

Evaluating Music Improvisation Algorithms
with a Modular Trading Fours System

by

Thomas Sjerps
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday June 19, 2025 at 11:00.

Student number: 5058287
Project duration: November 11, 2024 – June 19, 2025
Thesis committee: Dr. ir. A. R. Bidarra, TU Delft, thesis advisor

Dr C. C. S. Liem MMus, TU Delft, daily supervisor
Dr C. Raman, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
Six years of studying in Delft have flown by, and I want to start out by thanking all of the friends that
I made during my study period here. Even though my study time involved a year of sitting secluded
at home, I am still very happy and proud of all of the exciting people I’ve met, and all of the things
that I have been able to do after 2020 outside of my studies. A special word of thanks goes out to the
Delftse Studenten Jazz Vereniging Groover, the jazz association that has brought me nothing but joy
(and back pain) since joining in 2021.

I would like to thank my parents for their continued support. A final thanks goes out to my thesis
supervisors, Dr. ir. Rafa Bidarra andDr Cynthia LiemMMus, who have helpedme greatly in develop-
ing and researching this amazing topic (something I am still thankful for) and who have encouraged
me to push my academic boundaries for the past seven months.

Thomas Sjerps
Delft, June 2025

3

Abstract
In musical (jazz) improvisation, musicians that are just starting out can often feel uncomfortable
when being put on the spot by their fellow players. However, when a musician is on their own when
practising or leisurely playing, this prevents them from listening to fellow musicians. When a musi-
cianwants to experience somenotion of co-playwhen they are on their own, computers andmusical
generative techniques may be a source of help. We study the extent to which music improvisation
algorithms can facilitate such interactions by proposing an experimental framework to evaluate and
compare these different algorithms. We achieve this by developing MILES (‘Mixed-Initiative musi-
caL interactivE System’), a generic music improvisation system that allows a musician to improvise
with various musical improvisation models and facilitates comparative evaluation of these models.
MILES makes use of the ’trading fours’ paradigm, where two or more musicians exchange four mea-
sures of solomaterial. We conduct experiments with novice and advancedmusicians in expert-pupil
and peer-to-peer settings that compare differing algorithms, as well as different variations of simi-
lar algorithms. These comparisons are based on self-assessed opinions and third-party grading and
ordering of recordings, based on improvisational reciprocity and enjoyment. Symbolicmusic record-
ing analysis further quantifies the interactivity between the musician and the algorithms. With this
experimental setup, we are able to track familiarity and enjoyment of using music improvisation al-
gorithms, and compare different iterations of similar music improvisation algorithms.

5

Contents

1 Introduction 1
2 RelatedWork 3

2.1 Mixed-initiative systems. 3
2.2 Music improvisation systems . 3
2.3 Music visualisation. 5
2.4 Existing (jazz) musical material . 5
2.5 Evaluation techniques . 7

2.5.1 Non-improvisational music generation analysis 7
2.5.2 Music improvisation system analysis . 7

3 Experimental Design 9
3.1 Trading fours . 9
3.2 Evaluation . 9

3.2.1 Enjoyment and familiarity . 10
3.2.2 Reciprocity . 10
3.2.3 Third-party assessment . 10
3.2.4 Symbolic analysis . 10
3.2.5 Tracking progression. 11

3.3 Experiments . 11
3.3.1 Algorithms . 11
3.3.2 Assessment form . 11
3.3.3 Symbolic analysis . 11
3.3.4 Experiment 1: initial comparison . 13
3.3.5 Experiment 2: evaluating iterations. 13

3.4 Ethics . 14
4 AlgorithmOverview 15

4.1 Common functionality. 15
4.1.1 Reactivity . 15
4.1.2 Tokens . 16

4.2 ‘Baseline’ algorithms . 16
4.2.1 Note Retrieval . 16
4.2.2 Token Random v1 . 16

4.3 Markov-based algorithms . 16
4.3.1 Token Markov v1 . 17
4.3.2 Token Markov v2 . 17

4.4 Factor oracle-based algorithms . 17
4.4.1 Token Factor Oracle v1. 17
4.4.2 Token Factor Oracle v2. 17

5 SystemDesign 19
5.1 Music improvisation system. 19

5.1.1 MIDI engine . 19
5.1.2 Algorithms . 19
5.1.3 UI and visualisation frontend . 20
5.1.4 Recording and playback backend . 20

5.2 Evaluation . 20
5.2.1 Evaluation form . 21
5.2.2 Analysis framework . 21

5.3 Implementation . 21

7

8 Contents

6 Experiment 1: Initial Comparison 23
6.1 Configuration . 23
6.2 Logistics . 23
6.3 Results . 24
6.4 Pilot phase and algorithms . 24

6.4.1 Self-assessment . 25
6.4.2 Expert reporting . 26
6.4.3 Symbolic analysis . 26

6.5 Discussion . 26
7 Experiment 2: Evaluating Iterations 33

7.1 Iteration of algorithms . 33
7.2 Configuration . 33
7.3 Logistics . 34
7.4 Results . 34

7.4.1 Self-reporting. 34
7.4.2 Peer reporting . 35
7.4.3 Symbolic analysis . 36

7.5 Discussion . 37
8 Conclusions and FutureWork 41

8.1 Conclusions . 41
8.2 Future Work . 42

8.2.1 Experiments . 42
8.2.2 MILES . 42

A FormOverview 45
A.1 Informed consent form . 45
A.2 Self-evaluation form . 45
A.3 Third-party evaluation form. 45

B Miscellaneous Algorithms 51
B.1 Common functionality. 51

B.1.1 Chord-scale notes . 51
B.1.2 Applying swing . 51
B.1.3 Generating measures . 52

B.2 ‘Baseline’ algorithms . 52
B.2.1 Note Random. 52

B.3 Markov-based algorithms . 53
B.3.1 NoteRep Markov v2 . 53

B.4 Factor oracle-based algorithms . 53
B.4.1 Note Factor Oracle . 54

B.5 Other algorithms . 54
B.5.1 Token Shuffle v1 . 54
B.5.2 Token Transformer v1 . 55
B.5.3 Token Neural Net v2 . 55

C Miscellaneous Symbolic Features 57
C.1 Note pitch features . 57
C.2 Interval features . 57
C.3 Note length features . 58
C.4 Melodic arc features . 58
C.5 Rhythm features . 58

D Token Overview 61
D.1 Pitch stage . 61

D.1.1 First iteration . 61
D.1.2 Second iteration . 61

Contents 9

D.2 Octave stage . 61
D.2.1 First iteration . 61
D.2.2 Second iteration . 62

D.3 Timing stage . 62
D.3.1 First iteration . 62
D.3.2 Second iteration . 62

D.4 Velocity stage . 62
D.4.1 First iteration . 62
D.4.2 Second iteration . 62

1
Introduction

Improvising music is fun, and also very beneficial for other skills, like problem solving [1]. In prin-
ciple, most jazz improvisation is very accessible: quite often, songs are played that are considered
‘standards’ due to their popularity, most improvisation structures centre around the ‘form’ of these
standards and during open jams beginners are often welcome join in. In practice however, many
beginning improvisers feel a mental barrier when performing. A form of pressure can emerge when
musicians are put on the spot tomake up and play novelmusicalmaterial. It is reasonable to assume
that alleviating this pressure increases comfort and enjoyment of performance.

Musicians already have existing options rehearse improvisation on their own: creating transcrip-
tions of existing solos, soloing over backing tracks and practising more technical facets of playing
(scales, rudiments, etc.) are tried and tested ways of learning jazz improvisation. However, these
techniques lack the interplay and reciprocity of improvising with multiple people. Computational
real-time systems might bridge this gap, by providing musical material to the musician in real-time.

The terminology used in articles describing existing music improvisation systems can vary a lot:
the words ‘system’, ‘model’ and ‘algorithm’ vary in definition from system to system. In this research
we use the following definitions (by taking an existing music improvisation system calledMimi as an
example):

• A music improvisation system is the full unit with which music improvisation can take place.
This includes the type of symbolic input (Does the user use a MIDI keyboard? Do they use
a trumpet with live transcription? Etc.), the modality of the interaction (Do the human and
computer alternate their play, or do they play over each other? Etc.) and the musical output
(Does the system connect to a digital audio workstation, or does it generate the audio itself?).
An example of a music improvisation system is Mimi itself.

• A music improvisation algorithm is responsible for taking the symbolic data, potentially pro-
cessing it, and transforming it into somenew symbolic data. Algorithmspotentially have access
to previously playedmaterial of the musician, external pre-existing solo material and their own
generated material. The music improvisation algorithm of Mimi is responsible for dividing its
musical input into chunks.

• A music improvisationmodel is a generic component which can be used to ingest (‘train’) and
generate (‘infer’) any type of data. Mimi uses a ‘factor oracle’ model which re-emits its input
musical chunks in a different order.

A diagram further illustrating our terminology can be found in Figure 1.1, and Mimi will be further
discussed in chapter 2.

To our knowledge, existingmusic improvisation systems have been used only formusical demon-
strations done by their (often musically capable) creators and other music experts, not for improvi-
sational research with novices. In this research, we take inspiration from these systems by adapting
their algorithms and evaluation strategies into a new experimental setup and improvisation system.
We will make use of the ‘trading fours’ paradigm, where musicians alternatingly ‘trade’ musical ma-
terial by playing four measures of musical material at a time: in addition to being an existing jazz

1

2 1. Introduction

Figure 1.1: Diagram giving an overview of the terminology used in this thesis.

improvisation structure, the aspect of exchanging small snippets of musical material creates a com-
putationally convenient environment for real-time generative algorithms. With the experimental de-
sign, we aim to answer the following research question:

To what extent canmusic improvisation algorithms facilitate a trading fours interaction with a
novicemusician on their own?

In order to answer this question, we define further sub-questions:

1. How can familiarity and enjoyment in improvisation be measured for novices over time?

2. How can iterative comparison of music improvisation algorithms be carried out?

3. What kinds of algorithms and evaluation techniques are best suited for an improvisation inter-
action between improvisation algorithms and novice musicians on their own?

The research will follow three phases. Firstly, the setting and evaluation of the experiment are de-
fined (see chapter 3). Next, we outline the algorithms that are used in these experiments (see chap-
ter 4) and we describe the implementation of the system that supports improvisation with and eval-
uation of these algorithms (called MILES (‘Mixed-Initiative musicaL interactivE System’)). Finally,
two experiments are carried out. The first of these experiments aims to compare various different
models alongside each other over time using self-assessment, expert feedback and symbolic music
analysis (see chapter 6). The other experiment compares different iterations of the samemodel using
self-assessment, peer feedback and symbolic music analysis (see chapter 7).

2
Related Work

Since the 1950s, people have used computers to generate music. In these years, one of the first sym-
bolic music generation algorithms (based on Markov chains) [2] and ‘computer music programming
languages’ like MUSIC I [3] were introduced. Increased computing power allowed for more complex
algorithms to beused, like genetic algorithms [4] [5] and grammar-based algorithms [6]. A further in-
creaseof computingpower allowed for theadvancementofmachine learning techniques,whichwere
increasingly incorporated into music generation systems. Systems like JazzGAN [7], BebopNet [8]
andMultitrackMusic Transformer [9] respectively, use algorithms with GAN, LSTM and Transformer
models for generating symbolic music.

The increase in computing power not only advanced music generation algorithms, but also saw
the advent of real-time music improvisation systems. These systems adapted models from these
‘static’music generation techniques to workwith real-time input and output. In this chapter, we first
describe these existing systems through the lens of mixed-initiative systems. Next, we detail existing
music visualisation techniques and existing music corpora which these systems may make use of.
Finally, we describe the way that existing (‘static’ and improvisational) music systems are evaluated.

2.1. Mixed-initiative systems
In procedural content generation, a mixed-initiative system is a system in which a work of design is
iterated upon between a human and a computer system. By interleaving these iterations, the user
can take inspiration from suggestionsmade by the computer, and the computer can use content and
preferences of the user to generate novel and potentially interesting design candidates.

An example of these mixed-initiative systems is Sentient Sketchbook [10], a procedural content
generation system that aids a human author with creating game levels. While the user is sketching a
potential tile map of such a level, a genetic algorithm provides suggestions based on the current de-
sign. By allowing the user to pick and improve on these suggestions, the human and system together
make iterations throughout the creative process towards a finished game level. Another system, de-
scribed by Gain et al. [11], allows a user to control the placement of procedurally generated terrain
by sketching an outline of mountains and canyons.

Mixed-initiative systems may also allow for creation of musical material. ProceduraLiszt [12] al-
lows a user to compose a piece of music by setting constraints for a hierarchical Wave Function Col-
lapse algorithm, and to iterate on tweaking those constraints to converge to a desired composition.

2.2. Music improvisation systems
(Musical) content generation does not necessarily consist of alternatingly changing a single static
work. In the context of real-time improvisational (jazz) music, a different perspective is required:
musicians playing together in real time (taking turns, playing over each other, etc.) inherently creates
amusical artifact on the spot, and as such, there is no room for iterative improvement and refinement
towards a static final outcome. There exist music improvisation systems that allow for a user to play
back and forth with an artificial agent. This section describes a selection of these systems.

3

4 2. Related Work

Music improvisation systemscanusemanydifferent algorithms togenerate symbolicmusic. Thom
takes the idea of ’believable agents’ (defined by Loyall as “personality-rich autonomous agents” [13])
and creates a personalized trading fours ’believable improvisation music companion’ by using a
variable-length tree encoding scheme with extensions for temporal information [14]. Many of the
first improvisational symbolic music generation systems relied on variations of Markov chains. For
instance, Pachet’s The Continuator [15] uses an algorithm that interactively and iteratively trains
a variable-order Markov model with played musical phrases. In contrast to a fixed-order Markov
model, this model uses higher-order continuations for more musically structured generations, while
gradually lower-order continuations serve as fallbacks to prevent generation from stalling when no
higher-order continuations are found. Many playing modes are outlined, where musicians can play
with musical ’databases’ from a single musician, a cumulative database that is built over time, and
databases from each other.

Biles’GenJam [16] trades fourswithagenetic approachby storinga ‘population’ ofmusical phrases
per song, with real-time musician-assessed ‘fitness scores’ (indication of ‘good’ or ‘bad’). During the
training phase, these phrases are genetically bred and mutated with various symbolic music oper-
ators, which become the new population of phrases. During a performance, these phrases are re-
trieved and playedwithout alteration. Interactive GenJam [17] takes the genetic mutations described
in the original paper to generate trading fours by simply mutating the four measures played by the
humanperformer, thereby getting rid of the need for themusician to first assess a large population of
musical phrases over many generations. Another model that is used for real-time music generation
is called a factor oracle. Originally developed for fuzzy pattern matching, this model represents an
automaton with links representing each snippet of material from one node to the next, with possible
links based on suffix structure [18]. The factor oracle builds a structure around a string 𝑝 of length𝑚.
Construction of the model makes use of the fact that the ‘supply’ of every node 𝑖 of the factor oracle
of 𝑝 (the index where the longest repeated suffix of 𝑝 up until 𝑖 ends) does not change when a new
node is added. Thus, a value 𝑣 can be added to the factor oracle of 𝑝, by appending a new node and
linking it to the node of 𝑝𝑚, going to its supply node, adding a transition from it to𝑚 + 1 with value
𝑣, going to the supply of that node, adding a transition of it to 𝑚 + 1 with 𝑚, et cetera. Creation of
additional links stops when a transition for 𝑣 is already present, or the start is reached. The result of
adding a value of ’a’ to a factor oracle of the string ‘abbb’ can be found in Figure 2.1.

“abbb”

“abbba”

0 1 2 3 4

0 1 2 3 4 5

Figure 2.1: Addition of a value to a factor oracle. Supplies are shown coloured green inside of nodes, indices are shown at the
bottom-right of nodes.

By repeatedly adding nodes, a fuzzy factor searching automaton can thus be constructed. Any
material that can be encoded as a string can be fed into a factor oracle, and by traversing the model’s
automaton, this material can be generated respecting a notion of structure of the original material.
Thus, by feeding symbolic music to a factor oracle and traversing it, convincing novel musical mate-
rial can be generated [19].

Due to its simplicity andcomputationally efficienton-line real-time trainingandgeneration,many

2.3. Music visualisation 5

music improvisation systems have been developed with the factor oracle model. One such system,
OMax [20], can use symbolic music data for improvisation as well as audio data. The OMax algo-
rithm (called Open Music) has been used in many contexts, like live performance (where the hu-
man and system continually play over one another) and style replication of a specific artist [21]. An-
other improvisational systemwhere the humanperformer and systemplay over one another is called
Mimi [22]. Mimi uses the factor oracle model in the same way as OMax, but does not immediately
play the musical data it generates. Instead, the system schedules notes to be played a certain time
in the future, allowing the user to anticipate and ‘play towards’ the generated material. Mimi4x [23]
primes four Mimi models with initial musical content and allows them to improvise among them-
selves. The ImproteK [24]music improvisation systemdefinesmusic improvisation to be over a “sce-
nario” (structured constraints, like a lead sheet) with a specific “memory” (external or already played
work). It uses these definitions to extend the factor oracle techniques of OMax (and its derivatives)
with anticipatory behaviour.

The music improvisation system AM-I-BLUES [25] is a combination of two systems made for
novices. The first, MyJazzBand [26], allows novice musicians to play approximate musical events,
which are algorithmically transformed into stylistically ‘correct’ musical output. The second system,
AMIGO [27], consists of a keyboard that shows outputs of aMarkov-chain based improvisationmodel
by lighting up LEDs above the keys. Together, the AM-I-BLUES system gives multiple LED ‘sugges-
tions’, and allows for on-the-fly production of harmonic progressions.

2.3. Music visualisation
There exist music visualisation techniques, which turn (symbolic) music data (often in MIDI format)
and turn it into pictures or videos. Music visualisation techniques can show the feeling, structure or
another viewpoint of a piece of music at a certain point in time, or over time. This chapter gives a
rough overview of some existing music visualisation techniques.

It is possible to show musical structure and rhythm of music with computer visualisation tech-
niques. Such techniques include a self-similarity matrix of (the audio, MIDI data, etc.) of a piece
of music [28] or an ‘arc diagram’ [29], where repeated fragments of material are shown graphically.
Pitch and harmony of music can also be shown with computer visualisation techniques. The spiral
array model [30] is based on a spiral-shaped ‘Tonnetz’ [31] (tonal net) mapping pitches into a tonal
grid. Another visualisation technique based onpitch andharmony, called ImproViz, shows amelodic
line graph and self-defined ‘harmonic palette’ of a specific jazz solo.

In a typical jazz improvisation setting, musicians have a so-called ’lead sheet’ in front of them,
which contains the structure and chords of the standard they are currently playing. This lead sheet
could be a physical book (i.e. a ‘Real Book’), or it could be an app on their phone or tablet, like iReal
Pro [32]. iReal Pro only shows the chords of a standard (due to copyright and licensing constraints),
whereas a real book also shows themelody. This difference in layout canbe seen inFigure 2.2. In iReal
Pro, users can also choose to listen to a backing track which is automatically generated based on the
given chords of the song. The visualisation that is used with this feature highlights the currently-
playing measure, which can be seen in Figure 2.3.

Some existing music improvisation systems already make use of visualisation for conveying their
internal state. In one of the many performances of GenJam [16] that can be seen online [33], a piano
roll visualisation can be seen that shows all notes scrolling from right to left, including the notes
that the system generates itself. As well as that, the system shows the currently-playing bass note,
and some circles and stripes to indicate MIDI percussion events. Mimi [22] also uses a piano roll to
visualise all notes that are being played. The fact that Mimi schedules notes to be played at a later
time influences theway that this piano roll is laid out. Thedelay fromgeneration toplayback is shown
by scrolling all notes from right to left on the screen, and showing the current time as a vertical line
at the centre of the screen. By emitting all human-played notes from this centre line, but all Mimi-
generated notes from the far right side of the screen, the human performer can anticipate the notes
that will be played as they reach the vertical line.

2.4. Existing (jazz) musical material
Mostmusic generation techniquesdependonacorpusof existingmusic to train from. Audiodatasets,
like those used by Deezer for creating their stem separation tool Spleeter [34], are used for analysing

6 2. Related Work

(a) Hal Leonard Real Book. (b) iReal Pro.

Figure 2.2: Lead sheet visualisations of the Hal Leonard Real Book and iReal Pro (both of jazz standard How High the Moon).

Figure 2.3: iReal Pro leadsheet visualisation during playback.

generating audio data. This research only considers generating and analysing symbolicmusic. When
generating symbolicmusic, the corpusneeds to comprise transcriptionsofmusic in symbolic format.
A selection of these symbolic corpora is outlined here.

Symbolic corpora exist for many different genres. Folk music has been preserved in various cor-
pora: the Lyra dataset contains 1570 pieces of Greek traditional and folk music, and the Meertens
Institute has a collection of many Dutch songs originating from the Middle Ages up until the 20th
century [35]. These songs are stored in the Nederlandse Liederenbank¹ and are documented in var-
ious ways, ranging from audio recordings to transcriptions in various file formats. There also exist
many classical corpora. The Symbolic Orchestral Database links piano scores to their corresponding
orchestrations [36]. The Lakh MIDI Dataset [37] consists of roughly 100.000 MIDI files of all genres
and styles. Via the Million Song Dataset [38], a subset of these MIDI files are annotated with song
metadata, like genre tags.

There also exist symbolic jazzmusic datasets. The Jazzomat ResearchProject [39] consisted of cre-
ating and analysing the Weimar Jazz Database. This database contains 456 annotated monophonic
jazz solos (including underlying chords, note volume, music style, feel and other metadata). The Dig

¹www.liederenbank.nl/

2.5. Evaluation techniques 7

That Lick project [40] extends the Weimar Jazz Database with a number of automatically transcribed
solos for use in their analysis. Jazz sheet music publisher Hal Leonard sells so-called Omnibooks [41]
with transcribed solos of jazz masters (Charlie Parker, John Coltrane, Sonny Rollins, Stan Getz, etc.),
in order for (novice) jazz musicians to study and practice these existing solos.

2.5. Evaluation techniques
Whenanewmusic generationmodel or system is presented, it is often accompaniedby an evaluation
to measure its efficacy or similarity with respect to some other musical source. In this section, we
detail evaluationsmadebyexistingnon-improvisationalmusic generation systems, aswell as existing
music improvisation systems.

2.5.1. Non-improvisational music generation analysis
Music generation techniques can be evaluated in several different ways, ranging from subjective sur-
veys to more objective and computational evaluation. This section outlines such existing subjective
and computational analysis techniques.

As music is a subjective field, letting subjective analysis be part of evaluation is an evident choice,
by asking listeners to rate recordings or discern them from other recordings. The Jazz Transformer
and Multitrack Music Transformer use survey methods where multiple systems are rated on overall
quality, structure and richness. The former uses this for comparing their differently trained models,
while the latter compares their system to different systems. FIGARO is evaluated by asking partici-
pants to listen to two samples of different generation techniques at a time, and picking the best of
the two. In these studies, the participants have a variety of skill levels, but these are not considered
in their analysis. MINGUS’ [42] evaluation survey asks participants to rate its output together with
BebopNet output and canonical Weimar Jazz Database solos. Frieler and Zaddach [43] prepare dif-
ferent stimuli of their system, ranging fromdeadpan MIDI generation, to recordings of students, jazz
legends and one of the authors. Both evaluations take the skill level of participants into account, and
do indeed show a difference in assessment between skill levels.

Many static systems opt for a computational analysis for their evaluation. Jazz generation sys-
tem BebopNet [8] coins the term ‘harmonic coherence’ in their analysis, which consists of counting
the fraction of a measure in which notes match the chord they are played over. Moreover, to our
knowledge BebopNet is the only technique to carry out a plagiarism analysis, by finding matches
of the original dataset in generated material (up to transposition). Another jazz generation system,
MINGUS [42], uses the MGeval objective evaluation toolbox [44] for its objective analysis to com-
pare itself to BebopNet. McKay [45] lists many global features on musical content, as a stage in his
proposed pipeline for automatic genre classification. Some of these can be applied to monophonic
symbolicmelody data, like average note duration and variability of time between attacks. There exist
more toolkits and works that list many different global features: in his work on quantifying rhythmic
complexity, Abrams [46] defines a set of 15 global features, andMüllensiefen’s FANTASTIC toolkit [47]
contains only monophonic symbolic melody features. In another work, Müllensiefen et al. [48] de-
fine many musical similarity metrics, with which two pieces of musical material can be compared.
One of these techniques, called the edit distance, is equal to the minimal number of ‘edits’ (basic
transformations) that need to be carried out to transform one string into another. This edit distance
can be applied to different transformations of musical material (i.e. edit distance of all pitches in a
fragment, edit-distance of all intervals in a fragment, et cetera).

2.5.2. Music improvisation system analysis
Evaluation of music improvisation systems brings its own challenges, when compared to music gen-
eration systems. For instance, Pachet and Roy[49] point out that in a common jazz improvisational
setting, musicians do not ‘really’ interact with each other when this is evaluated audio-based simi-
larity metrics. Aside from questions about the efficacy of these kinds of computational analyses, the
fact that a human performs part of the interaction opens up the potential for many different kinds of
self-assessment and third-party assessment evaluation techniques.

Most music improvisation systems opt for an evaluation of surveying the performers themselves.
The AM-I-BLUES [25] improvisation system uses heuristic evaluation [50], which relies on the fact
that when comments from multiple test participants is aggregated (even with a very low amount of

8 2. Related Work

participants), the results can find most usability problems. GenJam [16] is described by its author Al
Biles as “competent with some nice moments”. Moreover, variations of the Mimi [22] and OMax [21]
systems have been positively described by the experts who have performed with them. Third-party
participants can be asked to rate recordings from music improvisation systems after they are per-
formed. For instance, The Continuator [15] was evaluated by asking (unspecified) ‘listeners’ if they
could tell the system output apart from human-made music.

3
Experimental Design

In this research, we aim to answer to what extent can music improvisation algorithms facilitate a
trading fours interaction with a novice musician on their own. Novice musicians have the most to
gain from familiarity, and can give more contrasting data than experts who are already familiar with
improvisation and canmore easily become comfortablewith new improvisational systems. Thus, we
see a use in evaluating (and comparing) music improvisation algorithms in the context of familiarity,
progression and improvisational reciprocity by carrying out a set of experiments.

We start this chapter by describing the improvisational interaction we seek to carry out. Next,
we take a look at what subjective evaluationmethodswe can use from existing techniques (see chap-
ter 2.5.2), and then take a lookat additional evaluation techniqueswecanconsider basedon symbolic
analysis. Finally, we fully detail the experiments we set out to perform.

3.1. Trading fours
We intend to keep the experiment relevant to actual improvisational interaction by keeping the user
study as close to a real improvisational interaction as possible. As well as that, we aim to carry out
comparative analysis by creating a level playing field, where every algorithm is presentedwith exactly
the same interaction characteristics.

Jazzmusic usually consists of repetition of the same chord structure, known as the ‘form’. In a typ-
ical jazz performance, the first and last instance of the ‘form’ are usually performed with the original
melody, with all other playthroughs of the ‘form’ being designated to soli. In such soli, accompany-
ing instruments keep playing while the soloist plays improvised musical material. Soli can take an
entire playthrough of a form, though many other configurations exist.

One such configuration, ‘trading fours’, consists of many soloists collaborating by alternatingly
playing four measures of solo material. In some variants of trading fours, more variation is created
by letting percussion players (drums, etc.) solo over every other ‘four’. Trading does not necessarily
have to take up fourmeasures: ‘eights’, ‘two’s’, or even singlemeasures can be takenwhen trading. By
interleaving short snippets of solo material, trading fours gives musicians a more immediate chance
to collaborate with, listen to and take inspiration from one another.

Like already discussed in chapter 1, we choose to use trading fours as the main interaction of im-
provisation in our experiments because of this immediate collaboration and the consequent com-
putationally convenient improvisation environment for real-time generative algorithms.

While many instruments can be used in jazz improvisation, we focus on evaluating trading fours
with jazz piano players. This is done due to the popularity of the instrument, the ease of use of work-
ing with (MIDI) keyboards in interactive software and our own personal familiarity with piano play-
ing.

3.2. Evaluation
In line with other music system analyses, we aim to survey participants on the (musical) qualities
of the improvisation interaction, as well as provide symbolic analysis. This section describes our

9

10 3. Experimental Design

goals and aims based on self-assessment and third-party assessment criteria, symbolic analysis and
tracking of progression.

3.2.1. Enjoyment and familiarity
One of our goals is to to measure enjoyment of playing with the chosen models of the system. To
achieve this, we opt to survey to what degree the novices felt inspired, and enjoyed playing with the
system. In order to give them the opportunity to give additional feedback, we will also provide an
option for free-form input for further elaboration of their opinions.

3.2.2. Reciprocity
In a real-life trading fours setup with human players, it is imaginable that while trading, the players
get inspired by one another and thus will refer to earlier material while improvising. Thus, we wish
to study the feeling of improvisational reciprocity of the chosen models of the system. Therefore, we
will survey whether we can observe musical interaction between pupils and algorithms. Response in
improvisationwith any partner is a two-way street: each party has some efficacy of responding to the
other. Thus, we survey the pupils on how the algorithm responded to them, as well as on how they
could respond to the algorithm. Moreover, we aim to create different improvisation interactions that
functionally differ in their reciprocity (for instance, an algorithm that does not respond to human
input at all).

3.2.3. Third-party assessment
Music generation systemsareoften evaluatedby (experienced)musicians listening to andcomparing
recordingsof various techniques, includingpotentially humanperformances. Wewish to include this
notion of assessment with groups of different skill levels.

For the evaluation of our approach, we choose not to follow past strategies in which users are
asked to distinguish machine output from user input or canonical (solo) material (as e.g. is done in
Pachet’s the Continuator [15]. To our feeling, such a Turing test style evaluation places an improvi-
sation algorithm in a frame of competition with (and possible replacement of) the human musician.
Instead, we rather want to analyse whether pupils feel empowered to play with the algorithms, and
whether this aligns with the assessment of external listeners. We aim to achieve this by surveying
these listeners with the same questions as were given to the performers.

Firstly, we aim to introduce a notion of expert feedback into our evaluation. As experts potentially
have a role in coaching novices, they potentially have a more developed ear for musical competence
in students and may pass more musically informed judgements. This expert feedback will later be
included in the first of our experiments (see chapter 3.3.4). Secondly, we aim to also include peer
evaluation as a potential evaluation technique. By making sure that all novices that use the system
have the same level of familiarity with improvisation, we aim to study the difference between like-
minded and expert assessment. This peer feedback will later be included in our second experiment
(see chapter 3.3.5).

3.2.4. Symbolic analysis
Although Pachet and Roy [49] show no reciprocity of improvisation of jazz musicians by analysing
audio, we believe that additional research in using computational music analysis for measuring reci-
procity of improvisation with a music improvisation system is needed. Applying these techniques to
our evaluationof improvisationalmusic generationmodels couldprove tobe auseful extra viewpoint
for analysis.

In this research, we will use global features of symbolic music data, inspired by existing ‘toolkits’
of these analyses. In our global features, we look for properties of contour, pitch and rhythm, as we
deem these properties most important to (monophonic) jazz solo analysis. We aim to measuring a
potential trend in symbolicmetricswithin thehumanmaterial throughout a recording, and similarity
metrics between human and system musical material, to signify a change in style of human output
when exposed to a musical improvisation system.

These features do not directly analyse the reciprocity between the fours played by the human and
the algorithm. For explicitly quantifying this reciprocity, we also look for a similarity metric between
human and algorithmic ‘fours’.

3.3. Experiments 11

3.2.5. Tracking progression
We aim to track familiarity and enjoyment over time in our research, in order to get a deeper under-
standing of how novices can use music improvisation systems on their own. This can be achieved by
carrying out multiple sessions where the novice plays with the various algorithms, with some times-
pan in between.

By applying our subjective evaluation and symbolic analysis multiple times, we aim to measure a
trend in enjoyment, familiarity and reciprocity. Aside from applying the same techniques over time,
techniques can be used where third parties can directly compare material from different sessions.
This allows for a more explicit evaluation of sessions over time.

We make a distinction between general improvisational familiarity and specific familiarity of our
system. Thus, we intend to introduce a small familiarity phase at the beginning of each session we
carry out. This allows us to measure the effectiveness of the system with the algorithms over time.

3.3. Experiments
With the intentions presented in the previous sections, we detail the two experiments we will carry
out in this research. We first detail the kinds of algorithms we wish to evaluate, the assessment form
we use and the symbolic analyses we carry out. Next, we describe the generic setup of the two exper-
iments we conduct.

3.3.1. Algorithms
In order to present all algorithms with a level playing field, we aim to implement our own music
improvisation system where several algorithms can be swapped out.

We choose to evaluate algorithms that we implement, inspired by existing music improvisation
systems. In order to potentially improve the musical output of the algorithms, we choose to feed
a selection of canonical solos from the Weimar Jazz Database to these algorithms. By having these
algorithms use the canonical solo material and the human-played material differently, we capture
our intent to include many differently-responsive algorithms that we detail in chapter 3.2.2. We in-
tend to at least implement a few algorithms which do not base their generation off of human input,
a Markov-based algorithm as used in The Continuator [15], a factor oracle-based algorithm as used
in OMax [21] and Mimi [22], and a genetic algorithm as used in Interactive GenJam [17].

3.3.2. Assessment form
We have compiled a set of questions regarding enjoyment, inspiration and reciprocity in an assess-
ment form, a variation of which will also be used for third-party assessment. The questions in this
form are as follows for self-assessment and third-party assessment:

• I feel that the algorithm could respond well to me / Algorithm responds well to pupil

• I feel that I could respond well to the algorithm / Pupil responds well to algorithm

• I feel that the algorithm gives me inspiration / Pupil got inspired by algorithm

• I enjoyed playing this song with the algorithm / Pupil enjoyed playing with algorithm

The final forms can be found in Appendix A.

3.3.3. Symbolic analysis
In the symbolic analysis we describe in chapter 3.2.4, we aim to make use of global features for
melodic contour, pitch and rhythm, and an explicit similarity metric. In this subsection we describe
these methods and how we use them.

We aim to use the global features on every ‘four’ of all recordings, and aggregate them throughout
the duration of the performances. With this information, we can see the evolution of the values of
a metric over time between human ‘fours’ and algorithmic ‘fours’, and throughout time. The global
features we use can analyse symbolic music recordings, which contain 𝑛 notes 𝑁 over 𝑚 measures
and have the following properties:

• OutputName (type: enum): the instrument or player that played this note;

12 3. Experimental Design

• Time (type: double): the time (in measures) of the onset of the note;

• Length (tpye: double): the time (in measures) of the length of the note;

• Note (type: int): the MIDI note number of the note;

• Velocity (type: int): the velocity (0-127) of the note.

The list of global features that were implemented, but ended up not being used, can be found in
Appendix C.

For melodic contour, we decided to use ‘extrema ratio’, which the Weimar Jazz Database [39] defines
to be the “share of notes with direction reversal (i.e, minima and maxima of pitch contour)”. Compu-
tation starts by constructing a list of ‘melodic arcs’, recording the (BPM-dependent) time durations
and pitch heights of each. A visual overview of melodic arcs can be seen in Figure 3.1. An algorithm
to compute melodic arcs from symbolic input, as well as further metrics using them, can be found in
Appendix C.

Figure 3.1: A piano roll illustrating the notion of melodic arcs.

We define 𝐴 = 𝐺𝑒𝑡𝐴𝑟𝑐𝐿𝑖𝑠𝑡(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠, 𝑏𝑝𝑚, 𝐼) to be a list of durations (in seconds) and heights (in
semitones) of each arc. The value of the extrema ratio is the amount of melodic arcs (minus one),
divided by the number of notes:

𝑒𝑥𝑡𝑟𝑒𝑚𝑎 𝑟𝑎𝑡𝑖𝑜 = 1
𝑛 ⋅ (|𝐴| − 1)

This metric is low when the melodic contour is very simple, and increases with melodic complexity,
thereby making it a logical metric to use in analysis.

Inspired by the evaluation techniques of BebopNet [8] and features based on pitch statistics given by
McKay [45], we use the root, third and fifth note share for our pitch class global feature. This feature
measures the prevalence of the root, third and fifth note of the key of the song:

𝑛𝑜𝑡𝑒 𝑠ℎ𝑎𝑟𝑒1,3,5 =
1
𝑛 ⋅

𝑛

∑
𝑖=1
(𝑖mod 12 ∈ {Root(𝐾𝑒𝑦),Third(𝐾𝑒𝑦),Fifth(𝐾𝑒𝑦)})

By measuring the percentage amount of notes that adhere to these primary scale degrees of the key
signature of the song, this global feature is a potentially useful candidate in measuring complexity
and ’spiciness’ of the solo material.

Abrams [46] describes a list of rhythmic complexity metrics. One of these metrics, called the
’Normalized Pairwise Variability Index’ (NPVI), measures rhythmic contrast by comparing succes-
sive inter-onset intervals [51]. For analysing NPVI, we first define these inter-onset interval to be the
difference in onset time between notes, and use these to compute the NPVI itself.

𝐼𝑂𝐼 = {Time(𝑁𝑖+1) − Time(𝑁𝑖) ∣ 𝑖 ∈ {0, 1, … , 𝑛 − 2}}

3.3. Experiments 13

𝑁𝑃𝑉𝐼 = (100𝑁 − 1) ⋅
𝑁−1

∑
𝑖=1

| 𝐼𝑂𝐼𝑖 − 𝐼𝑂𝐼𝑖+1
(𝐼𝑂𝐼𝑖 + 𝐼𝑂𝐼𝑖+1) / 2

|

Foranadditional explicit similaritymetricwehavechosen theLevenshteineditdistance for analysing
melody similarity between the fours of the pupil and the algorithm. This edit distance will be calcu-
lated over the token representation of the fours, and is equal to the minimal number of tokens of
the first ‘four’ that need to be added, substituted, deleted or transposed in order to get to the sec-
ond ‘four’. We use the external Fastenshtein¹ library for a performant Levenshtein edit distance im-
plementation. In our analysis, we will compute the edit distances from every human-played four
to its subsequent algorithmic four, and from every algorithmic four to its subsequent algorithmic
four. With these algorithm-to-pupil and pupil-to-algorithm edit distances per performance, we aim
to measure reciprocity between algorithms, songs, and sessions.

3.3.4. Experiment 1: initial comparison
The first experiment we describe will have the main goal of tracking enjoyment and familiarity of
novice musicians (‘pupils’) with evaluation by self-assessment by the pupils themselves, assessment
by musicians with a high musical skill level (‘experts’), and symbolic analysis methods. This subsec-
tion describes the generic procedure for this experiment.

Firstly, a wide range of algorithms will be developed based on our descriptions in chapter 3.3.1.
Next, a selection of jazz standards is made ahead of the experiment, with corresponding canonical
solos from the Weimar Jazz database. These solos are fed to the algorithms for potential use in their
generation. An initial pilot is conducted with the experts, to evaluate their experience in using our
improvisation system, as well as to select three algorithms for later use by the pupils.

A group of pupils will take part in consecutive playing one-on-one sessions, where each session
covers the standards with the selected algorithms, in randomized order. After all sessions, each pupil
will have improvised with every algorithm on every standard. A supplementary session takes place
with the same song-algorithm configuration and order as the first, to allow for expert assessment in
progression.

The pupils are informed of the chosen jazz standards several days in advance of the first session,
with lead sheet PDFs and a link to an online recording. At the beginning of each session, the pupil
first will be (re)familiarized with the interaction with the improvisation software by practising with a
standard that will not be used in our experiments. Through these design choices, we try to avoid that
the interaction during the experimental session will be confounded with pupils still needing to learn
the standard or the general system interaction, and thus maximize the odds that the sessions reflect
the musical trading fours interaction between pupil and improvisation system.

Assessment is done in three parts, following our design in Chapters 3.2, 3.3.3 and 3.2.5. Firstly,
after every performance, the pupils evaluate their performance and experience with the algorithm
using our evaluation form. For an additional view into the performance, the experts that partook in
the pilot phase also evaluate the performances of the pupils, using their version of the examination
form. Next, we ask the experts to discern between pairs of recordings of the performances of the
first session and the last session, by asking them which performance of each pair was recorded last.
Finally, we employ the objective symbolic analysismethodswedefined to gain additional insight into
the reciprocity of interaction between the human and the algorithms.

3.3.5. Experiment 2: evaluating iterations
The second experiment we describe builds off of the first experiment, and has the goal of carrying
out iterative comparison of music improvisation algorithms with novice musicians (‘pupils’), using
evaluation by self-assessment by the pupils themselves, peer assessment from the other pupils, and
symbolic analysis methods. This subsection describes the generic procedure for this experiment.

The setup and logistics of this experiment are similar to that of the first, while omitting the pilot
phase and multiple sessions and songs, and substituting expert evaluation for peer evaluation. This
way, we seek to obtain useful information about the algorithmswe set out to improve, while avoiding
the time and effort needed for a larger experiment like the first.

¹GitHub: DanHarltey/Fastenshtein

https://github.com/DanHarltey/Fastenshtein

14 3. Experimental Design

The goal of this experiment was to carry out iterative comparison of music improvisation algo-
rithms. To achieve this, we improve the algorithms that were used in the first experiment based off of
the feedback we collect during the first experiment. We choose to only select a single song from the
Weimar Jazz Database, due to the narrower scope of this experiment.

Again, a group of pupils are asked to improvise with MILES, though this time only doing so for
one session. In order to sidestep the issues in familiarisation when only playing a single session, we
ask the pupils that participated in the first experiment to also participate for this experiment. The
familiarisation of the pupil will also be controlled by shuffling the order of the algorithms per pupil
and including a familiarisation phase in the improvisation session (again, with a different song than
the one used for evaluation).

Assessment isdone similarly to thefirst experiment,withpupils beinggiven the sameself-evaluation
form. However, insteadof third-party experts performing evaluation, thepupils themselves are asked
to perform peer evaluation by answering the same questions after listening to each other’s perfor-
mances. This is handled with the same evaluation form as used for the experts in experiment 1. Fi-
nally, we perform a similar symbolic analysis procedure as the first experiment, using the described
global features and similarity metric.

3.4. Ethics
For the user studies of the experiments, the standard-practice human research ethics committee pro-
cedure of the TU Delft was followed. Informed consent forms were shared with participants ahead
of the research, and participants were asked to fill in these forms in person at the start of their first
one-on-one session. All informed consent forms can be found in Appendix A. We use standard TU
Delft practices for anonymizing, storing and destroying data, in compliance with local data protec-
tion regulation.

For our choice of the jazz standards that participants will play with, we made sure to curate stan-
dards that are in thepublic domain in theNetherlands, the country inwhichweperformedour exper-
iments. The chosen canonical soli technically are not in the public domain in their recorded versions,
but as we make use of the MIDI transcriptions of the Weimar Jazz database, and as very short frag-
ments of these soli are used in the trading fours setup, we consider our use to be fair use for studying
purposes, in which the original copyrighted works are not reconstructed.

4
Algorithm Overview

This chapter contains an overview of all of the algorithms we use throughout our experiments.
Please note that although all algorithms are introduced here, this also includes the algorithms

that are made for and used in experiment 2, based on feedback gathered during experiment 1. This
feedback, and further design choices of second-iteration algorithms can thus be found at the start of
chapter 7. As will be discussed in chapter 4.1.2, we make use of a tokenization strategy for some of
our algorithms, which also has two iterations. These algorithms have been named with ‘v1’ and ‘v2’
accordingly.

In experimenting with our music improvisation software, we have developed more algorithms
than the selection we describe here. These algorithms can be found in Appendix B. The full imple-
mentation of the algorithms can be found in our GitHub repository¹.

4.1. Common functionality
This section describes common functionality that is present in multiple algorithms. We detail the
way we model reactivity between the algorithm and the pupil, and our tokenization strategy. More
common functionality of our algorithms can be found in chapter B.1.

4.1.1. Reactivity
Most of the algorithms described in this appendix model reactivity in jazz improvisation in the same
way:

• Firstly, initialization is carried out, where the algorithm gets the lead sheet of the current song,
a canonical solo over this song, and three supplementary solo’s by the same artists (though over
different songs). In our research, these solos were sourced from theWeimar Jazz Database [39].
The algorithm has the possibility to ingest these solos and can already ’learn from‘ them before
the human starts playing.

• Next, whenever the human improviser finishes a ‘four’, it is passed over to the algorithm. The
algorithm can again learn from this material.

• Immediately afterwards, the algorithm is asked to generate a ‘four’, which is played to the user.

The last two steps of this routine are repeated until the song finishes playing. All algorithms derive
from the IAlgorithm interface. This interface provides an easy-to-use abstraction of MIDI record-
ing and scheduling functionality, by exposing a Learn and Generate function which take and pro-
ducemusicalmaterial respectively. By providing this abstraction, additional algorithms can be easily
implemented.

¹GitHub: sjerpsthomas/miles

15

https://github.com/sjerpsthomas/miles

16 4. Algorithm Overview

4.1.2. Tokens
Many algorithms depend on our tokenization strategy, which turns monophonic symbolic solo ma-
terial into a compressed string of characters. These tokens contain information about the pitches,
rests, and differing note speeds and velocities of themelodies of the (monophonic) solo they encode.
Crucially, we aim for reconstruction of tokens to work, even if the tokens are random and prescribe
a musically impossible melody. In this research, we present two iterations of this tokenization ap-
proach, whichwe roughly describe here. The full details of tokenization can be found in Appendix D.

Thefirst iterationofour tokenpipeline included7 tokens for chord-scale system(seechapterB.1.1)
pitch tokens, a rest token, a passing tone token, four different note length indication tokens, two dif-
ferent note velocity indication tokens, and a measure indication token. During reconstruction, the
length and velocity indication tokens respectivelymodify the length and velocity of subsequent notes
until updated by another indication token. ‘Tokenization’ and ‘reconstruction’ of notes is roughly
carried out with a procedure per type of token, that respectively infers these tokens based on solo
input, and attempts to interpret the concrete symbolic information behind these tokens. All of these
procedures are hand-written, and make heavy use of heuristics to make sure that the output is mu-
sically valid.

The second iteration of our token pipeline increases the amount of pitch tokens to a full 12 semi-
tones, and drops the passing tone token. As well as that, the reconstruction procedure where speed
indication tokens are removed and timing info is inferred was improved with an integer program-
ming solution, which balances adherence to the token-prescribed speed with fitting all notes within
the ‘four’ and having all onsets of notes be at a musically logical time.

4.2. ‘Baseline’ algorithms
In chapter 3, we described the need for algorithms that do not necessarily respond to humanmusical
input. These techniques are described here.

4.2.1. Note Retrieval
The simplest algorithm of all, Note Retrieval, is an algorithm which strongly reflects skilled musi-
cal expertise, but without any reciprocity to what a pupil would do. It achieves this by ignoring any
human-played notes during the learning phase, and retrieving the canonical Weimar Jazz Database
solo wholesale at the currently-playing time during generation.

4.2.2. Token Random v1
This algorithm generates 4 to 8 random tokens per measure. Tokens are selected along a uniform
distribution (and exclude measure tokens); the table for this distribution can be found in Table 4.1.
After delimiting these measures with measure tokens, these tokens are reconstructed and the result-
ing notes are played.

Chance Outcome
15% Rest
25% Note (random from 1 to 7)
20% PassingTone
5% SuperFast
7% Fast
7% Slow
7% SuperSlow
7% Loud
7% Quiet

Table 4.1: The probability distribution used by Token Random v1 generation.

4.3. Markov-based algorithms
In chapter 3, we aimed to implement algorithms that take inspiration from many (early) music sys-
tems thatuseMarkovchainmodels (workbyBrookset al. [2], Pachet’sTheContinuator [15], et cetera).

4.4. Factor oracle-based algorithms 17

This section presents the algorithms we implemented that make use of these types of models.
Duringdevelopment,wenoticed thatoutputquality of thesemodels increasedwhenmorecanon-

ical solo’s were given to the model at the beginning of playback. Thus, in order to improve the gen-
eration capabilities of these algorithms, this extended canonical solo data includes three additional
solos performed by the same artist as the solo over the currently-playing song (note: these additional
solos are over different songs).

4.3.1. TokenMarkov v1
This algorithmtokenizes all canonical andhumansolodata (withhumansolodataappended through-
out playback). During the learning phase, these tokens are put into a Markov chain model. We use
the external MarkovSharp² C# library for Markov chain functionality. This Markov model bases its
generation on continuations from n-grams of tokens. In our algorithm, we pick generation to be
based on trigrams.

The generation phase consists of token generation using the procedure described in chapter B.1.3
with a maximum measure length of 10. These tokens are reconstructed and the resulting notes are
played.

4.3.2. TokenMarkov v2
This algorithm replaces the Markov model used with an implementation of a variable-order Markov
model (used by Pachet’s The Continuator [15], described in chapter 2.2). We have ported this model
from a Python implementation by Pachet³. For this algorithm, we use a maximum order of 6 tokens.

Similarly to Token Markov v1, we first tokenize all canonical and human solo data and put it into
the model as it comes in. The procedure of the generation phase is described in chapter B.1.3 with a
maximum measure length of 7. These tokens are reconstructed and the resulting notes are played.

4.4. Factor oracle-based algorithms
Aswell asMarkov-basedmodels, chapter 3 described the relevance of factor oracle-based algorithms
that take inspiration from Mimi [22], OMax [21] and its derivatives. This section presents the algo-
rithms we implemented that make use of this model (as explained in chapter 2.2).

In contrast to the algorithms based on Markov models, we saw no need to expand the amount of
canonical solo’s given to the algorithms at the start of playback.

4.4.1. Token Factor Oracle v1
This algorithm tokenizes the human solo data and the canonical solo corresponding to the currently-
playing song. During the learning stage, these tokens are put into a factor oracle model (with human
solo data appended throughout playback). Themodel considers every token to be a single ‘character’
of the factor oracle ‘string’.

The algorithm keeps track of the index within the factor oracle where the just-played human four
starts, which we call HumanFourStart. At generation, the algorithm starts out somewhere between
this index and the end of the factor oracle, and continually traverses the oracle from there. The four
measures of tokens are generated using the procedure described in chapter B.1.3 with a maximum
measure length of 10. These tokens are reconstructed and the resulting notes are played.

4.4.2. Token Factor Oracle v2
This algorithm works similarly to Token Factor Oracle v1. However, instead of working with single
tokens as the ‘characters’ in the factor oracle’s ‘string’, we use 8 tokens as a single ‘character’. We also
make use of the second iteration of our token pipeline.

²GitHub: chriscore/MarkovSharp
³GitHub: fpachet/continuator

https://github.com/chriscore/MarkovSharp
https://github.com/fpachet/continuator/tree/main

5
System Design

In chapter 3, we identified the need for a setup that facilitates the deployment of (existing) music
improvisation models, in order to evaluate and compare them. In this chapter, we describe the tools
used in the evaluation experiments: the music improvisation system, symbolic analysis framework
and evaluation form. Finally, we shortly describe the implementation details of this setup. An ab-
stract diagram of our software setup can be found in Figure 5.1.

Figure 5.1: A diagram showing the components of our software setup.

5.1. Music improvisation system
We have developed MILES (‘Mixed-Initiative musicaL interactivE System’), a music improvisation
system that allows a musician to play with a selection of (existing) musical improvisation models.
The system also features a visualisation component, and allows for recording and replaying perfor-
mances. This section will describe these features and the design choices that led to them.

5.1.1. MIDI engine
There are many ways of handling music with computers. As we chose to limit our research to jazz pi-
ano improvisation and many existing music (improvisation) algorithms and piano keyboards work
with the MIDI standard, we opted to use this as well. At the centre of all processing done by MILES
lies its MIDI engine, which is responsible for keeping track of incoming MIDI data and scheduling
outgoing MIDI data. Many components, from backing track playback to the session recording func-
tionality detailed later, make use of this system.

5.1.2. Algorithms
In chapter 4, we discuss many music improvisation algorithms. Chapter 3.1 outlines the need for a
level playing field when evaluating these algorithms. Thus, MILES facilitates the use and implemen-
tation of many algorithms.

19

20 5. System Design

MILES facilitates music improvisation algorithms, by giving these algorithms access to user con-
tent and symbolic transcriptions of Weimar Jazz Database solos. We reduce trading fours to a ’learn-
ing’ and ’generating’ phase, that respectively allow the algorithms to (potentially) train an underlying
model and generate content using this model. A full overview of all algorithms that MILES currently
supports is given in Appendix B.

5.1.3. UI and visualisation frontend
As discussed in chapter 2, there are variousways of visualisingmusic. In order to fit the interaction to
typical real-life jazz improvisation (as described in chapter 3.1), we have opted to showa lead sheet as
the main focal point in our visualisation. Some extra pieces of visualisation are added in order to aid
in improving the clarity of the structure of improvisation to the user. A screenshot of the visualisation
can be found in Figure 5.2

We opted to highlight the currently-playingmeasure, similarly to playbackmode in iReal Pro [32].
We also saw an opportunity in using colours to convey whose ’turn’ it is in the trading procedure. In
order to allow the musician to quickly gauge this state, the background of the visualisation switches
fromwhite to blue when the algorithm is playing. For extra clarity, every fourmeasures played by the
algorithm has a robot icon to the left of it. This icon scrolls along the screen to the right as the four is
being played.

Additionally, we wish to give an option for musicians, and third-parties watching (and potentially
rating) the performance, to see the generated notes as they are being played. To achieve that, we
show a piano keyboard visualisation at the bottom of the screen, which highlights the notes that are
played.

Figure 5.2: A screenshot of MILES during a performance.

5.1.4. Recording and playback backend
In order to reproduce past performances, a recording and playback approach is needed. To achieve
this, MILES records all performances by default and allows playback of these recordings. By bringing
a recording back into the program, the same visualisation can be seen as during the original perfor-
mance. Using a screen recorder, exact reproductions of performances can be converted to video files
for later use.

5.2. Evaluation
In order to facilitate evaluation of MILES’ algorithms outlined in the experimental setup, we have
implemented a range of useful features. These are discussed in this section.

5.3. Implementation 21

5.2.1. Evaluation form
To facilitate the third-party feedbackoutlined in theexperimental design, anevaluation form isneeded
with which recordings can be listened to (with corresponding visualisations) and can be assessed.
We achieve this with an online form that can show the respondent informational text, comparative
questions between two recordings, and Likert-scale rating questions of a single recording. Figure 5.3
shows a screenshot of the form, and the full form that was used in our experiments can be seen in
Appendix A.

Figure 5.3: A screenshot of the evaluation form, which shows a recording and asks the user to rate it based on several
categories.

5.2.2. Analysis framework
To provide the symbolic analysis described in chapter 3.3.3, a different component of the software
setup is responsible for loading in recordings and processing them. This component has access to a
wide range of symbolic analysis methods for monophonic solo data. As well as symbolic data, this
analysis framework has access to the filled-in evaluation forms.

5.3. Implementation
This section describes some implementation details of MILES, the workflow for symbolic analysis
and the evaluation form.

The core of the improvisation system is developed in the Godot game engine using the C# bind-
ings.. By making the application in Godot, we could make use of its scene and UI system, file man-
agement APIs, visualisation rendering functionality, and much more.

As Godot does not support MIDI input and output, we chose to circumvent all Godot audio func-
tionality and create a real-timeMIDI systemwhich can take inMIDI input, and facilitates immediate
and scheduledMIDI output. The free digital audioworkstation (’DAW’) Cakewalk handles audio syn-
thesis from these MIDI signals. All music improvisation algorithms used inMILES work on top of the
recording and playback backend, which are all implemented in C#.

The evaluation form is a website developed in React with TypeScript. Most of this website is pro-
cedurally generated via form.config.ts, a configuration file which specifies the sections of the
form. These sections can be text sections (which support Markdown), rating sections (where a single
video is shown with Likert questions) or comparing sections (which ask the user to select one of two
shown videos). The website is deployed with Netlify, using NextJS for rendering.

22 5. System Design

The analysis framework is implemented with a Jupyter Notebook. All symbolic and evaluation
form data is stored in a single JSON file, which the notebook has access to, in order to provide the
analysis. The JSON file also stores the file paths of the recordings themselves, which the notebook
opens and stores in a data structure that allows for querying individual ‘fours’. The notebook uses
equivalent Python ports of the C# classes used in MILES to ensure that recordings can be opened in
the notebook and to provide a similar workflow between working in the two languages.

6
Experiment 1: Initial Comparison

Following the experimental design laid out in chapter 3.3.4, we conduct an experiment that has the
main goal of tracking enjoyment and familiarity in improvisation of novice musicians (‘pupils’) with
several algorithms, with evaluation by self-assessment by the pupils themselves, assessment by mu-
sicians with a high musical skill level (‘experts’), and symbolic analysis methods. This section first
describes the configuration and logistics of the experiment, and then presents the results and a dis-
cussion of these results.

6.1. Configuration
The experimental design we described in chapter 3.3.4 gives room for choosing an amount of pupils,
experts, algorithms, songs and sessions. This section details the configuration of this experiment,
by giving these amounts and listing the songs that we use in our improvisation sessions. A diagram
visualising this configuration (including the algorithms that ended up being chosen) can be found in
Figure 6.1.

We have chosen to ask 3 experts to participate in the pilot study and third-party evaluation, and
5 pupils to participate in the improvisation sessions. We decided to carry this experiment out with 3
algorithms, 3 songs and 4 sessions, such that every algorithm-song pair can be evaluated by every
pupil for the first three sessions, and the fourth session can have the same configuration as the first.

In order to not burden the experts with an unwieldy long evaluation form and because of the fact
thatwealready ask them to compare the fourth session to thefirst, wehave chosen tohave the experts
not directly rate the fourth session of performances.

This experiment was carried out with three songs that have a canonical solo in the Weimar Jazz
Database. For the evaluated performances, we picked George Gershwin’s Summertime with Sidney
Bechet’s solo, Jerome Kern’s Long Ago and Far Away with Chet Baker’s solo, and Charlie Parker’s My
Little Suede Shoes with his own solo. For the familiarization stage in each session, we make use of
Charlie Parker’s Ornithology with his own solo.

6.2. Logistics
This experiment needs participants and a location to conduct the one-on-one sessions in. This sec-
tion describes the logistical setup of the experiments.

Much of the logistics was simplified by working with members from the Delftse Studenten Jazz
Vereniging Groover, the jazz association of Delft. Groover has many types of members (beginner,
novice, intermediate, advanced) that are interested in performing, teaching and learning about jazz.
The association has many existing multi-week programs in place (called ”Muppet Music” and ”Jam-
fabriek”) for beginner musicians to improve their jazz (improvisational) skills.

By letting Groover members participate, we can be certain that pupils have basic knowledge of
jazz and are familiar with (trading) jazz solos. Because the experts have helped out with the jazz
teaching programs, we can be certain that they know how to grade others’ performances and can
listen for progress in jazz skills over time.

23

24 6. Experiment 1: Initial Comparison

Figure 6.1: A diagram that illustrates the setup of pupils, performances and sessions used for experiment 1.

We were lucky to be able to use the Groover instrument storage room as the location for our ex-
periments; a picture of the setup can be seen in Figure 6.2. Because the association has a weekly
gathering on Wednesday evenings, this was the day most sessions took place.

Figure 6.2: The physical setup used in the experiments.

6.3. Results
6.4. Pilot phase and algorithms
The following algorithms were considered in the pilot phase (note: these link to the corresponding
descriptions):

• Note Random

• Note Retrieval

6.4. Pilot phase and algorithms 25

• Note Factor Oracle

• Token Random v1

• Token Factor Oracle v1

• Token Markov v1

• Token Shuffle v1

In the pilot phase, the algorithms that utilised tokens were generally seen by the experts as good
contenders for algorithms out of the more sophisticated generative methods. Interestingly, the Note
Retrieval algorithmwas also favouredheavily, due to the sheer quality ofmusical output (even though
the experts were informed of the inner workings of the algorithm). Based on these responses, we se-
lectedNote Retrieval, Token Factor Oracle v1 and TokenMarkov v1 as the algorithms to be used for
the sessions of this experiment. For the familiarization performances, Token Random v1 is chosen.
Due to its relatively poor output and the high tempo of Ornithology, we aim to make the pupil put
less effort into their improvisations and instead focus on the trading scheme.

Besides algorithm preference, the experts enjoyed the interaction and visualization ofMILES and
found the system intuitive to use. All of the experts noted that, as piano players, only playing mono-
phonic material (with only one hand) felt unnatural for them.

6.4.1. Self-assessment
In general, thepupils seemed toquite enjoy theprocess ofworkingwithMILES. A fewpupils struggled
with having to play one note at a time, though others seemed to find it less stressful to only have to
think about playing with one hand. Even though this took them slightly longer than the experts, the
pupils seemed to respond to the different ‘traits’ of the algorithms. In particular, Note Retrieval for
the solo on My Little Suede Shoes made some people visibly nervous, and made pupils play shorter,
more quickly-paced notes.

With the collected self-reported (musicality, response and enjoyment) ratings of the pupils and
experts, we answer the following questions:

Which of the songs wasmore enjoyable to play with?
Before looking into the algorithms, we consider the songs used in the experiment and compare all
ratings of the performances played with these songs. Figure 6.3a shows a summary of the enjoya-
bility ratings that pupils gave the algorithm, grouped per song. We see that the average enjoyability
consistently is higher than 3 on a 5-point scale, with no song being rated poorly, and Long Ago and
Far Away showing least variance.

Which of the algorithms wasmore enjoyable to play with?
Enjoyability ratings grouped by algorithm, as shown in figure 6.3b, show that the Note Retrieval algo-
rithm is considered themost enjoyable to play with on average. We also see that, although themeans
of Token Factor Oracle and TokenMarkov algorithm ratings are close, the Token Factor Oracle ratings
have a higher mode than those of Token Markov.

How do pupils view the back-and-forth dynamics of playing with the algorithms?
Figure 6.4 shows the response ratings given per algorithm. As can be seen, the pupils rate their own
responsivity higher than that of the algorithms. The distribution of scoring the algorithmwith regard
to thepupil appears verywide,with a largenegative rating given toTokenMarkov. However, thefigure
also states that pupils felt they could respond better to Token Markov than the other algorithms.

How did enjoyment of the sessions change over time?
By grouping the enjoyability reporting by session, we get an indication of the fun the pupils had
throughout the entire experiment, irrespective of the song or algorithm. Figure 6.3c shows a plot
of this grouping. Again, the average enjoyability is in the high range of values on the 5-point scale.
We see that the pupils had the most fun in the first session, and after a drop in the second session we
see a steady increase back to the value of the first session.

26 6. Experiment 1: Initial Comparison

6.4.2. Expert reporting
With the ratings and orderings given by the experts, we aim to find out how the pupils’ evaluation of
the performances relates to to that of the experts.

Figure 6.5 shows an overview of all average ratings given by pupils and experts, grouped by algo-
rithm. One of the first apparent differences is the low overall ratings of experts relative to the pupils.
As well as that, the ratings of pupils are more varied than those of the experts, showing a more clear
‘winner’ for nearly every question. Figure 6.6 shows a similar chart, but grouped by session, where
we see the same lower, less varied, scoring given by experts.

Figure 6.7 shows the relation between pupil-reported ratings and expert-reported ratings. Al-
though the linear fit of the regression line shows a small positive slope, the scatter plot mostly shows
a non-linear cloud of points.

As well as rating a selection of performances, we asked the experts to listen to pairs of recordings
from the first and last session (where each pair has the same algorithm and song configuration). For
each pair, they are asked to order thembased onperceived progress. Figure 6.8 shows the correctness
of this ordering. One could suspect that if a progress effect can be perceived, this ordering correct-
ness would be better than guessing (a chance of 50%). As can be seen however, only the ordering
correctness of the Note Retrieval algorithm is above this number, and the guessing correctness for
the Token Factor Oracle algorithm lies far below this.

6.4.3. Symbolic analysis
In the research setup, we set out to apply melodic similarity analysis between successive fours to
quantify to what degree pupils may react to the algorithms and vice versa, and to compare this to the
human self-reporting data on this question.

Figure 6.9 shows a piano roll view of a single performance. The trading fours interaction is clearly
visible, with the pupil taking the first four measures, the algorithm taking the next, et cetera. These
recordings provide the symbolic data we use for analysis.

Figure 6.10 shows the average progression of the selected symbolic analyses over the course of a
performance. In the analysis, we look for the apparent ’smoothness’ of the graph, indicating that the
features of each four get carried over to the next four and thus a form of reciprocity and inspiration.
For the extrema ratio, a neat line can be seen for the first two algorithms. For Token Markov however,
a discrepancy can be found at the start of the performance which shrinks over time.

The graphs for root/third/fifth note share show no visually apparent difference between the dif-
ferent algorithms. TheNPVI shows a smooth graph for TokenFactorOracle, a relatively smooth graph
for Token Markov, and a graph that shows no apparent human-to-algorithm reciprocity for Note Re-
trieval.

Next, by converting successive fours into tokens and performing the Levenshtein distance to the
resulting strings, we get the data shown in Figure 6.11. Figure 6.11a shows that similarity between
pupils and the algorithm is better with the song Long Ago and Far Away, indicating that this song
might be easier to trade fours over. Figure 6.11b indicates that the Note Retrieval algorithm does in-
deed respond worse to the pupils than the Token Factor Oracle and Token Markov algorithms. How-
ever, the response of the pupil to the algorithm is also considerably worse for the Note Retrieval algo-
rithm. Figure 6.11c shows that the token edit distance decreases from the first session to the second,
and then increases slightly over time.

6.5. Discussion
Although the pupils felt that they could respond the best to Token Markov, they also indicated that
it responded the worst to them out of the algorithms. This could be due to the fact that it does not
simply start out generating its four somewhere along the human played four, like a Factor Oracle
model does, but instead takes both the canonical solo andpupil fours into account holistically. As the
share of the pupil’s fours slowly increases over timeduring a performance, the style of the algorithm is
thus influenced more and more by the pupil. The dynamics of the extrema ratio of the Token Markov
model getting closer to that of the pupil over the course of the performance could also be explained
by this notion of the Markov model slowly incorporating the pupil’s musical material.

Aside from this anomaly of the extrema ratio in Token Markov performances and a fluctuating
NPVI for Note Retrieval, no concrete conclusions can be drawn from using the symbolic analysis

6.5. Discussion 27

metrics for evaluating the different algorithms.
It is also remarkable that, although the Note Retrieval algorithm does not respond to the pupil,

pupils prefer this algorithm in terms of its responsive quality, and the enjoyment of their perfor-
mances with it. This might indicate that music improvisation systems do not necessarily have to
take user input into account when generating new content, while still being engaging. The pupils’
indication of their own responses to the algorithm did not seem to depend on the algorithm being
used, indicating that this does not seem to matter that much.

Enjoyment ratings show that the novelty of working with a music improvisation system causes a
large spike in reporting across all criteria. This can also be seen in the correctness of experts’ order-
ing between the first and last session, showing generally poor results regardless of algorithm. Even
though enjoyment decreased past the first session, the edit distances show that the reciprocity im-
proved, remaining stagnant beyond the second session. Grouping enjoyment by algorithm, it be-
comes clear that the same algorithms that pupils indicate respond well to them are the same models
that they enjoyed playing with.

The difference between the results of expert rating and self-reported rating is striking: experts
rated the performances quite poorly, with very low differences between the algorithms and sessions,
and low correlation with the pupil-reported ratings. In the experimental design, we remarked that
pupils have the most experience to gain in working with a music improvisation model. This same
contrast in learned experience could be an explanation of the contrast in the pupil-reported ratings.

28 6. Experiment 1: Initial Comparison

(a) Song enjoyability

(b) Algorithm enjoyability

(c) Session enjoyability

Figure 6.3: Violin plots with self-reported Likert ratings regarding the statement ‘I enjoyed playing this song with the
algorithm’, grouped respectively by song (a), session (b) and algorithm (c). Higher is better.

6.5. Discussion 29

Figure 6.4: Violin plots with self-reported Likert ratings regarding the statements ‘I feel that the algorithm could respond well
to me’ (algorithm-to-pupil) and ‘I feel that I could respond well to the algorithm’ (pupil-to-algorithm), grouped by algorithm.

Higher is better.

Figure 6.5: A table showing the average self-reported and expert-reported Likert ratings regarding all statements given in the
evaluation form, grouped by algorithm. Higher is better.

Figure 6.6: A table showing the average self-reported and expert-reported Likert ratings regarding all statements given in the
evaluation form, grouped by session. Higher is better.

30 6. Experiment 1: Initial Comparison

Figure 6.7: A scatter plot showing, for every question of all performances, the pupil’s rating and the average expert rating of
the same question. A least-squares linear regression is drawn on top.

Figure 6.8: A bar chart showing the correctness of expert ordering, grouped by algorithm.

Figure 6.9: A piano roll visualisation of a performance.

6.5. Discussion 31

(a) Average extrema ratio.

(b) Average root/third/fifth note share.

(c) Average NPVI.

Figure 6.10: Plots respectively showing the average extrema ratio, root/third/fifth note share and NPVI per four over all
performances.

32 6. Experiment 1: Initial Comparison

(a) Average token edit distances, grouped by song. Lower is better.

(b) Average token edit distances, grouped by algorithm. Lower is better.

(c) Average token edit distances, grouped by session. Lower is better.

Figure 6.11: Average token edit distances of performances, respectively grouped by song, algorithm and session.

7
Experiment 2: Evaluating Iterations

Using the experimental design laid out in chapter 3.3.4, we now conduct a second experiment that
has the main goal of carrying out iterative comparison of music improvisation algorithm with novice
musicians (‘pupils’) using evaluation by self-assessment by the pupils themselves, peer assessment
from the other pupils, and symbolic analysis methods.

This section first describes the iteration of the algorithms between the first and second experi-
ment. Next, the setup and logistics of the experiment are detailed, and finally the results and a dis-
cussion of these results are presented.

7.1. Iteration of algorithms
Because quite a bit of time passed in-between the first and second experiment, and due to the fact
that we received plenty of feedback from the pupils playing with the selected algorithms, this gave us
a lot of room for experimentation and iteration upon the Token Factor Oracle v1 and Token Markov
v1 algorithms. This section shortly discusses these changes that were made; a more thorough expla-
nation of the second iteration of algorithms can be found in chapter 4.

Token Factor Oracle v1 has been iterated on by firstly using the second iteration of our tokeniza-
tion strategy (described in appendix D). Secondly, this algorithm does not consider single tokens as
‘characters’ of the factor oracle’s ‘string’, but instead uses segments of 8 tokens as a single ‘character’.

Token Markov v1 experienced a similar iteration between the first and second experiment as To-
ken Factor Oracle v1. Aside from using the new tokenization strategy, we happened to come across
an implementation of the variable-order Markov model of Pachet’s The Continuator [15]. We substi-
tuted the fixed-order Markov model of Token Markov v1 with a port of this model.

7.2. Configuration
The experimental design we described in chapter 3.3.4 gives room for choosing an amount of pupils
and algorithms. This section details the configuration of this experiment, by giving these amounts
and listing the songs that we use in our improvisation sessions. A diagram visualising this configura-
tion (including the algorithms that ended up being chosen) can be found in Figure 7.1.

In this experiment, we have chosen to ask 3 pupils to participate in the improvisation sessions
and peer evaluation. These participants consisted of three pupils that also participated in the first
experiment. Following the experimental design, we only conduct 1 session of performances. These
performances will take place with 4 algorithms, namely:

• Token Factor Oracle v1

• Token Markov v1

• Token Factor Oracle v2

• Token Markov v2

33

34 7. Experiment 2: Evaluating Iterations

Figure 7.1: A diagram that illustrates the setup of pupils, performances and sessions used for experiment 2.

All performanceswill takeplaceoverCharlieParker’sBillie’s Bounce withhis ownsolo as the canonical
material. Similar to the previous experiment, we make use of Charlie Parker’s Ornithology with his
own solo for the familiarization stage of each session.

7.3. Logistics
This experiment uses the samephysical setup (shown in figure 6.2) and logistical considerations. The
experiment was again carried out at the Groover instrument storage room, on a Wednesday evening.

7.4. Results
During the performances of this experiment, it was quite clear that the improvements of the algo-
rithms were noticeable by the pupils. The fact that the new algorithms sometimes carried their im-
provisation over the fourth barline was a pleasant surprise for some of the pupils, and this made
them more playful in their improvisation. The peer feedback round also proceeded smoothly, with
the online form being sent out the day after the performances, and most of the pupils handing in
their results on that same day.

7.4.1. Self-reporting
With the self-reporting data, we aim to answer a few questions:

Which of the songs wasmore enjoyable to play with?
Figure 7.2 shows the enjoyability scores per algorithm. Similarly to the first experiment, Token Factor
Oracle v1 is rated higher than Token Markov v1. As for the improved versions of the algorithms, it
is very clear to see that the newer versions of the algorithms rank higher in enjoyment than their
respective older versions.

How do pupils view the back-and-forth dynamics of playing with the algorithms?
In Figure 7.3, both reciprocity scores can be seen for the four algorithms. A similar progression be-
tween the four algorithms canbe seen as the enjoyability scores: the second versions of the algorithm
rankhigher than the first. Interestingly, it does not seem tomatter toomuchwhat algorithm thepupil
uses when it comes to their own ability to respond: only Token Markov v1 shows some variance in
scoring, but the means lie pretty close to one another.

7.4. Results 35

Figure 7.2: Violin plots with self-reported Likert ratings regarding the statement ‘I enjoyed playing this song with the
algorithm’, grouped by algorithm. Higher is better.

Figure 7.3: Violin plots with self-reported Likert ratings regarding the statements ‘I feel that the algorithm could respond well
to me’ (algorithm-to-pupil) and ‘I feel that I could respond well to the algorithm’ (pupil-to-algorithm), grouped by algorithm.

Higher is better.

7.4.2. Peer reporting
As given in the experimental design, by comparing the ratings given by a pupil to those given by their
peers, we aim to find out the differences between self-evaluation and third-party evaluation.

Figure 7.4 shows the scores given by self-reporting next to the peer reporting, per algorithm. Peers
andpupils seem to agree that TokenFactorOracle v2 scores thehighest in all categories. Again, an ap-
parent improvement is present between the scores of the first and second version of both algorithms.
The table appears to indicate ahigh senseof agreementbetween thepupils and their peers, especially
for the first question (“Algorithm responds well to pupil”), which also shows the highest variance. All
other questions exhibit less variance between the algorithms in both self-assessed and peer-assessed
ratings. Thehighest discrepancybetween self-assessed andpeer-assessed ratings canbe found in the
last question (“Pupil enjoyed playingwith algorithm”), with peers rating performances ower than the
pupils themselves. The scatter plot in Figure 7.5 shows a small amount of correlation between all
scores given by the pupils and their respective peer scores.

36 7. Experiment 2: Evaluating Iterations

Figure 7.4: A table showing the average self-reported and peer-reported Likert ratings regarding all statements given in the
evaluation form, grouped by algorithm. Higher is better.

Figure 7.5: A scatter plot showing, for every question of all performances, the pupil’s rating and the average peer rating of the
same question. A least-squares linear regression is drawn on top.

7.4.3. Symbolic analysis
A similar symbolic analysis procedure will be carried as the first experiment, using the same three
global features (extrema ratio, root/third/fifth note share, NPVI). For illustrative purposes, Figure 7.6
shows a piano roll view of the symbolic data contained in a performance carried out in this experi-
ment, using Token Factor Oracle v2.

Figure 7.6: A piano roll visualisation of a performance.

Figure 7.7a shows the progression of the extrema ratio for every algorithm. The data of Token Fac-
torOracle v1 andTokenMarkov v1 looks similar to thedataobtained in experiment 1 (seeFigure 7.7a):
Token Factor Oracle v1 looks ‘steady’, and Token Markov v1 needs some time to ‘catch up’ with the
metrics of the human-played fours. Strikingly, this ‘catching up’ motion, which we concluded to
be inherent to Markov models in experiment 1, is not visible with the Token Markov v2 algorithm.
Figure 7.7b shows the progression of the root/third/fifth note share. Besides a few anomalies in the
graphs for the Factor Oracle algorithms, we see no noteworthy features in these graphs. Figure 7.7c
shows the progression of the NPVI for the four algorithms. In contrast to the findings of the first ex-

7.5. Discussion 37

periment, the Token Factor Oracle v1 graph shows a considerable discrepancy between the human-
and algorithm-played fours. This discrepancy is less visible for Token Markov v1, and even less so for
the improved algorithms.

Figure 7.8 shows the token edit distances per algorithm. As can be seen in the previous experi-
ment, the edit distances of the Token Factor Oracle and Token Markov algorithms lie very close to
one another. Due to the low amount of samples, the variance is slightly higher than the previous
experiment. The figure shows an advantage of the Token Markov models, whereas the Token Factor
Oracle algorithm was slightly better in the first experiment.

7.5. Discussion
In our results, we see that when compared to the self-assessment peers are slightly pessimistic about
some qualities of improvisation, but not overly so. This can be explained by the fact that all pupils
have similar improvisational experience, and the same amount of experience inworkingwithMILES.
This effectively levels their frame of reference and level of expectations. The consensus can be most
directly seen for the algorithm-to-pupil reciprocity score.

Both in self-reported and peer scoring, we see a preference for Token Factor Oracle v2 across the
board. We attribute this to the higher musical stability that generating the solos in larger ‘chunks’
offers. The slight preference of Token Markov v2 over Token Markov v1 can similarly be attributed
to the fact that the variable-order Markov model used in the second iteration has a higher ‘maximal
order’ than the fixed-order Markov model used in the first iteration.

Similarly to the first experiment, the algorithms that the pupils found the most enjoyable were
also found to respond best to them. When it came to the quality of their own response, the algorithm
did not seem to matter much to the pupils.

Comparing the symbolic analyses of Token Factor Oracle v1 and Token Markov v1 along both
experiments gives a lot of inconsistencies, indicating that interpreting these metrics proves to be
difficult. The edit distances of the two prior algorithms align similarly in this experiment as in the
first, but the fact that they are nearly equal does not allow for a very comparison.

38 7. Experiment 2: Evaluating Iterations

(a) Average extrema ratio.

(b) Average root/third/fifth note share.

(c) Average NPVI.

Figure 7.7: Plots respectively showing the average extrema ratio, root/third/fifth note share and NPVI per four over all
performances.

7.5. Discussion 39

Figure 7.8: Average token edit distances, grouped by algorithm. Lower is better.

8
Conclusions and Future Work

8.1. Conclusions
In this research, we aim to answer the following question:

‘To what extent can algorithmicmusic improvisation systems facilitate a trading fours
interaction with a novicemusician on their own?’

In chapter 1, wedivided this question into several sub-questions. In this chapter, we aim to formulate
an answer to the main research question by answering these sub-questions.

2. ‘How can familiarity and enjoyment in improvisation be measured for novices over time?’

In chapter 6, we show that familiarity and enjoyment in improvisation can be measured in several
different ways. We find that reciprocity and enjoyment are indeed two different factors of impro-
visation, as reciprocity is not necessarily needed for an enjoyable improvisation interaction. In our
experiments, we see a fairly immediate sense of engagement and we find that self-assessed enjoy-
ment ratings may be subject to a large novelty effect, which might skew results when comparing to
later sessions. Althoughwe see a dip after this first session, ourmusical similaritymetric gave decent
reciprocity results after this first session, indicating that pupils did indeedbecomemore familiarwith
the improvisation interaction.

3. ‘How can iterative comparison of music improvisation algorithms be carried out?’

When it comes to measuring enjoyment and reciprocity of iterations of results, chapter 7 shows us
that a large-scale experiment is not necessary to get relatively conclusive results. Although our mu-
sical similarity metric reflected our intuition of the potential reciprocity of the different algorithms,
we find that these differences need to be very large for similarity analysis to give conclusive results.

4. ‘What kinds of algorithms and evaluation techniques are best suited for an improvisation inter-
action between improvisation algorithms and novice musicians on their own?’

When it comes to evaluating an improvisation interaction between improvisation algorithms and
novice musicians on their own, we find that self-assessed enjoyment gives the most conclusive re-
sults across our two experiments. However, when self-assessed data is not available, our results in
chapter 7 show peer evaluation to be closest to self-assessed opinions of all analysis techniques, be-
ing especially clear in response quality of the algorithm.

As for the actual algorithms used in the experiments, we find thatNote Retrieval was received very
positively, though the question still stands if improvisingwith the same canonical solomultiple times

41

42 8. Conclusions and Future Work

still yields the same results. As for the more ‘intricate’ algorithms we considered, we conclude that
pupils had themost funwith the factor oracle-based algorithms, and often find thesemodels to react
to them nicely. We are especially proud of our Token Factor Oracle v2 algorithm.

In conclusion, we have presented an experimental setup where multiple algorithms may be evalu-
ated in different contexts. By taking inspiration from existing music improvisation algorithms and
existing musical (improvisation) evaluation techniques, we find that although different algorithms
functionally express different qualities of the improvisation interaction, these algorithms are in fact
suited for working with novice musicians on their own.

8.2. FutureWork
The experimental setup we propose has potential for future work, from altering the configuration of
our experiments to extending and enhancingMILES’ capabilities. This chapter details these possible
ventures for further research.

8.2.1. Experiments
In the first experiment, we found thatwhenwe asked experts to order pupils’ recordings from the first
and last session, the experts often incorrectly perceived the last session as the first. We believe that
this occurred due to the experts picking the recording they liked best to be of the first session, where
enthusiasm and novelty was at its highest with the pupils. In order to potentially change the results
and better balance novelty, we propose to extend the familiarisation efforts in the experiments to not
just include a familiarisation performance at the start of each session, but to also include an entire
familiarisation session that is not considered for any analysis.

Due to the constraints of this research, the number of participants of the experiments we con-
ducted was relatively low. We believe that involving more pupils and experts would give a higher
quality distribution of opinions, which allows for better analysis and more general, better-founded,
conclusions. Moreover, combining expert and peer assessment in a single experiment could poten-
tially give an explanation of the large difference in self-reporting correlation that we found in our first
experiment.

Aside from increasing the amount of participants, we believe that more insights can be gained
from looking at enjoyment over a longer time span. A possible plan for a new experiment could in-
volve looking at a small group of pupils improvising with MILES over the course of a few months,
to research i.e. reciprocity and inspiration over time. This can then of course be combined with an
additional layer of peer feedback.

Direct feedback is often part of a learning experience, but was lacking from our research due to
the intent of the research focusing on musicians that are on their own, and our lack of expertise in
music teaching research. Nonetheless, we believe that an additional notion of teaching could result
in a more didactically sound familiarisation and learning experience. For instance, each pupil could
be assigned an expert that gives written feedback based on their performances. Analysing this feed-
back over time could give an indication of progression in trading fours abilities. Another potentially
interesting study could involve splitting pupils into a group that only partakes in ‘real-life’ trading
fours, and another that solely works with MILES, to compare their learning progress.

In this research, we have not proved that familiarisation with MILES correlates with familiarisa-
tion of ‘real life’ jazz improvisation; we acknowledge a didactic angle is needed to show the similar-
ities, which we are not in a position to test. We of course welcome further research to explore this,
and in themeantimewemake an educated guess that the skills taught by playingwithMILES transfer
over to a traditional trading fours interaction.

8.2.2.MILES
When scaling up research, it could prove beneficial to have pupils work with MILES without a re-
searcher present. While it is possible to have pupils set up and run MILES by themselves, the im-
plementation currently has a lot of room for improvement in usability. For instance, the installation
procedure of the system is not really suited for a non-technical audience, requiring the user to install
many additional programs and build the system from the C# source code. Getting rid of Cakewalk
(the digital audio workstation responsible for generating audio) and MIDI loopback software as de-

8.2. Future Work 43

pendencies, and packaging MILES as a simple, potentially cross-platform, executable could elimi-
nate the need for a researcher to be present during improvisation sessions.

The modular nature of MILES allows the system to be extended with many more musical gener-
ation algorithms. The quality of the trading fours interaction with MILES heavily depends on which
algorithm is used. We present a selection of algorithms which have been evaluated as enjoyable to
play with and (to some degree) respond to the input of the novice musician. However, we still see
room for improvement in the level of reciprocity of the algorithms, though we believe that this does
not impact the enjoyment above a certain level.

A rudimentary Token Neural Net algorithm is present in MILES, but was deemed not musically
interesting enough to be used in any of the experiments. Improvement of this algorithm and imple-
mentation of additional algorithms could potentially give interesting results for improvisation. The
current implementation of MILES works by executing the algorithm responsible for generating four
measures at the start of these fourmeasures. In order to supportmore compute-intensive algorithms
and lower the hardware requirements of the system, this code can be reworked to support more con-
currency. This could allow the system to (partly) generate the four measures ahead of time, or to
allow an algorithm to refine its musical output as it is being played.

A
Form Overview

This appendix contains all (self-evaluation, expert evaluation and peer evaluation) question forms
that were used in the two experiments.

A.1. Informed consent form
Before participants were asked to do anything in our research, they were asked to fill in and sign
informedconsent forms, adhering to standard-practiceTUDelft human research ethics. FiguresA.1a
to A.1d show the pages of the informed consent forms for the experts and pupils of experiment 1, and
Figures A.2a to A.2c show the informed consent forms for the pupils of experiment 2.

A.2. Self-evaluation form
Self-evaluation was carried out with paper forms throughout the two experiments, with one evalua-
tion being used per session. At the top, some basic info is filled in (the pupil’s ID, the session number
and the current date and time). Next, for every performance, a field for initial thoughts and the four
Likert-scored questions are shown. At the end of the session, a field for closing thoughts is present.

The forms themselves can be seen in Figures A.3 and A.4, with the difference being the fact that
the first experiment consisted of three performances per session, whereas the second experiment
consisted of four performances.

A.3. Third-party evaluation form
As described in chapter 5, third-party evaluation was carried out with an online evaluation form.
This form consists of an introductory section (found in Figures A.5 and A.6 for experiment 1 and 2
respectively), sectionswhere recordings of twodifferent sessionsmust beorderedbasedonperceived
progress (found in Figure A.7), and sections where recordings are rated along the same lines as the
self-evaluation form (found in Figure A.8).

45

46 A. Form Overview

(a) The first page for pupils, showing introductory information. (b) The first page for experts, showing introductory information.

(c) The second page for both pupils and experts, showing a
consent point checklist.

(d) The third page for both pupils and experts, showing regions
for signatures.

Figure A.1: The informed consent forms used for pupils and experts in experiment 1.

A.3. Third-party evaluation form 47

(a) The first page for pupils, showing introductory information.
(b) The second page for pupils, showing a consent point

checklist.

(c) The third page for pupils, showing regions for signatures.

Figure A.2: The evaluation form used for the pupils and experts in experiment 1.

(a) The first page of the evaluation form. (b) The second page of the evaluation form.

Figure A.3: The evaluation form used for the pupils in experiment 1.

48 A. Form Overview

(a) The first page of the evaluation form. (b) The second page of the evaluation form.

Figure A.4: The evaluation form used for the pupils in experiment 2.

Figure A.5: The introductory page of the expert evaluation form of experiment 1.

Figure A.6: The introductory page of the expert evaluation form of experiment 2.

A.3. Third-party evaluation form 49

Figure A.7: An ordering page of the expert evaluation form of experiment 1.

Figure A.8: A rating page of the expert evaluation form of experiment 1.

B
Miscellaneous Algorithms

This appendix contains an overview of all algorithms present in MILES as of writing. Further imple-
mentation details can be found in our GitHub repository¹, which contains all code used for MILES,
including tokenization of Weimar Jazz Database and Lakh MIDI Dataset material (see chapter 2),
training procedures, et cetera.

Algorithms are labelled “v1” and “v2” to reflect the tokenization strategy that was used. More
information about tokenization can be found in appendix D.

B.1. Common functionality
Manyalgorithmsuse the sameprocedures for achieving common functionality, as described in chap-
ter 4.1. This section details further common functionality that was used in the algorithms of MILES.

B.1.1. Chord-scale notes
When playing over a lead sheet, it is important to not play notes that clash with the currently playing
chord. Wehave two implementations of techniques that keepnoteswithin the chordof the lead sheet
that they are played in. We describe this procedure as a function we call 𝐶ℎ𝑜𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑁𝑜𝑡𝑒(𝑛), which
converts an integer into a note ranging from 1 to 12.

The first iteration of chord scale note resolution implements chord-scale notes in a similar way
to the technique used in GenJam [16]. In this iteration, 𝑛 ranges from 1 to 7. Per chord type, MILES
stores 7-note scales that fit over every type of chord. During playback, these scales are transposed to
the currently-playing chord and shifted in such a way, that 𝐶ℎ𝑜𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑁𝑜𝑡𝑒(1) is either a C, a C\ or a
CZ. This prevents discontinuities when amelody is playing during a drastic change of chord. Phrased
differently, this iteration takes notes that are stripped of accidentals, and reapplies the accidentals of
the currently-playing chord.

The second iteration of the procedure (which is only used for second-iteraton token algorithms)
allows for 𝑛 to range from 1 to 12. The first part of the procedure transposes 𝑛 such that it is in the key
of C. Instead of using chord-scale relations, we apply substitutions per chord type (eg. for C major:
EZ�E). Then, 𝑛 is transposed back to its original key.

B.1.2. Applying swing
Triplet swing is away ofmusical rhythmwhere eighth-notes are not played ‘straight’ (taking uphalf of
a quarter note), but where the first note in an eighth-note pair takes up twice the time as the second
note. As some songs in MILES are played in swing tempo, we have implemented functionality to
transform the timing of generated (straight) notes to fit the straight rhythm of these songs. Applying
swing of some time 𝑡 is done with a piecewise linear function we call ApplySwing, where values of
𝑡 that fall on whole notes are mapped to themselves, but notes that fall in-between whole notes are
mapped to a time value two-thirds along the way. The pseudocode and plot of this function can be
found in Figures B.1 and B.2 respectively. The inverse of this function (RemoveSwing) is also present
in MILES for turning swung notes into straight notes.
¹GitHub: sjerpsthomas/miles

51

https://github.com/sjerpsthomas/miles

52 B. Miscellaneous Algorithms

function APPLYSWING(t)
// Transform to within quarter note
𝑡 ← 𝑡 ∗ 4
𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑁𝑜𝑡𝑒 ← 𝐼𝑛𝑡(𝑡)
𝑡 ← 𝑡 − 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑁𝑜𝑡𝑒
// Piecewise function
if 𝑡 < 1

2 then
𝑡 ← 𝑡/12 ∗

2
3

else
𝑡 ← 𝑡/12 ∗

1
3

// Transform back with quarter note
𝑡 ← 𝑡 + 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑁𝑜𝑡𝑒
𝑡 ← 𝑡 ∗ 4
// Return return 𝑡

Figure B.1: The general procedure used to generate measures of a maximum number of tokens

Figure B.2: A plot that shows the result of applying swing.

B.1.3. Generatingmeasures
In our tokenization approach, (approximate) measure boundaries are signified by a measure token.
However, somemodels can producemany tokenswithout generating ameasure token, which results
inunpleasantly short notes. Inorder to avoid generationof toomany tokenspermeasure,wepropose
the following algorithm to force measure tokens every 𝑛 tokens:

B.2. ‘Baseline’ algorithms
In this section, we detail ‘baseline’ algorithms which do not process any user data but still aim to
produce musically correct outputs.

B.2.1. Note Random
This algorithm generates notes with a random length and pitch within the currently-playing chord.
All generated notes have velocity level 96, and swing is applied when applicable. Generation stops
when the four measures are filled in.

B.3. Markov-based algorithms 53

function FORCETOKENMEASURELENGTH(n)
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑜𝑢𝑛𝑡 ← 0
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝑖𝑧𝑒 ← 0
while 𝑡𝑟𝑢𝑒 do

// Generate token
𝑛𝑒𝑤𝑇𝑜𝑘𝑒𝑛 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒(...)
// Force measure tokens
if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝑖𝑧𝑒 > 𝑛 then

yield Measure
(potentially force token in model)
𝑛𝑒𝑤𝑇𝑜𝑘𝑒𝑛 ← Measure
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑆𝑖𝑧𝑒 ← 0

// Increment measure number, return
if 𝑛𝑒𝑤𝑇𝑜𝑘𝑒𝑛 = Measure then

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑜𝑢𝑛𝑡 = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑜𝑢𝑛𝑡 + 1
if 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝐶𝑜𝑢𝑛𝑡 = 4 then return

Figure B.3: The general procedure used to generate measures of a maximum number of tokens

function NOTERANDOM.GENERATE
𝑡 ← 0.0
while 𝑡 < 4.0 do

// Generate values
𝑛𝑜𝑡𝑒 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡(40, 50)
𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑙𝑜𝑎𝑡(0.125, 0.325)
𝑟𝑒𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑙𝑜𝑎𝑡(0, 0.25)
// Create note
𝑐ℎ𝑜𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑁𝑜𝑡𝑒 ← 𝐶ℎ𝑜𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑁𝑜𝑡𝑒(𝑛𝑜𝑡𝑒)
yield 𝑁𝑜𝑡𝑒(𝑡, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑐ℎ𝑜𝑟𝑑𝑆𝑐𝑎𝑙𝑒𝑁𝑜𝑡𝑒, 96)
// Increment time
𝑛𝑒𝑤𝑇𝑖𝑚𝑒 ← 𝑡 + 𝑙𝑒𝑛𝑔𝑡ℎ + 𝑟𝑒𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ
𝑛𝑒𝑤𝑇𝑖𝑚𝑒 = 𝐴𝑝𝑝𝑙𝑦𝑆𝑤𝑖𝑛𝑔(𝑛𝑒𝑤𝑇𝑖𝑚𝑒)
𝑡 = 𝑛𝑒𝑤𝑇𝑖𝑚𝑒

Figure B.4: The generate function used by the Note Random algorithm.

B.3. Markov-based algorithms
Chapter 4.3 details the implementation of Markov-based algorithms. This section details an addi-
tional Markov-based algorithm.

B.3.1. NoteRepMarkov v2
This algorithmuses the variable-orderMarkovmodel used in TokenMarkov v2 on a less-compressed
note representation than the one present in our tokenization pipeline. In our so-called NoteRep
pipeline, note pitches are clamped between two octaves, two levels of velocity are present, and only
three levels of inter-onset interval (length and rest length combined) are present.

During the learning phase, canonical andhuman soloNoteRepmaterial are put into the variable-
order Markov model. Generation makes the model produce notes until the four measures are filled
in.

B.4. Factor oracle-based algorithms
Chapter 4.4 details the implementation of factor oracle-based algorithms. This section details an
additional factor oracle-based algorithm.

54 B. Miscellaneous Algorithms

B.4.1. Note Factor Oracle
This algorithm considers all human solo data and the canonical solo corresponding to the currently-
playing solo. In the learning stage, the algorithmfirst transforms this data into note number, velocity,
length and rest length values, which we call MelodyNote. These MelodyNote values are put into a
factor oraclemodel (with human solo data appended throughout playback). This factor oraclemodel
considers (edge) values to be equal whenever the pitch of the MelodyNote is equal, eliminating un-
necessary edges. Thealgorithmkeeps trackof the indexwithin the factor oraclewhere the just-played
human four starts, which we call HumanFourStart.

At generation, the algorithm starts out somewhere between this index and the end of the factor
oracle, and continually traverses the oracle from there. Differing from the Token FactorOracle v1 and
v2 algorithms described in chapter 4, the odds of continuing to the next node (instead of skipping
forward) are slightly biased, by only going to a random edge 50% of the time. When the end of the
factor oracle is reached, traversal continues from the first node of the oracle. If applicable, swing is
applied to all notes. Generation stops when all four measures are filled in.

function NOTEFACTORORACLE.GENERATE
𝑖𝑛𝑑𝑒𝑥 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡(𝐻𝑢𝑚𝑎𝑛𝐹𝑜𝑢𝑟𝑆𝑡𝑎𝑟𝑡, |𝐹𝑂.𝑁𝑜𝑑𝑒𝑠|)
𝑡 ← 0.0
while 𝑡 < 4.0 do

// Traverse
(𝑚𝑒𝑙𝑜𝑑𝑦𝑁𝑜𝑡𝑒, 𝑛𝑒𝑤𝐼𝑛𝑑𝑒𝑥) ← 𝐹𝑂.𝑁𝑜𝑑𝑒𝑠[𝑖𝑛𝑑𝑒𝑥].𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒()
// Loop back to start
if No note found then

(𝑚𝑒𝑙𝑜𝑑𝑦𝑁𝑜𝑡𝑒, 𝑛𝑒𝑤𝐼𝑛𝑑𝑒𝑥) = 𝐹𝑂.𝑁𝑜𝑑𝑒𝑠[0].𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒()
// Create note
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑁𝑜𝑡𝑒 ← 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑁𝑜𝑡𝑒(𝑚𝑒𝑙𝑜𝑑𝑦𝑁𝑜𝑡𝑒.𝑁𝑜𝑡𝑒)
yield 𝑁𝑜𝑡𝑒(𝑡,𝑚𝑒𝑙𝑜𝑑𝑦𝑁𝑜𝑑𝑒.𝐿𝑒𝑛𝑔𝑡ℎ, 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑁𝑜𝑡𝑒,𝑚𝑒𝑙𝑜𝑑𝑦𝑁𝑜𝑡𝑒.𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦)
// Increment time
𝑛𝑒𝑤𝑇𝑖𝑚𝑒 ← 𝑡 +𝑚𝑒𝑙𝑜𝑑𝑦𝑁𝑜𝑡𝑒.𝐿𝑒𝑛𝑔𝑡ℎ + 𝑚𝑒𝑙𝑜𝑑𝑦𝑁𝑜𝑡𝑒.𝑅𝑒𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ
𝑛𝑒𝑤𝑇𝑖𝑚𝑒 = 𝐴𝑝𝑝𝑙𝑦𝑆𝑤𝑖𝑛𝑔(𝑛𝑒𝑤𝑇𝑖𝑚𝑒)
𝑡 = 𝑛𝑒𝑤𝑇𝑖𝑚𝑒

Figure B.5: Caption

B.5. Other algorithms
This section details miscellaneous other algorithms that were implemented for MILES.

B.5.1. Token Shuffle v1
This algorithm is inspired by the genetic mutations described in Biles’ Interactive GenJam [17] for
mutating human-played music into novel material. This algorithm only considers the last four that
the user played. After tokenizing this material, it selects a region of tokens and applies one of the
following permutations:

• Mirror: Reverse the selected list of tokens, keeping the length of notes and rests. This is done
by first generating intermediate tokens that also encode the current speed and leave out speed
change tokens, reversing this list, and then adding the speed tokens to the result again.

• Flip: Flip all notes of the selected list of tokens vertically (note: tokens are represented over only
a single octave).

• Transpose: Transposes all notes of the selected list of tokens by between -4 and 3 chord-scale
steps, wrapping along the octave.

This process is repeated for a total of three times. Finally, the resulting tokens are reconstructed
back to note material again, and these resulting notes are played.

B.5. Other algorithms 55

B.5.2. Token Transformer v1
This algorithm tokenizes the last four measures played by the user and inserts it into the input se-
quence of a Transformer model. This Transformer model has an internal sequence length of 10, and
3 layers of encoder layers.

The training set of theTransformer consists firstly of tokenized tracks from theLakhMIDIDataset.
These tracks were filtered by monophonic relevancy to only include melodic MIDI instruments with
10 or more unique MIDI notes and not too much note overlap.

Generation consisted of generating tokens using the procedure described in appendix B.1.3 with
a maximum measure length of 10. Whenever a forced measure token is inserted, this is added to the
input sequence of themodel. These tokens are then reconstructed and the resulting notes are played.

B.5.3. Token Neural Net v2
This algorithm tokenizes the last four measures played by the user and inserts it into the input se-
quence of a MLP model. This model has a context window of 30 tokens, and works as follows:

• An embedding layer turns every token into a 3-dimensional embedding;

• After flattening, these embeddings are brought down to a single 5-dimensional tensor;

• A ReLU layer, another 5-to-5 linear layer and a dropout layer provide further transformation;

• Finally, this 5-dimensional tensor is brought to 16 logits.

During the generation phase, measure size is not limited like the other algorithms, as this was not
deemed necessary. The generated tokens are reconstructed and the resulting notes are played.

C
Miscellaneous Symbolic Features

The analysis framework ofMILES contains a selection of pre-existing symbolic analysis features. This
appendix gives an overview of these features. These features analyseMILES’ output files, which con-
tain 𝑛 notes over𝑚measures that have the following properties:

• OutputName (type: enum): the instrument or player that played this note;

• Time (type: double): the time (in measures) of the onset of the note;

• Length (tpye: double): the time (in measures) of the length of the note;

• Note (type: int): the MIDI note number of the note;

• Velocity (type: int): the velocity (0-127) of the note.

All features that do not directly state a source are inspired by work by McKay [45], who designs a
system that predicts a genre of a song by using MIDI features of these songs.

C.1. Note pitch features
MILES implements two features thatworkonnotepitchdirectly. Firstly, thenote standarddeviation,
which takes the standard deviation of all note values:

𝜎𝑛𝑜𝑡𝑒 = √
1
𝑛 ⋅

𝑁

∑
𝑖=1
(Note(𝑁𝑖) − 𝜇𝑛𝑜𝑡𝑒)2

Where we compute the average to be:

𝜇𝑛𝑜𝑡𝑒 =
1
𝑛 ⋅

𝑁

∑
𝑖=1

Note(𝑁𝑖)

As well as that, we define note range to be the difference between the highest and lowest note:

𝑛𝑜𝑡𝑒 𝑟𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥𝑁𝑖=1Note(𝑁𝑖) − 𝑚𝑖𝑛𝑁𝑗=1Note(𝑁𝑗)

C.2. Interval features
The features discussed in this section make use of the list of all note intervals 𝐼, which can be com-
puted by calculating all differences between each note and the next:

𝐼 = {Note(𝑁𝑖+1) − Note(𝑁𝑖) ∣ 𝑖 ∈ {0, 1, … , 𝑛 − 2}}

57

58 C. Miscellaneous Symbolic Features

Keep in mind that this list has one less element than 𝑁. We define the interval average to be the
average of this list:

𝜇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
1

𝑛 − 1 ⋅
𝑛−1

∑
𝑖=1

𝐼𝑖

Furthermore, we define the interval standard deviation to be the standard deviation of this list:

𝜎𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = √
1

𝑛 − 1 ⋅
𝑛−1

∑
𝑖=1

(𝐼𝑖 − 𝜇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)2

C.3. Note length features
We also define features based on the lengths of notes, like length standard deviation, which takes
the standard deviation of all note lengths:

𝜎𝑙𝑒𝑛𝑔𝑡ℎ = √
1
𝑛 ⋅

𝑁

∑
𝑖=1
(Length(𝑁𝑖) − 𝜇𝑙𝑒𝑛𝑔𝑡ℎ)2

Where we compute the average to be:

𝜇𝑙𝑒𝑛𝑔𝑡ℎ =
1
𝑛 ⋅

𝑁

∑
𝑖=1

Length(𝑛𝑜𝑡𝑒)

As well as that, we define note density (assuming that all notes have been transformed to be mono-
phonic):

𝑛𝑜𝑡𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 1
𝑚 ⋅ ∑

𝑛𝑜𝑡𝑒∈N
Length(𝑛𝑜𝑡𝑒)

C.4. Melodic arc features
The following features express rhythmic qualities of the inputmelody and are definedon ‘arc lengths’,
as described in chapter 3.3.3. The algorithm to get these arc lengths can be found in Figure C.1. We
notate BPM-dependent notes with 𝑁′.

Apart from the extrema ratio, we implemented the melodic arc duration average:

𝜇𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
1
|𝐴| ⋅

|𝐴|

∑
𝑖=1

Duration(𝐴𝑖)

We similarly implement the melodic arc height average:

𝜇ℎ𝑒𝑖𝑔ℎ𝑡 =
1
|𝐴| ⋅

|𝐴|

∑
𝑖=1

Height(𝐴𝑖)

C.5. Rhythm features
In chapter 3.3.3, we define the IOI to be the difference in onset time between notes. Aside fromNPVI,
MILES’ symbolic analysis component also includes the average IOI:

𝜇𝑖𝑜𝑖 =
1

𝑛 − 1 ⋅
𝑛−1

∑
𝑖=1

𝐼𝑂𝐼𝑖

C.5. Rhythm features 59

function GETARCLIST(N’, I)
// Get intervals and notes
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 ← 𝐼
𝑛𝑜𝑡𝑒𝑠 ← 𝑁′
// Get places where interval switches sign
𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 ← {𝑖 + 1 ∣ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖+1 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠𝑖 ≠ 0}
// Build arcs list based on boundaries
𝑎𝑟𝑐𝑠 ← {}
𝑎𝑟𝑐𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 = 0
// Iterate over boundaries
for all 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∈ 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 do

𝑛𝑒𝑤𝐴𝑟𝑐 ← {𝑛𝑜𝑡𝑒𝑠𝑖 ∣ 𝑖 ∈ {𝑎𝑟𝑐𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑎𝑟𝑐𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 + 1,… , 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦}}
𝐴𝑝𝑝𝑒𝑛𝑑(𝑎𝑟𝑐𝑠, 𝑛𝑒𝑤𝐴𝑟𝑐)
𝑎𝑟𝑐𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 ← 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

// Append last arc
𝐴𝑝𝑝𝑒𝑛𝑑(𝑎𝑟𝑐𝑠, {𝑛𝑜𝑡𝑒𝑠𝑖 ∣ 𝑖 ∈ {𝑎𝑟𝑐𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥, 𝑎𝑟𝑐𝑆𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 + 1,… , 𝑛}})
// Get durations and heights

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← {{(Time(𝑎𝑟𝑐𝑠𝑖[−1]) + Length(𝑎𝑟𝑐𝑠𝑖[−1]) − Time(𝑎𝑟𝑐𝑠𝑖[0]), if arc𝑖 ≠ ∅
0.0, otherwise

∣ 𝑖 ∈ 0, 1, … , |𝑎𝑟𝑐𝑠|}

ℎ𝑒𝑖𝑔ℎ𝑡𝑠 ← {{𝑚𝑎𝑥
|𝑎𝑟𝑐𝑠|
𝑗=1 Note(𝑎𝑟𝑐𝑠𝑖[𝑗]) − 𝑚𝑖𝑛|𝑎𝑟𝑐𝑠|𝑘=1 Note(𝑎𝑟𝑐𝑠𝑖[𝑘]), if arc𝑖 ≠ ∅

0.0, otherwise
∣ 𝑖 ∈ 0, 1, … , |𝑎𝑟𝑐𝑠|}
// Return
return 𝑍𝑖𝑝(𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠, ℎ𝑒𝑖𝑔ℎ𝑡𝑠)

Figure C.1: The procedure that creates ‘melodic arcs’ based on a melody

D
Token Overview

When dealing with algorithms like Markov chains or factor oracle models, symbolic music data must
be compressed in some way. Some algorithms do this by chunking material together, or by only con-
sidering the pitches of input notes. We have implemented a method that converts a monophonic
symbolic melody into a sequence of ‘tokens’, which can be used for implementing many generative
techniques. These tokens are human-readable and aim to encodemusical features in such away that
conversion from symbolic data to tokens (‘tokenization’) is musically precise, and conversion back
to symbolic data (‘reconstruction’) should give musically valid data regardless of what tokens it is
given. The tokens of our technique support chord-scale classes relative to the key of the song, a pass-
ing tone and rest indicator, speed and dynamics indications, and a measure delimiter. Tokenization
and reconstruction take place in real time and tokens can be stored for later playback and analysis.

In order to enhance the clarity of our tokenization strategy implementation and increase modu-
larity, we decided to implement the tokenization and reconstruction procedures as several phases.
This chapter summarizes the functionality of these phases.

D.1. Pitch stage
The pitch stage of our tokenization strategy is responsible for chord-scale notes and potentially pass-
ing tones.

D.1.1. First iteration
The pitch stage of tokenization goes over every note in the melody. If the pitch interval with its pre-
ceding note is the same as the one with its succeeding note, this note is replaced with a passing tone
token. If not, the (first-iteration) chord-scale mapping (described in chapter B.1.1) is applied to the
note.

Reconstructionuses the chord-scalemapping to recover theoriginal notes. Thepitches of passing
tone tokens that remain are determined by linearly interpolating between the notes that lie at the
boundaries of groups of these tokens.

D.1.2. Second iteration
In the second iterationof our tokenization strategy, thepitch stage only applies the (second-iteration)
chord-scale mappings, omitting the use of passing tone tokens.

D.2. Octave stage
The octave stage of our tokenization strategy is responsible for stripping away and re-applying octave
information to notes. This limits all tokens to be within a single octave.

D.2.1. First iteration
The octave stage of tokenization consists of a single modulo operation, which transposes all notes to
lie in a single octave.

61

62 D. Token Overview

Reconstruction consists of defining ‘octave events’, which signal an upward or downward jump
in octave, to occur in between notes with a large interval (about half an octave). A selection of these
octave events is made based on a heuristic priority function which considers the length of these two
notes and the size of the interval between them. Finally, these octave events are applied such that
notes can now be present in multiple octaves.

D.2.2. Second iteration
The second iteration of the octave stage is similar to that of the first. The only difference occurs
during reconstruction: no filtering of of the determined ‘octave events’ occurs, and thus all of the
octave transpositions are applied.

D.3. Timing stage
The timing stage of our tokenization strategy consists of converting the time and length properties
of notes into a sequence of speed indications and note/rest tokens without any extra temporal infor-
mation, such that the velocity indication tokensmodify the length of subsequent notes until updated
by another indication token.

D.3.1. First iteration
In the first iteration, the tokenization of the timing stage starts out by potentially removing swing.
Next, rests are recognized and tokens are placed in groups in such a way that the reconstructed end
times of these groups align with a quantized time grid, based on the speeds of these groups.

Reconstruction is achieved by grouping note, passing tone and rest tokens based on their indi-
cated speeds and separated by measure. Next, these groups are scaled to be proportional to their in-
dicated speeds, and are aligned based on a quantized time grid, based on the speeds of these groups.
Finally, swing is potentially added again to the start and end times of notes.

D.3.2. Second iteration
Similar to the first iteration, the tokenization of the timing stage starts out by potentially removing
swing. Next, rests are recognized and tokens are emitted based on the lengths of these notes and
rests.

Reconstruction is achieved by defining an optimization problem where the starting points of all
notes/rests are considered. The objective function of this optimization problem balances notes that
are not too short and are of their specified length with note start time quantization and ‘overtime’
(where notes are allowed to be placed slightly beyond the four measures). We use the Cobyla (‘con-
strained optimization by linear approximation’) class of the Accord.Math.Optimization¹ C# package
to implement this optimization.

D.4. Velocity stage
The velocity stage of our tokenization strategy is responsible for replacing explicit velocity informa-
tion with quantized velocity indication tokens that modify the length of subsequent notes until up-
dated by another indication token.

D.4.1. First iteration
The tokenization of the velocity stage emits velocity indication tokens by considering whether or not
notes are louder than a threshold velocity.

Reconstruction consists of re-applying these velocity indication tokens and setting the velocities
of emitted notes accordingly.

D.4.2. Second iteration
The second iteration of the velocity stage is identical to that of the first.

¹http://accord-framework.net/

Accord.NET

Bibliography
[1] P. T. Sowden, L.Clements,C.Redlich, andC.Lewis, “Improvisation facilitatesdivergent thinking

and creativity: Realizing a benefit of primary school arts education.,” Psychology of Aesthetics,
Creativity, and the Arts, vol. 9, no. 2, p. 128, 2015.

[2] F. P. Brooks, A. L. Hopkins, P. G. Neumann, and W. V. Wright, “An experiment in musical com-
position,” IRE Transactions on Electronic Computers, vol. EC-6, no. 3, pp. 175–182, 1957. DOI:
10.1109/TEC.1957.5222016.

[3] P. Manning, Electronic and computer music. Oxford University Press, 2013.
[4] A. Horner and D. E. Goldberg, Genetic algorithms and computer-assisted music composition.

Ann Arbor, MI: Michigan Publishing, University of Michigan Library, 1991, vol. 51.
[5] G. Papadopoulos, G. Wiggins, et al., “A genetic algorithm for the generation of jazz melodies,”

Proceedings of STEP, vol. 98, 1998.
[6] J. Gillick, K. Tang, and R. M. Keller, “Machine learning of jazz grammars,” Computer Music

Journal, vol. 34, no. 3, pp. 56–66, 2010, ISSN: 01489267, 15315169. [Online]. Available: http:
//www.jstor.org/stable/40963033 (visited on 05/09/2025).

[7] N. Trieu and R. Keller, “Jazzgan: Improvising with generative adversarial networks,” in MUME
workshop, 2018.

[8] S. H. Hakimi, N. Bhonker, and R. El-Yaniv, “Bebopnet: Deep neural models for personalized
jazz improvisations.,” in ISMIR, 2020, pp. 828–836.

[9] H.-W. Dong, K. Chen, S. Dubnov, J. McAuley, and T. Berg-Kirkpatrick, “Multitrack music trans-
former,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2023, pp. 1–5.

[10] A. Liapis, G. Yannakakis, and J. Togelius, “Sentient sketchbook: Computer-assisted game level
authoring,” English, in Proceedings of the 8th International Conference on Foundations of Dig-
ital Games, Society for the Advancement of the Science of Digital Games, 2013, pp. 213–220,
ISBN: 978-0-9913982-0-1.

[11] J. E. Gain, P. C. Marais, and W. Straßer, “Terrain sketching.,” in SI3D, 2009, pp. 31–38.
[12] P. P. Varga and R. Bidarra, “Harmony in hierarchy:Mixed-initiativemusic composition inspired

by wfc,” in Entertainment Computing - ICEC 2024, Proceedings of the International Conference
on Entertainment Computing, Springer LNCS, Sep. 2024, pp. 1–11. [Online]. Available: http:
//graphics.tudelft.nl/Publications-new/2024/VB24.

[13] A. B. Loyall, “Believable agents: Building interactive personalities,” Ph.D. dissertation, Carnegie
Mellon University., 1997.

[14] B. Thom, “Bob: An interactive improvisational music companion,” in Proceedings of the fourth
international conference on Autonomous agents, 2000, pp. 309–316.

[15] F. Pachet, “The continuator: Musical interaction with style,” Journal of New Music Research,
vol. 32, no. 3, pp. 333–341, 2003.

[16] J. Biles et al., “Genjam: A genetic algorithm for generating jazz solos,” in ICMC, Ann Arbor, MI,
vol. 94, 1994, pp. 131–137.

[17] J. A. Biles, “Interactive genjam: Integrating real-time performancewith a genetic algorithm,” in
ICMC, 1998.

[18] C.Allauzen,M.Crochemore, andM.Raffinot, “Factororacle: Anewstructure forpatternmatch-
ing,” in SOFSEM’99: Theory and Practice of Informatics: 26th Conference on Current Trends in
Theory and Practice of Informatics Milovy, Czech Republic, November 27—December 4, 1999
Proceedings 26, Springer, 1999, pp. 295–310.

63

https://doi.org/10.1109/TEC.1957.5222016
http://www.jstor.org/stable/40963033
http://www.jstor.org/stable/40963033
http://graphics.tudelft.nl/Publications-new/2024/VB24
http://graphics.tudelft.nl/Publications-new/2024/VB24

64 Bibliography

[19] G. Assayag and S. Dubnov, “Using factor oracles for machine improvisation,” Soft Computing,
vol. 8, no. 9, pp. 604–610, 2004.

[20] G. Assayag, G. Bloch,M. Chemillier, A. Cont, and S. Dubnov, “Omax brothers: A dynamic topol-
ogy of agents for improvization learning,” inProceedings of the 1st ACMworkshop onAudio and
music computing multimedia, 2006, pp. 125–132.

[21] G.AssayagandM.Chemillier,TheOMaxproject page. [Online]. Available:http://recherche.
ircam.fr/equipes/repmus/OMax/.

[22] E. Chew, Human-machine improvisations with mimi: Interrogating performance and listening
processes and outcomes, Invited plenary speaker, Perspectives onMusical Improvisation II, De-
partment of Music, Oxford University, Oxford, UK, Sep. 2014.

[23] A. R. François, I. Schankler, and E. Chew, “Mimi4x: An interactive audio-visual installation for
high-level structural improvisation,” International Journal of Arts and Technology, vol. 6, no. 2,
pp. 138–151, 2013.

[24] J.Nika,M.Chemillier, andG.Assayag, “Improtek: Introducing scenarios intohuman-computer
music improvisation,” Computers in Entertainment (CIE), vol. 14, no. 2, pp. 1–27, 2017.

[25] I. Corintha, L. Outeiro, R. Dias, and G. Bernardes, “Am-i-blues: An interactive digital music
instrument for guiding novice pianist in the improvisation of jazz melodies,” in Meeting of Re-
search in Music, Arts and Design, Springer, 2020, pp. 689–698.

[26] R. M. S. S. Dias, “Interfacing jazz: A study in computer-mediated jazz music creation and per-
formance,” Ph.D. dissertation, Instituto Politecnico de Castelo Branco (Portugal), 2018.

[27] I. Corintha, G. Cabral, and G. Bernardes, “Amigo: An assistive musical instrument to engage,
learn and create music,” in Proceedings of the international conference on New Interfaces for
Musical Expression, 2019.

[28] J. Foote, “Visualizing music and audio using self-similarity,” in Proceedings of the seventh ACM
international conference on Multimedia (Part 1), 1999, pp. 77–80.

[29] M. Wattenberg, “Arc diagrams: Visualizing structure in strings,” in IEEE Symposium on Infor-
mation Visualization, 2002. INFOVIS 2002., IEEE, 2002, pp. 110–116.

[30] E. Chew, “Out of the grid and into the spiral: Geometric interpretations of and comparisons
with the spiral-array model.,” Computing in musicology, vol. 15, 2007.

[31] R. Cohn, “Neo-riemannian operations, parsimonious trichords, and their” tonnetz” represen-
tations,” Journal of Music Theory, vol. 41, no. 1, pp. 1–66, 1997.

[32] Technimo, Ireal pro, version2025.4, Apr. 3, 2025. [Online]. Available:https://www.irealpro.
com/.

[33] R. Keller, ”You Go to My Head”, Al Biles and GenJam, May 2019. [Online]. Available: https:
//www.youtube.com/watch?v=RDgJw2kiuWU.

[34] R. Hennequin, A. Khlif, F. Voituret, and M. Moussallam, “Spleeter: A fast and efficient music
source separation toolwith pre-trainedmodels,” Journal of Open Source Software, vol. 5, no. 50,
p. 2154, 2020.

[35] P. Van Kranenburg, M. De Bruin, and A. Volk, “Documenting a song culture: The dutch song
database as a resource for musicological research,” International Journal on Digital Libraries,
vol. 20, pp. 13–23, 2019.

[36] L. Crestel, P. Esling, L. Heng, and S. McAdams, “A database linking piano and orchestral midi
scoreswithapplication toautomaticprojectiveorchestration,”arXivpreprint arXiv:1810.08611,
2018.

[37] C. Raffel, Learning-basedmethods for comparing sequences, with applications to audio-to-midi
alignment and matching. Columbia University, 2016.

[38] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and P. Lamere, “The million song dataset,” in Pro-
ceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR),
2011, pp. 591–596.

http://recherche.ircam.fr/equipes/repmus/OMax/
http://recherche.ircam.fr/equipes/repmus/OMax/
https://www.irealpro.com/
https://www.irealpro.com/
https://www.youtube.com/watch?v=RDgJw2kiuWU
https://www.youtube.com/watch?v=RDgJw2kiuWU

Bibliography 65

[39] M. Pfleiderer, K. Frieler, J. Abeßer, W.-G. Zaddach, and B. Burkhart, “Inside the jazzomat,” New
Perspectives for Jazz Research, 2017.

[40] F.Höger, K. Frieler,M. Pfleiderer, and S.Dixon, “Dig that lick: Exploringmelodic patterns in jazz
improvisation,” in Late Breaking/Demo at the 20th International Society for Music Information
Retrieval Conference, Delft, The Netherlands, 2019.

[41] H.Leonard,OmnibookSeriesHalLeonardonline. [Online]. Available:https://www.halleonard.
com/series/OMNIBK.

[42] V.Madaghiele, P. Lisena, andR. Troncy, “Mingus:Melodic improvisationneural generator using
seq2seq.,” in ISMIR, 2021, pp. 412–419.

[43] K. Frieler and W.-G. Zaddach, “Evaluating an analysis-by-synthesis model for jazz improvisa-
tion,” Transactions of the International Society for Music Information Retrieval, vol. 5, no. 1,
pp. 20–34, 2022.

[44] L.-C. Yang and T. Grilo, RichardYang40148/mgeval. GitHub, Aug. 2, 2021. [Online]. Available:
https://github.com/RichardYang40148/mgeval.

[45] C.McKay and I. Fujinaga, “Automatic genre classificationusing largehigh-levelmusical feature
sets.,” in ISMIR, vol. 2004, 2004, pp. 525–530.

[46] D. R. Abrams, Rhythmic complexity in jazz: An information theory approach, 2023.
[47] D.Müllensiefen, “Fantastic: Feature analysis technology accessing statistics (in a corpus): Tech-

nical report v1,”London,England:Goldsmiths,University of London.Retrieved fromhttp://www.
doc. gold. ac. uk/isms/m4s/Google Scholar, 2009.

[48] D. Müllensiefen, K. Frieler, et al., “Cognitive adequacy in the measurement of melodic similar-
ity: Algorithmic vs. human judgments,” Computing in Musicology, vol. 13, no. 2003, pp. 147–
176, 2004.

[49] F. Pachet, P. Roy, and R. Foulon, “Do jazz improvisers really interact?: The score effect in col-
lective jazz improvisation,” in The Routledge companion to embodied music interaction, Rout-
ledge, 2017, pp. 167–176.

[50] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, 1990, pp. 249–256.

[51] G. T. Toussaint, “Thepairwise variability index as a tool inmusical rhythmanalysis,” inProceed-
ings of the 12th International Conference on Music Perception and Cognition & the 8th Confer-
ence of the European Society for the Cognitive Sciences of Music, 2012, pp. 1001–8.

https://www.halleonard.com/series/OMNIBK
https://www.halleonard.com/series/OMNIBK
https://github.com/RichardYang40148/mgeval

	Introduction
	Related Work
	Mixed-initiative systems
	Music improvisation systems
	Music visualisation
	Existing (jazz) musical material
	Evaluation techniques
	Non-improvisational music generation analysis
	Music improvisation system analysis

	Experimental Design
	Trading fours
	Evaluation
	Enjoyment and familiarity
	Reciprocity
	Third-party assessment
	Symbolic analysis
	Tracking progression

	Experiments
	Algorithms
	Assessment form
	Symbolic analysis
	Experiment 1: initial comparison
	Experiment 2: evaluating iterations

	Ethics

	Algorithm Overview
	Common functionality
	Reactivity
	Tokens

	`Baseline' algorithms
	Note Retrieval
	Token Random v1

	Markov-based algorithms
	Token Markov v1
	Token Markov v2

	Factor oracle-based algorithms
	Token Factor Oracle v1
	Token Factor Oracle v2

	System Design
	Music improvisation system
	MIDI engine
	Algorithms
	UI and visualisation frontend
	Recording and playback backend

	Evaluation
	Evaluation form
	Analysis framework

	Implementation

	Experiment 1: Initial Comparison
	Configuration
	Logistics
	Results
	Pilot phase and algorithms
	Self-assessment
	Expert reporting
	Symbolic analysis

	Discussion

	Experiment 2: Evaluating Iterations
	Iteration of algorithms
	Configuration
	Logistics
	Results
	Self-reporting
	Peer reporting
	Symbolic analysis

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work
	Experiments
	MILES

	Form Overview
	Informed consent form
	Self-evaluation form
	Third-party evaluation form

	Miscellaneous Algorithms
	Common functionality
	Chord-scale notes
	Applying swing
	Generating measures

	`Baseline' algorithms
	Note Random

	Markov-based algorithms
	NoteRep Markov v2

	Factor oracle-based algorithms
	Note Factor Oracle

	Other algorithms
	Token Shuffle v1
	Token Transformer v1
	Token Neural Net v2

	Miscellaneous Symbolic Features
	Note pitch features
	Interval features
	Note length features
	Melodic arc features
	Rhythm features

	Token Overview
	Pitch stage
	First iteration
	Second iteration

	Octave stage
	First iteration
	Second iteration

	Timing stage
	First iteration
	Second iteration

	Velocity stage
	First iteration
	Second iteration

