
 
 

Delft University of Technology

A lagrangian flight simulator for airborne wind energy systems

Sánchez-Arriaga, Gonzalo; Pastor-Rodríguez, Alejandro; Sanjurjo-Rivo, Manuel; Schmehl, Roland

DOI
10.1016/j.apm.2018.12.016
Publication date
2019
Document Version
Final published version
Published in
Applied Mathematical Modelling: simulation and computation for engineering and environmental systems

Citation (APA)
Sánchez-Arriaga, G., Pastor-Rodríguez, A., Sanjurjo-Rivo, M., & Schmehl, R. (2019). A lagrangian flight
simulator for airborne wind energy systems. Applied Mathematical Modelling: simulation and computation
for engineering and environmental systems, 69, 665-684. https://doi.org/10.1016/j.apm.2018.12.016

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.apm.2018.12.016
https://doi.org/10.1016/j.apm.2018.12.016


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


Applied Mathematical Modelling 69 (2019) 665–684 

Contents lists available at ScienceDirect 

Applied Mathematical Modelling 

journal homepage: www.elsevier.com/locate/apm 

A lagrangian flight simulator for airborne wind energy 

systems 

G. Sánchez-Arriaga 

a , ∗, A. Pastor-Rodríguez 

a , M. Sanjurjo-Rivo 

a , R. Schmehl b 

a Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Avda de la Universidad 30, Leganés 28911, 

Spain 
b Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft HS 2629, The Netherlands 

a r t i c l e i n f o 

Article history: 

Received 19 February 2018 

Revised 7 December 2018 

Accepted 17 December 2018 

Available online 4 January 2019 

Keywords: 

Kite modeling 

Lagrangian systems 

Kite control 

a b s t r a c t 

A parallelized flight simulator for the dynamic analysis of airborne wind energy (AWE) 

systems for ground- and fly-generation configurations is presented. The mechanical sys- 

tem comprises a kite or fixed-wing drone equipped with rotors and linked to the ground 

by a flexible tether. The time-dependent control vector of the simulator mimics real AWE 

systems and it includes the length of the main tether, the geometry of the bridle, the 

torque of the motor controllers of the rotors, and the deflections of ailerons, rudder and 

elevator. The use of a lagrangian formulation with a minimal coordinate approach and dis- 

cretizing the main tether as a chain of inelastic straight rods linked by ideal (dissipative- 

less) rotational joints, yielded a non-stiff set of ordinary differential equations free of al- 

gebraic constraints. Several verification tests, including a reel-in maneuver that admits an 

analytical solution, are presented. The efficiency of the parallelization with the number of 

tether segments, and trade-off analysis of the lagrangian and hamiltonian formulations are 

also considered. The versatility of the simulator is highlighted by analyzing two maneu- 

vers that are relevant for AWE scenarios. First, the simulator is used to compute periodic 

figure-of-eight trajectories with an open-loop control law that varies the geometry of the 

kite’s bridle, as frequently done in ground-generation AWE systems. Second, an unstable 

equilibrium state of a tethered drone equipped with two rotors for energy harvesting is 

stabilized by implementing a closed-loop control strategy for the deflection of the control 

aerodynamic surfaces. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

The development of airborne wind energy (AWE) systems faces several challenges. Apart from safety issues, demonstra-

tion of autonomous and continuous operation over long periods of time, including take off and landing, are among the

most important ones [1,2] . In addition, the architecture of current technology demonstrators and their control laws should

be optimized in order to increase the energy conversion efficiency. These demanding tasks inevitably need to make use of

system simulators, some of them already shared with the research community [3–6] . The performance of the simulators

are conditioned by the choice of the model of the kite or drone, as well as the elastic or inelastic character of the tether,
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Nomenclature 

B wingspan ( m ) 

C chord ( m ) 

C f rotor thrust/drag coefficient 

C m 

rotor torque coefficient 

D T tether diameter ( m ) 

E T tether Young’s modulus ( Pa ) 

g gravitational acceleration ( m / s 2 ) 

I tensor of inertia ( kgm 

2 ) 

L length ( m ) 

L T 0 initial tether length ( m ) 

� R dimensionless length of a rod 

� B dimensionless length of the bridle 

M mass ( kg ) 

N R Number of rods 

N G Number of rotors 

q s vector of degrees of freedom 

q c vector of control variables 

R position vector ( m ) 

S Wing surface area ( m 

2 ) 

u control vector 

V velocity vector ( m / s ) 

x state vector 

x i , y i , z i unit vectors of frame i 

α angle of attack ( rad ) 

β sideslip angle ( rad ) 

δ longitudinal angle of the bridle ( rad ) 

η lateral angle of the bridle ( rad ) 

γ elevation angle of a rod ( rad ) 

ϕ lateral angle of a rod ( rad ) 

θ pitch angle ( rad ) 

ψ yaw angle ( rad ) 

φ roll angle ( rad ) 

λ rotor angle ( rad ) 

ν rotor mounting angle ( rad ) 

ρ air density ( kg / m 

3 ) 

ρT tether density ( kg / m 

3 ) 

� angular velocity ( rad / s ) 

τ dimensionless time 

ξ dimensionless torque of a motor controller 

Subscripts 

E Earth-fixed frame 

G generator/rotor 

K kite or drone 

R rods 

T tether 

W wind 

Notation 

Upper case Physical variable 

Lower case Dimensionless variable 

s α sin α
c α cos α

and the incorporation of the control variables in the dynamical system. As explained in the following, these choices affect

critically the fidelity and computational efficiency of the simulators. 

As highlighted in Ref. [7] , most of past works on automated kite control used a point mass kite model (see for instance

[8–11] ). Although such approximation is useful to get first estimations of some relevant variables such as the average power



G. Sánchez-Arriaga, A. Pastor-Rodríguez and M. Sanjurjo-Rivo et al. / Applied Mathematical Modelling 69 (2019) 665–684 667 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

output, it is not sufficiently accurate for advanced analyses. The aerodynamic force acting on the kite depends on the kite

attitude, a feature that is not captured by a point mass model. A kite model consisting of several connected point masses has

been proposed [5] . An alternative is representing the kite as a rigid body [12–15] which provides a good balance between

accuracy and computational cost. Flexibility effects have been incorporated in kite flight simulators by using a multibody-

system model reduction process [16] . 

The tether model is also relevant because it heavily affects the accuracy and the speed of the simulator. Tether models

based on point masses linked by elastic springs and dampers [5,17] can be easily implemented and they capture both flex-

ibility and elasticity effects. However, due to their high stiffness, elastic tethers exhibit fast longitudinal waves of velocity√ 

E T /ρT , with E T and ρT being the Young’s modulus and the tether density, respectively. These waves are typically much

faster than the transverse waves (vibrating string), which have a velocity 
√ 

T /A T ρT , with T and A T being the tether tension

and cross section area. As a consequence, the equations of motion of elastic tethers have two different time scales and

the use of implicit integrators become unavoidable. The stiffness problem disappears by using an inelastic tether model that

captures flexibility effects, such as tether sagging, and removes completely the longitudinal fast oscillations. However, inelas-

tic tethers introduce constraints, and a classical formalism for the equations of motion yields a mixed system of ordinary

differential equations and nonlinear algebraic equations [18,19] . For this reason, many studies on space tethers [20–23] and

kites [12,13,15,24–27] used a Lagrange’s formalism based on minimal coordinates and Minakov’s theory [28] . 

Most of previous works used simple models for the control inputs. For instance, the angle of attack [5,25] , the turn rate

of the kite [10] , and the lift coefficient and roll angle [11] were directly taken as control inputs or correlated through simple

analytical laws. Although these hypotheses do not yield a self-consistent dynamical system, they simplify the dynamics

notably and interesting results on kite control and stability were found. However, variables such as the angle of attack or

the lift coefficient are not directly controlled in real AWE systems. Some of them have a winch on the ground station that

reels in and out the main tether. They can also be equipped with a control unit, either suspended below the wing or on the

ground station, that regulates the relative lengths of the lines of the kite bridle. Rigid-wing AWES frequently have movable

aerodynamic surfaces, like elevators, rudders, and ailerons. 

This work presents a mathematical model for the simulation of AWE systems with the following characteristics: (i) the

kite/drone is modeled as a rigid body, (ii) the tether is divided in segments, and each of them is modeled as an inelastic

and straight rod, (iii) the equations of motion of the mechanical system are derived with Lagrange’s formalism and they

are not coupled with algebraic constraints, and (iv) tether reel in and reel out, bridle line control, and the deflection of the

aerodynamic surfaces are incorporated rigorously in the model. The simulator can be used to study both ground-generation

(GG) AWE systems, where the tether tension is used to produce electrical energy with a drum-generator module at the

ground, and fly-generation (FG) systems in which the kinetic energy of the wind is converted into electricity by onboard

wind turbines. Each rotor, whose dynamic is also included self-consistently in the equations of motion, drives a permanent

magnet motor/generator to generate power in normal operation or to drive propellers in a powered flight mode during take

off and landing. 

The manuscript is organized as follows. Section 2 presents the model that, in the most general case, includes a kite or

a drone, a tether, a bridle, and an arbitrary number of rotors. Some cumbersome calculations related to the kinematics of

the system and the aerodynamic forces are summarized in Appendix A , Appendix B , and Appendix C . Section 3 gives the

explicit form of the equations of motion using both Lagrange and Hamilton’s formalisms. The performance of the parallelized

code and details about its verification are provided in Section 4 . Some capabilities of the code are shown in Section 5 ,

which presents simulation results of GG and FG systems with open- and closed-loop control strategies, respectively. The

conclusions of the work are summarized in Section 6 . The code is a module of a more general package on AWE systems

named LAKSA [29] and its MATLAB 

® version is available in a public repository [30] 

2. System model 

The notation, frame of references and methodology are similar to the ones used in previous works [15,26] . The kite or

drone mass M K , the initial length of the tether L T 0 , and the gravitational acceleration g are the characteristic parameters

of the system from which dimensionless variables and parameters can be derived. Capital and lower case letters are used

to denote variables with and without dimensions, respectively. For instance, we introduce the position vector of the center

of mass of the kite R K = L T 0 r K , its velocity V K = 

√ 

gL T 0 v K , its angular velocity �KE = 

√ 

g/L T 0 ω KE , the aerodynamic force

F A = M K g f A , and the aerodynamic moment about the center of mass M A = M K gL T 0 m A . Derivatives with respect to the di-

mensionless time τ = t 
√ 

g/L T 0 are denoted with dots. Frames of references are indicated by the symbol S A and their unit

basis vectors by x A , y A , and z A . 

We now describe the main elements of the most general version of the simulator and, at the end of this section, it is

shown how GG and FG AWE systems naturally arise as particular cases in the model. The most complex mechanical system

comprises: an inelastic but flexible tether, a kite or a drone, and an even number N G of rotors. The modeling of such a

complex dynamical system requires a set of simplifications and hypotheses. The following paragraphs provide a description

of each element of the model and introduce the most important frames of reference used in the analysis. Concurrently, we

will describe thoroughly the variables of the vectors 

q s (τ ) = [ γ1 , . . . γN R , ϕ 1 , . . . ϕ N R , θ, ψ, φ, λ1 , . . . λN G ] 
T , (1)
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q c (τ ) = [ l R , l B , δ, η, ξ1 , . . . ξN G , δa , δr , δe ] 
T , (2)

where q s and q c contain the coordinates or degrees of freedom of the mechanical system and the control variables, re-

spectively. The evolution of q s is governed by the Lagrange equations (see Section 3 ) whereas q c ( τ ) is imposed externally

and follows prescribed control laws. The precise meaning of each coordinate and control variable is presented along the

following sections. 

2.1. Drum-generator module and tether 

The simulator considers a drum-generator module that can reel in and reel out the tether and controls the tether length

L T ( t ). The modeling and dynamics of the winch are beyond the scope of this work (find a simple model in Ref. [5] ). For

convenience, we introduce an inertial frame of reference S E with origin at the generator (point O E ), z E pointing to the center

of the Earth, and vectors x E and y E spanning the assumed flat Earth surface. The unit vector x E points against the wind

velocity vector 

V W 

(t) = −
√ 

gL T 0 v W 

(τ ) x E , (3) 

where v W 

(τ ) is a dimensionless function. 

A tether with density ρT and diameter D T connects the drum-generator module at the origin of S E with the bridle of the

kite at point Q . Our model incorporates tether flexibility effects but it ignores its elasticity, thus assuming that longitudinal

perturbations travel at infinite velocity. This assumption does not affect significantly the reliability of the simulator, and is

very convenient from a numerical point of view because it removes the fast longitudinal oscillations. Otherwise, the equa-

tion of motion would be stiff due to the existence of low frequency transversal oscillations and fast frequency longitudinal

oscillations. Following previous works on space tethers [22,23] and kites [15] , the tether is divided into N R segments. Each

of them is modeled as a rigid and uniform rod linked by ideal joints (without dissipation) to the contiguous elements (the

ground station, other rods, or the kite). All the tether segments or rods have the same instantaneous length L R ( t ) and mass

M R ( t ), being the total length of the tether L T (t) = N R L R (t) . Two important dimensionless parameters related with the tether

segments are the ratios 

l R (τ ) ≡ L R (t) 

L T 0 
(4) 

and 

M R 

M K 

= σT l R (τ ) , σT ≡
ρT πD 

2 
T L T 0 

4 M K 

. (5) 

According to these definitions, the initial dimensionless length of a tether segment is l R (0) = 1 /N R . The function l R ( τ ) is the

first component of the vector with the control variables in Eq. (2) . For tether segment i , we introduce a frame of reference

S Ri attached to it at any instant. Its origin O Ri is at the middle of the tether segment and the unit vector x Ri is along the

direction defined by the segment itself. The components in S Ri of the tensor of inertia of segment i about its center of mass

are 

I R (t) = M K L 
2 
T 0 × σT l 

3 
R (τ ) ιR , ιR ≡

( 

0 0 0 

0 1 / 12 0 

0 0 1 / 12 

) 

. (6) 

Tether segments are infinitely thin, and just two angles are enough to define their orientation. Our model uses the lateral

angles ϕi and the elevation angles γ i defined in Fig. 1 , which correspond to the first 2 N R components of the vector of

coordinates in Eq. (1) . Vector components in S E and S Ri are related by the rotation matrix R 

RE 
i 

that depends on the angles ϕi 

and γ i [see Eq. (A.1) ]. The normalized position vector of the center of mass of segment i can also be written as a function

of these angles 

r Ri = −l R 

i ∑ 

j=1 

e j 
[
cγ j 

(
cϕ j x E + sϕ j y E 

)
+ sγ j z E 

]
, (7) 

where the factors e j , which will always appear inside a sum in this study, are equal to e j = 1 / 2 for j equal to the maximum

index of the summation [ j = i in Eq. (7) ], and e j = 1 otherwise ( j < i ). The absolute velocity, i.e. the one found by an observer

at S E , is given by v Ri = d r Ri /d τ | S E . As shown in Appendix B , such a vector can be written as 

v Ri = 

dr Ri 

dτ
| S E = S Ri ˙ q s + C Ri ˙ q c , (8) 

where S Ri and C Ri are two matrices that depend on q s and q c (but not on their τ -derivatives). Similarly, the normalized

angular velocity of a frame S Ri with respect to S E is 

ω Ri = W Ri ˙ q s (9) 

with W being a matrix given in Appendix B . Interestingly, ω does not depend on 

˙ q c . 
Ri Ri 
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Fig. 1. Frames of reference and coordinates of the kite-tether system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Bridle and kite/drone 

The kite or drone, with mass M K , chord C , wingspan B , and surface S , is connected to the main tether at point Q by a set

of lines, which are commonly referred as bridle (see Fig. 1 ). The dimensionless position vector of point Q is a function of all

the ϕi and γ i and it reads 

r Q = −l R 

N R ∑ 

j=1 

[
cγ j 

(
cϕ j x E + sϕ j y E 

)
+ sγ j z E 

]
. (10)

The lengths and masses of the bridle’s lines are very small if compared with the ones of the main tether, and these lines

typically acquire a straight shape due to the high tension. For these reasons, our model substitutes the lines of the bridle by

a set of massless rods. Moreover, under such assumption, the details of the bridle, like the number of lines or the precise

location of their attachment points at the kite, are not needed. The lines of the bridle impose a geometrical constraint and

just the relative position between point Q and the center of mass of the kite O K is relevant, i.e. 

QO K 

L T 0 
= −l B ( cδcηx K + cδsηy K + sδz K ) , (11)

where l B ( τ ), δ( τ ), and η( τ ), are three known functions. According to Eq. (11) and the lower inset of Fig. 1 , l B is the nor-

malized distance between O K and Q , and δ and η are two angles that determine the position of Q inside and outside the

plane of symmetry of the kite, respectively. The evolutions of these variables, which are part of the vector with the control

variables in Eq. (2) , are imposed by the kite control unit that reels-in and reels-out the lines of the bridle. 

Vectors x K , y K , and z K in Eq. (11) form a basis of the frame of reference S K with origin at the center of mass of the

kite ( O K ). Axes O K x K and O K z K belong to the plane of symmetry of the kite and axis O K x K points forward in normal flight

attitude (see Fig. 1 ). As usual in flight mechanics, the yaw ( ψ), pitch ( θ ) and roll ( φ) angles are used to orientate frame S K
with respect to S E . These three variables are included in the vector of coordinates in Eq. (1) and also appear in the rotation

matrix that relate vector components in the S E and S K frames [see Eq. A.2 ]. The components in S K of the tensor of inertia of

the kite about O K then takes the following form: 

I K = M K L 
2 
T 0 ιK ιK ≡

( 

ιxx 0 ιxz 

0 ιyy 0 

ιxz 0 ιzz 

) 

(12)

with ιxx , ιyy , ιzz , and ιxz being constants that depend on the geometry and mass distribution of the kite. 
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The normalized position vector of the center of mass of the kite is easily found by combining Eqs. (10) and (11) as follows

r K = r Q + 

QO K 

L T 0 
, (13) 

and the absolute dimensionless velocity of the kite, v K = d r K /d τ | S E , reads 

v K = S K ˙ q s + C K ˙ q c (14) 

with S K and C K given in Appendix B.2 . The normalized angular velocity of the kite with respect to the inertial frame S E 

ω K = W K ˙ q s (15) 

is also independent of the τ -derivative of q c (see Appendix B.2 ). 

2.3. Onboard rotors 

In the case of FG AWES, the model also includes N G rotors that are distributed symmetrically with respect to the plane

of symmetry of the kite. Each rotor is taken as a rigid body made of a thin shaft and three blades. The two dimensionless

parameters characterizing the rotors are 

σG ≡ M G 

M K 

, l G ≡ R G 

L T 0 
(16) 

with M G the total mass of the rotor and R G the length of each blade. Subscript G has been used to remind that in normal

operation the rotors acts as generators. The centers of mass of the rotors, at points O Gj with j = 1 , .., N G , are at fixed locations

for an observer on the kite. We then can write 

O K O G j 

L T 0 
= x G j x K + y G j y K + z G j z K , (17) 

where x Gj , y Gj , and z Gj are known constants. The shafts of the rotors are contained in planes that are parallel to the plane of

symmetry of the kite but they all form a constant angle ν with x K (see Fig. 1 b). For each rotor with subscript j , we introduce

a frame of reference S Gj with origin at O Gj , and axes O Gj x Gj and O Gj y Gj along the directions of the shaft and one of the blades,

respectively. Since the axes of this frame are principal axes of inertia, the components in S Gj of the tensor of inertia of the

rotor about its center of mass are 

I G = M K L 
2 
T 0 × σG l 

2 
G ιG , ιG = 

( 

1 / 3 0 0 

0 1 / 6 0 

0 0 1 / 6 

) 

, (18) 

where we assumed that the blades are uniform, straight, and infinitely thin and also ignored the mass of the shaft as

compared to the mass of a blade. 

From the position vectors of the centers of mass of the rotors 

r G j = r K + 

O K O G j 

L T 0 
, (19) 

one can also compute the velocities of their center of mass with respect to S E 

v G j = 

dr G j 

dτ
| S E = S G j ˙ q s + C G j ˙ q c , (20) 

with j = 1 , . . . , N G . Matrices S Gj and C Gj are given in Appendix B.3 . Each rotor has one degree of freedom that corresponds to

its rotation angle λj ( τ ) about the shaft. These angles are included in the vector of coordinates of the simulator [see Eq. (1) ].

The angular velocity of the rotors with respect to the Earth frame is 

ω G j = ω K + 

˙ λ j x G j = W G j ˙ q s . (21) 

The explicit form of matrix W Gj is given in Appendix B.3 . 

2.4. Onboard controls 

In some GG systems, such as the one developed in TU Delft, the control is carried out by the already described drum-

generator module and the kite control unit, which set the values of l R , and l B , δ, and η, respectively. However, there are

other configurations, such as the FG system by Makani, with different control actuators. In order to cover all the possible

cases and combinations, we now introduce motor controllers of the rotors and the movable aerodynamic surfaces: ailerons,

elevators, and rudder. For simplicity, the equivalent circuit model of the motor controller that involves other variables such

as current, voltage, and motor parameters are not included in the simulator. Our model incorporates the motor controller

by adding a normalized torque m 

j 
CG 

acting upon each rotor j . Such a torque reads 

m 

j 
CG 

= −ξ j (τ ) x G j , (22) 
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where ξ j is a dimensionless function imposed by the motor controller. Therefore, the following reaction dimensionless

torque acts upon the kite 

m CK = −
N G ∑ 

j=1 

m 

j 
CG 

. (23)

On the other hand, the aerodynamic model of the kite or drone explained in Appendix C depends on the deflections of the

ailerons δa ( τ ), elevator δe ( τ ), and rudder δr ( τ ). 

For the most general configuration of the simulator, the vectors with the coordinates and the control variables have

dimensions equal to N s = 2 N R + 3 + N G (tether segments + kite + rotors) and N c = 1 + 3 + N G + 3 (tether + bridle + motor

controller torques + aerodynamic surface deflection), respectively. Therefore, the simulator is suitable for most of the AWE

systems under development. For instance, the GG AWES by TU Delft is obtained as a particular case of the simulator if all

the variables related with the rotors and the movable aerodynamic surfaces, are ignored. On the other hand, the normal

operation of Makani’s prototype, which is a FG system, can be simulated by setting constant values to the control variable

l R , l B , δ, and η, and giving time histories for ξ j ( τ ), δa ( τ ), δe ( τ ), and δr ( τ ). During its take-off and landing l R is not constant

but it would follow the control law imposed by the drum module on the ground. The systems of other companies (Ampyx

Power, KPS, . . . ) are also subcases of our simulator. 

3. Equations of motion 

3.1. Lagrangian formulation 

The set of equations that governs q s ( τ ) for a given control law q c ( τ ) is 

d 

d τ

(
∂L 

∂ ˙ q sm 

)
− ∂L 

∂q sm 

= Q m 

(24)

with m = 1 , ..., N s . Due to the large number of involved bodies in the model, the computation of the normalized lagrangian

function L and the generalized force components Q m 

is cumbersome. The lagrangian L = T − U involves the total normalized

kinetic energy of the system 

T = 

1 

2 

[ 

σT l R 

N R ∑ 

i =1 

(
v 2 Ri + l 2 R ω 

T 
Ri · ιR · ω Ri 

)
+ v 2 K + ω 

T 
K · ιK · ω K + σG 

N G ∑ 

i =1 

(
v 2 Gi + l 2 G ω 

T 
Gi · ιG · ω Gi 

)] 

. (25)

The results presented in Section 2 make the computation of the lagrangian function straightforward. Substituting Eqs. (8) ,

(14) , and (20) for the velocities and Eqs. (9) , (15) , and (21) for the angular velocities in Eq. (25) yields 

T = 

1 

2 

(
˙ q 

T 
s M s ˙ q s + 2 ̇

 q 

T 
s M sc ˙ q c + 

˙ q 

T 
c M c ˙ q c 

)
, (26)

with 

M s = σT l R 

N R ∑ 

i =1 

(
S T Ri S Ri + l 2 R W 

T 
Ri ιR W Ri 

)
+ S T K S K + W 

T 
K ιK W K + σG 

N G ∑ 

i =1 

(
S T Gi S Gi + l 2 G W 

T 
Gi ιG W Gi 

)
, (27)

M sc = σT l R 

N R ∑ 

i =1 

S T Ri C Ri + S T K C K + σG 

N G ∑ 

i =1 

S T Gi C Gi , (28)

M c = σT l R 

N R ∑ 

i =1 

C T Ri C Ri + C T K C K + σG 

N G ∑ 

i =1 

C T Gi C Gi . (29)

The lagrangian function of the system also involves the normalized potential energy 

U = −
( 

σT l R 

N R ∑ 

i =1 

r Ri + r K + σG 

N G ∑ 

i =1 

r Gi 

) 

· z E . (30)

Constraint forces between tether segments (tether tensions), between the kite and the bridle, and the kite and the ro-

tors, do not appear explicitly in the equations of motion because the joints are assumed ideal. This is the main advantage
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of the lagrangian formulation with a minimal coordinate approach. However, the torque of the motor controller and the

aerodynamic forces and torques acting on all the elements of the system should be included in the generalized forces 

Q m 

= 

N R ∑ 

i =1 

f i AR ·
∂ v Ri 

∂ ˙ q sm 

+ f AK ·
∂ v K 
∂ ˙ q sm 

+ m K · ∂ω K 

∂ ˙ q sm 

+ 

N G ∑ 

i =1 

[
f i AG ·

∂ v Gi 

∂ ˙ q sm 

+ m 

i 
G ·

∂ω Gi 

∂ ˙ q sm 

]
(31) 

with m = 1 , . . . , N s and f i 
AR 

, f AK , and f i 
AG 

the normalized aerodynamic forces acting on the tether segments, the kite, and

the rotors, respectively. Eq. (31) neglects the aerodynamic torque on the rods. However, it considers the total torque upon

the kite m K = m AK + m CK and the rotors m 

i 
G 

= m 

i 
AG 

+ m 

i 
CG 

that involve their aerodynamic torques and the one coming from

the motor controllers. These forces and torques are functions of the coordinates and the control variables, and their explicit

forms are given in Appendix C . 

Substituting these results for the lagrangian and the generalized forces in Eq. (24) leads to the following set of second

order differential equations 

M sm j ̈q s j + M scm j ̈q c j + 

∂M sm j 

∂q sk 

˙ q sk ̇ q s j + 

∂M scm j 

∂q sk 

˙ q sk ̇ q c j + 

∂M sm j 

∂q ck 

˙ q ck ̇ q s j + 

∂M scm j 

∂q ck 

˙ q ck ̇ q c j 

− 1 

2 

(
∂M s jk 

∂q sm 

˙ q s j ˙ q sk + 2 

∂M sc jk 

∂q sm 

˙ q s j ˙ q ck + 

∂M c jk 

∂q sm 

˙ q c j ˙ q ck 

)
+ 

∂U 

∂q sm 

= Q m 

(32) 

with m = 1 , . . . , N s . 

3.2. Hamiltonian formulation 

Most of previous works on kite dynamics use classical mechanics or lagrangian formulation. However, Hamilton’s equa-

tions have several interesting features, and can be straightforwardly obtained from the Lagrange equations. We now show

the main steps to find the equations of motion of the system by using hamiltonian formulation and discuss their peculiari-

ties. The matrix and index notation introduced in previous sections make the transformation from lagrangian to hamiltonian

formulations very simple. 

After computing the momenta by differentiating the lagrangian function with respect to the generalized velocities, i.e. 

p = 

∂L 

∂ ˙ q s 
= M s ˙ q s + M sc ˙ q c , (33) 

one finds the hamiltonian function 

H ≡ ˙ q 

T 
s · p − L = 

1 

2 

(
˙ q 

T 
s M s ˙ q s − ˙ q 

T 
c M c ˙ q c 

)
+ U . (34) 

We now eliminate ˙ q s by using Eq. (33) and write the hamiltonian as 

H ( q s , p ) = 

1 

2 

[
p 

T H p p − 2 ̇

 q 

T 
c H cp p + 

˙ q 

T 
c H c ˙ q c 

]
+ U (35) 

with H p = M 

−1 
s , H cp = M 

T 
sc M 

−1 
s and H c = M 

T 
sc M 

−1 
s M sc − M c . The explicit form of Hamilton’s equations 

dq s 

dτ
= 

∂H 

∂ p 

, (36) 

dp 

dτ
= − ∂H 

∂q s 
+ Q (37) 

is 

dq sm 

dτ
= H pm j p j − H cp jm 

˙ q c j (38) 

dp m 

dτ
= −1 

2 

[
H pi j 

∂q sm 

p i p j − 2 

H cpi j 

∂q sm 

˙ q ci p j + 

H ci j 

∂q sm 

˙ q ci ̇ q c j 

]
− ∂U 

∂q sm 

+ Q m 

(39) 

with m = 1 , . . . , N s . The evolution of the hamiltonian can be obtained by integrating the following equation 

dH 

dτ
= 

˙ q 

T 
s · Q − ∂L 

∂τ
, (40) 

where Q is a column vector with the components of the generalized forces. If the control variables are constant, then

the Hamiltonian coincides with the mechanical energy ( H = T + U) and thus ∂ L /∂ t = 0 . For such a particular case,

Eq. (40) shows that the change of the mechanical energy of the system is equal to the work done by the non-conservative

forces. 
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An important feature of the equations of motion is that the variables λi , i.e. the angular coordinates of the blades of the

rotors, do not appear explicitly in the right hand side of Eqs. (38) and (39) . A priori, there are only two places where λi

could potentially appear. First, one can check that the term ω 

T 
Gi 

· ιG · ω Gi in Eq. (26) does not involve λi thanks to the special

form of the tensor ιG that has ιG (2 , 2) = ιG (3 , 3) . Therefore, the lagrangian and the hamiltonian functions are independent

of λi . Second, the contribution of the rotors to the generalized force does not introduce an explicit dependence with λi

because f i 
AG 

and m 

i 
G 

are along x Gi and the first row of the rotation matrix R 

GK 
i 

is independent of λi . For this reason, the

final implementation of our simulator does not include the variables λi in the state vector and the last N G equations of (36) ,

which are decoupled from the others, are ignored. Such approach is very convenient from a numerical point of view, because

the dynamics of the blades is much faster than the ones of the kite and the tether. Including the evolution equations for λi

would yield a stiff set of equations, leading to worse computational performance. 

4. Implementation, verification and performance of the simulator 

The equations of motion, i.e. Eqs. (32) or (38) and (39) , can be written as 

dx 

dτ
= f [ x , u ( τ ) ] , (41)

where x = [ ̂  q s ˙ q s ] (or x = [ ̂  q s p] ) is the state vector, ˆ q s = [ γ1 , . . . γN R 
, ϕ 1 , . . . ϕ N R 

, θ, ψ, φ] T is a vector with the coor-

dinates or degrees of freedom of the system except the λi , and u = [ q c ˙ q c q̈ c ] is the control vector. Therefore, the total

dimension of this system is 2 × ( N R + 3 ) + N G . Given a set of initial conditions, the numerical integration of the systems

involves the computation of the tensors in Eq. (32) or (38) and (39) at each time step. Although the analytical expressions

of the gradients of M s , M sc , and M c have been implemented in the code, such a computation is the most demanding opera-

tion from a computational point of view, especially when the number of tether segments is large. We also remark that the

control vector contains the first and second derivatives of q c . Although we did not encounter any difficulty in the examples

of this work, special care should be taken during numerical integrations if the rates of change of the controls are very high.

The equations of motion have been implemented in two separate simulators, aimed at different purposes. The first one

is a MATLAB 

®-based code that runs on a single processor. Such a simulator is available in a public repository [30] and

is appropriate for academic purposes. The second simulator has been implemented in Fortran and uses shared memory

multiprocessing (OpenMP) for the computation of the gradients of M s , M sc , and M c , as well as equation assembly. Both

implementations can integrate the lagrangian and the hamiltonian forms of the equations of motion. 

4.1. Performance and parallel scalability 

A relevant metric to measure the performances of the parallelized Fortran simulator is the required time that is necessary

to evaluate the right hand side of Eq. (41) . The time consumed in the numerical integration of the equations of motion is

directly related to this metric, and it is easier to test it with identical conditions. The analysis was performed varying the

numbers of tether segments and number of processors. The computations were carried out on a dedicated cluster with

44 Intel Xeon E5-2699 v4 processors at 2.20 GHz. Tests consist on the computation of the right hand side of Eq. (41) one

thousand times for exactly the same inputs. We took a batch of one thousand states vectors and instants obtained during a

transient trajectory with initial condition equal to the equilibrium state of the system plus a small perturbation. 

Fig. 2 shows the computational time using the lagrangian formulation. If the number of tether segments is small, then it

is convenient to use a single thread because the parallelization deteriorates the performance. Parallelization is advantageous

when flexibility effects (tether sagging) are important and a high number of tether segments are needed to properly capture

tether dynamics. In this regards, the code exhibits a good scalability and the computational time is almost halved when the

number of threads is doubled for a given number of tether segments. 

When comparing lagrangian [ Eq. (32) ] and hamiltonian [ Eqs. (38) and (39) ] formulations, one readily finds that the

latter involves a smaller number of tensors. In particular, in Eqs. (38) and (39) there are no tensors involving the partial

derivatives of matrices with respect to the control vector. From a computational point of view, this constitutes a cost saving

as compared to the lagrangian formulation. However, in order to check the quality of the numerical integration, one typically

adds Eq. (40) to the system of equations. Since the term ∂ L /∂ t involves the calculation of the partial derivatives of some

matrices with respect the control, the Hamiltonian formulation does not allow to save significant computational resources

in practical implementations. Actually, as shown in Fig. 3 , the required time to evaluate one thousand times the right-hand

side of the equations of motion with the Hamiltonian formulation is typically a ten percent higher than the lagrangian one.

Taking into account that the chosen metric is an indirect indicator of the integration performance, the above conclusion

does not necessarily mean than the lagrangian formulation is more efficient. Using our MATLAB 

® simulator, we performed

two numerical integrations with the same initial condition, integrator tolerance, and explicit Runge–Kutta integrator with

variable time step. The integration with the Hamiltonian formulation was a 20% faster because the numerical integrator

made a smaller number of evaluations of the right-hand side. Moreover, the difference between the Hamiltonian provided

by Eqs. (34) and (40) revealed that the numerical stability of the the Hamiltonian formulation is better. Therefore, the

best performing simulator depends on the particular case of study and, beyond performance, both formulations exhibit

advantages and drawbacks. 
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Fig. 2. Computational time versus number of tether segments. 

Fig. 3. Hamiltonian-to-Lagrangian computational time ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Code verification 

The following tests were designed and carried out to verify the implementation of the code: (i) the analytical computa-

tions of the gradients of M s , M sc , and M c have been compared against numerical calculations using finite difference methods,

(ii) for N R = 1 and σ T → 0, i.e., a single straight and massless tether, we checked that the simulator recovers the results of

Ref. [26] for both longitudinal and lateral directional motions, (iii) for N R = 5 and longitudinal dynamics ( ϕ i = ˙ ϕ i = η = 0 ),

the results of the simulator agree with the ones presented in Ref. [15] , (iv) for every calculation the accomplishment of

Eq. (40) is monitored, and (v) the results of the simulations were postprocessed to verify that the dynamics of all the rigid

bodies (tether segments, kite, and rotors) satisfy Newton’s laws for linear and angular momentum. The latest test provides

the constraint forces and also proves the consistency of our lagrangian simulator with classical mechanics formulation. 

In addition to the previous tests, the implementation of the code has been verified by comparing the simulation results

with a simple analytical solution. We consider a kite or drone without rotors ( N G = 0 ), and linked to the ground by a single

( N R = 1 ), massless ( σT = 0 ) and infinitely thin ( χR = 0 ) tether. There is no wind, and the length of the tether decreases

according to the law l R = 1 + v in τ, with v in a negative constant representing the dimensionless reel-in velocity. If we look

for symmetric ( ϕ 1 = φ = ψ = 0 ) and stationary ( ̇ q s = 0 ) solutions, then one finds v K = v A 
K 

= v in ( cos γ1 i E + sin γ1 z E ) and α =
θ + γ1 . A simple force and torque balance for the kite gives 

μv 2 in [ C x cos θ + C z sin θ ] + T cos γ1 = 0 , (42) 
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Fig. 4. Panels (a) and (b) show the normalized tension (left) and the elevation angle and angle of attack (right) versus the reel-in velocity for two bridle 

angles δ. 
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μv 2 in [ C z cos θ − C x sin θ ] + T sin γ1 + 1 = 0 , (43)

μεc v 2 in C m 

− T l B sin ( α − δ) = 0 (44)

with C x (α) = C x 0 + C xαα, C z (α) = C z0 + C zαα, C m 

(α) = C m 0 + C mαα, and T the dimensionless tether tension. For a given reel-

in rate, v in , Eqs. (42) –(44) provides the equilibrium pitch angle θ , and tether elevation angle γ 1 and tension T . These equa-

tions are non-linear, but a simple analytical analysis can be performed to uncover the physics of the reel-in maneuver. We

first note that at the particular reel-in velocity 

v ∗in = [ μ( C ∗x sin θ ∗ − C ∗z cos θ ∗) ] −1 / 2 
, (45)

the tether tension vanishes and the state variables are θ ∗ = − arctan ( C ∗x /C ∗z ) and γ ∗ = α∗ − θ ∗ with α∗ = −C m 0 /C mα, C ∗x =
 x ( α∗) , C ∗z = C z ( α∗) . In order to investigate the reel-in maneuver with velocities close to v ∗

in 
, we substitute in Eqs. (42) –(44)

the expansions v in = v ∗
in 

+ ̃

 v in , α = α∗ + ˜ α, θ = θ ∗ + 

˜ θ, T = 

˜ T , and drop quadratic terms in the variables with tilde (assumed

to be small). After some cumbersome calculations, one finds 

˜ T = 

μεc C mαv ∗2 
in 

l B sin ( α∗ − δ) 
˜ α (46)

˜ α = − 2 ̃

 v in 
v ∗

in 

[ 

C ∗2 
z + C ∗2 

x 

C ∗x C xα + C ∗z C zα + 

εc C mαC ∗z sin γ ∗
l B sin ( α∗−δ) cos θ ∗

] 

. (47)

Eqs. (46) and (47) show that the dependence of the tension on the reel-in velocity for this special non-accelerated solu-

tion is intricate. In particular, the aerodynamic parameters and the geometry of the bridle ( l B and δ) play an important role

[see angle δ in the denominator of Eq. (47) ] and the tether tension does not increase necessarily with the modulus of v in .
These features are highlighted in Fig. 4 that shows the normalized tension, angle of attack and elevation angle of the tether

computed from Eqs. (42) –(44) for δ = 5 ◦ and δ = 25 ◦. The v in -range yielding T < 0 is not physical because the tether would

be under compression. For δ = 5 ◦ ( δ = 25 ◦) the tether tension increases (decreases) with | v in | . 
These analytical reel-in solutions have been compared to the trajectories of the simulator. The values of the parameters

used in the calculations are shown in Table 1 , except that, according to previous discussion, we set V w 

= 0 , ρT = 0 , D T = 0 .

Two tests were carried out for bridle angles δ = 5 ◦ and δ = 25 ◦ and with reel-in velocities v in = −0 . 064 and v in = −0 . 05 ,

respectively. Therefore, we considered reel-in velocities larger and smaller than the zero-tension velocity v ∗
in 

= −0 . 06 , but

always in the side of the diagram that make the tether work under traction ( T > 0) (see Fig. 4 ). We first verified with the

code that the state vector x in = [ ̂  q s ˙ q s ] , with 

ˆ q s = [ γ1 0 θ 0 0 ] 
T 

and 

˙ q s = 0 and γ 1 and θ given by Eqs. (42) –(44) , satisfies

f (x in , u ) = 0 for both δ values. In second place, we found the eigenvalues of the Jacobian matrix of f ( x , u ) evaluated at x in .

We found that both reel-in maneuvers are longitudinally unstable and the one with the higher δ was more unstable (the

eigenvalue with positive real part was one order of magnitude larger). In third place, we integrate the equations of motion

numerically with initial conditions equal to x plus a small perturbation [see solid and blue lines in panels (a)–(c) in Fig. 5 ].
in 
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Table 1 

Parameters of the ground-generation system. 

Symbol Value Symbol Value 

Environment g 9.81 m/s 2 ρ 1.225 kg/m 

3 

V w 12 m/s 

Tether L T 0 300 m D T 2 mm 

ρT 970 kg/m 

3 C ⊥ 1 

Bridle L B 4 m δ 60 °

Kite M K 3.4 kg S 13 m 

2 

B 5 m C 1.5 m 

I xx 12.3 kgm 

2 I yy 3.2 kg m 

2 

I zz 11.4 kgm 

2 I xz 0.4 kg m 

2 

C x 0 −0 . 065 C x α 0.18 

C y β −1 . 57 C z 0 0.12 

C z α −2 . 97 C l β 1.24 

C lp −0 . 15 C n β 0.78 

C nr −0 . 002 C m 0 0.13 

C m α −0 . 76 C mq −0 . 17 

Fig. 5. Panels (a) and (b) show the evolution of the tether tension, kite pitch angle and elevation angle, respectively for two reel-in maneuvers with 

(δ, v in ) = (5 ◦, −0 . 064) and (δ, v in ) = (25 ◦, −0 . 05) . (For interpretation of the references to color in this figure, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

For convenience, the analytical solutions were plotted with dashed and red lines. In the case (δ, v in ) = (5 ◦, −0 . 064) , which

is weakly unstable, the analytical and numerical solution practically overlaps in the plot (a zoom reveals that the distance

among them increases slowly). For (δ, v in ) = (25 ◦, −0 . 05) the instability is evident. 

5. Simulation results 

This section presents two examples that illustrate the kind of dynamic analysis that can be carried out with the

simulator. Quantitative results about energy generation were omitted because it is a topic beyond the scope of this work.

It requires other tools such as optimal control solver, path planning, and a more accurate model for the aerodynamic per-

formance of the rotors. Nevertheless, the analysis was split into ground- and flygeneration systems and we addressed open

and closed-loop control problems. Additional results to the one presented in this section, such as 3D animations and more

detailed information about kite dynamics and the performance of the simulator, can be obtained by running the example

programmes uploaded to the repository [30] . 

5.1. Ground-generation systems 

During the energy generation phase of GG systems, the kite or drone flies on a figure-of-eight trajectory in crosswind

conditions. As explained in the Introduction, this important maneuver has been studied in the past. However, to the best of

our knowledge, most of them were not simulated with a self-consistent dynamical model because the control inputs did not
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Fig. 6. Panel (a) and (b) show the control law for η and the trajectory of the center of mass of the kite, respectively. 

Fig. 7. Evolution of Euler angles in the maneuver of Fig. 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

correspond to the one that are present in a real AWE system. For this reason, we chose this maneuver and implemented an

open-loop control strategy that ignores the reel out of the main tether and changes the geometry of the bridle periodically.

All the variables of q c are constant, except for the bridle angle η, which follows the periodic law shown in Fig. 6 a. The

law has two constant phases of duration 1 . 2 
√ 

L T 0 /g and amplitudes η = 17 . 5 ◦ and η = −17 . 5 ◦ linked by linear segments of

duration 1 . 5 
√ 

L T 0 /g . Therefore, the normalized period of the control law is τp = 5 . 4 . 

For the physical parameters of Table 1 and the control law q c ( τ ) described in the paragraph above, one needs to compute

the state x 0 = x (τ = 0) that, once used as initial condition in Eq. (41) , gives a figure-of-eight trajectory x ( τ ) satisfying x (0) =
x (τp ) . This is, in principle, a difficult problem and it may even happen that such a periodic solution does not exist. In our

case, the periodic solution exists and it was found by using a periodic orbit solver that also provides the stability of the

trajectory (Floquet Multipliers) as a by-product [31] . As shown in Figs. 6 and 7 , the calculations were carried out for several

numbers of tether segments ( N R = 1 , 2 and 3). The selected case is interesting from an academic point of view because it

highlights the importance of tether flexibility. It is evident from Fig. 6 b that a model with just a straight and rigid tether

( N R = 1 ) does not provide the correct result because it overestimates the minimum altitude of the trajectory. Calculations

with N R = 2 and N R = 3 reveal that the flexibility of the tether makes the kite fly at much lower altitude and it practically

crashes. Interestingly, for this particular case, just few tether segments are enough to capture correctly the tether dynamics

because increasing N R beyond 3 does not change the trajectory significantly. The evolution of the Euler angles of the kite is

smoother as the number of tether segments increases (see Fig. 7 ). We also mention that these orbits are unstable because

they have a Floquet multiplier with modulus larger than one. 
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Table 2 

Parameters of the fly-generation system. 

Symbol Value Symbol Value 

Environment g 9.81 m/s 2 ρ 1.225 kg/m 

3 

V w 7 m/s 

Tether N R 3 

L T 0 30 m D T 2 mm 

ρT 970 kg/m 

3 C ⊥ 1 

Bridle L B 3 m δ 80 °
η 0 

Drone M K 2 kg S 0.75 m 

2 

B 3 m C 0.25 m 

I xx 0.2 kgm 

2 I yy 0.078 kg m 

2 

I zz 0.28 kgm 

2 I xz −0 . 002 kg m 

2 

C x 0 −0 . 025 C x α 0.67 

C y β −0 . 4 C z 0 −0 . 91 

C z α −5 . 65 C l β −0 . 26 

C lp −0 . 2 C n β 0.052 

C nr −0 . 02 C m 0 0.074 

C m α −0 . 86 C mq −0 . 3 

C lδa 
0.055 C lδr 

0.0033 

C nδr 
−0 . 046 C mδe 

−1 . 54 

C yδr 
0 

Rotors N G 2 

M G 0.3 kg R G 0.2 m 

ν 0 X G 0.125 m 

Y G 0.75 m Z G 0 

C f 0.08 C m 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Fly-generation system 

The last example involves a fixed-wing drone equipped with two rotors that spin in the same direction while generating

power. The physical parameters of the mechanical system, which are shown in Table 2 , do not coincide with any specific

AWE system, but they mainly corresponds to the small glider Bubble Dancer, taken from the model provided by the AVL

software [32] . We focus on a symmetric equilibrium state of the tethered drone with constant tether length and bridle

geometry, and a rotor spinning velocity of �∗
G = 3500 rpm or, in normalized form, ˙ λ∗

1 , 2 = 6 . 4 . The state vector x ∗ = [ ̂  q ∗s ˙ q ∗s ]
of such equilibrium state is 

ˆ q 

∗
s = [ γ ∗

1 γ
∗

2 γ
∗

3 0 0 0 θ ∗ 0 0 ] (48) 

˙ q 

∗
s = 

[
0 0 0 0 0 0 0 0 0 

˙ λ∗
1 

˙ λ∗
2 

]
. (49) 

One readily verifies that the equilibrium spinning velocity ˙ λ∗
1 , 2 is achieved for a constant normalized motor torque of ξ1 =

ξ2 = 1 . 257 × 10 −4 . Since both rotors spin in the same direction, a reaction torque acts on the drone and an aileron deflection

is required to keep the system symmetric. Imposing the equilibrium condition f ( x ∗, u 

∗) = 0 one finds the aileron deflection

δ∗
a = −2 . 28 ◦, as well as the remaining state vector components γ ∗

1 
= 63 . 6 ◦, γ ∗

2 
= 66 . 4 ◦, γ3 = 69 . 3 ◦, θ ∗ = 7 . 9 ◦. 

There are eigenvalues of the Jacobian matrix of the flow f evaluated at x ∗ with positive real parts. Therefore, the equi-

librium state x ∗ is unstable. A numerical integration of Eq. (41) with initial condition equal to x ∗ plus a small perturbation

confirms this result and shows that the drone moves laterally until it crashes. The equilibrium can be stabilized if the de-

flections of the control aerodynamic surfaces are no longer constant and they evolve according to the following laws 

dδa 

dτ
= −I a φ − P a ˙ φ − D a φ̈ (50) 

dδr 

dτ
= −I r ψ − P r ˙ ψ − D r ψ̈ (51) 

dδe 

dτ
= I e ( θ

∗ − θ ) (52) 

with I a = −I r = 20 , P a = D a = −P r = −D r = 10 , and I e = −10 , corresponding to the gains of a proportional-integral-derivative

controller. Therefore, the deflection of the ailerons, the rudder, and the elevator for this closed-loop configuration depend

on the attitude of the drone. 
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Fig. 8. Panel (a), (b), and (c) show the evolution of the deflection of the control aerodynamic surfaces. 

Fig. 9. Solid lines in panels (a), (b), and (c) show the evolution of the yaw, pitch and roll angle, respectively. Dashed lines correspond to the target 

trajectory. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 shows the evolution of the deflections of the control surfaces for a numerical simulation with initial conditions

equal to x ∗ plus a perturbation. These control actions, which are all below few degrees, are enough to stabilize the equilib-

rium state. As shown in Fig. 9 the Euler angles of the drone (solid lines) approach the target trajectory x ∗ (red dashed lines).

The state of the center of mass of the drone and the main tether (not shown) also approach x ∗. 

6. Conclusions 

This work presents a flight simulator for a kite or drone equipped with rotors and linked to the ground by a single

tether. The control vector of the simulator includes variables that are inputs in real AWE systems such as the lengths of

the main tether and the lines of the bridle, the deflection of the aerodynamic control surfaces, and the torque of the motor

controller of the rotors. The tether has been modeled by a chain of inelastic rods, thus eliminating the fast longitudinal

waves of elastic tethers. This model setup, combined with the removal of the fast and cyclic angular coordinates of the

rotors, yielded a non-stiff set of equations that allows numerical integrations with larger time steps. Important physical

effects, some of them ignored frequently in AWE simulators, have been incorporated in the simulator. They include tether

inertia, aerodynamic drag, and flexibility as well as the dynamical effects that are consequence of the high spinning velocity

of the rotors. 

The lagrangian formalism, with a minimal coordinate approach, enhances the efficiency and robustness of the simula-

tor due to several reasons. First, the dynamical system is a set of ordinary differential equations that is not coupled with
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nonlinear algebraic constraints. Moreover, all the tensors appearing in the equations were computed analytically and, since

one of their indexes were directly related with the number of tether segments, their parallelization is straightforward and

efficient. The good scalability of the code is evident from Fig. 2 . The Lagrange formalism does also provide a bridge towards

the hamiltonian formulation of the equations of motion. Although the evaluation of the right-hand-side of Hamilton’s equa-

tions is slightly more demanding than Lagrange’s equations (see Fig. 3 ), the numerical tests revealed that the integration of

Hamilton’s equation is faster because the time step is larger for the same integrator tolerance. 

The test cases carried out to verify the correct implementation of the simulator, and the results of Section 5 indicate

that the code is versatile and useful to investigate the dynamics of GG and FG AWE systems. Reel-in maneuvers, figure-

of-eight trajectories and equilibrium state analysis were presented. Open and closed-loop control strategies were imple-

mented. However, quantitative results on energy generation would still need, in the view of the authors, an improve-

ment of the aerodynamic model of the kite and the rotors, and the combination of the simulator with an optimal control

software. 
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Appendix A. Rotation matrices 

The components of a vector in two different frames of reference, for instance a = a xA x A + a yA y A + a zA z A = a xB x B + a yB y B +
a zB z B , are related by a rotation matrix R 

AB as 
(
a xA , a yA , a zA 

)T = R 

AB 
(
a xB , a yB , a zB 

)T 
. The rotation matrix that relates vector

components in the Earth frame S E and in a frame attached to tether segment i is 

R 

RE 
i = 

( 

cγi cϕ i cγi sϕ i sγi 

−sϕ i cϕ i 0 

−sγi cϕ i −sγi sϕ i cγi 

) 

. (A.1) 

The rotation matrix for S E and S K is 

R 

EK = 

( 

cψcθ cψ sθsφ − sψ cφ cψsθcφ + sψsφ
sψcθ sψ sθsφ + cψ cφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

) 

(A.2) 

and the one relating vector components of S Gj and S K is 

R 

GK 
j = 

( 

cν 0 −sν
sνsλ j cλ j cνsλ j 

sνcλ j −sλ j cνcλ j 

) 

(A.3) 

Appendix B. Velocities and angular velocities of the solids 

B.1. Kinematics of the tether segments 

From the rotation matrix in Eq. (A.1) , one finds the angular velocity of a segment i with respect to S E 

ω Ri = sin γi ˙ ϕ i x Ri − ˙ γi y Ri + cos γi ˙ ϕ i z Ri . (B.1) 

Therefore, the components of the normalized angular velocity of segment i in S i , ω Ri = p Ri x Ri + q Ri y Ri + r Ri z Ri , are ( 

p Ri 

q Ri 

r Ri 

) 

= W Ri ˙ q s (B.2) 

where the non-zero elements of W Ri are 

W Ri (1 , N R + i ) = sγi (B.3) 

W Ri (2 , i ) = − 1 (B.4) 

W Ri (3 , N R + i ) = cγi (B.5) 

https://doi.org/10.13039/501100008530
https://doi.org/10.13039/501100010198
https://cordis.europa.eu/project/rcn/193938/
https://cordis.europa.eu/project/rcn/199241
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The absolute normalized velocity of a segment i , found by taking the τ -derivative of Eq. (7) , is 

v Ri = − ˙ l R 

i ∑ 

j=1 

e j 
[
cγ j 

(
cϕ j x E + sϕ j y E 

)
+ sγ j z E 

]
+ l R 

i ∑ 

j=1 

e j ˙ γ j 

[
sγ j 

(
cϕ j x E + sϕ j y E 

)
− cγ j z E 

]

+ l R 

i ∑ 

j=1 

e j ˙ ϕ j cγ j 

(
sϕ j x E − cϕ j y E 

)
. (B.6)

After writing v Ri = u Ri x E + v Ri y E + w Ri z E , one finds that Eq. (B.6) takes the form ( 

u Ri 

v Ri 

w Ri 

) 

= S Ri ˙ q s + C Ri ˙ q c (B.7)

and the only non-zero elements of S Ri and C Ri are 

S Ri (: , j) = l R e j 
[
sin γ j cos ϕ j sin γ j sin ϕ j − cos γ j 

]T 
(B.8)

S Ri (: , N R + j) = l R e j 
[
cos γ j sin ϕ j − cos γ j cos ϕ j 0 

]T 
(B.9)

C Ri (: , 1) = −
i ∑ 

j=1 

e j 
[
cos γ j cos ϕ j cos γ j sin ϕ j sin γ j 

]T 
(B.10)

where the symbol : denotes that the indexes cover all the rows [from 1 to 3 in Eqs. (B.8) –(B.10) ], i = 1 , . . . , N R and e j = 1

( e j = 1 / 2 ) if j < i ( j = i ). In Eqs. (B.8) and (B.9) , index j takes values j = 1 , . . . , i . 

B.2. Kinematics of the kite 

The normalized angular velocity of the kite with respect to S E is found from the rotation matrix in Eq. (A.2) . Its compo-

nents in the S K frame are 

ω K = 

(
˙ φ − ˙ ψ sθ

)
x K + 

(
˙ θcφ + 

˙ ψ cθsφ
)
y K + 

(
˙ ψ cθcφ − ˙ θsφ

)
z K (B.11)

or, writing ω K = p K x K + q K y K + r K z K , ( 

p K 
q K 
r K 

) 

= W K ˙ q s (B.12)

with the non-zero elements of W K given by 

W K (: , 2 N R + 1 : 2 N R + 3) = 

( 

0 −sθ 1 

cφ cθsφ 0 

−sφ cθcφ 0 

) 

. (B.13)

The normalized absolute velocity of the kite is found by taking the τ -derivative of Eq. (13) . It reads 

v K = 

dr Q 
dτ

| S E + 

1 

L T 0 

d QO K 

dτ
| S K + ω K × QO K 

L T 0 
(B.14)

where we used Coriolis Theorem. The kite velocity components in S K , v K = u K x E + v K y E + w K z E , are ( 

u K 

v K 
w K 

) 

= S K ˙ q s + C K ˙ q c . (B.15)

In order to find the non-zero elements of S K and C K , we first note that the first term in Eq. (B.14) gives 

S K (: , j) = l R 
[
sγ j cϕ j sγ j sϕ j − cγ j 

]T 
(B.16)

S K (: , N R + j) = l R 
[
cγ j sϕ j − cγ j cϕ j 0 

]T 
(B.17)

with j = 1 , . . . , N R , and 

C K (: , 1) = −
N R ∑ 

j=1 

[
cγ j cϕ j cγ j sϕ j sγ j 

]T 
. (B.18)
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The second term in Eq. (B.14) only contributes to C K with the non-zero elements 

C K (: , 2 : 4) = R 

EK ·
( −cδcη l B sδcη l B cδsη

−cδsη l B sδsη −l B cδcη
−sδ −l B cδ 0 

) 

, (B.19) 

where the symbols 2: 4 denote that the indexes of C K cover from its second to its fourth column. The last term in

Eq. (B.14) gives 

S K (: , 2 N R + 1 : 2 N R + 3) = −l B R 

EK ·
( 

sδcφ + cδsηsφ sδcθsφ − cδsηcθcφ 0 

−cδcηsφ cδcηcθcφ + sδsθ −sδ
−cδcηcφ −cδsηsθ − cδcηcθsφ cδsη

) 

(B.20) 

B.3. Kinematics of the rotors 

The components of the normalized angular velocities of the rotors in their own frames, ω G j = p G j x G j + q G j y G j + r G j z G j ,

are written as ( 

p G j 

q G j 

r G j 

) 

= W G j ˙ q s (B.21) 

with the non-zero elements of W Gj given by 

W G j (: , 2 N R + 1 : 2 N R + 3) = R 

GK 
j · W K (: , 2 N R + 1 : 2 N R + 3) (B.22) 

W G j (1 , 2 N R + 3 + j) = 1 . (B.23) 

After using Coriolis Theorem, the normalized velocities of the centers of mass of the rotors with respect to S E becomes 

v G j = v K + ω K ×
O K O G j 

L T 0 
(B.24) 

where we took into account that the derivative of O K O G j for an observer linked to the kite is zero. After writing v G j =
u G j x E + v G j y E + w G j z E , one finds ( 

u G j 

v G j 

w G j 

) 

= S G j ˙ q s + C G j ˙ q c (B.25) 

where S G j = S K + S 0 
G j 

, C G j = C K , and the non-zero elements of S 0 
G j 

are 

S 0 G j (: , 2 N R + 1 : 2 N R + 3) = R 

EK ·
( 

z G j cφ + y G j sφ z G j cθsφ − y G j cθcφ 0 

−x G j sφ x G j cθcφ + z G j sθ −z G j 

−x G j cφ −y G j sθ − x G j cθsφ y G j 

) 

(B.26) 

Appendix C. Aerodynamic models 

C.1. Aerodynamic model of the tether 

The simulator considers the aerodynamic force component normal to each tether segment and ignores the tangential

force component and the aerodynamic torque. The dimensionless aerodynamic force acting on a segment i is 

f Ri = −χR l R v A Ri ⊥ v 
A 
Ri ⊥ (C.1) 

where we introduced the coefficient χR ≡ C ⊥ ρD t L 
2 
T 0 

/ 2 M K , air density ρ , tether diameter D T , normal drag coefficient C ⊥ , and

the normalized perpendicular airspeed 

v A Ri ⊥ = v A Ri −
(
v A Ri · x Ri 

)
x Ri (C.2) 

with v A 
Ri 

= v Ri − v w 

being the normalized airspeed of a tether segment. 
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C.2. Aerodynamic model of the kite 

The normalized aerodynamic force of the kite and the moment about its center of mass are given by 

f K = μ
(
v A K 

)2 [
( C x 0 + C xαα) x K + 

(
C yββ + C yδr 

δr 

)
y K + ( C z0 + C zαα) z K 

]
, (C.3)

m K = μ
(
v A K 

)2 
εb 

[(
C lββ + C l p p + C lδa 

δa + C lδr 
δr 

)
x K + 

(
C nββ + C nr r + C nδr 

δr 

)
z K 

]
+ μ

(
v A K 

)2 
εc 

(
C m 0 + C mαα + C mq q + C mδe 

δe 

)
y K (C.4)

with v A K = v K − v w 

the airspeed of the kite, μ≡ρSL T 0 /2 M K , εb = B/L T 0 , εc = C/L T 0 , (p, q, r) ≡
√ 

g/L T 0 (Bp K / 2 , Cq K , Br K / 2) /V T ,

and V T a reference velocity. For simplicity, the effect of the control aerodynamic surfaces (ailerons, elevator and rudder) was

included in the aerodynamic torque but it was ignored in the force except for the lateral force of the rudder deflection. The

attack and sideslip angles of the kite in Eqs. (C.3) and (C.4) are given by 

α = arctan 

(
v A K · z K 

v A 
K 

· x K 

)
, β = arcsin 

(
v A K · y K 

| v A 
K 
| 

)
. (C.5)

C.3. Aerodynamic model of the rotors 

The simulator only includes the aerodynamic force and torque components along the axes of the rotors ( x Gi ). The model

is based on the airspeed normal to the plane of the blade, v A 
Gi ⊥ = v A 

Gi 
· x Gi . The dimensionless force and torque are 

f i AG = − χG C f i 

(
v A Gi ⊥ 

)2 
x Gi (C.6)

m 

i 
AG = l G χG C mi 

(
v A Gi ⊥ 

)2 
x Gi , (C.7)

where v A 
Gi 

= v Gi − v w 

is the airspeed of rotor i , and χG ≡ ρπR 2 
G 

L T 0 / 2 M K . In general, the thrust and moment coefficients, C f
and C m 

of a rotor named j depend on its tip speed ratio and the pitch angle if there is a controller. For certain regimes, C fi
and C mi are both positive and the rotor gives power and a drag. For others, the rotor acts as a propeller and gives thrust

while consuming power ( C fi < 0 and C mi < 0). Since there is a lack of information on the performance of the rotors used by

AWES, our simulator takes constant values for C fi and C mi . 
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