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Purpose: To develop an accelerated postprocessing pipeline for reproducible and 
efficient assessment of white matter lesions using quantitative magnetic resonance 
fingerprinting (MRF) and deep learning.
Methods: MRF using echo-planar imaging (EPI) scans with varying repetition and 
echo times were acquired for whole brain quantification of T

1
 and T∗

2
 in 50 subjects 

with multiple sclerosis (MS) and 10 healthy volunteers along 2 centers. MRF T
1
 and 

T
∗

2
 parametric maps were distortion corrected and denoised. A CNN was trained to 

reconstruct the T
1
 and T∗

2
 parametric maps, and the WM and GM probability maps.

Results: Deep learning-based postprocessing reduced reconstruction and image 
processing times from hours to a few seconds while maintaining high accuracy, 
reliability, and precision. Mean absolute error performed the best for T

1
 (deviations 

5.6%) and the logarithmic hyperbolic cosinus loss the best for T∗

2
 (deviations 6.0%).

Conclusions: MRF is a fast and robust tool for quantitative T
1
 and T∗

2
 mapping. Its 

long reconstruction and several postprocessing steps can be facilitated and acceler-
ated using deep learning.
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1  |   INTRODUCTION

White matter (WM) lesions are a common brain imaging 
finding in multiple sclerosis (MS) affecting the central ner-
vous system. WM lesions are commonly characterized by 
increased T1 and T∗

2
 relaxation times.1 T2-weighted imaging 

or fluid attenuated inversion recovery (FLAIR) is most com-
monly used in clinical MRI.2 However, conventional mag-
netic resonance imaging (MRI) only provides limited insights 
into the pathological substrate of tissue changes (eg, axonal 
loss, inflammation, demyelination). Specifically, qualitative 
imaging inherently hampers standardization and reproduc-
ibility. Therefore, quantification of relaxation times, such 
as T1, T2, and T∗

2
, is increasingly receiving interest for pro-

viding additional information beyond qualitative imaging.3-5 
However, most quantitative methods suffer from long acqui-
sition times as the acquisition of multiple qualitative images 
is required. This renders quantitative MRI susceptibility to 
intra-scan motion. Furthermore, due to interscan motion and 
image distortion, multiple successive scans commonly need 
to be co-registered in order to allow for joint analysis.

Magnetic resonance fingerprinting (MRF) is a promising, 
time efficient approach for quantification of multiple tissue 
parameters in a single acquisition.6 In MRF, characteristic 
magnetization evolutions are generated for tissues by varying 
sequence parameters including flip angle, echo time (TE), 
and repetition time (TR) throughout the acquisition. Thus, 
MRF has shown the potential to differentiate between healthy 
and pathological tissue and may, therefore, be useful for clin-
ical MRI.7 Rieger et al proposed an MRF sequence based on 
an echo-planar imaging (EPI) readout for simultaneous quan-
tification of T1 and T∗

2
 times covering the whole brain in less 

than 5 minutes.8,9 Lower undersampling factors are applied 
compared with spiral MRF, reducing not only the noise per 
magnitude image but also the total number of magnitude im-
ages. This method was recently shown to provide clinically 
robust T1 and T∗

2
 in neuro and renal applications.8-10

However, compared with other EPI scans high accelera-
tion factors lead to a lower signal-to-noise ratio (SNR) than 
common for many clinical applications. Multiple denoising 
strategies have been proposed to improve the image quality 
and accuracy.11-13 Recently, Marchenko–Pastur principal 
component analysis (MPPCA) was proposed to denoise EPI 
diffusion MRI images.14 This is of particular interest, as a 
recent study demonstrated the value of denoising the ac-
quired MRF magnitude images to improve the quality of the 
quantitative maps.10 The large number of magnitude images 
in an MRF acquisition leads to long reconstruction times, 
which has been acknowledged as one of the drawbacks of 
the MRF methodology.7,15 Additionally, several postprocess-
ing steps hinder the practicability in clinical usage. In wake 
of recent developments, deep learning has superseded other 
approaches in many areas of data processing. Numerous 

publications have shown the benefits of using deep learning 
for medical imaging.16-21 Specifically, deep learning acceler-
ates processing steps and is capable of reconstructing MRI 
data.22-24 Denoising plays an important role in MRI and sev-
eral networks were evaluated to improve the visual image 
quality using generative adversarial networks and deep neu-
ronal networks.25-28 Furthermore, image synthesis has gained 
attention, which transforms a set of input images to a new set 
of image contrasts.29,30 These image transformations can also 
contain deformable registration and artifact correction which 
showed good accuracy using CNN’s.31-33

Especially for MRF, several models using fully connected 
neuronal network,34,35 recurrent and convolutional neuronal 
network (CNN)18,36-38 were analyzed showing promising 
results regarding the speed and accuracy of the reconstruc-
tion.39 A deep learning reconstruction on MRF data using 
the spatiotemporal relationship between neighboring signal 
evolutions was proposed,40,41 which showed an improvement 
in the reconstruction especially for undersampled complex 
MRF data. The U-Net has frequently been used to process 
medical data for segmentation and regression tasks.42-45 
Since most of the MRF acquisition techniques acquire a large 
number of highly undersampled images, the reconstruction 
problem is high dimensional. Therefore, a two-step deep 
learning approach was proposed in Ref. [19] to, first, reduce 
the dimensionality by using feature extraction with a fully 
connected network,46 and second, a U-Net for spatially con-
strained quantification. The advantage of this learning-based 
model is that it contains tissue properties of the neighboring 
pixels which is more resilient to noise.47

In this study, we performed MRF-EPI for simultaneous 
quantification of T1 and T∗

2
 in the whole brain on 50 patients 

with WM lesions and 10 healthy volunteers and analyzed the 
T1 and T∗

2
 times in WM and gray matter (GM). Compared 

to conventional MRF methods, our MRF-EPI only slightly 
undersamples the k-space allowing for conventional paral-
lel imaging reconstruction and yielding magnitude data that 
contains all relevant structural information. We developed a 
CNN for the MRF-EPI reconstruction of denoised and dis-
tortion corrected T1 and T∗

2
 maps, and WM and GM proba-

bility maps. Furthermore, we compare different outputs, loss 
functions, and patches of the CNN for optimizing the entire 
reconstruction using deep learning.

2  |   METHODS

This bicenter study was approved by the local institutional 
review board at both sites (2019-711N, BCB2012/7965), and 
written, informed consent was obtained prior to scanning. 
We performed MRF-EPI in 10 healthy volunteers (75% male,  
22-30 (mean: 26) years, mean) and 18 patients (39% male, 
23-73 (mean: 39) years) with MS on a 3T scanner (Magnetom 
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Skyra, Siemens Healthineers, Erlangen, Germany) at site 1 
and in 32 patients (37% male, 1-63 (mean: 41) years) with MS 
at a 3T scanner (Magnetom Prisma, Siemens Healthineers, 
Erlangen, Germany) at site 2. Figure 1 depicts an overview of 
the MRF pipeline. The conventional steps (1-6) acquisition, 

denoising, dictionary generation, reconstruction, distortion 
correction, and masking are depicted in the first part. The 
approach for standardization and acceleration using deep 
learning is shown in the second part, combining steps 2-6 to 
a single CNN.

F I G U R E  1   Schematic of the acquisition and postprocessing pipeline. Step 1: Varying flip angles, TE and TR with inversion pulses are played 
for the MRF-EPI sequence. Step 2: Denoising the magnitude data by MPPCA denoising. Step 3: Generation of the dictionaries for all T

1
 and T ∗

2
. 

Step 4: Voxel-wise matching to generate the parametric maps via simple dictionary matching. Step 5: Distortion correction of the MRF maps using 
a restricted nonlinear registration onto T

2
 weighted image due to susceptibility artifacts of the EPI readout. Step 6: WM and GM segmentation using 

SPM12 on the MRF T
1
 maps. Manual lesion segmentation of the T

1
-FLAIR data. Steps 2-6: Deep learning as a tool to integrate all postprocessing 

steps in a single operation



4  |      HERMANN et al.

2.1  |  Magnetic resonance fingerprinting

The acquisition was based on the previously proposed MRF-
EPI technique for which accuracy and precision to gold 
standard methods were already evaluated.8 Dictionaries 
were generated per slice using MATLAB (The MathWorks; 
Natick, MA, USA) consisting of 131,580 entries with T1 (30-
4000 ms) in 5% steps, T∗

2
 (5-3000 ms) in 5% steps, and flip 

angle efficiency B1+ (0.65-1.35) in steps of 0.05.
Sequence parameters for the MRF sequence were in-plane 

spatial resolution = 1 × 1 mm2, slice thickness = 2 mm, band-
width = 998 Hz/px, GRAPPA factor = 3, partial fourier = 5/8, 
variable flip angle (34◦

− 86◦), TE (21-81.5 ms), TR (3530-
6570 ms), and fat suppression. At site 2, additionally, simulta-
neous multislice (SMS) imaging was used with an acceleration 
factor of 3. The acquisition time for site 1 was 4 minutes and 
23 seconds and 1 minute and 52 seconds at site 2 covering all 
60 slices. Additionally, T1-FLAIR and T2-weighted images were 
acquired for lesions segmentation and distortion correction, re-
spectively, using the same spatial resolution.

2.2  |  Principal component analysis denoising

We used MPPCA14 to denoise the magnitude data of the 
MRF acquisition before reconstruction. Originally, the de-
noising strategy was proposed to estimate a non-Gaussian 
distribution on diffusion MRI data. The noise is estimated 
in a local neighborhood by the eigenvalues of principal com-
ponent analysis using the Marchenko–Pastur distribution.14

Quantitative T1 and T∗

2
 maps were compared with and with-

out denoising. Denoising was performed on a per slice basis 
using a 2-dimensional (2D) kernel. As we are not interested in 
the actual image contrast but in the absolute T1 and T∗

2
 times, 

we use standard deviation to describe the noise in these values.

2.3  |  Distortion correction

Distortion correction was performed to correct for 
susceptibility artifacts, especially around the nasal cavities.48 
Rigid registration was computed from the T2-weighted data 
to the MRF-magnitude data followed by a restricted nonlin-
ear registration along phase-encode direction from the mag-
nitude to the T2-weighted data using ANTs.49 Distorted maps 
were then visually compared to the FLAIR and T2-weighted 
images to ensure that all modalities are properly registered.

2.4  |  Data processing

White matter lesions were segmented manually by an ex-
pert radiologist on the FLAIR images. WM and GM were 

automatically segmented using SPM12 (Statistical Parametric 
Mapping version 12)50 using the T1 Maps acquired with MRF 
after denoising and distortion correction. The probability 
maps generated by SPM12 were transformed into binary 
masks by using a threshold (80%). Masks were visually ana-
lyzed and manually segmented WM lesions were extracted 
from the WM and GM mask to improve accuracy.

2.5  |  Deep convolutional neural network for 
MRF reconstruction

Our network was a modified U-Net42 implemented in 
Matlab 2020a (The MathWorks; Natick, MA) using the 
Deep Learning Toolbox. The network architecture is dis-
played in Figure 1. The training was performed on a GPU 
(Tesla K40m, Nvidia, Santa Clara, CA) for approximately 
1 day per network. As inputs, the 35 differently weighted 
MRF-EPI magnitude images were used. The generated out-
put were the T1 and T∗

2
 maps and WM and GM probability 

maps. A brain mask was applied to exclude background 
noise. Data of 5 patients were randomly selected for test-
ing, while the remaining data was chosen for training (49 
datasets) and validation (5 datasets). Data of 6 healthy 
volunteers were acquired without T2-weighted images and 
therefore, they are excluded from training. Two patients 
from site 1 and 3 patients from site 2 were chosen for the 
testing set. The 2D network was trained on individual slices. 
We trained half the networks with the full input resolu-
tion (240 × 240 voxels) and the other half using 32 random 

T A B L E  1   Different parameters for all the networks compared in 
this work are listed here

Network parameters

Networks Input Outputs
Loss 
function

1 Patches Single T
1

MAE

2 Patches Single T ∗

2
MAE

3 Patches T
1
, T ∗

2
MAE

4 Patches T
1
, T ∗

2
, WM, GM MAE

5 Patches T
1
, T ∗

2
, WM, GM MSE

6 Patches T
1
, T ∗

2
, WM, GM LCL

7 patches T
1
, T ∗

2
, WM, GM HL

8 Full Single T
1

MAE

9 Full Single T ∗

2
MAE

10 Full T
1
, T ∗

2
MAE

11 Full T
1
, T ∗

2
, WM, GM MAE

12 Full T
1
, T ∗

2
, WM, GM MSE

13 Full T
1
, T ∗

2
, WM, GM LCL

14 Full T
1
, T ∗

2
, WM, GM HL
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patches (64 × 64 voxels) per slice (Table 1). We evalu-
ated the following 4 different loss functions (the reference 
value yi, predicted value y

p

i
 and the number of values n):  

the mean square error (MSE) 

the mean absolute error (MAE) 

the Huber loss (HL), which is a combination of MAE and MSE 

and the logarithm of the hyperbolic cosine (LCL) 

We used Adam for optimization with a learning rate of 
0.0001, L2-Regularization of 0.0001, 50 training epochs, and 
batch size = 64 for all networks, which was empirically de-
termined to be optimal. Additionally, we trained the networks 
using patches and the full input resolution and MAE with 3 
different types of outputs: (1) the network was trained with a 
single output once for T1 and another for T∗

2
 (single); (2) the 

network was trained with both T1 and T∗

2
 in a single network 

(dual); and (3) the network was trained with 4 output maps 
T1, T∗

2
, WM, and GM probability maps (4 outputs). Relative 

differences between dictionary matched and predicted maps 
were calculated and correlation coefficient of mean T1 and 
T∗

2
 times between prediction and reference in WM, GM, le-

sions, and the whole brain was calculated. Reconstructions 
were executed on the CPU (Intel(R) Core(TM) i5-6500 @ 
3.20 GHz).

2.6  |  Statistics

Mean T1 and T∗

2
 times with standard deviations were cal-

culated and pair-wise comparison was performed using 
Student’s t-tests and correlation R-values. P-values less than 
0.05 were considered significant. The mean Dice similarity 
coefficient was used as a statistical validation metric for the 
predicted WM and GM probability maps after binarizing 
them into logical masks.

Computational time was measured using a standard desk-
top PC.

3  |   RESULTS

The first part of this section presents the results of the 
conventional methods for denoising, distortion correction, 
and dictionary-based reconstruction and analysis. The sec-
ond part presents the comparison to the deep learning-based 
reconstruction and analysis.

3.1  |  Conventional reconstruction

Image denoising was successfully performed using MPPCA 
and resulted in up to 50% decreased variability in the magni-
tude data and 15% reduced standard deviations of T1 and T∗

2
 

(Supporting Information Figure S1). Overall, denoising the 
MRF magnitude data took about 10 minutes per subject on a 
standard CPU.

After the denoising and reconstruction of the parametric 
T1 and T∗

2
 maps, EPI distortion correction was performed as 

exemplarily shown in Supporting Information Figure S2. 
Deviations in the relaxation times of up to 10% were ob-
served in caudal slices next to the nasal cavities after apply-
ing the distortion correction. Distortion corrected mean T1 
and T∗

2
 times show only minor variations (<2%) in WM, GM, 

and WM lesions compared with T1 and T∗

2
 times without dis-

tortion correction. The distortion correction of the MRF data 
takes around 1 hour for one whole brain on a standard CPU.

Representative T1 and T∗

2
 maps including annotations 

are shown in Figure 2 for both sites. Reconstruction of 
the parametric maps using a pattern-matching algorithm 
took around 20 minutes per subject. Mean T1 and T∗

2
 relax-

ation times for WM, GM, and WM lesions are depicted in  
Figure 3 and provided in the Supporting Information Tables 
S1-S3. Differences between healthy and diseased subjects 
from both sites were less than 4% for T1 and less than 2% for 
T∗

2
 in WM and less than 7% for T1 and less than 3% for T∗

2
 in 

GM. MRF acquired in site 2 had 15% higher standard devi-
ations in T1 and T∗

2
 due to increased scan time acceleration. 

Mean T1 relaxation times in WM lesions are widespread rang-
ing from 800 ms, comparable to WM, up to 2500 ms. Mean 
T∗

2
 times in WM lesions were consistently higher (70%) than 

WM and GM with mean T∗

2
 times up to 200 ms.

Clear separation between WM and GM was found in 
T1 (Figure 3). We found a slight trend of increasing T∗

2
 (up 

to 10%) in WM and GM for increasing slice position (R = 
0.974, P < .0001; Figure 3C). T∗

2
 was shorter and had higher 

standard deviations in caudal slices in the vicinity to the nasal 
cavities. No significant increase in T1 and T∗

2
 with either age 

(1)MSE =

∑
n
i=1

(yi − y
p

i
)2

n
,

(2)
MAE =

∑
n
i=1

�yi − y
p

i
�

n
,

(3)HL =

⎧
⎪⎨⎪⎩

1

2
(yi−y

p

i
)2, for �yi−y

p

i
�≤�

��yi−y
p

i
�− 1

2
�

2, otherwise

(4)LCL =

∑
n
i=1

log(cosh(yi − y
p

i
) )

n
,
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or gender was observed (Figure 3D). T1 and T∗

2
 times in WM 

lesions were highly heterogeneous and independent of their 
localization and size (P > .2).

3.2  |  Deep convolutional network for MRF 
reconstruction

The computation time of the proposed CNN for 60 slices was 
about 5 seconds on a standard CPU workstation.

The performance of the reconstruction during the training 
process is depicted in Figure 4. Already after 5 epochs, the 
reconstructed maps have a visual good agreement with the 
dictionary-matched maps.

Figure 5 shows the 2D histogram of a representative slice 
in 1 subject for the CNN predicted T1 and T∗

2
 times over the 

dictionary matching. The relative difference showed major 
noise with few anatomical structures and mean deviations of 
less than 6% for T1 and T∗

2
. Variations in the CSF are increased 

as seen around the ventricle and at the skull. T1 and T∗

2
 times, 

which exceed 3000 ms are cut, and therefore, the ventricle 
has variations of 0%.

The average correlation coefficient R and the relative dif-
ference for T1 and T∗

2
 were calculated for different loss func-

tion and outputs (Figure 6). The P-value for all correlations 
was P < .001. For the 4 output models, the smallest relative 
difference for T1 was observed when using the MAE with de-
viations of 5.8% in the whole brain and for T∗

2
 using the LCL 

with 6.0% deviations in the whole brain. Correlation coeffi-
cients in the whole brain were more than 0.99 except for the 
MSE (0.989) for T1 and higher than 0.985 for T∗

2
 in the whole 

brain. The relative difference in T1 and T∗

2
 was observed to be 

the highest in GM. All the relative differences and correlation 
coefficient are given in Supporting Information Table S4 for 
T1 and Supporting Information Table S5 for T∗

2
.

The difference in the different loss functions is visually 
depicted in Figure 7, where the MSE smooths the predicted 
maps the most as clearly seen in the WM and GM proba-
bility maps. The HL has increased T∗

2
 in WM and the MSE 

decreased T1 in WM. In the WM probability maps, the LCL 

F I G U R E  2   Representative T
1
 and 

T
∗

2
 map for 1 patient of site 1 (top) and 1 

patient of site 2 (bottom). The segmented 
WM, GM, and CSF are shown combined 
with the manually segmented WM lesions. 
WM is shown semitransparent in 3D with 
the segmented lesions of representative 
different subjects from both sites. Different 
colors depict different lesions as they were 
automatically separated
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visually performed the best as seen in the prediction around 
the lesion.

The training with full image input showed significant 
increases in the relative error (25.8% for T1 and 21.6% for 
T∗

2
) and correlation coefficients of less than 0.90 for T∗

2
 in 

WM. Prediction in the WM performed better than in GM 

with around 4% higher correlation coefficient and correla-
tion coefficients in WM lesions were observed to be higher 
than 0.98. The mean Dice coefficient across the test data 
for WM was 0.9 and for GM 0.91 after conversion into log-
ical masks with a threshold of 80% for both SPM and DL 
probability maps (Table 1, network 4). Dice coefficients 

F I G U R E  3   A, Mean T ∗

2
 times over mean T

1
 times for white matter (blue), gray matter (orange), and WM lesions (yellow) of all patients and 

subjects from both sites. Representative 3D T
1
 and T ∗

2
 maps were depicted on the right. B, Representative distributions of the T

1
 and T ∗

2
 times from 

A, which shows a much wider spread for the WM lesions considering T
1
 and T ∗

2
 times compared with WM and GM. In C, the mean T

1
 (left) and T ∗

2
 

(right) over the slice position for white matter (blue) and gray matter (orange) are depicted. Color brightness encode different subjects. In D, the 
WM and GM T

1
 and T ∗

2
 times over the age and gender are shown
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decreased up to 15% when training was performed on the 
full input size without patches (mean WM: 0.81, mean 
GM: 0.79).

When training on T1 and T∗

2
 as a dual output, prediction 

showed a slightly increased correlation coefficient (around 
1%) and decreased relative difference compared with the 4 
output models. Single T1 and single T∗

2
 as outputs reached the 

highest correlation coefficients and smallest relative error 
among all other networks.

Figure 8 shows the mean T1 and T∗

2
 times per subject 

between the DL and conventional reconstruction. A lin-
ear fit shows the correlation which was above 0.99 with  
P < .0001 for both T1 and T∗

2
. The bright colored markers 

depict the test data, which are aligned to the linear fit. We 

observe a small offset in T1 (55  ms) and in T∗

2
 (2.2  ms), 

which is within the standard deviations (100-200  ms  
∼ [10]%, 3-5 ms ∼ 10%).

Figure 9 depicts the Dice coefficient between the WM and 
GM masks generated from the probability maps using SPM 
and our DL approach for different thresholds. The black line 
depicts the highest dice coefficients with close correlation 
to a straight line with a correlation coefficient of 0.9965 for 
WM and 0.9974 for GM with both P < .0001. For a com-
monly used threshold of 80% for SPM, the Dice coefficient 
is shown for different thresholds of the DL WM and GM 
maps. For a threshold of 80% of the DL reconstruction, the 
mean dice coefficient yields for both, WM and GM values of 
higher than 0.9.

F I G U R E  4   Visualization of the reconstruction during the training for 1 subject of the test data. The reconstructed T
1
, T ∗

2
, WM, and GM 

probability maps are depicted for 1, 5, 15, 30, and 50 training epochs, and the dictionary matching reference maps are shown on the right side. On 
the bottom, the MAE is depicted over the 50 training epochs
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4  |   DISCUSSION

We acquired MRF-EPI for simultaneous quantification of 
T1 and T∗

2
 times in the whole brain. With a single convolu-

tional neural network, we accelerated and combined several 
postprocessing steps as reconstruction, denoising, distortion 
correction, and masking.

MRF-EPI is a promising technique for quantification of 
T1 and T∗

2
 of the whole brain in less than 5 minutes. T1 and T∗

2
 

times showed overall good agreement with literature.1,3,5,51-55 
However, as previously noted MR relaxation times for WM 
and GM show wide variability among studies due to dif-
ferent sequences, fitting procedures and natural variability 
among subjects.51 Accuracy and precision measurements for 
the proposed MRF-EPI sequences were performed in previ-
ous work and therefore not analyzed in this study.8,10 WM 
lesions exhibit a wide range of T1 and T∗

2
 relaxation times. 

The relaxation times were independent of their localization 

and size in the brain. WM lesions were successfully delin-
eated from WM, GM, and CSF based only on quantitative 
MRF T1 and T∗

2
 maps. Lesions which are difficult to separate 

from CSF on conventional images show a clear difference in 
the T1 and T∗

2
 maps acquired with MRF due to long T1 times 

in CSF of around 3000-4000 ms compared with T1 times 
in lesions of around 1000-2000 ms. These high and wide-
spread ranges of T1 times in lesions might be due to altered 
interstitial fluid mobility and water content from edematous 
brain tissue.56 Thus, the use of quantitative relaxometry ob-
tained by MRF might potentially enhance the segmentation 
around the CSF. A fraction of WM lesions exhibit only a 
slight elevation of the T1 times compared with WM and, 
therefore, yield similar or even smaller values compared 
with GM. This hampers the separation of WM lesions and 
GM. However, the additional assessment of T∗

2
 proved to be 

beneficial for the assessment of those lesions and showed 
improved separation against GM. The increased sensitivity 

F I G U R E  5   Prediction of the CNN-network for 1 slice of a representative subject. The histograms (left panel) depict the predicted T
1
/T ∗

2
 (top/

bottom) of 1 slice over the T
1
/T ∗

2
 generated by dictionary matching. The linear fit (red) with corresponding fit parameters and R and P-values is 

shown. On the right side, the relative difference of T
1
 and T ∗

2
 is shown between the predicted and dictionary matched parametric maps. Voxel-wise 

differences range up to 30% around the ventricles, because of the very high T
1
 and T ∗

2
 times for the CSF rendering the prediction difficult for the 

network
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in T∗

2
 might be explained by the fact that T∗

2
 times in WM 

and GM yield similar values, and hence, deviations in T∗

2
 in 

lesions benefit delineation against both WM and GM. This 
is a gain compared to conventional methods such as FLAIR 
or T2-weighted images. We found no significant increase 
in T1 and T∗

2
 with either age or gender, although a number 

of studies demonstrated that T1 does change with age.57,58 
This might be due to the smaller number of subjects since 
we split between the healthy and diseased subjects and the 
narrow age range, especially for the healthy subjects. Further 
analysis of this might be performed when more subjects are 
measured. Only minor differences between data from site 1 
and site 2 were observed (<7%), with no significant trends 
 (P > .2). This demonstrates the potential of MRF as a quan-
titative method that is suitable for reproducible multicenter 

studies and a pathway to standardization. A slight trend of 
increasing T∗

2
 was identified in the cranial direction. This is 

unlikely to be a result of the acquisition scheme, as due to 
the slice interleaving any inaccuracies would be expected 
to appear interleaved as well. Instead, this effect might be 
explained by increasing B0 inhomogeneities in the axial 
direction. In site 2, additional scan time acceleration was 
achieved with SMS factor 3, reducing the effective scan time 
by a factor of 2-3. However, the use of SMS acceleration 
inflicts an additional drop in SNR depending on the G-factor 
due to the coil geometry. Accordingly, the quantitative data 
was found to have increased standard deviations of up to 15% 
compared with data from site 1. This might be improved by 
extending the acquisition scheme when using SMS or by 
using regularized SMS reconstructions.59

F I G U R E  6   Relative difference between the predicted and dictionary matched T
1
 (left) and T ∗

2
 (right) for the whole brain (black), WM (blue), 

GM (orange), and lesions (yellow) compared to the different loss functions and network outputs. The first 4 data points (mean absolute error 
[MAE], mean squared error [MSE], logarithmic cosinus loss [LCL], Huber loss [HL]; Table 1, networks 4-7) are the networks trained with patches 
and 4 outputs. The fifth one (Table 1, networks 11) is trained with the full input resolution (full res.) and the MAE. The last 2 (dual output and 
single output; Table 1, networks 3 and 1+2) are trained using patches and the MAE loss function with 1 and 2 output maps, respectively. On the 
bottom correlation coefficients for the linear fit between predicted and dictionary matched T

1
 (left) and T ∗

2
 (right) is shown for the different network 

outputs using the MAE, MSE, LCL, and HL



      |  11HERMANN et al.

Our deep learning-based reconstruction yielded only 
minor differences between the T1 and T∗

2
 times of WM, GM, 

and WM lesions compared with conventional dictionary 
matching. These mean deviations of 5.8% for T1 and 6.0% 
for T∗

2
 are small and in the range of different approaches  

(2-8%).19,36 Of note is that there is no ground truth data and, 
therefore, the dictionary matched data is the reference with 
a precision of 5%. Our deep learning approach is in the area 
of this precision and might be more precise since the output 
is continuous for all parameters. However, the deep learn-
ing reconstruction time was around 5 seconds for all slices 
as compared to 20 minutes dictionary matching, 10 minutes 
denoising, and 1-hour distortion correction (90 minutes in 
total).

We trained our networks with different loss functions and 
found that the MAE and LCL performed better regarding our 

regression task compared to the commonly used MSE func-
tion.18,35 This might be due to the fact that in the MSE the 
CSF is weighted higher as it has longer T1 and T∗

2
 times, and 

therefore, it is more difficult for the network to learn the rel-
atively small differences in WM and GM. Since the T1 and T∗

2
 

times in the CSF are not of great clinical interest we accept 
the loss in accuracy for the CSF. The Dice coefficient for 
WM and GM was in the range of reported literature (0.82-
0.93)45,60,61 and in the range of SPM (0.76-0.83)62,63 and 
above 0.87 for all loss functions if the training was performed 
with patches. This might be explained by the fact that data 
augmentation (random patch extraction) prevents overfitting 
and enriches the dataset. Overall improved performance was 
observed for the training using patches independent of the 
loss function and the output. We found an overall 25.8% de-
creased relative error for T1 and 21.6% for T∗

2
 respectively. 

F I G U R E  7   Comparison of the different loss functions to the dictionary matched input of 1 representative subject of the test data using 
the network 4 from Table 1. T

1
, T ∗

2
, WM and GM probability maps are shown for the mean absolute error (MAE), mean squared error (MSE), 

logarithmic cosinus loss (LCL), and Huber loss (HL). A small patch (71 × 71) of 1 slice of a representative subject is shown. It is seen that the 
mean squared loss is smoothing the WM and GM probability maps the most
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This might be due to the fact that training with the full input 
resolution takes longer to converge. Compared with conven-
tional highly undersampled MRF acquisition in our MRF-
EPI approach, we do not need to extract first the features and 
reduce the dimensionality of the network input as proposed 
in other MRF deep learning reconstruction approaches.19,46,47 
Since the anatomical structure is retained, the network has 
to solve an image to images regression task, which might 
have smaller computational requirements. Fang et al19 used a  
U-Net after the dimensionality was reduced: for their dataset, 
2304 time points were used compared to 35 time points for 
our MRF-EPI (66 times smaller). We also used the U-Net 
since it captures information of the input locally and globally. 
This is important since we also include denoising and distor-
tion correction with the same and single network.

Our reconstruction task included denoising and distor-
tion correction within the MRF reconstruction and therefore, 
training with patches (64 × 64 voxels) achieved better results 
since the observed distortion from the EPI readout is only 
local at the nasal cavities and the frontal lobe of the brain. 
We showed that it is possible to perform denoising, distortion 
correction, and MRF reconstruction with one network archi-
tecture with relative difference within the standard deviation 
of the quantitative parameters.

We were able to additionally generate the WM and GM 
probability maps as outputs with only slightly decreased ac-
curacy of the test data considering T1 and T∗

2
 in WM and GM. 

We have shown that the dice coefficient for the binarized 
WM and GM masks are in good correlation between our 
CNN and the reference SPM method. However, the network 
trained only on the T1 and T∗

2
 maps (dual output) as an out-

put performed better than the 4 output model. Using single 
T1 and single T∗

2
 maps as an output performed the best with 

only minor improvement (<1%) compared to the dual output 
model. We compared the relative differences for different tis-
sue types instead of using the RMSE as commonly used,18,35 
because outliers and variations of quantitative measures 
within single tissue types result in an overestimated error for 
a voxel-by-voxel comparisons, especially in the CSF.

We showed that the predicted values correlate very well 
with the reference dictionary matched values for T1 and T∗

2
  

(R > .95, P < .0001) with only a slight offset, which is within 
the standard deviation. The correlation coefficient was the 
lowest for only WM since the range of single WM T1 and T∗

2
 

times is denser compared with GM and especially compared 
with lesions as provided in Figure 3.

We achieved standardized results as we trained on data 
from both sites without significant differences between both 

F I G U R E  8   Predicted T
1
 (left) and T ∗

2
 (right) times over the dictionary matched T

1
 and T ∗

2
 times for the 4 output networks using patches for 

training and the mean absolute loss. Mean values per subject of WM are shown in blue, of GM are shown in orange and for the lesion are shown 
in yellow. The increased brightness of the representative colors depicts the test data and the reduced brightness depicts the training and validation 
data. In 3 different gray shades, the single T

1
 and T ∗

2
 times per slice are shown. A linear fit is used to correlate the predicted and the dictionary 

matched quantitative maps with corresponding R- and P-values
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(P < .01), even though the magnitude data from both sites 
varies due to different accelerations. However, changing 
the sequence parameters changes the magnitude evolutions. 
Therefore, new dictionaries have to be calculated and differ-
ent or retrained networks are required. Transfer learning may 
facilitate the possibility, to update the network when imaging 
parameters are changed.24,64

Our study has some limitations. As GM suffers from 
partial volume effects, calculating the mean T1 and T∗

2
 times 

strongly depends on the segmentation and the used threshold 
on the probability maps. Lesion segmentation could be an 
extra output from a CNN similar to the one such as investi-
gated here. However, to obtain reliable results from this, more 
WM lesions data would be required, due to the large variation 
in lesion tissue parameters and the small fraction of lesions 
compared to WM and GM. In our experiments, the training 
datasets did not provide enough lesion examples for the train-
ing to converge without significantly affecting other outputs. 
The strength of deep learning approaches commonly stems 
from the abundance of training data.65,66 Therefore, the pro-
posed reconstruction will likely benefit from larger datasets. 
Fractioning the full input into small patches is a first step to 
artificially generate more data, but data augmentation could 
be applied additionally. In this study, both sites operated on 

the platform of a single MRI vendor. A multi-vendor study is 
required for more universal comparisons.

5  |   CONCLUSIONS

MRF demonstrates to be an auspicious approach for 
quantifying T1 and T∗

2
 in subjects with MS to obtain 

information in a standardized fashion along 2 clinical cent-
ers. This technique saves time by simultaneous acquisition 
of T1 and T∗

2
 and might improve the segmentation pipeline of 

lesions as their quantitative measures are clearly separated 
from normal appearing brain tissue types. We showed that 
deep learning enables a drastic speed up in the postprocessing 
pipeline without a loss in accuracy and precision by com-
bining denoising, distortion correction, reconstruction, and 
masking.
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FIGURE S1 Representation of magnitude images, T
1
 and 

T
∗

2
 maps before and after using Marchenko–Pastur principal 

component analysis (MPPCA) denoising. On the right side, 
the relative difference between acquired and denoised image 
and map is depicted. MPPCA (blue) compared with non-
denoised (orange) 2D signals of 1 voxel is depicted over the 
different contrasts
FIGURE S2 Distorted (top) and corrected (middle) Maps  
(3 transversal slices and 1 sagittal slice) for T

1
. Distortion 

correction was performed using ANTs (nonrigid deformation 
in phase-encoding direction only) onto the T

2
-weighted im-

ages depicted as overlay, which shows in blue and red the 
deviations to the MRF-EPI before and after correction. The 
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https://scholar.harvard.edu/synho/publications/how-much-data-needed-train-medical-image-deep-learning-system-achieve-necessary
https://scholar.harvard.edu/synho/publications/how-much-data-needed-train-medical-image-deep-learning-system-achieve-necessary
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difference in percentage before and after distortion correction 
is shown. Major improvements (areas marked by arrows and 
circles) are observed after distortion correction, especially 
around the nasal cavities and the frontal lobe
TABLE S1 Mean T

1
 and T∗

2
 times for white matter (WM), 

gray matter (GM), and WM lesions are listed for all patients 
from site 1. The last column shows the respective mean val-
ues among the subjects and the intersubject variability. The 
amount of WM lesions per patient and patient’s age and gen-
der are provided
TABLE S2 Mean T

1
 and T∗

2
 times for white matter (WM) and 

gray matter (GM) are listed for all healthy volunteers from 
site 1. The last column shows the respective mean values 
among the subjects and the intersubject variability. Subject’s 
age and gender is provided
TABLE S3 Mean T

1
 and T∗

2
 times for white matter (WM), 

gray matter (GM), and WM lesions are listed for all patients 
from site 2. The last column shows the respective mean val-
ues among the patients and the intersubject variability. The 
amount of WM lesions per patient and patient’s age and gen-
der are provided
TABLE S4 Mean absolute difference and correlation coeffi-
cients of T

1
 for the different ne rks in the whole brain, WM, 

GM, and lesions. The loss functions mean absolute error 

(MAE), mean squared error (MSE), logarithmic cosinus 
loss (LCL), Huber loss (HL) are used for the network with 
4 outputs (T

1
, T∗

2
, WM, and GM). Additionally for MAE, the 

dual (T
1
 and T∗

2
 as output) and single (combined single T

1
 and 

single T∗

2
 as output) are listed. All networks are trained with 

patches and with the full input resolution (blue)
TABLE S5 Mean absolute difference and correlation coef-
ficients of T

2
∗ for the different networks in the whole brain, 

WM, GM, and lesions. The loss functions mean absolute 
error (MAE), mean squared error (MSE), logarithmic cosi-
nus loss (LCL), and HL (Huber loss) are used for the network 
with 4 outputs (T

1
, T∗

2
, WM, and GM). Additionally, for MAE, 

the dual (T
1
 and T∗

2
 as output) and single (combined single T

1
 

and single T∗

2
 as output) are listed. All networks are trained 

with patches and with the full input resolution (blue)
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