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Topology protection—unprotection transition:
Example from multiterminal superconducting nanostructures

Xiao-Li Huang and Yuli V. Nazarov
Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, NL 2628 CJ, Delft, The Netherlands

® (Received 18 August 2017; revised manuscript received 4 June 2018; published 7 August 2019)

We show theoretically that in the superconducting nanostructures the gapped states of different topology are
not always protected by separating gapless states. Depending on the structure design parameters, they can be
either protected or not, with a protection—unprotection transition separating these two distinct situations. We
build up a general theoretical description of the transition vicinity in the spirit of Landau theory. We speculate
that similar protection—unprotection transitions may also occur for other realizations of topological protection in

condensed matter systems.
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I. INTRODUCTION

The topological ideas have been a source of inspiration in
condensed matter for many decades [1]. In the last decade,
there is an outburst of the experimental and theoretical ac-
tivities related to the topological materials and their unusual
transport properties [2—4]. For a material, the topology arises
from and is determined by its band structure. One of the
remarkable results of the field, that is also of immediate
significance, is that there necessarily exist gapless states at
the interface between the two insulators of different topology
[2]. In the simplest situation, the number of gapless modes
at the boundary of different phases is given by the proper
difference in their integer-valued topological invariants, as
it is the case for quantum Hall states that differ in their
Chern number. There is also an intuitive picture behind this
mathematical statement: the insulating gaps in the materials
are incompatible and can not be continuously changed from
one to another, and this implies that the gap must cease in-
between. The existence of such gapless states is said to be due
to topological protection. The gapless edge and surface states
provide the transport signatures of topology that are readily
accessible for experimental research [5-7].

Many applications and realizations of various topological
ideas in condensed matter physics are related to hybrid super-
conducting heterostuctures. Zero-energy Majorana states have
been predicted [8,9] and realized [10,11] in such structures
and remain in focus of active research. The Weyl points in the
spectrum of Andreev bound states of a four-terminal structure
[12] have been predicted along with their robust transport
signature of quantized transconductance [13] and associated
spin effects [14]. A structure combining the topologies of
three different kinds has been considered in [15].

A close analog of topological isolators has been predicted
and experimentally investigated in [16]. The authors have
studied the superconductivity induced in a normal-metal piece
connected to three superconducting terminals. Typically, one
expects a proximity gap to develop in the normal metal. It
turns out that several topologically distinct gapped phases
can occur in the structure; those can be characterized by two
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integer topological numbers related to the number of windings
of the semiclassical Green’s function [15-17].

The use of the semiclassical Green’s functions in super-
conducting structures is a well-established approach [18-20].
The semiclassical Green’s functions are defined in coinciding
space points and thus depend on a single coordinate only.
Generally, the Green’s function at a point r in the structure
is an energy-dependent 2 x 2 Nambu matrix g;o; + g,05 +
g303 parametrized by a unit vector g, 3 = 1 where g3 gives
the density of states (DOS) at zero energy. Importantly, in
a gapped phase at zero energy, gz = 0, g = (sin u, cos u, 0),
and the parametrizing variable p(r) at a terminal equals to
the corresponding superconducting phase ¢. The topological
numbers are defined as

2nN;j = ygdr -Vu(r)+ ¢ —¢;, M

where the integration contour goes from the terminal i to the
terminal j and eventual jumps of p along the contour are
added upon projection of a jump into (—, 7 ) interval [16]. If
w were the phase of the superconducting pair potential A, the
above relation would be well-known contour integral related
to Abrikosov vortices and flux quantization [21]. However,
W is not related to the phase of A; the pairing potential can
be even absent in the structure, so that Eq. (1) presented an
independent topological number. Such definition of topologi-
cal numbers implies no periodicity in superconducting phases,
while the physical situation is obviously periodic. This is no
problem since the shift of all topological numbers with the
same integer reproduces the same physical situation.

The topologically distinct phases are realized in different
regions of the parameter space spanned by two supercon-
ducting phase differences between the terminals. General
concept of topological protection implies that these regions
are separated by finite strips of gapless phase, owing to the
different nature of these gapped phases. Although in this case
the number of the gapless modes is not possible to introduce,
their existence seems to be topologically justified. The gapless

©2019 American Physical Society
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modes have been probed by transport in the extra tunnel
junction between the structure and a normal-metal lead [16].

In this paper, we investigate the concept of such topological
protection in more detail for a case of a general multiterminal
superconducting nanostructure. Surprisingly, the topological
protection is not a universal property. We have found that
depending on the parameters characterizing the nanostructure
design, the protection may cease. In this case, the distinct
gapped phases are not separated by a gapless strip. The
parameter regions where the protection persists/ceases
are separated by protection—unprotection second-order
transitions (PUT).

It is common to describe any second-order transitions
with Landau approach [22,23]. We have established that the
vicinity of PUT is described by a special Landau action
that, in distinction from a common Landau action, is for an
energy-dependent order parameter. This parameter stems from
the Green’s functions in the structure. This peculiarity, as we
show, gives rise to two order parameters that are nonzero
above and below the transition: the gap and the density of
states (DOS) at zero energy. This makes the Landau action in
use especially suitable for description of the situations where
the gapless phase emerges and disappears, that is, for PUT.

The Landau action depends on a handful of parameters
and hardly reflects any specifics of superconducting nanos-
tructures. This is manifesting for a common Landau approach
that is universal for second-order transitions of any kind. This
makes us speculate that this universality also holds for the
Landau action proposed in the paper. It contains no detail
specific to the nanostructures or superconductivity. So, we
suggest that this form is universal and can describe similar
PUTs in general topological gapped phases that have noth-
ing to do with the nanostructures and superconductivity, for
instance, in solid-state topological insulators.

To avoid any misunderstanding, we shall acknowledge
that we do not know any physical mechanism or situation
that would enable PUT in other condensed matter systems:
however, they may become known in the future. The analogy
between edge states in solids where the topological phases
are separated in real space and the gapless phases in the
superconducting nanostructures that separate the phases in a
parameter space may seem far fetched, but in fact relies on the
same elementary topological reasoning: Two gapped phases
with distinct topological numbers cannot be transformed to
each other without breaking the gap, if the transformation is
continuous. In solids, special symmetries may be required to
protect topological order (see, e.g., [24]): This is not the case
of the nanostructures. There are interesting developments of
Landau approach related to quantum criticality in symmetry-
protected situations [25]: This is not related to the PUT we
consider here. Our Landau action corresponds to a zero-
dimensional situation, and we treat it here in saddle-point
approximation, thus disregarding quantum fluctuations. The
investigation of the quantum fluctuations in this setup is a
relevant and interesting research topic.

The structure of the paper is as follows. We choose to
alternate more descriptive and more technical sections. We
start with a concrete example of a system where a series
of PUTs can be realized (Sec. II). Further, in Sec. III we
generalize the consideration to arbitrary nanostructures using
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FIG. 1. Protection—unprotection transitions exemplified with a
three-terminal circuit that is made from tunnel junctions with con-
ductances G- and diffusive connectors with conductances G%,. Three
topologically distinct phases Nyy, N9, Nyo can occur in this setup,
Nyo being topologically trivial. (a) The topological protection im-
plies that the domains of the three topologically distinct gapped
phases in ¢;-¢, are separated by the gapless state [black in (b)—(e)].
The domain of the gapless state is thin near the special points
0, m), (7, 0), (mr, m). The protection holds for all three points for
sufficiently small diffusive conductances as compared to tunnel ones.
Upon increasing the conductances, the protection ceases at special
points with three protection—unprotection transitions. Dashed lines
indicate unprotected domain boundaries. For calculations, all Gr are
taken the same and G3'? = 1.5Gr (b); G = 10G;, G5* = 1.5G;
(c); G% = G} =10, G} = 1.5(d); G5 = 10G7 (e).

the semiclassical circuit theory detailed in Sec. IV. We find
that the PUTs are manifested in special points of the space
of the superconducting phases. In Sec. VI we study in detail
the vicinity of a special point, providing the details of the
calculation in Sec. VII. In Sec. VIII we concentrate on the
vicinity of a PUT, establish the form of the Landau action,
and analyze it, providing the detailed derivation in Sec. IX.

II. CONCRETE ILLUSTRATION

Let us give a concrete example of the PUTs with a three-
terminal setup that is similar to the experimental system [16].
The setup comprises three tunnel junctions adjacent to the
terminals that are connected by diffusive pieces [Fig. 1(a)].
The design parameters are the conductances Gh,, Gb, i =
0, 1, 2. We solve for the Green’s functions in the structure at
zero energy with the standard quantum circuit-theory method
[20], the details are given in Sec. V. In Fig. 1 we plot the
occurrence regions of each topological gapped phase in ¢;-¢»
plane. Black gives the occurrence region of the gapless phase.
In a fully protected situation [Fig. 1(b)] where Gp are small
or comparable with G, the topological phases are separated
from each other by the gapless phase. We observe that the
width of the separating region vanishes precisely at special
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points, where all phase differences are either O or 7. Upon
decreasing Gp we observe that the topological protection
ceases step by step: The region of the gapless phase gets
torn off one [Fig. 1(c)], two [Fig. 1(d)], and three [Fig. 1(e)]
special points. The tearing off a point corresponds to a PUT. In
an unprotected situation, the topological phases are separated
by dashed lines where the gap is finite and the phase drop
at a tunnel junction equals £. In fact, similar PUTs have
been seen in numerical simulations for a less realistic junction
models [26] but have received neither attention nor theoretical
explanation.

III. GENERAL SITUATION

After this concrete example, we turn to the general situa-
tion: How does a PUT occur for a general N-terminal junction
structure? An arbitrary general design can be described by
means of finite-element quantum circuit theory where the
structure is subdivided into nodes and connectors [20] (see
Sec. IV for details). The Green’s functions in the nodes are
obtained from the minimization of the action

S= ZSc(gcl . ch)f (2)

where the summation is over the connectors, and c1, ¢2 denote
the ends of a connector, that can be either nodes or terminals.
We resort to imaginary energy (¢) description where the vector
g is conveniently real at any energy. The Green’s functions in
N terminals are fixed to g = (e, sin¢, cos )/ 1 + €2, € =
¢/ A being the energy in units of the superconducting energy
gap A in the terminals. It is instructive to visualize the Green’s
functions in the structure as nodes of a network made of elastic
strings (connectors) stretched over the upper hemisphere, &
corresponding to elastic energy. The network is pinned in the
points corresponding to g in the terminals. It is clear that if
the pins are at the equator, the network either spans over the
equator (gapped phase) or sprawls over the whole hemisphere
(gapless phase) (see Fig. 2).

In (N — 1)-dimensional space of independent phases, we
find 2V~! — 1 special points where the phase differences are
either 0 or w and where the PUTs may occur. It helps to

gapless

gapped 1 gapped 2

FIG. 2. The Green’s functions in an arbitrary superconducting
structure can be visualized with a network of elastic strings pinned
in the points corresponding to g in the terminals. For this example,
the circuit encompasses 4 terminals, 6 nodes, and 11 connectors.
Depending on the positions of the pins along the equator, the network
can either lie at the equator (gapped phase) or rise over the whole
hemisphere (gapless phase).

start with a common and rather degenerate case of N =2
where there is only a single superconducting phase difference
¢, the special point is at ¢ = £, and the gapless phase
may exist in this point only. The energy levels in the gap
at this point correspond to transmission eigenvalues 7, [27],
E, = A1 —T,. The protection corresponds to a transmis-
sion distribution that spreads until 7 — 1, while unprotection
corresponds to a distribution that ends at some 7, < 1. The
PUT thus corresponds to a “localization” transition reported
in [28] that for a diffusive-tunnel structure takes place at
Gr = Gp.

IV. CIRCUIT THEORY

Our approach to multiterminal junction is based on the
semiclassical circuit theory [20]. Let us shortly outline it here.
In the circuit theory framework, a nanostructure is discretized
into terminals, nodes, and connectors between them. A termi-
nal or a node is described by a Green’s function G;. G; can be
geometrically represented as a unit vector g; on a sphere. In
Cartesian coordinate system (x, y, z), the north is chosen to be
in z direction. The longitude of g; is the superconducting phase
of the corresponding terminal /node, while the z component z;
is equal to ¢ /+/€% + AZ, where ¢ is the energy argument of G;
and A is the superconducting gap.

A connector positioned between the terminals/nodes i, j
can be described with an action §; ; that is a function of G;
and G;. In general,

1 T
S=5 Xp:Tr{ln[l + ZP(GIGZ + GGy — 2)]}, 3)

where 7, is the transmission eigenvalue of that connector. A
matrix current /;_, ; through connector between nodes i and
j can be computed as = [;—gi, G;] with the brackets denoting
the commutator. This matrix current satisfies Kirchhoff’s law
at each node. The action can also be written as a function
of a parameter ¢, which, in the geometric representation, is
arccos(g; - §;). The actions for some simple type of connec-
tors are tunneling junction

G
5= an? 4)
2 2
diffusive junction
G
S = —2¢", 5)
8
and ballistic junction
¢
S = —Gglncos 5 (6)

Here, we used the unit system in which the conductance
quantum Gy is 1. The action of the system is the sum of
all connector actions. One can find the ground state of the
complete system by minimizing the system action. Equiv-
alently, one can compute the matrix current and apply the
Kirchhoff’s law.

A conveniently intuitive picture is that of a network of
elastic strings (connectors) whose nodes correspond to the g
and that is stretched over an upper hemisphere being pinned
in the points corresponding to the Green’s functions in the
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FIG. 3. A three-terminal four-node circuit.

terminals. The action is proportional to elastic energy of the
network. At zero &, the pins are at the equator, and it is
clear that the network can either lie at the equator or, being
stretched by pins from opposite sides, sprawl over the whole
hemisphere (Fig. 2).

V. THREE-TERMINAL STRUCTURE

The three-terminal junction whose phase diagram was
presented in Fig. 1 is shown in Fig. 3. The three terminals
are all superconducting and gapped. In other words, their
corresponding unit vectors g; lie on the equator. Terminal 1 is
always kept at phase 0. For comparison with experiments, we
have chosen to set ¢, be 7 minus the actual superconducting
phase at terminal 2, so that ¢, is always a positive phase
difference between terminals O and 2 that lies in the range
(0, ). Depending on the phases of terminals 1 and 2, as well
as the conductance of each of the connectors, the central node
can be in gapped or gapless states. Figure 1 shows the phase
diagram on (¢, ¢,) plane for different circuit parameters. It
is clear there are three special points, where the gapless area
is thinnest, and they start to disconnect upon change of circuit
parameters. The condition for the transition can be found by
determining the phase on the central node ¢, on the equator.
For example, when ¢, = ¢, = 7, if ¢, # 7, the node will
move on to the north hemisphere upon certain perturbation
to ¢; and ¢, and the gap will close, while the gap will remain
open if ¢, = 7. Simple calculation reveals that the phase
transition condition at (77, 1) is

Gp,Gr,  Gp,Gr, Gp,Gr,
Gp, — G, Gp, +Gr, Gp,+Gr,
Similar conditions at the special points (0, 7) and (7, 0) are
obtained with exchange of the terminal indices.
The phase boundary between gapped and gapless phases

across the whole (¢, ¢,) plane cannot be found in an analytic
way, for which we did numerical calculations. Due to the

)

algorithm used in the program, the calculation could
not be done precisely € =0. We computed the DOS
of the central node and set a DOS threshold for
to decide whether a point (¢1,¢,) is in the gapped
or gapless area. The specific threshold used for
Figs. 1(a), 1(b), 1(c), and 1(d) are 0.01, 0.0015, 0.001,
and 0.001.

We are also interested in knowing which topological sector
the junction is in when gapped. Here, we prefer avoiding gen-
eral discussion of the definition of distinct sectors. Rather, we
illustrate by focusing on the area close to (;r, 7). When ¢; and
¢, deviate from m in different directions on the equator, the
junction is one topological sector or the other depending on
whether ¢, sits on the left or right side of 7. Using Kirchhoft’s
law, the boundary between the different topological sectors is
found to be a curve that can be parametrized as

G
¢ = m — 6 — arcsin —2L9, ®)
Gr,
G
b =1 — —210 — arcsin —29. 9)
D2 TZ

Similar relations for (0, ) and (i, 0) are obtained by ex-
change of the terminal indices.

VI. DEEP PROTECTION REGIME

Before concentrating on a PUT, let us understand and
describe the vicinity of a special point deep in the protected
regime. Let us note that at the special point and at zero energy
all the nodes are separated in two groups located at g =
(0, £1, 0). Owing to this, the solution for Green’s functions
in this point is degenerate with respect to rotation about the
y axis by angle ¢ and in each node i can be parametrized
as g; = (sin#; cos ¥, cos 6;, sin 6; sin ¥ ). The visualizing net-
work is thus spanned along a big semicircle defined by points
(0, £1, 0) (see Fig. 4). The deviations from the vicinity of the
special point both in energy and the phases of the terminals
lift the degeneracy and can be casted into the action of the
following form (see Sec. VII for the details of the derivation):

S/G = —xcosy —esiny — r*sin® . (10)

Here, G is a coefficient of the order of dimensionless struc-
ture conductance that is irrelevant for the minimization. Two
topological phases corresponding to ¥ = 0, 7 are realized in
two (N — 1)-dimensional regions that touch each other in the
special point. There is a main axis orthogonal to the gapless
region surfaces in the special point, and x stands for the
deviation from the special point in the direction of this main
axis. The r gives the distance from the special point in all
other N — 2 directions perpendicular to the main axis. The
term with € pulls the Green’s functions in 3-direction. With
this, we can find the DOS in the nodes of the structure. While
the maximum DOS is node specific, v,,; = vy sin §;, its overall
behavior is the same for all nodes:

Vi/Vmi =1 — (x/2r?)%. (1)

The DOS may be regarded as an order parameter in
the gapless phase restricted by |x| < x. = 2r%. Somewhat
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FIG. 4. In a special point, all terminals in one of two positions
(0, £1,0) (west and east poles of the hemisphere). Deep in the
protected regime, the network nodes are spanned along one of the
big semicircles between east and west poles. Owing to rotational
symmetry, the action is the same for any . This degeneracy is lifted
by small deviations of the terminal positions.

surprisingly and importantly, the action (10) can be also used
to find the gap, a complementary order parameter for the
gapped phase. Since the gap edge corresponds to a singularity
in the Green’s function, the gap is found from the conditions
of the action minimum and bifurcation 3S/3y = 3%S/9y? =
0 that is satisfied at imaginary € = ie,:

€= xe((X/x)*? — 12 (12)

We illustrate the profiles of the DOS and the gap in Fig. 5.

VII. DEEP IN THE PROTECTED REGIME:
DETAILS AND THE DERIVATION

Let us present a derivation of the action (10). Consider a
structure with M nodes, denoted by indices i, j, k... and N
terminals, denoted by indices a, b, ¢.... The terminals are
close to the east or west poles which are on the equator,
while the nodes are sufficiently far away from the poles.
In addition to the three-dimensional (3D) Cartesian system
(x,y,z), a spheric polar coordinate system (6, i) will also
be used. We define the west and east poles on the equator
to be points (0,1,0) and 0, —1,0. 6 € [0, r] will be the
longitude measured from the west pole on the equator, and
Y the azimuth angle with respect to the west-east axis. ¥ = 0
for the half of equator where 0 < 6 < m. In terms of 6; and
Y;, the coordinate of vector g;

8i = [—sin(#;)cos (¥), cosb;, —sin (6;) sin (¥)].  (13)

Suppose when all the terminals sit at the poles, the equilibrium
position of the nodes is (6;, ¥;), i.e., all the nodes reside on
one big circle on the sphere. This is not necessarily the only
equilibrium configuration, but is the physically relevant one.
Note ¢ is a free number as the system has rotational symmetry
with respect to west-east axis. Now consider the situation
where each terminal deviates from the poles by longitude
Xa» and uniformly above the equator by amount z = JALHZ
For convenience, let € = ¢/A. The new coordinate of the
terminals and the nodes is

1 .
8a= ﬁ(—fa sin X4, §4 COS X4, €). (14)

Here, ¢; = %1, depending on whether the terminal is close to
the west pole or east pole. Our aim is to find the new minimum
action state of the system. Vary the coordinates of the nodes
as

8i = [—sin (6; + 86;) cos (V¥ + 8vr;),
—sin (6; + 86, sin (W + 8yl (15)

To shorten the notations, we introduce two vectors for varia-
tions in the unit vector’s coordinates:

cos 6;,

80;,
sy=| |, n=|".| (16)

i e

Up to second order in §¢ and n, the variation in the action
from the original state is

as as 1 %S
3§ = —na a a
T T P
1 3% 1 %S
a i 1) I(S , 17
+28 aw,nl/f zawlawjl//wl a7
where 33—12% = 0 since the derivative is evaluated at the equi-
librium. Define matrices A, C and vectors b, d as
A= 0’ (18)
M ayy
928 928 3%S
b = nj = Xa+ —€, (19)
0Y;0n; 00 Xa Ve
C, s 20)
a,b = s
' N0y
as
d, = . 21
Ma
The §y-dependent terms in §S are then
L@y AsY + b sy, (22)

the minimum of which is
min [y TASY + bTsy)] =

By doing so, we eliminate all 66; and §1;. With x, and € fixed,
we now have a expression that has only one free parameter .

—1pTAT'e. (23)
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FIG. 5. The vicinity of a special point in the protected regime. Upper part: the domains of gapless and gapped states in the x-r plane.
Lower: the plots of the gap and DOS along the horizontal (left) and the vertical (right) dashed lines in the upper figure.

The equilibrium configuration can be found be minimizing and

9%s aS
(24) ntCn = X‘%(a 5 sin” 0; cos? Y + —— cos> Qi)

8S = —4b A"+ n"Cn +dn Pia dPi.a
9%s 0 sin @ i
with respect to . Explicitly, + Xa€ 0Diad )0 sin 6 sin 0; sin yr cos yr
o 9%S s ..
1 + €| —————cos0;cos; — sin@; sinyr |.
— —b"A b4 dn 9Pi.adPja OPia
8 (26)
as . as . . . o o .
= Xa Z sinf; cosy — € Z sin @; sin ¥ Here, we used the notation p; ; = g, - g;. Keeping the first-
~ 0pia i IPia order terms, and terms second order in y which do not vanish
when the first-order terms vanishes, we have
1 RN
l1|: — sin”6; — cos 6; | T
8 I ai,a i,a —gbA b+d77+7lc’7
X (xqcOS Y — €sin 1//)] = Z XaFucosy +eGsiny + xaxpHapcos2v, (27)
a
928 39S where
X 5 sin29j—a cos 0; | (xpcos Y —e sinyr) 35
i, Pjb F, = Z - sin ;, (28)

(25) ~ i
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a5
G = in 0;, 29
; o sin (29)
1 1 3%S .2 A
Habz—— Ai‘ —2811'1 01'_ COS@i
’ 16 Iy, 7 api’a 8pi,a
o’ 20 0,)+=s oS in” 6
X sin“ 9, — cosf; | +=8,p—> sin” 6;.
apia ! pj,a ! 2 8p12,a
(30)

Let x' =—Y, x.Fu/G, and r = /2x,xpH, /G, and we

have a dimensionless effective action
S/G:—Xcosw—esinw—rzsinzw. (€19

Next, we analyze the system at zero energy based on this
action. First, we find the angle 1/ that minimizes the action:

WO = {0’ X

arccos 57,

x > 2r?
x < 2r%. (32)
Clearly, the junction is gapless when x < 2r2, and gapped
when x > 2r2. x = 2r? is the phase boundary. In the gapless
state, the ratio between the density of states for each node and
the maximum DOS of that node is simply

52

yes

For the gap in gapped state, we put € back to the action and
solve the equations
aS ) 5 .
@ = xsinyy —ecosyy —2r-sinycosyy =0, (34)
s : 200 ain
3_1ﬂ2 = x cos Y + €sinyy — 2r°(cos” —sin“)y = 0 (35)

for a purely imaginary solution, the result is

V/v, =sinygg =,/1 — (33)

(36)

VIII. TRANSITION: LANDAU ACTION

Let us turn to the PUT description. Near a PUT, the
Green’s functions nodes of a general structure are all close
to one of the points (0, =1, 0). These two groups of nodes
are connected by one or several connectors. Clearly, the phase
drop at these connectors is almost w. The action can be
expanded in a quadratic form with respect to the deviations
of the Green’s functions g, g, = x;, z; from this point. If all
eigenvalues of this quadratic form are positive, the minimum
is achieved at x;, z; = 0 corresponding to the unprotected sit-
uation. If at least one of the eigenvalues is negative, the action
minimum is achieved at nonzero x;, z; signaling formation
of the gapless phase and topological protection. Therefore, a
PUT corresponds to an eigenvalue crossing 0. In the spirit of
Landau theory of the second-order phase transitions, we keep
in the action the corresponding eigenmode only. We denote

Above PUT

Below PUT

FIG. 6. The Green’s functions of the system near a PUT. Pre-
cisely in the special point, the network is spanned along one of the
big circles. Above the PUT, in the protected phase, the network nodes
are at small but finite distances from the west and east poles while a
critical connector is spanned between the poles. Above the PUT, in
the unprotected phase, the network nodes are precisely in the poles.
This results in a gapped phase.

the deviations of this mode x, z. Above the PUT, the nodes
are kept at small but finite distances from (0, £1, 0) points.
Below the PUT, x, z = 0 and all the nodes are in one of these
two positions (see Fig. 6).

Taking into account the rotational symmetry at the special
point, fourth-order terms in x, z and the anisotropies arising
when the superconducting phases of the terminals deviate
from the point, we end up with the following action (see
Sec. IX for the details of the derivation):

b
S/G, = g(xz +22)+ Z(x2 + 2 — xx—ez—r*2. (37)

Here, a depends on the junction design and is the critical
parameter that is negative for protected situation and zero at
the PUT. In distinction from a common Landau action, the
action (37) defines two complementary order parameters for
gapless and gapped phases. The DOS in the gapless phase
is proportional to z at € = 0 determined from the action
minimization, while the determination of gap €, requires the
extra bifurcation condition 9,,59..S — (9,.S)* = 0.

As usual, the action can be rescaled to convenient variables
at a given value of a, either positive or negative,

- xE—& -7, (38)

Sh =i5c2+22 N (& 422
GLd? 2 4

where ¥, % = x, za/b/a, ¥, € = /b/a® %,& and ¥ = r//a.In
Figs. 7 and 8 we illustrate the profiles of the DOS and the
gap in unprotected and protected regimes close to the PUT,
respectively. We make use of the rescaled variables. We see
that in the unprotected regime the distinct topological phases
touch each other at x =0 and 7 < 1/+/2. The separating
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3 3
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@
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0 1 e 2
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FIG. 7. The situation in the vicinity of a PUT, from the protected side of the transition. We use rescaled variables as defined in Eq. (38).
Upper: the domains of gapped and gapless states in the j-7 plane. Dashed curve gives the asymptotic of the domain boundary in the deep
protection regime ¥, 7 << 1. Lower: The plots of the gap and DOS along the horizontal (left) and the vertical (right) dashed lines in the upper

figure.

gapless phase always persists in the protected regime. At
X, 7 < 1 the action is reduced to that in the deep protection
regime [Eq. (10)] giving §. = 272. This asymptotic is plotted
in Fig. 4(a) with the dashed curve.

Simple analytical formulas are obtained for the boundary
between the gapped and gapless states, x. = 2i>+/2i2 £ 1,
and for the gap at x =0,

2
€= —

(1 —212)3, (39)

3
2

IX. NEAR A PUT: DERIVATION

Let us derive a simple phenomenological model valid for
the regime close to a protected—unprotected transition. Here,
we use the 3D Cartesian coordinates for both the terminals of
the nodes:

1
8a = ——==(—{4SIn X4, {4 COS X4, €),
VA

g = (x Ciﬂ’ ai)- @1

(40)

Here, s% = xiz + ziz. Expanding the action around the poles, we

have

as aS
8S =) o 8pi; ) o0y (42)
IZ]: opi; ; pia
For convenience, let A, ;, = a?a_s,’ B,, = 33’%. When all the
a,b a,b

terminals sit at the poles, i.e., xo, = 0, ¢ = 0, the leading terms
in the action are on the second order in x; and z;:

1 1
3S ZAi'j |:x,~xj +2zz; — Eiiij(s? + Si)] 5 ZA,;L,S,-Z.
ij La

(43)

This expression can be written in matrix form as

55~ (x z,»)<K K) (;) (44)

where K is a symmetric matrix. The sign of eigenvalues of
K indicates the stability of the nodes near the poles: when all
eigenvalues are positive, all the nodes are kept at the poles
for minimum action. In other words, when x, =0, ¢ =0,
a phase transition occurs when one eigenvalue crosses 0 and
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10+
gapped
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X

FIG. 8. The situation in the vicinity of a PUT, from the unprotected side of the transition. We make use of the rescaled variables as defined
in Eq. (38). Upper: the domains of gapped and gapless states in the ¥ -7 plane. Lower: The plots of the gap and DOS along the horizontal (left)

and the vertical (right) dashed lines in the upper figure.

becomes negative. Let A; be the eigenvalues of K and u; and
v; the eigenvectors in x and z subspaces. Then,

8S = Z)\i(uf + vlz)

Let the linear transformation connecting x;, z; and u;, v; be
represented by matrix ¢, so that

(45)

Xi) _ 19 u;
(2)=( &)(2) 0
or, more explicitly,
Xi = oy u +oyoly + - 47
Zi =01V + o0+ (48)

Let A; be the critical eigenvalue, such that [A;| ~ 0 < Ajsg.
The fluctuation in ;.| and v;.; will be greatly suppressed. In
the following, we treat them as effectively equal to 0, i.e., that
X; >~ uy, 7 =~ o 1v;. Therefore, the quadratic order terms
will be approximated by

a2+ 0?). (49)

We then collect terms in &S that are lowest order in their
respective categories. For coupling between the terminals and

nodes,
D Aia(=Giaxa¥i + €2:) (50)
>~ — ZAi,aCi,aXaOli,lul + ZAi,aai,levl-
Let
X' == AiaiaXatit, &= Aaeiie (1)
and replacing u; and v; with x and z, we have
Y Aia(—Giaxexi +€z) = x'x + ¢’z (52)

a

Other terms will be treated in a similar fashion. To ensure
that the action has a lower bound, it is necessary to include
terms fourth order in x and z. For other terms, we proceed
in way similar to how terms in the deep protection case were
treated: only first-order terms and second-order terms that do
not vanish when first terms vanish are retained. The final result
is a simple Ginzburg-Landau—type action

b
85 = S0+ )+ 10+ + ez (53)
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where

a=2x, (54)

1
b = —g ZAl,jé‘lg](afl +a}‘vl - 2ai2‘1a12'1)
iJ

1 1
+Z B; ; |:Oli,10!j,1 - Efifj (“iz,l +(¥%1):| + 1 Z Bi,aail )
ij ia

2 22
PP =" Biaxio}, (55)
i,a
To have a dimensionless action such that we can make direct
comparison with the deep protection regime case, divide the
action by ), A i1,

_a b
88 = ;()c2 +22)+ A—t(x2 + 22 + gx+ez— 22 (56)

with a, b, ¥, 7 =a,b, x',r*/ Y iaAiai1. We rescale the
action such that the coefficient for the quadratic and fourth-
order terms become 1:

8§ =L@ +2)+ @+ PP+ xi+E P2 (57)

where § = 8Sb/a?, %,7 = x,z/b/a, ¥%,€ = /b/a3 &, &, and
7 = r/+/a. The phase boundary, as well as gap and DOS
in gapped and gapless phases can be found in an identical
way as in the previous section. However, simple analytical
expressions are not available except to the phase boundary

= 2r2m, a>0 (58)
¢ 2r2«/m, a<0
and the gap when x = O inthe a > 0 case
o = 21—t (59)

3
2

We numerically computed the gap and DOS in general and the
result is presented in the previous section.

X. CONCLUSIONS

In conclusion, we have studied the topological projection
of distinct gapped states in N-terminal superconducting junc-
tion. The protection is manifested as a gapless state separating
the gapped states in the parameter space of N — 1 supercon-
ducting phases. We reveal that the protection may cease near
special points as a result of a protection—unprotection transi-
tion in the parameter space of the junction designs. We have
found a Landau action that describes the the vicinity of the
transition. In distinction from common Landau actions, this
one permits evaluation of complementary order parameters,
DOS and gap, for gapless and gapped states.

We speculate that the known generality of Landau actions
would permit to extend our approach to a wider variety of
topological phenomena in condensed matter physics. Such
phenomena may include the gapping of the edge modes at
the interfaces of distinct topological insulators that separate
gapped states in real rather than parametric space. While the
concrete physical mechanisms responsible for such PUTs may
be involved and unknown, the essential phenomenology of
the transition may be captured by a Landau action in a form
proposed in this paper.
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