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Marchenko wavefield redatuming, imaging conditions, and the effect of model errors
Sjoerd de Ridder∗, University of Edinburgh; Joost van de Neut, Delft University of Technology; Andrew Curtis, Uni-
versity of Edinburgh; Kees Wapenaar, Delft University of Technology

SUMMARY

Recently, a novel method to redatum the wavefield in the sub-
surface from a reflection response measured at the surface has
gained interest for imaging primaries in the presence of strong
internal multiples. A prerequisite for the algorithm is an ac-
curate and correct estimate of the direct-wave Green’s func-
tion. However, usually we use an estimate for the direct-wave
Green’s function computed in a background velocity medium.
Here, we investigate the effect of amplitude and phase errors
in that estimate. We formulate two novel imaging conditions
based on double-focusing the measured reflection response in-
side the subsurface. These yield information on the ampli-
tude error in the estimate for the direct-wave Green’s function
which we can then correct, but the phase error remains elusive.

INTRODUCTION

Machenko wavefield redatuming (MWR) refers to redatuming
a wavefield, recorded as reflection response outside a stack of
layers to transmission responses inside the stack of layers us-
ing the inverse of the direct wave, by solving the Marchenko
equations for a set of focusing functions (Broggini et al., 2012;
Wapenaar et al., 2014).In MWR, redatuming strictly means to
emulate a recording as if it was recorded at a traveltime (not at
a specific known physical location) inside the subsurface. Be-
cause the redatumed wavefield does not suffer from spurious
waves (such as primaries and internal multiples, reverse-time
propagated beyond their originator interfaces), therefore this
technique allows for artifact free imaging of primaries.

Several imaging schemes have been proposed. MWR can be
applied at each depth level followed by a deconvolution of up-
going with downgoing waves (Broggini et al., 2014; Wape-
naar et al., 2014) or cross-correlation (Behura et al., 2014).
Slob et al. (2014) proposed to extract the image at the one-
way travel-time of the direct wave directly from the retrieved
upgoing focusing function.

Although the scheme proves relatively stable against velocity
errors (Thorbecke et al., 2013), accurate Green’s function (GF)
extrapolation relies on an accurate model of the direct wave
Green’s function (DWGF). We investigate the effect of a gen-
eral amplitude and phase error in an estimated DWGF.

Wapenaar et al. (2016) derived expressions to redatum two-
way GFs from single-sided illumination, yielding both vir-
tual sources and virtual receivers inside the subsurface. We
follow a similar derivation, starting from one-way reciprocity
theorems to derive two new imaging conditions. The first im-
ages the scattered wavefield, while the second images the vir-
tual source strength for virtual sources focused throughout the
medium. Finally, we investigate how amplitude and phase er-
rors in the estimated DWGF appear in images, and show how
the amplitude error can be corrected.

MARCHENKO WAVEFIELD REDATUMING

The basis for 1D MWR lies in the Marchenko equations (Wape-
naar et al., 2014) that relate the transmission GFs from the
acquisition level at z1 (on top of a layer-stack) to z2 within
the layer-stack, with the reflection response measured at the
aquisition level and focusing functions (FFs) that form a fo-
cusing wavefield at z2. A GF measured at zr in response to
a source at zs is denoted G−,+(zr,zs), where the superscripts
indicate respectively upward recording (at zr) and a downward
radiating source (at zs). The wavefield downward radiated and
injected at zi and focussing at z f is denoted f+(zi,z f ), the re-
sulting back-scattered upward wavefield recorded at zr is de-
noted f−(zr,z f ). We use a formulation based on flux normal-
ization. The explicit frequency dependence of the GFs and
FFs are omitted for notation brevity, and a bar ( ¯ ) denotes
complex conjugation. We have the following reciprocity re-
lations for the flux normalized one-way GFs: G+,+(z1,z2) =
−G−,−(z2,z1) and G+,−(z1,z2)=G+,−(z2,z1), G−,+(z1,z2)=
G−,+(z2,z1) (Wapenaar and Grimbergen, 1996). In the fre-
quency domain these can be written:

−G−,+(z2,z1) = f−(z1,z2)−G−,+(z1,z1) f+(z1,z2), , (1)

G+,+
(z2,z1) = f+(z1,z2)−G−,+(z1,z1) f−(z1,z2)., (2)

These two equations have four unknowns and only one known
(the recorded reflection data G−,+(z1,z1)). We reduce the rank
of the system by imposing a causality condition for the Green’s
and focusing functions. A frequency-domain operator Θ ap-
plies what amounts to a mute function in the time-domain. We
suppress all energy in a trace that arrives at the same time or af-
ter the direct wave (symmetrically in time). Thus,
Θ{G−,+(z2,z1)} = 0 and Θ{G+,+

(z2,z1)} = 0. We further
reduce the degeneracy of the system by splitting the downgo-
ing FF in a direct wave focussing function (DWFF) and a coda,
f+(z1,z2) = f+d (z1,z2)+ f+m (z1,z2). The DWFF equals the in-
verse of the DWGF. The muting function applied to the down-
going FF suppresses the DWFF but leaves the coda,
Θ{ f+(z1,z2)} = f+m (z1,z2). Applying the muting operator to
Equations 1 and 2 leaves us with two equations and only three
unknowns:

f−(z1,z2) = Θ{G−,+(z1,z1)
[

f+d (z1,z2)+ f+m (z1,z2)
]
}, (3)

f+m (z1,z2) = Θ{G−,+(z1,z1) f−(z1,z2)}. (4)

One way to solve these equations is by iterating between Equa-
tions 3 and 4 starting with the true f+d , f+m = 0, and f− = 0
(van der Neut et al., 2015). The retrieved FFs are then em-
ployed to find the full GFs between a point in the subsurface,
z2, and the surface, z1, using Equations 1 and 2. We can re-
peat this procedure and retrieve the wavefield at all points in
the subsurface (Broggini et al., 2014). This amounts to ex-
trapolation of our surface data to the subsurface as though
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we recorded a vertical-seismic profile. This interpretation is
only valid in the absence of model errors. Figure 1 shows
an example in a three layer medium, using the true model to
compute a DWFF and extrapolate the measured reflection re-
sponse into the subsurface. The medium consists of two in-
terfaces 100 m apart, forming a layer-sandwich with respec-
tively v1 = 1500 m/s, v2 = 2000 m/s, v3 = 2500 m/s, and
constant density of ρ1 = ρ2 = ρ3 = 2000 kg/m3. We did not
include the free surface in the formulations in this study, but
the Marchenko scheme can be extended to include the free sur-
face (Singh et al., 2015). The reflection coefficients for down-
going wavefields are ρ2v2−ρ1v1

ρ2v2+ρ1v1
≈ 0.143 and ρ3v3−ρ2v2

ρ3v3+ρ2v2
≈ 0.111

at respectively the first and second interface from the top, and
for upgoing wavefields respectively ∼−0.143 and ∼−0.111.

Generally we will use a model estimate to compute an esti-
mated DWGF and DWFF. These estimates, denoted with a
tilde ( ˜ ), relate to the unknown true functions subject to an
error in amplitude, α , and phase, ωβ :

G̃d
+,+

(z2,z1) = α−1(z1,z2)exp{−iωβ (z1,z2)} G+,+
d (z2,z1),

f̃d
+
(z1,z2) = α(z1,z2)exp{iωβ (z1,z2)} f+d (z1,z2). (5)

The amplitude α(ω) and phase errors β (ω), can be a function
of frequency, i.e. a dispersive velocity error. Here, the ampli-
tude and phase errors on the DWGF and DWFF are mutually
consistent. It is the DWFF in Equation 5 that is input into the
iterative scheme based on Equations 3 and 4. We retrieve the
full FFs subject to the following errors in amplitude and phase:

f̃+(z1,z2) = α(z1,z2)exp{iωβ (z1,z2)} f+(z1,z2), (6)

f̃−(z1,z2) = α(z1,z2)exp{iωβ (z1,z2)} f−(z1,z2). (7)

When we employ these FFs to extrapolate the surface recorded
GFs using the Marchenko Equations 1 and 2, we retrieve:

G̃−,+(z2,z1) = α(z1,z2)exp{ iωβ (z1,z2)} G−,+(z2,z1), (8)

G̃+,+(z2,z1) = α(z1,z2)exp{−iωβ (z1,z2)} G+,+(z2,z1). (9)

Notice that the amplitude error on the retrieved GF is inverted
with respect to the amplitude error on the estimated GF of
Equation 5. The phase-errors in the retrieved GFs of up- and
downgoing wavefields act in opposite directions.

Figure 2 shows an example of the effect of amplitude and
phase errors in the estimated DWFF. The input reflection-data
are the same as for the example in Figure 1, but the DWFF
was computed in a homogeneous background velocity. The
retrieved full FFs and the retrieved wavefield in the subsurface
are shifted in time. We redatumed a wavefield in the subsur-
face with amplitude and kinematics derived from the estimate
of the DWFF, but with the structure (in terms of primaries and
multiples) of that of the true medium. This example showcases
the strength of Marchenko wavefield redatuming: an image,
defined for example by deconvolution of up and downgoing
wavefields, will be clean of spurious reflectors (Broggini et al.,
2014; Wapenaar et al., 2014).

IMAGING CONDITIONS

Classical scattering-type imaging conditions are based on es-
tablising a causal condition between a source wavefield and a

recorded wavefield (Claerbout, 1985). The source and recorded
receiver wavefields are extrapolated (or respectively forward
and reverse-time propagated) back into the subsurface. When
both wavefields overlap in time and space, we hypothesize that
the source wavefield excited the recorded wavefield through
back-scattering (the reflector acting as exploding-reflector or
secondary Huygens source). We typically establish a causal
condition between the two wavefields by deconvolution or cor-
relation, and extracting the energy at t = 0. Similarly, a source-
type imaging condition for primary (non-Huygens) sources is
defined by extrapolating (or back-propagating) the recorded
wavefield and extracting the energy at t = 0.

FFs undo propagation of wavefields and therefore MWR pro-
vides an alternative avenue of wavefield redatuming into the
subsurface (Wapenaar et al., 2016). We exploit this property
and derive imaging conditions by applying FFs to GF’s. We
start with one-way reciprocity relations, between states A and
B, of the convolution- and correlation-type in 1D media (Wape-
naar, 1996):

{
P+

A P−B −P−A P+
B
}∣∣∣∣

z2

−
{

P+
A P−B −P−A P+

B
}∣∣∣∣

z1

= (10)

∫ z2

z1
dz
{

P+
A S−B −P−A S+B

}
+

∫ z2

z1
dz
{

S+A P−B −S−A P+
B
}
,

{
P+

A P+
B −P−A P−B

}∣∣∣∣
z2

−
{

P+
A P+

B −P−A P−B
}∣∣∣∣

z1

= (11)

∫ z2

z1
dz
{

P+
A S+B −P−A S−B

}
+

∫ z2

z1
dz
{

S+A P+
B −S−A P−B

}
.

We are interested in deriving relationships between focusing
functions emitted from the acquisition surface at z = z1 and
focusing at depth level z = z2, and Green’s functions recorded
at z = z1 of a source at z = z2. The source at z = z2 can either
be down- or upward radiating.

We start by considering a downward radiating source at z =
z2. The wavefield, boundary conditions, and source states, in
states A (a reference medium and truncated below z2) and B
(the actual medium) are given by:
STATE A
At z1: P+

A = f+1 (z1,z2), P−A = f−1 (z1,z2)
At z2: P+

A = 1, P−A = 0
Wavefields for z1 < z < z2: P+

A = f+1 (z,z2), P−A = f−1 (z,z2)
Sources for z1 < z: S+A = 0, S−A = 0
STATE B
At z1: P+

B = 0, P−B = G−,+(z1,z2)
At z2: P+

B = G+,+(z2,z2), P−B = G−,+(z2,z2)

Wavefields for z1 < z < z2: P−A = f̃−1 (z,z2), P−B = G−,+(z,z2)
Sources for z1 < z: S+B = δ (z− z2), S−B = 0
Substitution of these states into Equations 10 and 11, yields:

f+(z1,z2)G−,+(z1,z2) = G−,+(z2,z2)+
1
2

f−(z2,z2) (12)

− f−(z1,z2)G
−,+

(z1,z2) = G+,+
(z2,z2)−

1
2

f+(z2,z2). (13)

We can repeat this procedure while considering an upward ra-
diating source at z = z2. The wavefield, boundary conditions,
and source states, in states A and B are given by:
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STATE A
At z1: P+

A = f+1 (z1,z2), P−A = f−1 (z1,z2)
At z2: P+

A = 1, P−A = 0
Wavefields for z1 < z < z2: P+

A = f+1 (z,z2), P−A = f−1 (z,z2)
Sources for z1 < z: S+A = 0, S−A = 0

STATE B
At z1: P+

B = 0, P−B = G−,−(z1,z2)
At z2: P+

B = G+,−(z2,z2), P−B = G−,−(z2,z2)
Wavefields for z1 < z: P+

B = G+,−(z,z2), P−B = G−,−(z,z2)
Sources for S+B = 0, S−B = δ (z− z2)
Substitution of these states into Equations 10 and 11, yields:

f+(z1,z2)G−,−(z1,z2) = G−,−(z2,z2)−
1
2

f+(z2,z2) (14)

− f−(z1,z2)G
−,−

(z1,z2) = G+,−
(z2,z2)+

1
2

f−(z2,z2). (15)

Because the reference medium (State A) is homogeneous at
and below z2, we have f+(z2,z2) = 1 and f−(z2,z2) = 0. Sub-
tracting 14 from 13 yields:

− f+(z1,z2)G−,−(z1,z2)− f−(z1,z2)G
−,+

(z1,z2) = (16)[
G+,+

(z2,z2,ω)−G−,−(z2,z2,ω)
]
,

and subtracting 15 from 12 yields:

f+(z1,z2)G−,+(z1,z2)+ f−(z1,z2)G
−,−

(z1,z2) = (17)[
G−,+(z2,z2)−G+,−

(z2,z2)
]
.

Based on Expression 17 we can form a double-focusing imag-
ing condition of the scattering-type, we evaluate this consider-
ing the effect of model errors in Equations 6 to 9:

IR(z2)=

∫ [
f̃+(z1,z2)G

−,+
(z1,z2)+ f̃−(z1,z2)G̃

−,−
(z1,z2)

]
dω

=

∫ [
R∪(z2)−R∩(z2)

]
α2(z1,z2)exp{iω2β (z1,z2)}dω,

(18)

where we used
∫

G−,+(z,z)dω =
∫

R∪(z)dω , and∫
G+,−(z,z)dω =

∫
R∩(z)dω . Integration over frequency is

equivalent to extracting the zero-time component in the time
domain. Based on Expression 16 we can form a double-focusing
imaging condition of the source-type, we evaluate this consid-
ering the effect of model errors in Equations 6 to 9:

IS(z2)=−
∫ [

f̃+(z1,z2)G̃−,−(z1,z2)+ f̃−(z1,z2)G̃
−,+
(z1,z2)

]
dω

=

∫ [
G+,+

(z2,z2)−G−,−(z,z)
]

α2(z1,z2)dω. (19)

Imaging condition 19 extracts the virtual-source focusing strength.
When we including the effect of a finite frequency source wavelet
and normalized the image to the peak amplitude of the zero-
phase source wavelet, the imaging condition in Equation 19
will result in the square of the amplitude error, IS(z2)=α2(z1,z2).
In the absence of model errors, this image will be in IS(z2) = 1.

Figure 3 contains gathers showing the evaluation of Equations
17 and 16 at each depth level, with and without model errors.
Figures 4a and 4b contains the images, IR(z) and IS(z), also ob-
tained by extracting the t=0 slice from the gathers in Figure 3.

DISCUSSION

When we neglect the inhomogeneities in the subsurface we
omitted a transmission coefficient from the estimated DWGF.
A factor T+

1,2 =
√

1− (R∪1,2)
2; T+

1 ≈ 0.990 and T+
2 ≈ 0.994

at the first and second interface respectively. This leads to the
factor α(z(t)) = T+

1 for z(t) > z(τ1), and α(z(t)) = T+
1 T+

2
for z(t) > z(τ2), where τ̃1,2 are the estimated one-way travel
times to the first and second interfaces respectively. This cor-
responds to where the dashed blue curve in Figure 4a levels out
at 0.980 = 0.9902 and 0.967 = (0.990×0.994)2. The dashed
blue curve in Figure 4a corresponds to an image strength of
R∪2
(
T+

1
)2 ≈ 0.109 at the second interface, located at z(τ2).

A conventional deconvolution imaging condition seeks to find
a reflection response of a truncated medium by solving
G−,+(z2,z1) = R∪(z2)G+,+(z2,z1), the image is extracted by

evaluating R∪(z)
∣∣∣
t=0

:

I3(z) =
[
G̃+,+(z,z1)

]−1 [
G̃−,+(z,z1)

]∣∣∣∣
t=0

= (20)

R∪(z,ω)exp{iω2β (z,z1)}
∣∣∣∣
t=0

.

This imaging condition is insensitive to the amplitude error.
However, just as in the new imaging condition in Equation 20,
the kinematic phase-error is doubled. This phase error causes
our imaged reflectors to appear at the incorrect depth level.

Based on the imaging conditions in Equations 18 and 19 we
define an imaging condition as I = I−1

S IR, the remaining phase
error is equal to the phase in the deconvolution imaging con-
dition (Equation 20), but we would avoid the instability due to
deconvolution.

The amplitude error can only be inverted for the accompanying
phase error if we make assumptions regarding the density of
the medium. Conventional velocity analysis from seismic data
inherently requires data in two or higher dimensions, to per-
form some sort of moveout analysis for non-zero offset record-
ings (Biondi, 2006). Whether MWR allows for such analysis
remains to be seen.

CONCLUSIONS

Based on double focusing principles we formulated two novel
imaging conditions for MWR. These yield direct information
on the amplitude error in the estimate for the direct-wave GF,
and indirect information on the phase error. Direct information
on the phase error remains elusive.
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Figure 1: Surface reflection data extrapolated into the subsurface using focussing functions found by solving the Marchenko
equations. a) True subsurface model governing the reflection data. b) Estimate of subsurface model governing the direct focusing
function: equal to the true model. c) Extrapolated wavefield plus the original recorded reflection data trace (top panel).
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Figure 2: Surface reflection data extrapolated into the subsurface using focussing functions found by solving the Marchenko
equations. a) True subsurface model governing the reflection data. b) Estimate of subsurface model governing the direct focusing
function: simply a constant background velocity. c) Extrapolated wavefield plus the original recorded reflection data trace (top
panel). Dotted lines indicate the location of the true wavefield in the subsurface (from Figure 1).
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Figure 3: Double-focusing source and scattering type images
as a function of time and depth. a & c) Scattering-type image
in true (a) and homogeneous background (c) models. b & d)
Source-type image in true (b) and homogeneous background
(d) models.
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Figure 4: Double-focusing source and scattering type images
as a function of depth only. Red curves are the images using
the true model (Figure 1). Blue curves are the images using the
model with the homogeneous background model (Figure 2).


