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1
INTRODUCTION

Globally, the demand for energy in increasing exponentially and at the same time we are facing a huge crisis

in the form of global warming. The IPCC (International Panel on Climate Change) Fifth Assessment Report

(AR5), Stocker et al., [7], reported that human influence has been the dominant cause for the global surface

temperature rise in mid-20th century, warming the planet globally by 0.85oC from 1880 to 2012. Global tem-

perature rise is already resulting into increase in sea level rise, floods, droughts, bio diversity loss and many

other still unfolding risks to ecosystems across the planet. According to latest IPCC report, [8], to keep the

global temperature increasing from 1.5oC , we have limited amount of carbon emission left. The report sum-

marizes the global carbon emissions have to be reduced by 50% by 2032. It is required to find alternatives to

fossil fuel to deal with greenhouse gas emissions. In such situation, to meet the global energy demand and

reduce the Greenhouse gas emissions, Renewable and Nuclear energy sources are considered to be great op-

tions. Nuclear Energy Agency, [9] have suggested that nuclear plants for energy production can reduce 10% of

total CO2 emissions. In nuclear applications, the safety of nuclear reactor, is of prime concern. From design

and safety aspect, the cooling systems of the reactor are of utmost importance. The reactor is equipped with

many safety system which include active as well as passive cooling systems. In case of passive cooling sys-

tems, the coolant in the reactor, carries away the heat developed in the reactor naturally. In nuclear industry,

liquid metals are considered to be a great coolant option particularly for their high thermal conductivity. In

most of the nuclear reactor designs in the Generation IV International Forum (GIF), the primary coolant is

considered to be liquid metals, Generation International Forum, [10]. Hence understanding the heat transfer

involved in the reactor for is important designing the nuclear reactor. The physical phenomenon involved in

the cooling system is thermal convection.

1.1. THERMAL CONVECTION
Broadly thermal convection can be categorized into three categories: Forced, Natural and Mixed convection.

In this section we will discuss these categories to understand the physics briefly involved in the thermal con-

vection.

1.1.1. FORCED CONVECTION

In forced convection, as the name suggests, the fluid is forced to move around in the system with the intention

of increasing the heat transfer. The fluid motion in forced convection is generated externally with help of

devices like pumps, suction devices or fan. Forced convection can be seen in most space heating devices,

3



4 1. INTRODUCTION

central heating systems and cooling systems in industries.

1.1.2. NATURAL CONVECTION

In natural convection flows, the fluid is driven by buoyant forces. The buoyant forces in the fluid are generated

due to the density difference which are created by the temperature gradient. In natural convection for flow

circulation, temperature gradient, gravitational acceleration or presence of another acceleration, is required.

In nuclear applications, natural convection is used extensively to remove the heat from the nuclear reactor.

Also the natural convection based cooling systems are energy effective as no external source of energy is

required to drive the fluid.

1.1.3. MIXED CONVECTION

In mixed convection flows, the heat transfer is done by both forced and mixed convection mechanisms. The

pressure forces and buoyant forces both are responsible for the fluid motion. For mixed convection flows, the

temperature gradient is necessary for the generation of buoyant forces and external source such as pump or

suction device is required for providing the pressure forces. In nuclear reactors as well as heat exchangers ,

mixed convection application can be found.

1.2. RESEARCH QUESTION

In the nuclear applications, passive safety systems have been identified as one of the most cost effective

safety systems. Passive safety systems in the nuclear reactor work on the principle of natural convection.

The coolant is naturally heated by the source which leads to change in density of the fluid. Buoyant forces

are generated due to the density change drive the fluid from one part of the reactor to another. Forced con-

vection based cooling systems can break down completely in-case of emergency power shutdown whereas

the passive safety systems based on natural convection, work in-spite of the power to the reactor and the

mechanism that is removing the heat from the reactor works effectively in absence of external power source.

Hence it is highly important to study the heat transfer by natural convection and be able to model heat trans-

fer computationally. Natural convection is a process in which momentum and heat are transferred within

the fluid flow due to the effects of buoyancy. This phenomenon represents an important mechanism of heat

transfer involved in nuclear applications. With respect to natural convection, the buoyancy driven flow has

been extensively studied numerically but the research was limited by the modeling capabilities of the existing

models for thermal flow predictions.

Computational Fluid Dynamics (CFD) is a numerical approach that has been widely used for simulating

fluid flows in aerospace, nuclear, marine and many other industries. CFD is a numerical approach to predict

the flow phenomena. CFD studies employ different types of model to reproduce or predict the turbulence of

the flow. CFD analysis is being used as reference data in making conceptual models in product development

stage. Complex phenomenon which involve tremendous efforts to be done practically can be easily predicted

by CFD analysis. In a standard CFD analysis, a physical model of the desired phenomenon is developed. The

governing equations of the physical model are then solved using numerical techniques. Computationally

expensive terms or equations are modeled by making suitable approximations. In the framework of present

work, one of the such models for predicting accurate heat transfer is being dealt with.

For fluid flow modeling, the flow is governed by Navier-Stokes equations. For past several years, differ-

ent approaches of solving these equations are being developed which include Direct Numerical Simulation

(DNS), Large eddy simulations (LES), Reynolds Averaged Navier-Stokes (RANS) approach. These approaches

mentioned account for different computational efforts. In industrial applications, RANS approach has been

widely used due to its computational viability compared to other approaches. DNS being most computation-

ally expensive is uncommon in industrial applications however it is powerful research tool in understanding
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the turbulence at fundamental level [11]. Also DNS results are used as widely as reference data to validate,

turbulence models developed in RANS or LES.

The Rayleigh Bénard convection (RBC) case is considered to be the prototypical case for the natural flow

convection analysis. This physical case is defined by the Prandtl number and Rayleigh number of the flow.

The buoyancy is generated by maintaining a constant temperature gradient across the deferentially heated

walls where the bottom wall is maintained at higher temperature than the lower wall. This case has been

widely studied in various literature although with the studies limited by the inadequate modeling approaches

used. Various DNS studies have undertaken these cases and have created bench-marking results for other

modeling approaches to follow. DNS/LES being computationally expensive, can be very difficult and time

consuming in employing for industrial applications.

In addition, it should be noted that the RANS approach of modeling turbulent momentum or heat fluxes

in complex flows is still the most important approach as it accounts for less expensive and time optimal

computations. In the same context, a large number of models have been proposed for the modeling the

turbulent momentum fluxes such as eddy viscosity models and other RANS approaches. Turbulent heat flux

modeling, on the contrary has not been able to attract the same attention from researchers. Most widely used

turbulent heat fluxes (THF) closure, the Reynolds analogy is a robust and simplistic model. Although, this

model is proven to be inadequate in thermal predictions of flow involving low-Prandtl fluids. The turbulent

heat flux modeling plays an important role in thermal predictions of the flow, Desantis et al., [12]. Researchers

subsequently moved on to develop more advanced models to overcome the drawbacks posed by the previous

models, Shams et al., [13].

1.3. OBJECTIVE OF THESIS
The primary objective of the present work is to extend and calibrate the AHFM-NRG formulation for natural

convection flow regimes coupled with Reynolds Stress Model Elliptic Blending (RSM-EB) for accurate turbu-

lent heat flux prediction. Also present work aims to validate the model for different test cases of Rayleigh

Bénard Convection, with reference data and investigate the effects of employing higher order turbulence

model for thermal predictions.

1.4. THESIS OUTLINE
In Chapter 1, the importance of CFD analysis and its different numerical approaches are discussed briefly. It

also discusses the thesis project objective. Governing equations of the physical phenomenon and computa-

tional experiment are discussed in Chapter 2. In this Chapter, dimensionless numbers defining the numerical

experiment and other involved approximations are briefly explained. In Chapter 3, numerical methodology

undertaken for the simulations will be discussed. In Chapter 4, the AHFM-NRG+ model has been extended for

natural convection flows by calibrating the model coefficients. Also this chapter describes the computational

experiment elements such mesh type, boundary conditions, numerical schemes, turbulence and turbulent

heat flux models. In Chapter 5, different test cases in the thesis project and results obtained from the simula-

tions are discussed. In Chapter 6, aims to briefly explain future scope of work, summarize the observations,

conclude from the present work.





2
NUMERICAL METHODS

The fluid flow movement is determined by a set of governing equations. Depending upon the physical condi-

tions, phases of fluid involved and assumptions made for simplifying the flow study, different equations are

considered. In this chapter, the equations involved in the current work are discussed. Also different numer-

ical schemes, used in discretization of space and time variable in solving these equations and time stepping

methods are discussed too.

2.1. GOVERNING EQUATIONS
In this section, the equation governing the fluid flow movement are discussed briefly. The physical law of

conservation of mass,energy and momentum are translated in their mathematical form in terms of partial

differential equations , and are known as Navier-Stokes equations [14, 15]. With the help of these equations,

wide range of flow configurations are modeled numerically. Broadly the fluid flows based in the level of tur-

bulence involved, are categorized as laminar and turbulent flows. These flows are defined by the physical

quantities like velocity, pressure and temperature. In this section, within the framework of current project,

incompressible flow equations are dealt and hence following equations are valid for incompressible fluid

flows. The conservation of mass is mathematically expressed as given in Equation (2.1) and is also known

as Continuity equation. The conservation of momentum is mathematically expressed in Equation (2.2) and

conservation of energy in Equation (2.3).
∂ρ

∂t
+ ∂ρui

∂xi
= 0, (2.1)

∂ρu j

∂t
+ ∂ρui u j

∂xi
= ∂Ti j

∂xi
+ρ f j , (2.2)

∂ρE

∂t
+ ∂ρEui

∂xi
= ∂Ti j u j

∂xi
− ∂qi

∂xi
+ρ fi u j , (2.3)

where Ti j denotes the stress tensor of Newtonian fluid and qi = k ∂T
∂xi

heat flux by Fourier’s law. For accurately

describing a fluid flow, various numerical techniques are employed. In coming sections, these approaches

and numerical techniques are discussed briefly.

2.2. FINITE VOLUME METHOD
In the framework of present work, Code_Satur ne has been employed for numerical simulations as CFD

solver and the solver in the code is based on finite volume method of discretization. Hence, in this section,

7



8 2. NUMERICAL METHODS

Figure 2.1: Conservation in a discrete element

the finite volume method is discussed briefly in order to get idea of the numerics involved in the numerical

simulations. Numerical methods are developed for calculations for flow simulations for a given domain. The

domain is discretized using finite volume method for describing the Navier-Stokes partial differential equa-

tions into a system of linear algebraic equations. The physical domain of the flow is discretized into smaller

volume elements. The given partial differential equations are integrated over an element by transforming the

surface and volume integral into algebraic equations. Interpolation schemes are used to interpolate the vari-

ation of equation variables within the volume element and relate the surface values to the cell volume values.

The finite volume method is widely used in CFD calculations as the physical domain of the given problem is

same as the computational domain for numerical simulations.

The finite volume method(FVM) is based on conservation principle hence the conservative form of equa-

tion is considered here. Lets consider an element C with general scalar quantityφ and the transport equation

in conservative form integrating over the element C can be written as follows:∫
Vc

∇.(ρvφ)dV =
∫

Vc

∇.(Γφ∇φ)dV +
∫

Vc

QφdV. (2.4)

By Gauss’s theorem, the volume integrals can be replaced by surface integrals as follows:∮
∂Vc

(ρ−→v φ).
−→
dS =

∮
∂Vc

(Γφ∇φ).
−→
dS +

∫
Vc

Qφ,dV (2.5)

where the term on the left denotes the convective term and in left hand side, the first term denotes the dif-

fusion term whereas the term with Qφ denotes the source term for the scalar quantity φ , v is velocity and Vc

volume of the cell. The surface integral of the fluxes is calculated on the surface of the control volume C. The

convective and diffusive fluxes are summation of all the surface integrals of diffusive and convective fluxes at

each face of the control volume C.
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2.2.1. FLUX INTEGRATION

In this section, the flux integration of over the faces of the control volume is discussed. The surface integrals

over cell volume C are summation of all the integrals at all the surfaces of volume C. Lets denote convective

and diffusion fluxes as follows:

Jφ,C = ρvφ, (2.6)

Jφ,D =−Γφ∇φ, (2.7)

Total flux can be defined as

∮
∂Vc

Jφ,C .
−→
dS =

fn∑
f1

(∫
f

(ρ−→v φ).
−→
dS

)
, (2.8)

∮
∂Vc

Jφ,D .
−→
dS =

fn∑
f1

(∫
f

(Γφ∇φ).
−→
dS

)
. (2.9)

Applying Gaussian quadrature rule at the integral of the face f of the cell volume , we have :

∫
f

Jφ.
−→
dS =

∫
f

(Jφ.n)dS = ∑
i p( f )

(Jφ.−→n )i pωi p S f (2.10)

where i p denotes the integration point and i p( f ) denotes the number of integration along surface f. Number

of integration points are determined by the required accuracy of the solution. In case of one integration point

situated at center of C and weighing functionωi p is taken as 1 then the mean value integration rule is derived.

It is also known as trapezoidal rule which is second order accurate. With two integration points forωi p as 1/2

would be third order accurate. With increase in integration points, the accuracy order increases. Finally the

flux integrals can be written as follows:

∮
∂Vc

(ρ−→v φ).
−→
dS = ∑

f aces(V )

∑
i p( f )

(
ωi p (ρvφ)i p .S f

)
(2.11)

∮
∂Vc

(−Γ∇φ).dS = ∑
f aces(V )

∑
i p( f )

(
ωi p (−Γ∇φ).S f

)
(2.12)

2.2.2. SOURCE TERM

In this section, the volume integral for the source term is discussed. Applying Gaussian quadrature integra-

tion, the volume integral of the source term can be written as:

∫
V

QφdV = ∑
i p i p(V )

(
Qφ

i pωi pV

)
(2.13)
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Figure 2.2: Varying integration points for source integrals

In this case also the accuracy of the solution depends on the number of integration points are used. In

case of one integration point situated at the center of element and ωi p as 1 the approximation would be

second order accurate. This approximation is widely popular in two and three dimensional cases. As the

number of integration points increase, the accuracy increases with ωi p function properly distributed among

the integration points.

2.3. TIME DISCRETIZATION
In steady state solutions, the system of equations do not have transient term. In case of steady state flows,

the flow calculations are done for the mean solution independent of time consideration. In presence of a

transient term in the equations, it needs to be discretized with appropriate time stepping method. In a typical

solution to transient system, the solution is initialised at t = t0 and solver moves ahead to find solution at t1 =

t0 + ∆t1. Subsequently it moves ahead with the initial condition as solution found at t1 and solution is found

at t2 = t1 +∆t2. The similar iterative procedure is followed to reach the desired time. Broadly the the temporal

discretization can be categorized in Implicit and explicit method.

2.4. BOUSSINESQ APPROXIMATION
In thermal convection cases like Rayleigh Bénard Convection flow regimes, the flow is driven by the buoyant

forces created in the flow due to the temperature gradient across two walls in the domain. In such flow cases,

the incompressible fluid is to be simulated as a compressible fluid in the simulation. The fluid experiences

buoyant forces although the forces due to inertia are not considered. J Boussinesq proposed set of approxi-

mations to simplify the equations governing the motion of buoyant forces, Boussinesq, [16]. In his work, he

proposed following key approximations:

• Fluid properties are considered constant.

• Fluid flow of interest had been considered to be incompressible

• The energy equation is considered to be decoupled from flow mechanical energy.

Incompressible flows refer to the negligible or no density change during the flow movement of the fluid.

in case of arge temperature differences, where the change in density is not negligible like Flows with Mach

number higher than 0.3 , unsteady flow with varying pressure and density with respect to time and space
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and pressure variations caused due to height. Boussinesq approximation lets us account for the change in

density without solving compressible Navier-Stokes equations. In case of incompressible fluid flows, the den-

sity is not solved for, similarly with boussinesq approximation, the density is considered to be a function of

temperature but is not solved for in the simulation calculations. This approximation has been widely used

in number of numerical simulations. The implementation of this approximation has helped reduce compu-

tational costs for solving full compressible Navier-Stokes equations. The mathematical implementation of

Boussinesq equation, the properties of the fluid are considered constant and the density variation is calcu-

lated with the difference of change in temperature from reference temperature. The mathematical form of

the Boussinesq approximation can be written as follows:

ρ = ρ0[1−β(T −T0)] (2.14)

where r ho0 is density of the fluid at reference temperature T0, β is thermal expansion coefficient of fluid and

T is the temperature of the fluid. Now lets consider unsteady Navier-Stokes equation:

∇.−→u = 0 (2.15)

Du

Dt
=− 1

ρ0

∂p

∂x
+ν∇2u (2.16)

ρ0
Dv

Dt
= ∂p

∂y
−ρg +µ∇2v (2.17)

Dw

Dt
=− 1

ρ0

∂p

∂z
+ν∇2w (2.18)

DT

Dt
=α∇2T (2.19)

where α is thermal diffusivity, g is gravity acting in downward y-direction. Now the implementation of the

Boussinesq approximation is done for ρ in y-direction momentum equation to account for the buoyant forces

generated due to gravity g . And we have:

ρ0
Dv

Dt
= ∂p

∂y
−ρ0[1−β(T −T0)]g +µ∇2v (2.20)

Now to simplify this equation further we approximate the ∂p
∂y in boundary layer such that the pressure gra-

dient across y direction is defined by hydro-static pressure gradient as the flow in natural convection regime

does not have any external forces hence this approximation can be considered to be valid:

∂p

∂y
=−ρ0g (2.21)

From equations 2.20 and 2.21, we have

ρ0
Dv

Dt
= ρ0g −ρ0g −ρ0β(T −T0)g +µ∇2v (2.22)

ρ0
Dv

Dt
= ρ0β(T −T0)g +µ∇2v (2.23)

ρ0
Dv

Dt
=β(T −T0)g +ν∇2v (2.24)





3
TURBULENCE MODELING

In this section, the Reynolds-averaged Navier-Stokes equations are discussed. These equations are then em-

ployed in CFD solver to perform simulations in the framework of the present thesis project.

3.1. RANS EQUATIONS
Reynolds averaged Navier-Stokes equations solve for the mean velocity of the flow of incompressible fluids.

Reynolds proposed that the velocity of any fluid can be decomposed into mean velocity and its fluctuation.

In most of the numerical simulations, RANS approach is employed for its robustness and accuracy at low

computational efforts as compared to DNS or LES approaches. Following equations describe the Reynolds

averaged Navier-Stokes continuity and momentum equations for incompressible flows:

∂Ui

∂xi
= 0 (3.1)

ρ
∂Ui

∂t
+ρU j

∂Ui

∂x j
=− ∂P

∂xi
+ ∂

∂x j
(2µSi j −ρu′

i u′
j ) (3.2)

where Ui denotes the average velocity and u′
i u′

j is Reynolds Stress term(τi j ) which is also known as turbulent

momentum flux (TMF). It is required to model this TMF terms in order to close the system of ten flow vari-

ables with four equations. In 1903, Boussinesq, [16], proposed to model this tensor with the eddy viscosity.

He suggested that the Reynolds Stress term is related to the mean strain rate with eddy viscosity.

τi j = 2µt Si j − 2

3
δi j k (3.3)

where k is turbulent kinetic energy, δi j is Kronecker delta and Si j is mean shear strain rate which is expressed

by following expression:

Si j = 1

2

(∂Ui

∂x j
+ ∂U j

∂xi

)
− 1

3
δi j

∂Uk

∂xk
(3.4)

3.2. LOW REYNOLDS K-ε MODEL
In this section the low Reynolds k-εmodel is discussed which has been as used in the framework for the thesis

project. The low-Re k-ε model is given by Lien et al., [17]. Launders et al., [18] proposed the first formulation

of k-ε model which is based on the principle of equilibrium between turbulent production and dissipation.

This model presents a very good agreement for the external flows but has limitations with higher pressure

13
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gradients. The eddy viscosity model which are formulated on the basis of linear Boussinesq relation have

the tendency to not capture the non-isotropic nature of the flow and high turbulence generation in case for

impinging conditions. To overcome the drawbacks posed by former k-ε formulations, an approach based on

relating Reynolds stress term and strains are required for low-Re regions in the flow. The following equations

explain the transport equations for k and ε :

D
(
ρk

)
Dt

= Pk +Pb −ρε+
∂

∂x j

[(
µ+ µt

σk

)
∂k

∂x j

]
, (3.5)

D
(
ρε

)
Dt

= Cε1

τ

(
Pk +Pw all +Cε3 Pb

)−ρCε2 F2
ε

τ
+ 1

τ
ρSy + ∂

∂x j

[(
µ+ µt

σε

)
∂ε

∂x j

]
, (3.6)

where

Pw all = DF2

(
Pk +2µ

k

d 2

)
exp

(−ERe2
d

)
, (3.7)

fµ = 1−exp
[
−

(
Cd0

√
Red +Cd1 Red +Cd2 Re2

d

)]
, (3.8)

F2 = [
1−C exp

(
Re2

t

)]
, (3.9)

Sy =Cw
ε2

k
max

[(
`

`ε
−1

)(
`

`ε

)2

,1

]
, (3.10)

`= k3/2

ε
, (3.11)

`ε =C`d , (3.12)

and the turbulent viscosity µt is evaluated as

µt = νtρ = ρ fµCµkτ, (3.13)

In the equations above Pk = −ρui u j∂Ui /∂x j and Pb = −ρβgi ui t represent the turbulence production

due to the mean strain and buoyancy, respectively, τ= max
(

k
ε ,Ct

√
ν
ε

)
is the turbulent mechanical time scale,

d is the wall distance, Red =p
kd/ν and Ret = k2/νε. In addition, the so-called Yap correction, to reduce the

departure of the turbulence length scale from its local equilibrium level, is included in the transport equation

of the turbulent dissipation rate through the source term Sy , Yap et al., [19].

3.3. REYNOLDS STRESS MODEL - ELLIPTIC BLENDING
Reynolds Stress Model- Elliptic Blending (RSM-EB) turbulence model was originally given by Manceau et al.,

[20], in 2002. In this section, the formulation of RSM-EB that is adopted in Code_Satur ne is discussed. The

transport model for Reynolds stress is as follows:

D(ρui u j )

Dt
= Pi j +Pb,i j +D t ,i j +φi j −εi j + ∂

∂xk

(
µ
∂ui u j

∂xk

)
, (3.14)

where Pi j denotes mechanical production, Pb,i j denotes production caused by buoyancy, D t ,i j denotes tur-

bulent diffusion , φi j denotes pressure-strain correlation and εi j denotes dissipation.

The mechanical production term is given by:

Pi j =−ρ(ui uk
∂U j

∂xk
+u j uk

∂Ui

∂xk
), (3.15)
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whereas production due to buoyancy is given by:

Pb,i j =−ρβ(giθu j + g jθui ) (3.16)

The turbulent diffusion term is given by the Simple Gradient Diffusion Hypothesis (SGDH) as follows:

D t ,i j = ∂

∂xk

( µt

σk

∂ui u j

∂xk

)
, (3.17)

and turbulent viscosity µt is given by:

µt = ρCµ
k2

ε
. (3.18)

The pressure strain and the dissipation term are modeled in a blending of near wall and high Reynolds model,

due to which the model is called as Elliptic Blending, are given by:

φi j −εi j =
(
1−α3)(φw

i j −εw
i j

)
+α3

(
φh

i j −εh
i j

)
, (3.19)

where the superscript h and w denote high Reynolds and near-wall formulations respectively. The blending

parameter α is solved for from the following equation:

α−`2∇2α= 1. (3.20)

The pressure-strain and dissipation terms for the near-wall formulation, are:

φw
i j =−5ρ

ε

k

(
ui uk n j nk +u j uk ni nk −

1

2
uk ul nk nl (ni n j +δi j )

)
, (3.21)

εi j = ρui u j
ε

k
. (3.22)

The gradient of the blending parameter is used to calculate the wall normal vector :

nk =
∂α
∂xk√
∂α
∂xl

∂α
∂xl

. (3.23)

Now for the higher-Reynolds formulation, Reynolds, [6]:

φh
i j =−

(
C1+C∗

1
1

2

Pi i

ε

)
εai j+(C3+C∗

3
p

akl akl )kSi j+C4k
(
ai k S j k+a j k Si k−

2

3
al mSlmδi j

)
+C5k(ai kW j k+a j kWi k ),

(3.24)

where

ai j =
ui u j

k
− 2

3
δi j , (3.25)

Si j = 1

2

(∂Ui

∂x j
+ ∂U j

∂xi

)
, (3.26)

Wi j = 1

2

(∂Ui

∂x j
− ∂U j

∂xi

)
, (3.27)

and

εh
i j =

2

3
ρεδi j . (3.28)

Now the transport equation for the turbulent kinetic energy dissipation rate ε is as follows:

Dρε

Dt
= 1

τ

(Cε1

2
(Pi i −Cε3Pb,i i )−Cε2ρε

)
+ ∂

∂xk

((
µ+ µt

σε

) ∂ε
∂xk

)
+ρSE , (3.29)

where SE is added to recreate the near-wall behavior of dissipation rate and is as follows:

SE = A1νuk ul nk nl
k

ε
(1−α3)

(∂Si j ni nk

∂xk

)2
. (3.30)
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Table 3.1 describes the values of the model coefficients used in the above formulation:

Cε1 1.44 A1 0.085 C3 0.8

Cε2 1.83 Ct 6 C∗
3 0.65

Cε3 -0.33 Cl 0.133 C4 0.625

Cµ 0.07 Cη 80 C5 0.2

σk 1.0 C1 1.7

σε 1.5 C∗
1 0.9

Table 3.1: Model coefficients for RSM-EB formulation [6]



4
TURBULENT HEAT FLUX MODELING

In the RANS approach, the energy equation has a non-linear unknown heat flux term. In order for an ap-

propriate closure of the system, models are introduced for closing the non-linear terms. In this chapter the

different approaches of the turbulent heat flux modeling will be discussed.

4.1. INTRODUCTION
In a numerical experiment,it is highly impervious to model turbulent momentum fluxes and turbulent heat

fluxes as correctly as possible to get a reliable thermal and flow field prediction. Due to its wide applications

in industry, a RANS approach has always been researched upon a lot by researchers. Many RANS turbulence

models have been developed to predict the turbulence involved in flow simulations. For governing the in-

comprehensible turbulent flows Reynolds-averaged momentum and energy equations are as follows:

DUi

Dt
= Fi − 1

ρ

∂P

∂xi
+ ∂

∂x j

(
ν
∂Ui

∂x j
−ui u j

)
, (4.1)

DT

Dt
= q

ρcp
+ ∂

∂x j

( ν

σT

∂T

∂x j
−θui

)
, (4.2)

where D
Dt = ∂

∂t +Uk
∂
∂xk

is the material derivative, Fi is the body force and q is the internal energy source.

Although the turbulent heat flux modeling has not been given the equal amount of emphasis in terms of re-

search. Consequently, the most simplistic yet robust, Simple Gradient Diffusion Hypothesis (SGDH) model is

employed in most of the thermal numerical calculations as THF model. The model calculates the unknown

turbulent thermal diffusivity by making use of Reynolds Analogy approach where thermal diffusivity is calcu-

lated as the ratio of turbulent viscosity µt and turbulent Prandtl number Prt . Owing to the known limitations

of this model, such as inability to capture buoyant forces and its application for low Prandtl fluids new mod-

els were developed. Statistically, the momentum and thermal boundary layer exhibit similar trends in terms

of fluctuations and thickness for fluids with Prandtl number close to one. Fluids with low Prandtl number

are characterized by relatively higher thermal diffusivity as compared to the momentum diffusivity leading to

dissimilar momentum and thermal boundary layer thickness. In such cases the Reynolds Analogy approach

i.e. SGDH fails to predict the accurate thermal field. To overcome the limitations posed by such a simplistic

approach, sophisticated turbulent heat flux modeling approaches have to be employed. In the next sections,

dimensionless numbers defining the case and turbulent heat flux modeling are discussed to understand the

models employed in the framework of current thesis project.

17
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4.2. DEFINING DIMENSIONLESS NUMBERS
The Rayleigh Bénard Convection case is defined by Rayleigh and Prandtl numbers. Before we dive into the

turbulent heat flux modeling, the non-dimensional numbers and their physical significance in defining the

case will be discussed.

4.2.1. RAYLEIGH NUMBER

Rayleigh number (Ra), for a flow is associated with buoyancy-driven flow such as natural convection flow

regimes. Rayleigh number is represented by the ratio of buoyant forces in the fluid and to the viscous force.

In the framework of current project, Rayleigh Bénard Convection case of natural convection is considered

here. Due to the temperature gradient, the heated fluid at the bottom resulting in lower density, tends to

move upward and fluid with relatively higher velocity tends to move down in the presence of gravity acting

downwards. At relatively low value of Rayleigh number, the viscous forces are more dominant than buoyant

forces, there isn’t any movement in the fluid. The heat transfer occurs only through conduction. Above a

certain value of Ra, which is called as critical Rayleigh number, the fluid movement and heat transfer occurs

by natural convection [21]. Rayleigh number is defined as follows:

Ra = gβ∆T H 3

να
, (4.3)

where g is gravitational acceleration, β is thermal expansion coefficient, H is characteristic length, ν is kine-

matic viscosity and α is thermal diffusivity which is defined as

α= k

ρcp
, (4.4)

where k is thermal conductivity, ρ is density and cp is specific heat of fluid at constant pressure.

4.2.2. PRANDTL NUMBER

Prandtl number (Pr) of a fluid is defined as ratio of its momentum diffusivity and thermal diffusivity. The Pr

is defined as follows:

Pr = cpµ

k
, (4.5)

where cp is specific heat of fluid at constant temperature,µ is dynamic viscosity and k is thermal conductivity.

Fluids with small Pr values i.e. Pr « 1, are generally called as low-Pr fluids. For low-Pr fluids, the thermal

diffusivity is relatively higher than momentum diffusivity. For such fluids, the heat transferred by conduction

is way more than convection. Hence they make excellent choice as coolants in nuclear applications. Low-Pr

fluid examples include molten metals such as mercury, molten potassium and molten lithium. Fluids with

high Pr values i.e. Pr » 1, have heat diffusion occur at slower rate than momentum diffusion. High-Pr fluid

examples include engine oil, glycerol and refrigerant.

4.3. THF MODELING
In this section different approaches for THF modeling will be discussed briefly. The evolution of the turbu-

lent heat flux models and their different formulations will be discussed which will help in understanding the

AHFM-NRG+ model.

4.3.1. SIMPLE GRADIENT DIFFUSION HYPOTHESIS

In this section, the Reynolds Analogy approach i.e. Simple Gradient Diffusion Hypothesis (SGDH) model has

been discussed in detail. Following expression summarizes SGDH approach mathematically:

θui =− νt

Prt

∂T

∂xi
, (4.6)
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where νt is the eddy viscosity and for a two-equation k − ε model can be defined as Cµk2/ε: k is turbulent

kinetic energy and its ε is dissipation rate. From the above expression it can be observed that the model

assumes that the turbulent Prandtl number Prt being constant throughout the domain. However, Prt is

not constant for fluids and liquid metals, A.Shams, [22]. Hence this model does not accurately represent

the turbulent heat fluxes. For low Prandtl fluids this model fails to agree with reference data for thermal field

prediction, Roelofs et al., [5]. Few approaches with varying Prt [3, 4] were also proposed by many researchers.

Although the thermal predictions showed some improvements against the conventional Reynolds analogy

approach, it still showed deviations from reference data.

4.3.2. SGDH WITH CONSTANT Prτ

Widely in the CFD solvers the value of Prτ is taken as 0.85 or 0.9. This approach works well for the Pr = 1 but

for the flows with Pr less than 1 i.e. in the case of liquid metals it does not predict the temperature field that

well. Figure 4.1 describes that this approach works well for fluids with Pr = 1 whereas shows deviation for

Prandtl number less than 1 i.e. Pr = 0.025 with respect to reference DNS data.

Figure 4.1: Evolution of mean temperature profile for Reτ = 395 at (Left) Pr=1 and (Right) Pr=0.025.



20 4. TURBULENT HEAT FLUX MODELING

4.3.3. SGDH WITH VARYING Prt

Reynolds, [1], proposed varying Prt to SGDH model approach to overcome the above mentioned drawback

and gave following relationship:

Prt =
(
1+100Pe−

1
2

)( 1

1+120Re−
1
2

−0.15
)
, (4.7)

where Re is bulk Reynolds number and Pe is Péclet number of the flow, which is defined as Pe = Re Pr, where

Pr is Prandtl number and Re is Reynolds number of the flow.

Kays, [2], defined turbulent local Prt with another approach. It is calculated by turbulent Péclet number,

defined as Pet = νt
α where α is the thermal diffusivity, which is as follows :

Prt = 0.85+ 0.7

Pet
. (4.8)

Further development to this, Weigand et al., [3], suggested dependence of the local Prt on the value of Prt∞
denotes the value of Prt for region far away from the wall in the fluid domain. It was defined as follows:

Prt∞ = 0.85+ 100

Pr Re0.888 . (4.9)

And the correlation is as follows:

1

Prt
= 1

2Prt∞
+C Pet

1√
Prt∞

− (C Pet )2
[

1−exp
(
− 1

C Pet
√

Prt∞

)]
, (4.10)

where C=0.3. From equation (4.10), it can be seen that this correlation mixes the local and global parameters

such as. It can be highlighted that in this correlation the local quantities have dependency on the global

values as Prt∞ and , is a function of bulk Reynolds number.

Figure 4.2: Models for Prt number compared to the LES for Reτ = 590 at (Left) Pr=0.01 (.) and (Right) Pr=0.025(◦): Reynolds

[1](d ash −dot ), Kays [2](d ash) and Weigand et al. [3](sol i d) [4].

For liquid metals, the near wall region was studied by Duponcheel et al. [4] to derive a wall function for

thermal field. Inspiration for this relation is taken from Kays and is as follows:

T + = Prt

k
log

(
1+ k

Prt
Pr y+

)
. (4.11)

For the above, it follows that the turbulent and molecular diffusivity are neglected and turbulent diffusivity is

considered to be linear. Hence, it is called as mixed law-of-the-wall.

As we all know that the liquid metals do not exhibit constant Prt behavior throughout the domain. Kays

[2] devised a correlation (4.8) for calculating the local Prt values in the domain as a function of turbulent

Péclet number. Equation (4.8) is able to predict the values of Prt in better manner for the bulk region of the
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fluid. Roelofs et al. [5] used Kays correlation for a channel flow case. In this case, the fluid has Pr=0.01 and the

results obtained are better than basic temperature gradient approach (SGDH). Although these results when

compared with reference LES, fails to agree as seen from the Figure 4.3.

Figure 4.3: Temperature profiles of RANS at Re = 2000 LES (black solid), linear law and Prt = 0.85 (green), linear law θ+ = Pr.y+ (black

dashed), wall-resolved RANS with Kays correlation (blue), mixed law-of-the-wall and Kays (red). [5].

4.3.4. LOOK-UP TABLE

Böttcher et al., [23], proposed another approach to address the varying Prt by making use of look-up tables

where the value of Prt had dependence on bulk Reynolds number and y+ values. Prt values across the entire

domain are calculated by linear interpolation. This model gave reasonable predictions. Although this model

also poses limitations due to which the results needed some improvements:

• The solver must know the y+ values.

• In case of natural and mixed convection, the thermal field is not predicted well as the buoyancy effects

are not considered.

4.3.5. GENERAL GRADIENT DIFFUSION HYPOTHESIS

Daly and Harlow, [24], proposed a model which was aimed at improving the accuracy of SGDH. Due to the

addition of the extra term to the formulation, the accuracy of the model increased a lot when compared to the

SGDH model as shown by Kenjereš et al., [25]. The General Gradient Diffusion Hypothesis (GGDH) is given

by:

θui =−Cθ k

ε

(
ui u j

∂T

∂x j

)
. (4.12)

The Reynolds stress term ui u j is introduced in the model to consider the effects of turbulence of the flow on

turbulent heat flux production.

4.3.6. WET APPROACH

Launder et al., [26], proposed another model which was based on WET (Wealth ≡ Earnings × Time) theory.

According to this analogy, it was proposed to calculate the turbulent heat fluxes by multiplying the value of
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the second moment by turbulent time scale. The mathematical form of the model is as follows:

θui =−Cθ k

ε

(
ui u j

∂T

∂x j
+θu j

∂Ui

∂x j

)
. (4.13)

It can be observed that the model proposed above (4.13) and GGDH model are both driven by a non-isotropic

diffusion process. From the equation it can be noticed that the model is considering the velocity strain and

Reynolds stress for the production of the turbulent heat fluxes although it still limits itself in considering the

buoyant forces directly.

4.3.7. ALGEBRAIC TURBULENT HEAT FLUX MODEL

Algebraic Turbulent Heat Flux Model (AHFM) models are essentially based on the physical significance of the

sources for turbulent heat fluxes. In a broader sense, these can be classified as implicit or explicit models

[13, 25, 27–29]. In the framework of present work, implicit AHFM is discussed in this section.

IMPLICIT AHFM

Implicit model rely heavily on solving transport equation for the turbulent heat flux term. AHFM can be

closed by truncating different terms from the differential equations of second order closures, resulting in

different formulations [27, 30, 31]. In coming chapters it will be discussed how well implicit AHFM have

performed compared to the gradient hypothesis approaches for a range of flow regimes [22, 25, 28, 32, 33].

Temperature variance θ′2 and dissipation εθ can be calculated separately by solving for their transport equa-

tions.

and it resulted in four-equation k −ε−θ′2 −εθ′ which is as follows:

∂θ′2

∂t
+u j

∂θ′2

∂x j
= ∂

∂x j

(
(κ+κt )

∂θ′2

∂x j

)
+2Pθ′ −2εθ′ , (4.14)

and

∂εθ′

∂t
+u j

∂εθ′

∂x j
= ∂

∂x j

(
(κ+κt )

∂ε̃θ′

∂x j

)
+ Cθ′

ε1Pθ′
ε̃θ′

θ′2
+Cθ′

ε3P
ε̃θ′

k

− Cθ′
ε4

ε̃2
θ′

θ′2
−Cθ′

ε5 fεθ′
ε̃θ′ ε̃

k
+Eθ′ , (4.15)

where:

P =−u′
i u′

j

∂ui

∂x j
, Pθ′ =−u′

jθ
′ ∂T

∂x j
, G =−βgi uiθ′, Eθ′ = 2ρκκt

(
∂2T

∂x j∂xk

)2

,

ε̃= ε−2ν

(
∂
p

k

∂xk

)2

, ε̃θ′ = εθ′ −κ

∂
√
θ′2

∂xk


2

,

κt =CΦ fµ
k2

ε̃
, fµ = exp

 −3.4(
1+ Ret

50

)2

 , fεθ′ = 1.

In alternative approach of AHFM closure, to calculate εθ thermal timescale to mechanical timescale ratio

R is defined and it is assumed to be constant. This assumption has shown good results in may flows when

compared with DNS and experimental data [28, 30, 32]. This reduces the model to three equation model

where it gives similar results to the four equations model as shown by Kenjereš et al., [28].
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Another approach would be to solve for finding out solutions to temperature variance and dissipation.

Kenjereš et al., [28] tried approximating turbulent heat fluxes based on temperature gradient, rate of strain

and buoyancy. In 2005, Kenjereš et al., [25], came up with Equation (4.16) to overcome the shortcomings of

the previous model as follows and was called AHFM-2005:

u′
iθ

′ =−Ct0τ

(
Ct1 u′

i u′
j

∂T

∂x j
+Ct2 u′

jθ
′ ∂ui

∂x j
+Ct3βgiθ

′2
)
+Ct4 ai j u′

jθ
′, (4.16)

where the term anisotropy tensor is ai j =
u′

i u′
j

k − 2
3δi j and δi j is Kronecker delta.

4.3.8. AHFM-NRG
Within the framework of European Union sponsored project Thermal Hydraulics of Innovative Nuclear Sys-

tems (THINS), with goal of calibration and assessment of AHFM-2005 for low Prandtl fluids, AHFM-2005 was

implemented in commercial code STAR-CCM+, [34]. Shams et al., [13], calibrated the model coefficient Ct1

by proposing a correlation for Ct1 , to have better results for selected test cases, when compared to a DNS

database. Also due to the numerical stability issues, Ct4 was taken as 0 and the resulting model was called

AHFM-NRG. This model can be described as follows:

u′
iθ

′ =−Ct0τ

(
Ct1 u′

i u′
j

∂T

∂x j
+Ct2 u′

jθ
′ ∂ui

∂x j
+Ct3βgiθ

′2
)

(4.17)

4.3.9. SIGNIFICANCE OF MODEL

Equation (4.17) defines a turbulent heat flux model based on :

• Turbulent heat fluxes from mean temperature gradient ( ∂T
∂x j

)

• Turbulent heat fluxes due to a mean rate of strain ( ∂Ui
∂x j

)

• Turbulent heat fluxes resulting from Buoyant forces (ρgiθ′2)

The first term of the model defines the production of turbulent heat fluxes from mean temperature gradient

across domain and the turbulence of the flow. If we look at closely, the turbulent heat fluxes are generated

in the direction perpendicular to the temperature gradient. The second term accounts for the turbulent heat

flux generating due to the mean rate of velocity strain and the third term accounts for the generation of tur-

bulent heat fluxes resulting from buoyant forces. The model coefficients define the weight of each term in

overall turbulent heat flux production. Essentially, all the thermal convective flows can be broadly catego-

rized into these categories: Forced, Natural and Mixed. For forced convection, the dependence of Ct1 on flow

defining numbers such as Reynolds and Prandtl number, is reported by Shams et al., [13]. Similarly for Ct3 ,

its dependence on Rayleigh and Prandtl numbers is reported by Shams et.al, [22].

4.4. CALIBRATION
The previous work done in turbulent heat flux modeling for thermal predictions, the THF model is based on

linear turbulence model k −ε. The linear closure of turbulent momentum flux term does not predict turbu-

lence well in complex flow conditions. Due to inaccuracy in predictions of Reynolds stresses, the turbulent

heat fluxes deviate from mean behavior leading to inaccurate thermal field prediction [35–38]. To overcome

this, Shams et al., [39], extended this model to second order turbulent momentum flux closure model. The

AHFM-NRG model was extended with RSM-EB (Reynolds Stress model Elliptic Blending) for Forced convec-

tion flow regime. This formulation was called AHFM-NRG:RSM-EB. Since the turbulence model employed

in the formulation was changed, the coefficients were re-calibrated in order to accommodate the model
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Figure 4.4: Graphical representation of Ct3 for AHFM-NRG:k −ε and AFHM-NRG+:RSM −EB

changes. Similarly in the framework of this thesis project, AHFM-NRG formulation is extended to natural

convection flows coupled with RSM-EB. This model in the coming chapters will be referred to as AHFM-

NRG+:RSM-EB. Since the governing coefficient of natural convection is Ct3 , it is re-calibrated for AHFM-NRG

coupled with RSM-EB by considering DNS and available experimental results as reference data. In the cali-

bration phase, Rayleigh Bénard natural convection is considered for the calibration process and different test

cases were considered and results were compared with reference DNS data. Figure 4.4 describes the change

in Ct3 correlation. The red dotted line describes Ct3 formulation for AHFM-NRG+:k-ε whereas the green dot-

ted line describes the new correlation for AHFM-NRG+:RSM-EB. Equation 4.18 states Ct3 dependence on the

Rayleigh number and the Prandtl number of the fluid.

Ct3 = a1.log 7 (RaPr )+a2 with 100 < Ra.Pr < 1017. (4.18)

In the above correlation the value of a1 is -4.5 × 10−9 and a2 is 3.3 where Ra and Pr represent Rayleigh and

Prandtl number of the given flow respectively.
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Rayleigh Bénard natural convection (RBC) is one of the most computationally and experimentally studied

cases [40–42]. It is considered to be the prototypical case for free thermal convection. In nuclear applica-

tions, passive cooling systems are integral part of the cooling process [43, 44]. To design a sustainable cooling

process for reactors, it is highly important to study the heat transfer and flow of the coolant fundamentally.

Owing to such high responsibility, the heat transfer and flow must be accurately predicted. The accuracy of

the thermal field depends highly on the heat flux model used in numerical simulation. In a typical RBC case,

a fluid layer is heated from the bottom. Expanded fluid offers buoyant forces in the domain and sets the fluid

in motion. In the framework of present project, a planar geometry is considered. In coming sections, this case

will be explained in detail. Also the results obtained from the simulations will be presented and discussed in

this chapter.

5.1. COMPUTATIONAL DOMAIN

In this work, a planar rectangular geometry with constant fluid properties, will be considered for numerical

simulations. Figure 5.1 describes geometry of the computational domain used. The aspect ratio of 1:8 is

considered for the geometry. As shown in Figure 5.1, different layers of the domain are walls with different

boundary conditions. The upper wall is maintained at lower temperature (Tc ) of 299.5 K and lower wall is

maintained at higher temperature (Th) of 300.5 K. The wall-normal temperature difference (Th −Tc ) of 1 K

is kept constant throughout the simulations which is responsible for the buoyant forces that put the fluid

in motion. The gravitational acceleration (g) acts downward along y-axis. The fluid flow and thermal field

are defined by Rayleigh number defined as Ra = g β∆T H 3/(να) where g is the gravitational acceleration, β is

the thermal expansion coefficient, H is the characteristic length, ∆T is the constant temperature difference

between the domain walls , ν is the kinematic viscosity and α is the thermal diffusivity and Prandtl number

as Pr = νρcp /k where ρ is fluid density, k is thermal conductivity and cp is specific heat at constant pressure

of the fluid.

At the top and bottom walls iso-thermal conditions i.e. Dirichlet boundary condition is imposed for ther-

mal and no-slip boundary condition for velocity. In the stream-wise and span-wise direction the, walls are

imposed with periodic boundary condition for velocity to consider the flow to be periodic in nature for these

directions. Table 5.1 summarizes the boundary conditions.

25
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Figure 5.1: Computational domain for the RBC case

Wall Velocity Thermal Remark

Bottom No-slip Dirichlet Th = 300.5 K

Top No-slip Dirichlet Tc = 299.5 K

Side walls Periodic - Temperature normal to wall

Table 5.1: Summary for boundary conditions imposed in the domain

5.2. MESH DETAILS
For the meshing of the computational domain, S ALOME meshing platform has been used. A low Reynolds

formulation of the Reynolds stress model has been used in the simulations. This requires wall refinement in

the near wall region. Hence a wall-resolved mesh is necessary for stability of the solution. Mesh sensitivity

analysis is done to find out the minimum number of cells required for accurate thermal and flow field predic-

tions. The analysis is summarized in Appendix. In the present work, Mesh with 40,000 cells used. As the CFD

code used for the simulations is based on finite volume method, a three dimensional domain is considered.

One layer in span-wise direction is considered to minimize the computational efforts. The domain for the

simulations is planar three dimensional geometry with sizes Lx ×Ly× = 8δ×1δ×0.1δ where δ is the half of

width of the channel. y+ < 1 is maintained in for the mesh in CFD calculations. The ∆yw all is kept at 0.0005.

Nx Ny Nz

200 200 1

Table 5.2: Summary for mesh used in simulations

where Nx and Ny are the number of elements considered in x and y direction.

From the Figures 5.2 and 5.3 contours, Rayleigh Bénard cells can be distinctively identified by the streams

of hot and cold temperature moving in the y-direction. The flow in the simulation is driven by the buoyancy

effect created by the temperature difference across the domain. If we look at the contours closely, it can be

seen that at the places of high temperature streams, the velocity is relatively higher in the velocity contour. In

next sections, results from different cases considered in the framework of this project are presented. Impor-

tant quantities to describe the thermal convection such as Mean temperature profile T∗ = T−Tc
Th−Tc

, turbulent
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kinetic energy, temperature variance and turbulent heat fluxes are compared with reference DNS data and

data from simulations with other THF and TMF closures.

Figure 5.2: Velocity Contour for Ra 630000 Pr 0.7

Figure 5.3: Temperature Contour for Ra 630000 Pr 0.7

5.3. FLOW PARAMETERS

In the case of Rayleigh Bénard natural convections, the flow is defined by Rayleigh for the flow and Prandtl

number of the fluid. In the current framework of thesis project, fluids with Prandtl number 0.7 , 0.025 and

0.006 are considered. The CFD calculations aim at simulating the liquid metals used in reactors. The liq-

uid metals have low Prandtl number i.e. relatively high thermal diffusivity compared to viscous diffusivity.

A wide range of Rayleigh numbers are considered in the simulations ranging from 24000 to 20000000. As

discussed in previous chapter, liquid metals are considered to be very good coolant in nuclear applications

which motivates the selection of test cases with the considered Prandtl numbers. Table 5.3 gives examples for

the different Prandtl fluids considered in the present work.
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Pr number Example

0.7 Air

0.025 Mercury

0.006 Molten Sodium

Table 5.3: Fluid examples for Prandtl numbers considered in the present work

5.4. SIMULATION SETTING

In the present work, to validate the correlation formed in the previous chapter as part of calibration of coef-

ficient Ct3 for natural convection flow regimes, the following set of simulations are carried out. The results

obtained from the simulation with TMF closure with RSM-EB and THF as AHFM-NRG+ are referred to as

AHFM-NRG+:RSM-EB. Table 5.4 describes the nomenclature for the data presented below. The unsteady-

RANS simulations with Reynolds stress model, are done with Code_Satur ne, [45] and RANS simulations

with linear low-Re k − ε model are done using commercial CFD solver STAR-CCM+, [34]. In a steady RANS

calculation, for Pressure-Velocity coupling SIMPLE, Patankar et al., [46], algorithm has been used and on

the other hand, for unsteady RANS calculations SIMPLEC, Doormaal et al., [47], algorithm has been used in

Code_Satur ne. In all the calculations second order linear upwind discretization scheme is used for all the

variables.

Label TMF THF Code

SGDH:k −ε Lien low-Re k −ε Reynolds Analogy STAR-CCM+

AHFM-NRG:k −ε Lien low-Re k −ε AHFM-NRG+ STAR-CCM+

SGDH:RSM-EB RSM-EB Reynolds Analogy Code_Satur ne

AHFM-NRG:RSM-EB RSM-RB AHFM-NRG+ Code_Satur ne

Table 5.4: Summary of the turbulence models used in the present work

5.5. SELECTION OF TEST CASES

In this section, the simulation cases described in Table 5.5, will be presented and these cases will be discussed

below to understand the effect of calibrated coefficient in accurately predicting the thermal field and flow for

given flow parameters.

5.5.1. TEST CASES

In the present work, six different cases are considered to compare the performance of AHFM-NRG+:RSM-EB

model with Reynolds analogy and other turbulent heat flux closures. Shams, [22] selected three cases with dif-

ferent Prandtl fluids for their validation analysis. Similarly on the same lines, following cases are considered

as it will be easy to perform comparative study and analyze data for these cases. Also present work includes

three additional cases for validation purpose. Case-1 with Ra number as 2×107, from Table 5.5 is considered

to study the performance of the model at moderately high Rayleigh number. Table 5.5 summarizes the cases

considered in the present work.
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Test Cases Rayleigh number Prandtl number Reference

Case-1 20000000 0.7 R. Kerr, [48]

Case-2 630000 0.7 Otic et al., [49]

Case-3 381000 0.7 Wörner, [50]

Case-4 100000 0.025 Otic et al., [49]

Case-5 50000 0.025 Wörner, [50]

Case-6 24000 0.006 Wörner, [50]

Table 5.5: Selected test cases of the natural convection flow regime with RBC configuration.

5.5.2. DNS CASE SETUP

It is important to discuss the DNS case setup to completely understand the comparative analysis done in the

framework of current project. In this section, the DNS case setup performed by Wörner, [50] will be discussed.

Figure 5.4: DNS case geometry with boundary conditions imposed

Figure 5.4 describes the geometry of the case considered for DNS. The aspect ratio of the domain is 1:8.

The height between the two walls maintained at different temperatures is 1. The value of X1 i.e. the size of

the domain along the x-axis is 8 for cases with Pr = 0.006 and 0.025 and 7.92 for 0.7. The value of X2 i.e. in

the z-direction, is taken equal to X1. The upper and lower wall are kept at constant temperatures and hence

resulting in constant temperature gradient with slip velocity to be zero. Transient 3d direct numerical sim-

ulation code TURBIT is employed as CFD solver for calculations. Reference data from the DNS calculations

suggested that the the fluctuations in the z-direction are nearly zero. Hence for optimizing the computa-

tional time in current project considering the planar geometry is justified. In next sections, the results from

simulations and DNS reference data are discussed is
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5.5.3. CASE 1

In this section the results from the numerical simulation of Case 1 have been presented. This simulation

case is defined by Prandtl number as 0.7 and Rayleigh number as 20000000. The thermal diffusivity and

momentum diffusivity of the fluid are of comparable order yet the thermal diffusivity is more in magnitude.

The mean temperature distribution for AHFM-NRG+:RSM-EB shows very good agreement with the reference

DNS data. The Reynolds analogy approaches coupled with linear k-ε model as well as second-order closure

RSM-EB, fail to capture the rather steep change in the temperature distribution going away from the wall, in

the near-wall region. The mean temperature distribution is seen to be diffused across the domain unlike the

DNS data. k-ε:AHFM-NRG+ slightly deviates away from the DNS data in the region about Y/H = 0.15 to 0.10 .

Observing temperature variance plot, it can be said that the AHFM-NRG+:RSM-EB model has over-predicted

the magnitude of turbulent kinetiv energy (TKE) whereas the AHFM-NRG+:k-ε model under-predicts the by

huge margin when compared with DNS data. But overall, the temperature variance trend by DNS data has

been closely followed by AHFM-NRG+:RSM-EB model and also have predicted the location for TKE maxima.

In conclusion, for this case the AHFM-NRG+:RSM-EB has improved results by a comparable margin than THF

closure of AHFM-NRG+:k-ε model.

Figure 5.5: Mean temperature distribution for Ra 2e7 Pr 0.7
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Figure 5.6: Temperature Variance for Ra 2e7 Pr 0.7
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5.5.4. CASE 2

In this section the results from the numerical simulation of Case 2 have been presented. This simulation case

is defined by Prandtl number as 0.7 and Rayleigh number as 630000. The mean temperature distribution for

AHFM-NRG+:RSM-EB shows almost complete agreement with the reference DNS data. The Reynolds analogy

approach fails to capture the rather steep change in the temperature distribution going away from the wall,

in the near-wall region. The mean temperature distribution is seen to be diffused across the domain unlike

the DNS data. AHFM-NRG+:k-ε slightly deviates away from the DNS data in the region about Y/H = 0.15 to

0.10 . Observing temperature variance plot, it can be said that the AHFM-NRG+:RSM-EB model has predicted

the magnitude of temperature variance quite well whereas the AHFM-NRG+:k-εmodel under-predicts the by

huge margin when compared with DNS data. But overall the TKE trend by DNS data has been closely followed

by AHFM-NRG+:RSM-EB model and also have predicted the location for TKE maxima. Closely observing TKE

plot, it can be said that the magnitude of the kinetic energy is over-predicted as compared with reference DNS

data whereas the Reynolds Analogy has under-predicted TKE. Overall trend across domain, is well followed

by both models, given by DNS. In conclusion, for this case the AHFM-NRG+:RSM-EB has improved results by

a comparable margin than THF closure of AHFM-NRG+:k-ε model as well as Reynolds analogy.

Figure 5.7: Mean temperature distribution for Ra 630000 Pr 0.7
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Figure 5.8: Temperature Variance for Ra 630000 Pr 0.7

Figure 5.9: Turbulent kinetic energy for Ra 630000 Pr 0.7
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Figure 5.10: Turbulent heat fluxes for Ra 630000 Pr 0.7



5.5. SELECTION OF TEST CASES 35

5.5.5. CASE 3

In this section the results from the numerical simulation of Case 3 have been presented. This simulation case

is defined by Prandtl number as 0.7 and Rayleigh number as 381000. The mean temperature distribution for

AHFM-NRG+:RSM-EB shows excellent agreement with the reference DNS data. The Reynolds analogy ap-

proach fails to capture the temperature gradient change in the temperature distribution going away from the

wall, in the near-wall region. The mean temperature distribution is seen to be diffused across the domain un-

like the DNS data. AHFM-NRG+:k-ε slightly deviates away from the DNS data in the region about Y/H = 0.15

to 0.10 . Observing temperature variance plot, it can be said that the AHFM-NRG+:RSM-EB model has pre-

dicted the magnitude of temperature variance quite well whereas the AHFM-NRG+:k-εmodel under-predicts

the by huge margin when compared with DNS data. But overall the TKE trend by DNS data has been closely

followed by RSM-EB:AHFM-NRG+ model and also have predicted the location for TKE maxima. Closely ob-

serving TKE plot, it can be said that the magnitude of the kinetic energy is over-predicted as compared with

reference DNS data whereas the Reynolds Analogy has under-predicted TKE. Overall trend across domain,

is well followed by both models, given by DNS. In conclusion, for this case the AHFM-NRG+:RSM-EB has

improved results by a comparable margin than THF closure of AHFM-NRG+:k-ε model as well as Reynolds

analogy.

Figure 5.11: Mean temperature distribution for Ra 381e3 Pr 0.7
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Figure 5.12: Temperature Variance for Ra 381e3 Pr 0.7

Figure 5.13: Turbulent kinetic energy for Ra 381e3 Pr 0.7
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5.5.6. CASE 4

In this section the results from the numerical simulation of Case 4 have been presented. This simulation

case is defined by Prandtl number as 0.025 and Rayleigh number as 100000. The mean temperature dis-

tribution for AHFM-NRG+:RSM-EB shows agreement with the reference DNS data. For near wall region,

AHFM-NRG+:RSM-EB and AHFM-NRG+:k-ε have shown slight deviation from reference data. For region

Y/H 0.3 to 0.7, AHFM-NRG+:RSM-EB has shown better agreement than any other THF closure. For temper-

ature variance and turbulent kinetic energy, the AHFM-NRG+:RSM-EB model follows the trend of reference

DNS data although the magnitude in both the cases has been estimated a little more. Similar trend can be

seen in the case of turbulent heat flux also. The AHFM-NRG+:RSM-EB model follows the trend by DNS and

gives a much better agreement with reference DNS data than Reynolds Analogy. In all the parameters AHFM-

NRG+:RSM-EB has performed way better than Reynolds Analogy and temperature profile is predicted better

than AHFM-NRG+:k-ε model.

Figure 5.14: Mean temperature distribution for Ra 1e5 Pr 0.025
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Figure 5.15: Temperature Variance for Ra 1e5 Pr 0.025

Figure 5.16: Turbulent kinetic energy for Ra 1e5 Pr 0.025
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Figure 5.17: Turbulent heat fluxes for Ra 1e5 Pr 0.025

5.5.7. CASE 5

In this section the results from the numerical simulation of Case 5 have been presented. This simulation

case is defined by Prandtl number as 0.025 and Rayleigh number as 50000. The mean temperature distribu-

tion for AHFM-NRG+:RSM-EB shows agreement with the reference DNS data. For near wall region, AHFM-

NRG+:RSM-EB and AHFM-NRG+:k-ε have shown slight deviation from reference data. For region Y/H 0.3 to

0.7, AHFM-NRG+:RSM-EB has shown better agreement than any other THF closure. For temperature vari-

ance and turbulent kinetic energy, the AHFM-NRG+:RSM-EB model follows the trend of reference DNS data

although the magnitude in both the cases has been estimated a little more. Similar trend can be seen in

the case of turbulent heat flux also. The AHFM-NRG+:RSM-EB model follows the trend by DNS and gives

a much better agreement with reference DNS data than Reynolds Analogy. In all the parameters AHFM-

NRG+:RSM-EB has performed way better than Reynolds Analogy and temperature profile is predicted better

than AHFM-NRG+:k-ε model.
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Figure 5.18: Mean temperature distribution for Ra 5e4 Pr 0.025

Figure 5.19: Temperature Variance for Ra 5e4 Pr 0.025
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Figure 5.20: Turbulent kinetic energy for Ra 5e4 Pr 0.025

5.5.8. CASE 6

In this section the results from the numerical simulation of Case 6 have been presented. This simulation

case is defined by Prandtl number as 0.006 and Rayleigh number as 24000. The mean temperature distribu-

tion for AHFM-NRG+:RSM-EB shows agreement with the reference DNS data. For near wall region, AHFM-

NRG+:RSM-EB and AHFM-NRG+:k-ε have shown slight deviation from reference data. Since in this case the

Pr number is very low, the fluid almost behaves like a metal and almost linear temperature profile is ob-

served. For temperature variance, turbulent kinetic energy and turbulent heat fluxes, the AHFM-NRG+:RSM-

EB model follows the trend of reference DNS data although the magnitude in this case is been underesti-

mated. The AHFM-NRG+:RSM-EB model follows the trend by DNS and gives a much better agreement with

reference DNS data than Reynolds Analogy. In all the parameters AHFM-NRG+:RSM-EB has performed way

better than Reynolds Analogy and temperature profile in agreement with the AHFM-NRG+:k-ε model.
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Figure 5.21: Mean temperature distribution for Ra 24e3 Pr 0.006

Figure 5.22: Temperature Variance for Ra 24e3 Pr 0.006
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Figure 5.23: Turbulent kinetic energy for Ra 24e3 Pr 0.006

Figure 5.24: Turbulent heat fluxes for Ra 24e3 Pr 0.006
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CONCLUSION AND FUTURE SCOPE OF WORK

The primary objective of the present work is to calibrate and validate RSM-EB:AHFM-NRG+ model for turbu-

lent heat fluxes to natural convection flow regimes and therefore the validation study has been conducted in

the previous chapters. In this chapter conclusions drawn from the present work and future scope of work will

be discussed.

6.1. CONCLUSION
Natural convection is one of the most important flow regimes for nuclear applications. The naturally driven

coolant flow systems work on the principle of the natural convection. Hence it is important that the heat

transfer and flow are accurately predicted. In this section, the conclusions drawn from the results of the

above mentioned analysis and numerical experiment will be discussed. Focus has been given to test cases

with low-Prandtl fluids as it is relevant in the nuclear applications.

• The main reason for the turbulence in the natural convection flow regimes is the buoyancy. Increase

in the Rayleigh number, we observe an increase in the level of turbulence in bulk region as well as near

wall. Mushroom like behavior of the flow is observed.

• As Rayleigh Bénard cells are formed, the velocity profile have seen to have periodic fluctuations repre-

senting itself in cell like structures.

• The thermal field is influenced largely by the turbulence due to buoyancy and Prandtl number of the

fluid. As the Prandtl number increased from 0.025 to 0.7, the thermal field is more stable in the bulk

region whereas the field shows high gradients in the near wall regions for the cases considered.

• The Reynolds analogy clearly fails to predict the thermal field accurately irrespective of the TMF model

it is coupled with. This is attributed to the incomplete modeling of the turbulent heat fluxes. The

limitations of this model are significantly seen as the higher Rayleigh number is achieved.

• The RSM-EB:AHFM-NRG formulation has shown some inconsistencies in predicting turbulent heat

fluxes, turbulent kinetic energy and temperature variance. Although on a closer look it can be con-

cluded that the overall mean profiles of these quantities are aligned with DNS data and considering the

limitations of RANS approach, the model has performed very well.

• The calibration of the algebraic heat flux model for Ct3 improves the thermal predictions significantly as

compared to other models. Since the coefficient defines the weight of the buoyancy term in the model,
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it is no surprise that we see improvements in the results due to the calibration. The results are in fair

agreement with the DNS data for the respective test cases.

6.2. FUTURE SCOPE OF WORK
In scope of present work, AHFM-NRG+:RSM-EB model has been extended to natural convection flow regimes.

For validation purposes, the prototypical case of natural convection flow regimes, i.e. Rayleigh Bénard Con-

vection case, is chosen. Test cases with different flow properties such as Prandtl and Rayleigh number, are

considered. The results from the numerical simulations are compared with reference DNS data to validate

the model. The results showed excellent agreement in predicting the thermal field accurately. The AHFM-

NRG+:RSM-EB model has been extended to forced convection flow regimes and has shown good improve-

ments for industrial cases as shown by Shams et al., [39]. Since the AHFM-NRG model is calibrated and vali-

dated in natural and forced convection flow regimes, future scope of work may include validating the model

for mixed convection as well. Also it will be interesting to see how coefficient Ct2 affects the mixed convection

predictions.

Current model can be applied to cases with industrial applications, which involve natural convection

flows, and experiments done in the area of natural convection regime, for understanding the behavior of the

model in complex geometries and flow conditions. The test cases considered for validation study range from

Rayleigh number of 24000 to 20000000. It would be very interesting to see the results from the simulations

with even higher Rayleigh number such as 108 to 1012. The application based cases and comparative studies

with experiments will help us gain the confidence in the model and also can lead us into the next step for

further improvement.

Future scope may also include the automated calibration of model coefficients. The each model coeffi-

cient will be decided by the solver based on the flow conditions and fluid properties. This is an important

step in moving towards a more holistic approach of numerically predicting turbulent heat fluxes in RANS

methodology.
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APPENDIX

A.1. MESH SENSITIVITY ANALYSIS

In the framework of the current thesis project, calibrated model AHFM-NRG+:RSM-EB has been extended to

the natural convection flows. The model validation has been conducted on a mesh that as been selected post

mesh sensitivity analysis. This appendix reports the details of the mesh sensitivity analysis performed for the

RANS calculations for the considered RBC setup. The mesh sensitivity analysis has been conducted for all

the Prandtl numbers considerd in the study which are Pr = 0.7 , 0.025 and 0.006. In the context of reporting

mesh sensitivity study, results for Pr =0.7 have been reported in the appendix. In the analysis, the THF closure

has been chosen as AHFM-NRG+:RSM-EB and TMF is chosen as Reynolds stress model elliptic blending ap-

proach. The parameters describing the grids considered in the study are summarized in the following table

A.1.

Mesh 1 Mesh 2 Mesh 3

Nx 100 200 400

Ny 100 200 400

∆yw all 0.001 0.0005 0.00025

Ntot al 10k 40k 160k

Table A.1: Summary for parameters defining the three meshes used for analysis

The refinement has been done in x and y direction. Also the ∆yw all has been maintained in such a way

that the resultant mesh satisfies y+ < 1 condition for all the Prandtl numbers considered for the numerical cal-

culations. The results obtained for mean temperature distribution, turbulent kinetic energy and temperature

variance are reported below.
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Figure A.1: Mean temperature distribution for considered three meshes

Figure A.2: Turbulent Kinetic Energy distribution for considered three meshes
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Figure A.3: Temperature variance distribution for considered three meshes

From the figures it can be seen that, the mean temperature distribution for Mesh-1 has shown slightest

disagreement with DNS and Mesh-2 and Mesh-3 have shown improved results as compared with Mesh-1.

Although the there has not been significant improvement from Mesh-2 to Mesh-3 and the temperature profile

almost follow same plot. The deviation of Mesh-1 results for temperature distribution is as low as 0.8% with

respect to Mesh-3 results. Similarly in case of temperature variance and turbulent kinetic energy, Mesh-2 and

Mesh-3 have shown improvement as compared to Mesh-1. The deviation is of less than 5% for TKE and Tvar

with respect to Mesh-2 and Mesh-3.

A.2. PERTURBATIONS IN TEMPERATURE FOR PR 0.025

This section aims at reporting perturbations observed in temperature profile for the simulations with RBC

setup for fluid with Prandtl number as 0.025. It should be noticed that the perturbations are observed only for

Prandtl 0.025. The perturbations although get averaged out during the averaging of the temperature profile

across entire domain. Following plot denotes the observed perturbation in temperature profile at x = 2.6

along y axis.
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Figure A.4: Perturbations in Temperature profile
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