6},{EA]® = | FD3=fd_ MRPT lidar Fy=flocalize | C;=c_lidar QA;=QA battery_usage | EA;=EA light
0,EAY*" =0.3}) E A>=EA safety
FDy(F1,{C2},{QAT"™ = 4}, {EAT* = | FD,=fd_MRPT kinect Fy=flocalize | Cy=c_kinect QA1=QA battery_usage | EA;=EA light

E Ao=EA safety

FD5(F1,{C3}, {QAT™ = T} {EAT™ =
1, BAY =0.7})

F Ds=fd_aruco

Fy=f_localize

(C'3=c_camera

QA1=QA battery_usage

EA;=EA light
E A>=EA safety

FDg(Fy,{Cs, Ca}, {QAT™
10}, {EAT* = 0, EAY*T = 0.7})

F Dg=fd_aruco_with_light

Fi=f_localize

(C'3=c_camera
Cy=c_flashlight

QA1=QA battery usage

EA,=EA light
E Ao=EA safety

100% and the robot has to navigate from wpl to wp9. The
first plan generated by the robot is presented in Figure 9. The
robot selects F' Dy, since enough battery is available to select
this function design, and the function designs do not influence
the duration of an action. Afterward, the robot encounters the
obstacle corridor and does not need to adapt its configuration,
since F' D5 meets the required £ As. When the robot reaches
wp2, F'Dy and F'D, are set to be unavailable to simulate a
failure of C'5. This requires the robot to adapt its task plan,
since no function designs are available for navigating through
an obstacle corridor. Furthermore, the robot is also required
to adapt its architecture, since F'D- is unavailable. This re-
sults in the task plan presented in Figure 10. Metaplan suc-
cessfully finds a new plan avoiding the obstacle corridor and
passing through wp3 instead and adapts its configuration to
FD. After this, the robot can fulfil the rest of the mission
without needing replanning.

7 DISCUSSION

This work demonstrates that Metaplan can be success-
fully applied to a UUV scenario. In this context, it also shows
that Metaplan improves the UUV performance in comparison
to the baseline with task planning only, by improving the exe-
cution time of a pipeline inspection mission. Furthermore, the
ability to perform architecture and task plan co-adaptation is
demonstrated in another experiment simulating a sudden drop
in battery level. Metaplan devises a new task plan to go to the
recharge station at a lower speed.

Moreover, the reusability of Metaplan is demonstrated by
applying it to a new robotic scenario, where the self-adaptive
behavior is easily defined using the application specific on-
tology and the PDDL formulation.

Further study of the applications Metaplan can be used
for needs to be studied, however. It already became evident
in the experiment applying Metaplan to a new scenario that
Plansys2 hampers the expressiveness of the PDDL formula-
tion. Capabilities available for PDDL2.1, such as the ability
to specify optimization metrics and inequality preconditions,
are not supported yet. As more research makes use of Plan-

function design: fd_amcl_kinect

Move
wp1 ->wp2

function:f_localize

Y

Move_with_obs

function design: fd_amcl_kinect

wp2 -> wp5

function:f_localize

Y

function design: fd_amcl_kinect

Move
wp5 -> wp6

function:f_localize

Y

function design: fd_amcl_kinect

Move_dark
wp6 -> wp9

function:f_localize

Figure 9: Initial Plan, starting at wpl and ending at wp9

function design: fd_amcl_lidar

Move
wp2 ->wp3

function:f_localize

Y

function design: fd_amcl_lidar

Move
wp3 -> wpb

function:f_localize

Y

function design: fd_amcl_lidar

Move_dark
wp6 -> wp9

function:f_localize

Figure 10: Replan without C5 after moving to wp2

13

Listing 4: PDDL move action for Mobile Service Robot sce-
nario.

(:durative —action move
:parameters (?mm — robot

?7f — function

?7fd - functiondesign

Twpl ?wp2 - wp

7a — action)
:duration (= ?duration

(distance ?wpl ?7wp2))
:condition (and

(at start
(move_a ?a)
(at start
(a_req_f ?a 7f))
(at start
(fd_available ?fd)
(at start
(fd_solve_f ?2fd ?f))
(at start
(at_wp ?mm ?wpl))
(at start
(connected ?wpl ?wp2))
(at start
(light_corridor ?wpl ?7wp2))
(at start
(no_obs_corridor ?wpl ?wp2))
(at start
(> (battery_level ?mm) (+
(*
(battery_usage ?fd)
(distance ?wpl ?7wp2))
5)
)
)
effect (and
(at end
(at-wp ?mm ?wp2))
(at end (not
(at_wp fmm ?wpl)))
(at end (decrease
(battery_level ?mm)
(3
(battery_usage ?7fd)
(distance ?wpl ?wp2))
)
)

sys2, these issues are bound to be addressed. Further develop-
ment of Plansys2 may also lead to the incorporation of more
powerful PDDL versions, allowing for more expressiveness.

14

Listing 5: PDDL problem information for Mobile Service
Robot scenario.
(:init
(connected wpl wp2)
(light_corridor wpl wp2)
(no_obs_corridor wpl wp2)
(dark_corridor wp6 wp9)
(obs_corridor wp2 wp5)
(move_a move)
(a_req._f
move
f_localize)
(at_.wp mobile_rob wpl)

(= (battery_level mobile_rob) 100)
)
(: goal (and

(at_.wp mobile_rob wpl0))
)

For this same reason, the PDDL actions presented in
this paper do not make use of inequalities in the pre- and
post-conditions for the battery level. Instead, the predicate
for recharge required is added and fd_set_speed_medium and
fd_set_speed_high are removed. This was done because Plan-
Sys2 was unable to execute plans with actions having inequal-
ity pre- and post-conditions. This prohibited the PDDL plan-
ner to have access to information about battery requirements
for ACTIONS and power consumption due to execution of AC-
TIONS.

With the current implementation of Metaplan, the current
state of the system is kept up-to-date in the MROS Reasoner.
This provides extra overhead when programming a robotic
system, since custom functions need to be defined for updat-
ing this information in the P1anner. Ideally, this information
would be recorded in a centralized knowledge base, such as
is the case with the application specific ontology, and queried
when necessary to update the Planner. Furthermore, the
predicate a_req_f can be modeled in the application specific
ontology. This would alleviate the need to manually set these
predicates in the Planner.

Finally, research was not done into the influence of de-
cision space on planning time. The experiments done in this
paper do not make use of a large decision space for the PDDL
planner. This is an important consideration to understand the
extent of the reusability of Metaplan. If the task planner takes
too long to generate a plan, the UUV will not be able to han-
dle dangerous situations that require fast reaction. Especially
since the transient state of the UUV during planning is to stay
at the last requested waypoint.

8 CONCLUSION AND FUTURE WORK

This work presents Metaplan, a framework for applying
architectural and task plan co-adaptation. Metaplan success-
fully enables a robotic system to reason about task planning
and reconfiguration needs autonomously. Metaplan is de-
signed using an application specific ontology based on the
TOMASys metamodel and a PDDL planner. An applica-
tion specific ontology can also easily be re-used for similar
robotic scenarios or extended to incorporate new functional-
ities. Moreover, the PDDI planner can be used for a wide
range of task planning applications.

Metaplan is shown to improve upon a baseline using only
a task planner. Moreover, architecture and task plan co-
adaptation is demonstrated through simulating a sudden drop
in battery level. Metaplan successfully applies adaptation for
both the architecture and task plan. Lastly, the reusability of
Metaplan is demonstrated by applying it to a new robotic sce-
nario.

Although Metaplan successfully applies architecture and
task plan co-adaptation, the are some limitations. (1)
Metaplan is evaluated using SUAVE, an exemplar for self-
adaptation for UUVs, but is not tested in the real-world. (2)
Metaplan inherits issues of Plansys2 not having full support
for all the functionalities of PDDL2.1. The expressive power
of the PDDL planning problem is therefore limited. (3) The
model used for the architecture and the specification of the
task planning problem are simplified. (4) Certain aspects of
the task planning problem are hard-coded and provide extra
overhead.

To address the shortcomings of Metaplan further research
is needed in the following areas. (1) Metaplan needs to be
further validated by applying it to a real-world robot. (2)
Metaplan can be extended with its own task planner and plan
executor framework, mitigating the need for Plansys2. Alter-
natively, better PDDL support for Plansys2 needs to be added
and might arise from other research relying on this package.
Having access to the full capabilities of PDDL2.1 allows for
the planner to take multiple optimization requirements into
consideration and have inequality pre- and post-conditions.
Interesting future research would be to incorporate PPDDL
[28] into Metaplan. This would allow for reasoning over
non-deterministic problems, and could aid in problems with
deadlocks. (3) Metaplan needs to be applied to more com-
plex scenarios to better understand its limitations. (4) Ex-
tending Metaplan with a centralized knowledge base which
keeps track of the current world state of the system would
allow for a centralized source of information. Incorporating
this information into an ontology could centralize all infor-
mation required by Metaplan in one place. Reformulating the
TOMASys metamodel to conform to the standardized task
ontology, like the one presented in [29].

15

A LISTINGS OF PDDL ACTIONS FOR UUV PIPELINE
INSPECTION AND MOBILE ROBOT

Listing 6: PDDL follow_pipeline action

(:durative —action follow_pipeline

parameters

?7f1

?7fdl1

(?auv — uuv
?7f2 — function
?7fd2 - functiondesign

?7pl — pipeline

?7a — action)
:duration (= ?duration

(+ (time ?fdl)(time ?fd2)))
:condition (and

(at
(at
(at
(at
(at
(at
(at
(at
(at
ceffect
(at

(at

start

(follow_a ?a)

start

(a_req_f ?a 72f1 7f2))
start

(fd_available ?fdl)
start

(fd_available ?fd2)
start

(fd_solve_f ?2fdl ?f1))
start

(fd_solve_f ?2fd2 ?f2))
start

(pipeline_found ?pl))
start

(pipeline_not_inspected ?pl))

start
(charged ?auv))

(and

end

(pipeline_inspected ?pl))
end (not

(pipeline_not_inspected ?pl)))

16

Listing 7: PDDL recharge action

(: durative —action
I parameters

7f1

recharge
(?auv - uuv
7f2 — function

?7fdl ?fd2 - functiondesign
7a — action)
:duration (= ?duration
(+ (time ?fdl)(time ?fd2)))
:condition (and

(at
(at
(at
(at
(at
(at
(at

)
effect

(at

(at

start

(recharge_a ?a)

start

(a_req_f ?a ?2fl1 ?f2))
start

(fd_available ?fdl)
start

(fd_available ?fd2)
start

(fd_solve_f ?2fdl ?f1))
start

(fd_solve_f ?7fd2 ?f2))
start

(recharge_required ?auv))

(and
end
(charged 7auv))
end
(not
(recharge_required ?auv)))

Listing 8: PDDL Move in Corridor with Obstacles Action

(:durative —action move_with_obs

Listing 9: PDDL Move in Corridor without Light Action

(:durative —action move_dark

:parameters (?mm — robot :parameters (?mm — robot
7f — function ?7f — function
?7fd - functiondesign ?7fd — functiondesign
Twpl ?wp2 - wp ?wpl ?wp2 — wp
?7a — action) 7a — action)
:duration (= ?duration :duration (= ?duration

(distance ?wpl ?7wp2))

:condition (and

17

(distance ?wpl ?wp2))

:condition (and

(at start (at start
(move_a ?a) (move_a ?a)
(at start (at start
(a_req_f ?a 7f)) (a_req_f ?a 7f))
(at start (at start
(fd_available ?fd) (fd_available ?fd)
(at start (at start
(fd_solve_f ?2fd ?f)) (fd_solve_f ?7fd ?7f))
(at start (at start
(at_wp ?mm ?wpl)) (at_wp ?mm ?wpl))
(at start (at start
(connected ?wpl ?wp2)) (connected ?wpl ?wp2))
(at start (at start
(obs_corridor ?wpl ?wp2)) (dark_corridor ?wpl ?wp2))
(at start (at start
(> (battery_level ?mm) (+ (> (battery_level 7mm) (+
((=
(battery_-usage ?fd) (battery_usage ?7fd)
(distance ?wpl ?wp2)) (distance ?wpl ?wp2))
5) 5)
))
)
effect (and effect (and
(at end (at end
(at_wp 7mm ?wp2)) (at_wp 7mm ?wp2))
(at end (not (at end (not
(at-wp ?mm ?wpl))) (at-wp ?mm ?wpl)))
(at end (decrease (at end (decrease
(battery_level ?mm) (battery_level ?7mm)
(* (*
(battery_usage ?fd) (battery_usage ?7fd)
(distance ?wpl ?wp2)) (distance ?wpl ?wp2))
))
)

B BATTERY LOGIC WITH INEQUALITY
PRECONDITIONS

The PDDL reasoner can take battery usage into account
through use of inequalities in the pre- and post-conditions of
the action. For an action to be able to be executed, first the
UUYV would need to have enough battery. Then, when the ac-
tion is executed, the battery level of the UUV would decrease
by the amount used for that action. The problem file would
then only need to specify the initial battery level of the UUYV,
and the battery usage needs to be modeled in the application
specific ontology as a quality attribute. The functions specify-
ing the battery level would be added at runtime to the planner.
This would result in the planner having all the necessary in-
formation to generate a plan taking battery usage of function
designs into account. Listing 10 shows how the follow action
can be implemented incorporating the above battery logic.

18

Listing 10: PDDL follow_pipeline action with battery;evel

(:durative —action follow_pipeline
:parameters (?auv — uuv
7f1 ?2f2 - function
?7fd1l ?7fd2 - functiondesign
?7pl - pipeline
7a — action)
:duration (= ?duration
(+ (time ?fdl)(time ?fd2)))
:condition (and

(at start
(follow_a ?a)
(at start
(a_req_f ?a 7fl1 ?7f2))
(at start
(fd_available ?7fdl)
(at start
(fd_available ?fd2)
(at start
(fd_solve_f ?2fdl ?f1))
(at start
(fd_solve_f ?fd2 ?7f2))
(at start
(pipeline_found ?pl))
(at start
(pipeline_not_inspected ?pl))
(at start
(charged ?auv))
(at start
(> (battery_level ?auv) (+
(+ (battery_usage ?fdl)
(battery_usage ?7fd2))
10)
)
)
effect (and
(at end
(pipeline_inspected ?pl))
(at end (not
(pipeline_not_inspected ?7pl)))
(at end
(decrease (battery_level ?auv)
(+ (battery_usage ?fdl)
(battery_usage ?fd2))
)
)

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

Stefan B Williams, Oscar Pizarro, Daniel M Steinberg,
Ariell Friedman, and Mitch Bryson. Reflections on
a decade of autonomous underwater vehicles opera-
tions for marine survey at the australian centre for field
robotics. Annual Reviews in Control, 42:158-165, 2016.

Pengyun Chen, Ye Li, Yumin Su, Xiaolong Chen,
and Yanging Jiang. Review of auv underwater ter-
rain matching navigation. The Journal of Navigation,
68(6):1155-1172, 2015.

Esther Aguado, Zorana Milosevic, Carlos Herndndez,
Ricardo Sanz, Mario Garzon, Darko Bozhinoski, and
Claudio Rossi. Functional self-awareness and meta-
control for underwater robot autonomy. Sensors,
21(4):1210, 2021.

Sabiha Wadoo and Pushkin Kachroo. Autonomous un-
derwater vehicles: modeling, control design and simu-
lation. CRC Press, 2017.

Paul Horn. Autonomic computing: Ibm’s perspective
on the state of information technology. 2001.

Jeffrey O Kephart and David M Chess. The vision of
autonomic computing. Computer, 36(1):41-50, 2003.

Andrew Berns and Sukumar Ghosh. Dissecting self-
* properties. In 2009 Third IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems,
pages 10-19. IEEE, 2009.

Danny Weyns. An Introduction to Self-adaptive Sys-
tems: A Contemporary Software Engineering Perspec-
tive. John Wiley & Sons, 2020.

Yaniel Carreno, Jonatan Scharff Willners, Yvan R Petil-
lot, and Ronald PA Petrick. Situation-aware task plan-
ning for robust auv exploration in extreme environ-
ments. In Proceedings of the IJCAI Workshop on Robust
and Reliable Autonomy in the Wild, 2021.

Lars Kunze, Nick Hawes, Tom Duckett, Marc Han-
heide, and Tomas Krajnik. Artificial intelligence for
long-term robot autonomy: A survey. IEEE Robotics
and Automation Letters, 3(4):4023-4030, 2018.

Javier Camara, Bradley Schmerl, and David Garlan.
Software architecture and task plan co-adaptation for
mobile service robots. In Proceedings of the IEEE/ACM
15th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pages 125—
136, 2020.

Robert Valner, Veiko Vunder, Alvo Aabloo, Mitch
Pryor, and Karl Kruusamie. Temoto: A software frame-
work for adaptive and dependable robotic autonomy

19

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

with dynamic resource management. I[EEE Access,

2022.

Carlos Hernandez Corbato, Darko Bozhinoski,
Mario Garzon Oviedo, Gijs van der Hoorn, Na-
dia Hammoudeh Garcia, Harshavardhan Deshpande,
Jon Tjerngren, and Andrzej Wasowski. Mros: Runtime
adaptation for robot control architectures. arXiv
preprint arXiv:2010.09145, 2020.

Francisco Martin, Jonatan Ginés Clavero, Vicente
Matellan, and Francisco J Rodriguez. Plansys2: A plan-
ning system framework for ros2. In 2021 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems (IROS), pages 9742-9749. IEEE, 2021.

Yu-qian Jiang, Shi-qi Zhang, Piyush Khandelwal, and
Peter Stone. Task planning in robotics: an empirical
comparison of pddl-and asp-based systems. Frontiers
of Information Technology & Electronic Engineering,
20:363-373, 2019.

Carlos Hernandez, Julita Bermejo-Alonso, and Ricardo
Sanz. A self-adaptation framework based on functional
knowledge for augmented autonomy in robots. In-
tegrated Computer-Aided Engineering, 25(2):157-172,
2018.

Victor Braberman, Nicolas D’Ippolito, Jeff Kramer,
Daniel Sykes, and Sebastian Uchitel. Morph: A refer-
ence architecture for configuration and behaviour self-
adaptation. In Proceedings of the Ist international
workshop on control theory for software engineering,
pages 9-16, 2015.

Daniel Jackson. Alloy: a lightweight object modelling
notation. ACM Transactions on software engineering
and methodology (TOSEM), 11(2):256-290, 2002.

Marta Kwiatkowska, Gethin Norman, and David Parker.
Prism 4.0: Verification of probabilistic real-time sys-
tems. In International conference on computer aided
verification, pages 585-591. Springer, 2011.

Ros wiki move_ base. http://wiki.ros.org/
move_base. Accessed: 2023-01-18.

David Garlan, S-W Cheng, A-C Huang, Bradley
Schmerl, and Peter Steenkiste. Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Com-
puter, 37(10):46-54, 2004.

Stuart J Russell. Artificial intelligence a modern ap-
proach. Pearson Education, Inc., 2010.

lTain Little, Sylvie Thiebaux, et al. Probabilistic plan-
ning vs. replanning. In ICAPS Workshop on IPC: Past,
Present and Future, pages 1-10, 2007.

http://wiki.ros.org/move_base
http://wiki.ros.org/move_base

[24]

[25]

[26]

[27]

(28]

[29]

Sergio Jiménez, Javier Segovia-Aguas, and Anders Jon-
sson. A review of generalized planning. The Knowledge
Engineering Review, 34:e5, 2019.

Maria Fox and Derek Long. Pddl2. 1: An extension to
pddl for expressing temporal planning domains. Journal
of artificial intelligence research, 20:61-124, 2003.

Gustavo Rezende Silva, Juliane PiBller, Jeroen
Zwanepol, Elvin Alberts, S. Lizeth Tapia Tarifa,
Ilias Gerostathopoulos, Einar Broch Johnsen, and
Carlos Herndndez Corbato. Suave: An exemplar for
self-adaptive underwater vehicles, 2023.

Amanda Coles, Andrew Coles, Maria Fox, and Derek
Long. Forward-chaining partial-order planning. In
Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 20, pages 42—
49, 2010.

Hakan LS Younes and Michael L Littman. Ppddll. O:
An extension to pddl for expressing planning domains
with probabilistic effects. Techn. Rep. CMU-CS-04-162,
2:99, 2004.

Stephen Balakirsky, Craig Schlenoff, Sandro
Rama Fiorini, Signe Redfield, Marcos Barreto,
Hirenkumar Nakawala, Joel Luis Carbonera, Larisa
Soldatova, Julita Bermejo-Alonso, Fatima Maikore,
et al. Towards a robot task ontology standard. In
International Manufacturing Science and Engineering
Conference, volume 50749, page V003T04A049.
American Society of Mechanical Engineers, 2017.

20

	Preface
	5f49f40a-20a9-4295-a7c8-c529a55726b8.pdf
	Introduction
	Related Works
	Background
	Metacontrol
	PDDL

	Motivating Scenario
	Methodology
	Design Time
	Runtime

	Evaluation
	Pipeline Inspection Experimental Setup
	Metaplan vs. Task Planning
	Experiment Battery Drop
	Reusability

	Discussion
	Conclusion and Future Work
	Listings of PDDL Actions for UUV Pipeline Inspection and mobile robot
	Battery Logic with Inequality Preconditions

