

Diverse routing in SRLG networks

protection

SRLG

problem definition

complexity

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Introduction

- Networks are everywhere in modern society
- Internet, telephone (wired/wireless), ATMs, stock market, etc.
- Connection failure sometimes unacceptable
- Failure caused by router, cable, server, software, power, etc.
- Single / protected path

Diverse routing in SRLG networks

introduction

protection

SRLG problem definition

complexity

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Protected path

• Dedicated / shared protection

Diverse routing in SRLG networks

R.A.P. Juffermans – 25 september 2009

Dedicated

protection

Shared

protection

SRLG

problem definition complexity SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Shared Risk Link Group (SRLG)

• Optical networks consist of at least two layers

- Optical layer
- Physical layer

Diverse routing in SRLG networks

SRLG

problem definition complexity SRLG-tree SRLG-exclusion perform. SRLG-tree demo

conclusions

Shared Risk Link Group (SRLG)

Try yourself:

Find two paths in the network between node s and node d such that they do not share a common SRLG.

Diverse routing in SRLG networks

introduction protection SRLG

problem definition

complexity

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Problem definition

- Find two SRLG-disjoint paths between two nodes
- With minimal cost or shortest
- Exact algorithm (always return optimal solution, if exists)

introduction protection SRLG problem definition

complexity

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Complexity

- Problem is NP-complete
 - given solution easy to verify
 - finding a solution is difficult
- If routed serially, traps. Choice of first path limits second path
- Minimal cost
- Balance between performance and near-optimality

perform. SRLG-tree

demo

conclusions

SRLG-tree algorithm

First steps SRLG-tree:

- Bhandari's algorihm gives shortest protected path (no SRLGs)
- If found path SRLG-disjoint then optimal solution

Define primary path PP and back path BP

Else pick shared SRLG, for example A, and recalculate the protected path twice where:

 A not in PP
 A not in BP

Example

Shortest path SRLG A shared Make 2 new searches

introduction protection SRLG problem definition complexity

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Diverse routing in SRLG networks

SRLG-tree

SRLG-exclusion perform. SRLG-tree demo

conclusions

Example: the two new searches

1st new search

A not in PP BP no limitations (A,-)

SRLG B shared

A A A A B

2nd new search

A not in BP PP no limitations (-,A)

SRLG B shared

perform. SRLG-tree

demo

conclusions

Example: tree structure

Diverse routing in SRLG networks

SRLG-tree

SRLG-exclusion perform. SRLG-tree demo

conclusions

Example: (AB,-) and (A,B)

(AB,-) does not have a solution

(A,B) gives a SRLGdisjoint solution

Diverse routing in SRLG networks

Example: parsing tree

Diverse routing in SRLG networks

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Tree properties

- Starting from the tree source (-,-) the cost of solutions increase
- If tree node does not have solution then child nodes do not have solutions

Result: if a tree node has a SRLG-disjoint solution or no solution then further branching stops

Example: parsing tree

Diverse routing in SRLG networks

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Example: parsing tree

Diverse routing in SRLG networks

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

SRLG-exclusion algorithm

How do we calculate the nodes in the parsing tree?

For example: tree node (A,B)

SRLG-exclusion (A,B) returns a protected path with primary path excluded from A, backup path excluded from B

Unfortunately, this does not always work...

Diverse routing in SRLG networks

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Problem

Sometimes approach with two-times Dijkstra algorithm does not give a solution

Simple example without SRLGs

Solution for this is for example Bhandari's algorithm

Diverse routing in SRLG networks

Bhandari's algorithm

Simple example without SRLGs

Initial paths are mixt!

Diverse routing in SRLG networks

R.A.P. Juffermans – 25 september 2009

protection SRLG problem definition complexity SRLG-tree

introduction

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

New problem

Applied to SRLG network

We calculate (A,B)

Backup path not excluded from B, caused by mixing of paths

How can we make SRLG-exclusion to work correctly?

Diverse routing in SRLG networks

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

ldea

Assume we interested in calculating (A,B).

Primary path is easy

Backup path:

- first search in network without B
- if backup path uses a directed link, continu search in network without A

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Example

We calculate (A,B)

But also this does not always work...

Diverse routing in SRLG networks

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Example: problem

Again we calculate (A,B)

Diverse routing in SRLG networks

SRLG-exclusion

perform. SRLG-tree demo conclusions

Example: solution

- Find initial primary path for (A,B)
- Remove B > one or more parts, ignore last
- For initial backup path: cross each part an even number of times

Diverse routing in SRLG networks

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

SRLG-exclusion concluded

SRLG-exclusion results in correct protected path if exists

SRLG-exclusion does not give optimal solution, but...

For example, we look for a protected path with one path without A and another path without B then

SRLG-exclusion (A,B) or SRLG-exclusion (B,A) gives the optimal protected path.

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

SLRG-tree

Now we are able to calculate the tree nodes

Pick SRLG-disjoint solution with least cost for optimal solution

Diverse routing in SRLG networks

introduction

protection

SRLG

problem definition

complexity

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Timecomplexity SRLG-tree

Considering the worst-cast scenario #L : number of links in network

- #N : number of nodes in network
- #R : number of SRLGs

SRLG-exclusion: Initial primary path: Dijkstra algorithm ➤ O(#L + #N log (#N)) Initial backup path: Two networks ➤ O(#2L + #2N log (#2N))

O(3#L + 3#N log(#N) + 2#N log(2))

SRLG-tree: Maximum number of treenodes: $2^{\#R+1} - 1$

 $O((2^{\#R+1} - 1)(3\#L + 3\#N \log(\#N) + 2\#N \log(2)))$

As expected, SRLG-tree has exponential complexity

Diverse routing in SRLG networks

protection

SRLG

problem definition

complexity

SRLG-tree

SRLG-exclusion

perform. SRLG-tree

demo

conclusions

Demonstration PathPlanner

SURFnet6 network:

- Over 8.800 km fiber
- Cross border fibers
 - Hamburg
 - Münster
 - Aachen

Over 200 lightpaths

Customers:

- Universities
- Hospitals
- Institutes for higher professional education
- Research institutes
- Corporate R & D dep.
- Scientific libraries

demo

conclusions

Conclusions

SRLG-tree has near-polynomial running time for SRLG-sparse networks

Although running time is exponential, only a fraction of the complete solution space is parsed.

Questions?

