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We study a special class of mechanical metamaterials, namely lattices, based on beams (struts) with
nonuniform cross sections, of which pentamode mechanical metamaterials are a special case. Five
symmetric beam types including simple cylinder, concave double cone, convex double cone, concave
hyperbolic, and convex hyperbolic are considered. Three types of loads including lateral force, axial force,
and moment are applied to the free end of cantilever beams with the five aforementioned geometries and
their responses are compared in terms of displacement, normal stress variation along the beam length, and
shear stress variation along the beam length. Using the displacement diagrams obtained for different strut
geometries and loading conditions, semi-analytical relationships are derived for the displacement at the
end of cantilever beams. The semi-analytical relationships are then used to calculate the elastic modulus
and yield strength of lattice structures based on two types of unit cells, namely diamond and cube. We
also build numerical models and perform experiments to benchmark our semi-analytical results. Compar-
ison of the analytical, numerical, and experimental results demonstrate the accuracy of the semi-analytical
relationships presented for the mechanical properties of this class of mechanical metamaterials. Moreover,
in both the cube- and diamond-based structures, increasing the α value (i.e., the ratio of the largest to the
smallest cross-section radius in each strut) at a constant relative density decreases the elastic modulus,
yield strength, the initial maximum stress, and the plateau stress.

DOI: 10.1103/PhysRevApplied.11.034057

I. INTRODUCTION

Metamaterials are engineered structures that are ratio-
nally designed to exhibit unusual physical properties. They
are often called after the type of the physical property they
target, for example, optical metamaterials [1,2], acoustic
metamaterials [3,4], or mechanical metamaterials [5–8].
Mechanical metamaterials, in particular, aim at achiev-
ing unusual mechanical properties not readily found in
nature such as negative Poisson’s ratio [9–12], nega-
tive compressibility [13,14], ultrahigh stiffness [15], or
negative elasticity [16,17]. The small-scale geometry of
mechanical metamaterials determines the properties they
exhibit at larger scales. Geometry-property relationships
are, therefore, of utmost interest in the process of rationally
designing mechanical metamaterials.

Geometries that are based upon beam-like ele-
ments (sometimes called struts) have been often used
for development of mechanical metamaterials. In this

*r.hedayati@tudelft.nl; rezahedayati@gmail.com

approach, a number of struts are used to create a space-
filling unit cell that is then repeated in different directions
to create the microarchitecture of the metamaterial. One
advantage of the geometries based on beam-like elements
is that beam theories such as Euler-Bernoulli or Timo-
shenko can be used to derive analytical geometry-property
relationships [18–20].

A natural extension of the geometries based on beams
with constant cross sections is to allow for beams with
variable cross sections. Milton and Cherkaev have shown
in their seminal paper [21] that lattices based on beams
with variable cross sections could be the basis for creating
pentamode metamaterials. Pentamode metamaterials are a
special class of extremal materials that exhibit unusually
high resistance against deformations in certain directions
(associated with the extremely large eigenvalues of the
elasticity tensor), while being extremely compliant in some
other directions (associated with the near-zero eigenval-
ues of the elasticity tensor). In the case of pentamode
metamaterials, the extremely large and near-zero eigen-
values of the elasticity tensor translate to a very large
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bulk modulus and negligible shear modulus. That is why
pentamode metamaterials are sometimes called metafluids
[22,23]. More importantly, Milton and Cherkaev have
shown that pentamode metamaterials can be used as a
platform for realizing metamaterials with any thermo-
dynamically admissible elasticity tensor [21]. Pentamode
metamaterials were not manufactured until 2012 [24] when
the availability of advanced additive manufacturing [three-
dimensional (3D) printing] techniques allowed for their
realization. Continued improvement of additive manufac-
turing techniques that allow for fabrication of metamate-
rials with arbitrarily complex geometries on one hand and
the potential of pentamode-like metamaterials as a general
platform for the design of mechanical metamaterials with
any given elasticity tensor on the other hand highlight the
importance of deriving analytical geometry-property rela-
tionships for lattices based on beams with variable cross
sections.

An important barrier to deriving such relationships is
that theories comparable with Euler-Bernoulli and Timo-
shenko do not exist for beams with variable cross sections.
In this study, we take an analytical approach to derive
an exact beam theory for certain classes of beams with
variable cross sections. The considered types of variable
cross sections include not only the type used in pentamode
metamaterials (i.e., convex double cone) but also three
other types (i.e., concave double cone, concave hyper-
bolic, and convex hyperbolic). In the next step, we use
the presented beam theory to derive semi-analytical rela-
tionships for the mechanical properties of lattices based
on the diamond and cubic unit cells. The geometry pro-
posed by Milton and Cherkaev [21] for pentamode meta-
materials (i.e., diamond-type lattices made from convex
double-cone beams) are, thus, a special case of the lat-
tices for which we provide semi-analytical relationships.
We then compare the mechanical properties predicted by
our semi-analytical relationships with the computational
results obtained using finite element (FE) models. Finally,
we use an additive manufacturing (3D printing) technique
to fabricate specimens with the same type of lattice struc-
tures and two types of variable cross sections (convex
double cone and concave double cone) as used in deriva-
tion of the semi-analytical relationships. The predictions of
the semi-analytical relationships are then compared with
the compressive mechanical properties observed for the
additively manufactured specimens.

II. MATERIALS AND METHODS

A. Analytical and semi-analytical solutions

1. The geometrical relationships

In order to objectively compare the responses of the
five different types of beams, they must have something in
common. Since adjusting the elastic properties of mechan-
ical metamaterials given their available mass is important

TABLE I. Formulas for cross-section radius z in different
geometries.

Left part Right part

Cylinder z = r
Concave double cone z = 2(r−R)

l x + R z = 2(R−r)
l x + (2r − R)

Convex double cone z = 2(R−r)
l x + r z = 2(r−R)

l x + (2R − r)

Concave hyperbolic z = r + D −
(

D2 − (
x − l

2

)2
)1/2

where D = (R−r)2+
(

l
2

)2

2(R−r)

Convex hyperbolic z = D − R −
(

D2 − (
x − l

2

)2
)1/2

where D = (R−r)2+
(

l
2

)2

2(R−r)

in a large number of applications, we compare the response
of the different types of beams while fixing their total mass.
In all geometries, the ratio of the small radius to the beam
length is denoted by β (i.e., β = r/l), while the ratio of
the large radius to the small radius is denoted by α, that
is, α = R/r. Table I lists the cross-section radius, z, as a
function of the distance from the strut edge, x, for the dif-
ferent geometries considered here. In conical geometries
[Figs. 1(d) and 1(e)], the ratio β can be expressed as a func-
tion of geometrical dimensions and the volume occupied
by the beam Vstrut as

β =
(

3Vstrut

π l3(1 + α + α2)

)1/2

. (1)

In hyperbolic geometries, however, it is not possible to
obtain a closed-form equation for β (which subsequently
gives the smaller radius, r). The value of β must, there-
fore, be found using numerical methods such as Newton-
Raphson. To do this, first a r0 is guessed and the mass of
the beam is calculated using

M0 = ρ

∫ l

0
πz2

0dx, (2)

where z0 = r0 + D0 − {D2
0 − [x − (l/2)]2}1/2 (according

to Table I) and D0 = {[(α − 1)2r2
0 + (l/2)2]/[2r0(α − 1)]}.

If the value of M0 − M is nonzero (where M is the given
mass of the strut), a second guess is used for the smaller
radius, r

r1 = r0 − f (r0)

f ′(r0)
, (3)

where f is a function defined as f (ri) = Mi − M with

Mi = ρ

∫ l

0
πz2

i dx, (4)

where zi = ri + Di − {D2
i − [x − (l/2)]2}1/2 (according to

Table I) and Di = {[(α − 1)2r2
i + (l/2)2]/[2ri(α − 1)]}.
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(a) (b)

(c) (d)

(e)

FIG. 1. Five beam geometries considered for analytical study: (a) simple cylinder, (b) concave hyperbolic, (c) convex hyperbolic,
(d) concave double-cone, and (e) convex double-cone.

The process is repeated as

rn+1 = rn − f (rn)

f ′(rn)
, (5)

until a sufficiently accurate value is reached. For each α, a
Newton-Raphson loop is used to find r, and thus, R = αr.

2. Beams with variable cross sections

In the Timoshenko beam theory, the displacements of
the different points of the beam in the x, y, and z directions
are as follows:

u(x, y, z) = zϕ(x) + u0(x),

v(x, y, z) = 0,

w(x, y, z) = w(x), (6)

where (x, y, z) represents the coordinates of a point in the
beam (Fig. 1), ϕ is the angle of the rotation of the normal
to the midsurface of the beam, u0 is the displacement of the
midsurface in the x direction, and w is the displacement of
the midsurface in the z direction. The components of the
strain tensor for a beam with linear strains are

εxx = ∂u
∂x

= z
∂ϕ

∂x
+ ∂u0

∂x
,

εzx = ∂u
∂z

+ ∂w
∂x

= ϕ + ∂w
∂x

,

εyy = εzz = γxy = γyz = 0. (7)

The corresponding stresses of the beam are, thus, given as

σxx = Esεxx = Es

(
∂u0

∂x
+ z

∂ϕ

∂x

)
,

034057-3
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τzx = κGsεzx = κGs

(
ϕ + ∂w

∂x

)
,

σyy = σzz = τxy = τyz = 0, (8)

where Es and Gs are the elastic and shear moduli of the
material and κ is the Timoshenko’s shear coefficient. We
use the Ritz method to derive the governing equations of
equilibrium from the total potential energy function of the
beam. The total potential energy (
) includes the strain
energy (U) and the potential of external forces (W).


 = U + W. (9)

The strain energy of the sandwich beam that consists of
energetically conjugate pairs of stress and strain is given
by

U =
∫∫∫ [∫

σxxdεxx +
∫

σyydεyy +
∫

σzzdεzz

+
∫

τxydγxy +
∫

τyzdγyz +
∫

τxzdγxz

]
dV. (10)

The strain energy expression may be obtained by substi-
tuting Eq. (8) into Eq. (10) and then integrating over the
strain terms. The resulting relationship is as follows:

U = 1
2

∫∫∫ [
Es

(
∂u0

∂x
+ z

∂ϕ

∂x

)2

+ κGs

(
ϕ + ∂w

∂x

)2
]

dV,

= 1
2

∫ l

x=0

[
EsA

(
∂u0

∂x

)2

+ EsI
(

∂ϕ

∂x

)2

+κGsA
(

−ϕ + ∂w
∂x

)2
]

dx. (11)

The potential energy of external work is equal to

W = −
∫ l

x=0
[Px u0 + Fz w + Mxy ϕ]δd(x − xk) dx, (12)

where Px, Fz, and Mxy are the external axial and lateral
concentrated loads and the concentrated bending moments
applied to the beam at point x = xk, respectively. In
Eq. (12), δd(x − xk) is the Dirac delta function at the loca-
tion of the concentrated loads. The three variables w, ϕ,
and u0, could be written as the following summations

w =
∞∑

i=1

WiSw
i ,

ϕ =
∞∑

i=1

�iS
ϕ
i ,

u0 =
∞∑

i=1

UiSu
i , (13)

where Sw
i , Sϕ

i , Su
i are, respectively, the lateral displacement,

rotational, and axial shape functions that should satisfy the
boundary conditions of the beam. Since the beams are can-
tilever, a good approximation for all the shape functions
is

Sw
i = Sϕ

i = Su
i =

(x
l

)i
. (14)

By substituting the shape functions into Eq. (13) and the
obtained relationships into Eqs. (11) and (12), the total
potential energy can be calculated as a function of the
unknown displacement coefficients Wi, �i, and Ui as


 = 1
2

∫ l

x=0

[
EsA

(∑
Ui

∂Su
i

∂x

)2

+ EsI
(∑

�i
∂Sϕ

i

∂x

)2

+κGsA
(∑

Wi
∂Sw

i

∂x
−
∑

�iS
ϕ
i

)2
]

dx

−
∫ l

x=0

[
Px

∞∑
i=1

UiSu
i + Fz

∞∑
i=1

WiSw
i

+Mxy

∞∑
i=1

�iS
ϕ
i

]
δd(x − xk) dx. (15)

In this study, only three concentrated loads Px = P, Fz =
F , and Mxy = M at x = l are considered. Finally, by insert-
ing Eq. (9) into the generalized Lagrange equations, the
governing equations of the problem are obtained as

∂


∂Wi
= 0 →

∫ l

x=0
κGsA

∞∑
k=1

(
Wk

∂Sw
k

∂x
− �kSϕ

k

)
∂Sw

i

∂x
dx

−
∫ l

x=0

∞∑
i=1

FSw
i δd(x − xk) dx = 0,

∂


∂�i
= 0 →

∫ l

x=0
EsI

∞∑
k=1

(
�k

∂Sϕ

k

∂x

)
∂Sϕ

i

∂x
dx

−
∫ l

x=0
κGsA

∞∑
k=1

(
Wk

∂Sw
k

∂x
− �kSϕ

k

)
Sϕ

i dx

−
∫ l

x=0

∞∑
i=1

MSϕ
i δd(x − xk)dx = 0,

∂


∂Ui
= 0 →

∫ l

x=0
EsA

∞∑
k=1

(
Uk

∂SU
k

∂x

)
∂SU

i

∂x
dx

−
∫ l

x=0

∞∑
i=1

PSU
i δd(x − xk)dx = 0. (16)

Therefore,
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[∫ l

0
κGsA

∂Sw
i

∂x

∂Sw
j

∂x
dx
]

N×N

[
− ∫ l

0 κGsA
∂Sw

i

∂x
Sϕ

j dx
]

N×N
[0]N×N

[
−
∫ l

0
κGsA Sϕ

i

∂Sw
j

∂x
dx
]

N×N

[∫ l
0 EsI

∂Sϕ
i

∂x

∂Sϕ
j

∂x
dx + ∫ l

0 κGsA Sϕ
i Sϕ

j dx

]

N×N

[0]N×N

[0]N×N [0]N×N

[∫ l

0
EsA

∂SU
i

∂x

∂SU
j

∂x
dx

]

N×N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3N×3N

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1
W2
...

WN
�1
�2
...

�N
U1
U2
...

UN

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

2N×1

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1
F2
...

FN
M1
M2
...

MN
P1
P2
...

PN

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

3N×1

, for i, j = 1, . . . , N (17)

By multiplying both sides of Eq. (17) by the inverse of
the stiffness matrix, the coefficients Wi, �i, and Ui for i =
1, . . . , N are calculated. Having obtained the coefficients,
the lateral displacement, rotation, and axial displacement
of the free end of the beam are given as

δlateral =
N∑

k=1

Wi,

θ =
N∑

k=1

�i,

δaxial =
N∑

k=1

Ui. (18)

A MATLAB (Mathworks, USA) code is written to deter-
mine the end displacements and rotations for beams with
variable cross sections. All the beams (in both the ana-
lytical and numerical solutions) have identical masses of
m0 = 0.003 kg and lengths of l0 = 0.05 m. The α values
are changed from 1 to 6 to study the effects of the α value
on the displacement, normal stress, and shear stress dia-
grams. The material properties of steel are introduced into
the problem ρ0 = 7800 kg/m3, Es,0 = 200 GPa, Gs,0 =
79.3 GPa, and νs,0 = 0.3. The amount of the applied forces
and moments are chosen in such a way that the maximum
value of displacement does not exceed 0.01 m. For axial
force loading, lateral force loading, and moment loading,

F0 = 0.1 N, M0 = 0.002 N m, and P0 = 1000 N are used,
respectively.

For the special case of double-cone struts under an axial
load, it is also possible to obtain closed-form equations.
For a truncated cone with the length l/2, smaller diameter
r, and larger diameter R, the axial expansion/contraction
under axial force P can be found as:

δaxial = Pl
2πEs

1
(R − r)

∫ R

r

dr
r2 = Pl

2πEsrR
= Pl

2πEsαr2 .

(19)

3. Elastic modulus of metamaterials and lattice
structures

Obtaining closed-form solutions for beams with vari-
able cross sections is not possible. In this study, we first
obtain analytical results for struts with different geometries
and with the specifications described in the last paragraph.
Cubic curves are then fitted to the displacements vs α

diagrams of the ends of cantilever beams with different
geometries under different loading conditions. All the fitted
curves have the following form

δ = C
(

Es,0

Es

) N∑
i=1

(piα
N−i), (20)

where C depends on the loading condition and p1 −
pN depends on both the loading condition and strut
geometry. In this study, N = 4 terms are used for
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TABLE II. Constants of the lateral and axial displacement of the struts with different geometries under different loading conditions.
For our case study, the following parameters are used: m0 = 0.003 kg, ρ0 = 7800 kg/m3, l0 = 0.05 m, F0 = 0.1N , M0 = 0.002 N m,
and P0 = 1000N .

C p1 p2 p3 p4

Double-cone concave (Lateral force, F)
F
F0

(
m0

ρ0Vstrut

)2( l
l0

)5

−1.4647 × 10−7 2.1585 × 10−6 −3.9025 × 10−6 6.3701 × 10−6

Double-cone concave (Moment, M )
M
M0

(
m0

ρ0Vstrut

)2( l
l0

)4

−1.0391 × 10−7 1.5521 × 10−6 −2.4348 × 10−6 3.6896 × 10−6

Double-cone concave (Axial force, P)
P
P0

(
m0

ρ0Vstrut

)(
l
l0

)2

−1.7731 × 10−7 2.099 × 10−6 1.2912 × 10−6 2.855 × 10−5

Double-cone convex (Lateral force, F)
F
F0

(
m0

ρ0Vstrut

)2( l
l0

)5

2.0963 × 10−7 9.8763 × 10−7 −2.8271 × 10−7 3.2737 × 10−6

Double-cone convex (Moment, M )
M
M0

(
m0

ρ0Vstrut

)2( l
l0

)4

7.2524 × 10−8 5.8636 × 10−7 −5.5547 × 10−7 2.4354 × 10−6

Double-cone convex (Axial force, P)
P
P0

(
m0

ρ0Vstrut

)(
l
l0

)2

−1.7033 × 10−7 2.2245 × 10−6 8.2452 × 10−7 2.8861 × 10−5

Hyperbolic concave (Lateral force, F)
F
F0

(
m0

ρ0Vstrut

)2( l
l0

)5

2.916 × 10−7 −2.5066 × 10−7 1.3737 × 10−6 2.4735 × 10−6

Hyperbolic concave (Moment, M )
M
M0

(
m0

ρ0Vstrut

)2( l
l0

)4

2.1674 × 10−7 −1.0061 × 10−7 8.1761 × 10−7 1.551 × 10−6

Hyperbolic concave (Axial force, P)
P
P0

(
m0

ρ0Vstrut

)(
l
l0

)2

−2.0847 × 10−7 3.5759 × 10−6 −1.888 × 10−6 3.031 × 10−5

Hyperbolic convex (Lateral force, F)
F
F0

(
m0

ρ0Vstrut

)2( l
l0

)5

7.0372 × 10−7 −2.8385 × 10−6 9.6897 × 10−6 −4.2156 × 10−6

Hyperbolic convex (Moment, M )
M
M0

(
m0

ρ0Vstrut

)2( l
l0

)4

6.6052 × 10−9 1.2554 × 10−6 −2.1702 × 10−6 3.5615 × 10−6

Hyperbolic convex (Axial force, P)
P
P0

(
m0

ρ0Vstrut

)(
l
l0

)2

−1.5939 × 10−7 1.9506 × 10−6 1.2663 × 10−6 2.8809 × 10−5

fitting and the obtained constants for different geome-
tries and loading conditions are listed in Table I (for
steel). The coefficient (Es,0/Es) in Eq. (20) takes into
account the change in the displacement due to the
change in the elastic modulus of the bulk material when
the bulk material has an elastic modulus other than
Es,0. The coefficient C is (F/F0)(m0/ρ0 Vstrut)

2(l/l0)5,
(M/M0)(m0/ρ0 Vstrut)

2(l/l0)4, and (P/P0)(m0/ρ0 Vstrut)

(l/l0)2 for the lateral force, moment, and axial force,
respectively (Table II). The steps needed for derivation
of C factors can be found in the electronic supplemen-
tary material accompanying the paper [25]. Subsequently,
we use the semi-analytical relationships given in Eq. (20)
to obtain the elastic modulus of lattice structures with
cubic and diamond unit cell types. The diamond unit cell
is chosen due to the fact that the pentamode mechanical
metamaterials proposed by Milton and Cherkaev [21] are
based on the diamond unit cell. Since additive manufactur-
ing of horizontal struts can be quite challenging not only in
the powder bed fusion processes [26], but, as we will see
later, also in material extrusion techniques, the cubic unit
cell is chosen to highlight the manufacturability aspects.

Cube: For the structures based on the cubic unit cell,
the vertical struts go under simple compression. If the

total load P is applied to each unit cell, each verti-
cal strut goes under the compressive load, P. The elas-
tic modulus of each unit cell is obtained by Eu.c. =
Plu.c./(Au.c.δu.c.), where lu.c. = l is the dimension of the
unit cell, Au.c. is the cross-section area of the unit cell,
and δu.c. is the resulting displacement, which is equal
to the displacement of the vertical strut δaxial. There-
fore, Eu.c. = P/(lδaxial), where δaxial for each strut type
is given in Eq. (20). The semi-analytical formula for
elastic modulus of the cubic structure is, therefore,
given as

Eu.c.

Es
= Po

Es,0l
(

m0
ρ0Vstrut

) (
l
l0

)2∑N
i=1 (piαN−i)

, (21)

where the constant p1 − pN is given in Table I for each strut
geometry. In the cubic structure, Vstrut = Vmat/3, where
Vmat is the volume occupied by the material in each unit
cell and is equal to Vmat = μl3, where μ is the relative
density of the structure, which is defined as the ratio of
the volume occupied by the material inside a unit cell Vmat
to the total volume occupied by the unit cell. Introducing
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Vstrut = μl3/3 in Eq. (21) and simplifying gives
(

Eu.c.

Es

)

cube
= P0ρ0μl20

3Es,0m0
∑N

i=1 (piαN−i)
, (22)

with p1 − pN given either in the third or the sixth row
of Table II (that correspond to the axial force constants
of, respectively, concave double-cone and convex double-
cone geometries).

Using Eq. (19), we can also obtain the closed-form ana-
lytical relationship for the elastic modulus of cubic struc-
tures with double-cone struts. By inserting Vstrut = μl3/3
in Eq. (1) and squaring both sides of the equation, we have

β2 = μ

π(1 + α + α2)
. (23)

By replacing β = r/l in Eq. (23), we have

1
r2 = π(1 + α + α2)

μl2
. (24)

Substituting Eq. (24) into Eq. (19) gives the displacement
in a truncated single-cone strut with length l/2 as

δTC = P(1 + α + α2)

2Esαμl
. (25)

The displacement equation in a cubic unit cell is δu.c. =
Pu.c.lu.c./(Au.c.Eu.c.). By setting Au.c. = l2u.c. = l2, Pu.c. = P,
and δu.c. = 2δTC (note that each strut in a pentamode-like
cubic structure is double cone rather than a single truncated
cone), we have

Eu.c. = P
2lδTC

= αμ

(1 + α + α2)
. (26)

Diamond: If the external force P is applied to a struc-
ture based on the diamond unit cell, there is no difference

between the loads transferred to the different struts of
the unit cell due to the symmetry [Fig. 2(a)]. Therefore,
we consider only one of the struts of the unit cell, for
example AB [Fig. 2(b)]. Strut AB carries PAB = P/4.
The vertical force PAB can be decomposed into axial
force PAB,axial = (P/4) sin θ and lateral force PAB,lateral =
(P/4) cos θ components, where θ = 35.26◦ [Fig. 2(c)].
Due to the symmetry present between vertex A of strut AB
and the corresponding strut in the neighboring unit cell,
vertex A must not rotate. Similarly, due to the symmetry
between struts AB and BC, vertex B of strut AB cannot
undergo any rotation. Therefore, strut AB can be consid-
ered as a cantilever beam at the end of which a lateral
force, an axial force, and a bending moment are applied.
In the case of a uniform cross-section area of the struts,
the rotation caused by lateral force and the moment should
be the same with opposite signs. Equation PABl2/(2EI) =
MAl/(EI) can then be used to determine the bending
moment as MA = (1/2)PABl cos θ [27]. In the case of
struts with nonuniform cross sections, the noted equality
does not hold. We, therefore, need to introduce a coefficient
γ , where γ should be obtained for each case. Therefore,
for the diamond structure with double-cone struts (i.e.,
α �= 1), we have MA = γ (1/2)PABl cosθ = γ (P/8)l cosθ .
The total vertical displacement of the free end of strut AB
is

δAB,vertical = δAB,P,axial sin θ + δAB,P,lateral cos θ

− δAB,M cos θ , (27)

where δAB,P,axial is the axial displacement in the strut due
to the axial load PAB,axial, δAB,P,lateral is the lateral displace-
ment due to the lateral force PAB,lateral, and δAB,M is the
lateral displacement due to the moment MA. Substituting
Eq. (20) into Eq. (27) and by considering the coefficients
given in Table II, the total displacement is

δAB,vertical = Es,0

Es

{[
PAB,axial

P0

(
m0

ρ0Vstrut

)(
l
l0

)2
]

(sin θ)

N∑
i=1

(piα
N−i)force, axial +

[
PAB,lateral

F0

(
m0

ρ0Vstrut

)2 ( l
l0

)5
]

×(cos θ)

N∑
i=1

(piα
N−i)force,lateral −

[
MA

M0

(
m0

ρ0Vstrut

)2 ( l
l0

)4
]

(cos θ)

N∑
i=1

(piα
N−i)moment

}
, (28)

where the subscript pi of
∑N

i=1 (piα
N−i) in each of the three terms can be extracted from the corresponding row of Table II.

Replacing PAB,axial = (P/4) sin θ , PAB,lateral = (P/4) cos θ , and MA = γ (P/8)l cosθ in Eq. (28) gives

δAB,vertical = Es,0

Es

{[
P
4 sin2θ

P0

(
m0

ρ0Vstrut

)(
l
l0

)2
]

N∑
i=1

(piα
N−i)force, axial +

[
P
4 cos2θ

F0

(
m0

ρ0 Vstrut

)2( l
l0

)5
]

×
N∑

i=1

(piα
N−i)force,lateral −

[
γ P

8 lcos2θ

M0

(
m0

ρ0 Vstrut

)2( l
l0

)4
]

N∑
i=1

(piα
N−i)moment

}
. (29)
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Since the diamond unit cell has 16 struts, Vstrut = Vmat/16
and Vmat = μ l3u.c.. Therefore, Vstrut = μ l3u.c./16. Similar to
the cubic structure, the elastic modulus of each unit cell
is obtained as Eu.c. = Plu.c./Au.c.δu.c.. For the diamond unit
cell, lu.c. = 2

√
2l cos θ , Au.c. = l2u.c., and δu.c. = 4δAB,vertical.

Therefore, Eu.c. = P
4 lu.c.δAB,vertical

, which, after inserting in
Eq. (29), gives

Eu.c. = 1
lu.c.λ

Es

Es,0
, (30)

with

λ =
[

sin2θ

P0

(
16m0

ρ0μl3u.c.

)(
l
l0

)2
]

N∑
i=1

(piα
N−i)force, axial

+
[

cos2θ

F0

(
16m0

ρ0μl3u.c.

)2( l
l0

)5
]

N∑
i=1

(piα
N−i)force,lateral

−
[
γ

lcos2θ

2M0

(
16m0

ρ0μl3u.c.

)2( l
l0

)4
]

N∑
i=1

(piα
N−i)moment,

(31)

with p1 − pN given in Table II. Since the coefficients pi
correspond to the curves obtained for the struts made of
stainless steel, the relative elastic modulus of the structure
for any given material is obtained as

(
Eu.c.

Es

)

diamond
= 1

lu.c.λEs,0
. (32)

The coefficient β for the diamond unit cell can be
obtained by inserting Vstrut = μl3u.c./16 into Eq. (1), which
gives

β =
(

3
√

2μcos3θ

π (1 + α + α2)

)1/2

. (33)

4. Yield strength of metamaterials

To obtain the yield stress, first the normal and shear
stresses in the critical points of the struts generated by
axial force, lateral force, and moment are determined. It
must be noted that yielding in the struts occurs at the point
with the minimum cross-section area Ar = πr2 = πβ2l2.
By replacing β from Eq. (1), we have

Ar = πβ2l2 = 3Vstrut

l(1 + α + α2)
. (34)

Cube: For the cubic structure under compression, each
strut goes under load P, and Vstrut = μl3/3. Therefore,
the maximum stress in the struts equals the stress at

the point with minimum cross-section area. As the cube-
based structure consists of concave double-cone struts,
the minimum cross-section area is at the middle point of
each strut, and therefore, the initial plastic zone appears at
x = l/2.

By replacing Vstrut = μl3/3 in σmax = P/Ar, we have:

σmax = (1 + α + α2)P
μl2

. (35)

When the stress applied on the lattice structure P/l2

reaches σY, the maximum local stress in the struts
{[(1 + α + α2)P]/μl2} equals σY,s. A simple cross multi-
plication gives

σY =
σY,sP

l2

(1+α+α2)P
μl2

= σY,sμ

(1 + α + α2)
, (36)

or

σY

σY,S
= μ

(1 + α + α2)
. (37)

Diamond structure with convex double-cone struts: As
demonstrated in Figs. 7 and 8 in Sec. III A 3, both the
normal and shear stresses in the beam with convex double-
cone geometry reach their maximum value at x = 0 under
both lateral force F [Figs. 7(a) and 8(a)] and moment M
[Figs. 7(b) and 8(b)]. The maximum normal stress gener-
ated by the normal force P also occurs at x = 0 as the beam
has the lowest cross-section area at that point.

For the diamond unit cell with convex double-cone
struts, the normal force, the lateral force, and the
momentum in the strut are (P/4) sin θ , (P/4) cos θ , and
γ (P/8)l cos θ , respectively, where γ = 0.7 for μ = 0.1
and γ = 0.56 for α = 2. Therefore, the normal stress gen-
erated by the axial force at the root of the struts is given
by

σn,A = P sin θ

4Ar
=

P sin θ
4

3Vstrut
l(1+α+α2)

= Pl(1 + α + α2) sin θ

12Vstrut

= (1 + α + α2)P sin θ

4μl2
. (38)

The stress generated by the bending stress is

σn,B = Mr
I

= Mr
π
4 r4 = 4M

πr3 = 4
(
γ P

8 l cos θ
)

π(β3l3)

= (γ P cos θ)

2π(β3l2)
= γ P cos θ

2π l2
(

3 Vstrut
π l3(1+α+α2)

)3/2 . (39)
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For a diamond unit cell with double-cone struts, Vstrut =[{
μ
(

2
√

2l cos θ
)3
}

/16
]

. Therefore:

σn,B = γ P cos θ

2π l2
(

3
√

2μ (cos θ)3

π(1+α+α2)

)3/2

= γ P cos θ

2π l2

(
π(1 + α + α2)

3
√

2μ (cos θ)3

)3/2

. (40)

The normal stress in the beam is the sum of both normal
stresses, that is, σxx = σn,B + σn,A. On the other hand, the
maximum shear stress generated by the lateral force is

τzx = 4
3
τave, zx = 4

3
P
4

cos θ

Ar
= P

3
l(1 + α + α2) cos θ

3Vstrut

= 16P
9

l(1 + α + α2) cos θ

μ
(

2
√

2 l cos θ
)3 , =

√
2

18
(1 + α + α2)P

μl2 cos θ
.

(41)

As noted in Eq. (8), the other stress components in the
von-Mises yield stress are neglected. Considering the axial
normal stress (σxx) and transverse shear stress (τzx) com-
ponents of stress, the von-Misses stress can be obtained as
follows:

σV =
√

(σn,A + σn,B)2 + 3τ 2
zx. (42)

When the stress applied on the lattice structure P/l2u.c.
reaches σY (i.e., the lattice structure yields), the maximum
local stress in the struts σV equals σY,s. A simple cross
multiplication gives

σY = PσY,S

l2u.c. σV
, (43)

or

σY

σY,S
= P

8l2cos2θ

√
(σn,B + σn,A)2 + 3τ 2

zx

, (44)

with σn,A, σn,B, and τzx given in Eqs. (38), (40), and (41).
Diamond structure with concave double-cone struts:

As demonstrated in Figs. 7 and 8, both the normal and
shear stresses in the beam with concave double-cone
geometry reach their maximum value at x = l/2 under
both lateral force F [Figs. 7(a) and 8(a)] and moment M
[Figs. 7(b) and 8(b)]. The maximum normal stress gen-
erated by normal force P also occurs at x = l/2 as the
beam has the lowest cross-section area at the middle point.
Therefore, the initial appearance of a plastic zone could be
expected at x = l/2 for each strut.

For the diamond unit cell with concave double-cone
struts, the normal force, lateral force, and momentum in
the strut are, respectively, (P/4) sin θ , (P/4) cos θ , and
γ (P/8)l cos θ , where γ = 0.84 for μ = 0.1 and γ = 0.7
for α = 2. Therefore, the stress generated by the normal
force in the middle of the struts is the same as the stress at
the root of the convex double-cone structure [i.e., Eq. (38)].

The stress generated by the bending stress is

σn,B = Mr
I

= Mr
π
4 r4 = 4M

πr3 = 4
(
γ P

8
l
2 cos θ

)

π(β3l3)

= γ P cos θ

4π l2

(
π(1 + α + α2)

3
√

2μ (cos θ)3

)3/2

. (45)

Similar to what was seen before, the total normal stress in
the beam is given by σxx = σn,B + σn,A.

The maximum shear stress generated by the lateral force
is the same as the one presented for the convex double-
cone beam geometry [i.e., Eq. (41)]. Therefore, for the case
of a concave double-cone, Eq. (44) can also be used as long
as Eq. (45) is used for σn,B instead of Eq. (40).

Buckling: In order to study the likelihood of the insta-
bility of struts (beams) under axial compressive loads
applied at the free end of the beams, the Euler’s critical
load should be determined for each beam. According to
this criterion, the critical load is the maximum load that a
beam (strut) can bear without experiencing instability. The
major load applied on the struts of diamond pentamode
structures is bending as also demonstrated by the deforma-
tion of the lattice structure during the whole compression
procedure.

For the cubic structure, however, the main type of load-
ing is axial compression, which could lead to buckling
instability. In the cube-based lattice structures, we have

Pcr = π2EsIr

(Le)
2 = π2EsIr

4l2
, (46)

where Pcr is the Euler’s critical load, Es is the elastic mod-
ulus of the material from which the struts are made, Ir is the
minimum area moment of inertia of the cross section of the
strut, and Le is the effective length of the struts. Since the
axial load is applied to the end of the cantilever beam, the
effective length equals Le = 2l. Therefore,

σcr = π2EsIr

4Arl2
= π2Esr2

16 l2
= π2Esβ

2

16

= π2Es

16
3Vstrut

π l3(1 + α + α2)
= πEs

16
μ

(1 + α + α2)
. (47)

Consequently,

σcr

σY,S
= πEs

16σY,S

(
σY

σY,S

)
, (48)
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where (σY/σY,S) for a cube-based structure is given by
Eq. (37). For the polylactic acid (PLA) material, Es is
around 40 times higher than σY,S. In other words, buckling
stress is 7.81 times the yield stress. Hence, yielding occurs
before buckling.

B. Computational models

For FE modeling of beams with variable cross sections,
3D structures are modeled using 8-noded brick elements
(SOLID185). ANSYS implicit FE solver is used. A linear
elastic material model is used for predicting the response
of the beams. Macro codes are written in ANSYS to auto-
matically create, discretize, load, and obtain the required
properties of beams with four different beam geometries
and with different α ratios. An example of the 3D FE model
of a single beam is presented in Fig. 3(a). One of the ends
of each beam is fixed in the space, while the other end is
displaced downward by applying a point load or moment.

For numerical modeling of the unit cells, 3D structures
based on diamond and cube unit cells are created using

(a)

(b)

(c)

FIG. 2. (a) A diamond cubic unit cell (b) the diamond cubic
unit cell from front view, and (c) the loads transferred to strut
AB and the resulting deformation.

(a)

(b)

FIG. 3. Two examples of the 3D FE models, which are used for
evaluating the analytical solutions of the (a) single strut and (b)
lattice structure.

8-noded brick elements (SOLID185). Macro codes are
written to automatically create, discretize, load, and obtain
the required properties of cubic or diamond unit cells with
concave and convex double-cone struts. The lower face
of the unit cell is fixed in the Y direction, while the top
face is displaced downward to cause 0.2% compression.
An example of the diamond-based unit cell with struts hav-
ing the geometry of a convex double cone is presented in
Fig. 3(b).

C. Experiments

Several specimens with diamond-based and cube-based
unit cells are additively manufactured. Two (convex dou-
ble cone and concave double cone) of the four beam
types (convex double cone, concave double cone, con-
vex hyperbolic, concave hyperbolic) are chosen for the
experimental study. Lattice structures with three different
micro-architectures are manufactured, cube-based lattice
structures with concave double-cone struts and diamond-
based lattice structures with either convex double-cone or
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FIG. 4. A pentamode metamaterial sample specimen (μ = 0.2
and α = 2).

concave double-cone struts. The cube-based lattice struc-
tures with convex double-cone struts are not manufactured
due to reasons explained in the Results and Discussions
sections. Among the three cases, specimens based on the
diamond unit cell and with convex double-cone struts have
the microstructure of a pentamode metamaterial (Fig. 4)
[7,23,24,28,29]. The relative densities of the diamond-
based lattice structure (with both concave and convex
double-cone struts) and cube-based structure are varied
between 0.1 and 0.4 at a constant α (=2) to study the
effects of the relative density of the lattice structure on
the elastic modulus of the resulting mechanical metama-
terial. In another parametric study, the ratio α is varied
between 1 and 4 to study the effects of the α value on
the elastic modulus of the lattice structures (Fig. 5). The
parametric study on α effect is done at a relative density
of 0.1 for diamond-based structures and a relative density
of 0.4 for cube-based structures. For each design of the lat-
tice structure, three specimens are manufactured and tested
under compression (66 specimens in total). The macroge-
ometry of all the specimens is a cube with dimensions of
8 × 8 × 8 cm3.

The samples are manufactured using Ultimaker 2+ 3D
printers (Ultimaker, The Netherlands) that work on the
basis of fused deposition modeling (FDM). PLA fila-
ments with a pearl white color from the same provider are
used. The infill in all the samples is set to 100% and the
layer thickness is 200 μm. The static compression tests
are performed using an INSTRON Electropulse E10000

machine with a 10-kN load cell. The compression tests are
performed in accordance with ISO standard 13314:2011,
which refers to the mechanical testing of porous and cellu-
lar materials. The displacement rate is fixed at 2 mm/min.
The elastic modulus of the specimens is obtained by calcu-
lating the slope of the stress-strain curve in the linear part.
Nonporous (i.e., fully solid) cylindrical samples are made
and tested to obtain the mechanical properties of the bulk
filament. The cylinders have diameters of 12.7 mm and
lengths of 25.4 mm. The mean elastic modulus obtained
for the pearl white filament is 1.404 GPa and the mean
yield stress is 35.28 MPa.

III. RESULTS

A. Single beams with variable cross sections

1. Number of terms

In the analytical solution, the number of terms of δlateral,
δaxial, and θ [in Eq. (9)] is increased from k = 2 to k = 16
to see at what k the results of the analytical model con-
verge. The solution converged for all geometries except
the convex double cone for k ∼= 14 (Fig. 5). The convex
double-cone geometry converged at k = 10. It must be
noted that by increasing the number of terms to values
larger than k = 14, small pivots are formed in the stiff-
ness matrix of the beams [i.e., in Eq. (17)] due to which
the determinant of the stiffness matrix becomes very small,
causing fluctuations in the curves [see, for example, the
curve corresponding to k = 12 in Fig. 5(a)]. In each case,
the converged curve (with the maximum number of terms
before fluctuations are formed in the curve) is used for the
semi-analytical study presented in the next sections.

2. Displacement curves

The lateral displacements resulting from the lateral force
(F0 = 0.1 N), the lateral displacements caused by the point
moment (M0 = 0.002 N m), and the axial displacements
imposed by the axial load (P0 = 1000 N) for different
geometries and α ratios are presented in Fig. 6. For the
cases of lateral force and moment loadings [Figs. 6(a)
and 6(b)], the numerical and analytical results show a gen-
erally good agreement for all α values. The only exception
is the concave double-cone geometry under moment load-
ing for which there are larger discrepancies between the
analytical and numerical solutions for α ratios larger than
3 [Fig. 6(b)]. For the case of axial loading, the numerical
and analytical curves are very close for all the geometries
[Fig. 6(c)]. As expected, the curves corresponding to dif-
ferent geometries coincide at α = 1 (Fig. 6), that is, when
the maximum and minimum radii are the same and all strut
shapes reduce to cylinders (r = R).

Increasing the α ratio increases the resulting displace-
ment in all the cases. For example, in the case of lateral
force loading [Fig. 6(a)], the lateral displacements of both
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(a) (b)

(c) (d)

FIG. 5. Effect of number of terms on the resulting lateral displacement at the free end of a cantilever beam with (a) concave double-
cone, (b) convex double-cone, (c) concave hyperbolic, and (d) convex hyperbolic geometries.

the concave hyperbolic and concave double-cone geome-
tries in α = 3 are, respectively, around 2 and 4 times larger
than that of the cylindrical geometry. Similar values are
observed for the convex hyperbolic and convex double-
cone geometries. In the case of point moment loading
[Fig. 6(b)], at α = 3, the lateral displacement of all the four
geometries is about 3 times larger than of the cylindrical
geometry. As for axial loading [Fig. 6(c)], all the geome-
tries except for the concave hyperbolic geometry show
similar behaviors. At α = 3, for example, the extensions
of the convex hyperbolic, concave double-cone, and con-
vex double-cone geometries are about 1.45 times that of a
simple cylinder. At α = 3, the axial extension of the con-
cave hyperbolic geometry is about 1.67 times the values
found for a simple cylinder.

3. Normal stress distribution

The normal and shear stresses calculated for the outer
fiber of the struts along the strut length for both loading

types of lateral force and moment are presented in Figs. 7
and 8, respectively. The analytical and numerical stresses
practically overlap, which is why only the analytical results
are plotted in Figs. 7 and 8. Under both lateral force
and moment loads, the stress value is maximum at the
center of beam for all the concave geometries (Fig. 7).
The only exception is the concave hyperbolic geometry
under lateral force [Fig. 7(c)]. Moreover, the normal stress
distribution is symmetrical with respect to the center of
the beams in all the beam geometries and loading con-
ditions. The only exceptions are the convex geometries
under lateral force, which show a maximum normal stress
at x = 0 and a minimum normal stress at x = l [Figs. 7(a)
and 7(c)].

For beams with α = 6 and under lateral force loading,
the concave double-cone geometry shows the maximum
normal stress (about 11 MPa) [Fig. 7(a)]. Again, for beams
with α = 6 under moment loading, the maximum normal
stress belongs to both the concave and convex double-cone
geometries (8.5 and 7 MPa, respectively) [Fig. 7(b)], while
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(a)

(b)

(c)

FIG. 6. (a) Lateral displacement due to lateral force, (b) lateral
displacement caused by point moment, and (c) axial displace-
ment imposed by axial load for different geometries and α ratios
in constant mass of the strut.

the maximum normal stress in the hyperbolic geometry is
less than 3 MPa [Fig. 7(d)].

4. Shear stress distribution

The shear stress exhibits a somewhat different behav-
ior (Fig. 8). The shear stress in the concave double-cone

geometry (under both lateral force and moment loads) is
found to suddenly change in the middle of the strut from a
negative value to a positive value with the same amplitude
[Figs. 8(a) and 8(b)]. The concave hyperbolic geometry
also shows the change of shear stress from a negative
value to a positive value, but in a gradual way [Figs. 8(c)
and 8(d)]. Under both lateral force and moment loadings,
the maximum shear stress in the concave double-cone
geometry is about 6 times of that in the concave hyper-
bolic geometry. Under lateral force loading, the maximum
shear stress for the convex beams occurs at the clamped
end of the beam [Figs. 8(a) and 8(c)], while under moment
loading, the maximum shear stress for the same type of
beams occurs at both the free and clamped ends of the
beam (Fig. 8).

B. Mechanical metamaterials

Deformation: Under compression, all the diamond-
based lattice structures show three-stage stress-strain
curves. In the first stage, the curve is linear. After the stress
level reaches a local maximum, it decreases to about half
of the initial maximum value. In the second stage, the
strain greatly increases with very small accumulations in
the stress value (the stress at this stage is known as the
plateau stress). In the final stage, the stress-strain curve
also shows a second linear part (known as the densifica-
tion regime). In all the diamond-based structures, after the
stress reaches the initial maximum stress, 45◦ failure bands
are formed (Fig. 9) after which the stress value is decreased
to half the value of the initial maximum stress. In the cube-
based structures, the structures fail after a row of unit cells
are buckled and fractured without showing any 45◦ failure
band. As a result, the cube-based structures do not show
the plateau and densification parts in their stress-strain
curves.

Elastic modulus: The effects of the relative density
μ and α ratio on the relative elastic modulus of both
diamond- (Fig. 10) and cube-based (Fig. 11) structures is
also investigated. As expected, increasing the relative den-
sity, while keeping the α ratio (α = 2) constant, increases
the elastic modulus in both the diamond- and cube-based
structures (Figs. 10–12). The numerical and analytical
results are close, especially for small values of relative
density [Figs. 10(a) and 10(b) and 11(a)]. The γ values
that are obtained for Eq. (32) in such a way that analytical
curves approach the experimental and numerical ones are
presented in the titles of each plot in Fig. 10. The numer-
ical and analytical results are less than 10% different even
at relative densities as large as 30% (Figs. 10 and 11).
As compared to the diamond-based structure, the cube-
based structure shows a much higher elastic modulus. For
example, at μ = 0.2 and α = 2, the elastic modulus of the
structure with cubic unit cell is more than 8 times of that
of the structure with the diamond-type unit cell.
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(a) (b)

(c) (d)

Double cone (Lateral force) Double cone (Moment)

Hyperbolic (Lateral force) Hyperbolic (Moment)

FIG. 7. The normal stress value at the outer fiber of the cantilever beam for (a) double-cone geometries under lateral force, (b)
double-cone geometries under moment, (c) hyperbolic geometries under lateral force, and (d) hyperbolic geometries under moment.

The effects of α value on the obtained elastic mod-
ulus values is more interesting, because the pentamode
metamaterials investigated in this study are suggested as
substitutes for currently used porous structures in which
the strut cross-section areas are uniform. The effects of
the α value are investigated at a constant relative den-
sity of μ = 0.1 for the diamond-based lattice structure
[Figs. 10(c) and 10(d)] and μ = 0.4 for the cube-based
lattice structures [Fig. 11(b)]. The analytical, numerical,
and experimental results in both cube- and diamond-based
structures are close [Figs. 10(c) and 10(d) and 11(b)]. In
both the cube- and diamond-based structures, increasing
the α value decreases the elastic modulus. As compared
to the cube-based structures, increasing the α value has
a higher impact on the elastic modulus of the diamond-
based structures, especially at small values of α (i.e., more
uniform struts). Increasing the α ratio from α = 1 to α =
4 decreases the analytically obtained elastic modulus of
the diamond-based and cube-based structures (with con-
vex double-cone struts) for, respectively, 92.24% (about
1/13) [Fig. 10(c)] and 44% (about half) [Fig. 11(b)].

Increasing the relative density of the diamond-based and
cube-based lattice structures (with convex double-cone
struts) from 0.1 to 0.3 increases the analytical relative elas-
tic modulus by 636% [Fig. 10(a)] and 300% [Fig. 11(a)],
respectively.

Yield stress: Since the maximum load applied by the
compression test machine is 10 kN, among all the cube-
based structures, only two cases of (μ = 0.1 and α = 2)
and (μ = 0.4 and α = 4) yield. For the other cases, the
experiment is ended before the lattice structures yield.
The closed-form analytical and experimental yield stresses
for the cube-based and pentamode diamond-based lattice
structures are compared to each other in Fig. 12. Similar
trends to that observed for the elastic modulus curves is
observed for the yield stress. In other words, increasing
the relative density at constant α ratio (α = 2) increases
the relative yield strength, and increasing the α ratio at
a constant relative density (μ = 0.1 for a diamond-based
structure and μ = 0.4 for a cube-based structure) decreases
the relative yield strength. For the diamond-based struc-
ture, there is a good agreement between the analytical and
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(a) (b)

(c) (d)

Double cone (Lateral force) Double cone (Moment)

Hyperbolic (Lateral force) Hyperbolic (Moment)

FIG. 8. The shear stress value at the outer fiber of the cantilever beam for (a) double-cone geometries under lateral force, (b)
double-cone geometries under moment, (c) hyperbolic geometries under lateral force, and (d) hyperbolic geometries under moment.

experimental results. For the cube-based structure with
μ = 0.1 and α = 2, the measured experimental relative
yield stress is much lower than the value predicted by the
analytical relationships. As is also confirmed by experi-
ments, this can be due to the fact that at very low values
of the relative density (i.e., μ = 0.1), due to irregularities
in the cross-section area, buckling occurs much earlier than
what is predicted analytically. In other words, the absolute
size of the manufacturing irregularities (i.e., variations in
the dimensions of the cross section of the struts) is similar
regardless of the relative density. However, in low rela-
tive densities, the relative importance of the manufacturing
irregularities is much higher than when the relative den-
sity, and thus, the dimensions of the cross section are much
higher.

IV. DISCUSSIONS

The results show that for constant mass, increasing the
α ratio in beams with variable cross sections increases
the maximum normal stress (Fig. 7), maximum shear

stress (Fig. 8), and the lateral displacement at the free
end of the cantilever beam (Fig. 6). Therefore, a 3D
lattice structure with struts having a variable cross section

FIG. 9. Formation of 45◦ deformation bands in pentamode
metamaterial (The failure bands are marked by red lines.).
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(a) (b)

(c) (d)

FIG. 10. Effect of relative density on the relative elastic modulus of diamond pentamode structures with (a) convex and (b) concave
double-cone struts and constant α ratio (α = 2). Effect of α ratio on the relative elastic modulus of diamond pentamode structures with
(c) convex and (d) concave double-cone struts and constant relative density (μ = 0.1). The γ value used for each case is shown in the
title of each plot.

is probably more susceptible to failure under external
forces as compared to a lattice structure with uniform
cross-section area and similar mass. As a good exam-
ple of such structures, 3D pentamode metamaterial lat-
tice structures (with struts having convex double-cone
geometry) as well as two other pentamode-like lattice
structures (diamond-based structures with concave dou-
ble cones and cube-based lattice structures with concave
double cones) are manufactured and tested. The antici-
pated behavior is observed in the 3D structures as well.
There are two main manufacturing limitations that must
be considered in such structures. First, although it is
possible to additively manufacture diamond-based struc-
tures with convex double cones, it is not possible to
additively manufacture cube-based structures with con-
vex double cones without use of internal support bridges.
This is because in the horizontal struts of the cube-
based lattice structures with convex double cone, the part
with the maximum diameter is printed first. Since that

part is not supported by previously printed layers, that
layer falls down. Other manufacturing techniques such
as multimaterial additive manufacturing techniques with
water-soluble support material or a powder-bed diffusion
technique do not have such limitations, since the eas-
ily removable support material holds the initially printed
large-diameter parts of the horizontal struts. The other
problem associated with the FDM technique in manu-
facturing of pentamode and pentamode-like structures is
that when the cross-section area of the struts is very
small, the quality of the print severely decreases, and
several pores are created in the part with the lower
diameter.

It has been shown in previous studies [24,28,29] that
the elastic modulus of very low-density pentamode meta-
materials (with convex double cones) are independent
from their relative density and the maximum diameter
of the struts, and the elastic modulus is only depen-
dent on the diameter of the touching region in the

034057-16



SEMIANALYTICAL GEOMETRY-PROPERTY. . . PHYS. REV. APPLIED 11, 034057 (2019)

(a)

(b)

FIG. 11. (a) Effect of relative density on the relative elas-
tic modulus of cube-based structures with concave double-cone
struts and constant α ratio (α = 2). (b) Effect of α ratio on the
relative elastic modulus of cube-based structures with concave
double-cone struts and constant relative density (μ = 0.4).

vertices [29]. The pentamode metamaterials manufac-
tured and studied here have relative densities larger
than 0.1. Due to the limitations of the FDM technique,
mechanical materials with very small relative densities
cannot be manufactured. Studying the noted statement
using the analytical relationships obtained in this paper
is also not possible since our analytical relationships
are functions of the small diameter of the struts d =
2r and not the diameter of the struts at the touch-
ing region dt = 2rt. Using other additive manufactur-
ing techniques, manufacturing very low-density penta-
mode metamaterials is feasible. For example, in our
other study [7], several Ti-6Al-4V pentamode metama-
terials with different relative densities (between 0.84%
and 2.24%), but with the same touching region diameter,
were made and tested under compression. The test results

demonstrated their very close elastic modulus and yield
stress.

The analytical solutions obtained for struts with variable
cross sections are used for obtaining the semi-analytical
relationships for pentamode and pentamode-like mechan-
ical metamaterials. The relationships obtained for other
types of struts [Eq. (20) along with Table II] can also
be used for obtaining semi-analytical relationships for
the structures having other strut types as well as with
other unit cell types, such as cube [30,31], rhombic
dodecahedron [19,32], truncated cube [33], diamond [27],
tetrakaidecahedrons [15,34], rhombicuboctahedron [18],
and truncated cuboctahedron [20]).

The analytical and numerical results obtained in this
study show that among the five proposed strut geometries
having the same volume, the highest displacements belong
to convex hyperbolic under lateral force and concave
hyperbolic under axial force and point moment (Figs. 6
and 8). This suggests that the hyperbolic strut types are
usually less stiff than double-cone struts. Moreover, in all
loading cases, the concave double-cone geometry exhibits
some of the lowest values of displacement. Therefore, it
seems that structures having concave double-cone struts
are the stiffest among the structures with the same unit cell
type, but with other strut types. This is partly shown in
the diamond-based lattice structures with concave and con-
vex double cones [compare Figs. 10(a) and 10(b), compare
Figs. 10(c) and 10(d)]. For future studies, it is suggested
that the mechanical properties of mechanical metamateri-
als with the same unit cell types but with different strut
types be compared with each other to see which structures
have the highest stiffness, strength, and energy absorption
capacities.

One of the recent important applications of 3D lattice
structures is their use as bone-substituting biomaterials. In
bone-substituting biomaterials, the stiffness of the implant
is of great importance. If the stiffness of the implant is
much larger than that of natural bones, it transfers most
of the loads applied to the implanted bone and unloads
the natural bone (the stress-shielding phenomenon). As
a result, after a while, bone resorption occurs, leading
to implant loosening. Therefore, it has been suggested
to manufacture implants with stiffness distribution similar
to the natural bone [35,36]. Lattice structures with vari-
ous types of nonuniform cross sections could be used to
mimic the spatial distribution of the mechanical proper-
ties of the bone tissue, while satisfying other important
design requirements [37] such as pore shape [38], cur-
vature [39], and permeability [40]. Using the same unit
cell type throughout the implant while changing the cross
section design has the advantage that connectivity between
the various unit cells is straightforward. That is not the case
when different types of unit cells have to be used in order to
mimic the spatial distribution of the mechanical properties
of the bone tissue.
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(a) (b)

(c) (d)

(e) (f)

FIG. 12. The effects of relative density and α ratio on the relative yield strength for (a-b) cubic, and (c-f) diamond pentamode
structures.

V. CONCLUSIONS

In this study, five different types of symmetrical struts,
namely simple cylinder, concave double cone, convex dou-
ble cone, concave hyperbolic, and convex hyperbolic, are
considered. We then derive semi-analytical relationships

to describe the mechanical response of the beams and
lattice structures (diamond-type, cube-type) based on the
above-mentioned types of cross sections. Comparison of
the analytical, numerical, and experimental results demon-
strate the accuracy of the semi-analytical relationships
presented for the elastic modulus and yield strength of
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these biomaterials. In both cube- and diamond-based struc-
tures, increasing the α value at constant relative density
decreases the elastic modulus and yield strength.

[1] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A.
Genov, G. Bartal, and X. Zhang, Three-dimensional optical
metamaterial with a negative refractive index, Nature 455,
376 (2008).

[2] Y. Zhao, M. Belkin, and A. Alù, Twisted optical metamate-
rials for planarized ultrathin broadband circular polarizers,
Nat. Commun. 3, 870 (2012).

[3] D. Torrent and J. Sánchez-Dehesa, Acoustic metamaterials
for new two-dimensional sonic devices, New J. Phys. 9, 323
(2007).

[4] H. Chen and C. Chan, Acoustic cloaking in three dimen-
sions using acoustic metamaterials, Appl. Phys. Lett. 91,
183518 (2007).

[5] A. A. Zadpoor, Mechanical meta-materials, Mater. Horiz.
3, 371 (2016).

[6] J. H. Lee, J. P. Singer, and E. L. Thomas, Micro-
/nanostructured mechanical metamaterials, Adv. Mater. 24,
4782 (2012).

[7] R. Hedayati, A. Leeflang, and A. Zadpoor, Additively man-
ufactured metallic pentamode meta-materials, Appl. Phys.
Lett. 110, 091905 (2017).

[8] R. Hedayati, M. Mirzaali, L. Vergani, and A. Zadpoor,
Action-at-a-distance metamaterials: Distributed local actu-
ation through far-field global forces, APL Mater. 6, 036101
(2018).

[9] K. E. Evans and A. Alderson, Auxetic materials: functional
materials and structures from lateral thinking!, Adv. Mater.
12, 617 (2000).

[10] R. Gatt, L. Mizzi, J. I. Azzopardi, K. M. Azzopardi, D.
Attard, A. Casha, J. Briffa, and J. N. Grima, Hierarchi-
cal auxetic mechanical metamaterials, Sci. Rep. 5, 8395
(2015).

[11] H. M. Kolken, S. Janbaz, S. M. Leeflang, K. Lietaert, H.
H. Weinans, and A. A. Zadpoor, Rationally designed meta-
implants: a combination of auxetic and conventional meta-
biomaterials, Mater. Horiz. 5, 28 (2018).

[12] M. Mirzaali, R. Hedayati, P. Vena, L. Vergani, M. Strano,
and A. Zadpoor, Rational design of soft mechanical meta-
materials: Independent tailoring of elastic properties with
randomness, Appl. Phys. Lett. 111, 051903 (2017).

[13] R. Lakes and K. Wojciechowski, Negative compressibility,
negative Poisson’s ratio, and stability, Phys. Status Solidi B
245, 545 (2008).

[14] Z. G. Nicolaou and A. E. Motter, Mechanical metamaterials
with negative compressibility transitions, Nat. Mater. 11,
608 (2012).

[15] X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J.
DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge,
J. A. Jackson, S. O. Kucheyev, N. X. Fang, and C. M.
Spadaccini, Ultralight, ultrastiff mechanical metamaterials,
Science 344, 1373 (2014).

[16] R. Lakes and W. Drugan, Dramatically stiffer elastic com-
posite materials due to a negative stiffness phase?, J. Mech.
Phys. Solids 50, 979 (2002).

[17] R. S. Lakes, T. Lee, A. Bersie, and Y. Wang, Extreme
damping in composite materials with negative-stiffness
inclusions, Nature 410, 565 (2001).

[18] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A.
A. Zadpoor, Mechanics of additively manufactured porous
biomaterials based on the rhombicuboctahedron unit cell, J.
Mech. Behav. Biomed. Mater. 53, 272 (2016).

[19] S. Babaee, B. H. Jahromi, A. Ajdari, H. Nayeb-Hashemi,
and A. Vaziri, Mechanical properties of open-cell rhom-
bic dodecahedron cellular structures, Acta Mater. 60, 2873
(2012).

[20] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and A.
Zadpoor, Mechanical behavior of additively manufactured
porous biomaterials made from truncated cuboctahedron
unit cells, Int. J. Mech. Sci. 106, 19 (2016).

[21] G. W. Milton and A. V. Cherkaev, Which elasticity tensors
are realizable?, J. Eng. Mater. Technol. 117, 483 (1995).

[22] A. N. Norris, Acoustic metafluids, J. Acoust. Soc. Am. 125,
839 (2009).

[23] C. N. Layman, C. J. Naify, T. P. Martin, D. C. Calvo,
and G. J. Orris, Highly Anisotropic Elements for Acous-
tic Pentamode Applications, Phys. Rev. Lett. 111, 024302
(2013).

[24] M. Kadic, T. Bückmann, N. Stenger, M. Thiel, and M.
Wegener, On the practicability of pentamode mechanical
metamaterials, Appl. Phys. Lett. 100, 191901 (2012).

[25] See Supplemental Material at http://link.aps.org/suppleme
ntal/10.1103/PhysRevApplied.11.034057 for steps required
to derive the factors C in Eq. (20).

[26] R. Wauthle, B. Vrancken, B. Beynaerts, K. Jorissen, J. Sch-
rooten, J.-P. Kruth, and J. Van Humbeeck, Effects of build
orientation and heat treatment on the microstructure and
mechanical properties of selective laser melted Ti6Al4V
lattice structures, Addit. Manuf. 5, 77 (2015).

[27] S. Ahmadi, G. Campoli, S. Amin Yavari, B. Sajadi, R.
Wauthlé, J. Schrooten, H. Weinans, and A. A. Zadpoor,
Mechanical behavior of regular open-cell porous biomate-
rials made of diamond lattice unit cells, J. Mech. Behav.
Biomed. Mater. 34, 106 (2014).

[28] M. Kadic, T. Bückmann, R. Schittny, P. Gumbsch, and M.
Wegener, Pentamode Metamaterials With Independently
Tailored Bulk Modulus and Mass Density, Phys. Rev. Appl.
2, 054007 (2014).

[29] R. Schittny, T. Bückmann, M. Kadic, and M. Wegener,
Elastic measurements on macroscopic three-dimensional
pentamode metamaterials, Appl. Phys. Lett. 103, 231905
(2013).

[30] J. Parthasarathy, B. Starly, S. Raman, and A. Christensen,
Mechanical evaluation of porous titanium (Ti6Al4V) struc-
tures with electron beam melting (EBM), J. Mech. Behav.
Biomed. Mater. 3, 249 (2010).

[31] L. J. Gibson and M. F. Ashby, Cellular Solids: Structure
and Properties (Cambridge University Press, Cambridge,
1997).

[32] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and
A. A. Zadpoor, Computational prediction of the fatigue
behavior of additively manufactured porous metallic bio-
materials, Int. J. Fatigue 84, 67 (2016).

[33] R. Hedayati, M. Sadighi, M. Mohammadi-Aghdam, and
A. A. Zadpoor, Mechanical properties of regular porous

034057-19

https://doi.org/10.1038/nature07247
https://doi.org/10.1038/ncomms1877
https://doi.org/10.1088/1367-2630/9/9/323
https://doi.org/10.1063/1.2803315
https://doi.org/10.1039/C6MH00065G
https://doi.org/10.1002/adma.201201644
https://doi.org/10.1063/1.4977561
https://doi.org/10.1063/1.5019782
https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
https://doi.org/10.1038/srep08395
https://doi.org/10.1039/C7MH00699C
https://doi.org/10.1063/1.4989441
https://doi.org/10.1002/pssb.200777708
https://doi.org/10.1038/nmat3331
https://doi.org/10.1126/science.1252291
https://doi.org/10.1016/S0022-5096(01)00116-8
https://doi.org/10.1038/35069035
https://doi.org/10.1016/j.jmbbm.2015.07.013
https://doi.org/10.1016/j.actamat.2012.01.052
https://doi.org/10.1016/j.ijmecsci.2015.11.033
https://doi.org/10.1115/1.2804743
https://doi.org/10.1121/1.3050288
https://doi.org/10.1103/PhysRevLett.111.024302
https://doi.org/10.1063/1.4709436
http://link.aps.org/supplemental/10.1103/PhysRevApplied.11.034057
https://doi.org/10.1016/j.addma.2014.12.008
https://doi.org/10.1016/j.jmbbm.2014.02.003
https://doi.org/10.1103/PhysRevApplied.2.054007
https://doi.org/10.1063/1.4838663
https://doi.org/10.1016/j.jmbbm.2009.10.006
https://doi.org/10.1016/j.ijfatigue.2015.11.017


R. HEDAYATI et al. PHYS. REV. APPLIED 11, 034057 (2019)

biomaterials made from truncated cube repeating unit cells:
Analytical solutions and computational models, Mater. Sci.
Eng. C 60, 163 (2016).

[34] W. Warren and A. Kraynik, Linear elastic behavior of a
low-density Kelvin foam with open cells, J. Appl. Mech.
64, 787 (1997).

[35] F. Bobbert, K. Lietaert, A. A. Eftekhari, B. Pouran, S.
Ahmadi, H. Weinans, and A. Zadpoor, Additively man-
ufactured metallic porous biomaterials based on minimal
surfaces: A unique combination of topological, mechani-
cal, and mass transport properties, Acta Biomater. 53, 572
(2017).

[36] A. A. Zadpoor and J. Malda, Additive manufacturing of
biomaterials, tissues, and organs, Ann. Biomed. Eng. 45,
1 (2017).

[37] X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M.
Qian, M. Brandt, and Y. M. Xie, Topological design and

additive manufacturing of porous metals for bone scaffolds
and orthopaedic implants: a review, Biomaterials 83, 127
(2016).

[38] R. Hedayati, S. M. Ahmadi, K. Lietaert, B. Pouran, Y.
Li, Harrie Weinans, C. D. Rans, and A. A. Zadpoor, Iso-
lated and modulated effects of topology and material type
on the mechanical properties of additively manufactured
porous biomaterials, J. Mech. Behav. Biomed. Mater. 79,
254 (2018).

[39] A. A. Zadpoor, Bone tissue regeneration: the role of scaf-
fold geometry, Biomater. Sci. 3, 231 (2015).

[40] S. Van Bael, Y. C. Chai, S. Truscello, M. Moesen, G. Ker-
ckhofs, H. Van Oosterwyck, J.-P. Kruth, and J. Schrooten,
The effect of pore geometry on the in vitro biological behav-
ior of human periosteum-derived cells seeded on selective
laser-melted Ti6Al4V bone scaffolds, Acta Biomater. 8,
2824 (2012).

034057-20

https://doi.org/10.1016/j.msec.2015.11.001
https://doi.org/10.1115/1.2788983
https://doi.org/10.1016/j.actbio.2017.02.024
https://doi.org/10.1007/s10439-016-1719-y
https://doi.org/10.1016/j.biomaterials.2016.01.012
https://doi.org/10.1016/j.jmbbm.2017.12.029
https://doi.org/10.1039/C4BM00291A
https://doi.org/10.1016/j.actbio.2012.04.001

	I. INTRODUCTION
	II. MATERIALS AND METHODS
	A. Analytical and semi-analytical solutions
	1. The geometrical relationships
	2. Beams with variable cross sections
	3. Elastic modulus of metamaterials and lattice structures
	4. Yield strength of metamaterials

	B. Computational models
	C. Experiments

	III. RESULTS
	A. Single beams with variable cross sections
	1. Number of terms
	2. Displacement curves
	3. Normal stress distribution
	4. Shear stress distribution

	B. Mechanical metamaterials

	IV. DISCUSSIONS
	V. CONCLUSIONS
	. References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


