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Abstract

Catalysts are everywhere. They help accelerate and enable essential industrial processes towards suc-
cess by being selective towards certain products and producing higher yields of said products at an
agile manner. Nowadays, the relevance of catalysts is not only in industrial production, but also in the
development of novel structures which are able to provide reaction pathways of relevant processes, such
as the production of green hydrogen, or conversion of CO2 into relevant products. For this, computa-
tional simulations are used as the first step in screening potential candidates that are able to provide
higher yields or selectivity in heterogeneous catalysis reactions. However, these simulations are mainly
done through the use of DFT, which requires a high computational cost and convergence time. Machine
Learned Interatomic Potentials (MLIPs) have risen as complements for DFT simulations via training
and learning from DFT energies and forces data to provide a platform for molecular dynamics simu-
lations used to study the movement and behavior of atoms and molecules over time. In this research
project, an active learning loop is engineered with the purpose of automating the workflow of training,
using, and fine-tuning a MLIP (in this case, MACE) for its further use in catalysis energetics calcula-
tions.
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1
Introduction

Fossil fuels have been the staple for societal progress and industrial evolution over the past two cen-
turies. This is mainly due to their affordability, abundance, and availability. By now, it is well known
that the use of fossil fuels generates carbon dioxide and other greenhouse gas emissions, making them
responsible for 75% of the worldwide greenhouse gases present in our atmosphere [1].This increasing
trend (as shown in Figure 1.1) of greenhouse gas concentration in the atmosphere induces more severe
climate change effects, such as intense weather patterns, higher global temperatures, and melting of the
ice caps.

With global energy demand projected to increase by up to 48% by 2040, there is a growing need for
sustainable alternatives in both electricity and industrial production [3]. Catalysis offers promising solu-
tions, enabling newmolecular transformations and synthetic routes, such as green hydrogen production,
carbon capture, and ammonia synthesis [4]. Catalysts, which are materials that accelerate a reaction
without being consumed, are crucial for these processes, accounting for over 90% of all compounds in
the chemical industry [4]. These materials not only increase reaction rates but also improve selectivity
and yield, reducing unwanted byproducts [5]. The ongoing search for new catalysts focuses on devel-
oping sustainable, economically feasible, and efficient materials with long lifetimes and resistance to
poisoning to meet the demands of various industries [5, 6].

Nanocatalysts show great promise towards creating a path for sustainable catalysis. Due to their in-
creased surface area compared to the bulk, nanocatalysts are able to improve reaction speeds and selec-
tivity. Their performance may also be optimized via the adjustment of their physical features, such as
shape, size, structure, content, and materials. Plenty of research has shown resource efficiency, energy
consumption, and waste reduction with the use of nanocatalysts [5, 7, 8]. Metallic nanoparticles (mNPs)
must be highlighted since there are studies showing potential to tune their catalytic performance bymod-
ifying these physical features. This is easier said than done, since many calculations and simulations
must be done to comprehend the relation between catalytic activity, kinetics, and reaction mechanism
with the structure, shape, and size of the nanostructures [9–11].

Currently, machine learning and AI models have been deployed to assist in the optimization of cata-
lysts to understand the structure-activity relationship of the catalysts, where high-throughput catalyst
screening has been the most useful in showing predictions of computable physical properties (known as
descriptors), such as adsorption or formation energies, which can be related to the activity or stability
of the material [12, 13]. In spite of multiple accomplishments, there are still significant challenges that
must be addressed for this field to reach its full potential.

This study introduces an approach for generating machine-learned interatomic potentials (MLIPs) using
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Figure 1.1: Trends in Greenhouse Gas Emissions by Sector, obtained from [2]

active loop engineering based on the MACE machine learning model to better fit the generated models
for prediction at a DFT level. The objective is to create highly accurate and computationally efficient
potentials for use in molecular dynamics simulations.

We’ve applied these potentials to investigate the stability of a Ni/Ga2O3 catalyst, a promising and
selective material for the hydrogenation of CO2 to form methanol [14]. CO2 hydrogenation provides
a utilization pathway of captured CO2 from the atmosphere or from industrial processes to produce
methanol, which is a highly utilized substance in the chemical industry [15]. Furthermore, the MLIPs
are used to calculate the energetic barrier for the formation of the formate ion, a critical intermediate in
the CO2 hydrogenation reaction.

By demonstrating that MLIPs enable molecular dynamics simulations with both high accuracy and
speed, this work suggests that they can serve as a substitute or complement to traditional Density Func-
tional Theory (DFT) calculations in catalyst screening. This approach offers the potential to signifi-
cantly accelerate the discovery of new catalysts by requiring only a fraction of the time to converge
compared to conventional methods.



2
Theory and Background

2.1. Heterogeneous Catalysis

As explained byOstwald [16], catalysis involves the acceleration of a sluggish chemical process through
the presence of an external substance. The primary function of a catalyst is to reduce a reaction’s acti-
vation energy, which is achieved when reactant molecules attach to the catalyst. Although the catalyst
participates in the reaction, it is not consumed during the process [16]. Figure 2.1 provides a straight-
forward illustration of how a catalyst impacts a given reaction. The activation energy is anticipated
to be lower, meaning the reaction requires less energy to proceed. Additionally, Figure 2.2 presents
a schematic showing the interaction of a catalyst within a reaction, where molecules ’A’ and ’B’ are
reactants and ’P’ is the product. Initially, reactants adsorb onto the catalyst’s surface, followed by their
reaction, during which a peak in potential energy is observed, and then the product forms. Subsequently,
the product desorbs from the catalyst.

Catalysis is categorized into two main types: heterogeneous and homogeneous catalysis. In heteroge-
neous catalysis, the catalyst is typically a solid, while the reactants and/or products exist in a different
phase. Conversely, in homogeneous catalysis, both the catalyst and the reactants are in the same phase
[16, 17]. Another significant form of catalysis is enzymatic catalysis, where molecules like proteins
enhance the reaction rate [5].

Common heterogeneous catalysts encompass metals, metal oxides, metal salts, and organic materials.
Noble metals receive particular attention because they are considered superior catalysts due to their ex-
ceptional performance in various large-scale industrial processes. These applications include ammonia
oxidation, NOx reduction, catalytic cracking of crude oil, CO and hydrocarbon oxidation, and steam
reforming of methane to CO +H2 [17, 18].

3



2.1. Heterogeneous Catalysis 4

Figure 2.1: Energy reaction path with and without catalyst [18].

Figure 2.2: Reaction scheme with catalyst [19].

Several important characteristics of catalysts include activity, selectivity, and stability, which are defined
as follows:

• Activity: The capacity of a catalyst to accelerate a reaction’s rate by lowering the energy barrier
between reactants and products [16].

• Selectivity: The ability of a catalyst to favor the formation of a single, desired product over
alternative products [20].

• Stability: The sustained effectiveness of a catalyst over time, coupled with its resistance to deac-
tivation or poisoning [21].

Currently, the Sabatier Principle serves as a guiding concept for screening new catalyst materials or for
explaining the properties of existing catalysts. The Sabatier principle of optimum adsorption posits that
the binding energy between the catalyst material and the reactant(s) should be neither excessively weak
nor excessively strong. If the bond is too weak, the catalyst material and reactant might not interact
effectively; conversely, if the bond is too strong, the reactant will not desorb from the catalyst surface,
thereby hindering subsequent reactions [22].

The Sabatier principle is commonly illustrated through volcano plots. A qualitative depiction of the
Sabatier principle is shown in Figure 2.3, where an ideal catalyst material is situated at the peak of
the volcano-shaped curve. These plots are generated by comparing a measure of the reaction rate on a
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catalyst against its adsorption energy. This yields a volcano-shaped curve, indicating that the reaction
rate is low at both high and low adsorption strengths [22].

Figure 2.3: Sabatier principle represented in a volcano plot [22].

2.1.1. Nanocatalysis

Nanomaterials are simply defined as materials with a size ranging from 1-100 nm. These materials have
gained recognition across numerous scientific disciplines, including healthcare, food processing, con-
struction, cosmetics, energy manufacturing, and, notably, catalysis, owing to their distinctive properties.
A nanocatalyst can be described as a nanomaterial employed as a catalyst in a chemical reaction. These
materials offer unique advantages compared to conventional catalysts, such as improved mixing with
reactants, a higher surface-to-volume ratio, easier separation from the reaction mixture, and greater ease
in tuning catalytic activity and selectivity. The latter is emphasized as one of the most critical character-
istics of nanocatalysts, as the tuning of activity and selectivity is achieved by customizing the chemical
and physical attributes of the nanomaterial [8, 23]. Other benefits, as highlighted by Chen et al. [24],
include the following:

• Large surface area

• High tunability in morphology

• High density of edge sites

• Possibility of bimetallic catalysts

• Great support materials

• Provide favorable reaction environment

Nanocatalysts have demonstrated enhanced energy efficiency and reduced costs compared to traditional
catalysts. Other anticipated advantages of nanocatalysts are depicted in Figure 2.4. Beyond increased
catalytic activity, scaling down a material’s size to the nanoscale also confers higher conductivity, reac-
tivity, and optical sensitivity. Common nanocatalyst materials include carbon-based nanomaterials (e.g.,
graphene, carbon nanotubes, and fullerenes), metal nanostructures (iron, silver, gold, cobalt), metal ox-
ide nanoparticles (zinc oxide, titanium dioxide, silicon dioxide), and other types of nanomaterials (such
as quantum dots and metal-organic frameworks) [8, 24].
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Figure 2.4: Expected benefits of Nanocatalysts [8].

Nanocatalysts employed in heterogeneous reactions have exhibited high activity, selectivity, and stabil-
ity. With nanoparticles, researchers aim to enable underdeveloped reactions or optimize the activities of
existing reactions. The catalytic performance of nanoparticles can be optimized by adjusting their struc-
ture, shape, size, and material composition [5]. Highly active, selective, and durable catalysts, which
are in high demand for chemical manufacturing, energy conversion, and storage, can be developed with
the assistance of researchers.

Since electrocatalysis is an inherent surface phenomenon, it is significantly impacted by the surface
chemistry of nanostructures, which includes the density of active sites present on these structures’ sur-
faces. Consequently, it can be concluded that the primary focus for optimizing the performance of
nano-electrocatalysts used in the aforementioned electrochemical reactions can be further enhanced by
tailoring their active sites. Discovering these catalysts through conventional trial-and-error methods is
exceedingly time-consuming and resource-intensive; therefore, alternative optimization techniques for
novel nanocatalysts must be considered [25, 26].

In nanocatalysis, identifying catalytic sites is crucial for a deeper understanding of electrocatalytic reac-
tions and, naturally, for establishing improved criteria for future nanocatalyst design. For metal-based
nanoparticles, their compositions, crystal structures, and exposed crystal facets generally dictate the
properties of their catalytically active sites. Alloying is, thus, a common method to explore different
activities of catalytic sites and also an effective strategy to reduce the quantity of noble metals required
in the catalyst, thereby lowering material costs [27].

In metal nanocatalysts, various types of active sites can play significant roles in the material’s activity.
Figure 2.5 presents some examples. Firstly, unsaturated coordination sites, such as terraces, steps, kinks,
and the edge and corner sites of different materials, are well-known active sites in metals involved in
various electrocatalytic reactions. The coordination number of surface atoms is directly linked to their
adsorption energies; consequently, atoms with lower coordination numbers (including those located at
the previously mentioned active sites) are more thermodynamically unstable and potentially more active
for adsorbing reaction intermediates compared to coordinated, saturated atoms [27]. Surface defects,
such as vacancies and grain boundaries in metals and metallic compounds, also represent potentially
highly active sites.
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Figure 2.5: Typical active sites in metal nanocatalysts. a) Unsaturated coordination sites b) defect sites [27]

2.2. Research Methodologies in Catalysis

Studying catalysts and especially nanocatalysts is no easy chore. Decision-making takes place the mo-
ment one starts to think about which catalyst could have the potential to increase a certain reaction’s
activity, selectivity, or stability. From complex and multiple reaction pathways, diverse synthesis meth-
ods, multiple characterization techniques to choose from, differences in operando conditions versus
simulated, stable conditions, there are a great number of factors that must be taken into account to fully
understand how a specific material system works under a catalytic reaction. This can get to be very
overwhelming, from economic, time, and resources perspectives [6, 28, 29].

A traditional catalysis design methodology (as seen in figure 2.6) can be divided into three major steps:
Idea development and Synthesis of catalyst; Characterization, reaction mechanism, and kinetics, and
stability testing; and finally, scale-up to plant reactors for industrial production. In the primary screen-
ing, through deep research in literature, state-of-the-art catalyst research, and also previous experience,
researchers can come up with ideas for novel catalysts tailored ad hoc for specific applications that
researchers are interested in studying (e.g., electrocatalysis, photocatalysis, bio-catalysis, etc.) [4–6].
According to the desired properties that the catalyst requires for the application at hand, the composi-
tion, shape, synthesis process, and reaction conditions are defined. At this point, researchers jump into
the following stage, characterization and catalyst reaction kinetics/mechanisms. To study the surface
phenomena that occur in heterogeneous catalysis very well, there are two essential steps used in mod-
ern catalysis research: Spectroscopy techniques for characterization of the material, and experiments
or simulations of catalysts to study their reaction thermodynamics and kinetics [28, 29].
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Figure 2.6: Brief and General Catalyst Screening Methodology, adapted from [28, 29]

In this research project, emphasis is placed on the second screening section of the methodology; more
specifically, on the catalyst efficiency prediction. Computational methods are nowadays a staple in
catalysis research, since they are able to provide information about the catalyst structure-activity rela-
tionships after doing molecular dynamics (MD) simulations. More about this will be explained in the
following sub-sections [30].

2.2.1. DFT for Catalytic Research

Density Functional Theorem (DFT) is a computational method widely used due to the compromise be-
tween accuracy and computational costs. It is used for ab initio calculations of the structure of atoms,
molecules, crystals, surfaces, and their respective energetic interactions [31]. DFT has refined the
knowledge theory of fundamental chemical reactions, surface science, and electrochemical reactions
[32]. In catalysis, DFT has been regularly used to accurately calculate adsorption energies, which are
then used as descriptors of the catalytic activity for a large number of systems [30].

Models of reactivity trends that are able to single out catalytic activity or selectivity via important
parameters are essential prerequisites for understanding and tailoring surfaces with specific catalytic
properties. In principle, the kinetics of a given catalytic reaction can be understood if one calculates all
reaction free energies and activation free energy barriers as a function of coverage and surface structure
[33].

However, this would be extremely time-consuming and computationally demanding to calculate the
reaction free energies for all energy parameters for all elementary steps under every single condition,
which is why micro kinetic models are developed to evaluate catalytic properties. These models are
applied to understand surface reactivity dynamics of catalysts, pinpointing the most important micro-
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scopic material properties of catalysts. Reaction mechanisms, energy correlations of adsorbate energy
of intermediates and transition states may be calculated, leading to the development of linear scaling
relationships [34].

The presence of these relationships greatly simplifies the number of independent catalytic parameters
needed to fully describe the thermodynamics of complex surface reaction networks. The emergence of
empirical volcano plots over the past 50 years predicted this variable reduction by linking reaction rates
in heterogeneous catalysis to one or two parameters. Meanwhile, scaling relationships have provided a
theoretical basis for deriving volcano plots from first-principles DFT calculations [34].

Another linear correlation worthy of emphasis is the Brønsted-Evans-Polanyi (BEP) relation, frequently
employed to characterize surface reactions on catalysts [35]. The BEP relation establishes a linear
correlation between the activation energy and the enthalpy change of an elementary reaction. Stated
differently, it represents a connection between the adsorption energy and the transition state energy
for a given reaction [33]. This relationship enables a quantitative understanding of the volcano curve
observed in heterogeneous catalysis systems [36]. The BEP relation provides an empirical approach
to estimate kinetic parameters from thermodynamic values. With the aid of Density Functional Theory
(DFT), activation energies and enthalpy changes for specific elementary reactions can be derived from
first-principle calculations [36].

2.3. DFT Theory

As seen in previous sections, DFT usage is a staple for catalysis research due to its highly accurate
energy calculations through molecular and periodic simulations. DFT is the most commonly used com-
putational method since it provides an optimal balance between accuracy and computational cost, as
compared to other semi-empirical methods and wavefunction-theory-based alternatives [30]. The main
advantage of DFT over these methods is that it does not require significant a priori information of the
system. With DFT, a wide range of catalytic features and properties can be more easily researched, due
to the possibility of calculating adsorption energies, activation energy barriers, and obtaining plenty of
electronic structure information [30].

DFT is based on the theory of electronic ground state structures based on the electron density, ρ(r).
The electron density is a physical observable, and its integration over all space offers a calculation of
the total number of electrons N, as shown in equation 2.1. The electron density of a system uniquely
determines the ground state energy and properties of a system, since this functional is a function of space
and time. The electron density at a specific position in space can be written in terms of the individual
electron wave function (see equation 2.2).

N =

∫
ρ(r)dr = N

∫
...

∫
|Ψ(r, r2, ...rN |2dr2, ..., drN (2.1)

ρ(r) = 2
∑
i

ψ∗
i (r)ψi(r) (2.2)

The theoretical basis of DFT lies on two fundamental mathematical theorems proved by Kohn and
Hohenberg. The first theorem states that ”the ground-state energy is a unique functional of the electron
density”. This could also be interpreted as the ground state electron density is used as a basis to calculate
all other properties, including energy and wave function, of the ground state. The second property
describes an important property of the functional. Here, it is stated that ”the electron density minimizes
the energy of the overall functional is the true electron density, corresponding to the exact solution of
the Schrödinger equation” [30]. If the ”true” functional form was known, it is possible to vary the
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electron density until the energy from the functional is minimized. This minimization in energy would
then result in the finding of the relevant electron density.

This discussion emphasizes that the density determines the external potential, which then determines
the Hamiltonian and, in consequence, the wave function. With these last two factors, the energy can
be computed. Yet, there is still the issue of solving the Schrodinger equation, which arises due to the
impossibility of describing the electron-electron interaction in the Hamiltonian. To solve this bottleneck,
Kohn and Sham figured out that if the Hamiltonian operator for a non-interacting system of electrons
is employed [30]. This way, a ”fake” starting point system of non-interacting electrons is employed.
In this starting point, non-interacting electrons possess a ground-state density which is similar to some
real systems of interest of electrons that do interact. Afterwards, the energy functional is divided into
specific components to facilitate analysis. The complete functional is shown in equation 2.3. Here,
the terms ∆T [ρ(r)] + ∆V [ρ(r)] are joined together into the term Exc, referred to as the exchange-
correlation energy (see equation 2.4. It includes the quantum mechanical exchange correlation effects,
and the correction for the delta in kinetic energy between the ”fake” non-interacting system and the real
system [30].

E[ρ(r)] = Tni[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆V [ρ(r)] (2.3)

which may be simplified into:

E[ρ(r)] = Tni[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + Exc (2.4)

After a comprehensive understanding of how the energy functional is represented, it is important to
choose a correct computational protocol to run DFT successfully and provide accurate results. This
accuracy is also dependent on the selected catalytic model. Firstly, appropriate basis sets must be in-
putted to describe the shape of the orbitals in an atom. There are many available basis sets to choose
from according to the specific requirements of the desired calculations or working system [30]. These
basis sets mathematically represent the distribution of electrons in the system of interest [37].

2.3.1. Ab-initio Molecular Dynamics

Classical MD typically employs predefined empirical potentials. In conventional MD calculations, the
force acting on an atom is the result of the gradient of the energy, which depends on all nuclear coor-
dinates. Their oversimplified representations of interatomic interactions, however, result in the genera-
tion of incomprehensible empirical force fields that are not able to correctly describe the formation and
breaking of chemical bonds. Atoms in a chemical reaction or during diffusion move in a part of the
configuration space which is not included in the original adjustment of the parameters set in such MD
simulations [38, 39]. Classical MD is therefore not suitable for modeling catalytic reactions.

Ab initio MD (AIMD) has risen as a solution for this bottleneck. AIMD assesses interatomic forces
through precise electronic structure calculations. The forces acting on the atoms are derived in each
time step from a quantum mechanical theory of electron distribution given within DFT (such as GGA
or LDA) [38]. Ergo, it allows the research of chemical processes, and it is able to take into consideration
the contributions of various isomers of catalysts to reactions. This provides a more accurate reflection
of the catalyst dynamics under realistic conditions [39].

One major benefit of applying AIMD is that it doesn’t rely on experimental data, and it is possible to
accuratelymodel the formation and breaking of chemical bonds. It allows access to electronic properties
that can be related to atomic motions. However, an issue with this technique is that simulations can span
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thousands or even more time steps, and performing a full self-consistent quantum calculation at every
step would be computationally impractical [38].

Carr and Parrinello introduced a classical-like equation of motion for the quantum wave functions of
the electrons. As seen in equation 2.5, a Lagrangian that combines the classical dynamics of the nuclei
with a quantum mechanical approach of the electrons using DFT is established. This way, both nuclei
and electrons are treated simultaneously in a unified framework. The combined equations of motion
(shown here asMIṘI ) can be solved via a Verlet algorithm. These are obtained by finding the stationary
point of the Lagrangian under variations of ψi and RI with the orthogonality constraint (set here by the
Kronecker delta δij . To keep the electrons close to the ground state, fictitious dynamics are applied,
which propagate initially a fully minimized set of orbitals to subsequent minima corresponding to each
new nuclear configuration [38, 40]. Using a fictitious electron mass represented as µ ensures minimal
energy transfer from nuclei to electrons.

L =
1

2

(nuclei∑
I

MIṘ
2
I + µ

orbitals∑
i

∫
dr
∣∣∣ψ̇i(r, t)

∣∣∣2)

−E[{ψi}, {RI}] +
∑
ij

Λij

(∫
drψ∗

i (r, t)ψj(r, t)− δij

)
(2.5)

In AIMD, all electrons are represented. Including all core electrons with their respective basis sets for
heavy atoms is computationally expensive. Since core electrons are usually not of interest, they may
be replaced by potential functionals in the Hamiltonian, which are known as effective core potentials
(ECPs), where the electron-electron repulsion of the replaced core orbitals is included. These effective
core potentials are also known as pseudo-potentials, and they are developed considering an isolated
atom of one element [30].

In periodic, crystalline systems, plane-wave (PW) basis sets are more suitable. Here, the electrons in a
band are described by orbitals expanded in a basis set of planewaves. Here, eachBloch state is expressed
as a Fourier series, whose basis functions are computed efficiently and straightforwardly. However, the
inclusion of all core electrons for heavy atoms in PW-based calculations is quite expensive. In order to
reduce this computational cost, pseudopotentials (PPs) are used to smear the nuclear charge and model
the electron cores. Each of these PPs contains the minimum energy cutoff, which might be used in the
calculations. Different types of PPs are available to use, where the ultrasoft pseudopotentials (USPPs)
are widely used due to their significantly lower cutoff energy values. This introduces lower accuracy
in the system; however, empirical parameters are introduced to balance this tradeoff. This, however,
limits the transferability of these PPs. Nonetheless, the implementation of the projector augmented-
wave (PAW) method coupled with USPPs avoids this transferability disadvantage, providing nearly
identical results which are also congruent with those from all-electron calculations [30].

In this thesis project, Vienna Ab Initio Simulation Package (VASP) is used to perform ab initio quan-
tum mechanical calculations. Here, minimization of forces and geometry optimization are performed,
as well as MD simulations. VASP calculates an approximate solution to the many-body Schrodinger
equation to find the electronic ground state. This may be done using DFT by solving the Kohn-Sham
equations, or with the Hartree-Fock method. Essential characteristics of the tested system, such as elec-
tron orbitals, charge density, and local potential, are all represented using a plane-wave basis set within
the aforementioned PAW method. Using PAW pseudopentials, valence electrons may be efficiently
modeled while accurately describing the behavior near atomic nuclei [41].
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2.3.2. Exchange Correlation Energy Functional

As seen in equation 2.4, one major task in the Kohn-Sham theory is to derive approximations to the
exchange-correlation energy functional. The choice of the functional form for Exc is what mainly
differentiates various DFTmethods. The true form ofExc is not known. Multiple functionals have been
developed in the last decades to derive approximations of this factor. Two types of functionals exist:
non-empirical and empirical. The former satisfies certain constraints to make use of the known exact
constraints on the true Kohn-Sham functional. The ladder makes use of parameters that are obtained by
experimental or ab initio data [30].

Different functionals have different levels of accuracy, based on the way the Schrodinger equation
is solved within these functionals. Perdew and Schmidt have developed a categorization of different
functionals according to their accuracy level, named Jacob’s ladder (see fig 2.7). Higher levels of this
ladder represent higher accuracy levels, with the highest level being the resolution of the Schrodinger
equation without using approximations. The chemical heaven is reached once the accuracy needed to
predict the rates of chemical reactions is acquired (where energy errors of the order of 1 kcal/mol or
0.0434eV (or lower) are desired) [42].

The first level is the local density approximation (LDA), which assumes variations of the density to
be sluggish and treats the local density as a uniform electron gas. Above the LDA lies the generalized
gradient approximation (GGA), where information about the local electron density and local gradient in
the electron density is included. The meta-GGA functionals include the Laplacian (second derivative)
of the density. Above this, the hybrid functionals (aka GGAs) are located. These combine non-local,
exact exchange-energy density with a GGA [30, 42]. It is important to keep in mind that an increase in
accuracy or step in this ladder also imposes a higher computational cost on the DFT calculations due to
the added complexity of the functionals. This proves to be a major bottleneck when using DFT, due to
the constant increase in the complexity of the novel catalyst design.

Figure 2.7: Jacob’s Ladder of DFT functional approximations for the Exchange Correlation Functional [42, 43]

Choosing the right functional for a given system is crucial yet challenging, as no single functional works
universally well. The accuracy of results and computational expense heavily depend on this selection.
Therefore, a thorough understanding of the similarities and differences between commonly used func-
tionals is essential. Researchers actively debate the optimal functional, even for seemingly straightfor-
ward systems like transition metal surfaces and complexes, highlighting the complexity of this decision
[30]. Two drawbacks that are present in DFT approximations are the self-interaction error (SIE) and
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the missing long-range correlation effects. The SIE errors are not present in the Hartree-Fock methods,
since the self-interaction energy is cancelled out by the contributions to the energy from exchange. If
the exact Kohn-Sham functional were known, this would also apply here. Hybrid functionals assist in
reducing SIE due to a fraction of approximate DFT exchange being replaced by Fock exchange.

A novel method named DFT+U or Hubbard method is a computationally low-cost method where un-
derestimated electronic interactions are corrected by adding the semi-empirically tuned numerical pa-
rameter ”U”. This method is, in short, a combination of HF and DFT. It takes into account the on-site
Coulombic repulsion among localized d electrons by incorporating an energetic penalty for delocaliza-
tion. A correction for the self-interaction to the DFT energy is added by introducing the numerical
parameters ”U” and ”J”, which involve different aspects of self-interaction [30]. DFT+U methods have
been reported to be useful for the reproduction of the experimental trends observed in the oxygen evo-
lution reaction (OER) and hydrogen evolution reaction (HER) activity of catalysts [30].

The Perdew-Burke-Ernzerhof (PBE) and Becke, 3-parameter, Lee-Yang-Parr (B3LYP) functionals are
prominent functionals widely applied in solid-state calculations. While each provides a unique formula-
tion for the exchange-correlation energy (see equations 2.6 and 2.7), B3LYP stands out as the most com-
monly used hybrid functional, renowned for its excellent reproduction of equilibrium geometries across
the periodic table. Similarly, PBE0 (see eq 2.8), a hybrid derivative of PBE that includes Hartree-Fock
exchange energy in its exchange-correlation calculation, generally provides improved performance for
geometrical features [30].

EB3LYP
xc = (1− a)ELSDA

x + aEHF
x + b∆EB

x + (1− c)ELSDA
c + cELYP

c (2.6)

EPBE
XC =

∫
d3rρ(r)ϵPBEXC (rs(r), s(r), ζ(r)) (2.7)

EPBE0
xc =

1

4
EHF
x +

3

4
EPBE
x + EPBE

c (2.8)

2.3.3. Force Calculation in DFT

Besides energy, forces can also be calculated using DFT. This is generally done via the application of
the Hellmann-Feynman theorem. This theorem is defined as a principle that describes the rate of change
of energy concerning a parameter in the Hamiltonian [44]. In DFT, a classical potential energy function
does not exist; rather, there is a Hamiltonian H depending on the ionic positionsRi and the electronic
positions ri. The total energy is defined in equation 2.9, where n(r) states the electronic ground-state
density and φi are the Kohn-Sham orbitals. The exchange correlation energy is also included in this
expression [41].
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To calculate the force acting on an ion, the Hellmann-Feynman theorem is applied. Let Ĥ(λ) be a
Hamiltonian that depends smoothly on a parameter λ, and let Ψ(λ) be a normalized eigenfunction of
Ĥ(λ) corresponding to eigenvalue E(λ), such that:

Ĥ(λ)Ψ(λ) = E(λ)Ψ(λ) (2.10)

Then, the Hellmann-Feynman theorem states:

dE

dλ
=

〈
Ψ(λ)

∣∣∣∣∣dĤdλ
∣∣∣∣∣Ψ(λ)

〉
(2.11)

This result holds provided that Ψ(λ) is an exact eigenstate of the Hamiltonian and that the dependence
on λ is smooth. This parameter is typically taken to be the position of a nucleusRA. The total energy
of the system depends on the nuclear positions, and the force on nucleus A is given by:

FA = −∇AEtot = −
〈
Ψ
∣∣∣∇AĤ

∣∣∣Ψ〉 (2.12)

Under the Born-Oppenheimer approximation, the electronic wavefunctionΨ adjusts instantaneously to
changes in nuclear positions, and the force can be computed directly from the electrostatic interactions.
For a system of nuclei and electrons, the Hellmann-Feynman force expression becomes:

FA = ∇A

∑
A

∫
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|r−RA|
n(r) d3r −∇A

1

2

∑
A ̸=B

ZAZB

|RA −RB|
(2.13)

Here:

• ZA is the nuclear charge of atom A,

• n(r) is the electronic ground-state density,

• RA andRB are the positions of nuclei A and B, respectively.

The gradient of the total energy concerning its positionRA is used to calculate the force. The Hellmann-
Feynman theorem allows this gradient to be computedwithout the requirement to consider the derivation
of the wave functions, which are assumed to be the exact eigenfunctions of the Hamiltonian [41, 44,
45].

2.3.4. DFT and Nudge Elastic Band in Catalysis

Catalytic reactions typically proceed via several reaction steps where the reactants are converted into
products by the involvement of intermediates and transition steps (TSs), of which some are too unstable
to be isolated experimentally. DFT becomes then a very prominent tool in this area, since it allows the
interception of all relevant stationary points on the potential energy surfaces (PESs), which is therefore
useful for the identification of the missing structures/steps and their related energy barriers. Via DFT,
the most accessible pathways may be identified by determining the lowest activation barriers along with
their corresponding involved rate-determining states, which is crucial for the structural engineering and
electronic modification of novel catalysts [30]. Figure 2.8 demonstrates an example of how the PES
can show a reaction pathway with its minima and transition state.
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Figure 2.8: Potential Energy Surface Model. a) PES model with reaction path, minima, and transition state. b) 1D
representation of PES model [46]

Once a new intermediate is found, the minimum energy path (MEP) connecting it with the starting
structure may be calculated. It is important to recognize that while local geometry optimization is
a common function within density functional theory (DFT) packages, the accurate determination of
reaction pathways and the precise characterization of the saddle point—representing the transition state
between two local minima on the potential energy surface requires the implementation of appropriate
computational protocols. The existence, operational efficiency, and trustworthiness of these protocols
are paramount for successful theoretical modeling in the field of catalysis [30].

The transition state theory is therefore adopted to map out the reaction network. It is based on the
identification of a transition state on the PES, which corresponds to a maximum along a MEP for a
particular reaction coordinate. Pre-existing algorithms and software are available for the application of
this theory, for example, Gaussian [47], ORCA[48], and VASP [41]. These allow for the utilization of
applied algorithms.

Nudge elastic band (or NEB) is a commonly used method to study the transition state theory, where
saddle points andminimum energy paths between known reactants and products are found. Theworking
mechanism of this technique is to optimize a number of intermediate images along the reaction path.
The use defines an initial and final state, each representing the start and end of a specific reaction
path. Each image then finds the lowest energy possible while trying to maintain an equal spacing to
the neighboring images. In this project, NEB is coupled with the climbing image technique, where the
highest energy image is driven up to the saddle point. Here, the true force at this image along the tangent
is inverted, and this way the image tries to maximize its energy along the band while minimizing it in
all other directions, getting the exact saddle point (and in consequence, intermediate configuration of
the transition path) [49, 50]. Figure 2.9 shows an example of the NEB and NEB couple with climbing
image analyses.

NEBhas been previously applied to study the entire reaction pathway ofCO2 hydrogenation tomethanol
with a single potential in an indium oxide surface. Here, all the transition states going from the absorp-
tion of CO2 on the system’s surface up to the formation of methanol are reportedly calculated via NEB
using DFT and MLIPs. These MLIPs are based on Gaussian Approximation Potentials fitted with DFT
data, coupled with SOAP [51]. This study showed that after multiple active learning loops, very accu-
rate MLIPs were able to almost completely replicate the DFT performance of transition states energy
barrier calculations (see figure 2.10). Taking this into consideration, it is of great interest to observe if
the MACE-based MLIPs after multiple active learning loops are able to replicate the DFT calculation
between two reaction intermediates. In this case, studying the formation of the formate ion was chosen
as the candidate to test this theory.



2.3. DFT Theory 16

Figure 2.9: NEB and Climbing image NEB analyses examples, obtained from [49]

Figure 2.10: CO2 hydrogenation (a) Full Reaction Pathway to Methanol Formation; (b) Formate ion formation transition
step, obtained from [51, 52]

2.3.5. DFT Limitations

Even though great advances have been made in the field of catalysis throughout time, there are still
major limitations that prevent faster and efficient screening of nanocatalysts for their application in
large-scale applications. Figure 2.11 shows a general overview of the limitations found in this research
area.

One of these limitations includes the dependency of DFT-based simulations for calculating different
descriptors (adsorption energies, relaxation of structures, etc) of catalysts. DFT is very accurate in
determining these energetic properties when done correctly; however, problems start to arise when
larger, complex structures need to be simulated or materials with multiple compositions are desired to
be studied. High computational power and a great amount of time would be required to obtain the entire
matrix of DFT calculated results for these types of materials. DFT calculations are usually carried out in
a vacuum. This ignores the complex reaction environment present in a practical electrocatalytic reaction,
such as the electrolyte effect, pH, solvent effect, and others. Of course, this is extremely challenging to
implement as well in DFT calculations, as explained by Liao et al. [53].
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Figure 2.11: Current limitations found in state-of-the-art research for Nanoelectrocatalysts’ performance and design
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2.4. Machine Learning for Heterogeneous Catalysis

Design of current heterogeneous catalysts has been done using trial-and-error experimental approaches
that mainly rely on the chemical intuition of researchers and catalysis practitioners [12]. Identifying
optimal reaction conditions, designing efficient catalysts, and revealing catalytic mechanisms all fall
into this paradigm. These are usually aided by traditional experimental and computational methods,
which rely mainly on prior knowledge and could be vulnerable to human cognitive biases. DFT has
been a game changer over the years, of course, where simplified model systems can capture the critical
aspects of complex realistic systems and therefore are able to open the window for rational design of
experiments [54]. Yet, the high computational cost of using this and other types of quantum mechanical
(QM) methods limits the availability of catalyst spaces that can be examined [55].

Recent progress and studies have shifted the focus towards mergingMachine Learning with QMmodels
to drive forward rational catalyst design. Machine learning (ML) refers to a branch of artificial intelli-
gence that can lower the computational cost of complex systems and structures. Existing data is given
as an input, and then a training model is generated to predict results outside of the training dataset [54].
ML models have started to gain popularity in designing and discovering catalysts. Catalyst design via
predictive models is multifaceted, and catalyst performance depends on many variables, like compo-
sition, morphology, size, support material, and environment, to mention some. Due to the number of
variables and the extensiveness parameter space, design and optimization of heterogeneous catalysts
using traditional methods is challenging and time-consuming [12].

Machine learning algorithms generally demand significantly less processing power compared to density
functional theory (DFT)-based simulations. Pimachev et al.’s research directly compared the computa-
tional costs of DFT and ML for predicting electronic transport in semiconductor hetero-structures [56].
Their findings indicate that DFT modeling time scales quadratically with system size (i.e., the number
of atoms), while the ML approach shows no increase in computational demand as system size grows
(see figure 2.12a). Conversely, a study by Zhang et al. developed a deep potential neural network for
MD simulations. In their work, the computational processing power required for their neural network
showed only a marginal difference in scaling compared to DFT-based simulations (see figure 2.12b
[57].

Figure 2.12: Comparison between the Computational Demand of DFT and Machine Learning for MD Simulations [56, 57]

For catalyst screening using machine learning models, a general workflow can be found in Figure 2.13.
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Firstly, a dataset that contains various catalyst materials must be created, where materials with different
compositions, support types, and particle sizes may be found. Each catalyst is described by its proper-
ties, such as electronic-structure properties, physical properties, and atomic properties. The important
physicochemical properties of the catalyst should be captured as ’features’ of the catalyst. ML tools
are then used to find patterns, build models, or discover descriptors that are able to map these features
describing the catalyst to their corresponding figures of merit [55].

Figure 2.13: General workflow of ML catalyst screening, going from the catalyst space containing catalysts with different
compositions, sizes, and support material; then, the feature space, where their properties are found. Lastly, the ML

algorithms build models or find descriptors that connect their features with figures of merit established in the algorithm [55].

There exists a large number of different types of ML learning models characterized by different cri-
teria. They can be initially classified as supervised or unsupervised learning. In supervised learning,
the relation between input and output variables is provided. An example of this is regression, where
an input/output relation is constructed. Meanwhile, in the latter, clustering of data using similarities in
the dataset is used, where no relation between the input/output is constructed. Some common types of
machine learning models are known as clustering, classification, estimation/prediction, and association
[58]. There are also semi-supervised methods, which are a combination of supervised and unsupervised
learning, where the model is trained using a small number of labeled samples and a high number of unla-
beled samples. Finally, reinforcement learning models are trained via a reward/punishment mechanism,
where desired actions are rewarded and undesired behaviors are not [59].

Some Machine Learning models that have been applied towards catalysts can be seen in table 2.1.
Choosing the right model will mainly depend on the application and adoption of the problem at hand. In
this research, a special focus is placed onML learning models that have been applied towards predicting
catalyst activity or descriptor behavior concerning the surface of metallic nanoparticles.
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Table 2.1: Common types of ML Algorithms used for Catalyst Design

Model Definition
Clustering Models These models aim to group the data according to the sim-

ilarities in variables. Data entries in a cluster are similar
to each other due to some of their properties, while they
are not similar to the constituents of the other clusters. Ex-
amples include k-means clustering, hierarchical clustering,
and distribution and density-based clustering [58]

Regression/ Estimation Models These methods model the relationship between one or more
input variables with an output variable. The model then es-
timates the unknown output of a new set of input variables.
Multiple regression, artificial neural networks, random for-
est regression, and support vector regression are types of es-
timation models. ANN is one of the most commonly used
ML techniques in catalysis [58].

Classification Models These divide the data into specific classes using values
or ranges of the output variable. Examples include deci-
sion trees, k-nearest neighbor algorithm, Bayesian classifi-
cation, and logistic regression [58].

2.4.1. Machined Learned Interatomic Potentials

Modern machine learning models are able to properly predict and successfully deal with physical and
chemical properties of molecules, such as vibrational spectra, atomic charges, chemical potentials, and
ionization potentials [60]. These machine learning models are known as Machine Learned Interatomic
Potentials (MLIPs). These models have been applied in many different areas of research, such as cataly-
sis, chemical reactivity, drug discovery, and materials design, just to mention a few. Due to the increase
in size and timescales achieved in ML dynamics, more accurate modeling of complex material proper-
ties is already being made [12, 60]. Figure 2.14 shows that there is an increasing trend in the number of
published articles focusing on MLIPs, where its integration into material science started approximately
15 years ago.

Figure 2.14: Trend in Published Research Papers Focusing on MLIPs throughout the 2000s, from the Science Citation
Index [61]
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One of the main reasons why ML algorithms have made such an impact in this area is due to the engi-
neering of novel Machine Learned Interatomic Potential algorithms (or MLIPs). These models are able
to replicate the complex quantum mechanical behaviors in molecular and solid materials. The engineer-
ing, design, and training/learning of these models are complex; however, various approaches, such as
the one proposed by Wang et al [62], have simplified this process into several key steps. These may be
seen in figure 2.15.

All steps of the development of MLIPs are essential to create a successful and accurate model; however,
data collection, being the first step, is what makes all of this possible. The more diverse and clean your
training data is, the more robust your model will be. The use of easily available and open datasets is,
therefore, necessary to create such robust models, where biases are reduced and predictions are more
accurate. Open-sourcematerial databases, such as theMaterials Project or C2DB, contain a high amount
of data obtained from DFT calculations [62, 63].

The most important step in creating an efficient MLIP is the descriptors or materials. Here, the con-
version of spatial configurations into machine learning datasets (also known as materials’ descriptors)
takes place. These descriptors determine the quality of the initial dataset for the ML and define the
highest accuracy the MLIP may achieve. The design of descriptors is crucial and subject to several
physical constraints to ensure their robustness and accuracy [60, 62]. Additional information regarding
these constraints may be found in appendix A.

After training, the process typically begins with data cleaning, pre-processing, and normalization to
ensure the quality and consistency of the input data. Once prepared, an appropriate machine learning
model is selected based on the specific application; common choices include Gaussian approximation
models, neural networks, and active learning frameworks. The selected model is then trained using
the cleaned data, during which an optimization algorithm, such as Adam, is employed to iteratively
update the model parameters according to feedback from a loss function, which quantifies the model’s
performance on the training set. Additionally, various hyperparameters, such as batch size, learning
rate, and the number of hidden layers in a neural network, may be fine-tuned to enhance performance.
Following training, further improvements can be made based on evaluation results and user feedback.
Thesemay involve architectural adjustments, additional hyperparameter optimization, or the application
of other model refinement techniques before final deployment [62].



2.4. Machine Learning for Heterogeneous Catalysis 22

Figure 2.15: Flowchart of MLIPs Development [62].

Figure 2.16 shows a chart that contains relevant MLIPs that have been engineered during the past years.
Going over all the different types of architectures and MLIPs would be out of the scope for this research
project. Machine learning potential algorithms are generally classified in either kernel methods or neural
networks, where in this research, neural networks will be of main focus.

Figure 2.16: Examples of available MLIPs algorithms [64].

2.4.2. Neural Networks and Deep Learning

Neural networks are a type of machine learning algorithm designed to perform specific tasks by imitat-
ing the human brain network, with the capacity of building up its own rules of behavior, in a similar
fashion as we humans do through experience. The neural network algorithm may be implemented due
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to the fact that these networks are run through massively parallel computing systems made up of a large
number of basic processing units (or neurons), which are interconnected and learn from their environ-
ment. The objective of the algorithm is to then modify the weights of the network in a sequential and
supervised way until a specific objective (or accuracy) is reached. Here, it is also important to introduce
the term deep learning. A general artificial neural network model may be seen in figure 2.17, where the
input signals are represented by x0, x1...xp, which are given by the user or other neurons. The weights
(shown here as w) modify the received information, which can attenuate or amplify the values that are
propagated into the neuron. Then, after the summing function, a bias is also placed as a threshold or
intercept of the neuron. In this type of learning, the weights are modified until a certain threshold is
reached [65].

Figure 2.17: Example of Unilayer Neural Network, obtained from [65]

The example shown in Figure 2.17 depicts a unilayer neural network, which has a low processing ca-
pacity by itself, and the level of applicability is also low. Therefore, multiple neural networks should
be interconnected to enhance the learning ability of the artificial neural network. An applied example
of this is deep learning (DL) models. These models are artificial neural networks that utilize more than
one hidden layer; in other words, more neurons are used for the implementation of the model. They are
also able to capture nonlinear aspects of complex data better, but of course, more computing power is
required to make these models work. Figure 2.18 shows an example of an artificial deep neural network
with multiple input variables, two hidden layers, and four output variables [65].

Figure 2.18: Schematic of a Deep Neural Network, obtained from [65]
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Graph neural network interatomic potentials (GNN-IPs) have risen as very powerful MLIP networks
for deep learning of interatomic potentials, which eliminate the need for hand-crafted descriptors, and
instead can learn graph representations of atoms from invariant features of geometric data. Here, atomic
structures are represented by collections of nodes and edges, where nodes in the graphs correspond to
individual atoms and edges, and these are defined by connecting every atom to all other atoms that are
closer than a defined cutoff distance. Examples of these GNN-IPs include NequIP [66], TeaNet [67],
and MACE [68]. These are also known as the E(3) equivariant neural networks, which can work with
highly expressive equivariant tensor representations of atomic environments, and operate on them to
preserve the proper symmetries [63].

MLIPs are generally trained on a limited amount of chemical or materials systems’ information, due to
there being a specific application or system of interest for which the method is developed. Therefore,
these models sometimes suffer from transferability issues in which one model works very well for a
specific application or material, but might not show good fitting results for other systems, due to the
inability of extrapolating accurately modeling new elements or structures which are not present in the
training data used for the creation of the model [63].

To address the scalability issues seen in AEFs-MLIPs, universal MLIPs (uMLIPs) are trained with the
largest consistent datasets available. These algorithms are able to produce a potential with the widest
possible domain of applicability, where it is then possible to research the dynamics of a diverse number
of chemically complex systems. These attempt to cover a large number of species under different levels
of constraints. They can cover between 10-100 elements in different conditions and configurations.
Table 2.2 shows a summary of different U-MLIPs that have been recently developed (and most are
in continuous development). These U-MLIPs are all based on previously developed GNN models to
include physical information of how bond energies of systems evolve with the change in position of
atoms (due to a MD simulation taking place). Forces and stresses are then acquired via differentiation
of this learned energy dependence. These models have made possible the growth of large computational
databases containing millions of DFT calculations. Each DFT structure provides one energy and 3N
forces (N being equal to the number of atoms in the structure), which are then used as training data for
the universal MLIP [63, 69].

Multiple benchmarking studies [81–85] revealing the performance of U-MLIPs have been recently pub-
lished. Here, different MLIP models are used for various material properties. In general, three or more
U-MLIPs are chosen to study properties such as cell relaxations, bulk and surface total energy calcu-
lations, material stability (where materials with a convex hull energy within some threshold are found
via structural optimization and active learning), and mixing energy of binary alloys, just to name some
examples. The performance of the selected models is then compared, where parity plots comparing the
MLP calculated property (such as energy or forces) and the DFT calculated property (also known as the
”ground truth”) are made. A measure of the error between the DFT and MLIPs values is also calculated,
usually in the form of the mean average error (MAE) or root mean square error (RMSE). These are
defined in equations 2.14 and 2.15, respectively.

MAE =
1

n

n∑
i=1

|xi − x| (2.14)

RMSE =

√√√√ n∑
i=1

(y(i)− ŷ(i))2

n
(2.15)

Accurate performance of these MLIPs has been reported in these studies. For example, figure 2.19
shows an example of the U-MLIPs’ performance on the calculated surface, defect, and solid solution
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Table 2.2: Overview of Universal Machine-Learned Interatomic Potentials (U-MLIPs), adapted from [63]

Model Name Description Elements
Covered

Training Database

PFP (Preferred Poten-
tial) [70]

Tensorial message passing
neural network, now a com-
mercial product in Matlantis.

96 Over 59 million diverse
structures (evolved from
10M in v1 to 59M in v7)

GNoME (Graph Net-
works for Materials
Exploration) [71]

A custom-trained version of
NequIP, fit to an in-house
database.

94 In-house database of roughly
80 million DFT calculations

MatterSim [72] Large-scale deep learning
model trained on actively-
learned DFT data, covering
a wide range of temperatures
and pressures.

118 Large custom database of
roughly 17 million atomic
configurations, including
non-ground state structures

GPTFF (graph-based
pre-trained transformer
force field) [73]

A GNN model with trans-
former blocks integrated into
the model architecture.

N/a (related
NEP89 cov-
ers 89 ele-
ments)

OMat24 (over 110 million
structures for inorganic bulk
materials) and other datasets
(MPtrj, SPICE, ANI-1xnr)

EquiformerV2-
OMAT24 [74]

Trains the EquiformerV2
model on a novel open-
source database, showing
best performance on Mat-
Bench leaderboard (as of
writing).

88 (OMat24
dataset)

OMat24 (roughly 118 mil-
lion atomic configurations)

Orb [75] Achieves excellent perfor-
mance on MatBench leader-
board, offering faster perfor-
mance (especially for large
systems).

89 Fine-tuned version of an
internal foundation model
called LINUS

MACE-MP0 [76] Equivariant graph tensor net-
work demonstrated for accu-
racy on various applications
and stable MD simulations.

89 MPtrj (same publicly avail-
able data as CHGNet and
SevenNet)

SevenNet-0 [77] Based on NequIP, refined
for good scaling on many
processors for larger sys-
tems.

89 Materials Project data (same
as M3GNet)

M3GNet (Materials
Graph NETwork) [78]

A 3-body potential aiming
for broad applicability.

89 Materials Project data

CHGNet (Crystal
Hamiltonian Graph
Neural Network) [79]

Graph neural network con-
sidering atomic magnetic
moments.

89 MPtrj (Materials Project re-
laxation trajectories, 1.58M
structures)

ALIGNN-FF (unified
atomistic line graph
neural network-based
force field) [80]

Unified atomistic line graph
neural network-based force
field for structurally and
chemically diverse solids.

89 JARVIS-DFT (75,000 ma-
terials, 4 million energy-
force entries, with a subset
of 307,113 used for training)
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energies of various surfaces composed of varying chemical systems. Figure 2.19a shows the parity
plots of DFT surface energies versus the MLIP calculated surface energy from three different U-MLIPs,
M3GNet, CHGNet, and MACE, and figure 2.19b shows the same but with the defect energies. 147
surfaces with multiple Miller indices of 29 elements and binary compounds were evaluated for the
surface energies; meanwhile, for the defect energies, 129 point defects across 32 chemical systems are
included. All three models used show very close MAE, with MACE having the lowest error of them all.
Nevertheless, the three models underestimate the surface and point defect energies compared to DFT;
however, this is due to a universal softening of the PES, which is then resolved by fine-tuning/retraining
these models via fine-tuning the model with high-energy out-of-distribution training points [63, 83].

Figure 2.19: U-MLIP performance on surfaces and defects, obtained from [83]. a) Parity Plot of DFT surface energies and
MLIP surface energies. b) Parity plot of DFT defect energies and MLIP defect energies.

2.5. MACE

MLIPs have shown great potential as candidates to substitute the use of DFT, especially when they are
coupled with databases containing millions of material properties that help refine the model. These
MLIPs are usually made available through GitHub repositories, where it is possible to download and
use the models to train, evaluate, and produce force fields. Examples and tutorials are also given to give
a deeper insight into the model’s working mechanism [68, 72, 75, 76, 86].

One major feature that was also shown in the previous section is that to increase the accuracy of these
models, fine-tuning or retraining of the model using data that does not meet certain thresholds, for
example, a high energy error, is required. This fine-tuning is game-changing in the case of modeling
(something about catalysis). However, even though these models do offer fine-tuning Python scripts,
the user is forced to manually access them and modify the input files for their usage. And this, of course,
doesn’t include all the previous data cleaning, model training, and post-validation of the model via the
implementation of, for example, MD simulations [63, 83].

Therefore, one of the major objectives of this thesis project is the engineering of an active learning loop
workflow for the universal usage of a machine learning interatomic potential algorithm. In this case,
MACE is used to generate novel machine learning force fields for a Ni cluster catalyst supported on
Ga2O3. MACE was chosen as the MLIP algorithm to work with due to its ease of use and access to
pre-trained foundational models, which are trained on datasets with different levels of theory (PBE+U,
PBE, r2SCAN). Additional information about MACE and its usage may be found in the GitHub ACE-
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suit repository [68]. MACE possesses a novel MLIP architecture, where a combination of equivariant
message passing with efficient many-body messages is established. As previously mentioned, it is capa-
ble of achieving state-of-the-art performance on different benchmarking tests, while also being able to
display greater generalization capabilities over other approaches on extrapolation simulations [68, 87].

MACE is an equivariant graph neural network. More specifically, it is known as a message passing neu-
ral network (MPNN). MPNNs are a subtype of GNNs that parametrize a mapping from a labeled graph
to a target space, which can be in the form of a graph or vector space. Applying this parametrization
to the properties, materials, or molecules embeds the graph in a 3-dimensional Euclidean space. In this
space, every node represents an atom, and edges connect the nodes only if the corresponding atoms are
located at a certain distance between each other [68].

2.5.1. Theory and Mathematics

In MPNNs, multiple message constructions, updates, and readout steps are made to read out and learn
the state of a node at a specific layer of the neural network. Specific information about how each of these
steps is mathematically represented may be found in Appendix B. MACE’s architecture follows this
message-passing structure; however, there is a key difference in the message construction mechanism.
As shown in equation 2.16, the messages are expanded in a hierarchical body order expansion, where a
hyper-parameter ν corresponding to the maximum correlation order (which is the body order minus 1)
of the message function concerning the states is applied. Multiple learnable functions (u1, u2...uν) are
used, and the sums iterate over the neighbors of atom i. The overall body order of the positions may
be greater, since this depends on the body order of the states themselves. Most importantly, the sum
over j1, ...jν incorporates self-interaction and yields a tensor product structure which is the key towards
computationally efficient parametrization. This evades the exponential scaling of computational cost
with the correlation order ν. This way, using higher body order messages are able to make multiple
relationships with different numbers of layers and expressivity of the network, which results in a fast,
highly parallelizable model [68].
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For a better grasp of the underlying theory and foundations of MACE, it is important to understand the
meaning behind equivariance and its role in graph neural networks. Generally, geometric passing GNNs
propagate only local scalar quantities like angles and distances. Equivariant GNNs, on the other hand,
can propagate geometric quantities like vectors and high-order tensors. High-order spherical tensors
are an essential part of the MACE architecture [88], and also give it the label of an e3nn (also known as
Euclidean neural networks). These networks operate on geometry and geometric tensors which describe
systems in 3D, and can transform predictably under a change in the coordinate system [89]. Theworking
mechanism of these tensors is reflected in equation 2.17, where h̃i,l ∈ R(2l+1)×f , begin at an order of
l = 0 for scalar quantities, 1 for vector quantities, and go as far as arbitrary orders of l = L. These
tensors are then updated via tensor products

⊗
of neighborhood features h̃j and the spherical harmonic

representation Y evaluated on the unit vector of the relative positions ( x⃗i,j
|x⃗i,j| = x̂ij) [88].

h̃
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(t)
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Y (x̂ij)⊗w h̃
(t)
j (2.17)

MACE’s architecture is able to address some of the major limitations seen in previously developed
MLIPs. For example, the atomic cluster expansion (ACE) provided a framework for developing high-
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body-order complete polynomial features independent of the body order. However, these models are
limited by their cutoff distance and relatively rigid architecture compared to MPNNs, which leads to
less accurate MLFFs. Coupling MACE with ACE provides a route for efficient computation of high
k-body order features in the Euclidean neural network framework. Due to this coupling, symmetrisation
or generation of all k-tuples in more standard many-body expansions are evaded [68, 88]. Equivariant
MPNNS, such as NequIP, suffer from high computational cost due to using L=3 spherical tensors as
messages and 4 to 6 passing iterations. This also led to difficulties in parallelization across multiple
GPUs [76].

2.5.2. MACE Foundational Model and Active Learning

As previously mentioned, another advantage of MACE usage is its readily available foundational mod-
els. These are pre-trained models using databases with DFT data. An example is MACE-MP0, which is
trained on the Materials Project dataset on 89 different elements on a PBE+U level, as it was described
in table 2.2. This model has been able to tackle different tasks and predictions, such as running stable
MD simulations over different chemical systems, predicting phonon spectra, calculating activation en-
ergies for defects, simulating solvent mixtures, and modeling hydrogen combustion [76]. Figure 2.20
shows a diagram of the elements included in the MP0 training dataset, where different configurations,
compositions, morphologies, and properties of these material systems are included [76].
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Figure 2.20: MACE-MP0 as a foundational model for materials modeling. Trained on Materials Project Data, with the
capacity of powering MD simulations [76].

In catalysis, for example, this foundational model has been used as a substitute for DFT in the calculation
of reaction barriers and rates of several heterogeneous catalysis reactions. Reportedly, MACE-MP0
has shown a great agreement with DFT based calculations on multiple applications, such as in the
construction of Porubaix diagrams for bulk CuO and Pt(11) surface; the calculation of adsorption energy
scaling betweenO andOH on different transitionmetal surfaces; and finally, the reaction energy profiles
for CO oxidation on Cu, as well as a key step in the conversion ofCO2 to methanol on an In2O3 surface
[76]. It has also shown the capacity of matching DFT predictions on zeolites and silica polymorphs to
study their phase transitions at high pressures [90]. As a final example, MACE-MP0 was used as a
potential for the calculation of rate-determining steps to further understand the mechanism of oxygen
reduction reaction (ORR) overpotentials on Pt-based catalysts [91]. Therefore, MACE has been taken
as the choice for catalyst research in this project.

The foundational model is, however, not always quantitatively accurate for most catalysis applications,
yet its reported stability for MD simulations and exploring reactive pathways makes it a great starting
point for catalytic dynamics calculations. To further improve these models, active learning and/or fine-
tuning are recommended using relevant configurations or phase space regions. After doing first point
calculations with this data, these could be introduced as fine-tuning datasets to construct a more robust,
application-focused potential to obtain more accurate energetic and forces calculations [63, 76, 83].
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An example of an active learning loop is shown in Figure 2.21. The starting training set is used to train
an initial MACE model. This model can be a completely new MACE model or a finetuned founda-
tional model (MACE-MP0). Afterwards, the successfully trained model is used to run MD simulations,
and then a comparison must be made between the ground truth MD run versus the MACE-based MD
simulations. To make this an automated process, error predictions may be placed, and according to a
set threshold, certain configurations are selected and inserted into the original training set. The model
is then finetuned, and the process begins anew until the error is lower than the specified threshold [68,
76].

Comparing the radial distribution functions of both the ground truth, DFT-based trajectory, versus the
MACE-based MD trajectory is another method to prove if the MLIP model provides accurate force
fields that mimic precisely the DFT-based potentials [68, 76].

Figure 2.21: Active Learning Example, obtained from [68, 87]



3
Methodology and Research Outline

In this project, molecular dynamics (MD) simulations will be performed on a nickel-supported gallium
oxide structure (Ni/Ga2O3) to analyze its thermal stability and calculate energetic barriers. Ni/Ga2O3

has emerged as a promising novel catalyst for the CO2 reduction reaction, demonstrating high selec-
tivity for CO2 hydrogenation to methanol [14, 92–95]. It has also been shown to be effective in the
reverse-water-gas-shift (RWGS) reaction, where CO2 is converted into carbon monoxide and water
when reacted with H2 [14].

3.1. Initial Data Processing

A large set of Ni/Ga2O3 configurations, provided by Margareth Baidun from the Inorganic Systems
Engineering group at TU Delft, will be used for this study. These include 464 relaxed configurations of
Ni/Ga2O3, as well as over 1000 additional configurations with a pureGa2O3 support or with varying
concentrations of hydrogen atoms. To streamline the project and establish a proof of concept, this
research will primarily focus on simulations involving theNi/Ga2O3 catalyst without the presence of
hydrogen atoms.

Performing Density Functional Theory (DFT) simulations for all of these relaxed configurations would
be computationally prohibitive due to the large size of the files and the complexity of the structures,
which contain, on average,168 atoms. A typical configuration, as shown in Figure 3.1, features a cluster
of eight nickel atoms on top of a Ga2O3 support.

31



3.2. MACE Usage and Initialization 32

Figure 3.1: Side and Top views of Ni/Ga2O3 catalyst

Therefore, this thesis aims to demonstrate the viability of using both self-trained machine learning mod-
els and foundational models (MP0) to perform accurate and comparable MD simulations of these struc-
tures. This approach allows for a detailed analysis of the thermal stability of the catalyst over a deter-
mined number of time steps. This project will address the following research questions:

1. To what extent can a MACE potential serve as an adequate substitute for traditional DFT-MD
simulations for the Ni/Ga2O3 system?

2. Do foundational machine-learning models exhibit inherently lower errors in predicted energies
compared to in-house trained models for the Ni/Ga2O3 system?

3. Is the implementation of an active learning loop sufficient to achieve better overall performance
in MD simulations of the Ni/Ga2O3 catalyst?

4. How does the calculated energy barrier for the formation of the formate ion on the Ni/Ga2O3

catalyst using theMACE-MP0 foundational model compare to that obtained from traditional DFT
potentials?

3.2. MACE Usage and Initialization

Firstly, it is important to mention that most of the simulations that will be presented here were done
locally using Jupyter notebooks. For the successful usage of MACE and running simulations with
it, the packages seen in table 3.1 were installed in a custom-made conda environment. Most of the
other required packages will be installed simultaneously with the installation of other packages due to
their dependencies on each other. Something important to note is that much debugging and package
installation with other methods, such as conda forge, was required for certain packages, as well as some
packages only being available in Linux or Python versions.
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Table 3.1: Table of relevant Python packages for MACE usage and their documentation

Package Name Description Documentation
ASE The Atomic Simulation Environment is a powerful

set of tools and Python modules for setting up, run-
ning, and analyzing atomic simulations.

ASE Wiki

cuequivariance-torch-cu This is a specific library variant providing CUDA-
accelerated equivariant neural network operations,
typically used in conjunction with PyTorch for ad-
vanced geometric deep learning tasks. Can be used
with CUDA version 11 or 12. Only available in
Linux.

PyPi package

mace_torch MACE (Machine learning interatomic potentials) is
a fast, high-accuracy framework for interatomic po-
tentials, built on PyTorch for efficient MD simula-
tions.

MACE GitHub

Matplotlib A comprehensive library for creating static, ani-
mated, and interactive visualizations in Python. It
includes the widely used pyplot and pylab mod-
ules for plotting.

Matplotlib Docs

Numpy The fundamental package for scientific computing
with Python. It provides support for large, multi-
dimensional arrays and matrices, along with a col-
lection of high-level mathematical functions.

Numpy Docs

pandas A powerful library for data manipulation and anal-
ysis. It provides flexible data structures like
DataFrames, which make working with structured
data intuitive and efficient.

pandas Docs

PyTorch An open-sourcemachine learning framework that ac-
celerates the path from research prototyping to pro-
duction deployment. It provides powerful tensor
computation with GPU acceleration.

PyTorch Docs

SciPy A library of algorithms and mathematical tools for
scientific computing, built on the NumPy extension.

SciPy Docs

torchaudio A PyTorch-specific library for audio signal process-
ing and machine learning, providing datasets, trans-
formations, and pre-trained models.

torchaudio Docs

torchvision A PyTorch-specific library for computer vision, pro-
viding access to popular datasets, model architec-
tures, and common image transformations.

torchvision Docs

Furthermore, to record all of the relevant Python scripts and notebooks developed for this project, a
GitHub repository is available to access all of this data, which is available here.

3.2.1. VASP Data and Conversion

The very first runs with MACE were done with in-house trained models. For this, training data and
testing data for the models had to be recollected and processed for MACE to read them successfully.
MACE can read .xyz-formatted files as its input for training, testing, and validation datasets. For this

https://wiki.fysik.dtu.dk/ase/
https://pypi.org/project/cuequivariance-ops-torch-cu12/
https://github.com/ACEsuit/mace
https://matplotlib.org/stable/users/index.html
https://numpy.org/doc/stable/
https://pandas.pydata.org/docs/
https://pytorch.org/docs/stable/
https://docs.scipy.org/doc/scipy/
https://pytorch.org/audio/stable/
https://pytorch.org/vision/stable/
https://github.com/Staphalon20XX/MACE-Thesis
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application and considering that the data that was given is in Vienna Ab Initio (VASP) simulation output
folders (where OUTCAR, CONTCAR, VASPRUN, and other files are found), it is essential to create
a script where the configurations found in these files are read and placed in an xyz file. In the github,
the vaspexp.py script can be directly used to write an XYZ file containing the data from one or multiple
vasprun.xml files. The only input parameter required is the folder path for the different vasprun output
folders, and then multiple xyz files will be outputted. One of them is an xyz file including all of the
configurations in a single file, and the other xyz file containing only the configurations of a single
vasprun file.

As previously mentioned, VASP was used to perform structural relaxations. This is to allow atoms to
move to their lowest energy positions. To perform these experiments, VASP version 5.4.4 was used
through the HPC cluster of the Mechanical Engineering Faculty in TU Delft. To perform these relax-
ations, four files must be configured correctly. These are the INCAR, KPOINTS, POSCAR, and POT-
CAR files. The INCAR file includes all of the initialization for the VASP calculation, where the type of
calculation (MD or DFT) is defined, as well as convergence criteria and other parameters. KPOINTS
defines the k-point mesh used to sample the Brillouin zone during calculations. In the POSCAR file,
the initial configuration for your system is defined, where the position of all the atoms from every sin-
gle element is defined. And finally, the POTCAR file, which utilizes projector-augmented-wave (PAW)
pseudopotentials, determines the level of exchange-correlation functional used for the calculations, such
as the PBE functional. Additional information on the configuration for the INCAR file may be found in
appendix C, where notably the ”NSW” parameter has to be changed from 300 to 1 for single point cal-
culations. More information on VASP and how to utilize it may be found on the VASP documentation
[41].

After VASP has run and converged, the CONTCAR file contains the final relaxed structure. Other files,
such as VASPRUN and OUTCAR, contain all the information regarding all the configurations per step,
where forces, energy, and atomic positions are also recorded. These files are then read by the vaspexp.py
script, and then the respective xyz files are made.

3.2.2. MACE Training and Evaluation

After processing the VASP outputted configurations, the following task is to set up the MACE training.
For this, a training, testing, and validation set must be defined. Typically, an 80/20 train/test setup is
utilized when training anMLmodel. And in the case of the validation set, MACE has a command to take
a user-defined percentage of the training set as the validation set. Two Python scripts were developed
for MACE training, one for training a single model and another for training a committee of models
(MACE_training.py and MACE_committee_training.py, respectively). A committee of models refers
to a group of trained models over the same dataset; however, the training data is completely randomized
for each of the models, making them similar but not entirely the same. The final prediction of the
committee model is the average of all committee members when using it, for example, as a calculator
in the MD simulations. This approach has been shown to decrease errors in predictions [96].

Both of these codes work in a very similar fashion, where, as input, the previously produced xyz file
with the combined configurations (or an individual xyz file with the configurations of one single VASP
run if the user would prefer) is taken. The configurations are then read and placed in a list using the
ASE.IO package, randomized to produce a completely mixed, unbiased dataset, and then split into the
training and testing datasets. These are then saved in a file so that the user would like to access them
afterwards.

The second part of the script is the MACE training itself. An example of how the training setup and
commands used are seen in listing 3.1. Here, the method begins by setting up logging infrastructure,
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creating a log file in the output directory that will capture all training output and errors. This is crucial
for monitoring training progress and debugging any issues that may arise during the potentially long
training process. The core functionality revolves around constructing a comprehensive command-line
argument list for the mace_run_train executable, which is MACE’s primary training Python script.

1 def train_model(self):
2 """Executes MACE model training using the specified dataset."""
3 log_file = os.path.join(self.output_folder , f"{self.model_name}_training.log")
4 command = [
5 "mace_run_train",
6 f"--name={self.model_name}",
7 f"--train_file={self.train_file}",
8 "--valid_fraction=0.05",
9 "--forces_key=forces",
10 "--energy_key=energy",
11 f"--test_file={self.test_file}",
12 "--config_type_weights={'Default ':1.0}",
13 "--E0s=average",
14 "--model=MACE",
15 "--hidden_irreps=64x0e + 64x1o",
16 "--r_max=5.0",
17 "--batch_size=5",
18 "--max_num_epochs=100",
19 "--stage_two",
20 "--start_stage_two=50",
21 "--ema",
22 "--ema_decay=0.99",
23 "--amsgrad",
24 "--restart_latest",
25 f"--device={self.device}",
26 "--swa"
27 ]
28 # Add --enable_cueq argument based on input
29 command.append(f"--enable_cueq={str(self.enable_cueq)}")
30 with open(log_file , "w") as log:
31 subprocess.run(command , stdout=log, stderr=log, text=True)
32

Listing 3.1: Example of the Python function to train a MACE model.

The model uses a validation fraction of 5% (–valid_fraction=0.05), which is a reasonable split for mon-
itoring overfitting during training. The architecture is specified through hidden_irreps=64x0e + 64x1o,
which defines the irreducible representations used in the equivariant neural network layers - this no-
tation indicates 64 scalar (0e) and 64 vector (1o) features, ensuring the model respects rotational and
translational symmetries of atomic systems. In the MACE GitHub, it is set to 128x0e + 128x0e, but this
proved to be too computationally heavy for running models locally, and an accurate performance of the
model was still expected to be seen with a lower number of scalar and vector features [68, 87]. How-
ever, the user is free to change this to higher or lower values to determine if better model performance
is attained.

The training strategy employs a two-stage approach with stage_two and start_stage_two=50, where the
model likely transitions from a simpler to a more complex training regime at epoch 50 out of 100 to-
tal epochs. This is complemented by several advanced optimization techniques: Exponential Moving
Average (EMA) with a decay rate of 0.99 for model parameter smoothing, AMSGrad optimizer for im-
proved convergence, and Stochastic Weight Averaging (SWA) for better generalization. The inclusion
of restart_latest ensures training can resume from checkpoints if interrupted [68, 87].
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The physical parameters are set appropriately for atomic systems, with an interaction cutoff radius of
5.0 Ångströms (r_max=5.0) and atomic reference energies calculated as averages (E0s=average). These
atomic reference energies are the energies of the isolated atom itself. In this case, the average was
chosen since MACE estimates the atomic energies using least squares regression. This could result in
less stable potentials, so it is recommended that if the user knows these values, they insert themmanually
for each atom, as it is shown in the MACE repository [68, 87]. The small batch size of 5 is typical for
MD datasets, where individual configurations can be computationally expensive to process. Finally, the
method dynamically adds the enable_cueq parameter based on instance configuration (it is also set as an
input parameter when calling the script, since this parameter requires the cuequivariance_torch_ops_cu);
however, I did not have access to it in one of the clusters utilized for testing. The entire training process
is executed while redirecting all output to the log file for comprehensive monitoring and debugging
capabilities.

After training has finished, MACE automatically evaluates themodel and creates two parity plots, where
comparisons between the energies per atom and forces of the training, testing, and validation models are
made. MACE also shows the model training performance, showing the training and validation loss over
the number of epochs defined for training. It also shows a graph right next to it where the RMSEs of
energies and forces are plotted over time. An example of these results is shown in Figure 3.2, showing
the performance of one of the first successfully trained models. This model was trained with only one
VASP output folder, containing a total of 98 configurations. No over- or underfitting of the model is
observed either, which implies that the input parameters stated previously (batch size, number of epochs,
and hidden layers, for example) are correctly optimized.

Figure 3.2: Initial MACE Training Results

Further evaluation of the model may be done by using mace_eval_configs.py script provided by the
MACE package. This script evaluates configurations contained in an XYZ file with a trained model.
This script was initially used to compare the initial configurations used for training and testing (so the
combined xyz file outputted from vaspexp.py would be used as an input), and it outputs an xyz file
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containing the configurations outputted after the trained model evaluates them. This way, it is possible
to do parity plots manually of the energy per atom and forces to check the accuracy of the model, where
the R2 for each property is also calculated between the ”ground truth, DFT data” versus the predicted
MACE data. A script was also made for this evaluation named ”committee_eval.py” Examples of two
parity plots done for the model mentioned previously are shown in Figure 3.3. A pretty good fit between
both datasets is observed, both with an R2 higher than 0.96, therefore showing that the model training
was done successfully, and it provides an accurate model.

Figure 3.3: Parity Plots of Energies and Forces for Initial MACE Training

(a) Energy Parity Plot

(b) Force Parity Plot

MLIPs already prove to be a good starting point for substituting DFT-based calculations, as it has been
mentioned in previous sections. However, one essential part of constructing these models is the valida-
tion step. For this, different simulations can be engineered to validate the potentials. In this research,
MD using a canonical ensemble will be used with Langevin Dynamics. In a canonical ensemble, the
number of atoms (N), system temperature (T), and volume (V) are fixed (which is why this ensemble is
also referred to as an NVT ensemble). This way, it is possible to run dynamics to describe systems that
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are in thermal equilibrium and can exchange energy with their environment. Usually, DFT is used using
software such as VASP or LAMMPS coupled with pre-calculated pseudopotentials (like the aforemen-
tioned PAW potential files). However, using the atomic simulation environment (ASE), it is possible
to use MACE models directly as potentials or ”calculators” for the MD simulations. Comparisons may
then be made between the performance of an MACE model with the ”ground-truth” DFT MD run.

3.2.3. Molecular Dynamics with ASE

To run MD using ASE, two Python scripts named MACE_MD.py and Simple_MD_Found.py were
developed. The former is used for MD simulations with the self-trained MACE potentials; meanwhile,
the latter takes the MACE foundational model (MP0) as its calculator. The first script takes as input
an xyz file (which can be the same combined xyz file used for the training), the temperature at which
the MD simulation would take place, the number of steps to run the simulation, and the paths of the
trained MACE model(s). The second takes the same inputs except for the model paths, where instead
the user is able to define what foundational model they would like to use (MP0 small, medium, or large).
For more information and other available foundational models, it is recommended to refer to the list
shown in the MACE GitHub [68, 87]. It is also possible to define a z-threshold, since inside this script,
a constraint is placed where the substrate atoms are set to be stationary. This is a common practice in
surface chemistry simulations, since it allows adsorbates and surface layers to move freely.

The simulation setup employs sophisticatedMDprotocols, initializing velocities according to aMaxwell-
Boltzmann distribution at 300K before switching to the user-specified target temperature for the actual
simulation. Whereby default, it is set to 323.15K. The class uses a Langevin thermostat with a 1 fem-
tosecond timestep and 0.1 friction coefficient, providing good temperature control while maintaining
realistic dynamics. While the simulation is running, it is possible to observe a real-time visualization
of the temperature and energy fluctuations over each timestep, which provides immediate feedback on
simulation quality and convergence. If using a committee of models in MACE_MD.py, a graph show-
ing the variance in energy for all of the models is shown. This can serve as important information to see
how similar the models are at performing MD, and to point out where the largest deviations are located
throughout the simulation. Figure 3.4 shows a comparison between a well-convergedMD run versus an
MD run that did not converge very well due to instability of the material. The unstable simulation was
done at a very high temperature (1200K), with a potential that was not trained with H atoms (since this
was a test using a Ni/Ga2O3 structure that did contain hydrogen in its surface). This could have been
due to either not having setup a correct z-threshold, the temperature of simulation was too high for this
material (the simulation was done at 1200K), or the potential is not well trained (due to low amount of
configurations used for training, or there were missing elements, like hydrogen, in the training of these
potentials).
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Figure 3.4: Left: Unstable MD simulation, leads to explosions in the trajectory. Right: Converged MD simulation using
MACE-MP0 as calculator

As outputs of these scripts, a log file containing the kinetic, potential, total energy, and temperature per
timestep is saved; a trajectory file and xyz file containing all the configurations per timestep, as well as
their energies and forces are saved; and lastly, an image of the total energy and temperature versus time
is saved.

3.2.4. Molecular Dynamic Analysis

For analysis of the outputted trajectory files, OVITO [97] was used to visualize all of the configurations
over time. With OVITO, it is possible to observe the movement of atoms in the system cell. An example
of a configuration visualized via OVITO is shown in Figure 3.1.

To plot the energies of the MD simulation, a Python script named energies_plot.py was developed. In
this script, a trajectory file from the MD simulations is placed as an input. This script outputs three
plots, one for the kinetic, potential, and total energy versus time, respectively. This also includes a
visual representation of the mean value per energy and its respective standard deviation. These values
would also be printed out once the script is run.

A Python script named avg_coordination.py was developed to have a deep coordination environment
analysis over the last configuration of a given xyz file. There are multiple output files and images out-
putted by this code. Currently, it is configured specifically for the Ni/Ga2O3 system, since there are
some lines of code where only the Ni bonds are read. For example, in the coordination number distri-
bution of the Ni-Ga bonds, the frequency of coordination numbers is shown over the entire structure.
Nearest neighbor distributions of all bond types present in the system (so Ni-Ni, Ni-Ga, Ni-O, for ex-
ample) are also recorded and plotted versus their frequency of appearance. Lastly, a final modification
of the system was done to study the generalized coordination number (GCN) of the Ni cluster on the
surface of the catalyst. The generalized coordination number is a proficient and novel descriptor for
the activity of nanocatalysts [98, 99]. Therefore, it was of interest to see if these clusters formed highly
coordinated environments to have an initial guess at the structure-activity relationship.
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3.3. Active Loop Engineering

To possibly achieve more accurate machine learning basedMD simulations, an active learning loop was
developed to decrease the error in predicted energy. As previously mentioned in section 2, finetuning
or retraining the models with outlying data shows an increase in model performance. A schematic
depicting the different steps of the loop is shown in Figure 3.5. Here, all of the aforementioned steps
are included, plus some additional ones, where VASP is used to do single-point calculations of selected
configurations from the MD simulation.

Figure 3.5: MACE Active Learning Loop Engineering
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This framework begins by reading VASP output folders and then transforms them into a combined XYZ
file for its use in training a single or a committee of models. The user can also choose to instead use a
foundational model as its base for the first MD simulation. After theMD simulation analysis, 1 structure
is selected every two picoseconds of simulation; however, from the second half of the MD trajectory,
one structure is taken every picosecond. This change in taking structures is done due to initial results
demonstrating that selecting structures in this range proves to better fit for the model for increased
performance in reproducing stable configurations throughout the MD simulation.

These structures are then transformed into POSCAR-readable files for VASP, where a z-threshold is de-
fined to fix the bottom layers of theGa2O3 support. The INCAR, KPOINTS, and POTCAR files must
be defined by the user, and the correct directory must be inserted in the code calling the run_vasp.py
script. After running VASP, the RMSE comparing energies and forces before and after VASP is calcu-
lated. A script named vasp_eval_error was designed for this, where the same optimized configurations
from the VASP runs are compared with their POSCAR configurations. Here, an energy error threshold
of 0.04 eV/atom is defined to determine if the active learning loop should continue or not. In the case
that the error is higher than this value, then the model retraining (for self-trained models) or finetuning
(for the foundational model) takes place. The vasp_eval_error also outputs a fine_tuning_dataset.xyz
file, where the optimized configurations from the VASP run are found. In the case of retraining a model
or a committee of models, this dataset is added to the original training dataset, randomized, and the
model is trained once again. In the case of the foundational model, this dataset is directly used as
training data for the finetuning script.

For the finetuning to take place, it is necessary to run once again the mace_run_train script. However,
this time, additional arguments are required to make sure the foundational model is finetuned correctly
[68, 87]. These commands are:

• pt_train_file: Path to the replay dataset (set to ”mp” to use directly the Materials Project data)

• filter_type_pt: Filtering strategy for the configurations of the pt training file.

• subselect_pt: Method for sub-selection.

• weight_pt: Weight for the pretraining head loss of the model.

• num_samples: Number of samples to use from the replay dataset (set to 6 to exclusively use
configurations with only Ni-Ga-O).

• multiheads_finetuning: Command to enable multihead finetuning.

• force_mh_ft_lr: By default, multihead finetuning uses a lower learning rate (0.0001) and enables
EMA. Set to True to override this behavior.

An important argument set here is the multi-head replay finetuning. This is a recently introduced tech-
nique inMACEwhich allows for simultaneously finetuning a foundational model on both a user-defined
target dataset and a ”replay” dataset from the foundational model, as shown by the scheme in Figure
3.6. This proves to prevent the catastrophic forgetting and it maintains the model’s generalization ca-
pabilities [87]. Initial testing without the use of multihead replay finetuning did show forgetting of the
previous datasets, and made the active learning loop more or less useless after the first active learning
loop. Appendix D shows an example of this, where the Ni cluster showed the same configuration and
similar MD trajectories after finetuning the model without the use of multihead replay. It also made
the Ni atoms cluster one on top of each other, which is far from the expected configuration seen after
running an MD of this configuration with DFT.
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Figure 3.6: Multihead Replay Finetuning Protocol in MACE, obtained from MACE documentation [87]

After the model is retrained or finetuned, the loop begins once more with an MD run. This time, the
number of steps is increased by 1 picosecond to allow a larger stability analysis. Afterwards, the loop
continues as normal, the model runs VASP again, and determines if the error in energy is low enough
to stop the active learning loop. The retraining or fine-tuning datasets update takes into account all of
the previous configurations used for the previous model retraining, which prevents any forgetting of the
models.

To better visualize the evolution of nickel configurations across multiple active learning loops in MD
simulation, two analyses are made: Principal Component Analysis (PCA) and Pair-Distribution Func-
tion (PDF) analysis. PCA focuses specifically on Ni-Ni interatomic distances as a structural descriptor,
effectively creating a ”structural landscape” where similar configurations cluster together and different
structural motifs occupy distinct regions. PCA is used to reduce the high-dimensional distance data
into interpretable two-dimensional visualizations that reveal patterns in structural diversity and evolu-
tion [100]. When implementing the code, it carefully establishes global y-axis limits across all plots
to ensure consistent scaling, enabling direct visual comparison of how structural diversity changes as
the machine learning models are iteratively improved. This temporal analysis is particularly valuable
for understanding whether active learning successfully explores new regions of structural space or be-
comes trapped in local minima, and whether the progressive model refinement leads to more confident
exploration of previously uncertain structural regions.

Secondly, PDF is applied to assess how accurately the MLIPs models reproduce the local structural
environments of nickel atoms compared to the reference VASP DFT calculations, which can directly
provide a quantitative measure of model reliability for MD simulations. Here, 10 short MD runs with
the same settings but random seeds will be made, and an average of the atomic configurations over the
entire trajectory will be taken to calculate the PDF of Ni-Ni and Ni-O bonds. PDFs characterize the
statistical distribution of interatomic distances [101]. The designed code systematically computes all
pairwise distances between nickel atoms for each timestep, bins these distances into histograms with a
resolution of 0.05 Ångströms, and averages across all configurations to produce the final g(r) profile.

3.4. Energy Barrier for the Formation of Formate Ion

Besides studying the thermal stability of the catalyst and its performance in MD using MLIPs, it is also
relevant to process the outputted models from an Active Learning Loop (ALL) in a catalytic model.
In this project, focus is placed on doing Nudge Elastic Band (or NEB) simulations to calculate the
minimum energy pathway for the transition between two relevant reaction steps.
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NEB is directly accessible within the atomic simulation environment (ASE) for its use in Python. Mul-
tiple optimizers are available, for example, FIRE, MDmin, BFGS, and others. However, in this case,
FIRE was used as the optimizer due to its quick and efficient structure optimization algorithm [102].

To test this, an optimized initial and final configuration was received from the ISE group (see fig 3.7).
These structures have already been relaxed and optimized; therefore, they are taken as the initial and
final steps of the NEB simulation. An active learning loop using NEB will be done to optimize the NEB
performance over time. For this, a new Python script named NEB_test_all.py was developed, where it
takes an initial and final configuration (as an xyz or CONTCAR file) as inputs, as well as the number of
steps for the NEB simulation. Afterwards, coordination analysis using the avg_coordination.py script is
done, and then in a similar fashion as the previous ALL, a VASP is run with the selected configurations
(one every two ps, then one every one ps starting from the middle of the simulation). These relaxed
structures are then used to finetune the MP0 model, and then the NEB run is done over again until
either 10 loops have run or the energy in error is smaller than 43meV/Atom. During each loop, a graph
showing the energy versus reaction coordinate is plotted, which can give an idea of whether the model
converged or not. This code is available with VASP usage; however, due to time constraints, the single-
point calculations were skipped, and the images are directly used as fine-tuning data. This could prove
to be an issue in the NEB calculations.

Figure 3.7: Initial and Final NEB Configurations



4
Results and Discussion

Two active learning loops are run for several loops, where one active learning loop uses theMACE-MP0
foundational model as a starting point for theMD simulation, meanwhile the other loop uses self-trained
MACE models using the given Ni/Ga2O3 system. In this case, a committee of 5 models was trained.
To pre-process this data, each model had the same initial dataset, but the data was randomized before
the 80/20 training/testing split. This technique is known as cross-validation, which is done to prevent
overfitting or bias in the training set, enhancing the overall performance and accuracy of the model
[103].

4.1. MACE Training and Validation

For the initial testing and validation with MACE, a model was trained using a single VASP output
folder, containing exactly 78 configurations. The results from this training have been shown previously
in figure 3.2 and figure 3.3. The parity plot shows a good fit of the predicted energies with the ground-
truth DFT energy. However, when evaluating themodel with other configurations that were not included
in the training set, the model does not perform as well. Parity plots for energies and forces depicting
this difference in performance are shown in Figure 4.1. The calculated RMSE for energies and forces
are 0.37 eV/atom and 0.0290 ev/Åfor figure 3.2, meanwhile for 3.3 the errors are 5294 and 0.0985 ev/Å.
Of course, this is expected since the model is not trained on this data; however, the energy and forces
values of the other configurations are around the same values. Therefore, the model might be good
enough to do simulations only on the same or similar 78 configurations; however, it might produce
errors in energy predictions when applying it in MD with other, non-trained configurations.

44
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Figure 4.1: Parity Plots of Different Structure Evaluated in trained MACE Model

(a) Energy Parity Plot

(b) Force Parity Plot

Exploring the error in energy and forces given via the comparison of the training, validation, and testing
datasets is an important metric to determine the performance of the model. Initially, a model was also
trained using all of the 464 given configurations, where 80% was used for training (371 configurations)
and 20% for testing (the remaining 93). Figure 4.2 shows the result of using 80% of all given con-
figurations. Comparing this image to figure 3.2, a good fit of all datasets is attained, where only one
training configuration falls outside of the parity line. Since most configurations fall in the parity line,
it is plausible to conclude that the training was successful and that the model has learned successfully
the energies and forces per configuration. Another indication of successful machine learning training is
shown on the training and validation loss graph. No signs of over- or underfitting are observed, which
indicates that the model is robust and performance is expected to be good, since the model generalizes
well to the data.
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Figure 4.2: MACE Training Results with 371 configurations used for training.

4.1.1. Committee Training

To further explore the evolution of training, validation, and testing error overall, training with a com-
mittee of models was also tested. Here, a committee of models with different training sizes was used,
where models with 20, 40, 80, 160, 240, and 361 configurations were trained. This was done to test
if the error in predicted energy and forces decreases as the number of training points increases. Figure
4.3 and 4.4 show the RMSE for the energies and forces, respectively, for each trained model. These
RMSEs are automatically calculated by MACE once the program has finished training. The processing
time was calculated from when the MACE training began (epoch 1) until the last epoch of training
(epoch 200). All models used the same MACE training settings; the only difference is the number of
configurations.
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Figure 4.3: MACE Committee Training and Validation Energy Error Evolution

Figure 4.4: MACE Committee Training and Validation Force Error Evolution

As expected, the lowest error in both forces and energy occurs when training on the highest number of
structures. However, using 160 and 240 structures could also provide good model performance due to
their similarly low errors in energy and forces. Processing time using these models is also shorter due
to the lower number of configurations used. Figure 4.5 shows the processing time for the training and
evaluation of the models. All trainings and evaluations shown so far have been done locally using one
NVIDIA GeForce RTX 4070 graphics card.
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Figure 4.5: MACE Committee Training and Validation Processing time per Model

4.2. Active Learning Loop Results

Firstly, before doing any of the active learning loop simulations, an NVT ensemble with a Langevin
dynamics thermostat was set up in VASP. Here, a previously optimized configuration was taken from
the same dataset used to train the previous models. This simulation will serve as a basis or ”ground
truth” to compare the efficacy of the MLIPs-based MD simulations. The INCAR file was set to run
for 10ps (the same number of time steps as the initial MD simulations done with the active learning
based MD). However, this simulation ran for 885 fs (so 0.885ps) for 24 hours, which is the limit for the
educational supercomputer to run. This in itself is a great example of the magnitude of difference in
processing requirements, since 10ps using the MP0 model, for example, only takes 10 minutes. These
simulations were done using the same number of processors (16 cores, 2 nodes). Figure 4.6 shows the
initial and final configuration of this simulation.

Figure 4.6: Configuration of Ni/Ga2O3 (left) before VASP-MD and (right) after VASP-MD
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After ending this simulation, the active learning loops using the foundational model MP0 and the
committee-based model began. In total, five and three iterations of the loop were done, respectively.
For each iteration, all the output files are saved in a folder, which include the MD outputs (such as ki-
netic, potential, and total energy plotted with the simulation step), coordination analysis plots, trajectory
files, and, most importantly, the error in energy between the configurations before and after the single
point VASP calculations are printed. It is expected that this error is reduced after each iteration’s model
finetuning/retraining, since the modified dataset would include configurations of the VASP simulation.

4.2.1. Error Evolution

To evaluate the error change in predicted energy and forces, the RMSE of these properties was calculated
for the configurations before and after using VASP. For the foundational model-based active learning
loop, there was indeed a decrease in energy and force error, though it is reflected more in the energy
error evolution. Figure 4.7a shows the energy error evolution per iteration, meanwhile 4.7b shows the
force error evolution. The first iteration (before finetuning) reports high RMSE errors of 2.934882
eV/atom and 0.2754 eV/Åfor the energy and force, respectively. After finetuning the model, the error
goes down to 0.011099 eV/atom and 0.1297 eV/Å, which proves that finetuning the model for even one
iteration reduces the error in energy predictions marginally. The active learning loop would stop right
after this since the threshold has been met. However, for testing purposes, three more iterations were
done to observe if similar or lower errors were attained.

The following iterations indeed showed similar results in energy error calculations, with the lowest error
in energy recorded being of 0.009682 eV/atom, which is already 10meV/atom lower than the established
threshold.



4.2. Active Learning Loop Results 50

Figure 4.7: Error Evolution Before and After Active Learning

(a) Energy RMSE evolution of MP0 based active learning loop

(b) Force RMSE evolution of MP0 based active learning loop

In the case of the committee of models, there is also a decrease in error after the first iteration(see figure
4.8). The error in energy is, however, already below the expected threshold (4eV/atom) before retrain-
ing the model. This is expected, since the committee of models is trained exclusively on previously
outputted VASP data.
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Figure 4.8: Error Evolution Before and After Active Learning with Committee Model

(a) Energy RMSE evolution of Committee-based active learning loop

(b) Force RMSE evolution of Committee-based active learning loop

The difference in error evolution between the types of active learning loops could be because the initial
MP0 small foundational model includes information for many configurations of 89 elements. Therefore,
when finetuning with only data that includes Ni-Ga-O, the model gives a higher weight to this data. This
behavior is not only reflected in a decrease in energy error, but also in the final, stable configuration
achieved in the MD simulation. In figure 4.9, the initial, medium, and last configuration of the catalyst
are shown, where there is a clear difference in the behavior of Ni atoms on the surface of the support. In
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the first scenario, the Ni atoms seem to be clustering one atop of each other. In the other configurations,
the Ni atoms create more bonds with the oxygen atoms at the surface of the catalyst, which could be a
favored behavior due to a more reproducible, stable, and active catalyst.

The formation of Ni-O bonds can lead to the formation of oxygen vacancies in the Ga2O3 support.
These then form highly reactive areas that may act as active sites for reactions such as CO2 hydrogena-
tion to methanol. TheCO2 molecule is then adsorbed on the surface of the catalyst via these active sites.
Nickel itself also provides sites for the C-H activation, and this, joined with the previously mentioned
formation of oxygen vacancies, creates a synergistic effect allowing for overall better catalytic perfor-
mances. The higher catalytic performance of nickel supported on various metallic surfaces, such as
CeO2,, is well attributed to weak to medium basic sites, abundant oxygen vacancies, greater dispersion
and surface area of nickel, and an appropriate interaction between the metal and the support [104–106].
In the case of the committee-based model, similar stable configurations are achieved throughout all
iterations of MD simulations.

Figure 4.9: Configuration Evolution over MP0 based Active Learning Loop

4.2.2. Principle Component Analysis

A PCA analysis for both types of ALL was done to identify the variation in data over configurations
from all iterations’ MD trajectories. Figure 4.10 shows the different PCAs for both types of ALLs. In
general, the initial MD configurations begin at high PC2 values and gradually go lower and lower until
they all begin to cluster around PC1 and PC2 = 0. The most striking feature of the MP0 PCA is the clear
separation between the initial configurations (so pre-fine tuning) with the fine-tuned configurations.
This distance between the two clusters suggests that a substantial structural change occurred between
the first and second loops of the active learning. This correlates with the previously obtained results on
the configuration evolution from the pre-finetuned configuration to the post-finetuning configurations.
The fact that all later loops (1-5) occupy the same general area on the plot indicates that after this initial
transition, the system had found a stable or preferred conformational basin and continued to sample
configurations within that basin.

The initial model generates MD trajectories that are not representative of the catalyst’s true conforma-
tional space. The large structural differences observed in this PCA suggest that the model was exploring
an incorrect part of the potential energy surface. Through fine-tuning, the correct energy landscape was
learned by the MACE. This enables the following iterations to accurately explore the true, more stable
conformational states of the catalyst. This structural evolution is also observed to a smaller degree on
the committee-based active learning loop PCA. Appendix E shows PCA for the entire ALL individually.
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Figure 4.10: PCA analysis of all iterations of MP0 and Committee based MD

(a) PCA over all foundational model-based ALL

(b) PCA over all committee models based on ALL
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4.2.3. Pair Distribution Function Analyses

To further evaluate the last fine-tunedmodels, 10 shortMD runs of 500 steps are made to study the repro-
ducibility and statistics using said models. The Ni-Ni and Ni-O pair distribution function between the
DFT-based MD run and the mean distributions out of the 10 MD simulations for both the foundational-
based and committee-based ALLs MDs are compared in figures 4.11-4.14. These graphs show a pretty
accurate match between DFT and MLIPs-based predictions, with a 93.75% and 91.25% match in the
Ni-Ni pair distribution prediction for the foundational and committee model, respectively. This was
calculated using equation 4.1, where the expression calculates the percentage of distance bins where
the absolute difference between the VASP DFT reference (g_vasp) and the ensemble-averaged MLIP
predictions (g_mlip_mean) falls below a specified tolerance threshold. This provides an intuitive mea-
sure of how well the MLIP reproduces the structural characteristics captured by the reference quantum
mechanical calculations. The statistical results between both models are shown in Table 4.1.

%match =
1

n

n∑
i=1

(∣∣gvasp,i − gmlip_mean,i
∣∣ < threshold

)
× 100 (4.1)

Table 4.1: Statistics of PDFs analysis results

Type of Model Ni-Ni (RMSE) Ni-O (RMSE) Match % Ni-Ni (th=0.3) Match % Ni-O (th=0.1)
MP0 0.1285 0.246 93.75% 68.75%
Committee 0.1401 0.2012 91.25% 70.00%

Figure 4.11: Ni-Ni Pair Distribution Function of MP0 and DFT based MD
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Figure 4.12: Ni-O Pair Distribution Function of MP0 and DFT based MD

Figure 4.13: Ni-Ni Pair Distribution Function of Committee-based model and DFT-based MD
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Figure 4.14: Ni-O Pair Distribution Function of Committee-based model and DFT-based MD

Interestingly, MP0-based models show a better match for Ni-Ni interactions compared to committee-
based models. In contrast, committee-based models perform better in capturing Ni-O bonding. This
improvement is likely a direct result of the committee’s ability to identify and sample configurations
where the models disagree the most (i.e., configurations with high uncertainty), which often occur at
the complex metal-support interface.

However, for Ni-O interactions around 3.5 Å, the predicted density is notably overestimated relative to
the DFT ground truth for both loops. One possible explanation is that many GNNs, including MACE,
primarily focus on interactions among immediate neighbors. This can lead to descriptors that overlook
subtle but important long-range forces. Ni-O interactions beyond the first coordination shell (around
3.0 Å) may not be adequately captured [107].

To address this limitation, recent research has explored hybrid machine learning models that incorpo-
rate molecular mechanics methodologies. These approaches treat chemically active regions quantum
mechanically while modeling the surrounding environment classically. A notable example is the Field-
MACE architecture, which leverages high-order features through multiple expansions. It has demon-
strated success in reducing population curve artifacts in nonadiabatic excited-state dynamics. However,
its major drawback is computational cost—simulations can take months to complete. Further develop-
ment is needed to reduce computational time while preserving both short- and long-range interactions
in MLIPs [107]. Other distribution functions were calculated (for example, Ni-Ga, Ga-O), as well as
the mean coordination number of Ni-Ga. These results for the foundational model-based simulations
may be found in Appendix F.

4.2.4. Coordination Distribution

The generalized coordination number (GCN) is another property of interest, which is also calculated in
the avg_coordination.py script. Throughout all the iterations for both the MP0 and committee-based
active learning loops, an average generalized coordination number in the Ni cluster was found to be
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approximately 4 (giving values between 4.09 and 4.15). The generalized coordination number was
calculated using equation 4.2. For each nickel atom, the algorithm computes the GCN by summing the
normalized coordination numbers of all its neighbors, where each neighbor’s contribution is weighted by
its coordination number divided by a maximum coordination number (cn_max). This approach captures
not only the immediate coordination environment but also the local structural connectivity, providing
insights into whether atoms are located in bulk-like environments (high GCN), surface regions (medium
GCN), or highly undercoordinated sites such as corners or defects (low GCN). A max coordination
number (cnmax) of 12 is set due to this being the maximal coordination as found in the bulk for a single
atom site in an FCC crystal [98].

A theoretically informed cutoff distance based on the known geometric relationships in FCC crystals,
where the nearest-neighbor distances scale as a/

√
2 and next-nearest-neighbor distances scale as the

lattice parameter ’a’. By using a hard-coded lattice parameter of 3.52 Å(typical for nickel) and applying
the geometric factor (

√
2/2)∗1.45, the code calculates an adaptive cutoff of approximately 3.6 Åthat is

designed to capture both nearest and next-nearest neighbors while excluding more distant coordination
shells.

CN(i) =

ni∑
j=1

cn(j)/cnmax (4.2)

Figure 4.15a and 4.15b show the evolution of the frequency of GCN=4.5 throughout all iterations of
the MP0-based model and the committee-based model, respectively. This graph is able to show the
evolution of the GCN=4.5 throughout each iteration of active learning, which is the maximum attained
GCN seen in everyMD trajectory. An increase per iteration is expected and attained (except for iteration
3 of the MP0 iteration), since the timesteps per iteration increased by 1000 (so 1 ps).
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Figure 4.15: GCN=4.5 over each iteration in each Active Learning

(a) GCN=4 over each iteration in MP0 based Active Learning

(b) GCN=4.5 over each iteration in committee-based Active Learning

To have a better idea of the model’s efficacy in MD, we applied a similar methodology as in the pair
distribution function calculations. Here, 10 short simulations were done with the final finetuned and
retrained model, respectively. The GCN number is then calculated for both MLIPs and DFT-based
MD trajectories, and the mean frequency seen in these trajectories is shown in Figure 4.16. The fact
that the GCN for Ni-Ni clusters remains essentially the same in all models suggests that the MLIPs
are accurately reproducing the local geometry and bonding topology of the Ni cluster. For this GCN
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calculation, an atomic cutoff radius of 3.0 Åwas used. This also supports the previous argumentation
about local structural consistency via the usage of MACE and DFT.

The agreement in GCN distributions across both types of MLIPs and DFT models is consistent with the
attained match in pair distribution functions for Ni-Ni distances below 3 Å. Since GCN is sensitive to
local atomic arrangements, particularly within the first coordination shell, the PDF alignment reinforces
the structural fidelity of the MLIPs in capturing short-range order.

This information is especially relevant in catalysis, since it proves that catalytically active sites are
preserved regardless of the simulation method. Given the known correlation between low GCN val-
ues and enhanced reactivity in Ni-based catalysts, this structural agreement reinforces the reliability
of MLIPs in capturing both functional behaviour and stability of the catalyst. Low-coordinated sites
have been shown to yield facile C-C coupling barriers and high CO coverage in the CO2 reduction
reaction [98]. This is due to the increase in the number of kinks and step sites, which display enhanced
CO binding in copper nanocatalysts [108, 109]. Currently, no research has been found relating to the
generalized coordination numbers of different Ni/Ga2O3 catalysts. Experimental work coupled with
the developed code to generate MLIPs based on DFT single point calculations of Ni/Ga2O3 with dif-
ferent coordinative environments, that is, with more or less nickel atoms, would be a great way to relate
structure-activity in, say, CO2 hydrogenation [110].

Figure 4.16: GCN = 4.5 Frequency of MLIP and DFT-based configurations
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4.3. Catalytic Validation: Energy Barrier of Formate Ion Formation

For the Nudge Elastic Band simulations, the initial and final configurations are shown in fig 3.7. The
initial configuration has a CO2 molecule placed at a certain distance from the Ni cluster. Hydrogen
atoms are placed in the Ni cluster, as well as in theGa2O3 support. These hydrogens have been placed
there to interact with the CO2 molecule once it has been adsorbed in the surface of the Ni cluster. The
transition step we are interested in studying is the formation of formate. This formation occurs once
one of the oxygen atoms from the CO2 molecule is adsorbed on the Ni surface. Here, an oxygen bridge
with the Ni atom is made, and then a hydrogen atom would attach itself to the C atom, resulting in the
formation of the formate ion in the Ni cluster surface.

A pre-made DFT-based NEB run of this trajectory has been previously done by the ISE team. Figure
4.17 shows the NEB calculated energies per atomic configuration. Now, the idea is to replicate this
behaviour via the usage of MLIPs. For this, the outputted NEB configurations are used as training data
to finetune the MACE-MP foundational model.

Figure 4.17: Reaction Coordinate of Formate Ion Formation via DFT-NEB

The foundational model is chosen due to the low amount of initial training data at our disposal (only 11
configurations/images are available). These images, however, did not contain information on the forces
or energies, and therefore single-point VASP calculations were done with these structures to obtain the
relevant properties for proper MACE finetuning. The first MACE-based run was done with the pure
foundational model, that is, without being finetuned.

Initially, NEB runs with the foundational model, and subsequent finetuned models were done with 500
steps, with each iteration increasing the timesteps by 100. However, instability in the NEB calculations
was observed as the number of timesteps increased. In the first 50-100 timesteps, the MACE-based
NEB showed a similar behaviour to the DFT-based NEB run. Therefore, 50 timesteps were chosen as
the initial number of steps, and per iteration, it was increased by 10. In total, 10 active learning loops
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were done, where in each iteration, an NEB run is done. The output NEB images are then used as fine-
tuning data for the following iteration. Following each NEB calculation, the energy versus reaction
coordinate (or image index) is made.

To observe the evolution of NEB in a more quantitative perspective, the distance between one of the
Ni atoms with the carbon atom of the CO2 molecule is calculated for every image in the NEB runs.
This serves as a plausible calculation to conclude if the MACE-based NEB replicates well (or not) the
DFT-based NEB. Figure 4.19 shows the initial results of this simulation.

As seen in the figure, the DFT-based NEB run (blue line with circular markers) shows a smooth, physi-
cally intuitive trajectory, with the C-Ni distance gradually decreasing as the molecule adsorbs onto the
surface. In contrast, the initial pre-finetuning run (orange line) and subsequent MLIP loop runs (green
to blue lines) show significant deviations. The MLIP curves exhibit erratic behavior, particularly at the
intermediate images (e.g., indices 2-5) and a sharp, unphysical drop in distance towards the final images
(e.g., indices 11-12). This erratic behavior confirms that the MACE-based NEB runs do not accurately
replicate the DFT-based trajectory. This is further evidenced in figure 4.18 where the calculated energy
per reaction coordinate of all MACE-NEB runs versus the DFT-NEB set. The same deviations are ob-
served in the same reaction coordinates, and also the first and last images have different energy values
compared to the DFT and the pre-finetuned NEB runs, which is unexpected. Though this is likely due
to the change in trained potential after finetuning.

Figure 4.18: Energy per reaction coordinate for each NEB run with MP0

These deviations may arise due to multiple reasons, for example, geometry optimizations (or single
point VASP calculations) were not done with the NEB images used for finetuning. This would result
in structures having unstable, unoptimized geometries, which would impact the stability of the NEB
simulation and subsequent calculations. This is also evidenced by the instabilities seen in the second
and second-to-last images. The initial and final images are fixed, and smooth transitions such as those
observed in the DFT-based NEB should be observed. However, this is not the case, indicating instabili-
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ties in the structure or that the quality of the finetuned MP model is not good enough. Because MACE-
MP0’s training data doesn’t include the specific atomic arrangements and chemical environments found
in catalytic systems, it is not well-equipped to provide a realistic description of the reaction pathways
and energy barriers in these systems.

Figure 4.19: C-Ni Distance per reaction coordinate for each NEB run using MP0

Further optimizations should be done before jumping straight into using the foundational model as a
calculator in NEB. Correct and plenty of fine-tuning information should be included, as well as doing
geometry optimizations in every iteration’s training data (NEB images). In this case, this was skipped
due to time constraints. A higher number of steps should also be used, since in the DFT-based NEB,
800 steps were used.

As an alternative, I trained a committee of 5 MACE models to use as potentials in NEB. This is done to
observe how the performance differs between using the foundational model or a committee of models in
an NEB active learning loop. Figure 4.20a shows the reaction coordinate versus recorded energy in the
NEB calculation, meanwhile 4.20b shows the C-Ni Distance along the NEB pathway. Comparing these
results with figures 4.18 and 4.19 respectively, there is a clear difference in performance altogether.

Figure 4.20a shows the importance of finetuning for energy calculations using MACE. Using a model
that was only trained in the initial dataset (so the DFT-NEB) results in wrong energy calculations. Here,
energies around -950meV are obtained, meanwhile the DFT results are around -1030 to -1050. This
is most likely due to the limited amount of data used for training, resulting in high errors in energy
calculations. Of course, this was revised, and indeed, the error in energy decreases with each iteration
of the active learning loop.

C-Ni curves, while not perfect, generally follow the trend of the DFT curve more closely than the
foundational model curves did. The slight deviation is still observed in the first image and second-to-
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last image indices; however, the deviation’s behavior is different compared to figure 4.19.

The results of this study indicate that the foundational MACE-MP0 model performs less effectively in
NEB simulations compared to the committee-based models. This disparity stems from the foundational
model’s generalized training on a vast database that does not include the specific atomic arrangements
and chemical environments critical for catalytic systems such as the used Ni/Ga2O3. Moreover, it
lacks the nuanced understanding required to accurately describe the complex reaction pathways and
energy barriers, as evidenced by the erratic behavior in both the energy and C-Ni distance plots.

The committee of models, being a self-trained ensemble on catalyst-specific data, provides a better
potential for these calculations. Its superior performance underscores the importance of finetuning on
domain-specific data. However, even the committee-basedmodel showed some instabilities, suggesting
a need for further optimization. One final highlight for the MACE-based NEB calculations is its speed.
Only one minute of simulation was required to run 50 steps. Previous simulations, which used 500 steps,
took approximately 10 minutes. This was done using. Therefore, 800 steps should take approximately
16 minutes, which is an advantage over the DFT-based run, which took approximately 48 hours, using
192 cores per node, with a total of 232 GB utilized.
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Figure 4.20: NEB with a committee of MACE Models

(a) Energy per reaction coordinate for each NEB run with MACE-Committee

(b) C-Ni Distance per reaction coordinate for each NEB run using MACE-Committee



5
Limitations and Future Research

This study provides a foundation for applying MLIPs to aNi/Ga2O3 catalyst system. However, there
are several limitations encountered during the realization of this project, which in turn define areas of
opportunity for future research studies in these areas. These limitations are the following:

Scope of the trained MLIP models and Element Inclusivity: The MLIPs developed in this work
were trained specifically for a pure Ni/Ga2O3 system. A significant limitation is the exclusion of
other elements, such as hydrogen and carbon. Initially, NEB calculations would not run due to these
molecules being missing, which is why it was decided to run additional active learning loops where
these elements are indeed included. In the study by Schaaf et al, however, it is shown that six different
active learning loops were implemented to sample new training configurations for every loop. These
configurations could include MD samples, geometry optimization samples, and NEB samples of the
base catalyst material and intermediate states of the material in the CO2 hydrogenation reaction [51].
This way, the model can understand samples taken from every point of the simulation trajectory and
therefore provide accurate results in every step of the simulation.

Training with Stresses: The models on the first shown active learning loops were trained on forces
and energies. While this is sufficient for many applications, including the training data with stresses,
it would be beneficial for studying phase transformations, high-pressure systems, or performing NPT
ensemble MD simulations. This would improve the model’s accuracy in predicting structural changes
under varying conditions.

Complexity of Reaction Network Modeling: Modeling the entire catalytic reaction network, includ-
ing all possible reaction intermediates and transition states, is a significant challenge, and worthy of its
research article. A comprehensive comparison of the efficacy and accuracy of MLIP-driven methods
versus DFT for the entire CO2 hydrogenation reaction in Ni/Ga2O3 would serve as the next step of
this investigation, since the base coding for one reaction step is already achieved. This would involve
systematically mapping all possible intermediates and transition states. The performance of the MLIPs
could then be rigorously benchmarked against traditional DFT calculations, assessing both computa-
tional efficiency and accuracy. This could form the basis of a PhD project or a future master’s thesis.

Exclusions in Training Data and Model Stability: The foundational MLIP models were trained with-
out including hydrogen due to observed instabilities during initial tests (explosions and unstable config-
urations). It was therefore decided to only focus on the baseNi/Ga2O3. However, it is recommended
that this training be tried again, this time with the use of the replay multihead finetuning, since this was
missing from the originally trained models with hydrogen. Also, the tested temperature was wrongly
set to 1200K, instead of the standard temperatures for these reactions at 300K-600K, so it would be of
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interest to try these trainings once more. Due to time constraints, this was not possible in this research
project.

Choice of Exchange-Correlation Functional: This study was conducted using data generated at the
DFT-PBE level of theory. While PBE is a widely used and well-validated functional for solid-state
systems, its accuracy may not be sufficient for all reaction steps, particularly those involving weak in-
teractions or a need for higher precision. Exploring other levels of theory (e.g., meta-GGA, hybrid-GGA,
hybrid-meta-GGA functionals) would provide a more robust assessment of the method’s performance
and is a potential area for future work. This would provide valuable insights into how the choice of
functional impacts the MLIP’s predictive capabilities and would allow for the creation of more accu-
rate, ”higher-level-of-theory” MLIPs.

System Specificity and Code Reusability: The models and scripts designed for this project were tai-
lored specifically to the Ni/Ga2O3 system. While the overarching computational framework can be
applied to other systems, specific parameters within scripts (for example, coordination analysis and fine-
tuning) are hardcoded for Ni, Ga, and O. To apply this methodology to a different catalyst, these scripts
would require significant modification, limiting their immediate ”plug-and-play” applicability. A fu-
ture project could focus on creating a more universal and modular code base that can be easily adapted
to different catalytic materials. This would involve generalizing the scripts for coordination analysis
and finetuning to automatically handle different elements, thereby enabling the rapid application of this
methodology to new systems.

Limitations of the Foundational Model’s Dataset: The small MP0a foundational model was used
as the basis for finetuning. This model, along with the replay dataset, only included six specific
Ni/Ga2O3, which was still good enough for the model to favour Ni-O bonding during the simula-
tions. Expanding this foundational dataset to include more diverse structures would be a logical step
to improve the model’s robustness, though this would necessitate modifications to the current data pro-
cessing scripts.

Choice of Foundational Model Version: The small MP0a foundational model was used as a base
model and foundational finetuning model. However, there are other foundational models which may
be used, such as the MP0b versions 1, 2, and 3, which, according to the MACE documentation, provide
higher stability in MD simulations, using core repulsion, a new repulsion regularization for high pres-
sure, and a few extra high pressure training example [76]. These models are also recommended to be
used in finetuning; however, the base MP0a was used in this research to keep consistency throughout
the different simulations.

NEB Calculations Limitations and Performance: For the simulations shown in the NEB results (see
section 4.3, performances and results close to the DFT-NEB run were obtained only with the committee-
based runs. The primary limitation was the small dataset. Future work should focus on significantly
increasing the amount of DFT-NEB-based data. Using a higher number of initial configurations (and
also more NEB steps, 800, for example) would give the models a more robust understanding of the
reaction pathway. Also, improvement in the quality of the training data at each iteration could be made
via VASP calculations for all intermediate configurations generated by the active learning loop. This
will provide accurate forces and energies, ensuring that the finetuned model is learning from physically
realistic data and mitigating the instabilities observed in the current runs.



6
Conclusion

Machine learning is certainly rising as a plausible complement and even substitute for DFT-based sim-
ulations on novel catalyst screening. This study is able to show that both self-trained models and the
foundational model MACE-MP0 are great starting points to mimic the DFT behavior in molecular
dynamics (MD) simulations. However, with the plain foundational model, the Ni/Ga2O3 MD simu-
lations do not depict a similar behavior, where the Ni atoms start to cluster one on top of each other.
With the committee of models, this isn’t observed. However, after proper finetuning, the foundational
model dataset provided very accurate and similar results to the DFT-based MD simulations, obtaining
up to a 93% accuracy in Ni-Ni bonding pair distribution function.

This thesis study can show that using MACE is a great alternative to obtaining quick and reliable
MD calculations, as well as energetic barrier calculations using NEB. For a simulation with the same
Ni/Ga2O3, an MD simulation using a NVT ensemble with a Langevin thermostat for 10ps, it takes
only 15 minutes with the MACEmodels. Meanwhile, with the DFT-based simulation in VASP, it would
take approximately 272 hours.

Certainly, there were some limitations encountered, mainly due to computational limits and time con-
straints. This study only focused on training and fine-tuning on Ni/Ga2O3 data. Other types of cat-
alysts were not tested; however, with the developed active learning loop pipeline, it would certainly
be more accessible to test other systems easily. Long-range interactions are also not well captured by
MACE, since this type of ML model primarily focuses on the interactions among the immediate neigh-
bors. Additional development or implementation of molecular mechanics methodologies in MACE, as
seen in the Field-MACE architecture, would prove to reduce the miscalculation in these ranges.

Additional testing and code development is also required for the NEB active learning loop would be
required as well, since the code up to the date of publishing this thesis shows there are some instabilities
when using MACE-MP0 finetuned models as potentials in NEB calculations. Using a committee of
models showed better performance compared to theMP0-based NEB calculations. However, deviations
are still present, and further testing/fine-tuning is recommended to obtain a model with performance
similar to DFT-NEB.

Continued research at the intersection of chemistry, materials science, and data science is essential
for addressing these challenges. The integration of these fields is not only accelerating nanocatalyst
development but also contributing to a safer, sustainable, and more efficient industrial transition.
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A
Appendix A: Effective Descriptors for

Material Structure in MLIPs

Some criteria must be use for the development of an efficient descriptor in MLIPs. These include Spa-
tial Translation Invariance, which dictates that a descriptor must remain consistent irrespective of shifts
in the coordinate system, thereby respecting the isometry of space. Similarly, Rotational Invariance
ensures the descriptor is unaltered by coordinate system rotations, adhering to the isotropy principle.
Permutation Invariance is another key constraint, meaning the descriptor should be insensitive to the
order of atomic indices, reflecting that reordering atoms does not change the system’s physical charac-
teristics [62].

Furthermore, Uniqueness is vital, requiring each descriptor to be distinctly tied to a specific atomic
environment and property, preventing ambiguous representations. Continuity ensures that the descriptor
sensitively reflects minor variations in atomic arrangements, maintaining a proportional relationship
between small structural changes and descriptor adjustments. For practical applicability, Compactness
is desired, where the descriptor provides comprehensive information while minimizing features to avoid
unnecessary complexity. Lastly, Computational Efficiency is paramount, demanding that descriptor
calculation be significantly less resource-intensive than direct computations of the physical properties
it represents, making MLIPs a viable alternative for large-scale simulations.

Figure A.1 shows an example of commonly used descriptors that appear in different MLIP algorithms.
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Figure A.1: Some Descriptors seen in MLIPs, as shown in [62]



B
Appendix B: MPNN Interatomic

Potentials Equations

Equation B.1 shows how the state of a node is represented, where the position in 3-dimensional space,
element composition, and learnable features of the system are located. Equation B.2 shows the con-
struction of a messagem(t)

i , where one message is created for each node by pooling over its neighbors.
The variable Mt represents a learnable message function, and a permutation invariant pooling opera-
tion over the neighbors of the node’s atom is also applied (⊕), which could be a mathematical operation
such as a sum. In the update step, the message is transformed into new features. Ut here represents a
learnable update function, and after a specified number of message constructions (here represented as
T) and update steps, a readout function (R) is applied to map the node states to the target property that
would be calculated, for example, the site energy of the atom (Ei).

σ
(t)
i = (ri, zi, h

(t)
i ) (B.1)

m(t)
i = ⊕j∈N(i)Mt(σ

(t)
i , σ

(t)
j ) (B.2)

h
(t+1)
i = Ut(σ

(t)
i ,m(t)

i ) (B.3)

Ei =
T∑
t=1

Rt(σ
(t)
i ) (B.4)
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C
Appendix C: INCAR file setup

To initialize a VASP setup for energy minimization, single point calculations, or molecular dynamics,
the input parameters must be correctly defined. In this research project, VASP was used to do at least
one run for each of the aforementioned simulations. Figure C.1 shows a screenshot of an INCAR energy
minimization setup. The parameters and a short description of each [41] listed here are the following:

• SYSTEM: User given name of the simulation or test to be run.

• NWRITE: Verbosity tag for the OUTCAR file. Determines how much will be written in the
OUTCAR. By default it equals 2, where information such as eigenvalues, DOS+charge density,
energies, forces, and stress will be included.

• PREC: Precision mode, which sets default values for the energy cutoff.

• ISTART: Job begins from scratch when this value is equal to 0. When set to another value, the
job will continue according to the orbitals read from a WAVECAR value.

• ICHARG: Determines how VASP constructs the initial charge density.

• ISPIN: Specifies spin polarization

• IVDW: Specifies a Van der Waals dispersion term of atom-pairwise or many-body type.

• MAGNOM: Initial magnetic moment for each atom if no magnetization density is present.

• ENCUT: Specifies energy cutoff for the plane-wave basis set in eV.

• EDIFF: Specifies the global break condition for the electronic SC-loop.

• LREAL: Determines if projection operators are evaluated in real-space or in reciprocal space.

• NELMIN: Determines minimum number of electronic self-consistency steps.

• ALGO: Specifies the electronic minimization algorithm or selects the type of GW calculations.

• ISIF: Determines if the stress tensor is calculated and its degrees of freedom.

• NSW: Sets the maximum number of ionic steps. Set to 1 for single point calculations.

• IBRION: Determines how the crystal structure changes during the calculation. 0 is for MD, 2
for conjugate gradient structure optimization.

• POTIM: Sets the time step in MD or step width in ionic relaxations.

• ISMEAR: Determines how the partial occupancies are set for each orbital.

• SIGMA: Determines the width of the smearing in eV.
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• NPAR: Number of bands that are treated in parallel.

• ISYM: Determines how VASP treats symmetry. When = 0, symmetry is switched off.

Figure C.1: INCAR file setup example for energy minimization

For the MD simulation setup, there are additional parameters that have been setup. These are the fol-
lowing:

• TEBEG: Sets the initial temperature in Kelvin of the MD simulation.

• TEEND: Sets the final temperature in Kelvin of the MD simulation.

• SMASS: Controls the velocities during an ab-initio MD run. -1 to setup a Langevin thermostat.

Figure C.2: INCAR file setup example for NVT ensemble MD



D
Appendix D: Configurations of

Ni/Ga2O3 with Hydrogen Atoms
before and after finetuning

The first active learning loop was done using Ni/Ga2O3 with hydrogen atoms adsorbed on the nickel
cluster and also on the Ga2O3 support (see fig D.1). This data is also part of the same database given
by the Inorganic Systems Engineering group. Throughout the active learning loop, molecular dynamics
simulations were ran to observe how well the finetuned foundational model calculates energies and
forces in these simulations as of compared to the DFT based simulations. In this case, the nickel atoms
tend to cluster one on top of each other, where only two nickel atoms formed bonds with the oxygen
atoms located in the support. This lack of oxygen bridges, low dispersion and surface area of the
nickel cluster, and a clear inappropriate interaction between the metal and support reflects the poor
performance of this model [104, 105].

Later on, it was found that this behavior is due to the lack of the multihead replay feature utilized in
finetuning. With this feature turned on, the model’s generalization capabilities are kept. The finetuning
for this active learning included many elements and configurations (so the finetuning dataset was not
filtered correctly, since it included information from other metal structures found in the MP0 database).
This can also lead to an undesired behavior on this catalyst, since theMaterials Project Database contains
configurational information of metallic crystals composed of one or more metals. These may also
include non-metallic elements such as O and H, however, the formation of intermetallic bonding is
enhanced due to the metal-metal bonding seen in many of the Materials project database, which could
lead to this nickel cluster formation [76].
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Figure D.1: Ni/Ga2O3 with Hydrogen configurations evolutions throughout active learning loop



E
Appendix E: Single PCA analyses of
MP-0 based Active Learning Loops

All PCAs for the MP-0 based MD simulation are presented here in figures E.1-E.3. Committee based
PCAs are seen in figure E.4. These individual PCA analyses confirm that at the beginning of the molec-
ular dynamics trajectory, the structures gradually transition to more stable configurations.

Figure E.1: PCA pre-finetuning and loop 1 MP0 based MD
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Figure E.2: PCA loop 2 and 3 MP0 based MD

Figure E.3: PCA loop 4 and 5 MP0 based MD

Figure E.4: PCA over all active learning loops MACE-Committee



F
Appendix F: Energies and Bonding

Distances Plots for MP0 MD
Simulation

Here, all of the kinetic, potential, and total energies for the different foundational model based MD sim-
ulations are shown in figures F.1-F.9. Pair distance distribution between all possible elemental bonds
found in theNi/Ga2O3 system are shown from figures F.10-F.27. These are examples of the automat-
ically outputted plots obtained per each iteration of the active learning loop. These graphs are useful to
the user if they are interested in observing the dynamics behavior evolution over every iteration of the
loop, where directly the energies, coordination, or nearest neighbor distance of specific bonds want to
be studied.

Figure F.1: Pre-Fine tuning, Kinetic Energy
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Figure F.2: Pre-Fine tuning, Potential Energy

Figure F.3: Pre-Fine tuning, Total Energy
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Figure F.4: Iteration 3, Kinetic Energy

Figure F.5: Iteration 3, Potential Energy
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Figure F.6: Iteration 3, Total Energy

Figure F.7: Iteration 5, Kinetic Energy
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Figure F.8: Iteration 5, Potential Energy

Figure F.9: Iteration 5, Total Energy
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Figure F.10: Coordination Number Distribution of Ni-Ga bonds, Pre-finetuning

Figure F.11: Coordination Number Distribution of Ni-Ga bonds, Loop 3

Figure F.12: Coordination Number Distribution of Ni-Ga bonds, Loop 5
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Figure F.13: Nickel-Nickel bond distribution, Pre-finetuning

Figure F.14: Nickel-Nickel bond distribution, Loop 3
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Figure F.15: Nickel-Nickel bond distribution, Loop 5

Figure F.16: Nickel-Gallium bond distribution, Pre-finetuning
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Figure F.17: Nickel-Gallium bond distribution, Loop 3

Figure F.18: Nickel-Gallium bond distribution, Loop 5
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Figure F.19: Nickel-Oxygen bond distribution, Pre-finetuning

Figure F.20: Nickel-Oxygen bond distribution, Loop 3
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Figure F.21: Nickel-Oxygen bond distribution, Loop 5

Figure F.22: Gallium-Gallium bond distribution, Pre-finetuning
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Figure F.23: Gallium-Gallium bond distribution, Loop 3

Figure F.24: Gallium-Gallium bond distribution, Loop 5



100

Figure F.25: Gallium-Oxygen bond distribution, Pre-finetuning

Figure F.26: Gallium-Oxygen bond distribution, Loop 3
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Figure F.27: Gallium-Oxygen bond distribution, Loop 5
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