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Life lessons from and for distributed MPC

— Part 2: Choice of decision makers
S. Olaru, P. McNamara, J.C. Canizares, M. Farina, J.M. Maestre,
P. Trodden, R.R. Negenborn.

Abstract: This paper and an accompanying paper (McNamara et al., 2018) revisit the
Distributed Predictive Control (DMPC) literature and seek to establish links with the social
behaviour, focusing in particular on ways in which DMPC could be used to provide insights
into the mechanisms of group regulation in social systems. It will be noted that there are major
differences between the way in which DMPC algorithms and Social Human Participants (SHPs)

form their respective decisions.

Whereas in a first paper (McNamara et al., 2018) we concentrated on the dynamics of the
cooperation and the weightings in the agents’ decision, the present paper extends the discussion
to the arrangements in the group of decision makers. This paper concludes with some caveats
as regards further analyses of social system using the methods proposed in these two papers.

© 2018, TFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Keywords: Distributed Model Predictive Control, Social Systems.

1. INTRODUCTION

Social systems are composed of dynamically interacting
individuals and groups with interdependent goals. These
individuals and groups are capable of taking actions and
sensing their environments, but are limited by all sorts of
constraints. There are several issues that can arise when
these parties seek to make decisions together. Examples of
such issues are an inability to reach consensus on decisions
either efficiently or at all, displaying a lack of empathy
for the other decisions makers, bad leadership, a lack of
transparency in decision making, etc. The area of Distri-
buted Model Predictive Control (DMPC) provides a num-
ber of novel methods for automated decision making in
group scenarios in which individual decision makers, called
agents, communicate with each other in some fashion in
order to control a number of interconnected subsystems.

In this article, it is proposed that DMPC techniques could
be useful for the general anaylsis of agent systems such
as social systems. Moreover, the straightforward analysis
of such systems using abstract mathematical concepts can
be problematic. We provide several caveats in this regard
at the end of the article. Thus this article seeks to see
if there’s the potential for “life lessons” to be learned by
the life sciences from results in the DMPC literature, and
equally posit a number of ways that the DMPC literature
could learn from previous experiences gained in the past
using other mathematical tools to analyse the life sciences.

Society is composed of groups or individuals, which hence-
forth are referred to as Social Human Participants (SHPs).
The actions of SHPs in trying to achieve some goal, typi-
cally have consequences not only for the environment of
the SHP responsible for the action but also for other SHPs
who are connected in some way to the SHP responsible for
the original action.

Then SHPs will have a range of goals that they wish to
fulfil and will seek to achieve these goals using the mental
models that they have of the particular system with which

they are engaged. However, as SHPs must share resources
and dynamically interact with other SHPs, some degree
of collaboration with other SHPs is necessary in order to
achieve these goals. Thus, SHPs must consider the actions
of other SHPs in order to reach their objectives. Equally
the models SHPs have of external SHPs will typically be
based on experience. For example, over time people will
have developed an understanding of what is acceptable
social behaviour in various situations and will have an
idea of the likely consequences of their actions in various
circumstances.

The paper is organized as follows. Section 2 recalls the
Distributed MPC framework in order to establish a link
with the companion paper and to offer the necessary
elements for the main analysis. Section 3 presents a series
of insights on the arrangements of the decision makers
and performs the analysis in parallel between the DMPC
and SHPs. The paper is completed by two sections, one
dedicated to the caveats of the present study and the
second to the conclusions and outlook.

2. RECALL OF TYPICAL DMPC FORMULATION

In order to provide a self-contained material, this section
recalls the basic description of DMPC problems. The
notation and formulation are those introduced in the
companion paper (McNamara et al., 2018). The prediction
mechanism builds on a discrete-time, linear, time-invariant
state-space model for each subsystem 4,
:cl(k—i— 1) :Ale(k)+Blul(k)+Vzvz(k) (1)
y;(k) = Cizi(k), (2)
where z;(k), u;(k), and y,(k) are the states, inputs, and
outputs of the i*" subsystem at sample step k, respectively,
and v;(k) are external inputs from other subsystems that
influence subsystem ¢ at sample step k.

Using this discrete-time model, the i*" subsystem’s trajec-
tory over H sample steps into the future can be mathe-
matically described using the information of the current
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states and the future control action, where H is called the
prediction horizon. Using a centralised predictive control
approach, a finite-time optimal control problem is solved
at each sample step for a system of NN interconnected
subsystems
N
: local

(K)o (k) ;w‘] - )
subject to constraints, where the cost function J°°2!(k)
accounts the control goals of area i, w;(k) are the values of
u; over the H predicted samples steps, and the weight w;
determines the relative importance of minimising J:°°2!(k)
in the cost function. Each agent then applies only u;(k)
to the system and repeats this process each sample step
by receding the prediction horizon. It should be noted
that tuning of the weights w; can have a significant effect
on how the system operates. A discussion of some of the
implications of weight tuning in the context of distributed
MPC is given in Section 4 of the companion paper.

As mentioned in (McNamara et al., 2018), some distribu-
ted controllers are built with the capability to solve (3) in a
non-centralised iterative fashion, where the i*® agent solves
for @;, and the result is Pareto optimal Venkat (2006). This
implies that each agent has access to the global system
model that a centralised controller does, and all agents
can communicate with each other. As in cooperative opti-
mization routines, found in game theory, these agents seek
to solve the global system goal of (3) based on access to
a global system model. These algorithms are also called
Cooperative DMPC algorithms.

Often agents only have access to local variables and
then may be only capable of communication with agents
with whom they share an interconnecting variable. Given
that these algorithms are based on local cost functions
they are referred to as Non-Cooperative distributed MPC
algorithms. In the simplest form of such algorithms, agents
will solve: el
: oca.
min J; (k), (4)
subject to some constraints.

If agents are allowed to build on an inter-agent commu-
nication it is typically then possible for them to achieve
performance ranging from that achievable using (4) to that
using (3). Many of these solutions will take a form which
explicitly accounts the local performance index and the
interconnection cost:
min

n o w; JPM (k) 4+ J(k), (5)
ai(k),0i(k)

subject to constraints, where the Ji*r (k) cost is designed
to allow agent ¢ deal with interconnecting constraints. The
vector 8; represents a collection of variables used to coor-
dinate the actions of the i*" agent with other agents with
whom the i*! agent shares an interconnecting variable. For
example, in Negenborn et al. (2008) Ji"°r(k) is used to
allow agents to reach consensus on interconnecting varia-
bles over the prediction horizon in an iterative fashion,
and 6@; are the values of the interconnecting variables
that the i*" agent would like to receive. Typically these
algorithms achieve, at best, a Nash optimal response,
which provides performance somewhere between that of
a selfish MPC algorithm, where agents only optimise for

Jlecal(k), without communicating with other agents, and
an algorithm which achieves Pareto optimal performance.
Often these algorithms are referred to as non-cooperative
DMPC algorithms.

The preceding paragraphs were presenting a common
basis with the companion paper (McNamara et al., 2018).
They do not offer an exhaustive account of the range of
distributed MPC algorithms that have been developed,
and merely serve to give a general flavour of the way in
which distributed MPC can be solved. The vast DMPC
literature contains an array of techniques that have been
developed based on varying mathematical approaches,
and system and communication architectures. For more
technical descriptions the reader is referred to Maestre
and Negenborn (2014); Negenborn and Maestre (2014).
Having briefly introduced the DMPC mechanisms, the
following sections will discuss insights into the organisation
of social systems which can be gained from analyses based
on results from the DMPC literature and the selection of
the sources of information for the decision making.

3. INSIGHTS INTO THE ARRANGEMENT OF
GROUP DECISION MAKING

In any large group of interacting agents it is of interest
to observe the phenomena related to the way in which
agents both choose their decision makers and organise
decision making processes. The following techniques from
the DMPC literature provide insights into the types of
SHPs that others are likely to wish to deal with in decision
making processes, and insights are given regarding the
ways groups may optimally choose between decision ma-
king structures, which in turn could be useful in analysing
the dynamics of systems in found social structures, such
as the electoral system.

3.1 Reliability of SHPs and stability?

When a SHP acts in a shared environment with others,
they must gain knowledge upon the other SHPs’ behavior,
in order to try predict those individuals’ future actions or
states, and possibly how their actions/states affect their
own state. Through the development of general models for
how another behaves over time (possibly identified through
interaction), a SHP can then predict to a certain extent
how another SHP will behave. Naturally, these predictions
are affected by uncertainty. To guarantee safe interactions
with other individuals, uncertainty upon their behaviour
must be suitably counteracted.

The DMPC method presented in Farina and Scattolini
(2012) is based on the following idea: each subsystem
assumes that the future state/input trajectories of the
interacting subsystems lie in a pre-defined bound of some
nominal ones (which are known in advance) and seeks
to minimize a local cost without having to make any
further assumption about the behaviour of the neighbors.
A similar philosophy is followed in Grancharova and Olaru
(2015) for modelling the uncertainty by means of (poly-
topic) bounds on the parameters of the linear prediction
model of each subsystem (1). In a few words, in these
DMPC strategies each agent seeks to maximize its own
”worst case” utility, similarly to max-min solutions of non-
cooperative games.
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When designing non-cooperative DMPC, the sizes of the
uncertainty sets allowed to all subsystems are not freely
chosen but must be identified (or, in a way, negotiated)
in a collective, although aggregated, fashion. Due to the
interdependencies between the uncertainties of each agent,
the uncertainty sets of each agent need to be chosen
carefully in order to ensure safe and reliable operation of
the overall control system.

The uncertainty related to the information (i.e., the pre-
dicted state/input trajectories) transmitted by each subsy-
stem to the neighboring ones, in its turn affects the uncer-
tainty related to the predictions that can be computed by
the neighbors and, in a few words, propagates throughout
the subsystem network. Therefore, only with a careful (and
somehow centralized) choice of the uncertainty allowed
to each subsystem one can guarantee a safe and reliable
operation of the overall (distributed) control system.

Two facts are observed. First, systems which are internally
robust (in the sense that the gain between the input
provided by the neighbors states/inputs and the internal
state variables is low) are able to reject the uncertainty of
neighbors efficiently, and therefore avoid propagation (i.e.,
amplification) of the uncertainty throughout the overall
system. Second, the uncertainty related to subsystems
influencing many other subsystems (through the model
equations) normally heavily propagates through the net-
work of subsystems.

It was possible to infer the following rules of thumb for
the choice of the uncertainty levels related to the behavior
of each subsystem, also verified through empirical and
simulation studies:

(1) The uncertainty set allocated to more internally ro-
bustly stable subsystems should be small, in order
to exploit their natural capability to reject/absorb
disturbances. On the other hand, the uncertainty set
related to less internally robustly stable subsystems
should/can be allowed to be greater.

(2) The uncertainty sets allocated to subsystems which
are neighbors of many other ones must be small. To
put it another way, in order to guarantee the stability
of the overall system, one must design the system in
order to make subsystems coupled with many others
as robust as possible.

This defines somehow a hierarchy between interacting
subsystems: both the most resilient subsystems and the
ones affecting many other ones must also be the most
reliable and trustful. On the other hand, the less resilient
subsystems are allowed to transmit information with more
uncertainty but, in order to guarantee stable behaviour in
the overall network, their influence upon other agents must
be limited.

This in turn can be related to multi-SHP decision making
processes. As mentioned above when dealing with other
SHPs in decision making processes, individual SHPs will
have a perceived model of the other SHPs in the group, and
will have an idea of the uncertainties associated with these
other SHPS (or an idea of how consistent these SHPs are).
Indeed, one tries to be as robust as possible with respect to
the unpredicted behavior of neighboring agents assumed to
be unreliable (this is done by accounting for the fact that

the uncertainty in their behavior may be great), while the
behavior of trustworthy neighbors is assumed to be more
close to the presumed one.

A simple example where a distributed robustness-based
predictive control algorithm idea is naturally applied is
when we drive a car: we assume that the neighboring cars
follow some defined "nominal” trajectories (in this case we
identify their nominal trajectories based on their actual
position, their velocity, the type of road, etc.) but we also
assume that our guess can be affected by some uncertainty,
i.e., related to the level of confidence. This is basically how
we (try to...) avoid making accidents all the time. In case,
for example, a neighboring car reacts in an unreliable way
to the external environment (sudden changes in direction,
velocity, unexpected breaks), the uncertainty level related
to its expected trajectory will be high, and we try to
increase the distance from it. One the other hand, we
normally drive relatively close to cars that run smoothly
and reliably.

Related to this, the observation could be made that
in general, in decision making processes, SHPs tend to
gravitate towards other SHPs who appear to be highly
stable and reliable, and on the other hand, the more
connections an individual SHP has, the more reliable that
SHP is considered to be.

3.2 Choosing representative bodies

In social systems there are many examples of systems that
need regulation of a number of outputs, and for these
outputs, decisions are made at regular intervals as to the
representative structures that should be used to regulate
these systems. The illustrative example that will be used
here is the process of Democratic Elections (DEs).

DEs could be considered to operate as follows. There are
various systems such as our economic, legal, educational,
etc., systems that need to be managed. These systems
additionally provide various indicators as to how well
they are being managed. For example, it is desirable that
inflation would be kept at reasonable levels from the
perspective of our economic systems, and it is desirable
that high percentages of the population are receiving a
good education. Political parties could then be considered
to provide various models for the management of these
systems, which look at the outputs, and based on their
perceived model of the system, regulate the inputs to the
system, e.g., funding for education, interest rates, etc.
Based on the performance of different political parties,
who use various combinations of outputs and models to
control these systems, then the public make decisions
at fixed intervals as to which parties should be used to
control the system next. Thus this defines a model of
the democratic system of elections. While it may not be
possible to comment on the optimality of the decision
to elect a party, an optimal system of choosing amongst
these various decision agents could provide useful insights
into the consequences of choosing representatives in this
fashion.

In Stoican and Olaru (2013) a predictive method is deve-
loped for choosing between arrays of healthy and faulty
sensors, which in turn are used for informing the control
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Fig. 1. The method of choosing healthy and faulty sensors,
with democratic electoral system equivalents.

of the system. An example system for which this may be
applied is given in Fig. 1 and it is now shown how analogies
can be drawn between this system and the formation of
representative systems, such as the DE process. The real
systems are given by G1,G2,G3, and for the DE ana-
logy these represent the different systems to be controlled
by the government. Each of these systems produce the
outputs ¥y, Y, Ys which are measured, and fed back into
a number of different controllers, which have models A;
related to the certain estimated states of the system, and
B, related to certain inputs of the system. The aim of
the work in Stoican and Olaru (2013) was to be able
to optimally determine which sensors were healthy and
which were faulty, in order to improve system performance
through the removal of the faulty sensors.

Parties can be considered as combining A;, B; models
with sensor outputs as proposed in Stoican et al. (2014)
for switched control configurations. Thus the same analysis
that is used for choosing which sensors to use for control
can be extended for deciding which models/parties to
optimally choose for controlling the system. Therefore
several of the issues related to the choice of sensors could
be equally related to the system of deciding which parties
or combinations of parties should be used to control the
system.

For instance, one of the issues outlined in Stoican and
Olaru (2013) is that it is possible for faulty sensors to
remain in a pool of healthy sensors. The effect of these
faulty sensors may not be differentiable from an unknown
disturbance, and could potentially bias the entire closed
loop. The lesson here from a political perspective, is that it
might not be possible to detect that errors in the regulation
of a particular system are due to the approach being taken
by the party to regulate it. This is because the healthy
parts of the system may compensate for the faulty parts,
and it may not be possible to determine if errors are due
to the faulty model or unknown disturbances.

Another issue in Stoican and Olaru (2013) is that it is
only possible to determine when a sensor is faulty once
the system begins to deviate from its optimal path, i.e., the
only time when it can be detected that a sensor is faulty
is when the system behaves in a way not predicted by
the system model. Likewise, in terms of political systems
it could be recognised that when systems appear to be

running as desired the ability of a party to manage the
system is rarely called into question. It is only when our
financial, social aid, etc systems deviate away from their
desired performances that people begin to recognise that
there might indeed be flaws with the systems in place. The
lesson that can be learned from Stoican and Olaru (2013)
is that a potential method for ensuring that the right
models are being used for control of a system, would be
to purposefully make the system deviate from it’s desired
behaviour even though it is currently achieving it’s desired
outcome. However, it’s unlikely that any political party is
likely to willingly adopt such a strategy in reality!

4. CAVEATS ON THE APPLICATION OF THESE
INSIGHTS

It is necessary to be careful when analysing social sys-
tems using abstracted mathematical formulations. Often
engineering systems can be modelled as linear systems in
which there is some bounded uncertainty, for the purposes
of designing a controller for the system. Social systems
may not be so well behaved, and may exhibit highly
nonlinear behaviours. Social systems may also exhibit non-
equilibrium behaviour that is not accounted for in models
which assume the system is in equilibrium. Also, a SHP
may not necessarily behave as either a function minimiser
or a satisficer Farmer (2012); Borrill and Tesfatsion (2011).
If ever there was a strong example of where the use of
abstract models for controlling systems can go wrong,
it is in economics, where a new era of simulation based
analysis has been developed in recent years, following the
failure of abstract models such as the Dynamic Stochastic
General Equilibrium models to predict economic crises
Farmer (2012).

However, lessons can be learned from the previous uses
of Game Theory for the prediction of phenomena in
group behaviour. There have been several cases in which,
once an experiment is carefully designed, the theoretical
predictions of the theory were observed in reality, and
the use of game theory for auction design in the UK
3G network was highly successful Wooldridge (2012). A
caveat however, is that often Game Theory is used for
analysis in places where the underlying assumptions are
wholly inappropriate and so it is important to be careful
of where such analyses are applied. Additionally, where a
real life experiment may not be capable of confirming a
theoretical result, simulation using learning agents could
be used. For example in Krause et al. (2006), the Nash
equilibria in a power system market are derived and are
found to parallel those that are found by decentralised
reinforcement learning based agents.

5. CONCLUSIONS AND OUTLOOK

In this article and the companion paper (McNamara et al.,
2018) a number of observations from the Distributed
Model Predictive Control (DMPC) literature are used to
illustrate the potential of this body of work to provide
insights into the operation of social systems. Furthermore
once these insights had been discussed a number of caveats
were provided as regards applying such analysis to social
systems, as opposed to the application of these techniques
in their traditional application domains.
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While the authors here have provided insights based on
their own experience of developing and using DMPC
algorithms, there is likely to be more insights gained from
a careful analysis of the DMPC literature. Additionally,
society is facing a host of environmental, social, economic,
and political challenges for which the current suite of
DMPC could hold promising solutions. Through attempts
to solve these problems there is no doubt that the short
comings of DMPC techniques will also be highlighted and
thus the development of DMPC could equally be driven
further through interactions between the DMPC and social
science domains. Recently Barreiro-Gomez (2018) explore
this avenue by analyzing the role of population games in
the design of optimization-based controllers.
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