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The integration of metabolomics data with sequencing data is a key step towards improving the diagnostic pro-
cess for finding the disease-causing genetic variant(s) in patients suspected of having an inborn error of metab-
olism (IEM). The measured metabolite levels could provide additional phenotypical evidence to elucidate the
degree of pathogenicity for variants found in genes associated with metabolic processes. We present a computa-
tional approach, called Reafect, that calculates for each reaction in a metabolic pathway a score indicating
whether that reaction is deficient or not.When calculating this score, Reafect takes multiple factors into account:
the magnitude and sign of alterations in the metabolite levels, the reaction distances between metabolites and
reactions in the pathway, and the biochemical directionality of the reactions. We applied Reafect to untargeted
metabolomics data of 72 patient samples with a known IEM and found that in 81% of the cases the correct defi-
cient enzyme was ranked within the top 5% of all considered enzyme deficiencies. Next, we integrated Reafect
with Combined Annotation Dependent Depletion (CADD) scores (a measure for gene variant deleteriousness)
and ranked the metabolic genes of 27 IEM patients. We observed that this integrated approach significantly im-
proved the prioritization of the genes containing the disease-causing variant when compared with the two ap-
proaches individually. For 15/27 IEM patients the correct affected gene was ranked within the top 0.25% of the
set of potentially affected genes. Together, our findings suggest that metabolomics data improves the identifica-
tion of affected genes in patients suffering from IEM.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

DNA sequencing methods such as exome sequencing (ES) and
whole genome sequencing (WGS) are powerful techniques to identify
the pathogenic genetic variant(s) in patients suspected of a genetic dis-
ease [1–3]. Nevertheless, ES performed on a single person typically gen-
erates tens of thousands of variants [2]. With the reduced costs for
sequencing, WGS becomes increasingly popular, generating even a
few million of variants per patient [2]. Numerous filtering strategies
have been developed to reduce the number of variants which needs
human inspection. The Combined Annotation Dependent Depletion
(CADD) score is widely explored as one of these filtering strategies
gaerts),

. This is an open access article under
[4]; prioritizing variants such as single nucleotide variants (SNV), dele-
tions and insertions (InDels). CADD scores employ a machine learning
based approachwhere 63 conservational - and functional genomicmet-
rics are combined into a single metric. After various filtering steps, the
investigator still needs to evaluate a substantial number of variants
manually. The pathogenicity of these rare or novel variants is often
unknown, leading to a clinically dissatisfactory classification.

Functional studies may provide evidence whether a variant of un-
known significance should be considered pathogenic or not. For this
purpose, metabolomics is catching more and more interest since it has
the potential to resolve the degree of pathogenicity for genetic variants
which are expected to have a deleterious effect on the patient's metab-
olism, i.e. inborn errors of metabolism (IEM) [5–7]. To integrate meta-
bolomics and genomics, metabolomics results need to be interpreted
to link metabolite abnormalities to potentially deficient reactions/
enzymes and their corresponding genes. Some strategies have already
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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been developed for this purpose. Haijes et al. applied expert knowledge
to develop an algorithm that matches metabolic signatures obtained
from metabolomics with expected metabolic signatures caused by
each IEM, thereby ranking potential enzymatic deficiencies [8]. This
approach, however, requires each IEM to be added manually and opti-
mized individually, involving many different parameters. Alternatively,
Baumgartner et al. explored the use of classification algorithms to dis-
tinguish multiple IEM based on differences in metabolite levels [9],
which does not require manual parameter optimization. However,
training such a classifier requires data from multiple patients having
the same IEM. Since more than a 1000 different IEM exist with an over-
all birth prevalence of 51 per 100.000 [10] the creation of a proper train-
ing set is not likely to succeed. To overcome this limitation, Messa et al.
explored the use of metabolic networks to simulate IEM specific meta-
bolic profiles, which they then compared with real IEM profiles using
a Siamese neural network to rank the most probable matching simu-
lated IEM [11]. However, the successful detection of a certain IEM de-
pends on the resemblance of the simulated IEM profiles with real IEM
profiles. Furthermore, we argue that pathway information combined
with (real) metabolomics profiles is sufficient to rank IEM, thereby re-
moving the need for simulated IEM profiles. Another strategy involves
the use of gene-metabolite sets for which an enrichment score can be
calculated to rank potential affected genes [5]. Similarly, metPropagate
uses gene-metabolite set enrichment scores, but additionally propa-
gates these scores through a protein-protein network to rank poten-
tially affected genes [7]. The main concern with these approaches
is that enrichment scores require (Z-score) cutoffs for metabolite
levels, potentially excluding subtle aberrations that do not exceed the
thresholds. Furthermore, gene-metabolite set approaches neglect the
signature where substrates normally catalyzed by the deficient enzyme
increase in concentration, whereas related products decrease in
concentration.

Two other methods that uses metabolomics data to detect poten-
tially affected pathways/module were developed by Li et al.
(Mummichog) [12] and Pirhaji et al. (PIUMet) [13]. Mummichog auto-
matically annotates mass spectrometry (MS) features while inferring
molecular pathways and modules that have increased ‘activity’ related
to a set of significantly altered MS features. Similarly, PIUMet also auto-
matically annotates MS features, infers dysregulated molecular path-
ways, but additionally scores metabolites and proteins to reflect their
importance. Both Mummichog and PIUMet were developed as general
tools to infer dysregulated molecular pathways/modules, but were not
designed to rank/detect IEM.Moreover, the use of low confident feature
annotations is doubtful in a clinical setting.

To integrate metabolomics data with genomic variant scores ob-
tained from ES, or potentially WGS, we developed an algorithm, called
Reafect (Reaction defect). Reafect combines information of metabolic
pathways from KEGG [14] and the metabolite Z-scores obtained from
annotated metabolomics data to calculate a ‘deficient reaction score’
for each reaction. Higher scores imply that there is more evidence of
that reaction being deficient and vice versa. Our algorithmdiffers funda-
mentally from the approaches mentioned earlier, since 1) Reafect uses
solely existing pathway information, thereby removing the need for
manual addition of each IEM, 2) does not rely on the availability of a
large metabolomics dataset containing multiple IEM patients, 3) con-
tains only 3 parameters that need to be optimized, 4) uses the Z-
scores in a continuous fashionwithoutusing cutoff values, and5) explic-
itly takes the general metabolic signature of an IEM into account when
searching for the most probable IEM. We evaluated Reafect's perfor-
mance on 36 distinct IEM using 72 plasma samples from patients diag-
nosed with an IEM.

Since each reaction is associated with genes coding for the enzyme
catalyzing that reaction, we used Reafect's deficient reaction scores in
combination with CADD scores as an integrated model for prioritizing
200
potentially affected genes. To evaluate this approach, we studied 27
IEM patients for which the pathogenic variantwas identified and untar-
getedmetabolomics datawas obtained. This integratedmodel showed a
significant improvement on ranking the correct affected genes when
compared with using solely Reafect or CADD scores.

2. Material and methods

2.1. Reafect

An enzymatic deficiency generally leads to a build-up of the reaction
substrate(s) and shortage of the product(s) formed by that reaction. Z-
scores obtained from annotatedmetabolomics can be used to detect the
accumulation of these substrates (i.e. positive Z-scores) aswell as short-
ages of the products (i.e. negative Z-scores). Although the accumulation
and shortage of metabolites occur for the metabolites directly involved
in the deficient reaction, aberrant metabolite levels will also propagate
through a biochemical pathway, leading to changes inmetabolite levels
that are multiple reaction steps away from the deficient reaction. We
used this dogma to develop an algorithm, called Reafect, that calculates
for each reaction in a pathway a score that reflects howdeficient that re-
action is.We called this score the ‘deficient reaction score’ or SR score. To
calculate this score, Reafect weighs metabolite levels (Z-scores) which
are further away from the considered reaction to a lesser extent than
metabolite levels closer to the putative reaction, since we assume that
more distant metabolites give less information about the reaction
deficiency. For this purpose, Reafect uses a weighted version of the
observed Z-scores, called ‘effective Z-scores', and which are always rel-
ative to the considered reaction for which the deficient reaction score
is calculated (see Fig. 1 and Eq. 1). The effective Z-score is determined
by calculating a total decay factor over a reaction path when going
from the metabolite (with Z-score) to that reaction. The more steps
away from the considered reaction, the more the observed Z-score is
decayed, thereby resulting in a lower absolute effective Z-score. To con-
strain the number of model parameters, we used three different decay
factors (a, b, c) and distinguished five different decay types (see
Eq. 2): 1) a decay factor a for a metabolite with a positive Z-score taking
a step downstream towards the considered reaction, 2) a decay factor b
for a metabolite with a positive Z-score taking a step upstream towards
the considered reaction, 3) a decay factor a for a metabolite with a neg-
ative Z-score taking a step upstream, 4) a decay factor b for ametabolite
with a negative Z-score taking a step downstream and 5) a decay factor
c for reversible reactions (independent of the Z-score sign) taking one
step in the direction of the considered reaction. We want to emphasize
that Reafect describes reaction paths as a chain of metabolite and reac-
tion nodes (in a graph) to track all pathway information (see Fig. 1).
Consequently, a reaction step is either a step from metabolite to reac-
tion, or from reaction to metabolite. For example, consider a metabolite
with a positive Z-score which takes three downstream steps to get to
the considered reaction (Fig. 1a, m2 to R3). The effective Z-score for
this metabolite would then be given by the Z-score multiplied by a3,
thus having a total decay factor of a3. Similarly, if this metabolite had a
negative Z-score the total decay factor for this reaction path would
have been b3. Obviously, a reaction path could also bemore complex, re-
sulting for example in a total decay factor of c2ba2. We justify the intro-
duction of a and b, by realizing that when a > b the effective Z-scores
remain relatively high for positive Z-scores located upstream of a defi-
ciency, and the same holds for negative Z-scores downstream of the de-
ficiency. The values of these decay factors (a, b and c) are selected using
themetabolomics data from72 IEMpatient samples (see Section Tuning
the model parameters). Subsequently, Reafect aggregates all effective Z-
scores resulting in the deficient reaction score (or SR score) where it
takes into account whether a certain effective Z-score was located
downstream or upstream of the considered reaction (Eq. 5).



Fig. 1. Illustration of Reafect. A circle indicates a metabolite and a square a reaction (node), with the horizontal arrows indicating the directionality of the reaction. The vertical grey bars
(with dot) indicate the observed Z-scores; pointing upwards indicating a positive Z-score and vice versa. The black dotted bars indicate the effective Z-score from the perspective of re-
action R3. Note that Reafect determines for each reaction a deficient reaction score but in these figures only the results are shown for R3. A) Reaction R3 is deficient. The effective Z-
scores decay when going away from R3 as visualized by the reduced magnitude of the black bars. The deficient reaction score, illustrated by the blue bar on R3, is high since we
observe net positive effective Z-scores upstream of R3 and net negative effective Z-scores downstream of R3. B)R3 is not deficient and metabolite Z-scores around the reaction are
normal, thereby resulting in a low deficient reaction score. Note that the blue bar at R3 is small. C)R3 is not deficient, but has still a relatively high deficient reaction score. Note that
although the observed Z-scores for m3 and m4 are equal, the resulting effective Z-scores are different since the decay of the Z-scores also depends on the biochemical directionality
(and also applies to m2 and m5). Metabolite m1 has a relatively high observed Z-score, but its effective Z-scores is reduced since it is 5 reaction steps away from R3. Reafect calculates
per side of the reaction the net effective Z-scores. For example, the effective Z-scores for m4 and m5 roughly counter balance each other when looking at the downstream side of R3.
The upstream side has net positive effective Z-scores, therefore resulting in a positive deficient reaction score.
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To calculate the deficient reaction score for a certain reaction, we
first consider the decay of the Z-score over a path p leading for metabo-
lite m to reaction R:

Em,R,p Zmð Þ ¼ ∏
steps ∈ p

s
γs Zm,Dsð Þ

 !
∣Zm∣ ð1Þ

Here, Em,R,p(Zm) is the effective Z-score for metabolite m from the
perspective of reaction R along reaction path p. γs(Zm,Ds) is the decay
factor for step s and depends on the biochemical directionality of the
step (Ds) (upstream, downstream, reversible) and the sign of the Z-
score (Zm):

γs Zm;Dsð Þ ¼

a if sgn Zmð Þ ¼ 1andDs ¼ downstream
a if sgn Zmð Þ ¼ −1andDs ¼ upstream
b if sgn Zmð Þ ¼ 1andDs ¼ upstream
b if sgn Zmð Þ ¼ −1andDs ¼ downstream
c if sgn Zmð Þ ¼ 1andDs ¼ reversible
c if sgn Zmð Þ ¼ −1andDs ¼ reversible

8>>>>>><>>>>>>:
ð2Þ

Since more paths (p’s) could be possible between metabolitem and
reaction R, and these could have different lengths, we calculated a nor-
malized effective Z-score for every path:

~Em;R;p ¼ Em;R;p Zmð Þ� �2
∑p0 jEm;R;p0 Zmð Þj ð3Þ
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where eEm,R,p is the normalized effective Z-score for path p. The summa-
tion over p' indicates all paths leading from m to R. In this way, paths
originating from m with (relatively) low effective Z-score strengths
(such as longer paths) are weighted less in the normalized effective Z-
score whereas short paths get more weight since their effective Z-
score is relatively large (when compared to the other paths). All paths
(p’s) were determined by constructing an ‘ego graph’ around each me-
tabolite, selecting a subset of neighbouring metabolites and reactions
around this central metabolite. To reduce computational cost, we set a
limit of 15 reaction steps (metabolite-reaction or reaction-metabolite)
around this ego graph, and a maximum of 10 paths for travelling from
m to R.

Next, we summed all normalized effective Z-scores but we made a
distinction between normalized effective Z-scoreswhere its path is con-
nected to the upstreamor the downstream side of reaction R. For clarity,
let us consider a direct substratem of reaction R, which has a direct con-
nection at the upstream side of the reaction. Let us also assume that
there is a path going from m, via other reactions, which ends at the
downstream side of the reaction. Since we have two paths, we have
two normalized effective Z-scores; one belonging to the direct connec-
tion, the other belonging to the longer path. Since the latter path is lon-
ger, its normalized effective Z-score will be less than the normalized
effective Z-score of the direct connection (Eq. 3). We aggregated all me-
tabolite normalized effective Z-scores based on the Z-score sign and
connection to the reaction (downstream or upstream):
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ERx,y ¼ ∑
m ∈ ΩR

x

∑
p ∈ ΩR

y

eEm,R,p ð4Þ

with x ∈ {positive Z − score, negative Z − score} indicates the set of
metabolites having a Z-score sign equal to x and y ∈ {downstream,
upstream} indicates the set of paths from m to R which are connected
to the y-side of reaction R (i.e. downstream or upstream side). Since
reversible reactions lack a clear defined up – and downstream side,
we assigned one of each side to the up – or downstream side while
making sure that product/substrate information was conserved.

At last, we defined the deficient reaction score for reaction R as:

SR ¼
ERþ,up � ER�,up

� �
þ ER�,down � ERþ,down

� �
if R irrev

ERþ,up � ER�,up

� �
þ ER�,down � ERþ,down

� ���� ��� if R rev

0B@ ð5Þ

wherewe replaced ‘positive Z-score’ and ‘negative Z-score’ for the sym-
bol ‘+’ and ‘-’, respectively. We replaced ‘downstream’ and ‘upstream’
for ‘down’ and ‘up’, respectively. We observe that SR increases for net
positive normalized effective Z-scores located at the upstream side of
the reaction and for net negative normalized effective Z-scores located
at the downstream side of the reaction, while SR decreases for the
opposite cases. When a reaction is reversible we decided to take the
absolute value, arguing that we are interested in an imbalance of the
net positive and negative normalized effective Z-scores across the reac-
tion regardless of which side of the reaction these normalized effective
Z-scores were positioned.

Finally, Reafect prioritizes all reactions by sorting the SR scores on
their magnitude, with higher scores indicating that a reaction is more
likely to be deficient. Next to prioritizing the reactions, Reafect can
prioritize enzymes and corresponding genes on their potential of
being deficient. As enzymes can be involved in multiple reactions the
final SR score for an enzyme is taken to be the maximum SR score of
the set of reactions the enzyme may catalyze (Method). Furthermore,
we need to realize that some enzymes can catalyze the same reaction
(s). In this study we dealt with this issue by taking the maximum
occurring SR score for each enzyme, even if that same SR score was
already assigned to another enzyme.

2.2. Metabolomics data

2.2.1. In-house dataset
Metabolomics data was obtained as described by Bonte et al. [15].

Samples obtained from IEM patients were measured in 20 separate
batches. Features were annotated using an in-house database with re-
tention times of each metabolite and by matching data dependent
MS/MS spectra with an in-house MS/MS database [15]. For the 72 pa-
tient samples, a median of 119 annotated metabolites was obtained
(when combining positive – and negative ion mode), and a minimum
of 95 annotated metabolites was available for each sample. The com-
plete list of annotatedmetabolites can be found at the Github repository
of Reafect: https://github.com/mbongaerts/Reafect/. Note, that some
rare metabolites were also measured and annotated. Two samples
were obtained from the same individual; a patient with isovaleric
aciduria (S21, S71) and a patient with citrullinemia (S04, S62). Thus,
70 unique IEM patients were included in this study. From the 72 IEM
samples investigated, 51 were from patients on specific treatment,
while 19 were not treated at the time of sample collection (see Appen-
dix A1). For only 28/70 IEM patients the pathogenic variant was identi-
fied using either Sanger sequencing, a SNParray or ES (see Appendix A2
for more details). In agreement with national legislation and institu-
tional guidelines, all patients or their guardians approved the possible
de-identified use of the remainder of their samples for method valida-
tion and research purposes. The study was conducted in accordance
with the Declaration of Helsinki.
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2.2.2. Z-score calculation
Z-scores were calculated using two different approaches. Metabo-

lites that were annotated in at least 7 batches were merged, a Box-Cox
transform was applied and normalized usingMetchalizer [16]. Z-scores
were determined using a regression model with age and sex as covari-
ates [16]. For metabolites that were annotated in less than 7 batches,
the Z-scores were determined from 15 within-batch samples, where
abundancieswere first normalized using Probabilistic Quotient Normal-
ization [17] and Box-Cox transformed. These 15 samples could originate
from controls or (un)diagnosed patients. We used to following proce-
dure to prevent that outlier samples were used as reference for the
Z-score calculation:

1. Calculated Z-scores for the selected samples.
2. Keep the samples with a |Z-score| < 3.
3. Repeat step 1. and 2. five times.
4. Determine Z-scores based on the mean and standard deviation of 15

(random) samples from the remaining samples (step 3).

When ametabolitewas annotated in both positive- and negative ion
mode, the Z-score of the ion mode with the largest median abundancy
(over all samples)was taken. Since three technical replicatesweremea-
sured for all patient samples, we used the average of these three
Z-scores as the final Z-score.

Since the deficient reaction scores (Eq. 5) aggregatemultiplemetab-
olite Z-scores, we do not wish a single extreme Z-score to dominate this
measure. To prevent this, we used the following Z-score transformation
to down scale extreme Z-scores:

eZ ¼ sign Zð Þ α Zð Þ Zj j0:75 þ 1 � α Zð Þ½ �jZj
� �

ð6Þ

with

α Zð Þ ¼ 1
1þ exp 2 � jZjð Þ ð7Þ

This transform behaves approximately linear for the region 0 < ∣ Z ∣
< 2, but scales down Z-scores when ∣Z ∣ >> 2 (Fig. 2).

2.2.3. Miller dataset
To evaluate our approach we used a second metabolomics dataset

that was published by Miller et al. [18]. This dataset is available via
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626538/. Z-score
transform Eq. 6 was not applied to this dataset since all metabolite Z-
scores were considered to be within an acceptable range.

2.3. Retrieving human metabolic reactions

We used the KGML parser from https://github.com/biopython/
biopython (20−03−2020) to process KEGG [14] pathways and mod-
ules, where we filtered on reactions involved in humans (using the
hsa pre-fix). When retrieving the KEGG networks, some reactions
were associated with more than one enzyme, for which KEGG returns
the same unique reaction as many times as it is associated with the dif-
ferent enzymes, leading to a multiplicity for these reactions. We re-
moved this multiplicity but we remained all the associated enzymes
with this reaction. In other words, in these cases the same SR score for
that reaction was assigned to all associated enzymes.

To increase the overlap between the metabolites measured in
plasma and metabolites in the pathways/modules (from KEGG), we
manually added some reactions. These can be found in Appendix A3.
Most of these reactions were obtained from Recon / Virtual Metabolic
Human [19].

https://github.com/mbongaerts/Reafect/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626538/
https://github.com/biopython/biopython
https://github.com/biopython/biopython


Fig. 2. The effect of the transformation given by Eq. 6 on the Z-scores.
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2.4. Overall performance of Reafect using bootstrapped AUC

Annotation of metabolites in the metabolomics data was performed
per batch, which resulted in an unequal number of annotations per
batch. This difference also affected the number of unique enzymes on
which ranking was based per patient (see Fig. 5, Total number of en-
zymes). To correct for this, we expressed the (absolute) rank in as a per-
centile by dividing by the total number of enzymes multiplied by 100%.
The overall performance of Reafect for a certain choice of (a, b, c) was
measured by displaying the percentage (vertical axis) of the IEM pa-
tients having the percentile rank of the correct IEM lower than a
predefined value (horizontal axis). While increasing this value we ob-
tained a curve, where the area under the curve (AUC) gives a measure
for the overall performance. Higher AUC indicates that a larger percent-
age of the IEM patients have a lower rank (steeper increase of the
curve). We used a bootstrap procedure where we selected 1000 times
a random 75% of the total IEM patients for which we calculated the
AUC. By taking the 50th percentile of these 1000 AUCs we obtained a
more robust overall performance for each (a, b, c).

2.5. MetPropagate and comparison with Reafect

We downloaded the weighted STRING network (v11) from https://
github.com/emmagraham/metPropagate (07-08-2020). ME scores
were calculated in the exact same manner as described by Linck et al.
Using the same terminology, metabolites having ∣Z − score ∣ > 1.5
where considered as ‘differentially abundant metabolites’. ME scores
were propagated using the Local and Global Consistency (LGC) algo-
rithm with settings max_iter = 30 and alpha = 0.99.

To objectively compare Reafect with metPropagate we took several
factors into account:

1. Onlymetaboliteswere includedwith (HMDB) identifiers in the path-
ways/modules used by Reafect and which were also present in the
gene-metabolite sets used by metPropagate.

2. Before determining ranks, the propagated ME scores for every gene
were assigned to the associated enzyme(s). We removed genes
(and thus enzymes)whichdid not overlap in the output of both algo-
rithms. Thus, both outputs contained the exact same number of
unique enzymes on which ranking was performed.

3. The ranks formetPropagatewere calculated using the propagatedME
scores on the enzyme level. Note that we took the maximum propa-
gated ME score for an enzyme when more genes were associated
with that enzyme. Similarly, the ranks for Reafect were determined
from the SR scores (as described above).
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2.6. ES data

Exome Sequencing (ES) data was acquired over a longer time period
(2013−2021), and was performed either using the Agilent Clinical Re-
search Exome V1 (sureselect SSCRE V1) or Agilent Clinical Research
Exome V2 (sureselect SSCRE V2) on a Illumina NovaSeq sequencer
using paired-end reads with a read-length of 150 bp. Reads were
aligned to human reference genome build GRCh37 hg19 (ucsc.hg19.
nohap.fasta) using the BWA alignment algorithm [20]. The VCF-files
were obtained using GATK3 [21] and ANNOVAR was used to annotate
gene names and variants [22]. All patients included in this study from
which ES data was used gave written consent for de-identified use of
their data for research purposes.

2.7. CADD scores and gene prioritization

Variants called by GATK3 were annotated with CADD scores from
Genome build GRCh37/ hg19 v1.6 (https://cadd.gs.washington.edu/
download) for both SNVs and InDels. In this study we used the CADD
(Phred) scores in two manners: 1) ranking genes based solely on the
maximum CADD score occurring in each gene and 2) ranking genes
using the deficient reaction score (SR score) from Reafect combined
with the CADD scores. Note, that only genes were included in this rank-
ing for which a SR score was determined and whichwere present in the
ES data.

Gene ranking using Reafect in combination with CADD scores was
done as follow:

1. Per enzyme themaximum SR score was determined for all associated
reactions (KEGG). For each enzyme, all associated genes (KEGG)
were determined and the same maximum SR score was assigned to
these genes.

2. The maximum CADD (Phred) score per gene was determined.
3. The SR score was multiplied with the CADD score (Phred) for each

gene.
4. Genes were ranked on their integrated score.

For a subset of the IEM patients included in this study the disease-
causing variant was identified either using exome sequencing (ES),
Sanger sequencing or using an SNP array. Since ES data was not avail-
able formost IEMpatients where the disease-causing variant(s) is iden-
tified, we assumed that we could include these patients using 15
random ES backgrounds while inserting the known disease-causing
variant in each background. Consequently, we obtained 15 different
rankings for each affected gene. We assumed that the average of these

https://github.com/emmagraham/metPropagate
https://github.com/emmagraham/metPropagate
https://cadd.gs.washington.edu/download
https://cadd.gs.washington.edu/download
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15 rankings is a good estimate of the rank when a real ES background
was used (Discussion).

2.8. Excluded IEM patients

Although some IEM patients were initially measured they were not
included in this study, which had two main reasons. First, in some
cases there was no reaction in a known (KEGG) pathway relating (mea-
sured)metabolites to the IEM. Because of this, we left out a patient with
a mutation in the MMACHC gene, one with a mutation in the MOCS3
gene and two patients with glutaric acidemia type 2 (ETFDH, ETFA,
ETFB genes). Secondly, since Reafect does not make a distinction be-
tween different compartments within the body or cell, the inclusion of
enzymatic deficiencies related to transport proteins is complicated. In
these transport reactions the metabolite itself does not change, only
its location changes, and therefore build-up of thesemetabolites are ex-
pected only in certain parts of the body or cell. For this reason, we were
not able to include a few patients with lysinuric protein intolerance
(SLC7A7 gene), and a patient with organic cation transporter 2 defi-
ciency (SLC22A5 gene).

From the Miller dataset we excluded all patients having lysinuric
protein intolerance, cobalamin biosynthesis deficiency, glutaric aciduria
type 2, 3, 4, 5 for the same reasons mentioned earlier.

3. Results

3.1. Tuning the model parameters

Per IEM patient, potential deficient enzymes were ranked by their
maximum associated SR score (Methods) and the rank of the true
deficient enzyme in that patient was reported. Since the total number
of enzymes on which the ranking was based varied among the
patients, we determined the percentile rank (PR) by dividing by the
total number of enzymesmultiplied by 100% (Methods). A lower PR in-
dicates an improved ranking performance and vice versa. The overall
performance of Reafect was measured by calculating how often a PR
was smaller or equal than a predefined value across the 72 IEM patient
samples. When increasing this predefined value a curve is generated as
displayed in Fig. 3. We used the area under this curve (AUC) to indicate
the overall performance of Reafect, where higher AUCs imply better
performances.

Since Reafect uses three model parameters (a, b, c), we used a pa-
rameter sweep over these parameters to explore how the performance
(AUC)was affected.We performed a bootstrap procedure to obtain a ro-
bust performance AUC (Methods). Fig. 4 shows these bootstrapped
AUCs for each combination of (a, b, c). For region b> a, Reafect performs
less than for region b< a. This can be understood by realizing that when
a > b the effective Z-scores for metabolites having positive Z-scores
decay faster for downstream steps than for upstream steps (and the op-
posite for negative Z-scores), resulting in reduced evidence for the defi-
cient reaction. Furthermore, for region c < 0.5, Reafect's overall
performance is poor. The highest performance was reached for a =
0.85, b = 0.35, and c = 0.75 (see Fig. 4B). In further evaluations of
Reafect, we set the parameters a, b, c to these values.

3.2. Enzyme ranking for IEM patients

We applied Reafect to 72 IEM patient samples and determined the
percentile rank (PR) of the true enzyme deficiency. For 62% of these
samples the PR was within the top 2.5% of all considered enzyme defi-
ciencies, and for 81% of the samples the PR was within the top 5%
(Fig. 3B). Evaluating Reafect on 106 IEM patients from theMiller dataset
resulted in similar performance, where about 59% and 74% of the pa-
tients was ranked within the top 2.5% and 5% respectively (Fig. 3D).
The ranks per IEM patient can be found in Appendix A5.
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Additionally, we compared ReafectwithmetPropagate [7], while taking
several factors into account such as overlapping metabolites and genes
between the two approaches to objectively compare the performances
(Methods). We found that Reafect has a 21% increase in the AUC
when compared to metPropagate. Considering that lower percentile
ranks (<10%) are more interesting (Fig. 3B), we observe that for this re-
gion the partial AUC of Reafect is 71% higher than the partial AUC of
metPropagate. A detailed overview of the PRs per IEM patient for both ap-
proaches can be found in Appendix A4. A comparison using the Miller
dataset resulted in similar differences, with Reafect's AUC having an 18%
increase overmetPropagate's AUC. For the partial AUC this increase is 60%.

Fig. 5 shows a detailed overview of the results per IEM patient sam-
ple in our dataset. From this figure it is clear that for the same IEM but
different patients, Reafect can return different PRs. For example, one pa-
tientwithmaple syrupurine disease (BCKDH(A)(B)/DBT genes) has a PR
of 0.55%, whereas for the other patient this is 4.29%. This can be
explained by the difference in the magnitude of the Z-scores for the
disease-related metabolites leucine and isoleucine, namely for the
patient with the low rank Z = 6.7 and Z = 5.4, respectively, and for
the patient with the higher rank these Z-scores were less extreme,
Z = 2.49 and Z = 2.65, respectively. Similarly, for two patients having
long-chain-3-hydroxyacyl-CoA dehydrogenase deficiency (HADHA
gene), one has a PR of 0.55% and for the other this is 1.66%. Again, this
difference in PRs can be understood by differences in for example
3-hydroxyhexadecanoylcarnitine, which had a Z-score of Z = 13.3 for
the patient with the lower PR, while the other was more subtle with
Z = 6.4. Also, one patient with carbamoyl phosphate synthetase I defi-
ciency (CPS1 gene) ranked at 1.23%, had Z = 1.8 for L-glutamine,
while the other patient (ranked at 10.89%) seemed to have a normal
L-glutamine level (Z = 0.2), thereby explaining also the difference
between these ranks.

Some IEM were poorly ranked due to the absence of clear aberra-
tions in the metabolomics data. For both patients with alkaptonuria
(homogentisate 1,2-dioxygenase deficiency,HGD gene), homogentisic
acid was not increased in our analysis (Z = 0.4 and Z = 0.5),
which clarifies why Reafect poorly ranked these patients. The patient
with mevalonate kinase deficiency (MVK gene) was also ranked
poorly, which was a consequence of two reasons: 1) only one metab-
olite involved in calculating the SR score i.e. mevalonic acid, was
annotated in the metabolomics data and 2) the Z-score of this metab-
olite was Z = 0.7.

Reafect ranked the patient with arginase I deficiency (ARG1 gene) at
0.36%. This was considered to be a relatively good ranking, since 14me-
tabolites were found to have a Z-score above 2.1, while the disease re-
lated metabolites arginine and ornithine had Z = 2.1 and Z = −2.4
respectively. From a naive perspective we would expect about 14
other enzyme deficiencies to have lower (better) ranks than arginase
I. However, this relatively good performance can be explained by the
fact that arginase I catalyzes the conversion of arginine into ornithine
(plus urea), and the substrate (arginine) is increased while the product
(ornithine) is reduced. Consequently, Reafect assigned a relatively high
SR score to this reaction (see Eq. 5).

Another interesting observation is the poor rank obtained for the pa-
tient having guanidinoacetate N-methyltransferase deficiency (GAMT
gene). This patient was under treatment with creatine supplementa-
tion, which explains the poor rank. Although guanidinoacetate (Z =
3.1) was high in this patient, the presence of the high creatine level
(Z = 6.7) led to high Z-scores on both sides of the guanidinoacetate
N-methyltransferase reaction R01883 which reduces the SR score, as
can be observed in Eq. 5 (Methods). Similarly, we observed that the
patients with guanidinoacetate N-methyltransferase deficiency in the
Miller dataset also have high ranks (Appendix A5). This can be ex-
plained by the relatively high concentrations of creatine (likely due to
treatment) in these patients and the fact that guanidinoacetate was
not measured in this dataset.



Fig. 3. IEM ranking performances for different approaches as indicated by the legend. Each curve shows the percentage of IEMpatient samples forwhich thepercentile rank (PR) of the true
enzyme deficiency iswithin the top x% (horizontal axis) of all considered enzyme deficiencies.Model settings for Reafect: a=0.85, b=0.35 and c=0.75.A) Full performance curves using
our datatset. B) Performance curves with PR < = 10% using our dataset. C) Full performance curves using the Miller datatset. D) Performance curves with PR < = 10% using the Miller
dataset. To perform a meaningful comparison between Reafect and metPropagate a subset of the data was analyzed that contained only metabolites and genes that were included in
both approaches (Methods). Note that this selection reduced the performance of Reafect to 91% and 97% of its original performance on our dataset and the Miller dataset respectively.
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3.3. Gene prioritization for IEM patients using CADD scores and Reafect

We hypothesized that potentially affected (metabolic) genes could
be better prioritized when we combine the CADD (Phred) scores ob-
tained from gene variants in ES data with the deficient reaction scores
obtained from Reafect. Since an increase in both scores is expected to
be associatedwith increased pathogenicitywe chose tomultiply the de-
ficient reaction score with the maximum CADD score observed in the
variants of the gene corresponding to that enzyme. Next, we used this
combined score to rank the genes (Methods).

Since ES data was only available for two IEM patients, we evaluated
this gene ranking based on two approaches: 1) using the ES background
belonging to that patient if the ES data was available (see asterisks in
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Table 1) and 2) using 15 random ES backgrounds while inserting the
(known) disease-causing variant of the patient (Methods). Table 1
shows the PRs for 28 IEM patients for which the pathogenic variant
was identified, using solely Reafect, solely CADD aswell as the integrated
approach. For 12/28 patients Reafect scored better than CADD (marked
blue). For 21/28 and 20/28 patients, the integrated approach led to im-
proved ranking when compared only to Reafect or CADD, respectively.
Especially the gain in ranking performance for patients S43 (ACADVL
gene), S56 (ACAT1 gene), S18 and S67 (GLDC gene), and S70 (OGDH
gene) is noteworthy (marked orange).

To explore the overall differences in ranking performances between
the threemethods,we plotted the PRs in a boxplot (Fig. 6).We removed
the patient with guanidinoacetate N-methyltransferase deficiency from



Fig. 4. A) Bootstrapped AUCs (Methods) for different combinations of Reafect's hyper parameters (a, b, c). The colors indicate the percentage of the maximum obtained AUC. B) Contour
plot of the (cubic interpolated) bootstrapped AUCs while fixing c= 0.75 and varying a and b. The contour levels indicate the percentage of the maximum AUC reached at a= 0.85, b=
0.35, c = 0.75.
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this analysis, arguing that the metabolic profile of this patient was not
representative for this IEM because of the treatment. Using the Mann-
Whitney U test, we observe that the performance between Reafect and
CADD did not significantly differ (p-value > 0.05). However, the inte-
grated approach significantly (Wilcoxon signed-rank test, p-value
<0.05) improved the ranking performance when compared to using
solely Reafect or CADD scores. In other words, by combining the two
scores we gained improved IEM ranking/ gene prioritization.

4. Discussion

Our aimwas to usemetabolomics data as additional evidence for fil-
tering genetic variants found in ES data. For this purpose, we developed
Reafect, an algorithm that scores the efficacy of each reaction in a path-
way. To calculate these scores, Reafect combines four types of informa-
tion: 1) the magnitude and 2) sign of the metabolite Z-scores, 3) the
biochemical directionality of reactions, and 4) the reaction distances be-
tween the metabolites and reactions in a pathway. We observed that
Reafect ranked the true deficient enzyme for 81% of the 72 IEM patient
samples within the top 5% of all considered enzyme deficiencies. On
the independent Miller dataset we found similar performance, where
74% of the 106 patients were ranked within the top 5%. Reafect showed
improved ranking performance when compared to metPropagate. We
anticipate that this improvement may at least partially be explained
by four differences between Reafect and metPropagate. First, since
metPropagate uses cutoff values for themetabolite Z-scores when calcu-
lating the enrichment scores, we expect relevant but subtle aberrant
metabolites to be neglected. Reafect uses the Z-scores in a continuous
fashion, therefore even subtle aberrations contribute to the deficient re-
action scores andpositively impact IEM ranking (see Appendix A8). Sec-
ondly, metabolite-gene set enrichment approaches only consider
metabolites which have a direct relationship with a gene, such as
well-known biomarkers. Metabolite levels which are multiple reaction
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steps away from the deficiencymay still be informative butwill not con-
tribute to the enrichment score when these metabolites are not in-
cluded in the metabolite-gene set. Thirdly, metPropagate, and
approaches like the ones suggested by Pirhaji et al. [13] and Kerkhofs
et al. [5], do not explicitly take the directionality of reactions and the
sign of metabolite levels (decreased/increased) into account. We ob-
served that Reafect's IEM ranking performance is reducedwhen all reac-
tions in a pathway are considered to be reversible (Appendix A6),
emphasizing that including reaction directionality contributes to IEM
ranking. Lastly, Reafect explicitly searches for reactions that have (net)
positive Z-scores at the upstream side of the reaction and (net) negative
Z-scores at the downstream side of the reaction; a signature that is ex-
pected in presence of an enzymatic deficiency. In case a clear up- and
downstream side of the reaction is absent (i.e. reversible reaction),
Reafect is still capable of finding such signature by assigning one of the
reaction sides to the ‘upstream’ - or ‘downstream’ side. This property
also explains why Reafect's IEM ranking performance remains relatively
stable when all reactions are considered reversible (Appendix A6).

Integration of metabolomics with ES was achieved by multiplying
the maximum deficient reaction scores with the maximum CADD
score found for each enzyme and corresponding gene respectively
(Methods). This integrated approach resulted in a significant improve-
ment of ranking the true affected genes (see Fig. 6), where the median
percentile rank (PR) was 1.43% lower than the median PR obtained
from Reafect, and was 0.64% lower than the median PR obtained from
using solely CADD scores.

In reality the human metabolome is one interconnected network of
metabolites and reactions. In this study we have chosen to use isolated
metabolic modules/pathways for two reasons. First, the (KEGG) path-
ways are clusters of highly interdependent reactions, for which we ex-
pect multiple metabolite levels to be affected if a pathway contains an
enzymatic deficiency. Secondly, the direct use of a complete metabolic
network would introduce metabolic ‘hubs’ that would connect more



Fig. 5. Detailed overview of the results obtained per patient using Reafect. The first column indicates the PR (for the known deficient enzyme) for a given patient. Blue colors indicate PRs
lower than 5%, orange/red colors indicate PRs above 5% (see colour bar). The second column shows the absolute rank of the deficient enzyme. The third column indicates the total number
of the ranks/ unique enzymes onwhich the ranking was based (this number varies across patients due to differences inmetabolite annotations). The fourth column indicates the number
of annotatedmetabolites in the pathway onwhich the deficient reaction scorewas based. The fifth column shows the total number ofmetabolites present in that pathway. For theHADHA
gene, which encodes two enzymatic functions, we selected enzyme EC 1.1.1.211. The patient samples ASSa (S62) and ASSb (S04) originate from the same patient, but were acquired on
different dates. The same holds for the samples IVDa (S21) and IVDb (S71).
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distinct parts of the metabolism. This entanglement of pathways/reac-
tions may have unwanted consequences for the deficient reaction
scores since also less relevant metabolite Z-scores would be involved
in the calculation of these scores. A negative consequence of using iso-
lated modules/pathways might be that some important reactions are
not included. Although the goal was to develop an algorithmwith min-
imummanual adjustments, we needed to add several reactions, such as
glycine conjugation and carnitine esterification, to increase the overlap
betweenmetabolites measured in plasma and themetabolites included
in the pathways (Appendix A3).
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Reafect also has some limitations. First, if not all metabolites in the
KEGG pathway are measured and annotated, this may lead to wrong
conclusions. A single metabolite with a relatively high Z-score will
cause all (downstream) reactions to have high deficient reaction scores.
The inclusion of more measured metabolites could prevent this behav-
ior, sincemetabolite Z-scoreswith the same sign on both sides of the re-
action reduce the deficient reaction score (Methods, Eq. 5). The IEM
ranking performance of Reafect is therefore affected by the number of
metabolites being measured within each pathway. Similarly, the inclu-
sion of more rare metabolites in both the pathways and obtained



Table 1
Overview of the IEM and affected gene ranks for 28 IEM patients using Reafect, CADD and the integrated approach. The first column indicates the patient, second columns the deficient
enzyme with EC identifier. The third columns refers to the affected gene. Next columns contain the PRs for each method as indicated by the column name; Reafect (only), CADD (only),
and the integrated approach. The approaches using the 15 randomES backgrounds report themean,minimumandmaximumobtained PR across the 15 backgrounds. Bluemarked results
indicate that the PR of Reafect is lower than the PR of CADD. Orange marked results indicate a clear improvement of the integrated approach over the individual approaches.

* The PR for CADD was 0.25% using the real ES, and 0.0% for Reafect with CADD using the real ES.
** The PR for CADD was 0.58% using the real ES, and 0.35% for Reafect with CADD using the real ES.

Fig. 6. Boxplots of the percentile ranks (PRs) obtained from the different approaches; Reafect (only), CADD (only), and the integrated approach. For CADD and the integrated approachwe
used the average PR obtained from the 15 random ES. Significance was determined using theWilcoxon signed-rank test (WSR) when comparing Reafect with CADDwith CADD or Reafect.
We used the Mann-Whitney U test (MWU) for comparing CADD with Reafect, arguing that the PRs for CADD and Reafect are independent since they are obtained from two separate
datasets and approaches.
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metabolomics data may positively affect IEM ranking. Secondly, Reafect
is based on the assumption that IEM have the signature where sub-
strates of the deficient reaction become more abundant and the prod-
ucts decrease in abundancy. In case such a signature does not hold for
a certain IEM, we expect Reafect to detect these kinds of IEM poorly. Fi-
nally, Reafect ignores compartmentalization of different metabolic pro-
cesses. A substantial number of metabolic reactions occur within
certain compartments of the cell such as the mitochondrion. Similarly,
different organs contain different sets of metabolic reactions, therefore
the concentration of the affectedmetabolites for an IEMmaybe very dif-
ferent from the concentrations measured in plasma on which our Z-
scores are based. The inclusion of (extra) metabolite Z-scores obtained
frommetabolomics data from other body fluids (e.g. urine) could theo-
retically extend the analysis of Reafect.

For most IEM patients with an identified disease-causing gene vari-
ant in this study, the putative gene was directly sequenced, and there-
fore no ES data was obtained. We inserted the identified disease-
causing variant in 15 random ES backgrounds, to enable the inclusion
of these patients in our study.We assumed that the average ranking ob-
tained from these 15 backgrounds was still a good estimate of the rank-
ing which would have been obtained when the real ES data was used.
Due to our limited number of patients with real ES data (N= 2), a reli-
able comparison between both rankings is not possible, and thus we
cannot validate the accuracy of this assumption.We realize that the cur-
rent assessment should be considered as a proof-of-concept, and that
future studies should validate the accuracy of our findings. Still, note
that the PRs obtained from the real ES fall within the minimum and
maximum PR obtained from the 15 ES backgrounds (Table 1).

Reafect uses only three decay factors (a, b, c) which we optimized
using an overall performance metric (see Results, Fig. 4). Ideally, these
decay factors are optimized using a training set while using a separate
validation set for evaluating the IEM ranking performances. Due to the
low number of IEM patients included in our dataset we decided to use
all samples for optimization and validation, arguing that splitting the
dataset into a training - and validation setwould lead to less accurate es-
timates of the decay factors andwould give less insights into the overall
performance of Reafect on distinct IEM. Consequently, the results based
on our dataset might have been biased. However, we obtained similar
ranking performances when Reafect was applied to the (independent)
Miller dataset, which underlines the validity of our conclusions.

We realize that the use of three decay factors is a simplification, and
that these factors should ideally be reaction specific. Kinetic parameters,
such as the Michaelis–Menten constant, could be used to establish such
reaction dependent decay factor. Currently accurate kinetic parameters
are only available for a subset of reactions. Besides the additional com-
plexity introduced by these reaction specific decay factors, the use of
just three decay factors offered us the opportunity to demonstrate the
overall importance of choosing different decay factors for reaction
directionality and the sign of the Z-score, as we clearly observed in
Fig. 4. Still, we anticipate that Reafect ‘s performance on ranking IEM/
genes could improve when reaction specific decay factors are
incorporated.

Reafectmay not only be useful in the context of IEM but could be ap-
plicable in awider context since the deficient reaction scores are a direct
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readout of potential accumulations and/or reductions ofmetabolites be-
fore/after a reaction. For example, Reafect is potentially useful in drug
screening research for generating an overview of drug candidates
which have the potential to inhibit metabolic enzymes. Namely, we ex-
pect that the inhibition of an enzyme by a drug will result in metabolic
signatures similar to the ones caused by an IEMwhere the same enzyme
is affected.

5. Conclusions

In conclusion, the integration of metabolomics data with ES data by
using Reafect's deficient reaction scores and CADD scores, significantly
improved the prioritization of the affected genes in patients suffering
from an IEM. A next step is to investigate the use of Reafect as part of a
clinical screening procedure.
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Appendices
A.1. Overview of which patients received treatment
Table A1
Overview of which IEM patient samples received treatment.
Sample
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

Treatment
210
Comment
00
 Protein restriction, amino acid supplement

01
 Liver transplantation, protein restriction, carnitine supplement

02
 None
 At diagnosis

03
 None

04
 Protein restriction, arginine supplement, carnitine supplement, benzoate, phenylbutyrate

05
 Protein restriction, carnitine supplement, Carbaglu

06
 Carnitine supplement

07
 Carnitine supplement

08
 Protein restriction, amino acid supplement

09
 None
 At diagnosis

10
 Protein restriction, arginine supplement, phenylbutyrate

11
 Protein restriction, carnitine supplement, Carbaglu

12
 None
 At diagnosis

13
 None

14
 None

15
 Liver transplantation, protein restriction, Nitisinone

16
 Carnitine supplement

17
 Protein restriction, arginine supplement, phenylbutyrate

18
 None
 At diagnosis

19
 Carnitine supplement

20
 None
 At diagnosis

21
 Carnitine supplement

22
 B12 supplement, folate supplement, betaine

23
 Carnitine supplement

24
 None

25
 Protein restriction

26
 Carnitine supplement

27
 None

28
 None

29
 Protein restriction, amino acid supplement

30
 None
 At diagnosis

31
 LCT restriction, MCT supplement

32
 None

33
 None

34
 Protein restriction, amino acid supplement

35
 None

36
 Protein restriction, citrulline supplement, carnitine supplement, benzoate, phenylbutyrate

37
 Serine supplement

38
 Protein restriction, citrulline supplement, carnitine supplement, benzoate, phenylbutyrate

39
 Liver transplantation, protein restriction, carntine supplement, B12 supplement

40
 None

41
 Serine supplement

42
 Protein restriction

43
 LCT restriction, MCT supplement

44
 Protein restriction, Kuvan

45
 None
 At diagnosis

46
 Protein restriction

47
 Protein restriction, carnitine supplement, benzoate, phenylbutyrate

48
 None

49
 Creatine supplement, ornithine supplement, benzoate

50
 Carnitine supplement

51
 Protein restriction

52
 B12 supplement, folate supplement, betaine

53
 Carnitine supplement

54
 Carnitine supplement

55
 Allopurinol

56
 None

57
 Carnitine supplement

58
 Carnitine supplement

59
 Thiamine supplement

60
 Protein restriction, carnitine supplement, benzoate

61
 Protein restriction, Nitisinone

62
 Protein restriction, arginine supplement, carnitine supplement, benzoate, phenylbutyrate

63
 B12 supplement, folate supplement, betaine

64
 B12 supplement, folate supplement, betaine

65
 None

66
 Protein restriction, carnitine supplement, Carbaglu

67
 None
 At diagnosis
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Table A1 (continued)
Sample
S
S
S

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S

Treatment
211
Comment
68
 Carnitine supplement

69
 Protein restriction, carntine supplement, B12 supplement, Carbaglu

70
 Thiamine, carnitine supplement

71
 Carnitine supplement
S
A.2. Overview of variants
Table A2
Information about the variants found in the 28 IEM patients. ACMG classification was provided for each variant [23].
Sample ID
 Gene symbol
 CADD (Phred)
 Homozygous/Heterozygous
 ACMG classification
 Conclusion
00
 PAH
 27.5
 Heterozygous
 PM1, PP2, PM2, PM5, PP3, PP5
 Pathogenic

00
 PAH
 28.5
 Heterozygous
 PP2, PM2, PM5, PP3, PP5
 Pathogenic

02
 MVK
 32
 Heterozygous
 PVS1, PM2
 (Likely)pathogenic

03
 MCCC2
 27
 Heterozygous
 PM2, PP3, PP2, PP5
 Pathogenic

03
 MCCC2
 23
 Heterozygous
 PM2, PP3, PP2
 VUS

12
 MANBA
 33
 Heterozygous
 PM2
 VUS

15
 FAH
 24
 Homozygous
 PM2, PP3, PP2, PP5
 Pathogenic

17
 ASL
 26.5
 Homozygous
 PM1, PP2, PM2, PM5, PP3, PP5
 pathogenic

18
 GLDC
 26
 Heterozygous
 PM2, PM5, PP2, PP3
 VUS, almost likely pathogenic

23
 ACAT1
 38
 Homozygous
 PVS1, PM2
 Likely pathogenic

26
 HADHA
 29
 Homozygous
 PM2, PP3, PP5,
 Pathogenic

27
 CPT2
 34
 Heterozygous
 PM2, PP3, PP5,
 Pathogenic

27
 CPT2
 24
 Heterozygous
 PM2, PM5, PP3, PM1
 Likely pathogenic

28
 TYMP
 33
 Homozygous
 PM2, PM1, PM5, PP3, PP5
 Pathogenic

31
 ACADVL
 27.5
 Homozygous
 PM2, PM1, PP2, PP3
 VUS (strong)

32
 CPT2
 31
 Homozygous
 PM2, PP3, PP5
 Pathogenic

34
 PAH
 26
 Heterozygous
 PM1, PP2, PM2, PP3, PP5
 Pathogenic

35
 ACADM
 33
 Homozygous
 PM1, PP2, PM2, PP3, PP5
 Pathogenic

38
 OTC
 33
 Heterozygous
 PM2, PM1, PP2, PM5, PP3, PP5
 Pathogenic

39
 MMUT
 30
 Homozygous
 PM2, PM5, PM1, PP2, PP3, PP5
 Pathogenic

43
 ACADVL
 26
 Heterozygous
 PM2, PM1, PP2, PP3, PP5
 Pathogenic

43
 ACADVL
 24.5
 Heterozygous
 PM2, PM1, PP2, PP3, PP5
 Pathogenic

49
 GAMT
 39
 Homozygous
 PVS1, PM2, PP5
 Pathogenic

53
 ACADM
 23
 Homozygous
 PM1, PP2, PM2, PM5, PP5
 Pathogenic

54
 ACADM
 33
 Homozygous
 PP2, PM2, PP3, PP5
 Pathogenic

56
 ACAT1
 25.5
 Homozygous
 PM2, PP3, PP2, PP5
 Likely pathogenic

57
 ACADM
 33
 Homozygous
 PP2, PM2, PP3, PP5
 Pathogenic

58
 GCDH
 21
 Heterozygous
 PS1, PM5, PM1, PP2, PP3, PP5
 Pathogenic

58
 GCDH
 34
 Heterozygous
 PM1, PP2, PM2, PM5, PP3, PP5
 Pathogenic

59
 PDHA1
 32
 Heterozygous
 PM2, PM5, PP3, PP2, PP5, PS2
 (likely) Pathogenic

64
 MTHFR
 0.15
 Heterozygous
 PM2, PP5
 VUS

64
 MTHFR
 33
 Heterozygous
 PM2, PP3
 VUS

67
 GLDC
 26
 Heterozygous
 PM2, PP3, PP2, PP5
 Likely Pathogenic

67
 GLDC
 25.5
 Heterozygous
 PM2, PP3, PP2
 VUS (strong)

70
 OGDH
 22.5
 Homozygous
 PM2, PP2
 VUS
S
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A.3. Manually added reactions
The KEGG pathways and modules were extended with some additional reactions (see Table A3) to increase the overlap between metabolites
present in the pathways/modules andmetabolitesmeasured in plasma.Note, that a reaction is defined as a graphwhich also includes a reaction node.

Table A3
Manually added reactions. The second and fourth column indicate the directionality of the reaction.’<=>’ indicates that the reaction is reversiblewhereas’=>’ indicates the direction of
an irreversible reaction. Note that these reactions passes through a reaction node (Reaction ID). Most reactions originate from Recon3D.
Metabolite 1
3
2
2
C
3
3
g
g
C
G
G
C
H
Is
Is
C
Is
Is
M
N
C
C
O
B
P
(
2
N
N
G
3

3
(S
3
3

A
L-
C
D
D
M

M
7

Reaction ID
 Metabolite 2
212
Source
-Hydroxypyruvic acid
 =>
 HPYRR2x
 =>
 Glyceric acid
 https://vmh.life/#reaction/HPYRR2x

-Methylbutyrylglycine
 <=>
 RE2428M
 <=>
 2-Methylbutanoyl-CoA
 https://vmh.life/#reaction/RE2428M

-Methylbutyrylglycine
 <=>
 RE2428M
 <=>
 Glycine
 https://vmh.life/#reaction/RE2428M

16OH | 3-Hydroxyhexadecanoylcarnitine
 <=>
 C16OHc
 <=>
 (S)-3-Hydroxyhexadecanoyl-CoA
 https://vmh.life/#reaction/C16OHc

-Methylcrotonylglycine
 <=>
 RE2111M
 <=>
 3-Methylcrotonyl-CoA
 https://vmh.life/#reaction/RE2111M

-Methylcrotonylglycine
 <=>
 RE2111M
 <=>
 Glycine
 https://vmh.life/#reaction/RE2111M

lcnac-man
 =>
 B_MANNASEly
 =>
 N-Acetyl-D-glucosamine
 https://vmh.life/#reaction/B_MANNASEly

lcnac-man
 =>
 B_MANNASEly
 =>
 D-Mannose
 https://vmh.life/#reaction/B_MANNASEly

10 | Decanoylcarnitine
 <=>
 C100CPT1
 <=>
 Decanoyl-CoA
 https://vmh.life/#reaction/C100CPT1

lycylproline
 <=>
 GLYPROPRO1c
 <=>
 Glycine
 https://vmh.life/#reaction/GLYPROPRO1c

lycylproline
 <=>
 GLYPROPRO1c
 <=>
 Proline
 https://vmh.life/#reaction/GLYPROPRO1c

6 | Hexanoylcarnitine
 <=>
 C60CPT1
 <=>
 Hexanoyl-CoA
 https://vmh.life/#reaction/C60CPT1

omocysteine thiolactone
 <=>
 RE1933C
 <=>
 Homocysteine
 https://vmh.life/#reaction/RE1933C

obutyrylglycine
 <=>
 RE2429M
 <=>
 Glycine
 https://vmh.life/#reaction/RE2429M

obutyrylglycine
 <=>
 RE2429M
 <=>
 2-Methylpropanoyl-CoA
 https://vmh.life/#reaction/RE2429M

5 | Isovalerylcarnitine
 <=>
 C50CPT1
 <=>
 3-Methylbutanoyl-CoA
 https://vmh.life/#reaction/C50CPT1

ovalerylglycine
 <=>
 RE2427M
 <=>
 Glycine
 https://vmh.life/#reaction/RE2427M

ovalerylglycine
 <=>
 RE2427M
 <=>
 3-Methylbutanoyl-CoA
 https://vmh.life/#reaction/RE2427M

alonyl-CoA
 =>
 r0430
 =>
 C3DC | Malonylcarnitine
 https://vmh.life/#reaction/r0430

-Acetylasparagine
 <=>
 RE2032M
 <=>
 Asparagine
 https://vmh.life/#reaction/RE2032M

14 | Tetradecanoylcarnitine
 <=>
 C140CPT1
 <=>
 Tetradecanoyl-CoA
 https://vmh.life/#reaction/C140CPT1

5:1 | Tiglylcarnitine
 <=>
 C51CPT1
 <=>
 2-Methylbut-2-enoyl-CoA
 https://vmh.life/#reaction/C51CPT1

ctanoyl-CoA
 <=>
 C80CPT1
 <=>
 C8 | Octanoylcarnitine
 https://vmh.life/#reaction/C80CPT1

utanoyl-CoA
 <=>
 C40CPT1
 <=>
 C4 | Butyrylcarnitine
 https://vmh.life/#reaction/C40CPT1

ropanoyl-CoA
 <=>
 C30CPT1
 <=>
 C3 | Propionylcarnitine
 https://vmh.life/#reaction/C30CPT1

2S,3S)-3-Hydroxy-2-methylbutanoyl-CoA
 <=>
 R_2M3HBUc
 <=>
 2-Methyl-3-hydroxybutyric acid
 https://vmh.life/#reaction/2M3HBUc

-Methylbut-2-enoyl-CoA
 <=>
 R_TIGGLYc
 <=>
 Tiglylglycine
 https://vmh.life/#reaction/TIGGLYc

-Acetylmethionine
 <=>
 RE2640C
 <=>
 Methionine
 https://vmh.life/#reaction/RE2640C

-Acetylalanine
 <=>
 RE2642C
 <=>
 L-Alanine
 https://vmh.life/#reaction/RE2642C

lutaryl-CoA
 <=>
 FAOXC5C5DCc
 <=>
 C5DC | Glutarylcarnitine
 https://vmh.life/#reaction/FAOXC5C5DCc

-Methylglutaconyl-CoA
 <=>
 3mgcoac61dcmgccrn
 <=>
 C6:1DC |

3-Methylglutaconylcarnitine

EC 2.3.1.7, EC 2.3.1.137 https://doi.org/10.1016/j.
bbadis.2013.02.012 https://doi.org/10.1016/-
S0163-7827(99)00002-8
-Methylglutaconyl-CoA
 <=>
 MGCHrm
 <=>
 (S)-3-Hydroxy-3-methylglutaryl-CoA
 https://vmh.life/#reaction/MGCHrm

)-3-Hydroxy-3-methylglutaryl-CoA
 <=>
 hmgcoac6dcmgcrn
 <=>
 C6DC | 3-Methylglutarylcarnitine
 EC 2.3.1.7, EC 2.3.1.137

-Hydroxyisovaleryl-CoA
 <=>
 C059983ivcrn
 <=>
 C5OH | 3-Hydroxyisovalerylcarnitine
 https://vmh.life/#reaction/FAOXC5OHc

-Hydroxyisovaleryl-CoA
 <=>
 C059983CE2028
 <=>
 3-Hydroxyisovaleric acid
 EC 3.1.2.20 https://doi.

org/10.1111/j.1365-2362.2005.01447.x

denylosuccinate
 =>
 C03794succinyladenosine
 =>
 Succinyladenosine
 EC 3.1.3.5

Aspartate
 <=>
 ASPCTr
 <=>
 N-Carbamoyl-L-aspartate
 https://vmh.life/#reaction/ASPCTr
arbamoylphosphate
 <=>
 ASPCTr
 <=>
 N-Carbamoyl-L-aspartate
 https://vmh.life/#reaction/ASPCTr

ihydroorotic acid
 =>
 DHORTS
 =>
 N-Carbamoyl-L-aspartate
 https://vmh.life/#reaction/DHORTS

ihydroorotic acid
 =>
 DHORD9
 =>
 Orotic acid
 https://vmh.life/#reaction/DHORD9

alonic acid
 =>
 C00383malcoa
 =>
 Malonyl-CoA
 EC 3.1.2.20 https://doi.org/10.1016/S0021-9258

(17)44433-4

alonyl-CoA
 =>
 MCDm
 =>
 Acetyl-CoA
 https://vmh.life/#reaction/MCDm

-Dehydrocholesterol
 =>
 HMR_2114
 =>
 Vitamine D3
 https://vmh.life/#reaction/HMR_2114

holesterol sulfate
 <=>
 RE1100L
 <=>
 Cholesterol
 https://vmh.life/#reaction/RE1100L
C

https://vmh.life/#reaction/HPYRR2x
https://vmh.life/#reaction/RE2428M
https://vmh.life/#reaction/RE2428M
https://vmh.life/#reaction/C16OHc
https://vmh.life/#reaction/RE2111M
https://vmh.life/#reaction/RE2111M
https://vmh.life/#reaction/B_MANNASEly
https://vmh.life/#reaction/B_MANNASEly
https://vmh.life/#reaction/C100CPT1
https://vmh.life/#reaction/GLYPROPRO1c
https://vmh.life/#reaction/GLYPROPRO1c
https://vmh.life/#reaction/C60CPT1
https://vmh.life/#reaction/RE1933C
https://vmh.life/#reaction/RE2429M
https://vmh.life/#reaction/RE2429M
https://vmh.life/#reaction/C50CPT1
https://vmh.life/#reaction/RE2427M
https://vmh.life/#reaction/RE2427M
https://vmh.life/#reaction/r0430
https://vmh.life/#reaction/RE2032M
https://vmh.life/#reaction/C140CPT1
https://vmh.life/#reaction/C51CPT1
https://vmh.life/#reaction/C80CPT1
https://vmh.life/#reaction/C40CPT1
https://vmh.life/#reaction/C30CPT1
https://vmh.life/#reaction/2M3HBUc
https://vmh.life/#reaction/TIGGLYc
https://vmh.life/#reaction/RE2640C
https://vmh.life/#reaction/RE2642C
https://vmh.life/#reaction/FAOXC5C5DCc
https://doi.org/10.1016/S0163-7827
https://doi.org/10.1016/S0163-7827
https://doi.org/10.1016/S0163-7827
https://doi.org/10.1016/S0163-7827
https://vmh.life/#reaction/MGCHrm
https://vmh.life/#reaction/FAOXC5OHc
https://doi.org/10.1111/j.1365-2362.2005.01447.x
https://doi.org/10.1111/j.1365-2362.2005.01447.x
https://vmh.life/#reaction/ASPCTr
https://vmh.life/#reaction/ASPCTr
https://vmh.life/#reaction/DHORTS
https://vmh.life/#reaction/DHORD9
https://doi.org/10.1016/S0021-9258
https://vmh.life/#reaction/MCDm
https://vmh.life/#reaction/HMR_2114
https://vmh.life/#reaction/RE1100L
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A.4. Comparison of ranks IEM patients Reafect versus MetPropagate
We compared the IEM ranking performance of Reafect with metPropagate (Fig. 3). The percentile ranks obtained for each patient and both
methods are displayed in Fig. A1.

Fig. A1. Comparison of the percentile ranks between Reafect andmetPropagate per IEM patient.
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A.5. Overview ranks determined by Reafect on the Miller dataset
Fig. A2. Detailed overview of the results obtained per patient using Reafect applied on the Miller dataset. The first column indicates the PR (for the known deficient enzyme) for a given
patient. Blue colors indicate PRs lower than 5%, orange/red colors indicate PRs above 5% (see colour bar). The second column shows the absolute rank of the deficient enzyme. The third
column indicates the total number of the ranks/ unique enzymes on which the ranking was based (this number varies across patients due to differences in metabolite annotations). The
fourth column indicates the number of annotated metabolites in the pathway on which the deficient reaction score was based. The fifth column shows the total number of metabolites
present in that pathway.
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A.6. The effect of removing reaction directionality on IEMranking performance
To explore the importance of taking the biochemical directionality into account, we compared the situation where Reafect was applied to path-
ways that include reaction directionality (default setting) with the situation where all reactions were considered reversible (bidirectional). We ob-
serve that the overall IEM ranking performancewas dropped by 2%when all reactionswere considered bidirectional (Fig. A3A). For the partial AUCof
the ranking performance, we observe a 10% decrease in performance. A detailed comparison between the ranks obtained from both approaches can
be found in Fig. A4. Note that for reversible reactions Reafect also searches for signatures where (net) positive Z-scores are found at one side of the
reaction and (net) negative Z-scores are found at the other side of the reaction. This explains why the overall IEM ranking performance of the
situation where all reactions are reversible remains relatively stable. Still, the inclusion of reaction directionality does contribute positively to IEM
ranking.

Fig. A3. A) Full performance curves for Reafect and Reafect with bidirectional reactions. B) Percentile ranks ≤ 10%.
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Fig. A4. Comparison of the percentile ranks between Reafect and Reafect with bidirectional reactions per IEM patient.

A.7. CADD scores for ES and pathogenic variants

The distribution of CADD scores for all variants (inmetabolic genes) found in each ES background are displayed in Fig. A5A. Additionally, we show
the CADD scores for the disease-causing variants for the 28 IEM patients included in Table 1. Fig. A5B shows the distribution of CADD scores (Phred)
for the affected genes (i.e. the genes for which a pathogenic variant is found in one of the 28 IEM patients) in the 15 ES backgrounds. There was only
one case where a CADD score from one of the ES backgrounds was higher than the variant of a IEM patient.
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Fig. A5. A) Each boxplot indicates the distribution of the CADD (Phred) scores for variants in metabolic genes obtained in 15 random ES files. The last boxplot shows the CADD scores
(Phred) for the disease-causing variants found in the IEM patients (Table 1). B) Each boxplot indicates the distribution of the CADD (Phred) scores found in the 15 ES backgrounds for the
affected genes. The red dots indicate the CADD scores (Phred) for the variants in the 28 IEM patients.
A.8. Contribution of subtle metabolite Z-scores on IEM ranking
We explored the contribution of more subtle metabolite Z-scores to the IEM ranking performance of Reafect. This was investigated by creating
performance curves for various Z-score cutoffs, where we included only metabolite Z-scores for which |Z-score| < cutoff (Fig. A6A) or |Z-score| >
cutoff (Fig. A6B). These results show that for decreasing cutoff values and |Z-score| < cutoff, the overall performance on IEM ranking also declines.
This can be understood by realizing that for decreasing cutoff values, alsomore informative (disease-related)metabolites are excluded.More impor-
tantly, we observe that even for the lower cutoff values the overall performance is still positive (above the diagonal line), suggesting thatmore subtle
metabolite Z-scores also contribute to IEM ranking. The same conclusion can be drawn from the experiment where we included only metabolites
having a |Z-score| > cutoff. When increasing the cutoff values, we observe that the IEM ranking performance also decreases. Since in these cases
only more extreme Z-scores are available for ranking, we conclude that more subtle metabolite Z-scores normally also contribute to IEM ranking.
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Fig. A6. A) Full performance curves for Reafect for various Z-score cutoff values, and |Z-score| < cutoff. Cutoff values are indicated by the legend. B) Full performance curves for Reafect for
various Z-score cutoff values, and |Z-score| > cutoff.
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