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a b s t r a c t

Asynchronous decentralized event-triggered control (ADETC) Mazo Jr. and Cao (2014) is an implementa-
tion of controllers characterized by decentralized event generation, asynchronous sampling updates, and
dynamic quantization. Combining those elements in ADETC results in a parsimonious transmission of in-
formationwhichmakes it suitable forwireless networked implementations.We extend the previouswork
on ADETC by introducing periodic sampling, denoting our proposal asynchronous decentralized periodic
event-triggered control (ADPETC), and study the stability and L2-gain of ADPETC for implementations
affected by disturbances. In ADPETC, at each sampling time, quantized measurements from those sensors
that triggered a local event are transmitted to a dynamic controller that computes control actions; the
quantized control actions are then transmitted to the corresponding actuators only if certain events are
also triggered for the corresponding actuator. The developed theory is demonstrated and illustrated via a
numerical example.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In digital control applications, the control task consists of sam-
pling and transmitting the output of the plant, and computing
and implementing controller outputs. Current developments of
sensor and networking technologies have enabled the emergence
of wireless networked control systems (WNCS), in which commu-
nication of distributed components is established via wireless net-
works. WNCS can be established and updated with large flexibility
and low cost, and are especially suitable to physically distributed
plants. Limited energy supplies are often the case when sensors
are battery powered for mobility and/or flexibility reasons. The
major challenge in WNCS design is thus to achieve prescribed
performance under limited bandwidth and energy supplies. Our
present work is mostly inspired by Heemels, Donkers, and Teel
(2013), Liberzon and Nešić (2007) and Mazo Jr. and Cao (2014).
In Heemels et al. (2013), Heemels et al. present a periodic event-
triggered control (PETC) mechanism. In PETC, the sensors sample
the output of the plant and verify the central or local event con-
ditions periodically. Therefore, the energy consumed by sensing
is reduced compared to those continuously monitoring event-
triggered mechanisms, while still a pre-designed performance can
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be guaranteed. In Liberzon and Nešić (2007), Liberzon and Nešić
present a state dependent quantizer which zooms in and out based
on the system’s state, so as to provide input to state stability (ISS).
In Mazo Jr. and Cao (2014),Mazo and Cao present an asynchronous
decentralized event-triggered control (ADETC) mechanism com-
bining state dependent dynamic quantization and decentralized
event-triggering conditions.

We propose an asynchronous decentralized periodic event-
triggered control (ADPETC) mechanism building on the aforemen-
tioned pieces of work with the goal of reducing wireless channel
bandwidth occupation and energy consumption. This ADPETC in-
corporates: quantization in a zooming fashion, which is similar
to Liberzon and Nešić (2007) and Mazo Jr. and Cao (2014); an
asynchronous event-triggered mechanism, based on Mazo Jr. and
Cao (2014); and periodic sampling as in Heemels et al. (2013).
Moreover, comparedwith (Liberzon & Nešić, 2007; Mazo Jr. & Cao,
2014), in our approach the quantization error or global threshold
depends on the information in the controller, instead of just on the
current estimation of the system’s state; compared with Heemels
et al. (2013), in which the algorithm for designing decentralized
event condition parameters is complex: requiring to solve a set of
linear matrix inequalities (LMIs), our approach requires to solve
only one LMI. This advantage is more apparent when the system
output’s and/or input’s dimension increase, since the number of
LMIs and decision variables in Heemels et al. (2013) increaseswith
it, while they remain constant in the present approach. It is worth
noting that while, in general, our approach is simpler, for some
particular combinations of (small) plants and controllers, the LMIs

https://doi.org/10.1016/j.automatica.2018.04.045
0005-1098/© 2018 Elsevier Ltd. All rights reserved.
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of Heemels et al. (2013)maybe smaller than the LMI of the present
approach. In our preliminary version (Fu&Mazo Jr., 2016), in order
to design the event condition parameters, a set of bilinear matrix
inequalities (BMIs) needs to be solved. In the current version, we
solve instead a single LMI which often leads to less conservative
triggering conditions, i.e. less triggered events. This contributes the
main differences between Fu and Mazo Jr. (2016) and the present
paper.

2. Preliminaries and problem definition

We denote the positive real numbers by R+, by R+

0 = R+
∪

{0}, and the natural numbers including zero by N. |·| denotes the
Euclidean norm in the appropriate vector space, when applied to
a matrix |·| denotes the l2 induced matrix norm. Let us consider a
linear time-invariant (LTI) plant given by{

ξ̇p(t) = Apξp(t) + Bpv̂(t) + Ew(t)
y(t) = Cpξp(t),

(1)

where ξp(t) ∈ Rnp and y(t) ∈ Rny denote the state vector and
output vector of the plant, respectively, andw(t) ∈ Rnw denotes an
unknown disturbance. The input v(t) ∈ Rnv is defined as v̂(t) :=

v̂(tk), ∀t ∈ [tk, tk+1[, ∀k ∈ N, where v̂(tk) is a quantized version of
v(tk) provided by the following discrete-time controller:{

ξc(tk+1) = Acξc(tk) + Bc ŷ(tk)
v(tk) = Ccξc(tk) + Dc ŷ(tk),

(2)

where ξc(tk) ∈ Rnc , v(tk) ∈ Rnv , and ŷ(tk) ∈ Rny denote the
state vector, output vector of the controller, and input applied to
the controller, respectively. Define h > 0 the sampling interval. A
periodic sampling sequence is given by

T := {tk|tk := kh, k ∈ N}.

Define τ (t) be the elapsed time since the last sampling time,
i.e. τ (t) := t − tk, t ∈ [tk, tk+1[. Define two vectors for the
implementation input and output u(tk) := [yT(tk) vT(tk)]T ∈ Rnu ,
û(tk) := [ŷT(tk) v̂T(tk)]T ∈ Rnu , with nu := ny + nv . ui(tk) ûi(tk)
are the ith elements of the vector u(tk), û(tk), respectively. At each
sampling time tk ∈ T , the input applied to the implementation
û(tk) is determined by

ûi(tk) :=

{
q̃(ui(tk)), if a local event triggered

ûi(tk−1), otherwise,
(3)

where q̃(s) denotes the quantized signal of s. Therefore, at each
sampling time, only those inputs that triggered events are required
to transmit measurements or actuation signals through the net-
work. Between samplings, a zero-order holdmechanism is applied.

We also introduce a performance variable z ∈ Rnz given by

z(t) = g(ξ (t), w(t)), (4)

where ξ (t) := [ξ T
p (t) ξ

T
c (t) ŷ

T(t) v̂T(t)]T ∈ Rnξ , nξ := np + nc + ny +

nv , and g(s) is a design function.
In this implementation, the controller, sensors, and actuators

are assumed to be physically distributed, and none of the nodes
are co-located. We employ the definition of uniform global pre-
asymptotic stable (UGpAS), Lyapunov function candidate, and suf-
ficient Lyapunov conditions for UGpAS from Goebel, Sanfelice, and
Teel (2009).

Definition 1 (L2-Gain Heemels et al., 2013). The system (1), (2), (4)
is said to have an L2-gain from w to z smaller than or equal to γ , if
there is aK∞ function δ : Rnξ → R+ such that for any w ∈ L2, any
initial state ξ (0) = ξ0 ∈ Rnξ and τ (0) ∈ [0, h], the corresponding
solution to system (1), (2), (4) satisfies ∥z∥L2 ≤ δ(ξ0) + γ ∥w∥L2 .

In the local event conditions in (3), an event occurs when the
following inequality holds:

|ûi(tk−1) − ui(tk)| ≥

√
ηi(tk), i ∈ {1, . . . , nu}, (5)

in which ηi(tk) is a local threshold, computed as follows:

ηi(t) := θ2
i η2(t), (6)

where θi is a designed distributed parameter satisfying |θ | = 1
and η : R+

0 → R+, determines the global threshold, which will
be discussed in Section 3. When an event takes place at a sampling
time tk, û(tk) is updated by

ûi(tk) = q̃(ui(tk)) = qη(ui(tk), ûi(tk−1)) :=

ûi(tk−1) − sign(ûi(tk−1) − ui(tk))mi(tk)
√

ηi(tk),
(7)

where mi(tk) :=

⌊
|ûi(tk−1)−ui(tk)|√

ηi(tk)

⌋
. The error after this update is

eiu(tk) := ûi(tk) − ui(tk) = −sign(ûi(tk−1)−

ui(tk))
(
mi(tk) −

|ûi(tk−1) − ui(tk)|
√

ηi(tk)

)√
ηi(tk).

(8)

One can easily observe that, |eiu(tk)| <
√

ηi(tk). That is, when there
is an event locally, after the update by (7), (5) does not hold any-
more. Later we show that, ∀i ∈ {1, . . . , nu}, k ∈ N, mi(tk) ≤ m̄x <

∞. Thus, in practice one only needs to send sign(ûi(tk−1) − ui(tk))
and mi(tk) for each input update. Therefore, only log2(mi(tk)) + 1
bits are required for each transmission from a single sensor or to a
single actuator. Define ΓJ := diag(Γ y

J , Γ v
J ) = diag(γ 1

J · · · , γ
nu
J ),

where J is an index set: J ⊆ J̄ = {1, . . . , nu} for u(t), indicating
the occurrence of events. Define Jc := J̄ \ J . For l ∈ {1, . . . , nu},
if l ∈ J , γ l

J = 1; if l ∈ Jc , γ l
J = 0. Furthermore, we use the

notation Γj = Γ{j}. Define C :=

[
Cp 0
0 Cc

]
and D :=

[
0 0
Dc 0

]
. The

local event-triggered condition (5) can now be reformulated as a
set membership:

i ∈ J iff ξ T(tk)Qiξ (tk) ≥ ηi(tk), (9)

where

Qi =

[
CTΓiC CTΓiD − CTΓi

DTΓiC − ΓiC (D − I)TΓi(D − I)

]
.

The ADPETC implementation determined by (1), (2), (3), (4), and
(9) can be re-written as an impulsive system model:[

ξ̇ (t)
τ̇ (t)

]
=

[
Āξ (t) + B̄w(t)

1

]
, when τ (t) ∈ [0, h[,[

ξ (t+k )
τ (t+k )

]
=

[
JJ ξ (tk) + ∆J (tk)η(tk)

0

]
, when τ (t) = h,

z(t) = g(ξ (t), w(t)),

(10)

where B̄ =
[
ET 0 0 0

]T and
Ā =

⎡⎢⎣Ap 0 0 Bp
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎦ , ∆J (tk) =

⎡⎢⎢⎣
0

BcΓ
y
J ϵy(tk)Θy

Γ
y
J ϵy(tk)Θy

Γ v
J ϵv(tk)Θv

⎤⎥⎥⎦ ,

JJ =

⎡⎢⎢⎢⎣
I 0 0 0

BcΓ
y
J Cp Ac Bc(I − Γ

y
J ) 0

Γ
y
J Cp 0 (I − Γ

y
J ) 0

0 Γ v
J Cc Γ v

JDc (I − Γ v
J )

⎤⎥⎥⎥⎦ ,
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with I an identity matrix of corresponding dimension,

ϵy(tk) := diag

(
e1u(tk)

√
η1(tk)

, . . . ,
enyu (tk)√
ηny (tk)

)
,

ϵv(tk) := diag

(
eny+1
u (tk)√
ηny+1(tk)

, . . . ,
eny+nv
u (tk)√
ηny+nv (tk)

)
,

Θy :=
[
θ1 · · · θny

]T
, Θv :=

[
θny+1 · · · θny+nv

]T
.

The term ∆J (tk)η(tk) represents the quantization error after input

updates and eiu(tk)√
ηi(tk)

∈ ] − 1, 1[ due to (7), (8).

Lemma 9 in Mazo Jr. and Cao (2014) indicates that, for a system
applying the ADETC mechanism to be uniformly globally asymp-
totically stable (UGAS, see Mazo Jr. & Cao, 2014) when w = 0, η(t)
should be amonotonically decreasing functionwith limt→∞η(t) =

0. However, this mechanism does not consider systems with dis-
turbances. According to Liberzon and Nešić (2007), when w ̸= 0,
if η(t) is arbitrarily small, the mechanism is not robust against
disturbances. Meanwhile, in Mazo Jr. and Cao (2014), the η(t)
update is determined by an upper bound estimate of the current
state of the plant. This estimate is not always obtainable in an
output-feedback system, making it unapplicable in such systems.
We overcome the first problem by imposing a lower bound on
η(tk), defined as ηmin > 0, i.e. η(tk) ≥ ηmin, ∀tk ∈ T . For the
second problem, we instead use ξc(tk), ŷ(tk), and v̂(tk) to determine
the current threshold instead of ξp(tk), since this information is
available to the controller.

Remark2. By imposing a lower boundηmin onη, the limt→∞η(t) ̸=

0, and thus ξ (t) can only converge to a set even when w = 0.
Therefore, no L2-gain can be obtained for a linear performance
function, proportional to the state of the system as in Heemels
et al. (2013), since in that case ξ ̸∈ L2 implies z ̸∈ L2. We
circumvent this problem picking a performance function that is
zero on a compact set around the origin.

Denote the solution set X as (x, r) ∈ X ⊆ Rnξ × [0, h], such
that x = ξ (t), r = τ (t) for some t ∈ R+

0 , where ξ is a solution to
system (10). A ⊆ X is a compact set around the origin. Re-define
the variable z(t) in (10) by

zA(t) :=

{
C̄ξ (t) + D̄w(t), ∀(ξ (t), τ (t)) ∈ X \ A
0, ∀(ξ (t), τ (t)) ∈ A,

(11)

in which, C̄ and D̄ are some matrices of appropriate dimensions.
Now we present the main problem we solve in this paper.

Problem 3. Design an update mechanism for η and an ηmin such
that A is UGpAS for (10), (11) when w = 0, and the L2-gain from
w to zA is smaller than or equal to γ .

3. Stability and L2-gain analysis

Denote z̃(t) a reference function of zA(t), given by

z̃(t) := C̄ξ (t) + D̄w(t), ∀(ξ (t), τ (t)) ∈ X . (12)

Now let us consider a Lyapunov function candidate for the impul-
sive system (10), (12) of the form:

V (x, r) = xTP(r)x, (13)

where x ∈ Rnξ , r ∈ [0, h], with P : [0, h] → Rnξ ×nξ satisfying the
Riccati differential equation:
d
dr

P = −ĀTP − PĀ − 2ρP − γ −2C̄TC̄ − GTMG, (14)

inwhichM := (I−γ −2D̄TD̄)−1;G := B̄TP+γ −2D̄TC̄ , with Ā, B̄, C̄ , and
D̄ defined in (10) and (12), and ρ and γ are pre-design parameters.
We often use the shorthand notation V (t) to denote V (ξ (t), τ (t)).
Construct the Hamiltonian matrix:

H :=

[
H11 H12
H21 H22

]
, F (r) := e−Hr

=

[
F11(r) F12(r)
F21(r) F22(r)

]
,

where H11 := Ā + ρI + γ −2B̄MD̄TC̄, H12 := B̄MB̄T, H21 :=

−C̄T(γ 2I − D̄D̄T)−1C̄, H22 := −(Ā + ρI + γ −2B̄MD̄TC̄)T.

Assumption 4. F11(r) is invertible ∀r ∈ [0, h].

Since F11(0) = I and F11(r) is continuous, Assumption 4 can
always be satisfied for sufficiently small h. According to LemmaA.1
in Heemels et al. (2013), if Assumption 4 holds, then−F−1

11 (h)F12(h)

is positive semi-definite. Define the matrix S̄ satisfying S̄S̄T :=

−F−1
11 (h)F12(h).
We present next the designed threshold update mechanism.

At each sampling time t+k , right after a jump of system (10), the
controller executes the threshold update mechanism:

η(t+k ) = µ−nµ(t+k )ηmin, (15)

in which nµ(t+k ) := max
{
0,
⌈
−logµ

(
|ξ ′(t+k )|
ϱηmin

)
− 1

⌉}
, ηmin is a pre-

designed minimum threshold, finite ϱ > 0 is a design parameter,
and the scalar µ :∈ ]0, 1[ is also a pre-designed parameter. The
vector of variables available at the controller at sampling time t+k
is denoted by ξ ′(t+k ) := [ξ T

c (t
+

k ) ŷT(t+k ) v̂T(t+k )]T.

Lemma 5. Consider the system (10), (12), after the execution of the
threshold update mechanism (15), if η(t+k ) ̸= ηmin, then: ϱη(t+k ) <

|ξ ′(t+k )| ≤ µ−1ϱη(t+k ).

Now we analyze the jump part of the impulsive system.

Lemma 6. Consider the system (10), (12)–(15), and that
Assumption 4 holds. If γ 2 > λmax(D̄TD̄), ∃P(h) ≻ 0 satisfying

I − S̄TP(h)S̄ ≻ 0, and scalars ϱ > 0, ϵ > 0 such that the LMI:⎡⎢⎢⎢⎢⎢⎣
ϵI F̃1 F̃2 −ϵJJ̄
F̃ T
1 F̃3 0 0

F̃ T
2 0 F̃2 0

−ϵJTJ̄ 0 0 P(h) + ϵJTJ̄ JJ̄ − ϵ
|∆̄J̄ |

2

ϱ2 I

⎤⎥⎥⎥⎥⎥⎦ ⪰ 0 (16)

holds, where F̃1 := F−T
11 (h)P(h)S̄, F̃3 := I − S̄TP(h)S̄, F̃2 :=

F−T
11 (h)P(h)F−1

11 (h)+F21(h)F−1
11 (h), ∆̄J := ∆J (tk)|ϵy(tk)=I,ϵv (tk)=I , then

∀tk ∈ T such that |ξ (tk)| > ϱη(tk), the following also holds:
V (ξ (t+k ), 0) ≤ V (ξ (tk), h).

Remark 7. When applying the event-triggered control from
Heemels et al. (2013) to our presented plant and controller, there
will be 2nu − 1 LMIs to be solved. Each of these LMIs has nu
(remember nu = ny + nv) decision variables, and the dimension of
the matrix in each LMI will be 3nξ × 3nξ . In our approach, we only
solve one LMI with one decision variable. However, the dimension
of the matrix in this LMI is 4nξ × 4nξ .

Note that ϱ enters the LMI in a nonlinear fashion, therefore
we cannot compute ϱ directly. Instead, we apply a line search
algorithm to find feasible parameters h and ϱ.

Define CH = {(x, r)|(x, r) ∈ X , r ∈ [0, h[}, DH = {(x, r)|(x, r) ∈

X , r = h}, and the set A as follows:

A :=
{
(x, r)|(x, r) ∈ X , V (x, r) ≤ λ̄ϱ̄2η2

min

}
, (17)
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where λ̄ := max{λmax(P(r)), ∀r ∈ [0, h]}, ϱ̄ := max{|JJ |ϱ +

|∆̄J |, ∀J ⊆ J̄ }. Selecting ηmin sufficiently small, one can make
sure that A ⊆ A. Define now a new Lyapunov function candidate
for system (10), (12), and (15)as follows:

W (x, r) := max{V (x, r) − λ̄ϱ̄2η2
min, 0}. (18)

Note that (18) defines a proper Lyapunov function candidate. We
also use the shorthand notation W (t) to denote W (ξ (t), τ (t)).
Finally, let

zA(t) :=

{
C̄ξ (t) + D̄w(t), ∀(ξ (t), τ (t)) ∈ X \ A
0, ∀(ξ (t), τ (t)) ∈ A.

(19)

It is obvious that if A ⊆ A, |zA(t)| ≥ |zA(t)| ≥ 0.

Theorem8. Consider the system (10), (11), (13)–(15), (17), and (18).
If ρ > 0, γ 2 > λmax(D̄TD̄), the hypotheses of Lemma 6 hold, and ηmin
is selected s.t. A ⊆ A, then A is UGpAS for the impulsive system (10)
when w = 0, and the L2-gain from w to zA is smaller than or equal
to γ .

4. Practical considerations

In our proposed implementation, the data a sensor sends is ac-
tuallymi(tk) and the sign of the error, see (7). Therefore, computing
an upper bound m̄x ≥ mi(tk), ∀tk ∈ T is desirable to properly
design the supporting communication protocol.

Proposition 9. Consider the system (10), (11), (13), (14), (15), and
(18). If w is bounded (i.e. w ∈ L2 ∩ L∞), and the hypotheses of
Theorem 8 hold, then:

m̄x = max{m̄i
x|i ∈ {1, . . ., nu}} (20)

where m̄i
x =

(1+|[C D]|)
θi

√
W (0)
η2minλ

+
∥w∥

2
L∞

2ρη2minλ
+

λ̄ϱ̄2

λ
≥ mi(tk), ∀tk ∈ T ;

λ = min{λmin(P(r)), ∀r ∈ [0, h]}.

Similarly, an upper bound of nµ(t), denoted by m̄µ can be
obtained:

Proposition 10. Consider the system (10), (11), (13)–(15), and (18).
If w is bounded and the hypotheses of Theorem 8 hold, then m̄µ is

given as m̄µ = max
{
0, −logµ

(
(1+|[C D]|)

ϱ

√
W (0)
η2minλ

+
∥w∥

2
L∞

2ρη2minλ
+

λ̄ϱ̄2

λ

)}
.

5. Numerical example

In this section, we consider the batch reactor system
from Walsh and Ye (2001). Given h = 0.05 s, with ρ = 0.01, γ =

0.9, z = [1 0 0 0 0 0 0 0 0 0]ξ , A = {(x, r)|(x, r) ∈ X , |xTP(r)x| ≤

3.11}. Assumption 4 is satisfied. Solving (16), one can obtain a
ϱ = 200.2. Other parameters are given by µ = 0.75, θ1 = 0.34,
θ2 = 0.11, θ3 = 0.23, and θ4 = 0.91. ξp(0) = [10 − 10 − 10 10]T,
ξc(0) = 0, ŷ(0) = Cpξp(0), and v̂(0) = DcCpξp(0). Let ηmin =

0.0001, resulting in the set A = A. Fig. 1 shows the simulation re-
sults in the presence of a finite sinewave disturbance. It can be seen
that the performance variable z follows w with a bounded norm
ratio. The sensor transmissions are reduced by 3.61% compared to a
time-triggered mechanismwith the same sampling interval h. The
maximum inter-event interval is 0.15 s. The following bounds are
obtained from our analysis: m̄x = 2.40 × 108 (29 bits), and m̄µ =

42. 89.81% ofmi(tk) are smaller than or equal to 128 (8 bits); 31.23%
of mi(tk) can be transmitted with 4 bits; and the maximum mi(tk)
is 1303 (12 bits). Note that the saving of transmission increases
as the time without disturbances increases. Further simulation

results show that the sensor transmissions are reduced by 63.81%
after running for 50 s without additional disturbances. Further
simulation also shows that, as the initial state is closer to the
original point, the reduction within 10 seconds increases when
there is nodisturbance.When there are disturbances, the reduction
does not change much.

6. Conclusion and future work

We propose ADPETC implementations as an extension to the
work of Heemels et al. (2013) and Mazo Jr. and Cao (2014). This
triggering strategy combines decentralized event generation, asyn-
chronous sampling update, and zoom in/out quantization. This ap-
proach lets the implementation exchange very few bits every time
that an event triggers a transmission, reduces the required amount
of transmission compared to time-triggered mechanisms, and re-
duces the necessary sensing compared to continuously monitored
event-triggered mechanisms. The maximum amounts of bits that
may be needed to update samplings and thresholds after an event
is triggered are provided. Such a bound enables the design of actual
implementations for wireless systems, whose demonstration on
physical experiments is part of our future work. How to optimize
µ and how to compensate transmission delays are additional goals
for future work.

Appendix. Proofs

The following two lemmas are intermediate results from the
proof of Theorem III.2 in Heemels et al. (2013), which will be used
in the proofs of Lemma 6 and Theorem 8.

Lemma 11. Consider the system (10), (12)–(14), and that
Assumption 4 holds. If γ 2 > λmax(D̄TD̄) and ∃P(h) > 0 satisfying
I − S̄TP(h)S̄ ≻ 0, then for τ (t) ∈ [0, h], P(τ (t)) ≻ 0; and P(0)
can be expressed as P(0) = F21(h)F−1

11 (h) + F−T
11 (h)(P(h) + P(h)S̄(I −

S̄TP(h)S̄)−1S̄TP(h))F−1
11 (h).

Lemma 12. Consider the system (10), (12), (13), and (14). If ρ > 0,
γ 2 > λmax(D̄TD̄), then for all x ∈ Rnξ and τ (t) ∈ [0, h], the following
inequation holds: d

dt V (t) ≤ −2ρV (t) − γ −2z̃T(t)z̃(t) + wT(t)w(t).

Proof of Lemma 5. For any s =

⌈
−logµ(

|ξ ′(t+k )|
ϱηmin

) − 1
⌉
, s satisfies

−logµ

(
|ξ ′(t+k )|
ϱηmin

)
− 1 ≤ s < −logµ

(
|ξ ′(t+k )|
ϱηmin

)
. Noting that µ ∈

]0, 1[, therefore it is easy to obtain that µ
logµ

(
|ξ ′(t+k )|
ϱηmin

)
+1

≤ µ−s <

µ
logµ

(
|ξ ′(t+k )|
ϱηmin

)
, which, as ϱηmin > 0, can be finally simplified as

µ|ξ ′(t+k )| ≤ ϱµ−sηmin < |ξ ′(t+k )|. From (15), after the execution
of the threshold update mechanism, η(t+k ) can be computed as
η(t+k ) = max{ηmin, µ

−sηmin}. If η(t+k ) ̸= ηmin, then η(t+k ) =

µ−sηmin, and thus we have that µ|ξ ′(t+k )| ≤ ϱη(t+k ) < |ξ ′(t+k )|. □

Proof of Lemma 6. For the jump part of the impulsive system
(10), we have that the relation between the states before and
after each jump is given by |ξ (t+k ) − JJ̄ ξ (tk)| = |JJ ξ (tk) +

∆J (tk)η(tk) − JJ̄ ξ (tk)| = |H̃1ξ (tk) + ∆J (tk)η(tk)|, where H̃1 :=⎡⎣ 0 0 0 0
−BcΓ

y
Jc Cp 0 BcΓ

y
Jc 0

−Γ
y
Jc Cp 0 Γ

y
Jc 0

0 −Γ v
Jc Cc −Γ v

Jc Dc Γ v
Jc

⎤⎦, since Γ
y
Jc + Γ

y
J = I = Γ

y
J̄

and Γ v
Jc

+ Γ v
J = I = Γ v

J̄ . By the definition of error (8) and
the event-triggered mechanism (9), one has Γ

y
Jc ŷ(tk) − Γ

y
Jc y(tk)
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Fig. 1. Simulation result when w(t) = 10 sin(2π t), t = [3, 7]: evolution of z and w, threshold, inter-event intervals, and bits of each event.

= Γ
y
Jc ϵy(tk)Θyη(tk) and Γ v

Jc
v̂(tk) − Γ v

Jc
v(tk) = Γ v

Jc
ϵv(tk)Θvη(tk),

therefore, it holds that H̃1ξ (tk) + ∆J (tk)η(tk) = ∆Jc (tk)η(tk) +

∆J (tk)η(tk) = ∆J̄ (tk)η(tk), and thus |ξ (t+k ) − JJ̄ ξ (tk)| =

|∆J̄ (tk)η(tk)| ≤ |∆̄J̄ |η(tk). Together with the hypothesis that

|ξ (tk)| > ϱη(tk), one has |(ξ (t+k ) − JJ̄ ξ (tk))|
2

<
|∆̄J̄ |

2

ϱ2 |ξ (tk)|2.
From the hypotheses, particularly (16) together with the result
from Lemma 11, Schur complement, ϵ > 0, and applying the S-
procedure, one can conclude that V (ξ (t+k ), 0) ≤ V (ξ (tk), h). □

Proof of Theorem 8. We first show that A is UGpAS for the
impulsive system (10) when w = 0. A new Lyapunov func-
tion candidate W , given by (18), is introduced. Define B :=

{(x, r)|(x, r) ∈ X , |x| ≤ ϱηmin}. If η(tk) = ηmin, |ξ (tk)| > ϱηmin
implies |ξ (tk)| > ϱη(tk); if η(tk) > ηmin, according to Lemma 5,
ϱη(tk) < |ξ ′(tk)| ≤ |ξ (tk)|. Therefore, ∀(ξ (tk), τ (tk)) ∈ DH \ B,
|ξ (tk)| > ϱη(tk), and thus from Lemma 6, ∀(ξ (tk), τ (tk)) ∈ DH \ B,
it holds that V (ξ (t+k ), 0) ≤ V (ξ (tk), h). According to Lemma 5, if
|ξ ′(tk)| ≤ ϱη(tk) then η(tk) = ηmin, i.e. ∀(ξ (tk), τ (tk)) ∈ DH ∩

B, η(tk) = ηmin. Furthermore, (ξ (tk), τ (tk)) ∈ DH ∩ B implies
ξ (t+k ) = JJ ξ (tk) + ∆J ηmin, and thus, |ξ (t+k )| ≤ |JJ ||ξ (tk)| +

|∆J |ηmin ≤ (|JJ |ϱ + |∆̄J |)ηmin ≤ ϱ̄ηmin. That is, ∀(ξ (tk), τ (tk)) ∈

DH ∩ B, (ξ (t+k ), 0) ∈ A. Note that, since |JJ | > 1, ∀(x, r) ∈ B,

xTP(r)x ≤ λ̄|x|2 ≤ λ̄ϱ2η2
min < λ̄ϱ̄2η2

min, i.e. B ⊂ A. Thus
one can conclude that ∀(ξ (t), τ (t)) ∈ A ∩ DH , (ξ (t+k ), 0) ∈ A.
If all the hypotheses in Lemma 12 hold, together with (18), one
has ∀(ξ (t), τ (t)) ∈ CH \ A: d

dtW (ξ (t), τ (t)) =
d
dt V (ξ (t), τ (t)) ≤

−2ρV (ξ (t), τ (t))−γ −2z̃T(t)z̃(t)+wT(t)w(t) < −2ρW (ξ (t), τ (t))−
γ −2z̃T(t)z̃(t) + wT(t)w(t). By (18) and V (ξ (t+k ), 0) ≤ V (ξ (tk), h),
one has ∀(ξ (tk), τ (tk)) ∈ DH \A:W (ξ (t+k ), 0) = max{V (ξ (t+k ), 0)−

λ̄ϱ̄2η2
min, 0} ≤ V (ξ (tk), h)−λ̄ϱ̄2η2

min = W (ξ (tk), h). Combine all the
above and A ⊆ A to see that A is UGpAS for the impulsive system
(10).

Nowwe study theL2-gain. Define a set of times Ts = {(tsi , j
s
i )|i ∈

N}, where (ts0, j
s
0) is the initial time, s.t. ∀t ∈ [ts2i+1, t

s
2i+2], i ∈ N,

(ξ (t), τ (t)) ∈ A, and the rest of the time (ξ (t), τ (t)) ∈ X \ A.
If |Ts| is infinite, i.e. (ξ (t), τ (t)) visits A infinitely often, one has∫

∞

0 zTA(t)zA(t)dt =
∑

∞

i=0

∫ tsi+1
tsi

zTA(t)zA(t)dt =
∑

∞

i=0

∫ ts2i+1
ts2i

zTA

(t)zA(t)dt +
∑

∞

i=0

∫ ts2i+2
ts2i+1

zTA(t)zA(t)dt . ∀(ξ (t), τ (t)) ∈ CH \ A,

it holds that d
dtW (ξ (t), τ (t)) < −γ −2zTA(t)zA(t) + wT(t)w(t).

One can replace the integration of d
dtW (t), zTA(t)zA(t), and

wT(t)w(t) on the open interval ]ts2i, t
s
2i+1[ by the integration

on the closure of that interval, see Apostol (1967). Apply-
ing the Comparison Lemma, one has W (ts2i+1) − W (ts2i) =∫ ts2i+1
ts2i

d
dtW (t)dt <

∫ ts2i+1
ts2i

(
−γ −2zTA(t)zA(t) + wT(t)w(t)

)
dt . Since

∀i ∈ N, i ̸= 0, W (tsi ) = 0, therefore ∀i ∈ N:
∑

∞

i=0

∫ ts2i+1
ts2i

zTA(t)

zA(t)dt < γ 2∑∞

i=0

∫ ts2i+1
ts2i

wT(t)w(t)dt + γ 2W (ts0). When (ξ (t),

τ (t)) ∈ A, we have zA(t) = 0 from (11), thus
∑

∞

i=0

∫ ts2i+2
ts2i+1

zTA(t)

zA(t)dt ≤ γ 2∑∞

i=0

∫ ts2i+2
ts2i+1

wT(t)w(t)dt . Combine all the above

to obtain ∥zA∥
2
L2

≤ ∥zA∥
2
L2

< γ 2W (ts0) + γ 2
∥w∥

2
L2

≤

δ(ξ (0)) + (γ ∥w∥L2 )
2. If ∃T s.t. ∀t > T , (ξ (t), τ (t)) ∈ X \

A, then |Ts| = 2Is for some finite Is ∈ N. Since ∀t ∈

R+

0 , W (t) ≥ 0, and W (ts2Is ) = 0: −
∫

∞

ts2Is

d
dtW (t)dt ≤ 0,

and thus
∫

∞

ts2Is
zTA(t)zA(t)dt ≤ γ 2

∫
∞

ts2Is
wT(t)w(t)dt . Therefore, it
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holds that ∥zA∥
2
L2

≤ ∥zA∥
2
L2

=
∑Is−1

i=0

∫ ts2i+1
ts2i

zTA(t)zA(t)dt +∫
∞

ts2Is
zTA(t)zA(t)dt +

∑Is−1
i=0

∫ ts2i+2
ts2i+1

zTA(t)zA(t)dt < (δ(ξ (0)) +

γ ∥w∥L2 )
2. If ∃T s.t. ∀t > T , (ξ (t), τ (t)) ∈ A, then |Ts| = 2Is + 1 for

some finite Is ∈ N, and thus
∫

∞

ts2Is+1
zTA(t)zA(t)dt = 0. Therefore,

it holds that ∥zA∥
2
L2

≤ ∥zA∥
2
L2

=
∑Is−1

i=0

∫ ts2i+2
ts2i+1

zTA(t)zA(t)dt +∫
∞

ts2Is+1
zTA(t)zA(t)dt +

∑Is
i=0

∫ ts2i+1
ts2i

zTA(t)zA(t)dt < (δ(ξ (0)) +

γ ∥w∥L2 )
2. □

Proof of Proposition 9. Following the proof of Theorem 8, one
has ∀(ξ (t), τ (t)) ∈ CH \ A: d

dtW (ξ (t), τ (t)) < −2ρW (ξ (t), τ (t)) +

wT(t)w(t). Apply the Comparison Lemma on the interval [ts2i, T ],

where T ∈ [ts2i, t
s
2i+1] to obtain W (T ) < W (ts0) +

∥w∥
2
L∞

2ρ . When
(ξ (t), τ (t)) ∈ A, W (t) is bounded by W (t) = 0 ≤ 0.5ρ−1

∥w∥
2
L∞

, and thus W (t) ≤ W (0) +
1
2ρ ∥w∥

2
L∞

, ∀(ξ (t), τ (t)) ∈

X . From the definition of W (x, r) in (18), together with the
fact that V (t) ≥ λ|ξ (t)|2, one obtains ∀t ∈ R+

0 , |ξ (t)|2 ≤

W (0)+ 1
2ρ ∥w∥

2
L∞

+λ̄ϱ̄2η2min
λ

. Thus mi(tk) ≤ η−0.5
i (tk)(|ûi(tk−1)| +

|ui(tk)|) ≤ η−0.5
i (tk)(|ξ (tk−1)| + |[C D]||ξ (tk)|). Combining these

bounds, it is clear that (20) holds. □

Proof of Proposition 10. Proof of Proposition 10 is analogous to
that of Proposition 9. □
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