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Abstract

The potential of indoor localization using the Bluetooth Low Energy approach has increased signifi-
cantly with the incorporation of the Constant Tone Extension (CTE) function in BLE 5.1. These small
and energy-efficient beacons transmit signals that Bluetooth-enabled devices may detect, allowing for
proximity and positioning calculations. This technology supports uninterrupted navigation, customized
location-dependent services, and novel applications such as indoor wayfinding, asset tracking, and
proximity-based interactions. By integrating the new feature with an appropriate antenna array, it be-
comes possible to estimate both the Angle of Arrival (AoA) and Angle of Departure (AoD). This research
exclusively focuses on the analysis of the AoA mode.

Nevertheless, estimating AoA poses significant challenges, particularly in indoor scenarios. In such
a complex environment, the effect of multipath, which greatly corrupts the results, cannot be ignored.
Furthermore, the low energy equipment used in BLE often results in high frequency offset, which cannot
be ignored, especially when antenna array sampling does not occur at the same time. Throughout the
span of this project, an in-depth analysis has been conducted on several elements in order to gain a
comprehensive understanding of the positioning algorithm.

In this thesis, we first look into I/Q data processing. Then we looked into how the frequency off-
set is formed and how it affects estimation. To determine the frequency offset, we modeled the data
structure and used the maximum likelihood approach. Following that, many AoA estimate approaches
and multipath solving strategies are discussed. Since a 4×4 URA has been chosen for application, we
discuss how they operate and the drawbacks of having a small number of antennas. A virtual antenna
(VA) solution is offered to address the hardware limitation problem, although it fails in a multipath envi-
ronment. Finally, we model the problem of AOA estimation, followed by a localization algorithm based
on the estimated angles. The least squares (LS) and total least squares (TLS) approaches, as well as
the Matlab algorithm, are introduced.

A Matlab simulation was performed to assess the algorithm’s performance. The multipath scenario
is constructed using the raytracing technique, wherein we imitate the situation within an empty room and
only concentrate on the first-order reflection routes. We looked into a variety of aspects that could effect
performance, such as the number of antennas, the number of data packets combined, the signal-to-
noise ratio (SNR), the estimated number of sources, the parameters of multipath mitigation approaches,
and so on. The simulation reveals that, with the correct settings, the Toeplitz Reconstruction (TR)
method is the best. In the setting of a 4× 4 uniform rectangular array (URA), it has been shown
that over 90% of the results show a distance inaccuracy that is smaller than 0.14 meters. With an
increased size of the 8× 8 Uniform Rectangular Array (URA), a significant proportion of the outcomes,
approximately 60%, exhibit a distance accuracy of less than 0.1 meters.

After the simulation, we conduct a real-world experiment in order to assess the practicality and
effectiveness of the solutions. The decision to conduct the experiment in an open air area was made
in order to minimize the potential interference caused by uncontrolled multipath. The TR approach
demonstrates a distance inaccuracy of approximately 0.4 m, which is an improvement of approximately
0.1-0.2 m compared to conventional methods. The biggest challenge is in the estimation of elevation
angles, which requires additional investigation. The results of azimuth angle estimate are comparable
to prior 1-D AoA estimation studies. Even with a significant error rate in predicting elevation angle, the
distance error is lower than in earlier positioning research.

Finally, we present possible directions for related future work. This could be optimizing algorithm
parameters, considering other factors that might affect the antenna, modifying the given CTE configu-
rations, and so on.
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1
Introduction

Locating an item is crucial in industrial usage, especially in modern age. An accurate localization result
benefits the further processing of the item or the data. A typical positioning solution often contains the
following factors [1]:

• Protocols for carrying the process;
• An infrastructure;
• Observations of one or more physic parameters, e.g. angles, distances, and time duration;
• A positioning method to calculate the location with the above observations;
• A reference system as the basis of computed locations.

For outdoor positioning, the Global Positioning Service (GPS) has already been sufficiently studied
and improved in the areas of traffic navigation, surveying, and mapping since the start of its civil use
in May 2000 [1]. On the other hand, for indoor positioning, a common universal solution has not been
decided yet, as outdoor techniques cannot be directly applied to the indoor scenario. Conventional GPS
receivers work poorly inside buildings, and cellular positioning methods suffer from huge errors. The
application of an accurate indoor positioning solution is promising in all kinds of fields: asset tracking,
patient monitoring, route optimization, workflow optimization, etc. As industries continue to embrace
the potential of indoor positioning, the technology’s transformative impact on efficiency, safety, and
customer engagement becomes increasingly evident, opening doors to new levels of productivity and
operational excellence.

Various localization and direction-finding methods have been studied using either absolute or rela-
tive measurements of different physical parameters, e.g., distance, time, angles, etc [2]. The Received
Signal Strength Indicator (RSSI) measures the relative distance between the receiver and the transmit-
ter. Time of Arrival (ToA) gives the absolute time instants of the transmission; Time Difference of Arrival
(TDoA) uses the time difference instead of absolute values; The angle of Arrival (AoA) measures the
angle of incoming signals with respect to the receiver, which contains multiple antennas.

Before Bluetooth 5.1, finding the direction of the signals with Bluetooth was often overlooked since
only RSSI information could be exploited. Still, there was plenty of impressive research on this topic.
[3] combined the fingerprinting technique with BLE, while others, like [4] chose the RSSI method. Both
are not ideal. Fingerprinting requires environmental characterization, which involves a huge amount of
training and exhausts the computation since the environment may change over time and thus change
the characterization as well. RSSI index, on the other hand, is poor in a complex indoor environment
where Bluetooth is often used considering its distance-limited communication.

As for direction-finding with Bluetooth, we focus on the AoA method because of a new feature
named Constant Tone Extention (CTE). It was introduced by the Bluetooth Special Interest Group
(SIG) after BLE 5.1 [5]. CTE provides a chance for the receiver antenna array to sample I/Q data
containing phase information, which can be simply combined with the AoA method. This feature makes
the application of Bluetooth in localization more promising than ever. Ye provides a detailed BLE-based
AoA estimation algorithm with has Multiple Signal Classification (MUSIC) and PDDA on both ULA and
Square Rectangular Antenna Arrays without discussing multipath effects [6]. Yao and the following
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1.1. Motivation 2

study from Cloudt both elaborate the BLE 1-D AoA estimation in the presence of other error estimations
such as multipath effects and frequency deviation with ULA [7][8]. Shu introduced two-point positioning
with two square antenna arrays but only activated a line of linear antennas on each board, which only
enabled the positioning on a 2-D plane [9]. He implemented the Kalman filter in BLE-AoA estimation
with ULA [10].

Currently, a practical BLE-AoA estimation algorithm is still underdeveloped. ULA is widely discussed
but can only estimate angles or positions on a 2-D plane. URA is suitable for 3-D real-life positioning.
But it is more complex in both modeling the data structure and mitigating multipath effects.

The scope of this thesis is to investigate accurate BLE-AoA estimations with a square antenna
array and then position the transmitter with multiple locators, as shown in Fig.1.1. Error compensation
techniques like multipath mitigation and frequency deviation estimation are discussed.

Figure 1.1: Scope of the Thesis.

1.1. Motivation
Direction Finding has long been a hot topic in fields like IoT, Automatic Mobile, and others [2]. As Blue-
tooth 5.1 introduces the AoA/AoD estimation feature and Bluetooth 5.2 introduces a data-compressing
technique that enables higher audio quality transmission, this thesis mainly focuses on localization
realization with the BLE feature.

This project is in cooperation with the company Kien. Kien is a company dedicated to innovative
sound experiences based in Rotterdam. Through this project, we want to investigate the potential use
of the new BLE feature to locate a user in a practical indoor environment so that our products could
provide a customized audio experience based on position information. Such a method could also be
promising for other industrial applications.

First, a few other direction-finding methods will be explained. And we will justify the choice of AoA
in BLE devices.

1.1.1. Received Signal Strength Indicator (RSSI)
The Received Signal Strength Indicator, as the name implies, is a relative value that indicates the
strength of the received signal. It could thus be used to calculate the distance between the transmitter
and the receiver.

RSSI is simple and inexpensive because it only requires a path-loss model to estimate distance.
In a Line-of-Sight (LOS) situation, for example, where the signal power only considers environmental
features, a classic path-loss model is:

RSSI = −10n log10 d+A (1.1)

where n is the path loss coefficient ranging from 2 to 4 with different situations, A is the reference RSSI
value of somewhere known, and d is the distance to be estimated [11]. To localize the exact position
of interest, at least three receivers are required for trilateration.

However, the disadvantage of RSSI is also obvious. In Non-LOS (NLOS) situations or when com-
plex multipath propagation is involved, there are extra signal attenuations introduced. In more com-
plicated scenarios with obstacles and severe reflections indoors, the accuracy of the results could be
poor.

1.1.2. Channel State Information (CSI)
The channel impulse response encompasses the amplitude and phase response of the channel across
various frequencies and between distinct transmitter-receiver antenna pairs [12]. It can be written in
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polar coordinate form:
H(f) = |H(f)|ej∠H(f) (1.2)

with |H(f)| represents the magnitude/amplitude response and ∠H(f) the phase response of the fre-
quency f

1.1.3. Fingerprinting
Fingerprinting is another classic and widely used DF method that takes environmental factors into
account. This method is divided into two stages: an offline measurement collects RSSI or CSI data,
and an online (or real-time) step obtains measurements and compares them to the offline ones to
estimate. This is typically accomplished by mapping the user’s location onto the offline point using
online measurements. Other advancedmethods, such as Artificial Neural Networks (ANN) and Support
Vector Machines (SVM), have been proposed in addition to the basic method of maximum likelihood
[13][14].

The main issue with mapping is that, due to the nature of mapping, the estimated position is discrete
rather than continuous [2]. An offline grid with a higher density is required to improve the accuracy of the
results. Offline measurements are collected in the form of RSSI values, as previously stated. Because
the model is too vague, the signal-strength-based indicator may be unable to achieve the required
level of accuracy. These Machine Learning methods, on the other hand, are more theoretical and
too complex for applications that require fast, real-time results. Fingerprinting, on the other hand, is
sensitive to minor changes in the target’s position in space.

1.1.4. Time of Flight/Time of Arrival/Time Difference of Arrival
Both the Time of Flight (ToF) and Time of Arrival (ToA) approaches take into account the time sig-
nal propagation takes and then combine the observations with the previously known positions of the
reference nodes [15].

Since the absolute time instants are involved, strict synchronizations between transmitters and re-
ceivers are demanded.

Figure 1.2: Illustration of Time of Arrival Method.

However, because ToF and ToA measure time instants for distance estimation, their accuracy ne-
cessitates precise synchronization between the transmitters and receivers. A high sample rate is also
required for receivers to not miss arriving signals.

Time Difference of Arrival (TDoA) requires strict synchronization among the transmitters without
involving the receiver. Multiple transmitters (at least three) are required to generate a set of hyperbolic
equations. The geometry of TDoA is shown in Fig.1.3, where the red spot is the estimated spot of the
target, i.e., the intersection of all three hyperbolas.

With all possible practical errors, the unique intersection spot cannot be guaranteed when there
are more than three transmitters. So a set of equations between the unknown spot (x, y, z) and each
known position of the i-th transmitter (xi, yi, zi) and j-th transmitter (xj , yj , zj):

Li,j =
√
(xi − x)2 + (yi − y)2 + (zi − z)2 −

√
(xj − x)2 + (yj − y)2 + (zj − z)2 (1.3)
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Figure 1.3: Illustration of Time Difference of Arrival Method.

These sets of equations can be solved with Linear Regression method [16]or linearized with Taylor-
series expansion [2].

1.1.5. Angle of Arrival
Angle of Arrival (AoA) methods require antenna arrays set at different radiuses on the wave circles[17].
The angle is calculated with phase differences between antennas, as shown in Fig.1.4. Mainstream al-
gorithms are subspace-based methods like MUSIC and ESPRIT. For Bluetooth 5.1, an AoA-estimation-
related feature is added. Details for this technique will be explained in later sections. While AoA can
offer precise estimation in scenarios when the distance between the transmitter and receiver is short,
it necessitates more intricate hardware and meticulous calibration compared to RSSI techniques. Fur-
thermore, the accuracy of AoA diminishes as the distance between the transmitter and receiver in-
creases [2]. That is to say, a small error in the angle of arrival calculation results in a significant
discrepancy in the estimation of the actual position [18].

Themain error of AoA estimation comes from themultipath propagation. Apart from the LOS signals,
especially for indoor scenarios, there are reflections from walls and obstacles between transmitters
and receivers. These multipath signals are attenuated and delayed versions of the direct path. Such
relationships between themmay reduce the rank of the covariance matrix, so subspace methods would
fail.

Figure 1.4: Illustration of Angle of Arrival Method.

1.2. Thesis Object
This thesis is to further investigate the direction-finding feature in Bluetooth and discuss its applicability
to indoor positioning. Our objects are:

• Explore the direction-finding feature of Bluetooth;
• Investigate the 2-D AoA algorithm;
• Improve the AoA algorithm considering the multipath scenario;
• Develop a positioning algorithm after the angle estimation;
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• Evaluate the performance of the algorithm with a MATLAB simulation;
• Conduct experiments to evaluate the performance of the algorithm using real-time transmitted
data.

1.3. Report Structure
The structure of this report is listed as follows:

• Chapter 2 introduces the basis of the BLE technique and the direction-finding feature. Then the
data model used throughout the project is formulated.

• Chapter 3 introduces how the frequency offset is generated and how to estimate it;
• Chapter 4 discusses different types of AoA estimation methods and their improvement under a
multipath scenario;

• Chapter 5 shows how to estimate the position with multiple locators available;
• Chapter 6 presents and compares simulation results from different methods on different aspects;
• Chapter 7 shows the experiment setup of the project and the result.

With the introduction above, the flow chart for this project is shown in Fig.1.5.

Figure 1.5: Flow Chart of the Project.

1.4. Nomenclature
1.4.1. Abbreviations

Abbreviation Definition

DF Direction Finding
BLE Bluetooth Low Energy
CTE Constant Tone Extension
FH Frequency Hopping
ULA Uniform Linear Array
URA Uniform Rectangular Array
LOS Line of Sight
NLOS Non Line of Sight
ANN Artificial Neural Network
SVM Support Vector Machine
RSSI Received Signal Strength Indicator
CSI Channel State Information
ToA Time of Arrival
TDoA Time Difference of Arrival
AoA Angle of Arrival
CFO Carrier Frequency Offset
LS Least Square
TLS Total Least Square
MUSIC MUltiple SIgnal Classification
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Abbreviation Definition

ESPRIT Estimation of Signal Parameters via Rational Invari-
ance Techniques

TR Toeplitz Reconstruction
SS Spatial Smoothing
FBSS Forward-backward Spatial Smoothing
VA Virtual Array
RMSE Root Mean Square Error
MSE Mean Square Error
LC3 Low Complexity Communication Cod
DK development kit
SoC System-on-Chip
PDU Protocol Data Unit
CRC Cyclic Redundancy Check
CDF cumulative distribution function

1.4.2. Symbols

Symbol Definition
M number of antennas on the first direction
N number of antennas on the second direction
MT total number of antennas
S the signal matrix received at the reference antenna
A the antenna steering matrix, or the array manifold

matrix
O the frequency offset matrix
Γ themultipath profile matrix containing the phase shift

and attenuation information
Ms the number of antenna in one subarray on the pri-

mary direction
Ns the nmuber of antenna in one subarray on the sec-

ondary direction
K total number of sources (including multipath)
d the spacing between two adjacent antennae
fo the frequency offset
fc the channel center frequency

λ the wavelength of the Bluetooth signal sent by the
transmitter

θ the elevation angle
ϕ the azimuth angle

1.5. Conclusion
Here in Chapter1, we introduce the fundamental concept of a positioning solution. Then, we explain
the principle of multiple indoor locationing techniques including RSSI, ToA, AoA, and so on. Given their
advantages and disadvantages, it is clear why we are more motivated to select AoA as the direction-
finding technique within our project.



2
Basic Technique and Model

The basic BLE technique and mathematical model for this project are introduced in this chapter. First,
we will go over the structure of CTE packets and how they can be used to estimate AoA. Then, because
the sampled data are in the format of I/Q values, we will show how to process such a format for the
following processing. Finally, a basic mathematical data model is built that takes into account the
antenna response, multipath effects, and frequency offset.

2.1. Bluetooth Low Energy
BLE is a wireless communication technology based on Bluetooth but consumes less power than Blue-
tooth Basic [5]. It covers frequencies ranging from 2.402 GHz to 2.480 GHz. The frequency band
is divided into 40 channels including 37 data channels and 3 advertising channels, with each center
frequency separate 2 MHz from the others. The distribution of all the channels is illustrated in Fig.2.1
[19].

Figure 2.1: The BLE Channel Distribution.

Before CTE was introduced, BLE-based localization techniques can be broadly categorized into
either fingerprinting [20] or RSSI-based ranging [21][22][23]. The downside of fingerprinting, as previ-
ously explain in Chapter1, is that it requires a significant amount of training effort to characterize an
environment and often such a characterization is temporary as the environment changes over time
[24]. In contrast, RSSI-based range encounters challenges in achieving high accuracy due to the lack
of effective techniques to mitigate the impact of multipath effects in BLE communication.

Thus, when it comes to the positioning accuracy, these BLE-basedmethods shows rather large error
in positioning result. One example is the Bluepass system [25]. Bluepass is a Bluetooth-based indoor
MBL system that uses RSSI readings from user devices to calculate the distance between them and
stationary Bluetooth receivers. It comprises a central server, local server, Bluetooth detecting device,
and user device app. To use it, users must install the app and login on their smartphone. A mean
square error (MSE) of 2.33m is achieved. Other examples including Ayyalasomayajula et al. offered a
CSI-based localization systems using BLE technology where a 86cm accuracy is attained [26]; Islam et

7
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al. proposed a unique multipath profiling approach for tracking any BLE tag in an indoor context which
has a range error of around 2.4 m [24].

2.1.1. Bluetooth 5.2
The direction-finding feature was introduced with Bluetooth 5.1, and Bluetooth 5.2 builds upon this by
incorporating the new LC3 codec. This codec ensures the potential for higher audio quality through
more efficient information compression [27]. Given that this project focuses on an algorithm tailored for
audio applications, Bluetooth 5.2 has been chosen as the preferred version. The primary features of
the three most recent BLE versions are summarized in Table 2.1.

Table 2.1: The Three Most Recent Versions of BLE

Versions Main Features

5.0 Double faster data transfer than previous version;
Transmitted range expanded;

5.1 Introducing direction finding with CTE structure;
Improvements in caching and paring processes;

5.2
Introducing the new LC3 codec;
Introducing an Enhanced Attribute protocol;
Using Isochronous Channel;

To conclude, Bluetooth 5.1 introduced the direction-finding feature, while Bluetooth 5.2 introduced
an Low Complexity Communication Codec (LC3 codec) that enables the engineer to utilize it in audio
applications without losing quality. Considering the requirements of the company,

2.1.2. Direction Finding with CTE
The structure of data packages sent by BLE transmitters is illustrated in Fig.2.2. The direction-finding
information is contained in the last part of the package, i.e. the Constant Tone Extension(CTE). Each
advertisement will always start with one of the three primary channels. Then, since the package is
too long to send in one channel, the appended CTE will be sent randomly in one of the secondary
channels. The random frequency jumping is called Frequency Hopping (FH) which is introduced to
prevent interference with Wi-Fi signals. This way of advertisement is called Periodic Advertisements,
which is another feature of Bluetooth 5’s Extended Advertisement [27].

Such an advertisement enables communication between transmitters and receivers in an uncon-
nected mode. The connection-less mode is more feasible for the product’s practical application be-
cause one tag can broadcast the package to several receivers and be located using the triangulation
method.

Figure 2.2: The BLE Package Structure.

The detailed composition of CTE is shown in Fig.2.3. The guard period separates the information in
the previous sections of the packet from what is contained in CTE. This section contains no meaningful
samples. The first IQ sample available is in the reference period which lasts for 8 µs with 8 samples
contained in total. The remainder of the CTE is comprised of sample slots and switch slots. For each
switch, a different antenna is sampled. The length of these slots can be either 1 µs or 2 µs. But once
the value is set, all switch and sample slots should be of the same length.

Figure 2.3: Constant Tone Extension Structure.
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2.1.3. IQ Sampling
The samples in Fig.2.3 are stored in the format of IQ samples. IQ samples represent a signal with in-
phase (I) and quadrature (Q) components, and the phase is easy to estimate with these two components
known. The phase may obviously be computed using the arctan function. However, since the arctan

Figure 2.4: Illustration of IQ Sampling.

function in Matlab can only map the result into the range of [−π/2, π/2], we have to further process
these data as in (2.1) to adjust the range of mapping to [0, 2π]

Φ =


arctan(QI ) ifI > 0Q ≥ 0

arctan(QI ) + 2π ifI > 0Q < 0

arctan(QI ) + π ifI < 0Q ̸= 0
π
2 ifI == 0Q > 0
3π
2 ifI == 0Q < 0

(2.1)

2.1.4. Antenna Switch Patterns
During the sample-switch time, the sampling ordering, known as the Antenna Switch Pattern, can
be determined. In the case of a ULA with M antennas, two primary patterns are introduced here:
Round-Robin ([1,2,...M,1,2...]) and Return-to-First ([1,2,1,3,...1,M,...]). Other patterns include Mirror
([1,2,...,M,M-1,...2,1]). The distinction between Round Robin and Return to First is depicted in Fig.2.5.

2.2. Basic Data Model
The M× N antenna arrays used in this project are Nordic boards with 12 antennas, i.e. M = 4,N = 4,
but with four inner locations unfilled. The numbers M and N represent the number of antennas in the
primary and secondary directions, respectively. The primary direction in data model construction here
is x, and the secondary direction is y.

Fig.2.6 shows the antenna placements and their accompanying numbers. d is the distance between
two neighboring antennas that is equal on both axes. The positive direction of x-axis is defined as
Ant2-Ant1-Ant12-Ant11, while the positive direction of y-axis is defined as Ant2-Ant3-Ant4-Ant5. The
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(a) Return-to-First Pattern

(b) Round-Robin Pattern

Figure 2.5: Illustration of Two Antenna Switch Patterns

Figure 2.6: Illustration of Antenna Array with 12 Antennas.

positions of the antenna can then be expressed with d. The (m,n)-th antenna with 2-D coordinate
(dm, dn) with dm, dn ⊆ {0, 1, 2, 3} is at the position:{

dm = (m− 1)d
dn = (n− 1)d

(2.2)

It is important to observe that due to the configuration of the antenna array on the board, which is a
partial 4×4 URA array rather than a complete array, the values of (dm, dn) are restricted and cannot
encompass all possible combinations from (0,0) to (3,3). For instance, the coordinate (1,1) is non-
existent. The relationship between the orders of antennas depicted in Figure 2.6, their corresponding
positions, and their respective two-dimensional coordinates may be found in Table 2.2.

Antenna 2 is positioned at the top of the list due to its placement as the first antenna during the
switch-sample period, serving as the reference antenna.

The current configuration of the antenna array allows for estimation of angles in a three-dimensional
environment, specifically the azimuth angle ϕ and the elevation angle θ. The two angles are defined
in Fig.2.7. The position of the point source is denoted by the red spot labeled as S. In this context, the
coordinate system is defined with respect to the reference antenna’s location within the entire array.
The symbol S represents the position of the transmitter that is to be estimated.

First, consider there is only one point signal source without any multipath. The signal received at
Ant2 at time instant t is represented as s0(t). In order for the time delay across antennas to be conveyed
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Table 2.2: The Correspondence of Antenna Order, 2-D Coordinates, and Position.

Antenna Order 2-D Coordinate Position Antenna Order 2-D Coordinate Position
2 (0,0) (0,0) 8 (3,3) (3d,3d)
3 (0,1) (0,d) 9 (3,2) (3d,2d)
4 (0,2) (0,2d) 10 (3,1) (3d,d)
5 (0,3) (0,3d) 11 (3,0) (3d,0)
6 (1,3) (d,3d) 12 (2,0) (2d,0)
7 (2,3) (2d,3d) 1 (1,0) (d,0)

Figure 2.7: Definition of the Azimuth Angle (ϕ) and the Elevation Angle (θ).

as a phase shift, it is necessary for the point source denoted as s0 to adhere to the narrowband and
farfield assumption. In order to make this assumption, it is required that the amplitude a(t) and phase
b(t) of the signal s0(t) = a(t)ej(2πfct+b(t) change at a slower rate compared to the propagation time
delay τ . , i.e.

a(t− τ) ≈ a(t) b(t− τ) ≈ b(t) (2.3)

Under such a condition, the delayed signal can be modeled as a phase-shifted version as

s(t− τ) = a(t− τ)ej2πfc(t−τ)+b(t−τ) ≈ a(t)ej2πfc(t−τ)+b(t) = e−j2πfcτs0(t) (2.4)

The relationship between the time delay τ and the distance between two receivers, in relation to the
speed of wave propagation indicated as c, can be expressed. In the instance of the ULA (Uniform
Linear Array), wherein the distance between adjacent elements is denoted as d and the angle at which
the signal impinges is represented as θ, the resulting delay can be observed.

τ =
d cos θ

c
(2.5)

Take Ant2 in Fig.2.6 as the reference antenna, the signal received at another antenna m with coor-
dinates (dx, dy) is a phase-shifted version of s0(t), which is

sm(t) = e−j
2π(dx cosϕ+dy sinϕ) cos θ

λ s0(t) (2.6)

Assume the noise n(t) is temporal and spatial Gaussian white noise which is uncorrelated to the
signals. The noise vector contains all factors related to noise in the practical data but could not simply
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be modeled with (2.6) [28]. Then the M×1 data vector received at instant t, x(t), equals

x(t) =



1

e−j 2πd cosϕ cos θ
λ

e−j 2π2d cosϕ cos θ
λ

...
e−j

2π(M−1)d cosϕ cos θ
λ

e−j 2πd sinϕ cos θ
λ

e−j
2πd(cosϕ cos θ+sinϕ cos θ)

λ

...
e−j

2πd((M−1) cosϕ cos θ+(N−1) sinϕ cos θ)
λ


s0(t) + n(t)

= a(θ, ϕ)s0(t) + n(t) (2.7)

where a(θ, ϕ) ∈ CMN×1 is the steering vector for the LOS signal.
Dive into the structure of a(θ, ϕ) by looking at its two directions, we find that

a(θ, ϕ) = γ ⊗ β

=
[
1 γ · · · γ(N−1)

]T ⊗
[
1 β · · · β(M−1)

]T (2.8)

where β and γ are the steering unit of primal and secondary direction respectively, and ⊗ denotes the
Kronecker product.The explicit definition of γ and β themselves depends on the direction they referring
to, as shown in Tab.2.3. As in the data model of this project, the primal direction is x-axis and secondary
direction is y-axis. So in (2.8), β = e−j 2πd cosϕ cos θ

λ and γ = e−j 2πd sinϕ cos θ
λ . In the context of the simulated

scenarios described in the Matlab BLE functions, it is observed that the primary direction is aligned
with the z-axis, while the secondary direction is aligned with the y-axis. Consequently, the formulation
of the steering vectors associated with these situations should be adjusted accordingly.

Table 2.3: Steering Unit for Each Direction

Direction Steering Unit
X e−j 2πd cosϕ cos θ

λ

Y e−j 2πd sinϕ cos θ
λ

Z e−j 2πd sin θ
λ

When there is only one direct path signal, as shown in (2.7),

x(t) = a(θ, ϕ)s0(t) + n(t)

the signal captured by each antenna is an altered version of the signal received at the reference an-
tenna, only with a phase shift. The phase difference provides all the pertinent information related to
the two angles. In an ideal scenario, the angle information can be accurately retrieved once the phase
difference is observed, utilizing direction-finding techniques such as MUSIC.

2.2.1. Multipath Propagation
Nevertheless, when it comes to indoor localization, it is important to take into account the influence of
multipath phenomena, such as reflections, scattering, and diffraction. The circumstances under which
these three forms of propagation occur are provided in Tab.2.4, where the symbol λ represents the
wavelength of the signal.

This project exclusively focuses on the reflection type of multipath. The analysis is limited to the
scenario where both the transmitter and receivers are positioned at the center of the room or along the
walls, in order to exclude more complex signal propagation scenarios such as the corners of the walls.
Both the simulation and the experiment assume a scenario where the room is empty and there are no
minor objects obstructing the propagation.

Fig.2.8 illustrates how the reflection multipath signals are generated. It is evident that when there is
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Table 2.4: Types of Multipath Propagation

Type of Multipath Propagation Condition Example
Reflection Size of object is much larger than λ Solid surface of walls
Diffraction Size of object is larger than λ Edges or Corners of walls
Scattering Size of object is smaller than λ Small objects in the room

Figure 2.8: Illustration of Multipath Effects.

only one source, the signals received at the antenna experience a reduction in amplitude and a delay
in phase, relative to the signal transmitted directly.

It is assumed that the number of multipath signals is K-1, and there are a total of K signals arriving
at each antenna. When multipath signals hit the antenna, they undergo attenuation and delay, resulting
in the generation of a multipath signals vector

s(t) =


1

α1e
−τ1

...
αK−1e

−τK−1

 s0(t) (2.9)

the symbol αk represents the amplitude attenuation factor for the k-th multipath, whereas τk represents
the time delay associated with the k-th multipath. The outcome s(t) is a vector of dimensions K×1.

The data received at time instant t is then extended to

x(t) = As(t) + n⃗(t) (2.10)

= A


1

α1e
−τ1

...
αK−1e

−τK−1

 s0(t) + n(t) (2.11)

A is the complex-valued antenna manifold matrix that describes the antenna response per antenna and
per multipath, which is

A =


a1(θ,ϕ)
a2(θ,ϕ)

...
aMT

(θ,ϕ)

 (2.12)

=


a1(θ1, ϕ1) a1(θ2, ϕ2) . . . a1(θk, ϕk)
a2(θ1, ϕ1) a2(θ2, ϕ2) . . . a2(θk, ϕk)

...
aMT

(θ1, ϕ1) aMT
(θ2, ϕ2) . . . aMT

(θk, ϕk)

 (2.13)

(2.14)
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where am(θ,ϕ) indicates the steering row vector for them-th antenna, θ and ϕ are the vectors of ele-
vation angles and azimuth angles for all multipath, and MT is the number of antennas in total. For a
full URA MT = MN . Since the far-field assumption is made, each multipath signal arrives at different
antennas with the same incident angle. The explicit structure of each element of the steering row vec-
tor is alike to (2.7). The steering element for (m,n)-th antenna with the coordinate (dxm, dym) and k-th
multipath is

am(θk, ϕk) = e−j
2π(dxm cosϕk+dym sinϕk) cos θk

λ (2.15)

In the case of collecting N samples, the point source signal ceases to be represented as a single
numerical value and instead becomes a row vector s0

s0 =
[
s0(t1) s0(t2) . . . s0(tN )

]
(2.16)

=
[
s0(t1) s0(t1 +△T ) . . . s0(tN + (N − 1)△ T

]
(2.17)

Let tn represent the n-th sample instant. Given that the sample interval is determined by the length
of the sample slot, we may express tn as tn = t1 +△T , where △T denotes the sample interval. The
requirement for the antenna switch slots and sample slots in CTE to have equal lengths implies that
the difference in length, denoted as △T , is always twice the length of the slot. When the duration of
the sample slot is 2µs, the corresponding change in time, denoted as △T , is 4µs. Similarly, when the
duration of the sample slot is reduced to 1µs, the corresponding change in time, denoted as △T , is
2µs.

With multipath, the signal sent is now a K ×N matrix that is

s =


1

α1e
−τ1

...
αK−1e

−τK−1

 s0 (2.18)

= Γ
[
s0(t1) s0(t2) · · · s0(tN )

]
(2.19)

where Γ stands for the vector containing the multipath attenuation and phase shifting information.
To conclude, the data model of M antennas and N samples each is

X = As+ N (2.20)
= AΓs0 + N (2.21)

where N is the Gaussian white noise matrix with size M ×N .

2.2.2. Antenna Switch Effects
In section2.2, the data model with simultaneous sampling and multipath is discussed.

However, the IQ sampling in the CTE period is not a simultaneous process. The sampling instants
of the non-reference antennas are related to the antenna switch pattern introduced in the previous
section. In this project, we take the Round-Robin switch pattern.

As shown in Fig.2.3, in the switch-sample period, only one antenna is sampled at one sample instant.
So the data can be interpreted as

X =


X1(t1) X1(t1+MT

) · · · X1(tN )

X2(t2)
. . .

...
...

. . .
XMT

(tMT
) · · · XN+(MT−1)

 (2.22)

=


X1(t1) X1(t1+MT△T ) · · · X1(tN )

X2(t1+△T )
. . .

...
...

. . .
XMT

(t1+(MT−1)△T ) · · · XN+(MT−1)△T )

 (2.23)

= OAΓ
[
s(t1) s(t2) · · · s(tN )

]
(2.24)
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where tn indicates the n-th sampling instant and Xm(tn) is the signal received at antenna m in instant
tn. If it the Round-Robin pattern is chosen, then in each column (or, each cycle), the m-th antenna
is sampled at instant tm = t1 + (m − 1) △ T . O is the offset matrix due to sampling at different time
instants, which is constructed as:

O =


1 0 · · · 0

0 e−j2πf△T · · ·
...

...
...

. . .
...

0 · · · e−j2π(MT−1)f△T

 (2.25)

△T is the time interval between two seccesive sample slots.
The present approach for estimating the DoA prioritizes data from the same time instant in each

column. It is imperative to recreate the data matrix by utilizing the inverse of the offset matrix.
Due to the forthcoming discussion on frequency deviation in subsequent chapters, it is important to

note that the observed channel frequency, denoted as freal, does not align with the carrier frequency,
denoted as fc. The calculation of the offset matrix in equation (2.25) is not feasible for the data construc-
tion and hence requires an initial estimation. In subsequent chapters, we will present the methodology
for estimating and constructing the offset matrix.

2.2.3. Conclusion
In this section, we present the fundamental data model for BLE 2-D AoA estimation. The model incor-
porates the O matrix, which accounts for the antenna switch effect that is particularly significant in the
context of BLE problems. Additionally, the model includes the antenna steering matrix A that includes
all angle information, and the Γ vector, which is introduced due to multipath propagation and cannot be
disregarded in indoor scenarios. Subsequent chapters will dive further into the examination of solutions
aimed at mitigating the impact of CFO and multipath, with the ultimate goal of enhancing the precision
of angle estimation and following localization processes.



3
Frequency Deviation and Offset

Estimation

In the previous chapters, the offset matrix in (2.25) is constructed as:

O =


1 0 · · · 0

0 e−j2πf△T · · ·
...

...
...

. . .
...

0 · · · e−j2π(MT−1)f△T


was discussed for the purpose of reconstructing a data matrix with synchronous samples in the cor-
responding column. Consequently, an accurate estimation of the true frequency becomes essential.
This chapter dives into the generation of frequency deviation and the methods for estimating this offset.

3.1. Frequency Offset Compositon
According to the Bluetooth core specification [27], the 2GFSK modulation used in BLE has a frequency
deviation fdev. The minimum frequency deviation shall never be less than 185 kHz data rate is 1 mega
symbol per second (Msym/s) symbol rate and never be less than 370 kHz with a data rate of 2 Msym/s.
The modulation can be denoted as [29]:

s2GFSK(t) =

 A cos
[
2πfct+ 2πIm

∫ t

−∞ m(τ)dτ + β1

]
, 1 is sent

A cos
[
2πfct− 2πIm

∫ t

−∞ m(τ)dτ + β2

]
, 0 is sent

(3.1)

where s2GFSK(t) is the modulated signal, while the channel frequency is represented by fc, which is
dependent upon the specific channel employed for the current CTE package. Additionally, the starting
phase of the signal is denoted as β1 and β2. The variable m(τ) represents the message signal subse-
quent to undergoing the Gaussian filter. Given that CTE symbols are consistently represented by the
value of 1, it may be inferred that the deviation will invariably yield a positive result.

In this project, the frequency deviation is assumed to be constant across one packet. The relation
between this deviation, modulation index Im, and the data rate is defined as [30]:

fdev =
fdata
2

Im (3.2)

The variable fdata represents the data rate, which can take on values of either 1 Mb/s or 2 Mb/s. Mean-
while, Im denotes the modulation index. The determination of such an index is dependent upon the
hardware, typically falling within the range of 0.45 to 0.55. It can be deemed stable alone when the
value of Im lies between 0.495 and 0.505. Given a data rate of fdata = 2 Mb/s and a modulation index
of Im =0.5, the resulting frequency deviation is precisely 500 kHz. According to the Bluetooth Special

16
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Interest Group (Bluetooth SIG), the minimum frequency deviation should be equal to or greater than
185kHz when transmitting at a rate of 1 Mb/s, and equal to or greater than 370kHz when transmitting at
a rate of 2Mb/s [27]. The variability of fdev is attributed to the premodulation process, which is influenced
by various features of the Gaussian filter and the symbol rates determined by individual users.

The fluctuation of Im primarily arises from the precision of the local oscillators used in BLE receivers,
often measured in parts per million (ppm). BLE is a cost-effective form of communication that utilizes
oscillators characterized by high ppm. Despite themodest scale of absolute value of ppm, it is important
to acknowledge that signal distortion cannot be disregarded while utilizing at wireless communication
with high frequencies, such as the 2.4 GHz operation frequency for Bluetooth. For instance, a crystal
working within a 2.4 GHz BLE system with a frequency stability of±30 ppm has the potential to produce
a maximum frequency deviation of.

± 30

106
× 2.4× 109 = ±72kHz (3.3)

In the event that the oscillators of the receiver and transmitter exhibit opposing signs, such as a
positive deviation of +20 ppm for the receiver and a negative deviation of -20 ppm for the transmitter,
the resulting total deviation may be significantly amplified. The oscillator may also be influenced by
physical ambient factors, like temperature, humidity, and pressure. The precise estimation of frequency
deviation is necessary due to its inherent variability among different chips. Additional errors, such as
frequency drift, have the potential to be added into the model. However, given their comparatively
smaller magnitudes in relation to fdev, the model does not explicitly account for additional frequency
mistakes.

In conclusion, the frequency offset between the transmitter and the receiver include faults that result
from crystal oscillation and the characteristics of 2GFSK modulation. Together we use fo to denote the
whole difference of the real frequency from the given channel frequency. Then the received signals is:

s(t) = A cos [2πfct+ 2πfot+ β1] (3.4)

Regardless of which channel is exactly in use, since the channel central frequency is large enough and
the sample periods are either 2× 10−6 fctor 4× 10−6 fct is always an integer and at the end shows no
difference in the phase. Only the small value would play a crucial role in the offset matrix to shift the
phase of the sampled IQ data.

This research project aims to estimate and compensate for the combined frequency offset of all the
terms added to the channel frequency fc, relative to fc. The reason for estimating and compensating
for this combined offset is that they accumulate over time together. All errors are regarded as constant
inside a single CTE packet. The tolerance of various frequency mistakes as described by the Bluetooth
Core Specification [5] is presented in Table 3.1.

Table 3.1: Frequency Error Tolerance

Frequency Error Name Tolerance

Frequency Deviation LE 1M PHY: fdev ≥ 185kHz;
LE 2M PHY: fdev ≥ 370kHz;

Frequency Drift −50kHz ≤ fd ≤ +50kHz within one package

3.2. Frequency Offset Estimation
The estimation of the frequency offset can be determined through the investigation of IQ samples within
the reference period. As shown in Fig.2.3, the samples obtained within the initial 8 µs originate from the
same antenna. Given that the CTE symbols are unmodulated and unwhitened 1, it can be observed that
the frequency deviation remains constant and positive. In the absence of frequency variation, assuming
reference sample intervals of 1 µs, the expected phase difference can be calculated as follows:

△Φ = 2π × fc × T

= 2π × 2402MHz × 1× 10−6s (3.5)
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The frequency of channel 37, 2402 MHz, is selected. However, it is important to note that the choice
of channels does not impact the outcome, as all channel frequencies are measured in the same units
of MHz. Regardless of the chosen channel in equation (3.5), the outcome will consistently be an
integer multiple of 2π. Therefore, considering the restoration of all phases from the arctan function, the
presence of multiple 2π values does not yield any distinction, and it can be concluded that the phases
of these eight samples are identical.

However, as depicted in Fig.2.3, the eight samples obtained during the reference period exhibit a
rapid oscillation within the range of −π to +π. The presence of frequency deviation, around 500kHz, is
indicated by the oscillation in phases originating from the same antenna. The phase difference between
the two reference samples has now been altered as:

△Φ = 2π × (fc + fo)× T

= 2π × (2402× 103 + 500 + ε)kHz × 1× 10−6s

= 2πN + π + 2πε× 10−6 (3.6)

where ε is the error from the ideal frequency deviation 500kHz. Comparing (3.5) and (3.6), it is evident
that the offset fo plays a significant role in accumulating effects on the phases of the reference antenna.
Specifically, the cumulative effect is about equal to π when the data rate fdata is set to 2 Mb/s.

We assume that the frequency offset aside the standard deviation, i.e. ε, is constant within each
CTE data packet.

3.2.1. Phase Flip
Because no antenna switching occurs during the reference period, the phase should rise monotonically
with time according to (3.6). However, due to the limitation of the arctan function in MATLAB, such
growing may be interrupted, and the phase may flip back around 0 once it exceeds 2π.

Figure 3.1: Illustration of Phases from the Reference Samples.

As shown in Fig.3.1, there is a jigsaw kind of fluctuation in the figure.
Moreover, if the deviation is perfectly 500kHz with the reference sampling rate of 1 × 106 Hz, then

every 2 samples should be of the same phase even with the phase flip. However, this expectation is
not met. This slight non-periodic error is accumulated by the errors alongside the standard deviation
itself.

In order to visualize the accumulation of phases with time and thus estimate the frequency offset,
process the data as follows:

It is clear that the phases are increasing monotonically and almost linearly rather than being un-
changed as in (3.5). As previously stated, the slope of the line in Fig.3.2 is primarily caused by uncer-
tainty around the standard deviation. The next step is to calculate the slope, which is the frequency
deviation that matters.
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Algorithm 1 Phase Flip Processing
Input: The vector ϕ contains all the phases directly calculated from reference IQ samples.

i = 1
N = 8
count = 0
ϕcopy = ϕ
while i ≤ N − 1 do

if ϕcopy(i+ 1) ≤ ϕcopy(i) then
count = count+ 1

end if
ϕ(i+ 1) = ϕcopy(i+ 1) + 2π × count

end while

Figure 3.2: Illustration of Phases After Flipping Process.

In prior studies conducted by Yao and Cloudt, a multitude of CFO estimators were presented [7][8].
However, further research suggests that the CFO is subject to corruption by white Gaussian noise,
which may not be a reasonable assumption in this context. In this part, we will introduce some basic
estimate approaches.

3.2.2. TI Method
Unlike the two methods that will be introduced later, which only utilized a limited number of reference
samples, the TI method is the default method by Texas Instrument and is applied in the Round Robin
pattern to compensate the phase error caused by frequency offset on all samples and switch slots
locally.

In the case of ULA, the phase difference between two adjacent antennas is directly related to AoA.
The compensated phase difference between antenna i and antenna j (i < j) is computed as:

△ϕ̂ij = △ϕij +
|j − i| △ ϕi(i−M)

M
(3.7)

where △ϕ̂ij is the estimated phase difference, while △ϕij is the actual measurement, and M the total
number of antennas. The compensated error |j−i|△ϕi(i−M)

M is the phase difference of the same antenna
over two adjacent loops of sampling △ϕi(i−M) normalized by the total M samples to get the error
between two slots. Since the error is assumed to be constant, for i-th and j-th antennas, the error unit
is multiplied by |j − i|. The frequency offset can be derived from such a phase error:

f̂o =
1

2π(2Tslot)
ε (3.8)
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This is quite similar to the Maximum Likelihood estimator introduced earlier this section.
In [8], the TI method was applied in the ULA case. However, for URA, for antennas placed in different

directions, the phase difference values are not expected to be the same. Assume i1 = 4, j1 = 6, and
i2 = 7, j2 = 9 as antenna numbers shown in Fig.2.6. Although both groups have a 2Tslot period in
between, the expected phase difference is not the same as they are placed in different lines of a linear
array’. For the (i1,j1) group, the phase difference:

△ϕi1,j1 = (ej2πfreal4△T e−j2π d
λ (3 cosϕ cos θ+sinϕ cos θ) − ej2πfreal2△T e−j2π d

λ (2 cosϕ cos θ))s(t) (3.9)

and for (i2,j2) group, the phase difference:

△ϕi2,j2 = (ej2πfreal6△T e−j2π d
λ (3 cosϕ cos θ+2 sinϕ cos θ) − ej2πfreal8△T e−j2π d

λ (2 cosϕ cos θ+3 sinϕ cos θ))s(t)
(3.10)

Thus, it is not practical using the sample and switch data to directly compensate the phase. In the
following subsections, only two estimators only using the reference samples will be introduced.

3.2.3. Maximum Likelihood Estimation
The maximum likelihood estimator for CFO is first brought up by Moore for Orthogonal Frequency
Division Multiplexing (OFDM) [31] and is applied to BLE scenario by Yao [7]. After compensation,
since the slope of phase for the same antenna is assumed to be constant, the samples can be divided
into two halves and then applied for estimation. Yao used the Return-to-First antenna switching pattern
in ULA to increase the number of samples from the reference antenna [7].

However, in the case of the URA, the total number of antennas is often more. The Return-to-First
pattern would compromise the number of overall snapshots for the CFO estimation to ensure each
antenna has adequate snapshots. As a result, in this project, we use the standard Round-Robin switch
pattern and only use samples from the reference period, i.e. the first eight samples. Because the
time interval in the sample and switch slots is substantially bigger with such a switch pattern than the
reference period with switch slots in between and sampling on other antennas. Even if they come from
the same antenna, they suffer from more severe errors since the sample time may not be at the exact
time instants.

The general MLE frequency estimator divides the reference samples into two halves with the same
length,

fo =
1

2π △ T
tan−1

∑L
i=1 Im(t∗ [i] t [i+ L])∑L
i=1 Re(t∗ [i] t [i+ L])

(3.11)

where t [i] denotes the i-th sample in the whole sequence t, L is the length of one-half of the data, ∗

denotes the conjugate operation, and△T is the time difference of the samples L length apart. Basically,
this is an average over the phase difference between two halves, as the slope is assumed to be linear
and constant.

The error in (3.11) is on the operator of arctan. In general, the phase difference between samples
separated by the same time should be near to zero. However, because of the error contributed to the
standard deviation, it cannot be assured that the ratio

∑L
i=1 Im(t∗[i]t[i+L])∑L
i=1 Re(t∗[i]t[i+L])

following the arctan operator
will not flip across 2π, even if the ratio values themselves are near.

Thus, the conventional MLE estimator was improved by calculating the circular mean [8]:

fo =
1

2π △ T
arg

(
L−1∑
i=0

t∗[i]t[i+ L]

)
(3.12)

where arg represents the phase computation operator.
Although more samples from the reference antenna were included in later sample slots for ULA in

[7], the maximum CFO that can be computed without the fail of phase flip is considerably less bounded
due to the larger time gap between samples in sample slots from the same antenna. Furthermore,
in the case of URA, which naturally involves more antennae, the number of samples from the same
antenna is more constrained, resulting in less improvement in estimate performance. As a result, in
our study, we exclusively use samples from the reference period.
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3.2.4. Least Square Method
The Least Squares approach seeks to minimize the sum of squared errors between the observed and
estimated values [32] as

min ∥y− Tb∥2 (3.13)

where y is the observed phase values, T here is the matrix containing the sampling time, and b is the
parameter of the line to be estimated. If T satisfies the full rank condition then the estimator is given by

b = T†y (3.14)

= (TTT)−1TTy (3.15)

In particular, in the case of linear curve fitting, when the curve is represented as y = kt + b with
parameters [k, b] with the observed data set [(t1, y1), (t2, y2), · · · , (tNo

, yNo
)], the least squares issue is

written as: 
1 t1
1 t2
· · · · · ·
1 tNo

[bk
]
=


y1
y2
· · ·
yNo

 (3.16)

where No = 8 is the total number of reference samples we use, and k is the slope of the estimated
curve. What’s worth noting is that k ̸= fo since the slope only shows the phase difference over a single
reference slot. The frequency offset can be calculated from k as follows:

fo =
k

2πTref
(3.17)

where Tref = 1 × 10−6 is the reference sample period. Another way of solving the slope of the curve
explicitly is:

k =

∑M
i=1(t[i]− ā)(t[i]− ȳ)∑M

i=1(t[i]− t̄)2
(3.18)

where t̄ and ȳ are the mean values of the time sequence t and phase sequence y. Then apply (3.17)
on the estimated k.

3.3. Frequency Offset Estimation Impact on Angle Estimation
After the calculation of the frequency offset fo, the compensation is performed by generating the offset
matrix as shown in (2.25) and then multiplying the data matrix with its inverse:

X̂ = Ô−1X (3.19)

where X̂ is the estimation of the compensated data matrix computed from the data matrix X that is
collected with antenna switching.

Assume the error in frequency offset estimation is ϵ, then the compensated data becomes:

X̂ = Ô−1X
= Ô−1OAS
= diag(1, e−j2π(fc+fo+ϵ)△T , e−j2π(fc+fo+ϵ)2△T , · · · , e−j2π(fc+fo+ϵ)M△T )· (3.20)
diag(1, e−j2π(fc+fo)△T , e−j2π(fc+fo)2△T , · · · , e−j2π(fc+fo)M△T )AS
= diag(1, e−j2πϵ△T , e−j2πϵ2△T , · · · , e−j2πϵM△T )AS
= OϵAS (3.21)

where Ô is the estimated diagonal frequency offset matrix, Oϵ is the offset error matrix, and △T is the
time interval between two adjacent sample slots. Because of the switch slots in between every other
sample slot, △T = 2Tslot. So the impact of the frequency offset error is that it changes the subspace
of the steering matrix A.
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3.4. Cramér-Rao Lower Bound of Frequency Offset Estimation
The Cramér-Rao Lower Bound (CRLB) establishes a lower limit on the variance of an unbiased estima-
tor. According to Kay, estimators that exhibit proximity to the CRLB tend to possess a higher degree
of unbiasedness, making them more desirable for practical usage [33].

Given that our model differs from past studies, a comprehensive derivation may be provided in
Appendix A. The variance lower bound for an unbiased estimator with a sample rate of fs = 1MHz is:

Var(f̂o) ≥
3f2

s

8π2SNR((MN)3 − 2(MN)− 2)
(3.22)

where f̂o stands for the estimation of the frequency offset, MN is the total number of antennas in the
data model, and SNR = 1

σ2 is as defined in the Appendix, while in other plots the SNR values are in
the unit of dB SNR = −10 log10 σ2

However, sincewe only use samples from the reference period for estimating CFO, (3.22) is changed
for only one antenna involved. From AppendixA, the CRLB for estimating CFO by only reference sam-
ples is:

Var(f̂o) ≥
3f2

s

2π2SNR(N3
R −NR)

(3.23)

where NR = 8 is the number of samples in the reference period. It is obvious that such a CRLB
value would be lower with more samples involved, i.e., with a larger NR. And the BLE data structure
constrains the lowest error using an unbiased estimator.

In Fig.3.3, two estimators are applied with signals corrupted in different SNR levels of white Gaus-
sian noise. The errors are computed in the form of root-mean-square-error (RMSE):

RMSE =

√∑N
i=1(fo − f̂o)2

N
(3.24)

where fo is the true value which differs from each packet, f̂o is the estimated value, and N = 100000 is
the number of Monte-Carlo iterations for each SNR value. In general, the LS estimator tends to exhibit
superior performance compared to the MLE technique. The final algorithm utilizes the LS estimator.
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(a)With CFO Range of ±50kHz

(b)With CFO Range of ±150kHz

Figure 3.3: RMSE Comparison of Two Estimators and CRLB

3.5. Conclusion
In this chapter, we explain the concept of CFO and its generation mechanisms. Two estimators: the
Least Square estimator and the Maximum Likelihood estimator, are introduced. By exclusively utilizing
the samples within the reference period, we are able to estimate the frequency deviation. Next, both
the estimators are compared with the CRLB of CFO estimation under varying SNR values. The results
indicate that with higher SNR the RMSE would be lower, aligning with the expectation. Finally, the
LS estimator is selected for the AoA estimation algorithm due to its superior performance in general
compared to MLE.

Following the estimation of fo, we construct the CFOmatrix as described in (2.25) and calculated the
compensated data matrix X̂. The compensated data matrix, denoted as X̂ and previously presented in
(3.19), represents the data sampled from the array at the same time instants. This matrix will be utilized
in subsequent direction-finding algorithms for further processing. The impact of CFO estimating errors
on the angle estimation will be discussed in later chapters.



4
Direction Finding Algorithms

4.1. MUSIC
The Multiple Signal Classification (MUSIC) algorithm is widely recognized as one of the most commonly
employed techniques for direction-finding [2]. MUSIC is a subspace-based method that aims to identify
the optimal angle (or combination of angles in a two-dimensional setting) that maximizes the separation
between the antenna steering vector and the noise subspace.

The first step is to calculate the covariance matrix.

RX = E
{
XXH

}
(4.1)

where X is the observed data matrix. In a practical case, the expectation is calculated by averaging
all snapshots of the data. Recall the assumption we made, namely that the signal and the noise are
uncorrelated to each other, and that the noise is temporally and spatially white. Thus, the sampled
covariance matrix R̂X can be calculated as:

R̂X
.
=

1

N
XXH

=
1

N
(AS+ N) (AS+ N)H

=
1

N

(
ASSHAH

)
+

1

N
NNH

= AR̂SA
H
+ σ2I (4.2)

where σ2 represents the variance of noise, I is an identity matrix with a sizeMT ×MT withMT antennas,
RS is the sampled covariance matrix of the signal, the superscript H denotes the operation of computing
the Hermitian form of the matrix, and here N stands for the number of snapshots. Cross-terms of
expectation of signal and noise are cancelled because of the assumption that the signal and the noise
are independent.

Then we start the subspace analysis of the sample covariance matrix. The eigendecomposition of
R̂X is

R̂X = UΛUH (4.3)

where matrix U is theMT ×MT eigenvector matrix with normalized eigenvectors as its columns, and Λ
isMT ×MT diagonal matrix with corresponding eigenvalues in non-increasing order. The eigenvectors
can be divided into distinct signal and noise subspaces, since they are considered uncorrelated to each

24
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other. Then (4.3) can be expressed as follows

R̂X = UΛUH

=
[
US UN

] [ΛS + σ2IK 0
0 σ2IM−K

] [
US

H

UN
H

]
= USΛUS

H + σ2
(
USUS

H + UNUN
H
)

= US
(
ΛS + σ2IK

)
US

H + σ2UNIM−KUN
H (4.4)

where US is the combination of eigenvectors that correspond to the signal subspace, UN is the com-
bination of eigenvectors that correspond to the noise subspace. Typically, US is defined as the first K
columns of the eigenvector matrix U. Where as UN is the last MT −K columns of U.

It is clear from (4.4) that the subspace spanned by US is equivalent to the subspace spanned by
the manifold matrix A. Consequently, A should be orthogonal to the noise subspace UN, as US is
orthogonal to it because of their independence. The estimation of the angle θ can then be accomplished
by searching for a value of θ that maximizes the cost function

J(θ) =
1

a(θ)HUNUN
Ha(θ)

(4.5)

where a(θ) is the steering vector with a specific value of the angle. In the ULA case, the steering vector
refers to the reference antenna is

a(θ) =


1

ej
2πd cos θ

λ

ej
2π2d cos θ

λ

. . .

ej
2π(M−1)d cos θ

λ

 (4.6)

where θ is defined the same as in Fig.2.7.

4.1.1. 2-D MUSIC
In section 4.1, the notion of 1-D MUSIC is explained. Regarding the 2-D MUSIC algorithm, the process-
ing of the data matrix remains unchanged. However, the structure of steering vector in a 2-D array is
different, as shown previously in (2.7). The steering vector is now expressed as:

a(θ, ϕ) =


1

ej
2π(dx1 cosϕ+dy1 sinϕ) cos θ

λ

ej
2π(dx2 cosϕ+dy2 sinϕ) cos θ

λ

. . .

ej
2π(dxM cosϕ+dyM sinϕ) cos θ

λ

 (4.7)

Then the cost function is to be maximized with respect to both the elevation angle θ and the azimuth
angle ϕ, in contrast to the previous 1-D case where only one angle was considered in (4.5). Plot the
spectrum as

J(θ, ϕ) =
1

a(θ, ϕ)HUNUN
Ha(θ, ϕ)

(4.8)

and search for the combination of the angles that gives the peak in the spectrum.
The main problem of the MUSIC algorithm is its computational complexity as it is scanning across

all possible angle combinations[2]. The accuracy of the MUSIC algorithm is directly proportional to
the scanning step. The finer the scanning step, the longer the scanning would take, which would be
impractical for indoor localization since the target could move in such a amount of time.

4.2. ESPRIT
As previously mentioned, the primary concern regarding the MUSIC algorithm, aside from its limited
capability in handling multipath scenarios, lies in its computational cost. Basically, the result of MUSIC
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estimation can only be one (or some) of the angles used in scanning with the steering vector a(ϕ, θ).
That is to say, a finer estimation requires more scanning and thus takes up way more time to compute.

In contrast to angle scanning methods such as MUSIC, there is another category of DOA estimate
techniques known as search-free algorithms. Examples of search-free algorithms are Root-MUSIC,
Root-RARE, and ESPRIT. Given that other search-free approaches require specific array geometries,
this paper will solely focus on 2-D ESPRIT as it offers broader applicability.

4.2.1. ESPRIT
The fundamental concept of the ESPRIT algorithm is to exploit the shift-invariance structure in the
signal model [34]. In a 1-D scenario, the data model with MT antennas ULA can be described as

X =


x1
x2
...

xMT



=


a1(θ)
a2(θ)
...

aMT
(θ)

S (4.9)

where S is the signal matrix containing all d uncorrelated signals,

ak(θ) =
[
e−j 2πd

λ k cos θ1 e−j 2πd
λ k cos θ2 · · · e−j 2πd

λ k cos θd
]T

is the steering vector for the k-th antenna and in total d AOA for all sources.
Select the first M-1 rows of data matrix X as matrix X1 and the last M-1 rows as matrix X2, we have{

X1 = J1X = A1(θ)x
X2 = J2X = A2(θ)x

(4.10)

where J1 and J2 are the selection matrix given by

J1 =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ R(MT−1)×MT

J2 =


0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1

 ∈ R(MT−1)×MT

(4.11)

, A1(θ) and A2(θ) are the steering matrices of these two selected subarrays. Based on the structure
of the steering vectors, it can be shown that A1(θ) and A2(θ) represent neighboring antennas, thereby
establishing the following connection:

A2(θ) = A1(θ)Q(θ) (4.12)

where
Q(θ) = diag

{
ej

2πdx
λ sin θ1 , ej

2πdx
λ sin θ2 , · · · , ej

2πdx
λ sin θd

}
(4.13)

which contains the target angle-related information that could be easily converted into angle values.
The relation between the diagonal element ϕi and the associated angle θi is

θi = − λ

2πdx
arcsin(arg(ϕi)) (4.14)
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Examine the structure of the noise-free covariance matrix Rx = 1
NA(θ)RsAT(θ). Apply eigen-

decomposition to Rx and the matrix of eigenvectors is Es. Given the assumption of the incoherent
signals, it can be inferred that the subspaces spanned by Es and A(θ) are equivalent. Hence, there is
a nonsingular invertible transformation matrix T that fulfills:

Es = A(θ)T (4.15)

By calculating the covariance matrix and determining the eigenvectors using the given data vectors
x1 and x2, the following results are obtained:

Es1 = J1Es = J1A(θ)T = A1(θ)T (4.16)
= A2(θ)Q(θ)T = Es2T−1Q(θ)T = Es2Ψ (4.17)

where
Ψ = Es2

†Es1 (4.18)

has the structure of eigen-decomposition and shares the same eigenvalues as the target matrix Q(θ).
The typical 1-D ESPRIT method consists of the following steps:

• Determine the shift-invariance structure of the data matrix.
• Select the first and the last M-1 rows of the data matrix as specified in (4.10).
• Compute the eigen-decomposition on these two subarray data matrices and the results are de-
noted as Es1 and Es2.

• Compute the Ψ matrix according to (4.18).
• Apply eigen-decomposition on Ψ.
• Recover the angles from eigenvalues extracted from the previous result.

4.2.2. Unitary ESPRIT
In wireless communication, the signals are all complex numbers, which add complexity to the eigende-
composition. The unitary ESPRIT algorithm converts the entire dataset into the real number domain,
resulting in a significant reduction in complexity [35].

A significant requirement for a matrix to be transposed is that its geometry should be conjugate
centro-symmetric. Πn is the notation for the n × n anti-diagonal identity matrix, with 1 along its anti-
diagonal and 0 elsewhere, i.e.

Πn =


1

1
. . .

1

 ∈ Rn×n (4.19)

Left-multiplying amatrix withΠn equals reversing all the rows in the original matrix, while right-multiplying
means reversing all the columns. If a matrix Q satisfies

ΠnQH = Q (4.20)

then it is called Π-real, which is equivalent to conjugate centro-symmetric.
In unitary ESPRIT, at first, two sparse unitary matrices that would be used later are defined depend-

ing on whether the size is an odd number or an even one. The even version Q2n is given as

Q2n =
1√
2

[
In jIn
Πn −jΠn

]
(4.21)

The odd version Q2n+1 is given as

Q2n+1 =
1√
2

 In 0 jIn
0T

√
2 0T

Πn 0 −jΠn

 (4.22)

where 0 is a vector of size n×1 whose elements are all 0.
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With a given complex-number data matrix X ∈ RM×N , the transformation is given as

T (X) = QH
M

[
X ΠM X̄ΠN

]
Q2N ∈ RM×2N (4.23)

Formulate the Es matrix by selecting the largest d left eigenvectors of T (X). The relationship between
the complex signal subspace matrix Us and Es is that

Us = QMEs (4.24)

And now the shift-invariance property to be investigated is in the transformed steering matrix D

D = QH
MA =

[
d(θ1) d(θ2) · · · d(θd)

]
∈ RM×d (4.25)

Since the transformation is a linear operation, the shift-invariance property remains, i.e.

K1DΩ = K2D (4.26)

where Ω = diag
{
tan(µi

2 )
}d
i=1

is the target diagonal matrix containing the angle information, and µi =

− 2πdx

λ sin θi . What is worth noting is that the relationship between the elements in the target matrix
and the actual angle values changes after the transformation.

Besides, both the steering matrix and the selection matrix are also transformed. The transformed
selection matrices K1 and K2 are given by

K1 = 2 · Re
{
QH
M−1J2QM

}
(4.27)

K2 = 2 · Im
{
QH
M−1J2QM

}
(4.28)

where Re· and Im· represent the operations of extracting the real and imaginary parts of the complex
number inside the brackets, respectively.

Similar to the conventional complex number case, t can be observed that the transformed steering
matrix D and the transformed signal subspace matrix Es span the same signal subspace. Thus, there
must be a nonsingular transform matrix T that fulfills D = EsT. Substitute the relationship into the shift-
invariance equation (4.26), we obtain

K1EsΥ = K2Es ∈ R(M−1)×d (4.29)

where Υ = TΩT−1 whose eigenvalues are the same as the target matrix Ω. Υ can be constructed as
(4.18) in the least square way.

4.2.3. 2-D Unitary ESPRIT
In the 2-D scenario, it is necessary to have two distinct target diagonal matrices that include different
angle information, as two angles need to be estimated. As can be seen from the array geometry,
smoothing along the x-axis and the y-axis exploits the shift-invariance property in these two directions.
Consider the 7 × 7 URA case; the process of selecting subarrays is depicted in Fig.4.1. In the figure,
Jµ1 and Jµ2 denote two subarrays along the x-direction, Jv1 and Jv2 denote two subarrays along the
y-direction, Mx = 7 and My = 7 represent the number of antennas in two directions, respectively, and
the total number of antennas in the whole array is M = Mx ×My.

The next step is to construct the 2-D selection matrices. First, two 2-D selection matrices are defined
the same in (4.10), denoted as J71 ∈ R6×7 and J72 ∈ R6×7 asMx = My = 7. The superscript shows the
size of the 2-D selection matrices in case Mx ̸= My. All 2-D selection matrices can then be derived
with them and some corresponding identity matrices. However, not all of them are specifically required,
as shown in later parts.

Jµ1 = IMy
⊗ JMx

1

Jµ2 = IMy ⊗ JMx
2

Jv1 = JMy

1 ⊗ IMx

Jv2 = JMy

2 ⊗ IMx

(4.30)

which, if implemented on the steering matrix, satisfy

Jµ1A = Jµ2AΦµ

Jv1A = Jv2AΦv
(4.31)
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Figure 4.1: Illustration of ESPRIT Subarrays in a 7× 7 Virtual URA.

where the diagonal matrices contain the angle information.

Φµ = diag
{
ej

2πdx
λ cosϕi cos θi

}d

i=1

Φv = diag
{
ej

2πdy
λ sinϕi cos θi

}d

i=1

(4.32)

Just like the 1-D case, then all selection matrices are transformed as

Kµ1 = 2 · Re
{
QH

Mx
Jµ2QM

}
Kµ2 = 2 · Im

{
QH

Mx
Jµ2QM

}
Kv1 = 2 · Re

{
QH

My
Jv2QM

}
Kv2 = 2 · Im

{
QH

My
Jv2QM

} (4.33)

and the transformed Φµ and Φv as

Φµ = diag
{
tan( 2πdx

λ cosϕi cos θi/2)
}d
i=1

Φv = diag
{
tan(

2πdy

λ sinϕi cos θi/2)
}d

i=1

(4.34)

The signal subspace eigenvectors Es are again selected from the eigenvectors of the covariance
matrix, which correspond to the d largest eigenvalues. With the data after spatial smoothing, only the
covariance matrixR, not the data itself are known. Es is then computed from the real-valued covariance
matrix Rreal which is

Rreal = Re
{
QH

MRQM

}
(4.35)

Since the transformed steering matrix D = QH
MA should span the same subspace as Es, there is a

nonsingular transformation matrix T satisfies D = EsT. The 2-D version of (4.29) is

Kµ1Es = Kµ2EsΥµ

Kv1Es = Kv2EsΥv
(4.36)

where Υµ = TΩµT−1 and Υv = TΩvT−1 are the target diagonal matrices.
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However, instead of solving (4.36) separately, since Υµ andΥv share the same eigenvectors from
T, they can be solved together through automatic pairing them together [34], i.e.

Υµ + jΥv = T(Ωµ + jΩv)T−1 (4.37)

After gaining Ωµ and Ωv from the real and imaginary parts of the eigenvalues, respectively, the
angle values can be recovered.

4.3. Multipath Mitigation
Multipath effects are a prominent source of error in the context of indoor localization. The rank of
the data covariance matrix is diminished by the presence of multipath signals, particularly in the case
of subspace algorithms such as MUSIC and ESPRIT. In the basic idea of MUSIC, the signal space
is spanned of steering vectors only when the signal matrix has full rank. This is due to the fact that
the multipath signal essentially represents an delayed and attenuated version of the LOS signal. This
section begins with discussing the impact of multipath signals on the rank of the covariance matrix,
followed by an introduction to several techniques employed for mitigating the effects of multipath.

Recall that the multipath signals are in the form of:

s(t) =


1

α1e
−τ1

...
αK−1e

−τK−1

 s0(t)
= Γs0(t) (4.38)

where α indicates the attenuation in amplitude, τ indicates the phase delay introduced by distances
between each antenna and the transmitter, and s0(t) is the LOS signal of interest. (4.38) shows the
multipath signals can be expressed as a linear combination Γ of the LOS signal. Then the data received
at the antenna array at this instant is

x(t) = A(θ,ϕ)s(t)
= A(θ,ϕ)Γs0(t) (4.39)

where A(θ,ϕ) is the directional antenna steering matrix explicitly explained in (2.15).
Now consider the sample covariance matrix R̂X , which is calculated from the observed data matrix

X.

R̂X
.
=

1

N
XXH

=
1

N
(AΓs0 + N) (AΓs0 + N)H

=
1

N

(
AΓs0sH0 ΓHAH

)
+

1

N
NNH

= AΓR̂s0Γ
HAH + σ2I (4.40)

Given that s0 represents a one-row vector comprising N snapshots of LOS data, it is evident that
R̂s0 is a rank-1 matrix in this scenario with perfect coherence. Then with the MUSIC algorithm, only
one direction of arrival would be detected instead of all K signals. And since the steering matrix for
LOS signals is now A(θ,ϕ)Γ instead of A(θ,ϕ), the process of scanning angles and identifying the
noise subspace orthogonal vector does not yield the desired LOS angle. Instead, it produces a linear
combination of all multipath angles.

Furthermore, with all these multipath parameters unknown, it is impossible to recover the LOS angle
from the result. Thus, the subspace algorithms fail.

4.3.1. Spatial Smoothing for Coherent Signals
The failure of subspace-based AoA estimate algorithms in a coherent scenario can be attributed to the
need for decorrelating the signals and restoring the rank of the covariance matrix in order to effectively
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mitigate multipath interference for subspace approaches. Typically, spatial smoothing is employed for
this purpose. According to Tuncer, it is generally observed that other approaches such as the Forward-
Backward Approach and Toeplitz Completion exhibit comparatively lower performance than FBSS [28].

T.J. Shan introduced the idea of averaging the covariance matrices of different subarrays for decor-
relation [36] [37] . Nevertheless, the implementation of forward-only smoothing requires a significant
amount of antennae. An advanced method called Forward-backward Spatial Smoothing (FBSS) is
brought up [38]. In general, the spatial smoothing technique necessitates pre-processing through the
partitioning of the antenna array into overlapping subarrays. Yi employed the FBSS method to the URA
scenario and proved its validity [39].

Consider a URA with a size of M × N . This URA can be divided into overlapping rectangular
subarrays, each with a size of Ms × Ns. In each direction, there will be LM = M − Ms + 1 and
LN = N−Ns+1 subarrays respectively. Consequently, the total number of subarrays will be LM ×LN .
The reference subarray is defined as the first Ms ×Ns square antenna array starting at the upper-left
corner. Ihe data in the vector of each subarrayis stacked along the x-direction. For example, the first
subarray on both axes, i.e., the (1,1)-th subarray, has the MsNs × 1 data vector:

x1,1(t) = [x1,1(t), x2,1(t), · · · , xMs,1(t), x1,2(t), · · · , xMs,Ns
(t)]

T (4.41)

where the subscript (1,1) on the vector on the left side indicates the first subarray on the x-direction
and on the y-direction, while the subscript (m,n) on the right side indicates the position of each antenna
within this particular subarray. Fig.4.2 shows an example of a 3 × 3 subarray, i.e., Ms = Ns = 3, and
the antennas within it.

Figure 4.2: Illustration of a 3× 3 Subarray.

Let the MsNs × k matrix A1 denote the steering matrix of the first subarray. Then the (m,n)-th
subarray is expressed as

xm,n(t) = A1Dm−1
x Dn−1

y s(t) + nm,n(t) (4.42)
where nm,n(t) is the Gaussian noise vector of this subarray, Dx and Dy are the K ×K diagonal matrix
of phase-shift for each multipath signal that is explicitly expressed as

DY = diag [γ1, γ2, · · · , γk] ; γi = exp(j2πdy sinϕi sin θi/λ) (4.43)

and
DX = diag [β1, β2, · · · , βk] ; γi = exp(j2πdx cosϕi sin θi/λ) (4.44)



4.3. Multipath Mitigation 32

The covariance matrix of the (m,n)-th subarray is then given by

Rm,n = A1Dm−1
x Dn−1

y Rs(Dn−1
y )H(Dm−1

x )HAH
1 + σ2I (4.45)

By adding all these covariance matrices of subarrays together and averaging them, we have the
forward-smoothed covariance matrix Rf :

Rf =
1

M0N0

M0∑
m=1

N0∑
n=1

Rm,n

= A1RsAH
1 + σ2I (4.46)

where Rs is the smoothed signal covariance matrix.
The rank of Rs is recovered by constructing the Vandermonde matrix structure. Expand Rs:

Rs =
1

M0N0
GGH (4.47)

Exploit the structure of the G matrix:

G =
[
Gx DyGx D2

yGx · · · DN0
y Gx

]
(4.48)

where

Gx =
[
Γ DxΓ D2

xΓ · · · DM0
x Γ

]
=


α1 α1β1 · · · α1β

M0
1

α2 α2β2 · · · α2β
M0
2

· · ·
αK αKβK · · · αKβM0

K



= diag(α1, α2, · · · , αK)


1 β1 β2

1 · · · βM0
1

1 β2 β2
2 · · · βM0

2
...

1 βK β2
K · · · βM0

K

 (4.49)

It shows the Vandermonde structure of matrix Gx.
For indoor scenarios, it is assumed that each multipath exhibits distinct attenuation and time delay,

i.e. αi ̸= αj when i ̸= j. As a result, the diagonal matrix of the multipath parameters is full rank.
Then the rank of Gx is the same as the later part. Multipath signals are expected to arrive at each
antenna with different angles. Then in the most extreme case where γ1 = γ2 = · · · = γK , rank(Rs) =
rank(G) = rank(Gx) = min(K,M0). This implies that there are no smoothing effects in the y-direction.
After interchanging the order of Dx and Dy, the same process can be applied. And with the extreme
case of β1 = β2 = · · · = βK , we have rank(Rs) = rank(G) = rankGy) = min(K,N0), where Gy =[
Γ DyΓ D2

yΓ · · · DN0
y Γ

]
.

Therefore, in order to completely eliminate the correlation between K coherent multipath signals
in both the x and y directions, it is necessary to apply a minimum of K smoothing operations in each
direction. This can be expressed as M0 ≥ K and N0 ≥ K.

The backward spatial smoothing method is defined in a similar manner, but with a reversal of the
data collecting sequence in both the x and y dimensions. The initial subarray located at the rear of a
5× 5 antenna array is seen in Figure 4.3.

The 2-D FBSS covariance matrix Rfb is defined as

Rfb =
1

2

[
Rf + J(Rf )∗J

]
= A1Rfb

s AH
1 + σ2I (4.50)

where ∗ represents complex conjugate operation, J is an exchange matrix with ones on its antidiagonal
and zero elsewhere, Rfb

s refers to the forward/backward version of signal covariance.
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Figure 4.3: Illustration of the First Backward Subarray in a 5× 5 Array.

As proved in [40], 2-D backward smoothing requires the geometry of the antenna array to satisfy
some conditions. In order to successfully implement backward smoothing, every subarray and the
entire array should be center symmetric. The subarray size must satisfy the condition Ms ≥ (k + 1)
and Ns ≥ (k + 1) in order to ensure the extended linear independence property of the source phase
vectors [41]. In summary, in order to achieve complete decorrelation of K coherent multipath signals, it
is necessary for the full rectangular array to have a minimum size of 2K × 2K.

Based on the aforementioned explanation, it is apparent that the presence of additional antennas
leads to an increase in the capacity to decorrelate a greater number of multipath signals. Nevertheless,
the upper limit for the number of antennae is also constrained by the length of the CTE. CTE has a
maximum length of 160µs and a minimum sample and switch period of 1µs per slot. It is capable of
accommodating 74 samples, which is sufficient to include a single snapshot of samples from either a
8× 8 URA or a rim URA with 18 antennas on each edge.

4.4. Toeplitz Matrix Reconstruction
In addition to the Spatial Smoothing technique, another strategy for reducing the effects of multipath
signals is to restore the rank of the covariance matrix by generating a Toeplitz structured matrix and
then using an ESPRIT-like method for angle estimation.

The Toeplitz structure denotes a matrix is diagonal constant matrix with its descending diagonal
elements from left to right (or anti-diagonal) constant [42]. As an example:

T =


t1 t2 t3
t4 t1 t2
t5 t4 t1
t6 t5 t4

 (4.51)

is a Toeplitz matrix. Each of the diagonal elements ti is not necessarily the same as tj when i ̸=
j. Toeplitz reconstruction methods rearrange the elements or vectors in the covariance matrix into a
Toeplitz structure so the rank of the result matrix is not relevant with the signal coherence anymore.

4.4.1. Toeplitz Matrix Construction
Han first proposed an ESPRIT-like algorithm for coherent DoA estimation in 1-D scenario [43]. In [44],
such a method is generalized to 2-D DoA estimation. Using the data model in 4.2, the correlation
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between the (m,n)-th antenna and the (p,q)-th antenna, detoted as r(m,n; p, q), is

r(m,n; p, q) = E(s0(t)s∗0(t))
K∑

k1=1

K∑
k2=1

αk1
α∗
k2
βm
k1
γn
k1
β−p
k2

γ−q
k2

+ σ2
nδmpδnq

=

K∑
k2=1

dk2,m,nβ
−p
k2

γ−q
k2

+ σ2
nδmpδnq (4.52)

where E indicates the expectation operation, δij = δ(i− j), and dk2,m,n = E(s(t)s∗(t)
∑K

k1=1 αk1β
m
k1
γn
k1
.

Redefine the K2-th signal as the k-th signal so dk2,m,n = dk,m,n, (4.52) becomes:

R(m,n; p) =


r(m,n; p, 0) r(m,n; p, 1) r(m,n; p,N −Q)

r(m,n; p, 1)
. . .

...
...

. . .
r(m,n; p,Q− 1) · · · r(m,n; p,N − 1)


= A

∑
p

D(m,n)ĀT
+ σ2

nδmpNn (4.53)

where
∑

p = diag(β−p
1 , · · · , β−p

K ), D(m,n) = diag[d1,m,n, · · · , dK,m,n], A =
[
a1 · · · aK

]
∈ CQ×K with

ai =
[
1 γ−1

i · · · γ
−(Q−1)
i

T
]
, Ā =

[
ā1 · · · āK

]
∈ C(N−Q+1)×K with āi =

[
1 γ−1

i · · · γ
−(N−Q)
i

T
]
,

and Nn ∈ CQ×(N−Q+1). The structure of Nn is introduced in [44].
Next, construct a block Hankel matrix R(m,n) with R(m,n; p) from p = 0, · · · ,M − 1:

R(m,n) =


R(m,n; 0) R(m,n; 1) · · · R(m,n;M − P )
R(m,n; 1) R(m,n; 2) · · · R(m,n;M − P + 1)

...
...

. . .
...

R(m,n;P − 1) R(m,n;P ) · · · R(m,n;M − 1)


= BD(m,n)B̄T + σ2

nNm ⊗ Nn (4.54)

where B =
[
b1 · · · bK

]
with bi =

[
1 β−1

i · · · β
−(P−1)
i

]T
⊗
[
1 γ−1

i · · · γ
−(Q−1)
i

]T
∈ CPQ×1,

and B̄ =
[
b̄1 · · · b̄K

]
with b̄i =

[
1 β−1

i · · · β
−(M−P )
i

]T
⊗
[
1 γ−1

i · · · γ
−(N−Q)
i

]T
∈ C(N−Q+1)(M−P+1)×1.

The limitation of such a Toeplitz construction approach is still the number of antennas. It was demon-
strated in [45] that for such amatrixR(m,n) to restore the rank of the covariancematrix without requiring
signal coherency, the P and Q values should be carefully set as suggested:

M − P + 1 ≥ P ≥ K N −Q+ 1 ≥ Q ≥ K (4.55)

4.4.2. Toeplitz Angle Estimation
Although the constructed matrix in (4.54) appears to have a similar form of a regular covariance matrix,
Nm ⊗ Nn is not always an identity matrix. Thus, instead of the MUSIC algorithm, we explore the
shift-invariance property in the Hankel matrix R(m,n) and apply an ESPRIT-like algorithm for angle
estimation.

Compute the singular value decomposition (SVD) of R(m,n) and extract Es as the singular vectors
corresponding to the K largest singular values. Es and B thus should span the same signal subspace.
Therefore, Es and B can transfer into each other with an invertable transfer matrix T such that Es = BT .
Reminding that R(m,n) is a (P−1)(Q−1)×(M−P+1)(N−Q+1)matrix, the shift invariance property
is explored by selecting the first and last (P − 1)Q rows of both Es and B as E1β ,E2β and B1β ,B2β . The
relations between these four matrices are:

E1β = B1βT
E2β = B2βT
B2β = B1βΦβ

(4.56)
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where Φβ = diag(β1, · · · , βK).

For estimating γ, first rearrange B into Bγ =
[
b̂1 · · · b̂K

]
with b̂i =

[
1 γ−1

i · · · γ
−(Q−1)
i

]T
⊗[

1 β−1
i · · · β

−(P−1)
i

]T
. This transformation can be done by a permutation matrix P so that b̂i = Pbi

and Ês = PEs. Similarly, select the first and last (Q − 1)P rows of B̂ and Ês as E1γ ,E2γ and B1γ ,B2γ .
The relationship between them:

E1γ = B1γT
E2γ = B2γT
B2γ = B1γΦγ

(4.57)

where Φγ = diag[γ1, · · · , γK ]. Combine (4.56) and (4.57) together, we have

T−1ΦβT = E†
1βE2β

T−1ΦγT = E†
1γE2γ

(4.58)

where † means pseudo inverse.

4.4.3. Automatic Pairing in 2D-ESPRIT-like Algorithm
While it is possible to solve (4.58) using the basic ESPRIT method, a limitation arises due to the fact
that both γ and β are not the actual target angles. Solving them individually may lead to the issue of
pairing.

Chen introduced a pair-free approach for estimating frequency and subsequently employed it in the
context of 2-D angle estimation [46][44]. The transfer matrix T is the link between γ and β. Compute
eigenvalue decomposition (EVD) on E†

1βE2β then:

E†
1βE2β = WΦβW−1 (4.59)

When comparing equations (4.59) and (4.58), it can be observed that if all elements in Φβ are
distinct, then both T−1 andW contain the linearly independent eigenvectors of E†

1βE2β . Consequently,
these matrices can be transformed into each other using a full-rank diagonal transfer matrix G, such
that T−1 = WG. Then the Φγ is computed as

Φγ = W−1E†
1γE2γW (4.60)

Using the same T matrix,the results from Φβ and Φγ are then automatically matched.
Finally, the two angles are computed from β and γ as

θi = arctan ∠γi

∠βi

ϕi = arccos 1
π

√
(∠γi)2 + (∠βi)2

(4.61)

4.5. Proposed Virtual Antenna Extension
One limitation of spatial smoothing, particularly in this project, relates to the constrained number of
antennas available. In order to differentiate all K sources, a minimum of K antennas is required for
ULA. For forward-only 2-D smoothing, a 2K × 2K antenna configuration is necessary, as stated by
Chen et al. [41]. Similarly, for 2-D FBSS, a 3K/2 × 3K/2 antenna configuration is recommended, as
mentioned by Yi et al. [39]. In order to ensure linear independence of the source vectors, it is necessary
to impose a minimum constraint on the size of subarrays, denoted as LM ≥ (K+1) and LN ≥ (K+1)
[41]. Such a constrain of sizes for both the subarray and the entire array has a detrimental impact on
the performance of multipath mitigation with present hardware design.

Additionally, it should be noted that the 12-antenna array indicated before does not conform to
the ideal URA configuration, as it lacks 4 antennas in the center of the array. The utilization of a
structure referred to as a ’rim’ or ’square’ array introduces challenges in the process of identifying
suitable subarrays.

As a result, the concept of a virtual array is proposed as a way to increase the equivalent quantity
of antennas and enhance the efficacy of spatial smoothing.
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Recall the basic data model of (4.39), the sampled covariance matrix is:

R̂X = AΓR̂S0Γ
HAH + σ2I (4.62)

After vectorizing, with the property vec(ABC) = (CT ⊗A)vec(B) and (AB)⊗(CD) = (A⊗C)(B⊗D),
the equation becomes:

vec(R̂X) = vec(AΓR̂S0
ΓHAH) + vec(σ2I)

=
[
(ΓHAH)T ⊗ (AΓ)

]
vec(R̂S0

) + σ2vec(I)

= [(A∗Γ∗)⊗ (AΓ)]p+ σ2vec(I)
= (A∗ ⊗ A) (Γ∗ ⊗ Γ)p+ σ21e
= (A∗ ⊗ A)Sv + σ21e (4.63)

where p is a scalar representing the power of the input LOS signal, and 1e =
[
eT1 eT2 . . . eTk

]T
with i-th row ei a vector has 1 at its i-th column and 0 anywhere else, ⊗ is the Kronecker product, and
Sv = (Γ∗ ⊗ Γ)p is the virtual signal vector.

In (4.63), a new virtual data model is constructed, with a new manifold matrix A∗ ⊗ A. When K
signals are not coherent, (4.62) then changes into:

R̂X = AR̂SA
H
+ σ2I (4.64)

where the sample signal covariance matrix

R̂S = E(SSH)

= diag(p1, p2, · · · , pK) (4.65)

is a K ×K matrix with diagonal elements as the power of each signal and others as zero. Since R̂S is
a diagonal matrix, it can be simplified using another property of vec operator:

vec(ABC) = (CT ◦ A)diag(B) (4.66)

where ◦ stands for Khatri-Rao product and diag(B) is the vector containing all the diagonal elements
of the diagonal matrix B. Then (4.63) becomes

vec(R̂X) = (A∗ ◦ A) diag(R̂S)

=
[
a1∗ ◦ a1 a2∗ ◦ a2 · · · aK∗ ◦ aK

]
diag(R̂S) (4.67)

The Khatri-Rao product, or the column-wise Kronecker product, ensures that for each combination of
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corresponding columns ai∗ ◦ai, there is only angle interaction within the same source, written explicitly:

ai∗ ◦ ai =



1
e−βi

e−2βi

...
e−(M−1)βi

e−γi

e−βiγi

...
e−(M−1)βi(N−1)γi



∗

◦



1
e−βi

e−2βi

...
e−(M−1)βi

e−γi

e−βi+γi

...
e−(M−1)βi(N−1)+γi



=



1
e−βi

e−2βi

...
e−(M−1)βi

e−γi

e−βi+γi

...
e−(M−1)βi(N−1)γi

e+βi

e+βie−βi

e+βie−2βi

...
e+βie−(M−1)βi

e+βie−γi

e+βie−βi+γi

...
e+βie−(M−1)βi(N−1)+γi

...



∈ C(MN)2×1 (4.68)

where βi and γi are defined as in (4.43) and (4.44). Because the multiplication between natural ex-
ponents is the addition or subtraction of their index, the column-wise Kronecker product, unlike the
conventional Kronecker product, constructs the antenna manifold by computing within each source it-
self. The result, still a vector of exponents with an index combining only βi and γi and no angles from
other sources, preserves the structure of the steering vector but extends the variety of positions.

However, in cases where the signals exhibit coherence, the property stated in (4.66) is not appli-
cable, and the standard Kronecker product remains practical. The constructed manifold is then trans-
formed into:

A∗ ⊗ A =
[
a1∗ ⊗ A a2∗ ⊗ A · · · aK∗ ⊗ A

]
=


a∗1,(1,1)A a∗2,(1,1)A · · · a∗K,(1,1)A
a∗1,(1,2))A a∗2,(1,2)A · · · a∗K,(1,2)A

· · · · · ·
a∗1,(M,N)A a∗2,MNA · · · a∗K,MNA

 ∈ C(MN)2×K2

(4.69)

where a1 ∈ CMN×1 is the i-th column of the steering matrix A indicating the steering vector of the i-th
source, and ai,(m,n)) is the steering element for the (m,n)-th antenna corresponding to the i-th source.
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The problem of the virtual array extension arises in the a∗i,(m,n)A as

a∗i,(m,n)A = e(m−1)βi+(n−1)γiA

= e(m−1)βi+(n−1)γi


1 1 · · · 1

e−β1 e−β2 · · · e−βK

...
e−(m−1)β1−(n−1)γ1 e−(m−1)β2−(n−1)γ2 · · · e−(m−1)βK−(n−1)γK


(4.70)

In equation (4.70), the preservation of the steering vector structure, as shown in equation (4.66),
only occurs when the multiplication of a∗i,(m,n) with the i-th column in the steering matrix A takes place.
The Kronecker product produces a cross-term in the j-th column, where j ̸= i, which includes angles
originating from various multipath sources.

When signals shows complete coherence, particularly in the context of multipath generated from a
single point source, the Kronecker product of the multipath profile vector Γ∗ ⊗ Γ ∈ CK2×1 increases
the number of multipath from K to K2. In order to achieve complete decorrelation of virtual multipath
signals, a substantial increase in the number of virtual antennas is necessary.

In addition to the virtual array construction, which enables direct vectorization of the covariance
matrix, there is also considerable discussion about a comparable extension method that utilizes fourth-
order cumulant [47]. However, non-coherent signals still requires for cumulant methods.

On the other hand, if the signals are not coherent, the signal covariance matrix is diagonal. Then
the VA model is able to actually extend the number of antennas by transforming the equivalent steering
matrix A∗ ⊙ A as:

A∗ ⊙ A =
[
a∗(ϕ1, θ1) a∗(ϕ2, θ2) . . . a∗(ϕk, θk)

]
⊙
[
a(ϕ1, θ1) a(ϕ2, θ2) . . . a(ϕk, θk)

]
=


1 1 . . . 1

b1(−x1,−y1) b2(−x1,−y1) bk(−x1,−y1)
...

b1(−xM−1,−yM−1) b2(−xM−1,−yM−1) . . . bk(−xM−1,−yM−1)

⊙


1 1 . . . 1

b1(x1, y1) b2(x1, y1) bk(x1, y1)
...

b1(xM−1, yM−1) b2(xM−1, yM−1) . . . bk(xM−1, yM−1)



=


a(ϕ1, θ1) a(ϕ2, θ2) . . . a(ϕk, θk)

b1(−x1,−y1)a(ϕ1, θ1) b2(−x1,−y1)a(ϕ2, θ2) bk(−x1,−y1)a(ϕk, θk)
...

b1(−xM−1,−yM−1)a(ϕ1, θ1) b2(−xM−1,−yM−1)a(ϕ2, θ2) . . . bk(−xM−1,−yM−1)a(ϕk, θk)


(4.71)

where bi(xm, yn) = ej
2π(dxm cosϕk cos θk+dyn sinϕk cos θk)

λ indicates the entry of the steering vector of the i-th
source at the antennawith coordinates (xm, yn). It is easy to see that, multiplying the complex conjugate
of steering elements with the original steering vector generates the steering element corresponding to
a virtual position with the coordinates of the difference of their own ones.

Then, rows in vec (RX) that correspond to the same virtual position is removed and reordered ac-
cording to their virtual coordinates. Fig.4.4 shows the placement for a 7×7 virtual array, with reference
origin unmoved. Dots in red are the physical antennas and those in blue are the virtual antennas. After
reordering,

As the constructed virtual array is a URA with size 7× 7 and no ’holes’ within, the FBSS technique
can be directly applied. Fig.4.5 shows the 3× 3 subarrays spreading in both the x and y directions.

The virtual covariance matrix after smoothing is a 9× 9 one with full rank, which means the signals
are uncorrelated. After smoothing, direction-finding methods like MUSIC and ESPRIT can be applied.
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Figure 4.4: Illustration of Virtual Array.

Figure 4.5: Illustration of 3× 3 Virtual Subarrays.

4.6. Source Number Detection
As evidenced in previous sections, both MUSIC and ESPRIT, being subspace-based techniques, need
the construction of a matrix dependent upon the number of sources. While the value of multipath is
known in simulation, it is difficult to estimate in practical settings due to the presence of an unknown
number of multipath.

Multiple indicators for source detection exist. The majority of these approaches are founded upon
the idea that signals possess much greater energy levels in comparison to noise. Hence, an estimation
of the quantity of signals can be derived by examining the count of the most prominent eigenvalues
of the covariance matrix. The problem at hand is to the determination of an appropriate threshold for
eigenvalues. Within this particular section, three distinct methods have been used for the simulation,
namely the Akaike information criterion (AIC), Minimum Description Length (MDL), and SORTE.

4.6.1. AIC
AIC was first brought up in 1974 [48]. The indicator is a combination of two parts. The first one is a log-
likelihood of the maximum likelihood estimates and the second one is a bias correction term, inserted
to make the AIC an estimate of the mean Kulback-Liebler distance between the true distribution and
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the estimated one. The AIC of the k-th eigenvalue is:

AIC(k) = −2 log

 ∏M
i=k+1 ℓi(

1
M−k

∑M
i=k+1 ℓi

)M−k


N

+ 2k(2M − k). (4.72)

where M is the number of antennas, N is the number of snapshots, and ℓ is the eigenvalue. After
computing the AIC for all the eigenvalues, the number of sources k̂ is determined as the k which
corresponds to the minimum AIC, i.e.

k̂ = argminkAIC(k) (4.73)

4.6.2. MDL
MDL, introduced by Rissanen in 1978 [49], is based on the idea of selecting the parameters that make
the least code length of the encoded observation. The MDL of the k-th eigenvalue is:

MDL(k) = − log

 ∏M
i=k+1 ℓi(

1
M−k

∑M
i=k+1 ℓi

)M−k

+
1

2
k(2M − k) logN. (4.74)

The same as AIC, the number of sources is the value that minimizes the MDL, i.e.

k̂ = argminkMDL(k) (4.75)

4.6.3. SORTE
SORTE is another eigenvalue-based method[50]. The indicator is computing over all possible values
for number of sources. The SORTE value with number k is defined as:

SORTE(k) =


var({∇ℓi}M−1

i=k+1)
var({∇ℓi}M−1

i=k )
, var

(
{∇ℓi}M−1

i=k

)
̸= 0

+∞ var
(
{∇ℓi}M−1

i=k

)
= 0

(4.76)

where ∇ℓ = ℓk − ℓk+1, and var stands for the variation computation which is defined as:

var
(
{∇ℓi}M−1

i=k

)
=

1

M − k

M−1∑
i=k

∇ℓi −
1

M − k

M−1∑
j=k

∇ℓj

2

(4.77)

Like the other two indicators, the number of sources gives the smallest value, i.e.

k̂ = argminkSORTE(k) (4.78)

4.6.4. The Effect of Source Number Estimation
Although multiple ways of estimating the source number are available, the actual source number in
the algorithm is always set to 2. Since both the simulation and experiment are conducted with a single
source emitter and its attenuated delayedmultipath, all the signals are correlated, while these indicators
work under the assumption of uncorrelated sources. In [8], it is proved that with correlated sources, the
best performance of the MUSIC algorithm does not always happen with the correct source number
estimation.

In the following simulation, 1 LOS signal with 1 multipath scenario is constructed, and the test is
conducted with 3 situations: the underestimated (k̂ = 1), the correct estimation (k̂ = 2), and the
overestimated (k̂ = 3). It is obvious that all three methods show nearly no difference in all scenarios.

4.7. Conclusion
In this section, we introduce the most commonly used and studied subspace methods, like MUSIC and
ESPRIT. Both methods work well only with uncorrelated signals but would fail with coherent signals
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such as multipath signals, which are unavoidable in indoor scenarios. Since the failure is due to the
rank deficiency in the covariance matrix, several decorrelate algorithms, such as Spatial Smoothing
and Toeplitz Construction are explained by restoring the rank of the covariance matrix.

However, in order to totally decorrelate all the multipath signals, both algorithms require that the
number of antennas in two directions cannot be too small. For BLE data, the number of antennas and
number of snapshots are all limited due to the limited maximum length of the CTE packet, which is only
160µs.



5
Positioning with Angle of Arrival

In previous chapters, just one receiver with 12 antennas and one set of angles (ϕ, θ) was involved.
Because it simply provides a line of direction, this set of results is insufficient to locate the transmitter. To
estimate the true position, multiple receivers and their associated angles are required. The positioning
solution with measured AoA data will be formulated and discussed in this chapter. We will begin with
a simple 2-D example and then move on to a 3-D scenario.

5.1. 2D Triangulation
The simplest case of triangulation is 2 receivers in a 2-D plane, as illustrated in Fig.5.1. The blue node

Figure 5.1: Illustration of 2-D Triangulation with Two Receivers.

represents the target transmitter, while the black nodes represent the known two receivers. θ1 and
θ2 are the estimated azimuth angles of two receivers, respectively. The coordinates of the receivers
are (x1,y1) and (x2,y2) in the global coordinate system. (x,y) is the transmitter’s target position to be
approximated using the same coordinate system. r1 and r2 are the distances between the transmitter
and the associated receiver, respectively.

r1 =

√
|x− x1|2 + |y − y1|2

r2 =

√
|x− x2|2 + |y − y2|2

(5.1)

The geometry problem can thus be formulated as{
r1 cos θ1 = x− x1

r1 sin θ1 = y − y1
(5.2)

42
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for node (x1,y1) and {
r2 cos θ2 = x− x2

r2 sin θ2 = y − y2
(5.3)

for node (x2,y2).
Then, with n receivers, a similar relationship between arbitrary two receivers is established. For

example, with receivers sorted as 1,2,3,· · · ,n, if only the relationship between two receivers of adjacent
order is retrieved, the overestimated equations are obtained.

∆


r1
r2
...
rn

 =



−x1 + x2

−y1 + y2
−x2 + x3

−y2 + y3
...

−xn−1 + xn

−yn−1 + yn


(5.4)

where ∆ = blkdiag(∆1,∆2, · · · ,∆n−1) and

∆i =

[
cos θi − cos θi+1

sin θi − sin θi+1

]
Compress (5.4) into matrix form, it would be

∆[r1, r2, · · · , rn]T = b (5.5)

where b is the vector on the right side. (5.5) can be solved as a least square problem, given the result

[r̂1, r̂2, · · · , r̂n] = (∆T∆)−1∆Tb (5.6)

After estimating the distance, the position can be computed from any of the following equation

(x̂, ŷ) = (x1, y1) + r̂1(cos θ1, sin θ1)
(x̂, ŷ) = (x2, y2) + r̂2(cos θ2, sin θ2)

...
(x̂, ŷ) = (xn, yn) + r̂n(cos θn, sin θn)

(5.7)

However, when the target coordinates (x,y) are inserted into the vector to be solved, equation (5.4)
is modified into 

cos θ1 0 0 · · · −1 0
sin θ1 0 0 0 −1
0 cos θ2 0 −1 0
0 sin θ2 0 0 −1
...

. . .
...

· · · cos θn −1 0
sin θn 0 −1





r1
r2
...
rn
x
y


=


−x1

−y1
...

−xn

−yn

 (5.8)

which can be compressed into matrix form as

M[r1, r2, · · · , rn, x, y]T = n (5.9)

where

M =



cos θ1 0 0 · · · −1 0
sin θ1 0 0 0 −1
0 cos θ2 0 −1 0
0 sin θ2 0 0 −1
...

. . .
...

· · · cos θn −1 0
sin θn 0 −1


(5.10)
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and

n =


−x1

−y1
...

−xn

−yn

 (5.11)

which can be solved as a least square problem

[r̂1, r̂2, · · · , r̂n, x̂, ŷ]T = (MTM)−1MTn (5.12)

Nevertheless, only x̂ and ŷ are needed, thus the target position can be directly selected from the
solution in (5.12) like [

x̂
ŷ

]
=

[
0 · · · 0 1 0
0 · · · 0 0 1

]
(MTM)−1MTn (5.13)

5.2. 3-D Triangulation
The geometric representation of the problem is depicted in Fig.5.2. It is important to highlight that the
estimated angle values are calculated within the local coordinate system of each locator, whereby the
reference antenna of each array functions as origin point of its local coordinate system.

Figure 5.2: Illustration of 3-D Triangulation with Two Receivers.

5.2.1. Matlab Method
The blePositionEstimate function in Matlab has been developed to compute the position of the trans-
mitter based on provided estimated results. Instead of simultaneously calculating all three coordinates,
this function initially estimates the values of x and y. This is based on the observation that there exists
a correlation between the i-th locator (xi, yi, zi) and the position that needs to be approximated:

(x− xi) tanϕi = y − yi (5.14)
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where ϕi is the estimated azimuth angle on the i-th locator. Stacking all M locators together and listing
the

[
x y

]T as the vector to be solved, we have
tanϕ1 −1
tanϕ2 −1
...

...
tanϕM −1


[
x
y

]
=


x1 tanϕ1 − y1
x2 tanϕ2 − y2

...
xM tanϕM − yM

 (5.15)

which, if compressed into matrix form, is:

A
[
x
y

]
= B (5.16)

Solve (5.16) in the least square way, giving[
x
y

]
= (ATA)−1ATB (5.17)

Then the z coordinate is calculated with estimated elevation angles. Note that here in Matlab algo-
rithm, the elevation angle θ angle is defined differently as previously in thesis project. It is illustrated as
in Fig.5.2. To begin, calculate the distance d on the x-y plane by computing the distance between the
estimated coordinates (x̂, ŷ) and the known coordinates of the locators (x,y):

d =

√√√√√√√√


x̂
x̂
...
x̂

−


x1

x2

...
xM




2

+



ŷ
ŷ
...
ŷ

−


y1
y2
...

yM




2

(5.18)

With (5.18) and the geometry of z and elevation angle θi from the i-th locator :

z − zi = d tan θi (5.19)

So the ẑ is calculated from (5.19) and (5.18) as

ẑ =
(z1 + d tan θ1) + (z2 + d tan θ2) + · · ·+ (zM + d tan θMT

)

MT
(5.20)

The main problem with the Matlab approach described in (5.17) is that the matrix A solely consists
of azimuth angles. Consequently, when two azimuth angles are sufficiently close, denoted as ϕ1 ≈ ϕ2,
the least squares solution becomes invalid. So the locators need to be carefully placed.

5.2.2. Proposed 3-D Least Square Positioning
One limitation of the Matlab method is its decomposition of the estimation of three coordinates into two
separate steps, namely the estimation of the x-y coordinates and the estimation of the z coordinate.
A novel approach is presented in this project, wherein a 3-D least squares method is introduced to
simultaneously address the three unknown variables.

This method is still based on the geometry relationship between the (x, y, z) and the i-th locator
(xi, yi, zi): ri cos θi cosϕi = x− xi

ri cos θi sinϕi = y − yi
ri sin θi = z − zi

(5.21)

where ri =
√
(x− xi)2 + (y − yi)2 + (z − zi)2 is the distance between the transmitter and the i-th loca-
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tor.Extracting the distance r = [r1, r2, · · · , rMT
]T as unknown, we have:

∆r =



x1 − x2

y1 − y2
z1 − z2
x2 − x3

y2 − y3
z2 − z3

...
xMT−1 − xMT

yMT−1 − yMT

zMT−1 − zMT


(5.22)

where∆ is a block diagonal matrix with∆i,∈ (1, 2, · · · ,M −1) but two adjacent diagonal matrices with
the first column of the later matrix lying under the same column of the previous one’s last column. And
for each ∆i, it is explicitly written as:

∆i =

 cos θi cosϕi − cos θi+1 cosϕi+1

− cos θi sinϕi cos θi+1 sinϕi+1

− sin θi sin θi+1


If the (x, y, z) is added into the unknown vector, then the relation estimated angles (ϕi, θi) and the

unknown distance and coordinates (ri, xi, yi, zi) are as (5.21) whose matrix form is:

cos θi cosϕi −1 0 0
cos θi sinϕi 0 −1 0

sin θi 0 0 −1



ri
x
y
z

 =

−xi

−yi
−zi

 (5.23)

To simplify the notation, the left part of the first matrix in (5.23) is substituted by

Mi =
[
− cos θi cosϕi cos θi sinϕi cos θi

]T
and the coordinate-related vector for the i-th locator

[
−xi −yi −zi

]T is represented as bi.
Expanding (5.23) for all m locators and stacking them together, the overall matrix form becomes:

A n=B (5.24)

wherematrixA =
[
M −1m×1 ⊗ I3

]
is amatrix consists of the block-diagonal matrixM = blkdig()M1,M2, · · · ,Mm)

and the Kronecker product matrix −1m×1 ⊗ I3 where 1m×1 is an all one vector of size m × 1 and
I3 represents an identity matrix of size 3 × 3, the unknown distance and coordinates vector n =[
r1 r2 · · · rm x y z

]T , right matrix B =
[
b1 b2 · · · bm

]T .
Solve (5.24) with the least square method, then the vector n becomes

n = (ATA)−1ATB (5.25)

Since only the position elements are the final results we need, the estimated positioning vector is
[x̂, ŷ, ẑ]T is selected as the last 3 rows of the estimated vector n, denoted as n3

n3 =

0 1 0 0

0
. . . 0 1 0

0 0 0 1

n (5.26)

5.2.3. Total Least Square 3-D Positioning
Consider the equation presented in (5.24). The least square method only takes into account the error
in B, i.e.

Ax = (B+ EB) (5.27)
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where EB is the unknown error in B, i.e. the error in assumed pre-known locations of locators. Com-
pared to the least square method, the TLS method also considers the error in matrix A, which was first
proposed by [51]. In other words, the model changes into:

(A+ EA)x = (B+ EB) (5.28)

where EA is the error in matrix A.
When considering BLE AoA positioning, it is more appropriate to utilize the TLS approach due to

the fact that the primary source of triangulation error is from the A matrix, which encompasses the
estimated angles (ϕ, θ). The TLS problem is expressed as:

min ∥[EA,EB ]∥2F
suchthat (A+ EA)n = B+ EB

(5.29)

where ∥·∥F stands for the Frobenius norm.
In order to ensure a unique solution for the minimization problem in (5.29), it is necessary to find

the smallest matrix [EA,EB ] that changes the rank of matrix [A,B] from N+1 to N [52]. Since vector B
does not lie in the subspace spanned by matrix A, all N+1 columns of the augmented matrix are linearly
independent. The conventional way of addressing this issue is to eliminate the smallest singular value,
which contains the least significant information.

The SVD of the combined matrix [A,B] is shown as:

[
A B

]
=
[
Up uq

] [ Σp

σq

] [
Vpp vpq
vqp vqq

]⊤
(5.30)

where Up and uq are respectively the first n and last single column of the left-eigenvector matrix U, Σp

and σq respectively first n and last eigenvalues with a descending order, Vpp is the n× n matrix within
right-eigenvector matrix V, vpq and vqp are respectively n × 1 and 1 × n vector, vqq is a scalar in the
partitioning.

As previously stated, after the approximation, matrix [A+ EA,B+ EB ] discards the smallest eigen-
value σq, so its SVD result is shown as:

[
A+ EA B+ EB

]
=
[
Up uq

] [ Σp

0

] [
Vpp vpq
vqp vqq

]⊤
(5.31)

Comparing (5.30) and (5.31) and considering that the error part [EA,EB ] simply represents the
difference between [A+ EA,B+ EB ] and [A,B], the equality can be restated as

[A+ EA,B+ EB ] = [A,B] + [EA,EB ] (5.32)

= [A,B] +
[
Up uq

] [ 0n×n

σq

] [
Vpp vpq
vqp vqq

]⊤
(5.33)

= [A,B] +
[
0m×n σq

] [ Vpp vpq
vqp vqq

]⊤
(5.34)

= [A,B]− uqσq

[
vpq
vqq

]⊤
(5.35)

= [A, B]− [A,B]
[
vpq
vqq

] [
vpq

vqq

]⊤
(5.36)

Using the orthonormal property of matrix V, i.e. VT = V−1, (5.36) can further delivered as:

[A+ EA,B+ EB ]

[
vpq
vqq

]
= [A,B]

[
vpq
vqq

]
− [A,B]

[
vpq
vqq

] [
vpq
vqq

]⊤ [ vpq
vqq

]
(5.37)

[A+ EA,B+ EB ]

[
vpq
vqq

]
= [A,B]

[
vpq
vqq

]
− [A,B]

[
vpq
vqq

]
(5.38)

[A+ EA,B+ EB ]

[
vpq
vqq

]
= 0m×1 (5.39)

(5.40)
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It is clear that the parameter vector n or the solution of the TLS problem corresponds to

n∗
TLS = −vpqv−1

qq (5.41)

And, because the TLS problem is tackled differently from the traditional LS problem, its performance
typically cannot compete with the LS method.



6
Simulation

This chapter will present the outcomes of several AoA estimate and positioning algorithms, along with
their performance, through simulations conducted on Matlab. Both the BLE signal and multipath profile
are generated using the Matlab. The findings will be subjected to comparative analysis and subsequent
discussion.

6.1. BLE Signal Generation
The Matlab simulation is built upon the official direction finding for tracking node position example in
the Bluetooth Toolbox. The process of generating IQ samples is depicted in Fig.6.1 [53].

Figure 6.1: Illustration of MATLAB BLE Simulation Process.

The initial stage involves the generation of the BLE data bundle. The function helperBLEGenerateDFPDU
is called with specified parameters, which include the packet type (either connection or connectionless
CTE), the length of the CTE packet, the type of CTE packet, the length of the payload, and the starting
CRC data. The packet comprises a Protocol Data Unit (PDU) that encompasses the information within
the Cyclic Redundancy Check (CRC) section. The CRC is subsequently attached to the PDU.

Subsequently, the bleWaveformGenerator function will produce the BLE waveform by utilizing the
preceding packet data. CTE bits consisting of all 1s are produced and appended following the preamble
and the access address. The GMSK modulation technique is employed to modulate the entire frame
of the physical layer.

49
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Table 6.1: Parameters Used in Matlab Simulation

Parameter Value Meaning
M 4 Number of antennas along Z axis
N 4 Number of antennas along Y axis
λ 0.4 Antenna spacing

dfPacketType ’Connectless CTE’ Type of CTE Packets
switchingPattern [1, 2, · · · , 16] The Robinhood switch pattern
slotDuration 1 Slot duration in microseconds
cteLength 160 Length of CTE in microseconds
crcInit ’555551’ CRC initialization

accessAddress ’01234567’ Access address
payloadLength 1 Payload length in bits

Subsequently, the BLE waveform is directed using specified azimuth and elevation angles and tog-
gled based on the array geometry within the function helperBLESteerSwitchAntenna. The construction
of the steering vector a(ϕ, θ), which corresponds to the angle pair (ϕ, θ) and is associated with a URA
located on the x-z panel with an antenna spacing of λ, is as follows:

a(ϕ, θ) = exp(−j2π ⊙ P⊙

cos θ cosϕcos θ sinϕ
sin θ

) (6.1)

where⊙ stands for Hadamard product, and P ∈ R3×MN is the antenna position matrix with M antennas
on the z-direction and N antennas on the y-direction:

P =

0 0 0 0 0 0 0
0 0 · · · 0 λ λ · · · (N − 1)λ · · · (N − 1)λ
0 λ 2λ (M − 1)λ 0 λ 0 (M − 1)λ

 (6.2)

As demonstrated in (6.2), the position matrix P can be modified with different antenna geometries. For
multipath signals, the angles are computed with the ray-tracing technique. In the case of completely
coherent signals, all signals originate from the same CTE packet, just with different attenuations and
AoA. Thus, the multipath signals are generated by rotating the LOS angle.

Once the signal is rotated, the data is expanded from a single column originating from a reference
antenna to M × N columns. The next step is to select data from various antennas resulting in the
compression of the matrix into a singular column once more. As previously discussed in Chapter 2,
the CTE samples are composed of reference samples obtained from the reference antenna, as well
as other samples from antennas following the programmed switch pattern. It is noteworthy that switch
slots do not include any useful data. So the samples ncluded within the switch slots are filled with zeros
for further IQ sampling.

Then the steered and switched data is transmitted via an AWGN channel with given SNR values.
The final step is operating the IQ sampling at an ideal receiver with the function bleIdealReceiver.

Since the waveform is corrupted by Gaussian noise, first the receiver needs to retrieve the CTE infor-
mation from the noisy bits. The receiver would do IQ sampling based on the demodulated information.
This can be achieved by retrieving the relevant data from the computed index. The IQ samples of
different multipath signals are combined with the LOS signals by multiplying their amplitudes with their
respective relative attenuations and adding them together.

All the parameters used in BLE signal generation are listed in Table.6.1.

6.1.1. Ray Tracing Technique
For multipath generation, it is crucial to accurately model the signal propagation from the transmitter
and the receiver, particularly focusing on the path loss and the angle of arrival. In this project, we em-
ployed the ray-tracing technique. Matlab offers a selection of models, including atmospheric, empirical,
terrain, and ray-tracing. After comparing them, the ray-tracing method is applied due to its ability to
compute several propagation paths, including free space, reflection, and diffraction paths. Additionally,
the maximum number of reflections can be adjusted in order to simplify the case.
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In our simulation, the indoor environment is modeled as an empty room. The dimensions of the
room are 10 meters in length, 6 meters in width, and 4 meters in height. Fig.6.2 shows the 3-D stl
file of such a room, where the locator is positioned at (-1.2,-0.3,1.2) and the transmitter is located at
(0,0,0.7). Matlab also provides more complex room models such as a conference room with a table,
chairs, and laptops. Nevertheless, the presence of shelters in these models may result in the absence
of LOS signal, hence causing the failure of the algorithm.

Figure 6.2: Illustration of Ray Tracing Model.

6.2. Frequency Offset Estimation Simulation
However, given the target of this project, the estimation of angles and positions holds greater impor-
tance. Therefore, the impact of frequency offset on angle estimation is the primary focus of our concern.
Fig.6.3 demonstrates the impact of CFO techniques on the accuracy of AoA estimation. The simulation
incorporates the same MUSIC estimate technique, without taking into account the effects of multipath
propagation or packet aggregation.
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(a) RMSE of Azimuth Angle

(b) RMSE of Elevation Angle

Figure 6.3: RMSE of Angles with Different CFO Estimation Methods Applied

The performance is evaluated with root-mean-square errors (RMSE) of angles. It is computed as

RMSE =

√∑N
i=1(xi − x̂i)2

N
(6.3)

where n is the total number of iterations for each SNR, x̂i is the estimated angle, and xi is the angle
ground truth that is known in the simulations. Later when computing the RMSE for positions, x̂i and xi

would represent the estimated and true positions respectively.
It is evident that the LS method exhibits a lower RMSE in comparison to the MLE method. As a

result, the LS approach is selected as the ultimate algorithm for CFO estimate in further simulations.
Nevertheless, the error level for both angles is rather low. The RMSE for the azimuth angle is found to
be less than 5◦ when the SNR exceeds 12dB. The RMSE for the elevation angle consistently remains
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Table 6.2: Parameters of Angle Estimation Simulation

Parameter Value Unit
Position of Locator (-1.2,-0.3,1.2) Meter

Position of Transmitter (0,0,0.7) Meter
Number of Multipath 7
Channel Frequency 2.44 GHz
Number of Iterations 200 for each SNR

below 1◦, and even below 0.5◦ specifically for the LS technique. The two fundamental CFO approaches
provide satisfactory performance when the SNR exceeds 10dB. Consequently, in order to maintain
the efficacy of the whole positioning algorithm, we did not explore more into complex CFO estimate
techniques.

6.3. Angle Estimation Simulation
Two types of simulations are performed for the angle estimation. Given that the accuracy of AoA
estimation is dependant upon the location of the transmitter as demonstrated in prior one-dimensional
research, the first type of simulation fix the position for both the transmitter and the locator. In the other
type of simulation, the transmitter will be positioned at various locations inside a two-dimensional plane,
while keeping the single locator fixed. This will allow us to examine the influence of varied positions on
angle accuracy.

To start with, only one locator is involved, and the position of the transmitter is fixed. The position
configuration is shown in Tab.6.2. The graphic representation of the locator and the transmitter, as well
as the LOS signal parameters obtained by the ray-tracing technique, is shown in Fig.6.2. The rays of
both LOS and multipath are depicted, and their path loss is visualized with a color bar.

For each SNR value, the estimation process is repeated for N = 200 times. Even though more loops
may result in a more smooth curve and help prevent extreme cases, we consider how fast the result
should be computed in a real application, and thus 200 is chosen.

The RMSE simulation result is shown in Fig.6.4. It is evident that larger SNRs tend to yield more
precise outcomes. When the SNR exceeds 20dB, the Toeplitz method exhibits the smallest error in
azimuth angle, with an accuracy of less than 2◦. The remaining three methods exhibit a somewhat
higher error rate of less than 3◦. For the elevation angle, Toeplitz method performed slightly worse
than others, but still has error of less than 3◦. The FBSS method and Unitary ESPRIT methods work
better than Conventional MUSIC. In general, it can be shown from the box plots in Fig.6.5 and Fig.6.6
that as the SNR increases, the estimation results become more tightly clustered, indicating a decrease
in variance. However, in the case of conventional music that lacks source decorrelation, there is not
a significant variation in the variance of outcomes. The error range of elevation angle is smaller than
the range of azimuth errors. With lower SNR, the azimuth error grows dramatically. In a higher SNR
scenario (higher than 20dB), the VA+FBSS+MUSIC method has near zero variance.
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(a) RMSE of Azimuth Angle

(b) RMSE of Elevation Angle

Figure 6.4: RMSE of All Methods with 4× 4 URA
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(a) CMUSIC Azimuth (b) VA+FBSS Azimuth

(c) Unitary ESPRIT Azimuth (d) Toeplitz Reconstruction Azimuth

Figure 6.5: Box Plot for Azimuth Estimation
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(a) CMUSIC Elevation (b) VA+FBSS Elevation

(c) Unitary ESPRIT Elevation (d) Toeplitz Reconstruction Elevationh

Figure 6.6: Box Plot for Elevation Estimation

6.3.1. The Effect of Package Aggregation
The concept of Package Aggregation involves using additional data from other packets to enhance
the accuracy of estimation. In practical implementation, it is common to transmit a packet at a regular
interval of 20 ms. This time duration is rather brief, allowing us to make the assumption that the position
of the target remains constant during this period. According to Yao, the method can incorporate many
packets instead of relying just on a single packet [7].

In the simulation, a comparison is made between the errors of both angles with and without packet
aggregation using the Toeplitz Reconstruction method. The outcome is depicted in Figure 6.7. As
demonstrated, the aggregation of additional data leads to a reduction in the variance of the estimation
error. The plot shows the cumulative distribution functions (CDFs) of both angles.
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(a) CDF of Azimuth Angle Estimation (b) CDF of Elevation Angle Estimation

Figure 6.7: CDF with Different Number of Packets Combined with 4× 4 URA

Conduct the simulation with a larger URA of size 8× 8, the CDF of both angle estimation errors are
shown in Fig.6.8. With more data combined, the more accurate the result would be. Comparing to the
results obtained with smaller URA, it becomes evident that the data processing method shows a more
obvious improvement. This is obvious from the distinct separation observed in the CDF curves when
using only one packet as opposed to mixing two packets.

(a) CDF of Azimuth Angle Estimation (b) CDF of Elevation Angle Estimation

Figure 6.8: CDF with Different Number of Packets Combined with 8× 8 URA

As the RMSE improvement from 4 packets to 5 packets is already small(seen in Fig.6.10), and we
perfer not assuming the location unchanged for too long, in later simulation, we will combine 5 packets
for one iteration of angle estimation.
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(a) RMSE of Azimuth Angle Estimation (b) Error of Elevation Angle Estimation

Figure 6.9: RMSE with Different Number of Packets Combined with 4× 4 URA

(a) RMSE of Azimuth Angle Estimation (b) Error of Elevation Angle Estimation

Figure 6.10: RMSE with Different Number of Packets Combined with 8× 8 URA

6.3.2. The Effect of Source Number Estimation
In [8], the effect of source number estimation is proven to be trivial for 1-D BLE AoA estimation. How-
ever, the impact of this phenomenon on 2-D baseline estimation of AoA using the ESPRIT algorithm
has not been addressed.Given that both MUSIC and unitary ESPRIT are subspace-based methods,
the way in which the noise subspace or source subspace is generated is directly influenced by the
number of sources. This section, the effect of source number estimation will be discussed.

The parameters in the simulation are mostly unchanged after the angle estimation simulation. The
signal be transmitted will loop over different number of multipath, the total number of signals changes
from 1 (only LOS signal) to 7 (counting all the reflection from 4 walls, floor, and the ceiling). For each
signal combination, different numbers of source (from 1 to 10) will be applied in the real estimation
process. The accuracy is still presented in the form of RMSE.

In the subsequent simulation, we only examine the impacts of the proposed VA+FBSS+MUSIC al-
gorithm in comparison to the Toeplitz Reconstruction method. The azimuth angle results are presented
in Figure 6.11.



6.3. Angle Estimation Simulation 59

(a) 2 Sources Azimuth (b) 3 Sources Azimuth

(c) 4 Sources Azimuth (d) 5 Sources Azimuth

(e) 6 Sources Azimuth (f) 7 Sources Azimuth

Figure 6.11: Results of Azimuth Angle Estimation of Proposed Methods for Different Source Number Estimation

And for the elevation angle is shown in Fig.6.12:
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(a) 2 Sources Elevation (b) 3 Sources Elevation

(c) 4 Sources Elevation (d) 5 Sources Elevation

(e) 6 Sources Elevation (f) 7 Sources Elevation

Figure 6.12: Results of Elevation Angle Estimation of Proposed Methods for Different Source Number Estimation

The errors of the two proposed methods are provided in Fig.6.11 and Fig.6.12, respectively. In com-
parison to the Toeplitz approach, the VA+FBSS+MUSIC algorithm demonstrates a reduced sensitivity
to variations in the predicted number of sources.

Ensuring the precision of the source number does not necessarily ensure an improved estimation
of the angle. This aligns with the findings presented in the simulations conducted by Cloudt et al. [8].
Such a phenomenon may result from the fact that there is only one real source and the other multipath
are attenuated, delayed, and phase-shifted versions of it. So all the multipath sources are correlated
with the LOS signal. Moreover, it is common for the power level of the reflected routes to be significantly
different from that of the LOS signal. The power attenuation often remains below 0.5 of the LOS signal,
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even in the case of the most intense reflection. Due to the lack of influence from the number of sources
and the inherent inaccuracy of sophisticated source number estimation techniques, we have chosen
to set the estimated number of sources as a fixed value of 1 in our further simulations. This decision
has yielded improved results for both of the proposed methods.

6.3.3. The Effect of Subarray Size for FBSS
As previously introduced, FBSS decoherents the multipath signals by utilizing the Vandermonde struc-
ture with averaged subarray covariance matrix. The number of multipath signals that can be decorre-
lated by this method is constrained by the size of subarray. Hence, we want to investgate how the size
of subarray can affect the angle estimation.

Both a 4 × 4 and a 8 × 8 URA were utilized in this study. The RMSE in relation to the subarray
size is illustrated in Fig.6.13. In this plot, the x-axis represents the size of the subarray in one direction,
denoted as Ms = Ns = xvalue, rather than the total number of antennas within a subarray.

(a) RMSE of Differnt Subarray Size with 4 × 4 URA. (b) RMSE of Differnt Subarray Size with 8 × 8 URA.

Figure 6.13: Illustration of Subarray Size Effect

In general, it can be observed that as the size of the subarray increases, there is a corresponding
decrease in the RMSE. Nevertheless, the effectiveness of the FBSS method is not solely determined
by the subarray size, which refers to the total number of antennas within a given subarray. It is also
associated with the overall number of subarrays (the overall number of smoothing). In a given URA, it
is observed that as the size of the subarray increases, the degree of smoothing that may be applied
in both directions decreases. This is the reason why the size of subarrays, specifically those with
dimensions of 4× 4 and 6× 6, shows little variation. In subsequent simulations, the subarray size was
held constant at 4× 4.

6.3.4. The Effect of PQ Values for Toeplitz Reconstruction
As previously said, in order to fully restore the rank of the covariance matrix, it is essential to carefully
determine the values for P and Q. The impact of PQ values on both angles in various sizes of URA is
seen in Fig.6.14. In the provided figure, the x-axis is labeled as ’PQ Value’ and represents the value of
a single parameter. It is assumed that the values of P and Q are equal.
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(a) RMSE of Differnt PQ Values with 4 × 4 URA. (b) RMSE of Differnt PQ Values with 8 × 8 URA.

Figure 6.14: Illustration of PQ Value Effect

The limited range of P/Q values in Toeplitz reconstruction is due to the structure of a 4 × 4 URA.
In general, the variance range associated with Toeplitz methods is rather small. The RMSE difference
between the most negative case in a 4 × 4 URA is less than 1◦, whereas for a 8 × 8 URA, it is less
than 3◦. The optimal performance is observed when both the bigger URA and smaller URA have equal
values of P and Q, namely P = Q = 3. Therefore, in subsequent simulations, the values of P and Q are
set to a constant value of 3.

6.3.5. The Cone of Interest
In prior studies concerning one-dimensional BLE localization using URA, it has been observed that
not all angles exhibit equivalent accuracy, even when subjected to same conditions such as SNR,
distance, and estimate method. The accuracy of the direction of arrival decreases when the angle of
arrival approaches either end of the antenna array, specifically when the angle of arrival is closer to 0◦
or 180◦. In the study conducted by Cominelli et al. , it was observed that the estimation results exhibit
a high degree of variation within the range of 0◦ < θ <10◦. Consequently, this range was deemed
unreliable and excluded from further analysis [54]. In a separate study by Ye et al., the focus was
narrowed down to a narrower range of 20◦ < θ <160◦ for the cone of interest [6]. In the context of a
more intricate interior setting, the cone of interest can be constrained to an angular range between 50◦
and 130◦.

The concept of a cone of interest in 3-D space has challenges in defining it within the context of
URA. To determine the optimal range of locations with optimum accuracy, a subsequent simulation is
performed, whereby a plane is scanned instead of a single point. The illustration is depicted in Fig.6.15.
The estimation process is iterated 200 times for each SNR value. The plane in which the transmitter
is situated is the y-z plane, which is colored blue. All numerical values depicted in the diagram are
expressed in the unit of meters. The locator remains fixed at position (-1.2, 0, 2) while the transmitter
moves on the plane, each time moving its location by 0.5 meters in either the y or z directions. In this
particular configuration, the azimuth range spans from -75.964◦ to +75.964◦, while the elevation range
extends from -59.036◦ to +59.036◦.
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Figure 6.15: Illustration of Plane Scanning Simulation.

In general, the estimation of azimuth angles is most accurate when they are around 0◦. As the
angles deviate farther in either the negative or positive directions, the magnitude of the estimation error
increases. The variations in elevation angles across all methods show less magnitudes as compared
to their corresponding azimuth errors. Likewise, when the distance between the transmitter and the
locator increases, the inaccuracies in the estimation of elevation angles become greater. The heat map
shows certain symmetrical patterns wherein origin-symmetric positions experience comparable levels
of estimating errors.
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(a) Azimuth CMUSIC (b) Elevation CMUSIC

(c) Azimuth VA+FBSS+MUSIC (d) Elevation VA+FBSS+MUSIC

(e) Azimuth ESPRIT (f) Elevation ESPRIT

(g) Azimuth Toeplitz Reconstruction (h) Elevation Toeplitz Reconstruction

Figure 6.16: Results of Angle Estimations of Proposed Methods for Different Node Position
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Fig.6.17a and 6.17b display the CDF of the estimation for azimuth and elevation angles, respec-
tively. In regard to azimuth angles, it is seen that over 90% of the outcomes obtained from the three
proposed methods display an error level below 10◦, but the corresponding percentage for the CMU-
SIC method is approximately 50%. In terms of elevation angles, it has been found that over 90% of
the Toeplitz Reconstruction results show an error level below 2◦. In contrast, the unitary ESPRIT and
FBSS methods yield an accuracy rate of 70% in achieving an error level below the aforementioned
level. The percentage for CMUSIC is significantly lower than 40%. These two graphs provide further
evidence of significant improvements in estimating both angles compared to the conventional MUSIC
method.

(a) CDF of Azimuth Angles Errors (b) CDF of Elevation Angles Errors.

Figure 6.17: CDF of Proposed Methods with 4× 4 URA

Despite the inherent limitation of the array size being restricted to 4×4, it is still feasible to conduct a
simulation on a bigger URA. Yet, the upper limit of the array size is determined by the maximum length
of the CTE packet. The maximum length of the URA is 160µs, with each sample slot and switch slot
having a duration of 1µs. The URA size is limited to a maximum of 8×8. Therefore, the aforementioned
simulation is repeated with the larger URA. Fig.6.18 illustrates the CDF of the angles for all methods.

(a) CDF of Azimuth Angles Errors (b) CDF of Elevation Angles Errors.

Figure 6.18: CDF of Proposed Methods with 8× 8 URA

The accuracy in both angles improved with a bigger antenna array, which is consistent with the
theoretical expectations, when compared to the findings obtained from a 4 × 4 URA. The majority of
Toeplitz results, around 90%, have azimuth estimation errors below 2◦. In contrast, other methods
yield results with errors below 6◦ in approximately 80% of cases, indicating an improvement of approx-
imately 4◦. In terms of the elevation angle, it can be observed that over 80% of the obtained outcomes
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show errors that are below 1.5◦, while in a smaller array 80% of the errors are below 5◦. This obser-
vation demonstrates that as the size of the array increases, there is a general decrease in the level of
inaccuracy.

6.4. Position Estimation Simulation
This part will focus on the simulation of positioning. The simulation continues to be done using the
same empty room model.

First, assume there are in total 4 locators on the center of each wall and their positions are known,
seen in Fig.6.19. The objective is to create a maximal intersection space for the four cones of interest
of all locators based on this assumption.

For locators numbered 1 and 3 in Fig.6.19, the range of azimuth angles and elevation angles are
naturally more limited than the other two locators. To simplify the case, all four locators are limited
to the minimum scanning range of the former two. In other words, the azimuth angles are limited to
the range of ϕ ∈ (- 30.964◦,+30.964◦) and θ ∈ (- 21.801◦,+ 21.801◦). All these angle ranges are
computed in their respective local coordinate systems, which are not always aligned with the global
one. The intersection of these cones of interest and their projection onto the x-y and x-z planes are
illustrated in Fig.6.20.

Figure 6.19: Illustration of 4 Locators in the Empty Room.
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(a) Projection on X-Y Plane

(b) Projection on Y-Z Plane

Figure 6.20: Projections of Cones of Interest on Different Planes

Results are shown in Fig.6.21 and Fig.6.22 in the forms of box plot and CDF respectively. The
box figure illustrates that the Toeplitz reconstruction algorithm shows a comparatively smaller median
error (represented by the red line) of 0.11 m, whilst the FBSS methods demonstrate higher errors,
approximately 0.17 m. When executing the simulation on a larger 8 × 8 array, it is observed that the
FBSS approaches show instability with increased variation. The errors observed in the results of this
research exceed 0.5 m. The median results for both the TR method and the FBSS method exhibit a
drop, specifically 0.09 m for the TR method and 0.12 m for the FBSS method. This implies that by
employing a larger antenna array, as previously demonstrated to enhance angle estimation accuracy,
there will also be a corresponding improvement in position estimation accuracy.

The analysis of two CDF graphs reveals that, in the case of a 4×4 array, the combination of angle
estimate methods with both LS and TLS locationing algorithms results in errors that are below 0.2 m.
Generally, the TR algorithm shows more accuracy in the estimation of final location. In the case of an
8×8 array, the performance of both methods is similar. The box plot demonstrates that the TR method
exhibits lower variation compared to the FBSS approach.
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(a) Positioning Error with 4 by 4 Array (b) Positioning Error with 8 by 8 Array

Figure 6.21: Box Plot of Position Errors.

(a) CDF of Positioning Error with 4 by 4 Array (b) CDF of Positioning Error with 8 by 8 Array

Figure 6.22: CDF of Positioning Error.

6.5. Conclusion
In this section, a series of simulations were performed to evaluate several aspects including the CFO,
the number of packets aggregated, the estimated number of sources, the parameters in the algorithm,
the accuracy of the angle estimation methods, and the accuracy of the positioning methods. The
process of Matlab BLE signal generation and the ray-tracing technique were introduced. The results
shows that, with approprate parameters, the TR algorithm demonstrates the best angle estimation with
errors of near 1◦ for both azimuth and elevation angles. After combining the TR angle estimation with
LS/TLS positioning estimation, it is shown that over 90% of the positoning errors are less than 0.14 m.
Both the angle and position estimation would be enhanced by employing a larger URA.
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Experiment

This chapter mainly presents an overview of the experimental setup, the obtained results, and the
subsequent analysis.

7.1. Enviornment Setup
The hardware support for both the transmitter and the locators utilized in this project is provided by
Nordic Semiconductor company. The transmitter/tag employs a nRF52833 development kit (DK), as
depicted in Figure 7.2. The nRF52833DK is a single-board kit designed for various communication
applications, including BLE), utilizing the nRF52833 multi-protocol System-on-Chip (SoC) [55]. In this
project, the typical method of USB powering through an external power station is employed, although
there are other alternative ways of powering. The chip itself is shown in Fig.7.1. The nRF52833 is a
multi-purpose SoC that supports many protocols and features a radio with Bluetooth Direction Finding
capability. It has been certified for operation within an extensive temperature range spanning from
-40◦C to +105◦C. The nRF52833 chip, which is the latest addition to the acclaimed nRF52 Series,
features a 64 MHz Arm Cortex-M4 with FPU. It offers 512 KB flash and 128 KB RAM memory, making
it suitable for applications that require enhanced performance and functionality [56].

Figure 7.1: nRF52833 Multiprotocol SoC.

69
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(a) Illustration of an nRF52833 DK, taken from[55]

(b) Detailed Illustration of an nRF52833 DK

Figure 7.2: Illustration of the Tag

The 12 antenna rim URA provided by Nordic is utilized as the receivers/locators, as depicted in
Fig.2.6. When the CTE signal impinges the antenna, the I/Q sampling is done by the array. The
information from each locator is subsequently transmitted to the data center. Several data reports
from various locators are then delivered from the data center to the computer via USB connection.
The estimating algorithm is executed by the computer. The work flow is depicted in Fig.7.3 and an
illustration of the enviornment setup is in Fig.7.4.

Figure 7.3: The Experiment Work Flow Chart.
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Name Coordinates/m
Locators

Locator 1 (0,1.123,0.383)
Locator 2 (-1.522,0,0.497)
Locator 3 (1.340,0,0.500)

Transmitter
Experiment 1 (0,0,0)
Experiment 2 (0.289,0.290,0)
Experiment 3 (0,0,0.795)

Table 7.1: Coordinates of Locators and Transmitter in the Experiment

Figure 7.4: Experiment Setup.

During the experiment, since the position of the tag affects the estimation accuracy, three distinct
positions for the tag were examined. The coordinates of the transmitter and locators are listed in Tab.7.1
below.

7.2. The Validity of the Data
The stability of the connections between the transmitter and each locator may vary during the duration
of the experiment. Fig.7.5 shows the status of connection for packets in all three locators along the time
(the events). The y-axis of Fig.7.5 is the number of valid reports sending to the data center, indicating
the stability of the connection. Only packets with 3 reports were considered totally stable and sent to
later process. The x-axis is the event counter, denoting discrete time instants of the transmissions. The
figure illustrates that the efficacy of a connection is significantly influenced by its status.
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3

Figure 7.5: Packets Status in Three Experiments

The correspondence of Connection 0-2 and specific locators is not always fixed but related to the
starting order when turning on each locator. The correspondence between the order of locators and
the order of connections in each experiment are listed in Tab.7.2.
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Experiment Number Connection Number Locator Number Number of Valid Packets

Experiment 1
Connection 0 Locator 2 302
Connection 1 Locator 1 302
Connection 2 Locator 3 302

Experiment 2
Connection 0 Locator 1 175
Connection 1 Locator 2 175
Connection 2 Locator 3 175

Experiment 3
Connection 0 Locator 1 250
Connection 1 Locator 2 250
Connection 2 Locator 3 250

Table 7.2: Experiemnt Details

7.3. Angle of Arrival Experiment
Once the data was obtained from the data center, it was imported into theMatlab code and subsequently
analyzed. The practical measurements in each experiment for each locator were partitioned into distinct
Monte-Carlo experiments, with 10 packets in each experiment. In experiments 1, 2, and 3, there were
30, 17, and 25 estimations, respectively.

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3

Figure 7.6: RMSE of Both Angles in Three Experiments

The results within a single experiment with different numbers of packets combined are shown in
Fig.7.7. With more packets of data combined in one single estimation, the accuracy in both azimuth
angle and elevation angle is improved. By increasing the number of packets combined from 3 to
20, the RMSE of azimuth angle decreased from 9.75828◦ to 3.43497◦, improved 64.80%; the RMSE
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of elevation angle decreased from 33.4033◦ to 31.559◦, improved 5.52%. Increasing the number of
packets combined does not improve the accuracy of the CM method as much as the TR method.

(a) 3 Packets (b) 5 Packets

(c) 10 Packets (d) 20 Packets

Figure 7.7: RMSE of Both Angles in Experiment 1 with Different Number of Packets Combined

The results of angle estimation error for all three experiment are shown in Fig.7.6. As we can see,
the TRmethods outperform the CMmethods in both azimuth and elevationmethods. For azimuth angle,
TR method enhanced accuracy by 79.72%, 22.29%, and 81.24% than the conventional method. For
the elevation angle, the accuracy improved by 19.19%, 27.14%, and 22.38%. Comparing to previous
research, the azimuth angle performance is comparable of around 5◦ using the same hardware but only
utilize the ULA subarray[9], and is improved with the azimuth estimation of indoor scenario using simple
phase difference method other than subspace methods [54]. The fail in elevation angle may result from
stronger multipath profile with the reflections from the ground and paper boxes on the elevation plane.

7.4. Localization Experiment
Prior to inputting the calculated angles into the positioning algorithm, it is necessary to perform a coordi-
nate transformation procedure in the practical experiment. The calculated angles for each location are
shown in the local coordinates, as depicted in Fig.2.7. In order to determine the position, it is necessary
to convert each set of angles into a global coordinate system. The aforementioned transformation is
just applied to the azimuth angle, while the definition of the elevation angle remains unaltered when
the coordinate axis is rotated.

An illustration of azimuth transformation is shown in Fig.7.8 with an aerial view. In the figure, the
azimuth angle from the transmitter to locator 2 is changed from ϕ2 to ϕ′

2 which satisfy ϕ′
2 = ϕ2 − 90◦ or

ϕ′
2 = ϕ2 + 270◦ if we set the range of global angle values as [0◦, 360◦).
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Figure 7.8: Illustration of Coordinates in Experiment 2.

The experiment results of three experiments are shown in Fig.7.9. TR method shows better perfor-
mance with lower average positioning error and less variance of results. In experiment 1, more than
90% of the TR+LS results are 0.5 m away from the true position, while 90% of the CM results have
errors more than 0.8 m. In experiment 2, nearly 90% of the TR+LS results are 0.60 m away from the
true location, but for CM method 90% of the results are 1.00 m away. In experiment 3, nearly 95%
of the results with TR+LS method is 0.50 m away from the true spot but 95% of the results with CM
method are 1.00 m away.

The position estimation results are comparable with previous BLE position research. With the two-
point locationing method and only utilizing ULA, the distance errors are guaranteed to not exceed 2 m
[9]. By combining 30 packets per channel for ULA of 2 antennas, 95% of the positioning estimation
results are below 0.85 m in [54]. The possibilities of a positioning error lower than 1 m were improved
from 50% in [54] to 89%, 80%, and 80% respectively with 3 different channels [6]. While with the TR+LS
method, the possibility of positioning error lower than 1 m is 100% in all experiments.
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(a) Distance Errors in Experiment 1 (b) CDF of Distance Errors in Experiment 1

(c) Distance Errors in Experiment 2 (d) CDF of Distance Errors in Experiment 2

(e) Distance Errors in Experiment 3 (f) CDF of Distance Errors in Experiment 3

Figure 7.9: Positioning Errors in Three Experiments with 10 Packets Combined.

7.5. Conclusion
In this section, the process and results of the experiment were introduced and explained. The distin-
guishing aspects of this project in comparison to prior research are:

• Combining BLE direction-finding feature with URA for 2-D AoA estimation instead of 1-D;
• Estimate the 3-D position with estimated angles, while previous researches either not involved
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positioning or only estimate the 2-D positions;
• Consider the multipath mitigation in 2-D AoA estimation with a limited number of antennas.

The obtained results, while needing more improvement for practical implementation, show improve-
ments compared to prior studies on BLE AoA and position estimation, particularly in regard to elevation
angle estimation. Furthermore, the combination of data from various packets has been shown to in-
crease the precision of angle estimation. Increasing the amount of data collected would enhance the
precision of angle estimations, resulting in an enhanced final estimation of the location.



8
Conclusion

8.1. Conclusions
This thesis focuses on the Bluetooth direction-finding feature CTE, which was introduced in version
5.1. CTE allows for the estimation of both AoA and AoD. The objective of this project is to develop an
algorithm that leverages the CTE feature with a multi-antenna array to accurately determine the precise
location of the beacon.

To begin, a 2-D antenna array data model was created with a far-field assumption. The model in-
corporates the main challenges, namely frequency offset and multipath situation. The CFO is then
introduced by exploring how it affects angle estimation. It is also integrated with the URA’s non-
simultaneous sampling scheme, which involves switching between multiple antennas. AoA estimation
methods, mostly sub-space ones like MUSIC and ESPRIT, were also introduced. The investigation
was carried out to look into the causes of the failure of sub-space techniques in the presence of multi-
path. The multipath mitigation approaches of SS, FBSS, and TR were then presented. Their capability
of recovering the rank of the covariance matrix was investigated, as was their limitation of resolving
more multipath in a 2-D scenario with a limited number of antennas. Following that, an attempt is made
to introduce VA techniques. It fails, however, when dealing with multipath. We compared the LS and
TLS positioning algorithms to the supplied Matlab algorithm after estimating the angles.

The performance of the algorithm was assessed using Matlab simulations. Matlab’s built-in func-
tions were employed to generate BLE signals, while its ray-tracing method was utilized to simulate
near-ideal multipath propagation. The simulation consists of three distinct phases: the first phase in-
volves estimating the angle using a fixed transmitter and a single locator; the second phase involves
estimating the angle using a transmitter in various positions and a single locator; and the third phase
involves estimating the position using a fixed transmitter and multiple fixed locators. In the first sce-
nario, various factors were examined that could potentially impact the estimation of angles. These
factors encompassed the SNR, the estimated number of sources, the combined number of packets,
and the parameters utilized in mitigation algorithms, among others. The findings from the simulation
demonstrate that the TR method, when appropriately configured, yields the most accurate estimation
outcomes. The Monte-Carlo simulation results indicate that the placement error with four locators can
reach a minimum value of 0.14 m with a confidence level of 90%.

Afterwards, an outdoor study was conducted to assess the efficacy of the algorithm in an actual
outdoor environment. In order to mitigate the effects of unmanageable multipath interference, the
experiment was carried out outdoors. Valid data was only taken into account if it was obtained through
stable connections. The experiment involved the examination of three distinct transmitter locations
using three fixed locators. The current experimental framework exhibits a higher level of complexity
compared to previous studies, as it incorporates both environmental transmission channels and I/Q
data obtained from real-world scenarios. The RMSE for the azimuth angle is found to be less than
5◦ when utilizing a 4× 4 URA. Moreover, employing the TR+LS algorithm and incorporating data from
10 packets yields a positioning error that is below 0.45 m in 95% of the cases. This performance is
notably superior to previous research conducted in one dimension, where 95% of the results exhibited
a positioning error exceeding 0.85 m.
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8.2. Future Work
For future works, studies could be done for these following aspects:

• Investigate automatically adjust optimal parameters for the TR methods as its performance is
greatly influenced by the choice of P and Q.

• Incorporate additional elements that may impact the accuracy of angle estimation within the data
model, such as mutual coupling, switch leakage, and path imbalance.

• Investigate the feasibility of different CTE configurations. In some previous research, the TI hard-
ware could achieve a higher sampling rate for the reference period. The acquisition of more
data within the limited CTE packet length could potentially benefit both the angle and the position
estimation.

• Propose an experiment configuration that offers enhanced control over multipath conditions, fa-
cilitating a more comprehensive analysis of its effects.

• Integrate the previously employed RSSI data in BLE technology with the novel CTE features.
Since RSSI can provide distance information rather than angles, it can aid in positioning.

• Further process the experiment data. In this project, all valid data with a solid connection was
utilized. However, for more accurate estimation, only those packets acquired at the time of the
instant or event counter when connections to all locators are stable should be considered.

• Conduct an examination of the spatial arrangement in relation to a mobile transmitter. In this
project, it was assumed that the transmitter remains stationary in order to facilitate the application
of packet aggregation technique, which allows for the combination of a larger amount of data to
improve estimation accuracy. Nevertheless, in the event that the transmitter is in motion, it is only
possible to utilize the data that is sampled within a brief time frame for the purpose of estimating
a singular position. This would significantly increase the level of difficulty associated with the
estimation process.
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A
Appendix A: Cramer-Rao Lower Bound

of Frequency Offset Estimation

A.1. Basic Model
In this section, we will examine the Cramér-Rao Lower Bound (CRLB) associated to the estimation of
frequency offset. The data model being discussed in this context is

X(t) = OAs(t) +W(t) (A.1)

where

O = diag
[
o1 o2 · · · oMN

]
=


1

e−2π(fc+fo)△T

. . .
e−2π(fc+fo)(MN−1)△T



=


1

e−2πfo△T

. . .
e−2πfo(MN−1)△T

 ∈ CMN×MN

is the frequency offset matrix, where the channel frequency fc is ignored due to its large value, resulting
in an integer of pi, which makes no difference if ignored, and △T is the time interval between two
consecutive samples. And

A = a(θ1, ϕ1)

=


eτ1

eτ2

...
eτMN

 ∈ CMN×1

is the steering vector of the LOS signal at time t ,i.e.s(t), τi indicates the antenna response at the (i-1)-th
antenna, andW(t) =

[
w1 w2 · · · wMN

]T ∈ CMN×1 is the white Gaussian noise vector, which has
a zero-mean and the variance σ2, i.e., for all the noise received at the i-th antenna, wi ∼ N (0, σ2). No
multipath scenario is considered here, and we assume τi ̸= τj when i ̸= j.

Construct the unknown parameter ξ =
[
fo τ1 τ2 · · · τMN

]T contaning MN the unknown in
model shown in (A.1).
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A.2. Distribution of Data Matrix X(t)
For every element xi(t) in the data vector X(t), according to the previous model. Each xi(t) follows a
complex normal distribution that is

xi ∼ N (oiais(t), σ
2) (A.2)

and its real part and imaginary part respectively follow:

R {xi} ∼ N (R {oiais(t)} , σ2

2 )

I {xi} ∼ N (I {oiais(t)} , σ2

2 )
(A.3)

Thus, the probability density function (PDF) for (A.3) is

f(R {xi} |ξ) = 2
σ
√
2π

e−
(R{xi}−R{oiais(t)})2

σ2

f(I {xi} |ξ) = 2
σ
√
2π

e−
(I{xi}−I{oiais(t)})2

σ2

(A.4)

Due to the independence and identical distribution of the real and imaginary components, the PDF
for the entire vector X(t) with respect to the unknown vector ξ is obtained by multiplying all the PDFs in
(A.4) together. To simplify the notation, the mean value of each xi is denoted by yi = oiais(t) = ej2πfo ,
and the total number of antennas is denoted by MT = MN . Then

f(X(t)|ξ) =
MT∏
i=1

2

σ
√
2π

e−
(R{xi}−R{yi})2

σ2

#∏
i=1

2

σ
√
2π

e−
(I{xi}−I{yi})2

σ2 (A.5)

= (
2

σ
√
2π

)2MT

MT∏
i=1

e−
(R{xi}−R{yi})2+(I{xi}−I{yi})2

σ2 (A.6)

A.3. Likelihood Function
The likelihood function is defined as the log-likelihood of the (A.6):

ℓ(ξ;X(t)) = lnf(X(t)|ξ)

= ln( 2

σ
√
2π

)2MT − 1

σ2

MT∑
i=1

(R {xi} −R {yi})2 + (I {xi} − I {yi})2 (A.7)

It is important to highlight that the expression ( 2
σ
√
2π

)2MT remains constant regardless of any un-
known variable ξ when computing the derivatives. Furthermore, it should be noted that the real part and
imaginary part of xi solely serve as measurements and remain constant with respect to the unknown.

A.4. First Derivatives
With (A.7), we can compute the first derivatives for all parameters in ξ.

Let us express the real and imaginary components of yi explicitly as functions of τ and fo:

R {yi} = cos(∠yi) = cos(∠ej2πfo(i−1)△T e−jτis(t))
I {yi} = sin(∠yi) = sin(∠ej2πfo(i−1)△T e−jτis(t))

(A.8)

Accordingly, their first derivatives are
∂

∂fo
R {yi} = − sin(∠yi) |yi| (j2π(i− 1)△ T )

∂
∂fo

I {yi} = cos(∠yi) |yi| (j2π(i− 1)△ T )
(A.9)

In the subsequent section, the magnitude of yi, denoted as |yi|, is considered to be equal to 1, as
previously established in the model.

For fo, the first derivatives is

∂

∂fo
ℓ(ξ;X(t)) = 2

σ2

MT∑
i=1

(R {xi}
∂R {yi}
∂fo

+ I {xi}
∂I {yi}
∂fo

)

=
j4π △ T

σ2

MT∑
i=1

(i− 1)(−R {xi} sin(∠yi) + I {xi} cos(∠yi)) (A.10)
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Then, the derivatives with respect to each τi are

∂

∂τi
ℓ(ξ;X(t)) = 2

σ2

MT∑
l=1

(R {xl}
∂R {yl}

∂τi
+ I {xl}

∂I {yl}
∂τi

)

=
−2j

σ2
(−R {xi} sin(∠yi) + I {xi} cos(∠yi)) (A.11)

since those yl with l ̸= i are all considered to be constant with respect to τi.

A.5. Fisher Information Matrix
For the unknown vector ξ =

[
ξ1 ξ2 · · · ξn

]T , the (i, j) the element in the Firsher Information Matrix
(FIM) is

I(ξ)(i,j) = −E
[

∂2

∂ξi∂ξj
|ξ
]

= −E
[

∂

∂ξi
ℓ(ξ;X(t))

∂

∂ξj
ℓ(ξ;X(t))|ξ

]
(A.12)

where E indicates taking the expectation when certain regularity conditions hold. From (A.12), it is
obvious that FIM is symmetric.

What’s worth noting is that only xi is considered a random variable, i.e., E[R {xi}] = R {yi},
E[I {xi}] = I {yi}, yi is considered a constant and stays unchanged after taking the expectations.

A.5.1. FIM Elements only Related to fo
First, compute the second derivatives with respect to fo:

∂2

∂f2
o

ℓ(ξ|X(t)) = j4π △ T

σ2

MT∑
i=1

(i− 1)|yi|(j2π(i− 1)△ T ) (−R {xi} cos(∠yi)− I {xi} sin(∠yi))

= −8π2 △ T 2

σ2

MT∑
i=1

(i− 1)2 (R {xi} cos(∠yi) + I {xi} sin(∠yi)) (A.13)

Then taking the expectation over the second dericative,

I(ξ)(fo,fo) = −E
[
∂2

∂f2
o

ℓ(ξ|X(t))
]

=
8π2 △ T 2

σ2

MT∑
i=1

(i− 1)2 (A.14)

A.5.2. FIM Elements only Related to τi
The second derivatives of τi itself are:

∂2

∂τ2i
ℓ(ξ|X(t)) = −2j

σ2
|yi|(−j)(−R {xi} cos(∠yi)− I {xi} sin(∠yi))

=
2

σ2
(R {xi} cos(∠yi) + I {xi} sin(∠yi)) (A.15)

For i ̸= j, the second derivatives of ∂2

∂τi∂τj
ℓ(ξ|X(t)) = 0 since the first derivatives of τi do not contain

the variable τj and thus are considered constants with respect to τj .
Then the corresponding FIM elements are:

I(ξ)(ϕi,ϕj) =
∂2

∂τ2
i
ℓ(ξ|X(t)) = − 2

σ2 i = j, 1 < i, j ≤ M

I(ξ)ϕi,ϕj) =
∂2

∂τi∂τj
ℓ(ξ|X(t)) = 0 i ̸= j, 1 < i, j ≤ M

(A.16)
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A.5.3. FIM Elements Related to fo and τi
Since FIM is symmetric, we only need to calculate the second derivatives of ∂2

∂fo∂τi
ℓ(ξ|X(t)) = ∂2

∂τi∂fo
ℓ(ξ|X(t)):

E
[

∂2

∂fo∂τi
ℓ(ξ|X(t))

]
=

−2j

σ2
(−R {xi} cos(∠yi)(j2π(i− 1)△ T )− I {xi} sin(∠yi)(j2π(i− 1)△ T ))

=
−4π(i− 1)△ T

σ2
(A.17)

Then the corresponding elements in the first row/column of FIM are:

I(ξ)fo,ϕi
= I(ξ)ϕi,fo

=
4π(i− 1)△ T

σ2
(A.18)

Then the complete FIM is

I(ξ) = I(fo, ϕ1, · · · , ϕM )

=


I(ξ)fo,fo I(ξ)ϕ1,fo · · · I(ξ)ϕMT

,fo

I(ξ)fo,ϕ1 I(ξ)ϕ1,ϕ1

...
...

. . .
...

I(ξ)fo,ϕMT
· · · · · · I(ξ)ϕMT

,ϕMT

 (A.19)

And the CRLB matrix V (ξ) is defined as the inverse of FIM, i.e., V (ξ)I(ξ) = I.
Denote the V (ξ) matrix as:

V(ξ) = V(fo, ϕ1, · · · , ϕM )

=


V(ξ)fo,fo V(ξ)ϕ1,fo · · · V(ξ)ϕMT

,fo

V(ξ)fo,ϕ1
V(ξ)ϕ1,ϕ1

...
...

. . .
...

V(ξ)fo,ϕMT
· · · · · · V(ξ)ϕMT

,ϕMT

 (A.20)

where only the V(ξ)fo,fo element is the CRLB for the frequency offset we care about. Then, with known
elements in FIM, the following equations are listed:{

V(ξ)fo,fo I(ξ)fo,fo +
∑MT

i=1 V(ξ)ϕi,fo I(ξ)fo,ϕi
= 1

V(ξ)fo,fo I(ξ)ϕi,fo + V(ξ)fo,ϕi I(ξ)ϕi,ϕi = 0 for i ∈ [1,MT ]
(A.21)

After calculating each V(ξ)fo,ϕi with FIM elements and V(ξ)fo,ϕi . Since V matrix is also diagonal
symmetric, V(ξ)fo,ϕi

= V(ξ)ϕi,fo . Finally, the CRLB of fo is

CRLB = V(ξ)fo,fo (A.22)

=
1(

I(ξ)fo,fo −
∑MT

i=1

I(ξ)2fo,ϕi

I(ξ)ϕi,ϕi

) (A.23)

A.6. Estimate Frequency Offset with Reference Samples Only
As explained in Chapter3, the estimation of CFO is only going to be conducted using samples derived
from the reference period. Therefore, the data model has been modified to:

X(t) = oa1s(t)

=


e2πfo△T

e2πfo2△T

...
e2πfoNT△T

 e−jϕ1s(t) (A.24)
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Here o is the CFO vector since the reference period only sample on the same antenna. And NT is
the number of samples within the reference period. This model can be interpreted as the process of
sampling at a total of NT antennas, all with the same steering response, but at different time instants.
Only two unknown parameters appear, so ξ = [fo, ϕ1].

Then, following the same steps in the previous sections, we have

I(ξ)fo,fo = 8π2△T 2

σ2

∑NT

i=1 i
2

I(ξ)fo,ϕ1 = I(ξ)ϕ1,fo =
4π△T

∑NT
i=1 i

σ2

I(ξ)ϕ1,ϕ1
= − 2

σ2

(A.25)

And the FIM is a 2× 2 matrix:

I(ξ) =
[
I(ξ)fo,fo I(ξ)ϕ1,fo

I(ξ)fo,ϕ1
I(ξ)ϕ1,ϕ1

]
=

[
8π2△T 2

σ2

∑NT

i=1 i
2 4π△T

∑NT
i=1 i

σ2

4π△T
∑NT

i=1 i

σ2 − 2
σ2

]
(A.26)

Consider the CRLB matrix V(ξ) is the inverse of the matrix in (A.26), and the CRLB of fo is V(ξ)fo,fo :

V(ξ)fo,fo =
1

I(ξ)fo,fo +
I(ξ)fo,ϕ1

I(ξ)ϕ1,fo

I(ξ)ϕ1,ϕ1

=
3

2π2SNR△ T 2(N3
T −NT )

(A.27)

In summary, the CRLB associated with the estimation of frequency offset using only reference sam-
ples exhibits a connection with the Signal-to-Noise Ratio (SNR) expressed in decibels, the sampling
rate of the reference signal, and the number of samples contained within the reference period.
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