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Chapter 1

Introduction

Control engineering arises in many practical systems. The growing complexity of
dynamical systems has led to the development of mathematical tools that support
control design. In this thesis, new results in the field of robust and scheduled control
are developed in terms of semi-definite programming problems.

1.1 Control engineering: an overview

The goal of control engineering is to improve the performance of a dynamical sys-
tem by making use of sensors, actuators and controllers. For instance, the current
trend of reducing the mass of commercial aircrafts in order to save fuel costs and
diminish environmental pollution has lead to higher demands on the control system
technology. In fact, the policy of lowering the aircraft’s mass is mainly supported
by the expectation that a reduction in the stiffness of the aircraft’s structure can be
effectively compensated for by the use of feedback control. A similar trend is seen in
the production of electronic components, where piezo elements are installed in order
to actively dampen pick-and-place units.

The diagram in Figure 1.1 represents a control system, in which the system
to be controlled might for example be an aircraft, a CD-player, a hard disk or a
power plant. An essential feature of a control system is the feedback mechanism,
in which the measured signals are used to modify the system via the controller and
the actuators. Some systems are controlled without taking on-line measurements
of the system and are usually referred to as an open-loop control system. The
interconnected system as depicted in Figure 1.1 will be referred to as the closed-
loop control system. Also indicated are the disturbances that affect the system, the
command signals that are typically defined by a human operator, and the signals
used for system monitoring and fault diagnosis.

A feedback strategy changes the behavior of the system. It can improve perfor-
mance and stabilize systems that are open-loop unstable. This thesis is concerned
with the analysis of control systems as well as the design of a feedback controller, also
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referred to as a control law. The controller consists of an algorithm that describes
how the actuator signals are generated from the sensor and command signals. The
design of a controller, also known as controller synthesis, plays an fundamental role
in the design of a control system as a whole. A large variety of design methods is
now being used in practice. We will be concerned with methods that are based on
a mathematical model of the system.

The success of a control system design is not only determined by the control law.
An important factor that acts on the achievable performance is the selection and
positioning of actuators and sensors, known as the control configuration. Typical
actuators are valves, DC motors or heating devices, whereas typical measurements
involve position, temperature or pressure.

Besides fundamental limitations of the system to be controlled, the mathematical
model that is used influences the achievable closed-loop performance. Building such
a model includes a description of the signals that act on the system, i.e. noise-
and disturbance signals, as well as the command signals that are generated by the
operator or some trajectory planning device.

Mathematical models vary in complexity and fidelity. A simple model is preferred
from the designer’s perspective, as it simplifies the design, simulation or analysis of
the control system. On the other hand, by leaving out too many details, it might
no longer be possible to achieve satisfactory results. In this thesis, all mathemat-
ical models are built from ordinary differential equations. These models typically
result from laws of physics (e.g. Newton’s equations) but can also be obtained by
identification procedures. The tools in this thesis allow to effectively account for the
possible mismatch between the real-life system and its mathematical description.

In the next section the main scope of this thesis is presented, which is the design of
a (feedback) controller. Note that, ideally, a control engineer should also be involved
in the design of the system itself, the control configuration and the modeling phase.
Although this fact is well-recognized when it concerns the development of advanced
mechatronic systems, it often happens that the control task is formulated after the
system has been manufactured.

1.1.1 The controller design problem

The purpose of designing a control system is to achieve a certain desired behavior.
This behavior is characterized in terms of specifications on the performance and
robustness of the closed-loop system. Performance specifications describe how the
closed-loop system should perform and are defined on certain input-output channels.
Examples of performance specifications are:

• Good rejection of disturbances
Disturbances cause the system response to deviate from the desired trajec-
tory or set point. Examples of external disturbances are ground vibrations as
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Figure 1.1: Abstract respresentation of a general closed-loop control system.

seen in servo-mechanical systems or wind gusts that act on aircrafts. Mea-
surement noise is also treated as an exogenous disturbance, as it degrades the
performance in an indirect way.

• Command following
This concerns the response of the system due to a new set-point or pre-defined
reference trajectory. For instance, the design of a flight control system always
involves several requirements regarding the response due to a certain pilot
input.

• Avoidance of actuator saturation
In order to make sure that a controller performs as expected, the commands
to the actuator should respect physical limitations. For instance, a servo-
mechanical actuator has a maximal possible deflection and a finite bandwidth.

The dynamics of a system is not constant during operation. Typical quantities like
friction- or temperature coefficients are affected by aging and change over the life
time of the system. Moreover, the efficiency of the actuators or the noise level that
act on the sensor measurements are not constant. Whenever system characteristics
vary over time in a way that is practically impossible to put into a mathematical
model, we are motivated to add so-called robustness specifications. These account
for imperfections in the mathematical model. Robustness analysis has gained much
interest over the last three decades, resulting in powerful and practically useful
mathematical analysis tools.

Finally, one might need to add certain requirements on the controller itself. In
industrial applications, controllers are often required to be of a specific structure,
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e.g. PID, which means that modern optimization-based control algorithms cannot
be applied immediately. If the number of actuators and sensors is large, a particular
structure is likely to be preferred. In a decentralized control configuration, each
individual actuator signal depends on one sensor signal only, which simplifies the
controller implementation. In this thesis, no such demands are put on the controller
and the goal will always be to construct a single control element that interacts with
the system.

For a given mathematical model of the system, the control design problem con-
sists of computing a controller that yields satisfactory performance. Like all design
problems, the controller synthesis problem involves trade-offs. The most obvious
trade-off arises between performance demands on the one hand and robustness re-
quirements on the other hand. In fact, the more a system should be robust against
variations in the plant, the less performance can be achieved. Other trade-offs are
not so obvious.

Any controller that fulfills the specified design goals is said to be suitable. If
it can be shown that no such controller exists, one either has to relax the design
specifications or redesign the system, for instance by adding or relocating sensors
and actuators.

1.1.2 From classical to modern controller design

Early controller design approaches were derived for Linear Time Invariant (LTI) sys-
tems, mainly single-input-single-output (SISO) systems, and were based on frequency-
domain techniques (Bode, Nyquist). With these methods, satisfactory performance
could be achieved by suppressing certain frequency bands that are known to rep-
resent the disturbance characteristics, at the cost of becoming more sensitive at
frequencies where no excitation is to be expected. The robustness of the closed-loop
system against small variations in the plant was expressed in terms of gain and phase
margins. These classical design tools are of limited use, when designing controllers
for general multi-input multi-output (MIMO) control systems. In fact, the robust-
ness of general MIMO control systems cannot be captured in terms of the gain- and
phase margins of all individual SISO control channels.

In the 1960s, methods based on state-space system descriptions were introduced
and many control problems were rephrased in the context of mathematical opti-
mization. With the development of the linear quadratic regulator and Kalman filter
theory, LQG control (which later became known as H2-synthesis) provided an effec-
tive tool for making a general MIMO system insensitive to unknown additive noise
sources, of which the spectral content is known. Disturbances can often be very
well described by random processes, which explains why LQG optimal control has
been often applied in practice. Nevertheless, as shown in [65], LQG control has
no guaranteed robustness margins. In order to effectively incorporate plant model
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uncertainty, additional tools were needed.
In the same period, the so-called H∞-optimal control theory was introduced. In

combination with the structured singular value theory [66, 10], the H∞-norm per-
formance measure could adequately capture robustness margins of MIMO systems,
in particular for specific classes of time-invariant uncertainties on the plant model.
A Matlab toolbox for µ-analysis and robust H∞-synthesis has been developed [10],
which has been successfully applied on various practical applications.

In optimal H∞-controller synthesis, one minimizes the H∞-norm of the weighted
closed loop transfer matrix. Initial solution approaches to this problem started
in the frequency domain, see for example [74]. The development of state-space
solutions in [67] showed that H∞-synthesis could be solved in terms of a Riccati
matrix equation, similar as was demonstrated earlier for the LQG control problem.
Moreover, a solution to the Riccati matrix equation could be found by modern
convex optimization based control, and semi-definite programming in particular, see
[190, 28, 68, 44] to list a few.

In the next section, we will introduce semi-definite programming as the compu-
tational framework that forms the basis of the developed tools in this thesis. In
Section 1.3, several limitations of the existing controller synthesis algorithms are
listed, from which we will extract our main goals. Finally, a brief summary of the
contributions and the thesis outline are given in Section 1.4.

1.2 Analysis and controller design in the LMI frame-

work

Matrix Riccati equations play a fundamental role in H2- and H∞- optimal control
problems and variations thereof, see [191, 140]. The relation between Riccati equa-
tions and linear matrix inequalities (LMIs) has been known for long, see [178]. It
got renewed interest with the observation that solving LMIs is a convex problem for
which fast interior point algorithms are accessible in commercial toolboxes [78] or
as freeware on the internet [170]. Linear optimization subject to LMI constraints is
also known as semi-definite programming.

During the last couple of decades, intensive research efforts on the applications
of LMI’s in control has lead to a large amount of literature, as cited e.g. in [29, 69].
Many classical problems in control were reformulated in terms of LMIs and the use of
semi-definite programming for solving new control tasks was explored. Other fields
of engineering were shown to benefit as well from the convex optimization tools, as
is seen in recent books [30, 17], and the references therein.

Although Riccati equations play an important a role, it is dissipation theory for
linear and non-linear systems that lies at the basis of modern controller design in
the LMI framework. The notion of dissipative systems, first presented in [179], has
proven to be extremely powerful in characterizing all sorts of input-output properties
in a unified setting. For instance, if both the input w and output z are measured

xv



in terms of energy, a typical performance indicator is defined as the smallest γ for
which ‖z‖2 ≤ γ‖w‖2 holds true for any input w that has finite energy. This quantity
is known as the induced L2-gain. Consider the LTI system

ẋ = Ax+Bw, z = Cx+Dw.

One can show that this system is stable and the induced L2-gain is bounded by γ if
the following LMIs are feasible:

X � 0,

 ATX +XA XB CT

BTX −γI DT

C D −γI

 ≺ 0. (1.1)

We emphasize that X enters in a linear fashion, which explains the terminology lin-
ear matrix inequality. The constraint X � 0 indicates that all eigenvalues of X are
positive, X ≺ 0 would correspond to having all eigenvalues of X negative. Without
going into details, it can be shown that the minimum γ for which a solution X

satisfies these two LMI constraints is equal to the H∞-norm of the transfer matrix
G(s) = D + C(sI −A)−1B.

When using the LMI characterization (1.1) for controller design purposes, the system
matrices will depend on the to-be-designed controller variables which renders the sec-
ond matrix inequality in (1.1) bilinear in the controller variables and the Lyapunov
matrix X . As shown in [159, 122], a full solution of the (nominal) controller synthesis
problem is obtained by using a general non-linear variable transformation. Multiple
performance conditions of different nature (mixed H∞,H2) can be combined in order
to design multi-objective controllers and other quadratic performance measures can
be included as well.

Control of uncertain systems

A successful control system design achieves a desired performance level while being
also tolerant against variations in the system. By exploiting structural knowledge of
the uncertainties, the performance of complex dynamical systems can be increased.
Such knowledge is often present. In a mechanical system for instance, the damping
and spring coefficients are known up to a certain level, which motivates to consider
the model class that is formed by all possible damping and spring coefficient values

In general, the mismatch of a mathematical model with the real system can be
captured by using an uncertain model rather than a single mathematical model. In
other words, we cover a complex dynamical system by a family of relatively simple
models. The resulting robust controller synthesis problem consists of finding a suit-
able controller that satisfies performance for all admissible uncertainties.
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As will be extensively discussed in Chapter 7 of this thesis, robustness analysis plays
an essential role in the controller design process. In order to guarantee that the sys-
tem achieves the desired performance, one has to verify whether all models that are
contained in the uncertain model, are stable and satisfy performance. This is known
as robustness analysis. If the performance specifications cannot be met, one either
tries to improve the quality of the model, or one has to relax the design goals.

In this thesis, uncertain models appear in two different forms that are well-known in
the robust control community. The first is based on the so-called generalized plant
framework and can handle all sorts of time-varying parametric and non-parametric,
linear or non-linear phenomena, at least conceptually. The framework was intro-
duced with the by now well-established H∞-controller synthesis technique. The
uncertain system is modeled as the feedback interconnection of a fixed nominal
plant, which we will assume to be LTI, and an uncertain element ∆ specified to be
contained in some set ∆ ∈∆.

A second class of uncertain systems consists of the so-called Linear Parameter
Varying (LPV) models, which are marked by the fact that only parametric uncertain-
ties are involved. If (reliable) online measurements of the parameters are available,
one typically aims at designing a controller that schedules with the parameter, rather
than a robust one. Let us discuss in more detail these two different uncertain model
classes that are addressed in this thesis.

Generalized plant framework

A large variety of robust control design problems can be addressed in the so-called
generalized plant framework, see [10] for a reference. Here, each system component
is modeled as a fixed (nominal) linear plant model and a collection of uncertain
elements that are due to e.g. actuator saturation, backlash, dead-zones, time delays
or quantization.

K
uy

P

∆
pq

z w

Figure 1.2: Generalized plant

In a general interconnection of subsystems, uncertainty will affect each individual
component. A procedure known as “pulling out the uncertainties” enables the con-
struction of a single fixed plant model P , the generalized plant and a (generally
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structured) set of operators ∆ that represent all the uncertainties. The result of
this procedure is illustrated in Figure 1.2 and naturally leads to a structured op-
erator ∆ ∈ ∆, see also Appendix B. Hence, the uncertain system can be written
as  q

z

y

 = P

 p

w

u

 , p = ∆(q), ∆ ∈∆, u = Ky.

The system model P and the feedback controller K are typically chosen to be LTI
systems. The philosophy of adding non-linear or time-varying uncertain elements to
a nominal LTI plant has proven to be very useful in describing uncertain systems. In
fact, it goes back to the absolute stability problem in [144], in which an LTI system is
interconnected with a single unknown static non-linear element that is characterized
by certain sector bounds.

As will be extensively discussed in Chapter 3, the generalized plant framework
lies at the basis of analyzing general interconnections of uncertain systems. The
machinery for rendering the robustness analysis problem numerically tractable is
provided by so-called integral quadratic constraints (IQC), [123, 98]. For some recent
contributions on IQCs, see for instance [75, 101, 102, 100, 1].

Remark 1.1 Similar to the observation that “pulling out the delta’s” leads to a
block-structured ∆, the to-be-designed controller block K can represent a mixture
of local feed-forward and feed-back compensators that arise in the underlying inter-
connected system. At present, it is however unknown how to turn the design of
structured controllers into an LMI optimization problem. For some recent develop-
ments on this problem, the reader is referred to [93, 153, 109, 46] and references
therein.

Linear parameter varying systems and scheduled control

Building a model by a feedback interconnection of a fixed LTI plant with an uncertain
operator ∆ is not the most obvious approach if the uncertainties are parametric. In
fact, an LTI model very often involves a set of physical quantities like temperature,
altitude or pressure. The fact that these parameters may vary in time naturally
leads to a so-called linear parameter varying system, which is described as

ẋ = A(δ(t))x+B1(δ(t))w +B2(δ(t))u
z = C1(δ(t))x+D11(δ(t))w +D12(δ(t))u
y = C2(δ(t))x+D21(δ(t))w +D22(δ(t))u

(1.2)

in which x(t) denotes the state, w(t) the disturbance, z(t) the controlled output
and δ(t) the (time-varying) parameters, all of which can be vector-valued signals.
The family of admissible parameter trajectories is defined in terms of the relation
δ(t) ∈ δ for all t, for some compact set δ. A more precise characterization is
obtained by adding certain bounds on δ̇(t). We will see in Chapter 4 and 6 that it is
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convenient to assume that the system matrices in (1.2) are given as a linear fractional
representation. Then, the LPV system can also be described as a generalized plant
with a parametric uncertainty ∆ = ∆(δ), see also Appendix B.

Recall the LMI condition (1.1) which characterizes a bound on the L2-gain of
an LTI system. This characterization of performance has a natural extension to the
class of LPV systems. In fact, based on dissipation theory [178], one can show that
the LPV system is stable and a bound γ on the L2-gain of the channel w → z is
provided by the existence of an X that satisfies

X � 0,

 A(δ)TX +XA(δ) XB1(δ) C1(δ)T

B1(δ)TX −γI D11(δ)T

C1(δ) D11(δ) −γI

 ≺ 0 (1.3)

for all admissible parameter values δ ∈ δ. The second matrix inequality has a
semi-infinite nature, since it must hold at an infinite number of parameter values.
Optimization that involves such parameter-dependent LMI constraints, or robust
LMIs, is referred to as robust semi-definite programming, and is computationally
hard in general.

1.3 Aims of the thesis.

In view of the key role of LMIs in solving control problems, there is a need for reliable
and efficient algorithms for solving (robust) LMI problems. The numerous examples
in [30, 17] and references therein show the success of applying existing algorithms
to H∞- or H2-optimal control problems and variations thereof.

The analysis of uncertain systems and of LPV systems in particular involves
robust LMI constraints, an argument that applies to the robust and scheduled con-
troller design problem as well. Our first objective is motivated by the fact that there
are still many challenging control problems for which a characterization in terms of
robust LMI constraints is expected to exist. Among many other interesting design
problems, for instance the controller synthesis problem of fixed order or structured
controllers, this thesis is concerned with the design of robust and scheduled output-
feedback controllers and the analysis of LPV systems in particular.

Objective 1: Improve the usability of the LMI framework for solving
robust control problems.

Robust LMIs are expected to play an important role in handling future control design
problems, as can be concluded from the books [29, 69]. Here, we aim at developing
new and improved algorithms in two fields.

• Lyapunov-based analysis and controller synthesis of LPV systems:
Based on quadratic-in-the-state Lyapunov functions, one can easily formulate
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sufficient conditions for analyzing the stability and performance of an LPV sys-
tem (1.2). However, despite the fact that conservatism is (somewhat) reduced
by using a parameter dependent Lyapunov matrix in (1.3), it is unknown how
to systematically improve the analysis conditions in general. Specific classes of
non-quadratic Lyapunov functions have been shown to be non-restrictive (the
so-called “converse theorems”), though an efficient numerical implementation
of these results is lacking.

• Robust controller synthesis in the generalized plant framework:
The robust output-feedback controller synthesis problem amounts to design-
ing an optimal LTI controller for an uncertain system. At present, an LMI
solution to this problem is lacking. Heuristic (iterative) procedures typically
do not provide globally optimal solutions. Based on the controller parameter
transformation technique in [159, 122], the nominal output-feedback controller
synthesis problem has been formulated as an LMI optimization problem. It is
expected that the robust controller synthesis problem can be rendered convex
for particular problem classes, by exploiting the problem structure.

Although robust LMI constraints are convex in the decision variables they are gen-
erally non-tractable and can only be approximately solved by so-called relaxation
schemes. Such schemes are usually conservative, in the sense that the computed so-
lutions are feasible, but not necessarily optimal for the original robust LMI problem.
In order to fully benefit from robust controller design methods based on robust LMI
optimization, it is essential that relaxation schemes are constructed in a systematic
fashion. This leads us to our second objective.

Objective 2: Develop a unified framework for constructing LMI relax-
ations.

With a strong focus on control challenges that have been formulated as a robust
LMI optimization problem, our main goal is to provide an easy and flexible environ-
ment for evaluating and comparing different relaxation methods. Important research
questions that should be addressed are the following:

• How to estimate the level of conservatism (relaxation gap)?

• How to modify relaxation schemes in order to reduce conservatism?

• How to exploit the problem structure?

Associated with these technical and, to some extent, theoretical issues, a numerical
implementation of the relaxation methods should be developed. In order to fully
explore the flexibility of the framework as well as to save time, it is also needed
to build user-friendly tools that automatically construct relaxation schemes for a
specified problem.
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1.4 Outline and contributions

Chapter 2 describes the construction of suitable relaxation schemes for approximat-
ing a robust LMI constraint. At the heart of any relaxation scheme lies the issue
of verifying the positivity of polynomials, a topic that will take up a large part of
this chapter. It is shown that robust LMI constraints that are rational in the uncer-
tain parameters, can always be transformed into an equivalent polynomial one. The
contributions in this chapter can be summarized as follows:

• A new implementation of relaxations based on matrix-sum-of-squares.

• A condition for verifying whether a computed S-procedure based relaxation is
exact. In contrast to the original paper [157], a generalization of the exactness
test regarding the case of multiple robust SDP constraints is given, which
amounts to solving a polynomial system.

• A new algorithm for solving systems of polynomials, which is elegant and
conceptually simple, since it only makes use of linear algebraic operations. It
forms an extension of the so-called Stetter’s method [168].

• A Matlab Toolbox that automates the construction of relaxation schemes, see
[55].

With the computational tools of Chapter 2 available, the remaining chapters focus
on the analysis of uncertain systems and the design of robust and scheduled con-
trollers. In each individual chapter, it is shown how to translate the problem into
optimization subject to (robust) LMI constraints. Numerical examples are included
and illustrate the use of relaxation schemes in different contexts.

Chapter 3 starts with the problem setup in Figure 1.2. We revisit the analysis
approach based on integral quadratic constraints. In this method, a parameterized
class of multipliers is properly chosen such that it captures a given set of uncertain
operators ∆ ∈∆. Although the IQC methodology applies to general non-linear and
time-varying uncertainties, emphasis is put on parametric uncertainties, for which
suitable multiplier classes can be described in terms of robust LMI constraints. A
numerical example is included, in which upper bounds on the worst-case L2-gain are
computed for a given LPV system.

In Chapter 4 we consider the class of LPV systems in discrete-time. Based on a
quadratic-in-the-state Lyapunov function, analysis conditions for stability can be
developed in the form of robust LMI constraints. In general, these conditions do not
lead to exact computations (even if the relaxation gap is zero) and it is unknown
how to systematically estimate the level of conservatism.

As an alternative to analysis tests based on non-quadratic Lyapunov functions,
we present a framework for stability and performance analysis of general discrete-
time LPV systems that employs a well-known lifting technique. As one of our
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main contributions, it is shown that the level of conservatism can be reduced to
zero by increasing the lifting horizon. The family of conditions for stability and
performance analysis of LPV systems is therefore called asymptotically exact. The
potential benefit of our approach lies in the fact that the numerical complexity of the
constructed schemes does not depend on the state-dimension, contrary to what is
typically seen in an approach based on higher-order-in-the state Lyapunov functions.
We will emphasize the key role played by N -periodic parameter trajectories, leading
to a systematic construction of destabilizing or worst-case parameter trajectories. A
list of the contributions of Chapter 4 reads as follows:

• An alternative approach for the analysis of LPV systems in discrete-time with
general parameter variation bounds, based on a well-known lifting technique.

• A proof of the fact that the constructed family of robust SDP conditions is
asymptotically exact.

• For the stability analysis problem, the asymptotically exact family of analysis
conditions can be viewed as a generalization of the joint spectral radius for
switched systems to LPV systems with general parameter variation bounds.

• Analysis conditions that characterize the induced l2-gain and H2-performance
of LPV systems are derived in terms of the N -lifted system, resulting in robust
LMI constraints.

• A comparison is made between the Lyapunov-based and IQC-based analysis
method in the context of l2-gain analysis for an LPV system.

In Chapter 5 we turn to the robust controller synthesis problem in the generalized
plant framework. Motivated by a particular design problem in which the disturbance
signals are characterized by an uncertain input filter, we confine ourselves to a
particularly structured generalized plant. The robust synthesis result is found in
Section 5.3 and exploits the plant structure, resulting in convex synthesis conditions
for the robust output-feedback design problem. The contributions in this chapter
can be summarized as:

• A new proof of a recently developed state-space characterization of nominal
stability in the context of IQC-analysis with dynamic multipliers.

• A complete solution to the robust output-feedback controller synthesis problem
for generalized plants of a certain structure.

The success of the proposed algorithm is shown by means of a numerical example, in
which the robust disturbance-rejection problem is solved by considering an uncertain
disturbance filter at the plant input.

Finally, in Chapter 6 we consider the design of scheduled controllers for LPV
systems. The presented LPV synthesis approach is taken from the literature, see
[184], and sum-of-squares relaxation tools are employed instead of the usual convex
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hull arguments. This will lead to an improvement in the closed loop performance
and also gives us the ability to include more realistic parameter regions described by
polynomial inequalities. Our final contribution in the thesis can be formulated as:

• A numerical example in which sum-of-squares relaxations are employed to solve
the LPV controller synthesis problem.

Chapter 7 concludes this thesis and gives suggestions for future research. Back-
ground material on the theory of LTI systems and LFT calculus has been included
in Appendix A and B.
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Chapter 2

Robust semi-definite

programming and LMI

relaxation schemes

This chapter develops a framework for solving robust LMI optimization problems.
As will be shown in the next chapters, questions in robust stability and performance
analysis, as well as robust or scheduled controller synthesis naturally lead to such
robust LMI problems.

A robust LMI is a matrix inequality that depends on so-called decision variables
y = (y1, . . . , ynd) ∈ Rnd , as well as on parameters x1, . . . , xs that are assumed to lie
within a typically compact set X ⊆ Rs. Formally, a robust LMI reads as

P0(x) +
nd∑
i=1

Pi(x)yi ≺ 0 for all x ∈ X , (2.1)

in which Pi(x) are Hermitian-valued mappings, assumed rationally dependent and
well-defined on x ∈ X . Computing a feasible point y ∈ Rnd of (2.1), or minimiza-
tion of a linear cost functional over the feasible set described by (2.1) are referred
to as robust semi-definite programming (SDP) problems. Note that by taking the
P0, . . . Pnd as constant matrices, this formulation is seen to include genuine LMI
constraints on y as well. For a brief introduction on LMIs, the reader is referred to
Appendix A.

In this thesis, the following alternative representation of robust LMI constraint (2.1)
will be used:

F (x)′J(y)F (x) ≺ 0 for all x ∈ X , (2.2)

in which J(y) is affine in y. The equivalence with (2.1) follows if defining the matrix
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functions F (x), J(y) as

F (x) =


P0(x)
P1(x)

...
Pnd(x)
I

 and J(y) =
1
2


0 0 . . . I

0 y1I

:

:
. . . yndI

I y1I . . . yndI 0

 .

Although multiple LMI constraints can always be combined into a single one, it is
often convenient to explicitly take multiple constraints into account. Hence, adding
also a linear cost functional to the problem, the general robust SDP optimization
problem can be formulated as follows:

γopt = inf
{
〈c, y〉 : y ∈ Rnd , Fi(x)′Ji(y)Fi(x) ≺ 0 for all x ∈ X ,

i = 1, . . . , nc
}

(2.3)

in which c ∈ Rnd is a fixed vector that defines the cost, y ∈ Rnd are the decision
variables, Ji(y) are affine in y and map into the space of symmetric matrices and
Fi(x) are allowed to be rational in x. Throughout this thesis, the existence of a
feasible point satisfying (2.3) is assumed, from which it follows that γopt <∞. Note
that the parameter domain X need not be the same for each of the robust LMI
constraints. In order not to make our notation more cumbersome, we have assumed
X1 = X2 = . . . = Xnc = X .

Even though a robust LMI constraint is convex in finitely many decision variables
y ∈ Rnd , optimization over robust LMIs is numerically intractable, apart from some
specific cases. The difficulty of solving the robust SDP (2.3) largely depends on the
specified parameter region X as well as the functional dependence of the matrix
valued maps F1, . . . Fnc .
In the remaining part of this chapter, we will show how to compute approximate
solutions y ∈ Rnd of the robust SDP (2.3). We are particularly interested in those
solutions for which the (non-tractable) robust SDP constraint is guaranteed to hold.
An LMI approximation of problem (2.3) for which the resulting y ∈ Rnd always
satisfies all semi-infinite constraints in (2.3) is said to be a relaxation scheme. As
we will see later, the formulation (2.2) rather than (2.1) turns out to be suitable for
the construction of relaxation schemes.

In general, relaxation schemes only provide upper bound values γrel ≥ γopt. In
order to interpret our numerical results, we are thus faced with the issue of esti-
mating the relaxation gap γrel − γopt. For specific relaxations one can give a priori
bounds on the relaxation gap see [124, 131], though this cannot be done in general.
A straightforward and ad hoc method to gain insight in the quality of relaxation
schemes is to compute a lower bound value γlb ≤ γopt, by sampling the robust
SDP constraint on a finite grid, and solving the resulting standard LMI problem. In
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[128, 90, 158] a more systematic approach based on a gridding technique is proposed.

The essential theory from which relaxation schemes can be constructed is contained
in Section 2.2. The key question is how to verify positivity of a given polynomial on
some specified set. We will derive a family of relaxations for which the relaxation
gap γrel − γopt can be rendered arbitrarily small. For a specific class of relaxation
schemes in Section 2.3, it is even possible to detect whether a computed relaxation
is exact. We will elaborate on the subject of verifying exactness in Section 2.4. The
corresponding test for verifying exactness amounts to finding a solution of a system
of polynomials. Motivated by this problem, a new algorithm for solving systems
of polynomial equations has been developed and is contained in Section 2.5. The
proposed relaxation schemes of Section 2.3 hence provide a systematic procedure for
extracting worst-case parameters from the computed relaxation scheme. Before we
start the development of relaxation methods, let us first provide the reader with a
motivating example.

2.1 Motivation: µ-upper bound computation

This section illustrates why robust SDPs are a relevant problem class, which nat-
urally follows from the stability analysis problem for uncertain systems. We first
discuss an essential robust linear algebra problem, and show its relation to uncer-
tain systems in Section 2.1.2.

Suppose that matrix A ∈ Cn×n and a set B of structured complex matrices of
size n× n are given. Then, computing the largest real number r for which

det(I −AB) 6= 0 for all B ∈ rB (2.4)

is non-singular is a problem that has been intensively studied, see for example [10,
132]. In fact, it resulted in the notion of ’structured singular value’ µ, formally
defined as

µB(A) =
1

sup{r | det(I −AB) 6= 0 for all B ∈ rB}.
In general, finding the exact value of µB(A) is a non-tractable problem and only
upper bound values can be computed. A (typically rough) upper bound is provided
by the largest singular value of A, an argument commonly referred to as small-gain.
Since B is a set of structured matrices, less conservative results can be obtained by
exploiting this structure, which explains why µ is called structured singular value.
Suppose D is an invertible matrix with the following commuting property:

DB −BD = 0 for all B ∈ B. (2.5)
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It then follows that
D−1(I −AB)D = I −D−1ADB

from which the value ‖D−1AD‖ ≤ ‖A‖ is also an upper bound value of µB(A).
The least upper bound on µB(A) as it is found by using the D-scales amounts to a
standard LMI optimization problem. In fact, if we introduce R = DTD, the norm
bound ‖D−1AD‖ < r, i.e.

D−1TATDTDAD−1 − 1
r2
I ≺ 0,

is equivalent to
R � 0 and r2ATRA−R ≺ 0. (2.6)

For a fixed r, the search for R � 0 that satisfies (2.6) is a standard LMI feasibility
problem. The best possible approximation of µB(A) corresponds to 1

rmax
, when rmax

denotes the maximal r for which (2.6) is feasible. From the solution R, the scalings
D can be obtained from any Choleski factorization R = DTD.

Remark 2.1 The maximal r for which (2.14) holds is obtained by bisection on r.

Example 2.1 For some real-valued parameter p ∈ [0, 1], let matrix A be given as

A =



0 1 0 1 0 0
1/2 0 1/2 0 0 0
2p 0 p 0 0 0
0 −2p 0 −p 0 0
0 0 0 0 1− p 0
0 0 0 0 0 1− p


(2.7)

and let B be a structured matrix in the set

B = {
 x1I 0 0

0 x2I 0
0 0 x3I

 | x1, x2, x3 ∈ R, |xi| ≤ 1, i = 1, 2, 3}, (2.8)

in which I denotes the identity matrix of size two. The values ‖A‖ as a function of
p are plotted in Figure 2.1 together with the least upper bounds corresponding to the
D-scalings test.
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Figure 2.1: Upper bound values on µB(A) for different parameters p in (2.7).

2.1.1 Improved upper bounds

Using D-scales for computing µB(A) is a well known approach within the control
community, see for example [131, 124]. However, the obtained upper bound values
can be far from accurate which is why less conservative relaxations are desired.
In order to do so, we first transform the condition (2.4) in two matrix inequality
conditions, one of which becomes semi-infinite.

Lemma 2.1 Let A and B be given matrices in Rn×n. Then, I−AB is non-singular
if (

I

A

)′
Π
(

I

A

)
≺ 0. (2.9)

and (
B

I

)′
Π
(
B

I

)
� 0. (2.10)

for some matrix Π = Π′ ∈ R2n×2n.

Proof. Suppose that I − AB is singular. Then, there exists z 6= 0 that satisfies
z = ABz. Define the (nonzero) vector y = Bz. Finally, left-and right multiplication
of (2.9) with yT , y and left-and right multiplication of (2.10) with zT , z, leads to the
following facts (

y

z

)′
Π
(
y

z

)
≺ 0,

(
y

z

)′
Π
(
y

z

)
� 0,

which finishes the proof.

5



If this lemma is used for computing upper bounds on µB(A), conditions (2.10) must
hold for all B ∈ B, which turns it into a semi-infinite LMI constraint. Let the
elements B ∈ B be parameterized as by x ∈ X , i.e. B = ∆(x), with parameter
vector x = (x1, . . . , xs) ∈ X ⊂ Rs and ∆(.) linear, e.g. as was done in (2.8). Then,
the existence of Π = Π′ that satisfies (2.9) and(

∆(x)
I

)′
Π
(

∆(x)
I

)
� 0, ∀x ∈ X (2.11)

implies that I − AB is non-singular for all B ∈ B. The latter matrix inequality is
a robust LMI constraint, and is inherently non-tractable as it should hold for all
x ∈ X . Observe that it perfectly matches with the general form (2.2), if we param-
eterize Π = J(y) by y ∈ Rnd and choose the outer factor F (x) accordingly.

It now becomes relatively easy to construct relaxations of various complexity. In
fact, by imposing the following different structures of the multiplier Π:

Π1 =
( −I 0

0 r2I

)
or Π2 =

( −R 0
0 r2R

)
, R � 0, (2.12)

the semi-infinite LMI constraint (2.11) is automatically fulfilled. As a consequence,
by substituting either Π = Π1 or Π = Π2 into (2.9), we obtain a sufficient condition
for I−A∆ to be non-singular for all x ∈ X . Note that feasibility of (2.9) corresponds
to the norm bound ‖A‖ < r in case of choosing Π = Π1, whereas it corresponds to
feasibility of the D-scalings test (2.6) if setting Π = Π2. As will be shown in Chapter
3, the upper bounds on µ can be improved by using full-block multipliers Π or even
other relaxation methods.

2.1.2 Stability analysis of uncertain systems

A classical problem in the field of robust control is the stability analysis of the
interconnection in Figure 2.2, see for example [10, 66]. Let M ∈ RHn×n

∞ be a given
stable transfer matrix of size n× n and let ∆ be the uncertain LTI element ∆ ∈∆
in which the set ∆ is defined as

∆ := {∆(s) ∈ RHn×n
∞ | ∆(iω) ∈∆c for all ω ∈ R ∪ {∞}}.

The set of (structured) complex matrices ∆c is assumed to satisfy ‖∆c‖ < 1 for all
∆c ∈∆c, i.e. its elements are unit norm bounded.

The goal in the stability analysis problem is to compute the largest r ∈ R for
which the loop is stable for all ∆ ∈ r∆. If M and ∆ are both stable, it can be shown
that stability of the interconnected system in Figure 2.2 amounts to I −M(s)∆(s)
having a proper and stable inverse. If we further assume that ∆c is star-shaped, i.e.
τ∆c ∈ ∆c for all τ ∈ [0, 1] and all ∆c ∈ ∆c, it can be shown that I −M∆ has a
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proper and stable inverse for all ∆ ∈∆ if

I −M(iω)∆(iω) is non-singular ∀ω ∈ R ∪ {∞}, ∀∆ ∈ r∆. (2.13)

In order to numerically implement this condition, one typically introduces a fre-
quency grid and computes for each fixed frequency ω̄, denoting A = M(iω̄), the
largest r for which

I −A∆c is non-singular for all ∆c ∈ r∆c. (2.14)

Note that (2.14) is identical to (2.4) if replacing the inclusion ∆c ∈ ∆c by B ∈ B.
If we now combine all previous arguments, the loop of M with ∆ is proven to be
robustly stable once ‖∆‖∞ < 1

r̄ if r̄ is defined as

r̄ = min
ω∈R∪{∞}

1
µ∆c

(M(iω))
.

It is stressed that the frequency can formally be treated as uncertainty as well,
avoiding the need to grid over frequency, see [158].

Remark 2.2 Lemma 2.1 touches on a fundamental stability theorem with integral
quadratic constraints. We will see in Chapter 3 that a generalization of (2.9)-(2.10)
enables one to prove robust stability for the interconnection of general time-varying
or nonlinear operators ∆.

Remark 2.3 The resulting robustness margins in this section hold for linear time-
invariant uncertainties, as opposed to more general uncertainties that will be treated
in Chapter 5.

M

∆

pq

Figure 2.2: The M −∆ loop for robust stability analysis
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2.2 Direct relaxation approach based on matrix

sum-of-squares

As was mentioned in the previous section, polynomials lie at the basis of constructing
relaxations schemes for the robust SDP (2.3). In this section, we therefore initially
let the matrices Fi(x) be polynomial matrix functions. In Section 2.2.4 we will
show that any robust SDP constraint with rationally dependent Fi(x) can be easily
transformed into an equivalent polynomial.

The discussion starts with the question of verifying positivity of polynomials
in the global sense. Then, we will present some classical results that can detect
whether a polynomial is positive on some specified region. From these results we
will be able to construct relaxation schemes for general polynomially dependent
matrix valued constraints. As we will point out several times, a whole family of
relaxation schemes can be constructed, by which one can (systematically) modify
or re-construct a relaxation scheme in order to arrive at less conservative results.
Moreover, the proposed family of relaxation schemes is asymptotically exact. That
is, the relaxation gap can be brought to zero by adding auxiliary variables.

2.2.1 When is a polynomial positive ?

With the purpose of constructing relaxation schemes for robust SDP (2.3), we first
concentrate on the very basic question of verifying positivity of multivariate poly-
nomials. This issue has recently received new interest in the field of systems and
control, see for example [88] and references therein.

Let p be a polynomial in the variables x1, . . . xs. Then p is said to be (globally)
positive if p(x) > 0 for all x ∈ Rs and (globally) non-negative if the inequality is
non-strict. A sufficient condition for a polynomial to be non-negative is the existence
of some N and polynomials s1, . . . , sN for which

p(x) =
N∑
j=1

sj(x)2.

Any p with such a decomposition is called a sum-of-squares polynomial. The German
mathematician Hilbert had proven that not every non-negative polynomials admits
such a decomposition. For example, the polynomial

p(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2

is globally nonnegative but cannot be represented as a sum-of-squares of polynomials,
see [149]. He expected though, that any non-negative rational function is a sum-of-
squares of rational functions, i.e. any rational function p(x) can be written as

p(x) =
(q1(x)
s1(x)

)2

+ · · · +
(qN (x)
sN (x)

)2

.
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for some polynomials qj(x), sj(x), j = 1, . . . , N . In fact, he formulated this at the
International Congress of Mathematicians in Paris in 1900, and it became known as
Hilbert’s 17th problem. A proof that this fact holds true was provided by Artin in
[6]. Let us now focus on the question of verifying positivity on a pre-specified region,
which brings us one step closer to the actual construction of relaxation schemes.

Positivity on polytopic regions

In the context of solving the robust SDP (2.3), one is typically interested in restricted
positivity. Suppose that our aim is to verify whether a given polynomial p in s

variables is positive on X for some given set X ⊂ Rs. The difficulty of performing
such a test depends on p as well as on X . In case X is described as the convex hull
of finitely many points x1 ∈ Rs, . . . , xq ∈ Rs, that is

X = co{x1, . . . , xq}, (2.15)

an immediate solution is available if p is a concave function. By requiring p(xi) > 0
for i = 1, . . . , q, it follows that p(x) > 0 on co{x1, . . . , xq}.

The question whether a general polynomial p is positive on a polytopic region
X of the form (2.15) can be addressed by using Pólya’s theorem, which applies to
homogeneous polynomials f that are positive on the unit simplex. Recall that a
polynomial f in the variables λ1, . . . , λs is homogeneous of degree k if f(αλ) =
αkf(λ) for all λ ∈ Rs. The unit simplex is defined as

∆S :=
{
λ ∈ Rs |

s∑
i=1

λi = 1, λi ≥ 0, 1 ≤ i ≤ s}. (2.16)

Theorem 2.1 (Pólya) Let f be a homogeneous polynomial in the variables λ1, . . . , λs.
Suppose that

f(λ) > 0 for all λ ∈ ∆S . (2.17)

Then, for some non-negative integer d, the (homogeneous) polynomial(∑
λi
)d
f(λ)

has positive coefficients.

Proof. A proof can be found in [149] and references therein. The presence of the
term (

∑
λi)d is not difficult to understand, if one realizes that on the simplex we

have that f(λ) ≡ (∑λi
)d
f(λ). A full proof of the fact that an integer d exists such

that the homogeneous polynomial (
∑
λi)d f(λ) has positive coefficients, can also be

found in [145], where bounds on the required degree d are provided as well. We
stress that if f is only non-negative on ∆S , Pólya’s Theorem no longer holds true.
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Hence, Pólya’s Theorem is concerned with homogeneous polynomials on the unit
simplex. Nevertheless, it can be used for an arbitrary polynomial on any bounded
polytopic region X . In order to see why this is true, we first note that any given
polynomial can be rendered homogeneous, without changing its values on the sim-
plex. For example, the polynomial p(x) = x2

1x2 + x2 and the homogeneous one
p̃(x) = x2

1x2 + (x1 + x2)2x2 are identical on the simplex.
Second, for a given polytopic region X = co{x1, . . . , xq}, any x ∈ X can be

expressed as a convex combination of the generators, which motivates us to define

f(λ) := p̃
( s∑
j=1

λjx
j
)

in the new variable λ ∈ Rs. By construction, λ is an element of ∆S and we have
thus shown that

p(x) > 0 for all x ∈ X (2.18)

can be transformed into a condition of the form (2.17) for an arbitrary polynomial
p and set polytopic region X .

Hence, a sufficient condition for p to be positive on X is obtained by first con-
structing the homogeneous polynomial f(λ) and then verify whether all coefficients
of (
∑
λi)df(λ) are positive for some fixed integer d. In Section 2.3.2, we will work

out the details for the matrix-valued condition (2.11) in the µ-analysis problem.

Remark 2.4 Theorem 2.1 provides an explicit proof to Hilbert’s 17th problem for
the family of homogeneous polynomials that are strictly positive on X , see [83].

Positivity on semi-algebraic sets

A parameter domain X if often described implicitly by a number of polynomial
inequalities. For given polynomials g1, . . . , gn in the variables x1, . . . , xs, consider
sets of the form

X = {x ∈ Rs | g1(x) ≤ 0, g2(x) ≤ 0, . . . , gn(x) ≤ 0}. (2.19)

Such sets are called semi-algebraic. As will be shown below, positivity of matrix
valued polynomials on semi-algebraic sets can be verified by making use of sum-
of-squares arguments. The following property turns out to be important. A given
semi-algebraic set X , described through g1(x), . . . , gn(x), is said to satisfy the con-
straint qualification if there exists a positive r ∈ R and sum-of-squares polynomials
s1(x), . . . , sn(x) such that

r − ‖x‖+ s1(x)g1(x) + . . .+ sn(x)gn(x) is a sum-of-squares. (2.20)

Assumption 2.1 (Constraint Qualification) The set X of the form (2.19) sat-
isfies the constraint qualification, i.e. property (2.20) holds.
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Theorem 2.2 Let X in (2.19) be given and let Assumption 2.1 hold. If a polynomial
p in the variables x1, . . . , xs is positive on X , there exist sum-of-squares-polynomials
s0(x), . . . , sn(x) for which

p(x) + s1(x)g1(x) + . . .+ sn(x)gn(x) = s0(x). (2.21)

Proof. It follows immediately that (2.21) implies p(x) ≥ 0. For a complete proof,
the reader is referred to [146].

In order to construct relaxation schemes for (2.3) based on this fact, let us generalize
the arguments on scalar polynomials to polynomial matrices. A polynomial matrix
P (x) of size p× p with the indeterminate variables x = (x1, . . . , xs) is called matrix
sum-of-squares if there exists some (typically tall) polynomial matrix S(x) such that

P (x) = S(x)TS(x).

Once P (x) admits such a matrix sum-of-squares decomposition, it is globally positive
semi-definite since all eigenvalues of P (x) are non-negative. Let us denote by Πp×q

d

the space of p×q matrices with polynomial entries having a total degree of at most d.

Decomposing a symmetric polynomial matrix P (x) into a sum-of-squares is done
by first representing P (x) as

P (x) = W (x)T P̃W (x), (2.22)

with a symmetric matrix P̃ and some monomial matrix W (x). Denoting the total
degree of P (x) by 2d, the elements in W (x) can always be chosen to have total degree
at most d. Hence, if the columns of W (x) span the space of polynomial matrices of
size p× p and total degree d in the sense that

{LW (x)| L ∈ Rp×nW } =: Πp×p
d , (2.23)

we are guaranteed to find the the factorization (2.22). Moreover, it suffices to choose

nW =
(
s+ d

d

)
, though for sparse polynomials an a priori reduction of the required

monomials in W (x) is possible by applying Newton-polytope techniques, see [171].

With the factorization (2.22) we can introduce the subspace K of all symmetric
matrices K for which

W (x)TKW (x) is the zero polynomial matrix, (2.24)

and observe that a basis of K can easily be computed. It then follows that P (x) is
matrix sum-of-squares if and only if there exists some K ∈ K for which P̃ +K � 0,
which is a standard LMI feasibility problem.
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The following result is an extension of Theorem 2.2 that allows to verify restricted
positivity of the matrix-valued P (x).

Theorem 2.3 Let X be defined as in (2.19) and let the constraint qualification
(2.20) hold. If P (x) is positive definite on X there exists sum-of-squares-matrices
S0(x), . . .,Sn(x) ∈ Πp×p

d for which

P (x) + S1(x)g1(x) + . . .+ Sn(x)gn(x) = S0(x) (2.25)

holds.

Proof. Again, the decomposition (2.25) implies P (x) � 0. For the full proof, the
reader is referred to [160].

Note that Theorem 2.3 concerns P (x) � 0 and not P (x) � 0. This is the reason
why, in the sequel, we rather consider sum-of-squares decompositions of the shifted
matrix polynomial P (x)− εI, for some small ε > 0, just to make sure that Theorem
2.3 applies.

Since multiple constraints can always be combined into a single one, we continue
our discussion by considering the robust SDP of the form

infimize cT y
subject to P (x, y) � 0 for all x with G(x) � 0,

(2.26)

of which the optimal value is denoted by γopt. Again, the decision variable y ∈ Rnd
can be further specified to lie within any region described by LMIs, since such
constraints can always be assumed to be included in the condition P (x, y) � 0.
Both P (x, y) and G(x) are polynomial in x, Hermitian-valued of dimension p × p
and q × q respectively, while P (x, y) is affine in y ∈ Rnd . In view of the constraint
qualification needed in Theorem 2.2, the following assumption does not come as a
surprise. A proof for the fact that this is the correct matrix-valued extension of
(2.20) can be found in [160].

Assumption 2.2 (Constraint Qualification) There exists r > 0 and sum-of-
squares polynomials S1(x), S0(x) such that

r − ‖x‖2 + trace(S1(x)G(x)) = S0(x). (2.27)

2.2.2 An existing relaxation approach using matrix sum-of-

squares

This section provides a family of numerically tractable relaxation schemes for the
robust SDP (2.26), that has been recently proposed in [160]. First, the robust
SDP (2.26) is reformulated into an unconstrained problem in which a particular
polynomial matrix must be a sum-of-squares. Since it involves auxiliary functional
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variables in an infinite dimensional space, the problem remains non-tractable at
first. By a suitable parametrization of the sum-of-squares functions, a standard
LMI optimization problem is obtained.

Let us introduce the bilinear mapping

(., .)p : Rp×q × Rp×q → Rp×p, (A,B)p = Trp((Ip ⊗A)B)

with

Trp(C) :=

 Tr(C11) · · · Tr(C1p)
...

. . .
...

Tr(Cp1) · · · Tr(Cpp)

 (2.28)

for C ∈ Rpq×pq, Cjk ∈ Rq×q for j, k = 1, . . . , p. Consider the following optimization
problem:

infimize cT y
such that P (x, y)−εI+(G(x), S(x))p

and S(x) is sum-of-squares in x and ε > 0. (2.29)

Since any feasible y of (2.29) is automatically feasible for (2.26), the optimal value
of (2.29) is always an upper bound on γopt, the optimal value of the original robust
SDP (2.26). Moreover, without any restriction on S(x), both problems are identical,
as shown in [160]. An alternative proof will be given in Section 2.2.3.

Let us now fix the parametrization of S(x) as follows:

S(x) =
(
C1 . . . CN

) (
I ⊗

 µ1(x)
...

µN (x)

), (2.30)

in which the symbol ⊗ denotes the Kronecker product, Ci ∈ S2q are real symmetric
matrices. Then, condition (2.29) amounts to an LMI optimization problem, a so-
called sum-of-squares relaxation, in the decision variables y and Ci, i = 1, . . . , N .
For some sufficiently rich monomial basis matrix W (x), one then imposes the linear
equations that are implied by the identity

P (x, y)−εI+(G(x), S(x))p = W (x)′S0W (x), (2.31)

in combination with the LMI constraints S0 � 0, Ci � 0 for i = 1, . . . , N . Hence, a
sufficient condition for verifying whether the expression P (x, y) − εI+ (G(x), S(x))p
is matrix sum-of-squares is obtained in terms of a set of linear equation constraints
and LMI constraints in the decision variables y, S0 and C1, . . . , CN .

The next section presents an alternative implementation of a sum-of-squares
relaxation. It avoids equation constraints, which is advantageous when using avail-
able LMI solvers that were not developed to efficiently handle combined equal-
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ity/inequality constraint. Moreover, a more explicit formulation could open the
way for taking particular information on the problem structure into account. A
third reason for developing an alternative implementation of sum-of-squares relax-
ations comes from the fact that existing LMI solvers handle strict LMIs only, and
that positive definite solutions S0, C1, . . . , CN satisfying (2.31) do not exist. With
the linear equation constraints pulled out of the optimization problem, one might
gain a better understanding about how to enforce strict feasibility of the LMIs that
are involved in building relaxation schemes.

2.2.3 An alternative relaxation approach

Recently, an alternative approach to approximate the robust SDP (2.26) based on
matrix sum-of-squares has been proposed in our paper [61]. With polynomial matri-
ces T1(x), . . . , TM (x) of dimension q×p, consider the following optimization problem

infimize cT y

such that P (x, y)−εI+
M∑
j=1

Tj(x)′G(x)Tj(x)

is sum-of-squares in x and ε > 0. (2.32)

Again, the optimal value of (2.32) is always an upper bound for γopt. In the sequel
the argument x is occasionally left out in order to avoid cumbersome notation.

In this section, we show how to transform condition (2.32) into a standard LMI
problem, by introducing a suitable parametrization of T1(x), . . . , TM (x).

Translation into LMIs

The approximation of the original robust SDP by the sum-of-squares problem (2.32)
provides upper bounds on the genuine optimal value γopt, though without fixing the
number and degree of basis matrices Tj in (2.32), the problem remains non-tractable.
By a suitable parametrization of T1, . . . , TM , a relaxation scheme will be derived as
an LMI problem, at the cost of introducing conservatism.
First, express both P (x, y) and G(x) in the form

P (x, y) = U(x)T P̃ (y)U(x) and G(x) = V (x)T G̃V (x) (2.33)

in which P̃ (y) is affine in y and U(x) has total degree d, if the total degree of P (x, y),
for fixed y ∈ Rnd is 2d. Then choose basis matrices T1(x), . . . , TM (x) of total degree
l and parameterize them with a monomial basis B1(x), . . . BN (x) of Πq×p

l as

Tj(x) =
N∑
ν=1

αjνBν(x), j = 1, . . . ,M. (2.34)
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Substituting the description (2.33) into the constraint in (2.32) we get:

U(x)T P̃ (y)U(x)− εI+
M∑
j=1

Tj(x)TV (x)T G̃V (x)Tj(x) is sum-of-squares in x. (2.35)

With X defined as

X =
M∑
j=1

 αj1
...
αjN


 αj1

...
αjN


T

� 0, (2.36)

it follows that

M∑
j=1

Tj(x)TV (x)T G̃V (x)Tj(x) =

=
M∑
j=1

( N∑
ν=1

ανjBν(x)T
)
V (x)T G̃V (x)

( N∑
µ=1

αµjBν(x)
)

=
N∑
ν=1
µ=1

[
Bν(x)TV (x)T

M∑
j=1

(αjνα
j
µ)G̃V (x)Bµ(x)

]

=

 V (x)B1(x)
...

V (x)BN (x)


T

[X ⊗ G̃]

 V (x)B1(x)
...

V (x)BN (x)

 .

Similar as was argued in (2.23), one can find a tall monomial matrix W (x), of large
enough total degree, for which there exist matrices L0 = LT0 , LU and LV that satisfy

I = WT (x)L0W (x), U(x) = LUW (x), and V (x)B1(x)
...

V (x)BN (x)

 = LVW (x).
(2.37)

Hence, the matrix expression appearing in (2.35) equals

W (x)T
(
LTU P̃ (y)LU − εL0 + LTV [X ⊗ G̃]LV

)
W (x). (2.38)

Finally define the subspaceK of allK for whichW (x)TKW (x) is the zero polynomial
matrix. This allows us to formulate the sum-of-squares relaxation of the robust SDP
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(2.26) with optimal value γrel:

infimize cT y
subject to ε > 0, X � 0, K ∈ K,

LTU P̃ (y)LU − εL0 + LTV [X ⊗ G̃]LV +K � 0. (2.39)

Feasibility of (2.39) implies that condition (2.35) holds true for some suitably
chosen T1, . . . TM . From a Cholesky factorization of the solution matrix X in (2.36),
the coefficients αkν can be extracted, which defines the Tj(x) via (2.34).

Remark 2.5 The construction of the described LMI relaxation can be performed for
arbitrary polynomial matrices B1(x), . . . , BN (x) and any monomial matrix W (x),
provided that the representation (2.37) holds. It is however unknown how to sys-
tematically pick B1(x), . . . , BN (x) and W (x) in order to arrive at good-quality LMI
relaxations of small size.

We now prove that the relaxation gap can be rendered arbitrary small by increasing
M as well as the total degree of T1, . . . , TM . In other words, an asymptotically exact
family of approximation schemes can be deduced from (2.29) or (2.32).

Asymptotic exactness of the relaxation family

This section contains a proof of the fact that the relaxation gap γrel − γopt goes to
zero when increasing both M and the degree of Tj in (2.32) in a systematic fashion.
In other words, without restricting M or the degree of Tj(x), the optimal value
of (2.32) and the original robust SDP (2.26) are equal. As a consequence, we can
approximate (2.26) by choosing M large enough and including all possible basis
matrices Bν(x) in the construction of the LMI scheme the previous section.

Theorem 2.4 Let γopt, γrel be the optimal values of the robust SDP (2.26) and the
matrix sum-of-squares reformulation (2.32) respectively. Then γrel ≥ γopt. If the
constraint qualification (2.27) is satisfied, there exists for any ε > 0 some M and
polynomial matrices T1(x),. . ., TM (x) for which γrel ≤ γopt + ε.

Proof. The first statement is elementary to prove. Indeed suppose that ŷ is feasible
for (2.32). This implies that

P (x, ŷ)− εI � −
M∑
j=1

Tj(x)TG(x)Tj(x)

for all x, since sum-of-squares matrices are globally non-negative semi-definite. If
we now choose an arbitrary x for which G(x) � 0, we infer

−
M∑
j=1

Tj(x)TG(x)Tj(x) � 0
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and hence P (x, ŷ) � εI. Since ε > 0, this reveals that ŷ is feasible for (2.26). We
have shown that the set of feasible points y in (2.32) is contained in that of (2.26),
which indeed implies that γrel ≥ γopt.

The proof for the second statement is somewhat more involved and strongly
resembles the proof in [160]. Given ε > 0, choose some ŷ which is feasible for (2.26)
and which satisfies cT ŷ < γopt + ε. This implies P (x, ŷ) � 0 for all x with G(x) � 0.
As shown in [160], there exist unit vectors v1, . . . , vN0 such that

vTi G(x)vi ≤ 0, i = 1, . . . , N0 ⇒ P (x, ŷ) � 0.

Hence, by Theorem 2.3 we infer that there exist sum-of-squares matrices S1(x),. . .,
SN0(x) and ε > 0 for which

P (x, ŷ)− εI +
N0∑
i=1

Si(x)vTi G(x)vi is a matrix sum-of-squares.

As sum-of-squares matrices Si(x) can be written as Si(x) =
∑ri
k=1 t

i
k(x)(tik(x))T

with polynomial column vectors tik(x), we obtain

P (x, ŷ)− εI +
N0∑
i=1

Si(x)vTi G(x)vi =

= P (x, ŷ)− εI +
N0∑
i=1

ri∑
k=1

tik(x)vTi G(x)vi(tik(x))T .

With the M = r1 + . . .+rN0 rank-one polynomial matrices vi(tik(x))T , i = 1, . . . , N0,
k = 1, . . . , ri (whose degrees are determined from those of S1(x),. . . SN0(x)), we have
proven that ŷ is feasible for (2.32). Therefore the optimal value of (2.32) is not larger
than cT ŷ which is in turn smaller than γopt +ε. Hence, assuming that the constraint
qualification (2.27) holds, we have shown that the sum-of-squares problem (2.32)
approximates the polynomial robust SDP (2.26) by any desired accuracy and can
thus be seen as a reformulation in terms of matrix sum-of-squares.

Alternative methods for handling matrix valued polynomials

Instead of the derived LMI problem (2.39), other implementations have been con-
sidered as well. Scalar polynomials and sum-of-squares relaxations have been con-
sidered in [136, 117, 37]. As shown in for example [92], matrix valued polynomials
can always be suitably transformed into scalar ones, that is: P (x, y) � 0 for all x
satisfying G(x) � 0 is implied by p(x, y, z) = zTP (x, y)z ≥ 0 for all (x, z) that sat-
isfy g(x, z) = zTG(x)z ≤ 0. By Theorem 2.2, a sufficient condition for (2.26) is the
existence of a sum-of-squares polynomial s(x, z) for which p(x, y, z) + s(x, z)g(x, z)
is a sum-of-squares.
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Another alternative implementation can be found in [160], where a family of relax-
ation schemes was constructed from (2.29) rather than from (2.32). As shown in
Appendix C, this implementation is equivalent, in the sense that without restrictions
on the total degree of the polynomial matrices S(x) in (2.29) or polynomial matrices
T1(x), . . . TM in (2.32), the optimal value of both problems are the same. Note that,
as mentioned earlier, the conditions from [160] involve linear equation constraints.

Adding redundant constraints

The sum-of-squares reformulations (2.29) and (2.32) both lead to an asymptotically
exact family of relaxation schemes for the robust SDP (2.26). However, there is an
additional freedom that hasn’t been mentioned or exploited yet, which may possi-
bly improve the numerical behavior and reduce conservatism in practical problem
instances.

In order to derive relaxation schemes, that are different from the ones we have
discussed so far, let the set X be given as

X = {x| g1(x) ≤ 0, g2(x) ≤ 0, . . . , gn(x) ≤ 0}. (2.40)

Then, any inequality g̃(x) = −gj(x)gi(x) ≤ 0 can be added to the description of
X without changing it. We stress though, due to our constraint qualification, that
such redundant constraints are not needed for proving that the family of relaxations
is asymptotically exact. The following example illustrates how it leads us to an
alternative family of asymptotically exact relaxations.

Example 2.2 Let X = {x | g1(x) ≤ 0, g2(x) ≤ 0}. Then, by Theorem 2.2 it holds
that p is positive on X implies that there exist some sum-of-squares polynomials
s0, s1, s2 for which

p = s0 − g1s1 − g2s2. (2.41)

By introducing redundant constraints it also holds that p is positive on X implies
that there exist sum-of-squares polynomials sj , j = 0, 1, 2, . . . for which

p = s0 + g1s1 + g2s2 − g1g2s3 − g2
1s4 − g2

2s5 + g3
1s6 + g2

1g2s7 + . . . . (2.42)

For a given level of available computational power, one can therefore either decide to
increase the total degree of s0, s1, s2 in (2.41), or one can add redundant constraints
while keeping the total degree of sj in (2.41) small.

In a similar fashion, one construct a modified family of relaxation schemes from
(2.29). Assuming that the redundant constraints are combined with G(x) by placing
both constraints on the diagonal, adding redundant constraints would increase the
dimension of T1(x), . . . , TM (x).

We conclude this section with the following interesting fact, which concerns the
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case in which the constraint qualification (2.27) is not satisfied, e.g. if consider-
ing non-compact parameter regions. Then, a family of asymptotically exact relax-
ations schemes can still be constructed, provided that the additional (redundant)
constraints are included. In some sense, the constraint qualification is enforced by
adding sufficiently many redundant constraints. The result holds for the sum-of-
squares problem with a scalar polynomial on a semi-algebraic set of the form (2.40).

Consider the set X in (2.40), and the set of polynomials F = {−g1, . . . ,−gn}.
Define the set M, called the multiplicative monoid generated by F , as

M :=
{
f1f2 · · · fm| fi ∈ F for i = 1, . . . ,m, m ≥ 1

}
.

Theorem 2.5 (Schmüdgen) Let X be compact, let r be some positive integer, and
defined in (2.40). Let the cone generated by F be defined as

P(F) := {s0 +
r∑
i=1

sibi | si is sum-of-squares, bi ∈M}.

Then, p is positive on X implies p ∈ P(F).

Proof. The result is based on the Positivstellensatz, see [164, 136].

Thus, the set of all redundant constraints consists of a cone. A general version
of Theorem 2.5 that also includes equality constraints can be found in the nicely
written paper [136].

2.2.4 From rational to polynomial dependence

In case that F1, . . . , Fnc are rational functions in x, we can derive an equivalent
version of the SDP constraints in which x enters polynomially as follows. Consider
a single constraint of the form

F (x)′J(y)F (x) ≺ 0 ∀x ∈ X , (2.43)

and let F (x) have ncol columns. Then, let dj(x) be the polynomial of lowest degree
for which the jth column of dj(x)F (x) is polynomial. By construction, the matrix
function F̃ (x) = F (x)T (x) has polynomial entries only if defining

T (x) =

 d1(x)
. . .

dncol(x)

 .

Applying to (2.43) the congruence transformation with T (x) renders the expression
(2.43) polynomial in x, provided that dj(x) 6= 0 for all x ∈ X , j = 1, . . . , ncol. Hence,
assuming without loss of generality that there exists some x̂ ∈ X for which dj(x̂) > 0
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for j = 1, . . . ncol, an equivalent formulation for (2.43) that depends polynomially on
x is

dj(x) > 0, j = 1, . . . , ncol and F̃ (x)′J(y)F̃ (x) ≺ 0 ∀x ∈ X . (2.44)

For these two polynomial robust SDP constraints one can construct relaxation
schemes along lines presented in Section 2.2.3. Apart from this rather straight-
forward procedure for turning a rational constraint into a polynomial one, there
exist a more elegant method, which forms the topic of the next section.

2.3 Multiplier-based relaxations

The relaxation schemes of the previous section were essentially derived for robust
SDPs with polynomial dependence on the parameters. Rational matrix functions
Fi(x) in (2.3) were first transformed into a polynomial one by applying a suitable
congruence transformation, see again Section 2.2.4. Although conceptually simple,
the resulting relaxation schemes might be rather inefficient, if the obtained polyno-
mial SDP has a large total degree since this would translate in a large number of
variables and a large dimension of the LMI constraints.

An alternative relaxation method makes use of the fact that the rational matrix
functions Fi(x) can be written as a linear fractional representation, i.e.

Fi(x) = Di + Ci∆i(x)(I −Ai∆i(x))−1Bi,

for some linear matrix functions ∆i(x) and constant matrices Ai, Bi, Ci, Di. Using an
LFR description of Fi(x), relaxations can be constructed in an elegant fashion. The
essential observation that allows to construct relaxations schemes is an S-procedure
argument, by which we arrive at robust SDP constraints which are merely quadratic
in the parameters, at the cost of auxiliary multiplier variables.

The class of relaxations developed in this section is based on the earlier work
[158, 157], and is presented for multiple robust SDP constraints. We will see in
Section 2.3 that the question of verifying whether Fi(x) is well-defined on X amounts
to solving an equivalent polynomial robust SDP.

Let us recall the main robust SDP (2.3):

γopt = inf
{
〈c, y〉 : y ∈ Rnd , Fi(x)′Ji(y)Fi(x) ≺ 0 for all x ∈ X ,

i = 1, . . . , nc
}

A powerful result with far-reaching consequences in control is to disentangle the
rationally dependent condition (2.3) at the cost of introducing auxiliary multiplier
variables. This procedure is presented in the following lemma, and is referred to
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as the full-block S-procedure argument, see [155, 97]. We stress the fact that there
exist many variations of the S-procedure, some of which are elementary to prove.
In particular, it is often seen in relation to positivity of quadratic functions on
quadratically constrained sets for which the argument is simple, though this version
is not immediately linked to the Lemma that is presented next.

Lemma 2.2 Let J be a Hermitian matrix and X be compact. Then(
∆(x)(I −A∆(x))−1B

I

)′
J

(
∆(x)(I −A∆(x))−1B

I

)
≺ 0 (2.45)

holds for all x ∈ X if and only if there exists a Hermitian multiplier Π that satisfies(
I 0
A B

)′
Π
(

I 0
A B

)
+ J ≺ 0 (2.46)

and which is related to X by(
∆(x)
I

)′
Π
(

∆(x)
I

)
� 0 ∀x ∈ X . (2.47)

Proof. Define

F (x) =
(

∆(x)(I −A∆(x))−1B

I

)
and observe that (

I 0
A B

)
F (x) =

(
∆(x)
I

)
(I −A∆(x))−1B.

If we now left-and right multiply condition (2.46) with F (x)′,F (x) respectively, one
arrives at condition (2.45), since (2.47) holds for any x ∈ X . The converse of the
proof can be found in [155, 97].

Remark 2.6 The ’if ’-part in Lemma 2.2 holds without assuming compactness of
the set X .

In order to construct relaxation schemes for problem (2.3) based on the S-procedure,
let us be given the matrix functions Ji(y) and

Fi(x) =
(

∆i(x)(I −Ai∆i(x))−1Bi
I

)
(2.48)

for some matrices Ai,Bi and ∆i(x) ∈ Rpi×qi , which is linear in x, for i = 1, . . . nc.
If Fi(x) are given as the LFR F̃i(x) = Di + Ci∆i(x)(I − A∆i(x))−1Bi for some
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matrices Ai,Bi, Ci,Di, we can easily arrive at the representation (2.45) in Lemma
2.2 by substituting

Ji(y) → (
Ci Di

)′
Ji(y)

(
Ci Di

)
i = 1, . . . nc.

In order to render the semi-infinite LMI constraint (2.47) numerically tractable,
specific sets Π of block structured multipliers Π are chosen such that the semi-infinite
constraint (2.47) holds for each Π ∈ Π. We have already seen in the example of
Section 2.1 that Π could be chosen as the set of structured matrices in (2.12).

In order to be able to describe more general multiplier sets Π than those ob-
tained by only imposing a certain block structure, we make use of the following
characterization

Πi :=
{

Πi ∈ V| Gi(Πi) � 0
}
, (2.49)

in which V ⊂ Sqi+pi is a subspace of (e.g. block structured) symmetric matrices of
dimension qi + pi, and the affine matrix functions Gi(.) for i = 1, . . . nc are suitably
chosen such that(

∆i(x)
I

)′
Πi

(
∆i(x)
I

)
� 0 ∀x ∈ X , ∀Πi ∈ Πi. (2.50)

This allows us to formulate the S-procedure- or multiplier relaxation for problem
(2.3):

γrel = inf
{
〈c, y〉 : y ∈ Rnd , Πi ∈ Πi,(

I 0
Ai Bi

)′
Πi

(
I 0
Ai Bi

)
+ Ji(y) ≺ 0, i = 1, . . . , nc

}
. (2.51)

The optimal value of (2.51) satisfies γrel ≥ γopt since for any tuple (y,Π1, . . . ,Πnc)
that is feasible, the vector y is guaranteed to be a feasible solution of all the nc
robust SDP constraints in (2.3), just be applying Lemma 2.2.

Finally, the applicability of Lemma 2.2 depends on whether the matrix func-
tions F1, . . . , Fnc are given as linear fractional representations. This includes the
assumption that, for i = 1, . . . nc, the LFR is well-posed, i.e.

det(I −Ai∆i(x)) 6= 0 for all x ∈ X . (2.52)

This condition can be viewed as the analogue to the scalar constraints dj(x) > 0 ob-
tained in (2.44). Contrary to the direct method of Section 2.2, the existence of a feasi-
ble tuple (y,Π1, . . . ,Πnc) of (2.51) for which the left-upper blocks of J1(y), . . . , Jnc(y)
are all positive semi-definite, ensures well-posedness of the LFR.
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Example 2.3 (Well-posedness) From Lemma 2.1 it follows that well-posedness
(2.52) holds if there exists Πi ∈ Πi that satisfies (2.50) as well as(

I

Ai

)′
Πi

(
I

Ai

)
≺ 0. (2.53)

Note that feasibility of the LMI constraint in (2.51) implies(
I

Ai

)′
Πi

(
I

Ai

)
+
(
I

0

)′
Ji(y)

(
I

0

)
≺ 0.

If the left-upper blocks of Ji(y) is positive semi-definite, condition (2.53) obviously
holds. The argument can be repeated for i = 1, . . . nc in order to infer well-posedness
of the LFR of F1(x), . . . , Fnc(x).

The observation that was made in this example is used in many analysis and con-
troller synthesis problems, e.g. in Section 4.2.3 when computing L2-gain upper
bounds of LPV systems. In general, however, the right lower blocks of J1(y), . . . , Jnc(y)
are not all positive semi-definite and condition (2.52) needs to be imposed as a sep-
arate constraint.

In this section, we have seen that the S-procedure disentangles the rational de-
pendence in robust LMI constraint (2.3) and forms a basis for so-called multiplier
relaxations. Due to the quadratic dependence in (2.50), the S-procedure is partic-
ularly useful in combination with polytopic parameter domains X , as is discussed
next.

2.3.1 Relaxation schemes based on convexity arguments

Referring to the robust SDP constraint in (2.3) with the LFR of Fi(x) given as
(2.48), let X be a convex polytope defined by a finite number of points, i.e. X =
co{x1, . . . , xq}. Introduce the notation

Ei(x,Π) :=
(

∆i(x)
I

)′
Π
(

∆i(x)
I

)
, (2.54)

and

C(Π) :=
(
I

0

)′
Π
(
I

0

)
. (2.55)

Note that requiring C(Π) � 0 enforces Ei(x,Π) to be a concave function in x. Thus,
verifying whether Ei(x,Π) is positive on X is then reduced to verifying whether it is
positive on the generators of X only. The so-called convex hull relaxation for robust
SDP (2.3) by solving (2.51) with the sets Πi defined as

Πi := {Πi ∈ V | C(Πi) � 0, Ei(xν ,Πi) � 0 for ν = 1, . . . , q}. (2.56)
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Remark 2.7 If compared with matrix sum-of-squares relaxations, there are no clear
ways to build an asymptotically exact family of relaxation schemes based on con-
vex hull arguments. As shown in [5], one can reduce conservatism by exploiting
multi-convexity arguments. Another possible approach is to sequentially apply the
S-procedure, increasing the number of multiplier variables.

2.3.2 Multiplier relaxations using Pólya’s Theorem

An alternative and often less conservative relaxation for polytopes X = co{x1, . . . , xq}
is based on Pólya’s theorem. Recall the definition of Ei(x,Π) in (2.54). Since any
x ∈ X can be expressed as a convex combination of the generators x1, . . . , xq, the
ith robust SDP constraint in (2.50) is equivalent to

Ei(
q∑

ν=1

λνx
ν ,Πi) � 0 for all λ ∈ ∆S , ∀Πi ∈ Πi, (2.57)

in which ∆S denotes the unit simplex as defined in (2.16). Note that for any λ on
the unit simplex this matrix polynomial in λ is homogeneous of degree 2. This is
easily seen from the identity

Ei(
q∑

ν=1

λνx
ν ,Πi) =

(
∆i(
∑q
ν=1 λνx

ν)∑
λνI

)′
Πi

(
∆i(
∑q
ν=1 λνx

ν)∑
λνI

)
,

and the fact that ∆i(·) is a linear mapping. For fixed degree d, one can thus extract
the Hermitian-valued mappings Λi(β1,i···βq,i)(Πi) for which

(λ1 + λ2 + . . .+ λq)dEi(
q∑

ν=1

λνx
ν ,Πi) =

∑
β1,i+···+βq,i=2

Λi(β1,i···βq,i)(Πi)λ
β1,i
1 · · ·λβq,iq

(2.58)
holds for i = 1, . . . , nc. When the sets Πi are defined as

Πi = {Πi ∈ Spi+qi | Λi(β1,i···βq,i)(Πi) � 0 for i = 1, . . . , nc} (2.59)

with Λi(β1,i···βq,i)(Πi) defined in (2.58), the relaxation (2.51) is called Pólya’s (multi-
plier) relaxation of degree d. Denoting the optimal value γdrel, on can show that

lim
d→∞

γdrel = γopt

The convergence follows from a matrix-extension of Pólya’s theorem [51]: If (2.57)
holds, there always exists some (possibly large) degree d, for which all of the coef-
ficients Λi(β1,i···βq,i)(Πi) are positive definite for i = 1, . . . nc. As a consequence, the
relaxation gap γrel − γopt can be reduced to zero by increasing d. A complete proof
for the fact that the family of Pólya relaxations is asymptotically exact can be found
in [157, 145]. The latter reference also provides bounds on the required value of d.

24



2.3.3 Sum-of-squares relaxations

Let us finally show how to use sum-of-squares relaxations for characterizing the
sets of multipliers Πi for relaxation (2.51). Recall that sets X are assumed to be
described as

X = {x ∈ Rs| V (x)T G̃V (x) � 0}.
Note that the semi-infinite constraint (2.50) is already specified in the standard
form Pi(x, y) = Ui(x)T P̃i(y)Ui(x) that was used in Section 2.2.3, with P̃ (y) being
the multiplier Πi. Following the derivation of (2.39), one first fixes a parametrization
of the matrices T1(x), . . . , TM (x) in (C.1) for each of the constraints i = 1, . . . , nc.
Then, for a polynomial matrix W (x) chosen in order to satisfy 2.38, the following
set of admissible multipliers can be constructed:

Πi =
{

Πi ∈ Spi+qi | X � 0, K ∈ Ki,
LTU,iΠiLU,i − εL0,i + LTV,i[X ⊗ G̃]LV,i +K � 0

}
,

in which LU,i, L0,i, LV,i and the sets of matrices Ki for i = 1, . . . , nc follow immedi-
ately from the choice of T1(x), . . . , TM (x) in (C.1) and W (x) in (2.38).

Note that the multiplier Πi ∈ Spi+qi was chosen to be a full symmetric matrix
in both the Pólya and sum-of-squares relaxations, as opposed to the structured
matrices used in (2.56). These methods do not need any structure for obtaining
tractable LMI relaxation schemes.

2.4 Estimating the relaxation gap

In the previous sections, two approaches for constructing relaxations for the robust
SDP (2.3) have been developed. We already indicated the fact that the relaxations
based on matrix sum-of-squares and Pólya’s Theorem can be constructed for any
desired accuracy by systematically increasing Polya’s degree d in (2.58), or alter-
natively, the number and order of the monomial basis functions that parameterize
Tj(x) in (C.1).

Despite the knowledge that we are, in principle, able to solve the robust LMI
problem by computing a sequence of relaxations of growing complexity, it is yet
unknown how to predict or evaluate the accuracy of a particular relaxation scheme.
Due to the expected difficulty of deriving a priori bounds on the approximation
quality, see for a discussion [17] and references therein, our focus is on estimating
the relaxation gap γrel − γopt after a LMI relaxation scheme has been solved.

In the next section, we will compute lower bounds on the optimal value by grid-
ding the parameter set. A more elegant approach that tries to verify the relaxation’s
exactness, i.e. γrel = γopt, is presented in Section 2.4.2. It makes use of certain dual
variables in the optimization algorithm, and extracts worst-case parameter values.
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2.4.1 Computing lower bounds by gridding the parameter set

A classical way to handle robust LMIs is to sample the family of LMI constraints
on a finite grid of parameter values, at the risk of possibly missing crucial ones.
Gridding techniques always provide lower bound values γlb ≤ γopt, as part of the
constraints are dropped which possibly increases the set of feasible y ∈ Rnd . The
main challenge in a gridding approach is to generate suitable grids of modest size
that lead to good lower bound values. In addition, the question arises for which set
of parameter values the optimal value of the genuine robust SDP problem coincides
with its sampled version. Any set that has this property will be called a represen-
tative set of parameter values for the set of robust SDP constraints. It turns out
that a representative set always exists and that the number of required grid points
is bounded by the dimension of the decision space Rnd , see [158, 150].

Approximation schemes for computing lower bounds of (2.3) are constructed as fol-
lows. First, select for the ith constraint qi the gridpoints {xi,1, . . . , xi,qi} and define
the set of indices

Ω = {(i, ν)| i = 1, . . . , nc, ν = 1, . . . , qi}. (2.60)

Then, the (finite) LMI problem

γlb = inf
{
〈c, y〉 : y ∈ Rnd , Fi(xi,ν)′Ji(y)Fi(xi,ν) ≺ 0, ∀(i, ν) ∈ Ω

}
(2.61)

obtained by substituting these parameter values into the semi-infinite constraints
yields a lower bound value γlb ≤ γopt. By increasing the number of gridpoints qi,
the resulting lower bound γlb does not get worse. A representative set of parameter
values in this context would be any set of xi,ν ’s for which γlb = γopt. We assume
that the grid is suitably chosen in order to make sure that the optimal value is finite,
i.e. −∞ < γlb ≤ γopt.

Remark 2.8 Robust LMI constraints can also be handled in a probabilistic sense,
in which the construction of the parameter grid is based on randomization. Bounds
on the probability of constraint violation can be derived as shown in the recent book
[173]. In this thesis randomized algorithms are not discussed and (2.3) is solved
in a deterministic (worst-case) sense. Lower bound computations are needed in
combination with upper bound computations in order to gain accuracy information
on the value γopt, as well as for the construction of worst-case parameter values.

2.4.2 Verifying exactness for multiplier relaxations

So far, the developed tools have enabled us to compute approximate solutions to
the robust SDP (2.3). Unfortunately, a priori error bounds can be given for specific
sets X and affine Fi(x) only, see [80, 18, 70]. For general problem instances it is
not known how to estimate the relaxation gap. This section shows an algorithm for
verifying whether a computed multiplier relaxation scheme is exact, i.e. whether
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γrel = γopt. The ideas have first been proposed in [157, 158] and involve Lagrange
dual optimal multipliers that are automatically obtained when computing γrel using
primal-dual interior point solvers and relaxations of the form (2.51).

The key step in deriving the exactness test is to connect the Lagrange dual problems
of both the lower- and upper bound approximations from Sections 2.4.1 and 2.3
respectively. Referring to the original robust SDP (2.3), let us assume without loss
of generality the decomposition

Ji(y) = J0
i + Ĵi(y)

where Ĵi(y) is further expressed as

Ĵi(y) = J1
i y1 + . . .+ Jni yn, i = 1, . . . , nc,

and J0
i , . . . , J

n
i are symmetric matrices.

Since the LMI constraints in the sampled version of the problem are strictly
feasible, as also assumed for the robust problem (2.3), we can dualize it without
gap. With Lagrange multipliers Zi,ν � 0 corresponding to the constraint for the
gridpoint xi,ν ∈ X with (i, ν) ∈ Ω, define the following map:

Li,ν(Zi,ν) = Fi(xi,ν)Zi,νFi(xi,ν)′. (2.62)

The Lagrangian of (2.61) thus becomes

〈c, y〉+
qi∑
ν=1

nc∑
i=1

〈Zi,ν , Fi(xi,ν)′Ji(y)Fi(xi,ν)〉 =

= 〈c, y〉+
qi∑
ν=1

nc∑
i=1

〈Zi,ν , Fi(xi,ν)′Ĵi(y)Fi(xi,ν)〉+
qi∑
ν=1

nc∑
i=1

〈Li,ν(Zi,ν), J0
i 〉

= 〈c+
qi∑
ν=1

nc∑
i=1

Ĵi(Li,ν(Zi,ν)), y〉+
qi∑
ν=1

nc∑
i=1

〈Li,ν(Zi,ν), J0
i 〉

.

(2.63)

By strong duality and since γlb was assumed to be finite, the dual problem of (2.61)
becomes

γlb :=


maximize

qi∑
ν=1

nc∑
i=1

〈Li,ν(Zi,ν), J0
i 〉

subject to cj +
qi∑
ν=1

nc∑
i=1

〈Jji , Li,ν(Zi,ν)〉 = 0, for j = 1, . . . , n

Zi,ν � 0, for (i, ν) ∈ Ω
(2.64)

In order to be able to derive the Lagrange dual problem for the multiplier relaxation,
we make the parametrization of the multipliers Πi explicit by introducing auxiliary
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variables ξi ∈ RNi , i.e.

Πi = {Πi(ξi) | Gi(ξi) � 0}, i = 1, . . . nc.

Then, with the structured matrices Ui defined as

Ui =
(

I 0
Ai Bi

)
, i = 1, . . . , nc,

multiplier relaxation (2.51) is reformulated as:

γrel = inf
{
〈c, y〉 : y ∈ Rnd , Gi(ξi) � 0,

U ′iΠi(ξi)Ui + Ji(y) ≺ 0, i = 1, . . . , nc
}
. (2.65)

Similar as has been done for the approximation (2.61), Lagrange multiplier vari-
ables Φ1, . . . ,Φnc ,Ψ1, . . . ,Ψnc are introduced in order to form the Lagrangian of the
multiplier relaxation (2.65):

〈c, y〉+
nc∑
i=1

〈Φi, U ′iΠi(ξi)Ui + Ji(y)〉+ 〈Ψi, Gi(ξi)〉

= 〈c+
nc∑
i=1

Ĵ∗i (Φi), y〉+
nc∑
i=1

〈J0
i ,Φi〉+

nc∑
i=1

〈ξi,Π∗i (UiΦiU ′i) +G∗i (Ψi)〉.
(2.66)

By the assumption that there exists a feasible tuple (ξ1, . . . , ξnc , y) for relaxation
(2.65) for which Gi(ξ) ≺ 0, by strong duality the dual of (2.65) becomes

γrel :=



maximize
nc∑
i=1

〈J0
i ,Φi〉

subject to Φi,Ψi � 0,

cj +
nc∑
i=1

〈Jji ,Φi〉 = 0, j = 1, . . . , n,

G∗i (Ψi) + Π∗i (UiΦiU
′
i) = 0, i = 1, . . . , nc.

(2.67)

The following exactness result for multiplier relaxations of the form (2.51) is obtained
by combining (2.64) with (2.67).

Theorem 2.6 Let Φi,Ψi, i = 1, . . . , nc be some dual optimal multipliers of (2.67).
Suppose there exist x̄i,1, . . . , x̄i,qi ∈ X for i = 1, . . . , nc such that the matrices
Φ1, . . . ,Φnc can be written as

Φi =
qi∑
ν=1

F (x̄i,ν)Z̄i,νF (x̄i,ν)′ (2.68)

for some Z̄i,ν � 0. Then the relaxation (2.51) is exact, i.e. γrel = γopt.
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Proof. Given dual optimal (Φi,Ψi), i = 1, . . . , nc, note that by using the maps
Li,ν(.) as defined in (2.62), the matrices in the summation (2.68) are actually
equal to Li,ν(Z̄i,ν). Hence, for i = 1, . . . , nc, by using δ̄i,ν , . . . , δ̄i,qi to sample
the semi-infinite constraints, the matrices Z̄i,1 � 0, . . . , Z̄i,qi � 0 are feasible so-
lutions to the lower bound computation (2.64), and the value of this problem equals∑nc
i=1〈J0

i ,
∑qi
j=1 Li,ν(Z̄i,ν)〉 =

∑nc
i=1〈J0

i ,Φi〉 = γrel. This implies γlb ≥ γrel and hence
the equality γrel = γlb holds. Moreover, any set {δ̄i,ν : (i, ν) ∈ Ω} satisfying (2.68)
for some Z̄i,ν � 0 is a representative set of parameter values, i.e. for the correspond-
ing sampled problem (2.61) we have γlb = γrel = γopt.

Theorem 2.6 is applied as follows. Once dual optimal multipliers Φ1, . . .Φnc have
been computed in solving the relaxation (2.51) and its dual (2.67), one must find
variables Z̄i,ν , and x̄i,ν ∈ δ that satisfy (2.68). Parametrization of the matrices Z̄i,ν

should be done in accordance with the rank of Φi. With rank revealing decomposi-
tion

Z̄i,ν =
ri,ν∑
j=1

zj,i,νz
T
j,i,ν ,

this means that the vectors zj,i,ν are the unknowns and qi, ri,ν are a priori fixed
parameters such that the relation

rank(Φi) =
qi∑
ν=1

ri,ν i = 1, . . . , nc

holds. For any such parametrization for Z̄i,ν , condition (2.68) is a matrix rational in
the unknowns (δ, Z̄i,ν). By vectorizing (2.68) and multiplying each polynomial with
the common denominator polynomial of (I − Ai∆i(x))−1Bi a polynomial system
is obtained, though even for moderate sized SDP constraints, this straightforward
application of condition (2.68) results in a high number of polynomials. Therefore,
it is a suggestion for future research to develop more efficient techniques that can
directly handle (2.68) in the case of general robust SDP problems.

There are already two situations in which the complexity of the exactness test
can be significantly reduced. For instance, we can extend the observation made in
[157] for the case of having a single robust SDP constraint, and infer that (2.68) is
solvable if there exists solutions x1, . . . xnc ∈ X for which

Li(xi) =
(
I −∆i(xi)

)( I 0
Ai Bi

)
Φi = 0, i = 1, . . . , nc

holds. Moreover, for a specific class of multiplier relaxation schemes, it can be shown
that the relaxation is automatically exact in case that rank(Φi)=1 for i = 1, . . . , nc,
see again [157]. This sufficient condition for exactness of the relaxation can be
implemented by verifying whether ‖Li(xi)‖ ≈ 0 for i = 1, . . . , nc, which amounts to
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verifying whether there exists x1, . . . xnc ∈ X such that(
αI Li(xi)′

Li(xi) αI

)
� 0 for i = 1, . . . , nc, (2.69)

for some α ≈ 0. The latter condition amounts to a standard LMI problem if X is
given as an LMI region.

Another useful insight that provides an efficient implementation of (2.68) concerns
the case in which the Bi-matrices in (2.48) have only one column. Then, the (scalar)
variables Z̄i,ν can be eliminated as follows: With

(
C̃i D̃i

)
chosen such that their

rows form a basis of the left-kernel of Φi, solvability of (2.68) implies(
C̃i D̃i

)
Fi(xi)Z̄i,νFi(xi)′

(
C̃i D̃i

)′
= 0

⇐⇒ (
C̃i D̃i

)
Fi(xi)

∑riν
j=1 zj,i,νz

′
j,i,νFi(x

i)′
(
C̃i D̃i

)′
= 0

⇐⇒ ‖ ( C̃i D̃i

)
Fi(xi)

(
z1,i,ν z2,i,ν · · · zriν ,i,ν

) ‖ = 0
⇐⇒ (

C̃i D̃i

)
Fi(xi)

(
z1,i,ν z2,i,ν · · · zriν ,i,ν

)
= 0

in case the Bi-matrices in (2.48) have only one column, the zj,i,ν for j = 1, . . . riν
become scalar variables and thus the latter condition implies(

C̃i D̃i

)
Fi(xi) = 0. (2.70)

By multiplying the expression with the denominator of Fi(x) a polynomial system
is obtained that depends only on x. Problems in which Bi have only one column
represent robust linear programming problems, a problem class for which numerous
references can be found, e.g. [138, 16, 176, 79].

Remark 2.9 Note that (2.70) is only necessary for (2.68), and there might exist
solutions xi = x̄i for which no solution pair (x̄i, Z̄i,ν) of (2.68) exits. Thus, in order
to be sure about exactness of the relaxation, one has to either solve (2.68) for Zi,ν

or compute a lower bound γlb ≤ γopt using a grid defined by the computed solutions
xi = x̄i from (2.70).

Remark 2.10 Note that the success of applying Theorem 2.6 depends upon the fact
that primal-dual LMI solvers return Lagrange multipliers Φi of the desired structure,
if they exist.

Remark 2.11 Conditions for exactness of relaxations can alternatively be posed in
terms of so-called moment matrices, see [90] for scalar polynomials, and [89] for
matrix polynomials.
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2.4.3 Numerical example: µ-upper bound computation

Let us revisit the example from Section 2.1, which addressed the computation of
upper bounds for µ. We will implement the sufficient conditions (2.9)-(2.10) for
verifying whether I−AB is invertible for allB ∈ B, by constructing several relaxation
schemes for the semi-infinite constraint (2.10). Moreover, we will explore the use
of structured multipliers Π. In all relaxations, similar as was done for the D-scales
in Section 2.1, the best upper bound on µ is obtained by bisection on r in order
to find the maximal r for which I − AB is invertible for all B ∈ rB. Note that
the dependence of matrix A(p) on parameter p ∈ [0, 1] is omitted for notational
convenience. As we have already mentioned, the elements B ∈ B are parameterized
by x = (x1, x2, x3) ∈ R3, making use of the linear mapping ∆ : R3 → R6×6, which
reads as

∆(x) =

 x1I 0 0
0 x2I 0
0 0 x3I

 ,

in which I denotes the identity matrix of size 2. With the set X defined as

X = {x ∈ R3| |xi| < 1 for i = 1, . . . , 3},

any B ∈ B corresponds to an x ∈ X and vice versa, through the relation B = ∆(x).

Convex hull relaxation

The first relaxation scheme is based on the convexity arguments in Section 2.3.1.
With a full block multiplier Π, the LMI conditions for relaxation ’Full block’ become(

I

A

)′
Π
(

I

A

)
≺ 0, (2.71)

and (
I

0

)′
Π
(
I

0

)
≺ 0,

(
∆(x)
I

)′
Π
(

∆(x)
I

)
� 0, (2.72)

the latter of which is evaluated at the 8 extreme points x1, . . . , x8 of X . As men-
tioned earlier, the value of µ is obtained by considering the scaled region rX and
performing a bi-section argument on r ∈ R. With a total number of 1+12*13/2=79
LMI variables, significant improvements are seen if compared to the D-scalings test,
see Figure 2.3.

With computational complexity being often the limiting factor, one might prefer
to reduce the number of variables in Π. Although imposing structure on Π will
generally introduce conservatism, it might not influence the results in particular
problem instances. The example here has been constructed in such a way that the
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D-scales
Full block
CH-1: ∆1( x1,x2)  and ∆2(x3)

CH-2: ∆1(x1,x3) and ∆2(x2)

CH-3: ∆1(x1) and ∆2(x2 ,x3)

POL-0,POL-1: ∆1(x1,x2) and ∆2(x3)

Figure 2.3: Least upper bounds of µ∆c
(A) for different parameters p in (2.7) using

convex hull and Pólya relaxation methods.

number of multiplier variables can be a priori reduced. If fact, if we define

∆1(x) =
(
x1I 0
0 x2I

)
, ∆2(x) = x3I, (2.73)

and

A1 =


0 1 0 1

0.5 0 0.5 0
2p 0 p 0
0 −2p 0 −p

 , A2 =
(

1− p 0
0 1− p

)
, (2.74)

it is easily seen that I − A∆(x) is invertible if and only if both I − A1∆1(x) and
I − A2∆2(x) are. Therefore, I − A∆(x) is non-singular for all x ∈ X if there exist
Π1,Π2 such that for i = 1, 2(

I

Ai

)′
Πk

(
I

Ai

)
≺ 0,

(
∆k(x)
I

)′
Πi

(
∆k(x)
I

)
� 0 (2.75)

holds for all x ∈ X . It is not difficult to see that a multiplier relaxation for the two
robust LMI constraints (2.75) corresponds to a relaxation for (2.72) when using the
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structured multiplier

Π =



Π11 Π12 0 Π14 Π15 0
Π′12 Π22 0 Π24 Π25 0
0 0 Π33 0 0 Π36

Π′14 Π′24 0 Π44 Π45 0
Π′15 Π′25 0 Π′45 Π55 0
0 0 Π′36 0 0 Π66


. (2.76)

The corresponding convex hull relaxation is denoted by CH-1 and involves a total of
8*9/2+5*4/2=46 multiplier variables. As expected, the upper bound of relaxation
CH-1 is not worse than “Full block”, as shown in Figure 2.3.

In a similar fashion, other multiplier structures are obtained by separating the
constraint for x2 from x1, x3 or the constraint for x3 from x1, x2. The convex hull
relaxations corresponding to these structures are denoted by CH-2 and CH-3 respec-
tively. While the multiplier structure in CH-3 yields worse results than the other
convex hull relaxations, CH-2 does lead to the same upper bounds as CH-1, i.e. the
upper bound corresponding to the full block multiplier.

Remark 2.12 The case in which Π12,Π15 and Π45 are all zero boils down to the
so-called D-G scalings, see [124]. In our numerical example, the D-scalings upper
bounds were not improved by D-G scalings.

Approximation ] LMI vars ] LMI constraints γrel for p = 0.6

D-scales 13 * 1.57
Full block 79 1+ (8+1) = 10 1.13
CH-1 47 1+ (4+1) + (2+1) = 9 1.13
CH-2 47 1+ (4+1) + (2+1) = 9 1.13
CH-3 47 1+ (4+1) + (2+1) = 9 1.57
POL-0 47 1+13=14 0.71
POL-1 47 1+24=25 0.71
SOS-1 1099 1+1+3 = 5 0.71
MIX 229 7 0.71

Table 2.1: Comparison of upper bounds γrel on µ∆c
(A) with the parameter value

p = 0.6 in (2.7). The D-scales upper bound has been computed using

Remark 2.13 For large sizes of ∆, it is more relevant to reduce the number of
decision variables by using structured multipliers. It is an interesting topic of fu-
ture research to see whether one can start with a diagonal multiplier (D-scales) and
extract from the computed relaxation the information needed for improving the re-
laxation by adding multiplier variables in the most efficient way.
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Pólya relaxations

Let us now apply Pólya’s theorem with a structured multiplier similarly as in (2.76).
That is, a relaxation is constructed for robust SDP constraints (2.75), in which
A1, A2 are given in (2.74). The LMI constraints that characterize the set of admissi-
ble multipliers Πi, referring to (2.58), are formed by imposing all Λi(β1,i···βq,i)(Πi) � 0
for i = 1, 2. In case that Pólya’s degree for both semi-infinite constraints in (2.75)
is chosen as d = 0 for i = 1, 2, the relaxation is denoted as POL-0, whereas POL-1
corresponds to the case in which d = 1 for i = 1, 2. As shown in Figure 2.3, the
Pólya relaxations outperforms the convex hull relaxations, at the cost of an increased
number of constraints. As shown in the figure, POL-1 is not better than POL-0,
neither was the Pólya relaxation with a higher degree d.

The upper bounds obtained with Pólya are in fact exact. This follows from lower
bound computations that were computed with mussv.m in Matlab. Exactness could
not be proven with the exactness tests in Section 2.4.2.

Sum-of-squares relaxations

We finally construct relaxation schemes based on matrix sum-of-squares. This is
done for multiplier-based relaxations only. Similar as we did for the convex hull
relaxations, we start with a full-block multiplier. For fixed parameter bounds |xi| ≤
r ∈ R, the uncertainty set X is now described in implicit form as

Gi(x) = V (xi)T G̃Vi(xi) =
(

1
xi

)T ( −r2 0
0 1

)(
1
xi

)
≤ 0

for i = 1, . . . , 3. Using previous results, it follows that

P (x,Π) =
(

∆(x)
I

)T
Π
(

∆(x)
I

)
� 0 on X (2.77)

is implied by

P (x,Π)− εI +
3∑
i=1

M∑
j=1

Ti,j(x)TGi(x)Ti,j(x)

is sum-of-squares in x for some ε > 0. (2.78)

Since P (x,Π) is of size 6×6 and Gi(x) are scalar valued, the basis matrices Ti,j have
dimension 1×6. Taking all 0th and 1st order monomials into account, each constraint
involves a total of M = 6 × 4 = 24 basis functions. Following the procedure from
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Section 2.2.3, a sufficient LMI condition for (2.78) is given by

LTUΠLU − εL0 +
3∑
i=1

LTV,i[Xi ⊗ G̃]LV,i +K � 0. (2.79)

for some fixed matrices L0, LU , LV,i and with matrix variable K ∈ K. The relaxation
denoted by SOS-1 thus consists of the LMI constraints Xi � 0, for i = 1, . . . , 3,
together with (2.71) and (2.79), which is the relaxation for semi-infinite constraint
(2.72). The decision variables consist of Xi for i = 1, . . . , 3, having dimension 24×24,
the multiplier Π and the matrix K ∈ K. The resulting upper bounds on µ are shown
in Figure 2.4.

In order to illustrate the flexibility of the framework, let us finally use the struc-
tured multiplier in (2.76) and combine two different relaxation methods for the two
semi-infinite constraints in (2.75). The relaxation denoted as MIX is constructed
by using a convex hull argument for the the semi-infinite constraint that depends
on ∆2(x3), while using a sum-of-squares relaxation scheme for the semi-infinite con-
straint that depends on ∆1(x1, x2). For the latter relaxation method, the matrix
functions Tj(x) in (2.32) are chosen such that all 0th and 1st monomial basis ma-
trices are included. As shown in Figure 2.4, the resulting optimal values are equal
to the ones obtained by Pólya relaxations, see also Table 2.1. Exactness could not
be proven using the test in Section 2.4.2, though developments for more powerful
exactness tests are ongoing.

Interim summary

The relaxation tools as presented in this chapter have been applied to the µ-analysis
problem introduced in Section 2.1. It was shown that using full block multipliers re-
duces conservatism, as compared to standard computations based on D- (or D/G-)
scalings. With Pólya and matrix sum-of-squares techniques, we were able to prove
robust stability for all uncertain parameters in the unit box. All relaxation schemes
in this section were constructed with the recently developed Matlab toolbox [55],
that is associated with this thesis work. The flexibility of the framework has been il-
lustrated by combining two different relaxation methods (sum-of-squares and convex
hull) into a single scheme.
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POL-0,POL-1:∆1(x1,x2) and ∆2(x3)
SOS-1 : full block, mon order 1
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Figure 2.4: Computed least upper bounds of µ∆c
(A) using sum-of-squares relax-

ation, for different values of p.
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2.5 Solving polynomial systems by linear algebra

Motivated by the exactness test in the previous section let us finally consider the
problem of finding all common zeros for given polynomials p1, . . . , pl in the inde-
terminate variables x = (x1, . . . , xs). Hence, it is our goal to compute common
solutions to the polynomial system

p1(x1, . . . , xs) = 0
...

pl(x1, . . . , xs) = 0.

(2.80)

The set of zeros z ∈ Cs for which pi(z) = 0 for i = 1, . . . , l, is denoted by

Z(P ) = {z1, . . . , zm}

in which P = {p1, . . . , pl}. Note that the zero set is assumed finite. We will start
this section by introducing the necessary algebraic notions in order to explain the
solution approach taken in [168, 40]. An extension of this method will be presented,
which can also be found in our paper [60].

Instead of looking only at the set of polynomials P , one should consider a much
larger set, called the ideal of polynomials generated by P , formally defined as

I = 〈P 〉 =
{ l∑
j=1

qj(x)pj(x) : qj ∈ Ps
}

(2.81)

where Ps denotes the algebra of all complex polynomials in the variables x =
(x1, . . . , xs). It is obvious that 〈P 〉 vanishes on Z(P ). Moreover, the algebraic
variety defined by I, denoted by V (I), is defined as the set of joint zeros of all
elements in I, i.e.

V (I) = {z| p(z) = 0, ∀p ∈ I}.
It is easy to show that Z(P ) = V (〈P 〉).

A fundamental step in the analysis of polynomial systems is to introduce the
factor space Ps\I with elements denoted by [p(x)]. In the sequel we often leave out
the argument x, thus writing [p] ∈ Ps\I. These elements are equivalence classes
modulo I, meaning that for any p, q ∈ Ps

[p] = [q] ⇐⇒ p− q ∈ I.

It can be proven that Ps\I is a vector space over C of dimension m (see [168],
Theorem 2.4). Moreover, defining the multiplication

[p][q] = [pq] p, q ∈ Ps

equips Ps\I with the structure of a commutative ring. In order to treat vectors of
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polynomials we introduce the abbreviation In = {col(r1, . . . , rn) : r1, . . . , rn ∈ I}.

Proposition 2.1 Let b = col(b1 · · · bm) be a vector of polynomials for which B =
{[b1], . . . , [bm]} forms a basis of Ps\I. Then there exist matrices M1,. . .,Ms, satis-
fying

[xib(x)] = Mi[b(x)], i = 1, 2, . . . , s, (2.82)

often called the multiplication matrices corresponding to the basis vector b.

Proof. For any polynomial q ∈ Ps, [qbk] is again an element in Ps which implies
there exist scalars αkj for which

[qbk] =
m∑
j=1

αkj [bj ] = (αk1 · · · αkm)


[
b1
]

...[
bm

]
 , k = 1, . . . ,m.

Matrix Mi is found by choosing q = xi and using the resulting αkj as the (k, j)th

element of matrix Mi. The proof is also given in [42] Proposition 4.7.

It is surprisingly simple to construct Z(P ) once the so-called multiplication maps
for each of the monomials x1, . . . , xs, as represented by M1, . . . ,Ms, are known.
As pointed out in [168], the construction of a basis B, also called normal set, is
what causes trouble, in particular for polynomial systems in higher dimensions and
of higher degree. Most of the available algorithms are based on first determining a
Gröbner basis of the ideal of polynomials. There exists a vast amount of literature on
how to efficiently compute Gröbner bases. As we will see, our procedure is applicable
even if a priori knowledge on B (or a Gröbner basis) is absent.

Before presenting the classical result of Stetter, let us recall the following fact.

Lemma 2.3 Let M be a lower block triangular matrix, i.e.

M =
(
A B

0 C

)
such that the eigenvalues of A and C are disjoint, and M commutes with matrix N .
Then, N is block triangular with the same structure.

Proof. See [41, Proposition 4].

Lemma 2.4 Let b = col(b1 · · · bm) be a vector of polynomials for which the set
B = {[b1], . . . , [bm]} forms a basis of Ps\I, where I is defined in (2.81). With the
zero set Z(P ) = V ([I]) = {z1, . . . , zm} we have

b(zj) 6= 0 for j = 1, . . . ,m. (2.83)
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Proof. see [42, Theorem 2.10].

We now discuss an algorithm to compute V (I). By transforming matricesM1, . . . ,Ms

into upper block triangular form, the zeros can be extracted from the eigenvalues
of the individual blocks. In contrast to the approach in [168], joint eigenvectors of
the multiplication matrices M1, . . . ,Ms are only required in the proof and not in the
algorithm. Given a matrix A, we say that the similarity T transforms A into block
root-subspace form if

T−1AT = diag(A1, . . . , Anr ) where σ(Aj) = {λj} for j = 1, . . . k

and
λu 6= λv, for all u, v = 1, . . . , k, u 6= v.

Algorithm 2.1 Construct s similarity transformations (applied to all matrices Mi

simultaneously) in the following iterative fashion.

Step 1. Suppose that λ1
1, . . . , λ

k1
1 is the list of all pairwise different eigenvalues of

M1. We can then transform M1 into block root-subspace form

M1 = diag(M1
1 , . . . ,M

k1
1 )

with σ(M j
1 ) = {λj1} for j = 1, . . . , k1. Since M2, . . . ,Ms commute with M1, the

transformation applied to all Mi results in

Mi = diag(M1
i , . . . ,M

k1
i ), i = 1, . . . , s.

where we used Lemma 2.3.
Step 2. For any j ∈ {1, . . . , k1} consider the block M j

2 . As in Step 1, we can also
transform this matrix into block root-subspace form, i.e.

M j
2 = diag(M j,1

2 , . . . ,M
j,lj
2 ),

where each block on the diagonal has only one eigenvalue, i.e. σ(M j,lj
2 ) = {λj,lj2 },

and for different blocks these eigenvalues are different. By Lemma 2.3, all other
blocks necessarily admit the same block-diagonal structure

M j
i = diag(M j,1

i , . . . ,M
j,lj
i ) for i = 1, . . . , s.

This refinement into lj sub-blocks is performed for all j = 1, . . . , k1. The total
number of blocks in Mi is, up to this point, given by k2 := l1 + · · ·+ lk1 :

Mi = diag(M1
i , . . . ,M

k2
i ), i = 1, . . . , s
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and we record the singletons

σ(M j
i ) = {λji} for j = 1, . . . , k2, i = 1, 2.

After s steps. Putting all similarity transformation together we end up with

Mi = diag(M1
i , . . . ,M

ks
i )

and
σ(M j

i ) = {λji}, j = 1, . . . , ks, i = 1, . . . , s.

where ks is the total number of blocks resulting after s steps.

Once the singletons λji have been computed, V (I) is given by the next theorem.

Theorem 2.7 With the notation as in Algorithm 2.1,

{(λj1, . . . , λjs) : j = 1, . . . , ks} = V (I).

Proof. We assume that b has been transformed such that (2.82) is valid for the
block-diagonal matrices Mi resulting from Algorithm 2.1.
Proof of ⊂. Fix j ∈ {1, . . . , ks}. Since M j

i , i = 1, . . . , s, are a commuting
family of matrices, there exists a common left eigenvector vj 6= 0. Since Mi =
diag(M1

i , . . . ,M
ks
i ), we can extend vj with zero components to obtain some v 6= 0

satisfying
v∗Mi = v∗λji for i = 1, . . . , s. (2.84)

For any multi-index α = (α1, . . . , αs) ∈ Ns0, let us define

(M1, . . . ,Ms)α = Mα1
1 Mα2

2 · · ·Mαs
s .

This operation extends in a natural fashion to an arbitrary polynomial q(x) =∑
α cαx

α in Ps as

q(M1, . . . ,Ms) =
∑
α

cα(M1, . . . ,Ms)α.

Since M1, . . . ,Ms are pairwise commuting, it is straightforward to check that (2.82)
implies

[q][b] = [qb] = q(M1, . . . ,Ms)[b].

Therefore, by using (2.84), we infer

v∗[q][b] = v∗q(M1, . . . ,Ms)[b] = v∗q(λj1, . . . , λ
j
s)[b] = [v∗b]q(λj1, . . . , λ

j
s). (2.85)

Now note that [v∗b] 6= 0 since the components of [b] are linearly independent and
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v 6= 0. If we choose q ∈ I, we have [q] = 0, and we can hence conclude

q(λj1, . . . , λ
j
s) = 0.

Since q ∈ I was arbitrary, we have proved (λj1, . . . , λ
j
s) ∈ V (I).

Proof of ⊃. Take a zero z = (z1, . . . , zs) ∈ V (I). Since [xib−Mib] = 0 we infer

xib(x)−Mib(x) ∈ Im for i = 1, . . . , s.

Evaluation at z implies

zib(z)−Mib(z) = 0 for i = 1, . . . , s.

Now partition b(z) = col(b1(z), . . . , bks(z))T according to the block-diagonal struc-
ture of Mi. Since b(z) 6= 0 by Lemma 2.4, there exists some j with bj(z) 6= 0, and
we infer

zib
j(z) = M j

i b
j(z) for i = 1, . . . , s.

It follows that zi = λji for all i = 1, . . . , s.

Remark 2.14 The order in which the algorithm addresses M1, . . . ,Ms can be cho-
sen differently, when permuting the components zj1 = λj1, . . . , z

j
s = λjs of the con-

structed zeros z1, . . . , zks ∈ V (I) accordingly.

Although Algorithm 2.1 transforms all Mi into block diagonal form (as required in
the proof of Theorem 2.7), it actually suffices to construct unitary transformations
rendering the Mi block triangular. The reason for this comes from the fact that the
coordinate changes turning a block triangular Mi into block diagonal form leaves
the eigenvalues of each sub-block M j

i invariant. Hence, Algorithm 2.1 does not only
avoid the computation of eigenvectors, but it is not even required to compute all
joint invariant subspaces of M1, . . . ,Ms.

2.5.1 A new algorithm

In the previous section we have seen how to extract all zeros z ∈ V (I) from the
multiplication matrices M1, . . .Ms in (2.82). Motivated by the alternative proof
that was given for Theorem 2.7, this section contains an extension of Algorithm 2.1
and determines V (I) without knowing a basis of Ps\I a priori. The result has also
been written down in [60, 58].

Let us now no longer assume to know some basis B for Ps\I. We will rather
assume that B = {[b1] · · · [bn]} is a spanning set, which implies that for any [p] ∈
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Ps\I, written as [p] =
∑
αj [bj ], there exists a matrix Nq such that

[qp] = (α1 · · · αn)Nq


[
b1
]

...[
bn
]
 .

For a given set of polynomials P = {p1, . . . , pl}, we define vector p = (p1 · · · pl)T
and fix some monomial vector b = (b1 · · · bn)T with b1 = 1 as well as monomial
matrices Vi, i = 1, . . . , s, each consisting of n rows. First, it is required to verify
whether the system of linear equations

xi b(x)−Nib(x) = Vi(x)Cip(x), i = 1, . . . , s (2.86)

in the matrix variables Ni and Ci is solvable. In case (2.86) is not solvable, monomial
terms should be added to b as well as to V1, . . . , Vs. It is not difficult to see that the
mere solvability of this equation does indeed imply that the components of [b] span
Ps\I, which is the content of the next proposition. The following lemma helps us
in proving that b is a spanning set once (2.86) is solvable.

Lemma 2.5 Let b = (b1 b2 · · · bn)T be a vector of monomials with b1 = 1 and
suppose (2.86) is solvable. Then, for any given monomial µ /∈ {b1, . . . , bn}

[µ] ∈ {[b1], . . . , [bn]}.

Proof. For any given monomial µ, let us first prove that there exists a matrix Nµ
such that

µb−Nµb ∈ In. (2.87)

Indeed, solvability of (2.86) implies

xib(x) = Nib(x) + r̂(x) i = 1, . . . , s

where r̂(x) ∈ In. Thus for arbitrary i, j ∈ {1, 2, . . . , s} we have

xjxib(x) = xj(Nib(x) + r̂(x))

= Nj(Nib(x) + r̂(x)) + r̃(x)

= NjNib(x) + r(x)

where the components of r(x) = Nj r̂(x)+ r̃(x) ∈ In (using the properties of ideal I).
Hence, for any monomial µ(x) = xα1

1 xα2
2 . . . , xαss with multi-degree α = (α1 · · · , αs),

the matrix Nµ = Nα1
1 Nα2

2 · · ·Nαs
s satisfies (2.87).

Let us turn again to the original statement in the Lemma. Looking at the first
row v∗1 of Nµ in (2.87) it follows that there exists r ∈ I such that

µ(x) · 1 = v∗1b(x) + r(x)
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and taking the remainders modulo I implies

[µ(x)] = v∗1 [b]

Thus, we have proven that [µ(x)] is a linear combination of {[b1(x)], . . . , [bn(x)]}.

Remark 2.15 Note that multiplication with monomial µ(x) = xα1
1 xα2

2 . . . , xαss can
result in different multiplication matrices Nµ if these matrices do not commute,
i.e. the matrices Nµ are not uniquely defined by the multi-degree α ∈ Ns0 of µ(x).
For example, Nµ = N2N1N2 or Nµ = N1N2N2 are both valid matrices for the
multiplication map that belongs to monomial µ(x) = x1x

2
2.

Using this lemma, we now show that the components of [b] span Ps\I once (2.86)
is solvable. This result plays an essential role in proving that V (I) can be extracted
from the matrices N1, . . . Ns.

Proposition 2.2 Let b = col (b1 b2 · · · bn) be a vector of monomials with b1 =
1 and suppose that (2.86) has a solution. Then span{[b1], . . . , [bn]} = Ps\I.

Proof. Recall the fundamental fact that Ps\I is m-dimensional as a vector space
over C and admits a monomial basis. If

V0 = Span{[b1], . . . , [bn]} $ Ps\I (2.88)

then there certainly exist monomials µ1, µ2, . . . , µd such that

Span{[b1], . . . , [bn], [µ1], . . . , [µd]} = Ps\I. (2.89)

Now define
Vj := Span{[b1], . . . , [bn], [µ1], . . . , [µj ]}

so that we get the chain of vector spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vd.

Note that (2.88)-(2.89) can only be true if for some k ≤ d we have

V0 = V1 = . . . = Vk−1 = Vk $ Vk+1

or equivalently

[µk+1(x)] /∈ Span{[b1], . . . , [bn], [µ1], . . . , [µk]}.

This is in contradiction with Lemma 2.5 as [µ] ∈ Span{[b1], . . . , [bn]} for any given
monomial µ(x) in case (2.86) is solvable.
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Proposition 2.2 implies that it should be possible to construct a basis B of Ps\I
from the components of [b]. In fact, such a basis B = {b1, . . . , bm} corresponds
to an m-dimensional subspace V ⊂ Cn which is invariant under N1, . . . , Ns. This
theoretical insight is formulated first, before the main algorithm is presented.

Proposition 2.3 Suppose that (2.86) has a solution for some chosen monomial
basis in b and V1, . . . , Vs. Then there exists a similarity transformation

T =
(
T1 T2

)
, T−1 =

(
R1

R2

)
for which(

R1

R2

)
Ni
(
T1 T2

)
=
(
M i

11 M i
12

0 M i
22

)
, i = 1, . . . , s. (2.90)

Then, with [b0] = R1[b] the following relations hold:

[xib0(x)] = M i
11[b0(x)], i = 1, 2, . . . , s.

Thus, the components of [b0] form a basis B of Ps\I and M i
11 are the multiplication

matrices from Proposition 2.1.

Proof. With monomial vector b, let matrix K be such that

K =
(
K1 K2

)
, K−1 =

(
K̄1

K̄2

)
be such that b = K

(
b0
e

)
where the components of [b0] form a basis of the m-dimensional space Ps\I. Since
[b0] is a basis of Ps\I, there exists C such that [e] = C[b0], or equivalently, ẽ =
e− Cb0 ∈ In−m. From (2.86) we hence infer(

I 0
−C I

)[
xi

(
b0
e

)
−K−1NiK

(
b0
e

)] ∈ In , i = 1, 2, . . . , s

which reads

xi

(
b0
ẽ

)
−
(

I 0
−C I

)
K−1NiK

(
I 0
C I

)
︸ ︷︷ ︸ M i

11 M i
12

M i
21 M i

22



(
b0
ẽ

)
∈ In i = 1, 2, . . . , s.

Therefore, xib0 − M i
11b0 − M i

12ẽ ∈ Im and, since Y ẽ ∈ Im for any matrix
Y ∈ Rm×(n−m), we get

xib0 −M i
11b0 ∈ Im, i = 1, 2, . . . , s.
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Taking equivalence classes shows thatM i
11 are multiplication matrices as in condition

(2.82). Moreover, xiẽ −M i
21b0 −M i

22ẽ ∈ In−m so that M i
21b0 ∈ In−m from which

we get
[M i

21b0] = M i
21[b0] = 0, i = 1, 2, . . . , s.

Since [b0] is a basis of Ps\I, the components are linearly independent and as a
consequence M i

21 = 0, i = 1, . . . , s. We thus conclude that N1, . . . , Ns can be jointly
transformed in upper block diagonal form and the restriction of Ni to subspace
Im(T1) yields M i

11 for i = 1, . . . , s. Every z ∈ V (I) can hence be found as an s-tuple
of the eigenvalues of N1, . . . , Ns. Defining

(
T1 T2

)
=
(
K1 +K2C K2

)
,

(
R1

R2

)
=
(

K̄1

K̄2 − CK̄1

)
finishes the proof.

Let us summarize the results obtained so far. Once (2.86) is solvable, the compo-
nents z1, . . . , zm of all zeros in V (I) can be found as eigenvalues of the matrices
N1, . . . , Ns. The restriction of N1, . . . , Ns to an (unknown) subspace V are exactly
the commuting matrices M1, . . . ,Ms from Proposition 2.1. As extensively discussed
in [168], there exists no generically best algorithm for computing such a basis, which
lead us to investigate alternative approaches. We will show that V (I) can be ob-
tained directly from the matrices N1, . . . , Ns without explicitly computing the joint
invariant subspace V corresponding a basis B of Ps\I.

The following algorithm constructs candidate zeros, by iteratively identifying
joint invariant subspaces. It constructs largest joint invariant subspaces ofN1, . . . , Ns,
which therefore must also contain Im(T1) for T1 defined as in (2.90). Contrary to
existing methods, there is no need to compute all joint eigenvectors. The candi-
date zeros are constructed by sequentially applying similarity transformations to
the N1, . . . , Ns, and storing eigenvalues systematically.

Algorithm 2.2 Suppose that N1, . . . , Ns are solutions of (2.86). Then the following
algorithm iteratively constructs s-lists of complex numbers λ ∈ C∪{∞} on the basis
of a sequence of similarity transformations T (j), j = 1, . . . , s.

Step i = 1
Choose nonsingular T (1) =

(
T1, . . . , Tk1

)
and let col(T̂1, . . . , T̂k1) = (T (1))−1 such

that  T̂1

...
T̂k1

N1

(
T1 · · · Tk1

)
(2.91)

is in block root-subspace form. Let λj denote the eigenvalue of the block T̂jN1Tj for
j = 1, . . . , k1 and dj its dimension and collect this information, with the all ones
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row vector ej of length j, as

Λ1 =
(
λ1ed1 . . . λk1edk1

)
.

In order λj to be the first component z1 of zero z ∈ V (I) there must exist a joint
eigenvector that lies in the subspace Im(Tj).

Step i = 2
For all j = 1, . . . , k1, choose a basis matrix Kj of the largest subspace Kj that
satisfies

N2Kj ⊆ Kj and Kj ⊆ Im(Tj).

Define
L̂j := T̂jKj

and let Lj be a right inverse of L̂j. Extend Lj to the nonsingular matrix (Lj Mj).

Since Tj generally consist of multiple columns, N2 restricted to the subspace
Im(Tj) has multiple (possibly distinct) eigenvalues. Let us therefore denote, for
j = 1, . . . , k1, the rj different eigenvalues of Pj = L̂j(T̂jN2Tj)Lj by λ1

j , . . . , λ
rj
j with

algebraic multiplicity d1
j , . . . , d

rj
j

and transform Pj as  Q̂1
j

...
Q̂
rj
j

Pj

(
Q1
j · · · Q

rj
j

)
(2.92)

into block root-subspace form (with blocks of dimension d1
j , . . . , d

rj
j ). Then define for

j = 1, . . . , k1

Uαj =
(
TjLjQ

α
j

)
, Wj = TjMj , α = 1, . . . , rj (2.93)

Then, define the similarity transformation T (2) as

T (2) =
(
U1

1 · · · Ur11 W1 · · · U1
k1

· · · U
rk1
k1

Wk1

)
(2.94)

with r1 + . . .+ rk1 + k1 blocks of column size (some of which can be empty)

d1
1, . . . , d

r1
1 , d̂

1, d1
2, . . . , d

r2
2 , d̂

2, . . . , d1
k1
, . . . , d

rk1
k1
, d̂k1

corresponding the dimensions of U1
j , . . . , U

rj
j and Wj, j = 1, . . . , k1. Similarly, we

define
(T (2))−1 = col

(
Û1

1 , . . . , Û
r1
1 , Ŵ1, · · · , Û1

k1
, . . . , Û

rk1
k1

, Ŵk1

)
Hence, after the first 2 steps we know that

Im(U1
1 , . . . , U

r1
1 , · · · , U1

k1
, . . . , U

rk1
k1

)
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is a joint invariant subspace of N1, N2. As the proof below shows, we can securely
drop the eigenvalues of Ŵ ′jNiWj. Therefore, we introduce placeholder ∞ in accor-
dance with the blocks Wj, j = 1, . . . , k1, and augment Λ1 as follows

(
Λ1

Λ2

)
=

(
λ1ed1 . . . λk1edk1(

λ1
1ed1

1
. . . λ1

r1ed1
r1
∞ed̂1

)
. . .

(
λk1

1 edk1
1
. . . λk1

k1
e
d
k1
rk1

∞ed̂k1

) )

recording the relevant and irrelevant eigenvalues with their corresponding multiplic-
ities. The algorithm proceeds with the k2 = r1 + . . .+ rk1 blocks

U1
1 , . . . , U

r1
1 , · · · , U1

k1
, . . . , U

rk1
k1

, (2.95)

for which we will use the symbols T1, . . . , Tk2 .

Steps i = 3, . . . , s
These steps generate similarity transformations T (3), . . . , T (s). For each block T1, . . .,
Tki−1 of T (i−1), as constructed in step i, the largest Ni+1-invariant subspace that lies
in Im(Tj) is computed for j = 1, . . . , ki−1. Transform Pj into the form (2.92) and
construct matrices Uαj ,Wj , α = 1, . . . , rj as in (2.93), which also defines the new
similarity transformation matrix T (i) with new blocks

T (i) = (T1 · · · Tki−1).

After s steps, the matrix

Λ =

 Λ1

...
Λs

 (2.96)

is obtained which contains all information on the elements in V (I).

Theorem 2.8 Let N1, . . . , Ns satisfy (2.86), and run Algorithm 2.2 to obtain Λ in
(2.96). Then each z ∈ V (I) can be found as a column of Λ which does not contain
∞.

Proof. Recall that by Proposition 2.3 and Theorem 2.7 there exists a joint eigenvec-
tor v of the N ′is satisfying Niv = ziv, i = 1, . . . , s for every z = (z1, . . . , zs) ∈ V (I).
Let us therefore choose some z ∈ V (I) and let v be the corresponding joint eigen-
vector.
Consider Algorithm 2.2. In step one, suppose V1 = Im(T1) is the root subspace of
N1 corresponding to z1. We necessarily have v ∈ V1 and thus span{v} ⊂ V1. Since
span{v} is also N2-invariant and K2 is defined as the largest N2-invariant subspace
that lies in V1 we clearly have that

span{v} ⊂ K2 ⊆ V1.
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In fact, referring to (2.93), defining

V2 = Im(T1L1Q
j
1) for j ∈ {1, . . . , r1} such that σ(N2|V2) = {z2},

that is, the eigenvalue of N2 restricted to subspace V2 is the second component of
z. At each of the remaining step i = 3, . . . , s we will be able to find a subspace
of Vi ⊂ im(T (i)) for which σ(Ni|Vi) = {zi} which defines a sequence of subspaces
satisfying

V1 ⊇ K2 ⊇ V2 ⊇ K3 · · · ⊇ Ks ⊇ Vs and v ∈ Vi for all i = 1, . . . , s.

This shows that the algorithm finds every z ∈ V (I). Referring to the notation
in Algorithm 2.2, the invariant subspaces Vi ⊂ im(T (i)) must be contained in the
largest invariant subspace span(U1

1 , . . . , U
r1
1 , · · · , U1

ki−1
, . . . , U

rki−1
ki−1

), which is why
the blocks Wj were disregarded.

Algorithm 2.2 reduces to the classical method of Theorem 2.7 when the elements of
monomial vector b in (2.86) form a basis of Ps\I. Indeed, the matrices N1, . . . , Ns
are then pairwise commuting. With T (1) turning N1 into block root-subspace in
step 1, we infer that T (1) actually turns all N2, . . . , Ns into block root-subspace by
Lemma 2.3. As a consequence, the Ni’s in (2.86) reduce to the Mi’s in (2.82). In
addition, at each step i, the largest Ni+1 invariant subspace equals Kj = Im(Tj) for
all j = 1, . . . , ki, which means that the blocks Wj are void.

We emphasize that the developed procedure adds to the work done by Stetter
and co-workers [168]. Rather than improving the numerical behavior of existing
algorithms, the results of this section show that the zero set can be computed without
knowing a basis of the quotient space.

Due to the iterative nature of the algorithm it is difficult to derive theoretical
bounds on its computational complexity. Using a Gröbner basis approach usually
becomes inefficient when the basis is large if compared to the number of isolated
solutions of (2.80). For elementary problems, the determination of Ni in Algorithm
2.2 is computationally usually the most demanding step.

Remark 2.16 Various other approaches exist for solving (2.80), many of which do
not rely on algebraic operations of finding a Gröbner basis. For a good reference
in this respect see [167], which focusses on homotopy methods, or [7], using the
notion of the resultant of two polynomials. Recently, an LMI approach that uses
homogeneous polynomials was developed in [37].
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2.5.2 Numerical example

In this section, we will construct a multiplier-based relaxation and verify its exactness
by using Theorem 2.6. it will also be shown how to extract zeros of the resulting
polynomial system along the lines of Algorithm 2.2.

Consider the following robust linear programming problem:

infimize 〈c, y〉
subject to y ∈ R2, ai(δ)y − bi < 0 for all δ ∈ δ, i = 1, . . . , 4,

(2.97)

in which c = [−1, −1], ai(δ) is the ith row of A(δ) = A0 + E(δ), with

A0 =


−1 0
0 −1
1 0
0 1

 , E(δ) =


δ1
5

δ2
5

δ3
5

δ4
5

δ5
5

2δ2
6−δ5
10

δ7
5

2δ2
8−5δ7
10

 , b =


0
0
1
1

 ,

and the set δ is a direct product of ellipsoids defined as

δ = δ̂ × δ̂ × δ̂ × δ̂ with δ̂ =
{
δ̂ = (δ̂1, δ̂2) ∈ R2 | ‖δ̂‖ ≤ 1

}
.

This example thus consists of 4 semi-infinite LP constraints and resembles the
example in Section 5.1 of [33], where a new randomized approach was proposed
for handling uncertain convex programs. Originally, ellipsoidal perturbations on
the rows of the A were assumed which enables to recast the problem exactly as a
tractable conic quadratic program, see [15]. In order not to have access to a priori
tight approximation schemes, we have introduced polynomial dependence in E(δ).

Computing upper bounds

As sketched at the beginning of this chapter, each of the constraint will be rewritten
in the form

Fi(δ)′Ji(y)Fi(δ) ≺ 0 for all δ ∈ δ i = 1, . . . 4 (2.98)

with Fi(δ) =
(

∆i(δ)(I −Ai∆i(δ))−1Bi
I

)
. Let us denote the size of ∆i(.) by di×di.

Then, applying the S-procedure argument from Section 2.3 turns the problem into
the infimization of 〈c, y〉 subject to y ∈ R2, Πi ∈ R2di×2di , and(

I 0
Ai Bi

)′
Πi

(
I 0
Ai Bi

)
+ Ji(y) ≺ 0, (2.99)(

∆i(δ)
I

)′
Πi

(
∆i(δ)
I

)
� 0, ∀δ ∈ δ̂, i = 1, 2, 3, 4. (2.100)
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Notice that semi-infinite constraints (2.100) characterizing the set of admissible scal-
ings Πi do not reflect the entire domain δ. In fact, the uncertainties enter the prob-
lem constraint-wise, see [15], which allows to independently relax the constraints
ai(δ)− bi < 0, i = 1, . . . , 4, and each of them only involves two parameters.

Since the regions δ̂ are semi-algebraic, the following relaxations are based on sum-
of-squares techniques presented in [61]. We note that other implementations based
on the same principle can be used as well, e.g. [160, 158, 110]. The first relaxation,
denoted by REL-1, has the least computational complexity by using an parameter
independent monomial basis m(δ̂1, δ̂2) = 1 for each of the constraints. The resulting
upper bound value is γrel = −1.570. Inspection of the optimal dual multipliers of
the LMIs in (2.99) reveals that only Φ3,Φ4 are nonzero, by which it follows that the
constraints (2.99) are inactive for i = 1, 2. This motivates us to partially extend the
monomial basis for sum-of-squares relaxation REL-2, as indicated in Table 2.2. The
upper bound value has indeed improved to γrel = −1.602.

Approximation monomial basis per constraint CPU time (s) γrel

i = 1 i = 2 i = 3 i = 4
REL-1 1 1 1 1 4.21 -1.570
REL-2 1 1 1, δ5, δ6 1, δ7, δ8 5.42 -1.602

Table 2.2: Upper bounds for γopt corresponding (2.97).

Let us verify exactness along the lines Section 2.4.2. The optimal dual multipliers
Φ3,Φ4 both have rank 2 and read as

Φ3 =


0.0870 0.2730 0 0.2990
0.2730 0.8560 0 0.9350

0 0 0.9350 0
0.2990 0.9350 0 1.0220


and

Φ4 =


0.2910 −0.2050 0 −0.4110
−0.2050 0.1440 0 0.2890

0 0 0.2890 0
−0.4110 0.2890 0 0.5800

 .

As mentioned earlier, we can eliminate the Zi,ν from (2.68) if the constraints are
scalar-valued, and rather solve (2.70). From this polynomial system, the following
solutions were found

(δ̄5,1, δ̄6,1) = ( 0.2917, 0.9565), (δ̄5,2, δ̄6,2) = ( 0.2917, −0.9565),
(δ̄7,1, δ̄8,1) = ( −0.7083, −0.7059), (δ̄7,2, δ̄8,2) = ( −0.7083, 0.7059).

(2.101)

Note that we used indices 5,6,7,8 of the original problem. In order to verify exactness,
we can either search for Zi,ν that satisfy (2.68) or we can compute lower bound values
γlb by sampling the original constraints making use of the parameter values (2.101).
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Lower bound computations

Motivated by our the results obtained so far, we analyze lower bound values for three
different grids. Let us first be somewhat ignorant and sample each of the constraints
with 1257 parameter values, uniformly distributed over the unit disk, which leads
to a total of 5028 constraints, denoted as GRID-1. Although the optimal value
γlb = −1.604 is already close to the upper bound γrel − 1.602 and would suffice
as a certificate for exactness of REL-2 in practice, we can obtain better results
with much less computational effort. Using the fact that constraints 1 and 2 were
inactive in REL-1 and REL-2, let us replace the corresponding grid by a singleton
(δ1, δ2) = (δ3, δ4) = (0, 0), which we refer to as GRID-2. As shown in Table 2.5.2 the
same result is achieved with half of the computational complexity. Finally, GRID-3
further reduces the problem size by sampling constraint 3 and 4 on any parameter
pair given in (2.101). We emphasize that due to the uncertainty entering constraint-
wise, a single (generally non-unique) worst-case parameter pair always exist, see [15].
From the optimal values indicated in Table 2.5.2, the relaxation REL-2 is proven to
be exact.

Approximation ] gridpoints per constraint CPU time (s) γlb

GRID-1 1257 1257 1257 1257 8.32 −1.604
GRID-2 1 1 1257 1257 4.27 −1.604
GRID-3 1 1 1 1 0.45 −1.602

Table 2.3: Lower bounds for γopt corresponding (2.97).

Solving the polynomial system using Algorithm 2.2

Let us finally illustrate how the solutions in (2.101) were obtained by following the
procedure of Section 2.5.1. With the dual optimal multipliers Φ3,Φ4, the polynomial
system (2.70) for constraint 3, with notation x = (x1 x2) = (δ5, δ6) becomes

p1(x) =
p2(x) =

0.1411 +0.8881x1− 0.4374x2
2,

0.6781 −0.4086x1− 0.6109x2
2

(2.102)

The first step is to solve the system of linear equations (2.86) with the choices

bi(x) =


1
x1

x2

x2
2

 , and Vi(x) =


1 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x2

2

1 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x2

2

 ,
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for i = 1, 2, which leads to the solution matrices

N1 =


0 1 0 0
0 0.2917 0 0
0 0 0 1
0 0 0 0.2917

 , N2 =


0 0 1 0
0 0 0 1

0.3225 2.0305 0 0
0 0.9149 0 0

 .

Applying Algorithm 2.2, we first transform N1 into block root-subspace form Ñ1

and apply the transformation to both N2 leading to

Ñ1 =


0.2917 0 0 0

0 0.2917 0 0
0 0 0 0
0 0 0 0


and

Ñ2 =


−0.9565 −0.0851 0 0

0 0.9565 0 0
0 0 0.6280 −0.1318
0 0 0.5457 −0.6280

 .

We are able to read off the zeros, and need not apply further transformations. There
are two other candidate solutions of the form (0, .) but these do not satisfy (2.102).
In a similar fashion, the parameter values corresponding the exactness test for con-
straint 4 have been computed.
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2.6 Summary

A general framework has been presented for computing approximate solutions of
robust SDP optimization problems. The robust SDP constraints are allowed to be
rationally dependent on the parameters. Lower bound values are found by sam-
pling the given semi-infinite constraint on a finite number of parameter values. For
computing upper bound values, so-called relaxation schemes have been developed.

The basic theory from which all relaxation schemes are constructed concerns
robust SDPs with a polynomial parameter dependence. For these type of problems,
it has been shown how to derive a whole family of LMI relaxation schemes based
on Pólya’s theorem or matrix sum-of-squares decompositions. If compared to the
LMI-relaxations as presented earlier in [93, 160], the derived LMI conditions are
conceptually simpler and lead to semi-definite programs without any affine equation
constraints.

In a second relaxation approach the robust SDP constraints were assumed to be
specified in terms of linear fractional representations. By virtue of an S-procedure
argument, any given robust SDP constraint can be alternatively described in terms
of a semi-infinite constraint that is quadratic in the parameters, at the cost of in-
troducing auxiliary multiplier variables. As compared to the direct sum-of-squares
method, relaxations based on the S-procedure are especially suited for rationally
dependent robust SDP constraints. In the numerical example of Section 2.4.3, these
S-procedure based or so-called multiplier relaxations were constructed by employing
convex hull arguments, Pólya’s theorem and sum-of-squares decompositions. The
flexibility of the proposed framework has been exploited in developing a Matlab
toolbox, see [55], as well as in a numerical example.

Since the relaxation gap cannot be estimated a priori in general, a condition that
verifies exactness is presented for the general case of having multiple robust SDP
constraints. Motivated by the fact that this test amounts to finding a solution to a
system of polynomial equations, a rather independent discussion on how to numeri-
cally compute such solutions has been given. Standard techniques in computational
algebra, often referred to as Stetter’s method, involve the computation of a Gröbner
basis of the ideal generated by the polynomials and further require joint eigenvector
computations in order to arrive at the zeros of the polynomial system. Our algo-
rithm, presented in [60], does not require structural knowledge of the polynomial
system, nor does it require computation of joint eigenvectors.
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Chapter 3

Analysis with integral

quadratic constraints

A powerful framework for the analysis of uncertain systems is based on so-called inte-
gral quadratic constraints (IQC). In this section, we briefly recapitulate this analysis
approach which can handle all sorts of non-linear and time-varying uncertainties by
making use of a so-called multiplier variable. Popov actually first used the notion of
’multiplier’ in the context of feedback systems and considered the stability analysis
problem for an LTI system with a single non-linearity in the loop, see [144]. It is by
now well-known that IQC analysis generalizes the Popov criterion, circle criterion
and many variations thereof, see [75]. It includes important stability principles such
as those based on small gain or passivity arguments. In this chapter, we discuss
the main theory on the analysis with IQCs, and show how to address parametric
uncertainties. A numerical example will be given in Section 4.3.

Consider the interconnection as shown in Figure 3.1, in which

M =
(
Mqp Mqw

Mzp Mzw

)
. (3.1)

The uncertain element ∆ maps signals from Lnq2,e to Lnp2,e, in which L2,e denotes the
space of signals w for which all truncations TN (w) defined as

TN (w) =
{
w(t) for 0 ≤ t ≤ N
0 for t ≥ N

have finite energy. Hence, if we let L2 denote the space of all functions [0,∞]→ Rn

of finite energy, the space L2,e is defined as

L2,e := {w : [0,∞)→ Rn| TN (w) ∈ L2 for any N ≥ 0} .
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M

∆

wz

pq

Figure 3.1: Interconnection for stability and performance analysis

The set of uncertain elements, denoted by ∆, represents all tolerable uncertainties
and captures both the nature of the uncertainties (linear/nonlinear, time-invariant/time-
varying, static/dynamic), their size (in terms of bounds on norm or gain) and their
structure (block-diagonal, full-block). Whether the resulting robust stability anal-
ysis problem can be put into efficient algorithms clearly depends on the class of
uncertainties that is considered. As will become clear in the next section, two prop-
erties of ∆ are essential in order to establish a fundamental analysis result in IQC
theory.

Assumption 3.1 (Causal, bounded) The operators ∆ ∈ ∆ : Lnq2,e → Lnp2,e are
causal and have finite gain on the vector space L2.

The analysis of uncertain systems in the IQC framework is founded on the use of an
auxiliary multiplier variable. Let a set ∆ of uncertain operators be given. Suppose
that a matrix function Π(.) exists, which is Hermitian-valued and essentially bounded
on the imaginary axis, and for which the following integral quadratic constraint
(IQC) holds true for all elements ∆ ∈∆:

∫ ∞
−∞

(
∆̂q(iω)
q̂(iω)

)∗
Π(iω)

(
∆̂q(iω)
q̂(iω)

)
≥ 0 ∀q ∈ Lnq2 . (3.2)

Here, q̂ indicates the Fourier transform of a finite energy signal q ∈ Lnq2 and ∆̂q(iω)
indicates the Fourier transform of the signal ∆(q). Any matrix function Π for which
(3.2) holds, will be called an admissible multiplier for the uncertainty set ∆. In fact,
the LMI conditions that are derived in this section depend on the multiplier. In order
to guarantee robust stability or performance of the interconnected system in Figure
3.1 with respect to the uncertain set ∆, the multiplier Π needs to satisfy (3.2), and
any multiplier with this property is therefore referred to as being “admissible”.

Example 3.1 (Time-invariant real parameter) Let ∆ correspond to multipli-
cation with a real scalar δ ∈ [−1, 1], i.e. (∆q)(t) = δq(t). Then, an admissible
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multiplier is

Π(iω) =
( −X(iω) Y (iω)

Y (iω)∗ X(iω)

)
,

where X(iω) = X(iω)∗ � 0 and Y (iω) + Y (iω)∗ = 0 for all ω ∈ R. In fact,

(
δq̂(iω)
q̂(iω)

)∗( −X(iω) Y (iω)
Y (iω)∗ X(iω)

)(
δq̂(iω)
q̂(iω)

)
=

q̂(iω)∗
(
X(iω)− δ2X(jω) + δY (iω) + δY (iω)∗

)
q̂(iω) � 0 (3.3)

holds for all δ ∈ [−1, 1]. By integration, the IQC (3.2) is shown to be satisfied for
any parameter value in the set.

The following theorem provides a sufficient condition for robust stability of the
interconnected system in Figure 3.1. This interconnection of M with ∆ is said to
be well-posed if I −Mqp∆ has a causal and bounded inverse.

Theorem 3.1 Let M(s) ∈ RH(nq+nz)×(np+nw)
∞ and let ∆ be a set of bounded causal

operators ∆ : Lnq2,e → Lnp2,e. Let Π ∈ RH(nq+np)×(np+nw)
∞ be a proper matrix function

without poles on the extended imaginary axis. Suppose that

i) for every τ ∈ [0, 1] the interconnection of Mqp and τ∆ is well-posed,

ii) τ∆ satisfies the IQC (3.2) defined by Π for every τ ∈ [0, 1],

iii) Mqp satisfies(
I

Mqp(iω)

)∗
Π(jω)

(
I

Mqp(iω)

)
≺ 0, ∀ω ∈ R ∪ {∞}. (3.4)

Then, the feedback interconnection of M and ∆ is stable.

Proof. A detailed discussion on IQC analysis results can be found in [123].

The inequality (3.2) is often called the IQC defined by the multiplier Π. Obviously,
there will be other elements ∆ /∈ ∆ that satisfy (3.2) for a particularly chosen
multiplier. For this reason, the feasibility condition (3.4), as considered for a single
multiplier Π, is usually not a precise analysis test for proving robust stability.

One way of obtaining more accurate results is by constructing a whole family of
multipliers, denoted by Π, each element of which satisfies (3.2) for the uncertainty
set ∆ under consideration. The stability condition in Theorem 3.1 then amounts to
searching some Π ∈ Π for which the frequency domain inequality (3.4) is feasible.
Roughly speaking, the larger the set Π is, the more accurate the analysis result
will be. The design of suitable multiplier classes for practical problems has been
considered in [147, 101, 87] and has lead to the development of a Matlab toolbox
[98]. Nevertheless, it is yet unknown how to estimate the level of conservatism.
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Let us have a closer look at how to implement condition (3.4) in Theorem 3.1.
In the remaining part of the chapter, the dynamic multiplier Π is assumed to be
real-rational and bounded on the extended imaginary axis.

Assumption 3.2 The dynamic multiplier Π ∈ RHnp+nq∞ is chosen to be described
as

Π = Ψ∗QΨ, with Q ∈ Q, (3.5)

in which Ψ is a fixed rational transfer matrix, the elements of which are proper and
stable transfer functions. A suitably chosen set of matrices Q ∈ Q parameterizes a
set of admissible multipliers Π.

The motivation for considering multipliers of the form (3.5) stems from the following
fact. For any given Π there exists, by boundedness of Π, some α such that Π + α2I

is positive definite on C0. Hence, we can factorize Π + α2I = F ∗F such that F and
the inverse of F are both proper and stable. With the choices

Ψ =
(

F

αI

)
and Q =

(
I 0
0 −I

)
,

the structure in (3.5) follows.

Under the assumption that M is stable and the property i) and ii) in Theorem
3.1 hold, stability of the interconnected system defined by M and ∆ is implied by
the existence of Q ∈ Q such that Π = Ψ∗QΨ satisfies (3.4). This frequency domain
inequality (FDI) is a particular type of a robust SDP constraint in the single vari-
able ω and can be recast as a genuine LMI by using the Kalman-Yakubovich-Popov
Lemma, see Appendix A. In fact, let Mqp be realized as

Mqp =

[
A B

C D

]
. (3.6)

Further, let Ψ ∈ RH
nQ×(nq+np)
∞ be partitioned according to the columns/rows of(

I

Mqp

)
, with minimal realization

Ψ =
(

Ψ1 Ψ2

)
=

[
AΨ BΨ1 BΨ2

CΨ DΨ1 DΨ2

]
(3.7)
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and AΨ ∈ RnΨ×nΨ . In order to numerically verify (3.4), we introduce the composed
transfer matrix

(Ψ1 Ψ2)
(

I

Mqp

)
= (Ψ2Mqp + Ψ1) =

 AΨ BΨ2C BΨ2D +BΨ1

0 A B

CΨ DΨ2C DΨ2D +DΨ1

 . (3.8)

By the KYP Lemma, it then follows that (3.4) is equivalent to the existence of
Q ∈ Q and X = X ′, partitioned as

X =
( X11 X12

X21 X22

)
,

that satisfy

(
..
)′


0 0 X11 X12 0
0 0 X21 X22 0
X11 X12 0 0 0
X21 X22 0 0 0
0 0 0 0 Q




I 0 0
0 I 0
AΨ BΨ2C BΨ2D +BΨ1

0 A B

CΨ DΨ2C DΨ2D +DΨ1

 ≺ 0. (3.9)

In Figure 3.2, we have visualized the fact that IQC analysis with dynamic multipliers
of the form Π = Ψ∗QΨ involves the composed plant (3.8). Here, the signals p̃, q̃ are
defined as the filtered versions of p, q, that is(

p̃

q̃

)
= Ψ

(
p

q

)
, (3.10)

and the IQC (3.2) can alternatively be written as

∫ ∞
−∞

(
Ψ(iω)

(
∆̂q(iω)
q̂(iω)

) )∗
Q

(
Ψ(iω)

(
∆̂q(iω)
q̂(iω)

) )
≥ 0 ∀q ∈ Lnq2 .

Remark 3.1 Theorem 3.1 generalizes earlier observations on robust stability that
were made in Section 2.1. Recall that (2.9)-(2.10) were shown to be sufficient con-
ditions for robust stability of the loop in Figure 3.1, assuming that the uncertainty
is an LTI operator.

3.1 Robust quadratic performance

In controlled systems, one is usually interested in achieving a guaranteed closed loop
robust performance level in addition to robust stability. The quadratic performance
criterion, of which a definition can be found in Appendix A, is parameterized by the
index matrix Pp. It can characterize many different performance measures, of which
the induced L2-gain has proven particularly useful. In fact, this quantity equals
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Figure 3.2: Using dynamic multipliers of the form (3.5) can be interpreted as filtering
the signals p, q.

the H∞-norm, if applied to an LTI system. Based on Theorem 3.1, the following
characterization of robust quadratic performance can be derived.

Proposition 3.1 Suppose M is stable and let property (i) and (ii) in Theorem
3.1 be satisfied. Then, the feedback interconnection of M with ∆ is robustly stable
and satisfies robust quadratic performance in the channel w → z, if there exists a
multiplier Π that satisfies (3.2) as well as

(
..
)′( Π(iω) 0

0 Pp

)
I 0

Mqp(iω) Mqw(iω)
0 I

Mzp(iω) Mzw(iω)

 ≺ 0 ∀ω ∈ R ∪ {∞}. (3.11)

Proof. Robust stability immediately follows from the left upper block in (3.11) and
applying Theorem 3.1. The extension to performance is not difficult, see for example
[185].

Similar to the fact that the multiplier structure Π(iω) = Ψ(iω)∗QΨ(iω) in (3.5)
enabled us to characterize robust stability in terms of the realization matrices, we
can turn condition (3.11) into an LMI constraint by applying the KYP lemma. In
fact, with the realization

M =

 A Bp Bw
Cq Dqp Dqw

Cz Dzp Dzw


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and the realization of Ψ in (3.7), it follows that

(
Ψ 0
0 I

) I 0
Mqp Mqw

Mzp Mzw

 =


AΨ BΨ2Cq BΨ1 +BΨ2Dqp BΨ2Dqw

0 A Bp Bw
CΨ DΨ1Cq DΨ1 +DΨ2Dqp DΨ2Dqw

0 Cz Dzp Dzw


(3.12)

which is abbreviated as  Ã B̃p B̃w

C̃q D̃qp D̃qw

C̃z Dzp Dzw

 .
Note that Dzp, Dzw are not modified by the composition with Ψ, which motivates
to drop the symbol .̃ Then, condition (3.11) holds if and only if there exists some X
and Q ∈ Q that satisfy

I 0 0
Ã B̃p B̃w
C̃q D̃qp D̃qw

0 0 I

C̃z D̃zp D̃zw


′

0 X 0 0
X 0 0 0
0 0 Q 0
0 0 0 Pp




I 0 0
Ã B̃p B̃w
C̃q D̃qp D̃qw

0 0 I

C̃z D̃zp D̃zw

 ≺ 0. (3.13)

3.2 Robust H2-performance analysis

Given an LTI system, theH2-norm of its transfer matrix is a well-known performance
measure in the context of disturbance rejection problems. In fact, one can view LQG
optimal control as the H2-norm minimization of a weighted closed-loop transfer
matrix. It is also well-understood that several signal-based interpretations of the
H2-norm exist, that can be extended to general non-linear or time-varying systems.
In Appendix A, one can find a stochastic and an impulse response interpretation of
the H2-norm.

As shown in [135, 13], a natural extension of the H2-norm performance measure
exists for linear time-varying systems. For general non-linear time-varying systems
there exist multiple extensions of the signal-based interpretations of the H2-norm,
that do not lead to the same performance measure. In view of this possible ambiguity,
the terminology “H2-performance measure” should be used with care if the system
is neither LTI nor LTV. In view of this ambiguity, it is an interesting research
topic to understand which measure of performance is most suitable (and numerically
tractable) when an uncertain system is driven by a white noise source.

Remark 3.2 The fact that LPV systems are a parameterized family of LTV systems
implies that the worst-case H2-performance analysis of LPV systems can be unam-
biguously used. In Section 4.2.2, we will construct sufficient conditions for robust
H2-performance analysis in terms of robust SDPs.
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In the remaining part of this section, an LMI characterization of a robust perfor-
mance measure is presented, which is based on the impulse response interpretation
of theH2-norm. This performance measure is motivated by the fact that a particular
initial condition can be generated by an impulse response to the plant. Moreover,
by adding a suitable filter to the plant input, the impulsive input can also represent
specific disturbance signals.

Let δD denote Dirac’s delta-distribution and define the inputs

wη = δDe
η, (3.14)

where eη is the vector

eη =
(

0 . . . 0 1 0 . . . 0
)′
, (3.15)

with “1” being located at the ηth position. For any fixed non-linear time-varying
uncertain operator ∆ ∈ ∆, let us denote the response of the interconnection in
Figure 3.1 to wη by zη,∆ = zη(wη,∆). Then, the following robust performance
measure is considered:

nw∑
η=1

‖zη,∆‖22 ≤ γ2, ∀∆ ∈∆, (3.16)

in which ‖.‖ is the standard L2-norm that measures the energy of a signal. For time-
invariant uncertainties ∆ this definition can be shown to coincide with the worst case
H2-norm in the usual sense.

Theorem 3.2 Consider the interconnection of Figure 3.1 and let M as defined in
(3.1) be stable and proper. The interconnection is robustly stable and the H2-norm
of channel w → z is at most γ if D̃qw = 0, Dzw = 0 and there exists matrices
Z,X , Q ∈ Q that satisfy Tr(Z) ≤ γ2,

B̃′wX B̃w < Z, (3.17)


I 0
Ã B̃p
C̃q D̃qp

C̃z Dzp


′

0 X 0 0
X 0 0 0
0 0 Q 0
0 0 0 I




I 0
Ã B̃p
C̃q D̃qp

C̃z Dzp

 ≺ 0. (3.18)

Proof. Robust stability follows from the observation that(
C̃z Dzp

)′ (
C̃z Dzp

) � 0,

by which feasibility of (3.18) implies (3.9). Since the latter condition is equivalent
to (3.4) by the KYP lemma, robust stability follows from Theorem 3.1.
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Remark 3.3 The presented notion of robust performance (3.16) coincides with the
robust H2-performance measure in Section 4.2.2 if the uncertainty is parametric and
time-invariant.

In order to prove robust H2-performance, let us choose some ∆ ∈ ∆ and close
the loop, i.e. we set p = ∆(q). Further, we choose some impulsive input wη(t) of
the form (3.14), and let xη(t), pη(t), qη(t), zη(t) be the corresponding trajectories.
Furthermore, let xΨ(t) denote the state of the filter Ψ in (3.10) and let again p̃, q̃

be defined as the filtered versions of p, q respectively. Then, the response of the
weighted system (3.12) is given by

ξ̇ = Ãξ +B̃pp, ξ(0) = B̃we
η,

z = C̃zξ +Dzpp,

as well as (
p̃

q̃

)
= C̃qξ + D̃qpp,

in which the notation ξ = col(x, xΨ) was used, in accordance with realization (3.8).
If we now pre- and post multiply (3.17) with the vectors eη ′, eη respectively, it
follows that

ξ(0)′X ξ(0) ≤ eη ′Zeη. (3.19)

Further, if we pre- and post multiply (3.18) with(
ξ(t)
p(t)

)′
and

(
ξ(t)
p(t)

)
respectively, for some t ≥ 0, we arrive at

ξ(t)′X ξ̇(t) + ξ̇(t)
′X ξ(t) +

(
p̃(t)
q̃(t)

)′
Q

(
p̃(t)
q̃(t)

)
+ z(t)′z(t) ≤ 0.

Using the fact that the system is robustly stable and, hence, all signals have finite
L2-norm, and using also (3.19), we can integrate the latter expression and get∫ ∞

0

z(t)′z(t)dt− eη ′Zeη +
∫ ∞

0

(
p̃(t)
q̃(t)

)′
Q

(
p̃(t)
q̃(t)

)
dt ≤ 0.

If we denote by p̂, q̂ and ẑ the Fourier transformed signals of the L2-signals p̃, q̃, and
z respectively, this can alternatively be written as

1
2π

∫ ∞
−∞

ẑ(iω)′ẑ(iω)dω − eη ′Zeη +
1

2π

∫ ∞
−∞

(
p̂(iω)
q̂(iω)

)′
Q

(
p̂(iω)
q̂(iω)

)
dω ≤ 0.
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Now note that the following relation holds for all ω ∈ R

(
p̂(iω)
q̂(iω)

)′
Q

(
p̂(iω)
q̂(iω)

)
=
(
p̂(iω)
q̂(iω)

)′
Ψ(iω)′QΨ(iω)

(
p̂(iω)
q̂(iω)

)
=

=

(
∆̂(q̃)(iω)
q̂(iω)

)′
Ψ(iω)′QΨ(iω)

(
∆̂(q̃)(iω)
q̂(iω)

)
.

From the fact that ∆ satisfies the IQC defined by Π = Ψ′QΨ, we get (leaving out
the factor 1

2π ) ∫ ∞
−∞

ẑ(iω)′ẑ(iω)dω − eη ′Zeη ≤ 0.

which implies ‖ẑ‖ = ‖z‖ ≤ eη ′Zeη.
Let us finally remind the fact that this relation has been derived for a single

impulsive inputs wη and it actually holds for any other input w1, . . . , wnw of the form
(3.14). Hence, by summing over η and using the fact that

∑
eη ′Zeη = Tr(Z) ≤ γ2,

we have proven that the system satisfies the performance measure (3.16).

3.3 IQC-analysis for time-varying parameters

In order to illustrate the use of dynamic IQC multipliers of the form (3.5) in de-
scribing a multitude of different uncertainties, suppose that ∆(q) = δ(t)q(t) with δ(.)
being a time-varying parameter. Alternative techniques for analyzing these LPV sys-
tems that make use of Lyapunov theory will be developed in Section 4.2.3. With the
purpose of comparing the computed upper bound values with results obtained in
later sections, we continue our discussion in discrete time. However, a slightly differ-
ent class of IQC multipliers can be proposed for systems with uncertain time-varying
parameters in continuous time.

The IQC analysis result that is discussed rather briefly can be found in [113]
in full detail. It is based on first extending the generalized plant, after which the
swapping lemma can be applied, see [99, 87]. As a result, one arrives at a standard
block diagonal uncertainty structure, as illustrated in Figure 3.3. This structure
enables us to characterize a class of admissible multipliers for some given bounds on
the parameter and its variation.

Suppose a single time-varying parameter δk, k = 1, 2, . . . is characterized by some
given region of variation R ⊂ R2, according to Definition 4.1, i.e.

(δk, δk+1 − δk) ∈ R for all k ≥ 0.

In order to incorporate the parameter variation νk = δk+1 − δk, a new diagonal
uncertainty block structure is introduced.
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A major observation is the following. The interconnected system on the left of
Figure 3.3, in which δ represents any R-admissible parameter sequence, is equivalent
to stability of the interconnected system on the right, where the block diagonal
uncertainty is parametric and time-invariant, with (δ, ν) ∈ R.

Along the lines in [113], the structure of the multiplier is chosen as

Π = Ψ∗QΨ with Ψ =
(

Ψ1 Ψ2

)
=
(
H1 0
0 H2

)
, (3.20)

in which Q ∈ Q is a parameterized set of matrices that satisfies
δIl 0
0 νIk

I 0
0 I


′

Q


δIl 0
0 νIk

I 0
0 I

 � 0 for all (δ, ν) ∈ R. (3.21)

Note that this is a robust LMI constraint of the form (2.3), similar as was obtained
in Section 2.1.1. The transfer matrices H1, H2 that fix the dynamics of the multiplier
Π are constructed as follows. First, a fixed (stable) basis matrix H is defined as

H = Ir ⊗


1

(z + λ)−1

...

(z + λ)−β

 =

[
AH BH
CH DH

]
, (3.22)

for some chosen pole location λ in the open unit disc and some degree β. This
defines the dimensions k, l in (3.21) as l = (β + 1)r and k = rβ. Assume that the
realization of H is minimal. Then, the extended transfer matrices are defined as

H1 =

 AH BH
CH DH

AH BH

 , H2 =

 AH BH I

CH DH 0
0 0 I

 . (3.23)

Finally, introduce the extensions Mqp,e = (Mqp 0 ), Mzp,e = (Mzp 0 ) in which k
zero columns are appended to Mqp,Mzp and let the composed transfer matrix have
the following realization:

(
Ψ 0
0 I

)
I 0

Mqp,e Mqw

0 I

Mzp,e Mzw

 =


Ã B̃p,e B̃w

C̃q D̃qp,e D̃qw

C̃z D̃zp,e Dzw

 .
With these preparations, applying the standard IQC analysis result of Theorem 3.1
on the extended plant leads us to the following result.
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Figure 3.3: Robust stability analysis using the swapping lemma. Robust stability of
the left and right interconnection are equivalent.

Theorem 3.3 Consider the interconnection of Figure 3.1 and let M as defined in
(3.1) be stable and proper. Let ∆(p)k = δkpk for k = 0, 1, . . . in which the sequence δ
is R-admissible. Choose parameters β, λ, |λ| < 1 and construct H1, H2 as defined in
(3.22) and let the multiplier be parameterized as in (3.20). Then, the interconnection
is robustly stable and satisfies quadratic performance on the channel w → z if there
exist solutions X and Q ∈ Q for which the following LMI holds:

(
..
)′

−X 0 0 0

0 X 0 0
0 0 Q 0
0 0 0 Pp




I 0 0
Ã B̃p,e B̃w

C̃q D̃qp,e D̃qw

0 0 I

C̃z D̃zp,e Dzw

 ≺ 0. (3.24)

Proof. Robust stability follows from Theorem 3.1. A proof as well as more details
can be found in [113, 115].

Condition (3.21) is generally non-tractable and relaxation schemes are needed for
implementing the inclusion Q ∈ Q. In the previous chapter we have extensively
discussed this issue, and we have noticed that it is relatively easy to construct
relaxation schemes for polytopic regions R by using convexity arguments. If R is
described by polynomial inequalities, as in case of ellipsoidal regions, sum-of-squares
relaxations are needed see also Section 2.2 and [61, 158].

Remark 3.4 Observe that X enters condition (3.24) in a different fashion than we
have seen so far. This is because of the fact that the frequency domain inequality,
as it appears in Theorem 3.1, is imposed on the unit circle, rather than on the
imaginary axis. This again corresponds to the fact that the analysis conditions have
been formulated in discrete time. As shown in [115], a continuous time version of
Theorem 3.3 exists when using slightly different transfer matrices H1, H2.
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3.4 Numerical example

Let δ denote an uncertain parameter sequence and consider the discrete-time LTI
system  xk+1

zk
qk

 =


0 1 1 0
−0.5 0.5 1 1

1 1 0 0
0 1 0 0


 xk

wk
pk

 , (3.25)

that is interconnected with δ. With the relation

pk = δkqk, δk ∈ [−r, r] for k = 1, 2, . . . ,

the uncertain system corresponds to the LPV system

xk+1 =
(

0 1
−0.5 −0.5 + δk

)
xk +

(
1
1

)
wk, x0 = x̄0

zk =
(

0 1
)
xk.

(3.26)

The goal in this example is to compute upper bounds γ on the worst-case l2-gain
from w → z for different parameter bounds |δ| ≤ r. The parameter is allowed to
vary between the extreme points of δ = [−r, r] without any additional constraints
on the variation δk+1 − δk. Following the lines of the previous section, we apply
Theorem 3.3 for the performance index matrix

Pp =

(
−γI 0

0 1
γ I

)
.

The dynamic multiplier in (3.20) is constructed for pole-location λ = 0. The in-
clusion Q ∈ Q, needed to parameterize the multiplier class, is implemented by
employing a convex hull relaxation scheme from Section 2.3.1. That is, we require
the lower right block of Q to be negative definite and impose (3.21) on the four
generators

(δ, ν) = (r,−2r), (δ, ν) = (r, 0),
(δ, ν) = (−r,−2r), (δ, ν) = (−r, 0).

(3.27)

Note that this region displays the fact that, for discrete time LPV systems, the vari-
ation ν is trivially bounded, see also Figure 4.1.

Upper bounds on the worst-case l2-gain are shown in Figure 3.4 for a number of
multiplier degrees β in (3.22). In addition, the upper bound values for the parame-
ter value p = 0.45 are listed in Table 3.1. Observe that the upper bounds improve
when the degree β is increased. However, it turns out that even if setting β = 10,
the upper bounds of the IQC analysis test do not get lower than about 18.4. The
use of less conservative Pólya relaxations does not provide any help. At this point,
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it is unknown how we can compute lower bound values, though we will come back
to this issue in Section 4.3.

β ] LMIs ] Vars CPU time [s] γ for r = 0.45
UB-0 - 4 8 2.80 88.56
UB-1 - 6 47 3.24 16.78
IQC-1 1 6 32 3.07 39.62
IQC-2 2 6 77 3.02 18.44
IQC-3 3 6 142 3.43 18.43

Table 3.1: l2-gain upper bounds based on Theorem 3.3 (λ = 0) and comparison with
relaxations UB-0, UB-1 from Section 4.3.

In Table 3.1 we have also listed the CPU computation times, as they are obtained by
using Sedumi [170] on a Pentium 4 with 2.4 GHz. The numbers do not include the
computation time that is needed for constructing the LMI constraints that define
the relaxation scheme, which is in the order of 1-2 seconds.

The labels UB-0 and UB-1 correspond to the Lyapunov based analysis approach
of Section 4.3, which addresses the same numerical example. The analysis test UB-0
involves a parameter independent Lyapunov matrix, whereas a parameter depen-
dent Lyapunov matrix was used in UB-1. In view of the less conservative bounds
provided by UB-1, we can conclude that none of the upper bound values that are
computed in this section are exact.

In order to demonstrate the importance of specifying a bound on the parameter
variation, even if it is the trivial one in (3.27), we finally consider the region defined
by the generators

(δ, ν) = (r,−1000), (δ, ν) = (r, 0),
(δ, ν) = (−r,−1000), (δ, ν) = (−r, 0).

With a convex hull relaxation similar to the one used in IQC-1, the relaxation scheme
is referred to as IQC-1000. The resulting upper bound values are shown in Figure
3.4 and are conservative, as expected. Moreover, the computed values happen to be
exactly equal to the upper bounds obtained in relaxation UB-0, a relaxation scheme
which didn’t incorporate any parameter variation bounds. Thus, it is important to
incorporate known bounds on the parameter variation, both in the IQC framework,
as well as in the Lyapunov function approach that is covered in our next chapter.

Remark 3.5 Theorem 3.3 provides a sufficient condition for stability and perfor-
mance. As mentioned in [115], the family of relaxations parameterized by the degree
β is asymptotically exact in case ∆ is a dynamically time-varying operator. For time-
varying parametric uncertainties, which are memoryless, it is unknown whether such
guarantees on asymptotic exactness can be given.
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Figure 3.4: Computed upper bounds with IQC analysis and comparison with relax-
ation UB-0,UB-1, that will be computed in Section 4.3. All values are obtained by
using a convex hull relaxation with full block multipliers.
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3.5 Summary

We have given a brief recap on the theory on integral quadratic constraints for
the analysis of uncertain systems. In the IQC analysis approach, the uncertain
system consists of an LTI plant that is interconnected with an uncertain element.
The uncertain operator is described via an integral quadratic constraint and a set
of admissible multipliers. The framework allows for general non-linear and time-
varying uncertainties.

Analysis conditions for robust stability and performance were given in terms of
frequency domain inequalities as well as LMI feasibility problems. For the particular
case of having time-varying parametric uncertainties only, a suitable class of multi-
pliers was presented that was taken from the literature. This particular multiplier
class has been applied on an academic example, in which the goal was to compute
upper bounds on the induced l2-gain of a discrete-time LPV system.
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Chapter 4

Analysis of discrete-time

LPV systems

Linear parameter varying (LPV) systems naturally arise in engineering applications.
By considering a linear system whose system matrices depend on some time-varying
parameters, we can capture uncertain time-varying or, to some extend, non-linear
behavior, see e.g. [152]. As mentioned in the introduction, there are many open
questions concerning LPV systems. This chapter addresses the stability and perfor-
mance analysis problem for LPV systems that are described as

xk+1 = A(δk)xk +B(δk)wk x0 = x̄0, k = 0, 1, 2, . . . ,
zk = C(δk)xk +D(δk)wk,

(4.1)

in which xk ∈ Rn denotes the state, wk ∈ Rnw the disturbance, zk ∈ Rnz the con-
trolled output and δk = (δk,1, . . . , δk,s) ∈ Rs the (time-varying) parameter vector.
As will become clear in this chapter, treating LPV systems in the discrete time set-
ting has certain advantages, in particular what concerns the search for destabilizing
or worst-case parameter sequences.

Since the behavior of the LPV system (4.1) may heavily depend on the parameter
sequence that is considered, it is essential that we characterize the nature of the
parameter variation. In this thesis, this is done in terms of the sequence ν with
νk = δk+1 − δk ∈ Rs, k = 0, 1, . . .. A more complex characterization of the set of
admissible parameter sequences, e.g. by including bounds on δk+j − δk for values
j > 1, is possible, though this will strongly affect the complexity of the resulting
numerical optimization problem.

Definition 4.1 (Admissible parameter variation in discrete-time) For a
given compact set R ⊂ R2s, called a region of variation, any sequence (δk)k=1,2,...

with rate-of-variation νk = δk+1 − δk is called R-admissible if (δk, νk) ∈ R for all
k ≥ 0.
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Clearly, by imposing νk = 0 for all k the behavior of system (4.1) becomes time-
invariant. In case that no bound on the rate-of-variation of the parameters is speci-
fied we will alternatively write δ ∈ δ, with δ defined as

δ := {δ ∈ Rs| (δ, .) ∈ R}, (4.2)

rather than using the more cumbersome notation (δ, .) ∈ R.

Assumption 4.1 The region of variation R is compact.

For discrete-time LPV systems with the parameter values taken from a compact
set, this assumption is automatically satisfied. In fact, for component-wise intervals
δi = [−αi, αi] with αi ∈ R, this is easy to see since |νk,i| = |δk+1,i − δk,i| < 2αi for
all i = 1, . . . , s. Hence, a discrete-time LPV system exhibits a natural bound on the
rate of variation.

In view of the fact that the parameter variation is characterized in terms of the
difference of two sequential parameter values, an alternative description of the region
of variation R is in terms of the variables (δ, θ)

R̂ := {(δ, θ)| (δ, θ − δ) ∈ R}. (4.3)

It immediately follows that any tuple (δk, δk+1), k ≥ 0 taken from an R-admissible
parameter sequence (δk)k=1,2,... is an element of R̂. Note that it is merely a matter
of parametrization, any region R can be transformed into its counterpart R̂ and vice
versa. For a particular polytopic region the two parametrizations are shown in Figure
4.1. In Section 4.1.3, we will further motivate why we prefer to use R̂ rather than R .

Figure 4.1: Two different descriptions of region of parameter variation: R (left) and
R̂ (right). The grey box corresponds to a rate of variation ν ≤ α, if α represents
the bound |δ| ≤ α.

Let us recall the definition of exponential stability for LTV systems in discrete time,
which involves the autonomous system xk+1 = Akxk. For a reference, see for exam-
ple [105, 85].
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Definition 4.2 The autonomous system xk+1 = Akxk is exponentially stable if
there exist positive scalars m and λ < 1 such that all sequences (xk)k=0,1,... of the
system satisfy

‖xk‖ ≤ mλk‖x0‖
for all k ≥ 0.

Let us outline this chapter. Lyapunov-based analysis techniques will be developed for
the analysis of discrete-time LPV systems. In the next section, a sufficient condition
for stability of the LPV system (4.1) is given in terms of a robust LMI. With only few
results on Lyapunov converse theorems available, we typically construct conditions
for stability that are sufficient only.

In Section 4.1.3, we propose a conceptually simple alternative method based
on the so-called monodromy matrix. A family of necessary and sufficient stability
conditions will be developed, each in the form of a robust SDP. One of the main
results, found in Section 4.1.4, is a generalization of the joint spectral radius, which
has been derived for switched systems, to general LPV systems. In addition, we
propose sufficient conditions for instability of the LPV system in Section 4.1.5 that
are similar to the generalized spectral radius, which has originally been introduced
for switched systems, see [116, 180]. Finally, the performance analysis problem is
considered in Section 4.2, and a numerical example will be used to illustrate the
method.

4.1 Lyapunov stability analysis

As mentioned in the example of Section 2.1, stability of an uncertain LTI system
can be captured in terms of the structured singular value. Unfortunately, for time-
varying systems it is only known how to derive (a priori) sufficient conditions for
stability. In other words, numerical computations often give an imprecise answer to
the analysis problem, even if the relaxation gap of a particular relaxation scheme is
reduced to zero. As a consequence, the R-stability margin for a given LPV system,
defined as the largest r for which stability can be proven for the scaled region rR,
will depend on the stability condition that is chosen.

Consider the following autonomous LPV system that depends on a time-varying
parameter vector (δk)k=1,2,..., with δk = (δk,1, . . . , δk,s), that is characterized by the
region of variation R ⊂ R2s:

xk+1 = A(δk)xk with x0 = x̄0. (4.4)

Already for the case that A(.) is an affine matrix function, analyzing robust stability
of system (4.4) is a hard problem. A sufficient condition for asymptotic stability of
an uncertain system is, roughly speaking, the existence of a single quadratic form
V (x) = xTXx that is positive definite and strictly decreases along all solutions
(xk)k=1,2,... that obey the system equations. Any function with these two properties
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is called a Lyapunov function for the considered system. Our notion of stability of
an LPV system is based on Definition 4.2, assuming that the constants m,λ < 1 do
not depend on the way the parameter varies in time, which is referred to as uniform
exponential stability.

Lemma 4.1 Let a compact set δ ⊂ Rs be given. The LPV system (4.4) with param-
eter sequences (δk)k=1,2,... satisfying δk ∈ δ for all k ≥ 0 is uniformly exponentially
stable if there exists X � 0 with

A(δ)′XA(δ)−X ≺ 0 ∀δ ∈ δ. (4.5)

Remark 4.1 If (4.5) is satisfied for some X � 0, the system is often called quadrat-
ically stable. With X � 0 being a solution of (4.5), the quadratic form V (x) = xTXx

serves as a Lyapunov function for any R-admissible parameter sequence, which clar-
ifies the terminology.

Note that the sufficient condition for stability in Lemma 4.1 does not involve the
parameter variation ν. In fact, it is not difficult to show that the LPV system is in-
deed uniformly exponentially stable for arbitrary time-varying parameter sequences,
see [54].

Condition (4.5) is a robust SDP constraint in the decision variable X, and can
be rewritten as(

I

A(δ)

)′( −X 0
0 X

)(
I

A(δ)

)
≺ 0, ∀δ ∈ δ. (4.6)

As explained in Chapter 2, feasibility of (4.6) is numerically tractable in some par-
ticular cases, e.g. if A(·) is affine and if δ = δ1 × δ2 · · · × δs, for some specified
intervals δi for i = 1, . . . , s. In general, relaxation schemes need to be constructed
for solving (4.6), and conservatism is introduced.

Apart from a possibly non-zero relaxation gap, the stability margin that is found
by applying Lemma 4.1 is often very conservative. This is due to the fact that
not every robustly stable uncertain system admits a quadratic Lyapunov function
xTXx, see for example [50]. Hence, one typically searches over an enlarged class
of Lyapunov functions V (x, k) := xTX(δk)x, in which the Lyapunov matrix X(δ)
depends on the parameters.

Lemma 4.2 The LPV system (4.4) is uniformly exponentially stable if there exists
matrix function X(.) (not necessarily continuous) such that X(δ) � 0 for all δ ∈ δ

and (
I

A(δ)

)′( −X(δ) 0
0 X(θ)

)(
I

A(δ)

)
≺ 0, ∀(δ, θ) ∈ R. (4.7)

Proof. With X(.) � 0 being a solution to (4.7), the function V (x, k) = x′X(δk)x
becomes a Lyapunov function for the LPV system (4.4), see for example [77].
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Note that variation of the parameters is explicitly taken into account once the Lya-
punov function depends on the parameters. In order to render (4.7) numerically
tractable, we must always parameterize X(.). For instance, with the monomials
µj(δ) = δα1

1 δα2
2 · · · δαss with multi-degrees α1, . . . , αm, a possible parameterized poly-

nomial Lyapunov matrix reads as

X(δ) = X0 +X1µ1(δ) + . . .+Xsdµm(δ). (4.8)

We will elaborate further on this topic in Section 4.1.6.

Remark 4.2 [Polytopic system] The parametrization of X(.) is often chosen to
’mirror’ the corresponding system structure. For example, in polytopic systems with
N generators, i.e. δ = co{δ1, . . . δN}, the Lyapunov function is defined with X(δ) =
N∑
i=1

Xiδi in which δi ≥ 0 and δ1 + . . .+ δN = 1.

4.1.1 A survey on parameter dependent Lyapunov functions

One of the first results on parameter dependent Lyapunov functions is perhaps [47],
in which multi-affine Lyapunov matrices were considered for a family of matrices
of the form A0 + A1δ1 + . . . + Asδs with A1, . . . , As having rank one. In [77], the
rank constraint on A1, . . . , As was dropped and LMI conditions are derived for the
existence of a multi-affine Lyapunov function. The proposed relaxation was based
on multi-convexity arguments, which are a variation of the convex hull arguments
proposed in Section 2.3.1. In a similar setting, Pólya’s relaxation was applied in [129].
A nice survey article on multi-affine parameter dependent Lyapunov functions and
implementation issues is [5].

Polynomially dependent Lyapunov matrices for polytopic systems have been con-
sidered in [119, 139, 22]. In [64], the Lyapunov matrix is allowed to depend on the
parameters in a rational fashion, provided that a particular parametrization is used.
As for multi-affine parameter dependent Lyapunov matrices, the stability conditions
still require the construction of a relaxation scheme, and it is unlikely that an (a
priori known) exact solution in terms of an LMI problem exists.

Although non-quadratic Lyapunov functions are discussed in more detail in the
next section, the recent work done in [36] is worth mentioning. As an extension
to the stability condition (4.6), the class of Lyapunov functions are higher order
(homogeneous) in the state as well as higher order (homogeneous) in the parameters.
For polytopic LPV systems the analysis conditions could be turned into a robust
SDP.

4.1.2 Non-conservative Lyapunov-based analysis

So far, we have seen how to construct sufficient conditions for stability by making use
of quadratic-in-the-state Lyapunov functions. The exact stability radius of an LPV
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system is difficult to compute. Even by employing parameter dependent Lyapunov
matrices, the stability conditions can be excessively conservative. In this section we
address the use of non-quadratic Lyapunov functions for analyzing stability of the
LPV system.

In order to have a decisive answer to the question as to whether the outcome
of stability analysis tests based on Lyapunov functions is exact, so-called Lyapunov
converse theorems have been explored. These theorems involve the definition of a
class of Lyapunov functions for a given system or family of systems, which is the-
oretically proven to be non-restrictive. An example of a well-known non-restrictive
class of functions for LTI systems is the family of all quadratic forms V (x) = xTXx

with X � 0. Moreover, for the uncertain LTI system ẋ = A(δ)x with δ ∈ δ being a
time-invariant parameter vector in some compact set δ and A(.) being continuous,
the class of quadratic forms V (x, δ) = xTX(δ)x with polynomial X(.) can be proven
to be non-restrictive as well, see [23]. For non-linear and time-varying uncertain
systems, however, converse theorems are rare and their applicability is limited by
the lack of efficient numerical algorithms. Let us discuss in somewhat more detail
two function classes that appear in the literature.

Remark 4.3 It is stressed that, for a fixed parameter sequence, it is known how
to construct time-varying Lyapunov functions, see [105]. The difficulty of the LPV
analysis problem is caused by the fact that parameters are uncertain as well as time-
varying.

Polyhedral norm and piecewise quadratic Lyapunov functions

Motivated by the stability analysis problem for the absolute stability problem of
a Lure system, a non-restrictive class of polyhedral norm Lyapunov functions has
been proposed in [32, 108, 127]. Polyhedral norms have recently been also used in
the context of robust control, see [20, 21].

A manageable parametrization of a subclass of polyhedral norms is proposed in
[127] (part I), in terms of piecewise quadratic Lyapunov functions, in which finitely
many disjoint sectors partition the state-space. Unfortunately, even for the simplest
polytopic LPV systems, the search over the class of polyhedral norms is non-convex.
Although an efficient numerical implementation is lacking, a procedure based on
linear programming has been proposed in [142, 187] and references therein.

Polyhedral norms can be viewed as piecewise quadratic Lyapunov functions.
These have independently been considered by many authors. In [47], piecewise
quadratic Lyapunov functions have been used for the Lur’e system whereas in [141]
a single non-linear autonomous system was addressed. In the context of uncertain
systems, see for example [20, 189, 186].

Piecewise quadratic Lyapunov functions are typically represented as

V (x, P ) = xTPx P ∈ P, with P a compact set of matrices.
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In (4.8) we have already seen an explicit method for describing the set P by a
matrix function and a parameter set δ. Depending on the problem, an alternative
parametrization is sometimes preferred that involves a partitioning of the state-space
into a finite number of segments.

Summarizing, converse theorems provide function classes that, at least theoreti-
cally, allow for an exact computation of the stability margin. Their practical use is
often limited by the lack of an efficient implementation. Furthermore, it is gener-
ally unknown how to obtain a priori bounds on the conservatism for a given finite
parametrization of Lyapunov function candidates. From a computational point of
view, the currently existing converse theorems have, therefore, little value for the
analysis of LPV systems.

Higher order in the state Lyapunov functions

The so-called homogeneous, polynomial in the state Lyapunov functions constitute
a function class for which stability analysis can be turned into LMI conditions, see
[189, 35]. More recently, in [36], it was shown to be relatively easy to also allow
for higher order polynomial dependence in both the parameter and the state. This
class of functions is known to reduce conservatism in particular examples, though it
is unknown whether it consist of a non-restrictive class of Lyapunov function candi-
dates.

Remark 4.4 Switched systems form a subclass of LPV systems and belong to the
class of hybrid systems. These kind of systems have mixed continuous and discrete
dynamics which typically arise from the multiple modes in which the system can
operate. In robotic manipulators that either move freely in space or are in contact
with a surface such modes are naturally present. Alternatively, a transition between
different operation modes can be due to human intervention as it is common in
most computer controlled systems like cars, aircraft or copy machines, for reasons of
safety. A special class of thoroughly studied switched systems is described by a finite
set of matrices, see for example [43, 31, 186, 50, 120] and reads as

xk+1 = Akxk, Ak ∈ A for k = 0, 1, 2 . . . .

When A is a finite and bounded set of matrices, this system can easily be repre-
sented as an LPV system. In fact, there always exists a set of s-dimensional vectors
δ1, δ2, . . . and a continuous mapping A(.) that satisfies Ai = A(δi) for all i ∈ I.
By defining the compact set δ = {δi, i ∈ I}, the switched system is shown to be a
particular instance of the LPV system (4.4).
It is stressed that autonomous switched systems, in which the system dynamics
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Figure 4.2: The lifting approach for horizon N .

change when the state hits a certain boundary, are typically treated differently than
systems in which an external (manual) source is responsible for the switching behav-
ior. In these kind of systems, the parameters δ are a function of the state, which is
sometimes referred to as a quasi-LPV systems, see [31]. In this thesis, parameter
sequences are always assumed to be determined externally.

So far, stability conditions have been formulated directly in terms of the system
matrix A(δ). As will be shown in the next section, less conservative Lyapunov-
based stability analysis conditions can be derived by considering the so-called lifted
system. We will actually derive a necessary and sufficient condition for stability,
without the need to introduce non-quadratic Lyapunov functions, by constructing a
family of robust LMI problems based on the monodromy matrix.

4.1.3 Stability of LPV systems using a lifting approach

In this section, sufficient conditions for stability of general discrete-time LPV systems
are derived in terms of the monodromy matrix ÂN . The approach stems from a well-
known lifting procedure for input/output systems that is discussed in Section 4.2,
where the robust performance analysis problem is addressed. As we will show, the
analysis of ÂN also extends the notion of the joint spectral radius, as originally
defined for switched system, towards LPV systems with general regions of variation.

The notion of lifting is not new and provides an equivalence between discrete-
time periodic systems and LTI systems, see [73, 125] and references therein. Due to
the strong link between periodic LTV and LTI systems, the design tools originally
developed for LTI system became available for the analysis and design of periodic
systems. In particular, the lifting technique has resulted in a clear understanding of
the analysis and design sampled-control systems, see [11, 107, 126] and references
therein.
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For the given autonomous LPV system (4.4), define ξt = xNt for t = 0, 1, . . . as well
as

δ̂t =


δNt
δNt+1

...
δN(t+1)−1

 =


δ̂t,1
δ̂t,2

...
δ̂t,N

 , (4.9)

for any given R-admissible sequence (δk)k=0,1,2.... Note that, in the sequel, any
vector δ̂ ∈ RNs is assumed to be partitioned as δ̂ = col(δ̂1, . . . δ̂N ) with δ̂i ∈ Rs for
i = 1, . . . , N . For a given region of variation R let us further introduce the set

R̂N =
{
δ̂ ∈ RNs | (δ̂i+1, δ̂i+1 − δ̂i) ∈ R, i = 1, . . . N − 1

}
. (4.10)

Clearly, this construction implies that a sequence (δk)k=0,1,... is R-admissible if and
only if the corresponding sequence (δ̂t)t=1,2,... is R̂N -admissible. Note that in view
of earlier definitions (4.2) and (4.3), it follows that δ = R̂1 and R̂ = R̂2. Finally, we
define the following matrix function, which is also known as the monodromy matrix:

ÂN (δ̂) := A(δ̂N ) · · ·A(δ̂2)A(δ̂1). (4.11)

Then, the following system is referred to as the N -lifted system:

ξt+1 = ÂN (δ̂t)ξt, δ̂t ∈ R̂N , ξ0 = x̄0, t = 0, 1, . . . . (4.12)

Remark 4.5 For box regions R̂, the set R̂N is exactly equal to the direct product
of N copies of δ for which an explicit characterization can be readily computed.
For general polytopic regions with rate-of-variation bounds, R̂N is an (implicitly
described) subset of δ×· · ·×δ. It may not always be easy to find reliable algorithms
for the computation of a set of generators of R̂N .

The next proposition contains a sufficient condition for stability of LPV systems,
which is based on the N -lifted system. The use of the monodromy matrix ÂN for
the analysis of stability of LPV systems has been considered in for example [57], and
more recently in [52]. It is further illustrated in Figure 4.2, where the abbreviation
A(δ̂i) = Ai, for i = 0, . . . , N − 1 has been used.

Proposition 4.1 The LPV system (4.4) is uniformly exponentially stable if for
some N ∈ N there exists some λ such that

max
δ̂∈R̂N

‖ÂN (δ̂)‖ ≤ λ < 1. (4.13)

Moreover, stability of the systems (4.4) and (4.12) are equivalent.

Proof. Let us be given an R-admissible (δk)k=0,1,2,... and an initial condition x0.
Construct the sequences (δ̂t)t=0,1,... in (4.9) and (ξt)t=0,1,... with ξt = xNt for all
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t ≥ 0. Then, condition (4.13) implies that there exists some ε > 0 such that

ÂN (δ̂t)′ÂN (δ̂t)− I � −εI (4.14)

holds for all t = 0, 1, . . .. Multiplying from left and right with ξ′t, ξt respectively, we
get

ξ′tÂN (δ̂t)′ÂN (δ̂t)ξt − ξ′tξt ≤ −εξ′tξt, t = 0, 1, . . .

which implies
‖ξt+1‖2 ≤ (1− ε)‖ξt‖2, t = 0, 1, . . .

and hence ‖ξt‖ ≤ (1 − ε)t/2‖ξ0‖. Note that by compactness of R̂N , there exists
κ ∈ R for which

‖Âi(δ̂)‖ ≤ κ, for all δ̂ ∈ R̂N , i = 0, 1, . . . N.

Let us now consider any xk in the sequence (xk)k=0,1,2,... and observe that there
always exists N and i < N such that k = Nt + i, with t, i being integers. It then
follows that

‖xk‖ = ‖xNt+i‖ ≤ κ‖xNt‖ = κ‖ξt‖ ≤ (1− ε)t/2‖ξ0‖ = (1− ε)t/2‖x0‖,

which proves that the sequence (xk)k=0,1,... converges exponentially to zero. Since
the parameter sequence (δk)k=1,2,... and the initial condition x̄0 were chosen arbi-
trarily, we have proven uniform exponential stability of the system (4.4). Stabil-
ity of (4.4) clearly implies stability of (4.12), since (ξk)k=1,2,... is a subsequence of
(xk)k=1,2,....

Uniform exponential stability of the N -lifted system (4.12) can be turned into a
robust SDP in several ways. One possible approach is to directly impose (4.13), or
equivalently, the robust LMI constraint(

I ÂN (δ̂)′

ÂN (δ̂) I

)
� 0 for all δ̂ ∈ R̂N . (4.15)

Once an LFR of the original matrix function A(.) is given, the matrix function
ÂN (.) can be computed for any fixed value of N and (4.15) becomes a robust LMI
constraint.

Instead of using a norm bound for proving stability of the lifted system (4.12),
one can improve the analysis condition and verify stability of the lifted system by
standard Lyapunov arguments. In fact, the N -lifted system is uniformly exponen-
tially stable if there exists some X(δ̂) such that(

I

ÂN (δ̂)

)′( −X(δ̂) 0
0 X(θ̂)

)(
I

ÂN (δ̂)

)
≺ 0 for all (δ̂, θ̂) ∈ R̂2N . (4.16)
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The pair (δ̂, θ̂) represents a tuple of 2N parameter vectors that satisfies the parameter
variation bounds in (4.10). The analysis condition (4.16) reduces to a robust SDP,
provided that a linear parametrization of X(δ) is chosen, as for example in (4.8).

Remark 4.6 An alternative way to describe parameter variation bounds is to in-
troduce variables ν̂k = δ̂k+1 − δ̂k, similar as was done in our definition of R in
Definition 4.1. Although the stability analysis results in this chapter still hold if the
lifted region of variation is described in terms of (δ̂, ν̂), this representation is unnat-
ural. Note that the vector ν̂k,i = δN(k+1)+1 − δMk+i no longer represents parameter
variation in the sense of Definition 4.1, leading to a more complicated description
of the region of variation.

As discussed in Chapter 2, (approximate) solutions of a robust SDP problem are
provided by so-called relaxation schemes. The complexity of such schemes heavily
depends on the specified parameter region and grows exponentially in the horizon
length N . In the next section, we examine whether the proposed stability condition
is not only sufficient but also necessary for stability of the LPV system (4.4).

4.1.4 Asymptotic exactness of the lifted approach to stability

analysis of LPV systems

In this section we derive an exact characterization of stability of the LPV system
(4.4) in terms of the N -lifted system. This is done by proving that (4.13) becomes
both necessary and sufficient if we let N go to infinity.

First, let us formally define an N -tuple (δ̂1, . . . , δ̂N ) to be R-admissible if there
exists an R-admissible sequence (δk)k=1,... for which δi = δ̂i, i = 1, . . . , N holds.
For notational simplicity we allow the argument of ÂN (.) to be the whole sequence,
realizing the fact that ÂN (.) only depends on the first N elements in the sequence.

Assumption 4.2 [Product-boundedness] There exists κ <∞ for which

max
δ̂∈R̂N

‖ÂN (δ̂)‖ < κ for all N ≥ 0. (4.17)

Clearly, if (4.17) does not hold, the LPV system cannot be asymptotically stable.
A more precise statement is given in our next theorem, which says that asymptotic
stability of the LPV system (4.4) is equivalent to having all infinite product of
matrices corresponding to R-admissible parameter sequences converge to the zero
matrix.

Lemma 4.3 [Stability with matrix products] Let Assumption 4.2 hold. Then, the
LPV system is uniformly exponentially stable if and only if the limit

Â∞(δ) := lim
N→∞

ÂN (δ) (4.18)
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exists and is zero, uniformly in all R-admissible parameter sequences δ = (δk)k=1,2,....

Proof. Suppose Â∞(δ) = 0 for all R-admissible parameter sequences. Then, by
uniform convergence in δ, there exists some N for which

max
δ̂∈R̂N

‖ÂN (δ̂)‖ < 1
2
.

If combining this fact with (4.17), the following observation can be made. For
arbitrary k ≥ N , there exists integers i and j < N satisfying k = iN + j, such that
the following relations hold:

max
δ̂∈R̂k

‖Âk(δ̂)‖ ≤

max
δ̂∈R̂k

‖Âj(δ̂iN+j , . . . δ̂iN+1)ÂN (δ̂iN , . . . , δ̂(i−1)N+1) · · · ÂN (δ̂N , . . . , δ̂1)‖ ≤

max
δ̂∈R̂j

‖Âj(δ̂)‖ ·
(

max
δ̂∈R̂N

‖ÂN (δ̂)‖)i ≤ κ 1
2i
. (4.19)

Note that any N -tuple which is taken from a R-admissible k-tuple, k > N is guar-
anteed to be R-admissible, see again the definition of R̂ in (4.3). Let us now be
given any R-admissible sequence δ and initial condition x0. It then follows that for
all k = iN + j,

‖xk‖ ≤ ‖Âk(δ)‖‖x0‖ ≤ κ 1
2i
‖x0‖,

which proves uniform exponential stability, since the constants m = κ and λ = 1
2 in

Definition 4.2 are independent of from the parameter sequence δ.

Conversely, suppose that Â∞(δ) 6= 0 for some R-admissible sequence or that
the limit in (4.18) does not exist. Then, there exists an R-admissible sequence
(δk)k=1,2... and a subsequence (kν)ν=1,2... such that for some ε > 0,

‖Âkν (δ)‖ ≥ ε for all ν.

For each ν one can find an initial condition vν with ‖vν‖ = 1 such that

‖Âkν (δ)vν‖ ≥ ε for all ν.

Consider the sequence v = (v1, v2, . . .) which converges without loss of generality to
v̄. Thus, we get

‖Âkν (δ)v̄‖ = ‖ÂN (δ)vν‖ − ‖Âkν (δ)(v̄ − vν)‖ ≥ ε− κ‖v̄ − vν‖

Since vν converges to v̄, it follows that

lim sup
ν→∞

‖Âkν (δ)v̄‖ ≥ ε.
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Hence, with the initial condition x0 = v̄ and the chosen parameter sequence (δk)k=1,2,...,
the sequence (xk)k=1,2,..., does not converge to zero. This clearly means that the
origin is not an attractor, i.e. the LPV system is not exponentially stable.

In view of the goal of this section, which is to prove that the condition in Proposition
4.1 is also necessary for uniform exponential stability of the LPV system as N →∞,
let us define the function

σ̄k(R) = max
δ̂∈R̂k

‖Âk(δ̂)‖, (4.20)

with ‖.‖ being any matrix norm. Although σ̄k(R) is actually a function of both
the region R and the matrix function A(.), the latter dependence is omitted. As a
preparation for our next theorem, we first prove the following fact.

Lemma 4.4 For any region R that satisfies Assumption 4.1, the following equality
holds:

lim
k→∞

(σ̄k(R))
1
k = inf

k∈N
(σ̄k(R))

1
k . (4.21)

Proof. Since R is compact, we have that

σ̄k(R) ≥ 0 is finite for all k ∈ N. (4.22)

Moreover,

σ̄k+m(R) = max
δ̂∈R̂k+m

‖Âk+m(δ̂)‖ ≤

max
δ̂∈R̂m

‖Âm(δ̂)‖ max
δ̂∈R̂k

‖Âk(δ̂)‖ ≤ σ̄k(R)σ̄m(R). (4.23)

If σ̄k(R) = 0 for some k, σ̄N (R) = 0 for all N ≥ k and the equality (4.21) immedi-
ately follows. If σ̄k(R) > 0 for all k, let us introduce ak = log(σ̄k(R)) and consider
the sequence (ak)k=0,1,2,... defined by for k = 0, 1, . . ., omitting the argument R in
σ̄k(R). The properties (4.22)-(4.23) imply that the sequence is sub-additive, i.e.
ak+m ≤ ak + am. By Fekete’s Lemma [72], it follows that

lim
k→∞

ak
k

= inf
k∈N

ak
k
,

by which we infer

lim
k→∞

log σ̄
1
k

k = lim
k→∞

ak
k

= inf
k∈N

ak
k

= inf
k∈N

log σ̄
1
k

k .

Since log(n) is a monotonously increasing function, the relation (4.21) follows.

In view of the relation (4.21), we are allowed to define the following function

σ̄(R) := lim
k→∞

(σ̄k(R))
1
k . (4.24)
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This function is a generalization of the joint spectral radius of a set of matrices, which
is well-known in the context of switched systems. As shown in our next theorem, it
completely determines stability of the LPV system (4.4).

Theorem 4.1 The LPV system (4.4) with region of variation R is uniformly expo-
nentially stable if and only if σ̄(R) < 1.

Proof. If σ̄(R) < 1 it follows that there exists for each N an α < 1 such that
σ̄N (R) ≤ α < 1. By definition of σ̄N (R) in (4.20), the hypothesis in Proposition 4.1
are satisfied, thus proving uniform exponential stability of the LPV system.

For the converse, let σ̄(R) ≥ 1. We will prove that the LPV system is not
exponentially stable by constructing a suitable parameter sequence δ̄. In order to
do so, let us choose tuples δ0, δ̂1, δ̂2, . . . that satisfy

δ0 = δ0
0 → ‖A(δ0)‖ ≥ 1

δ̂1 = (δ1
0 , δ

1
1) → ‖Â2(δ̂1)‖ ≥ 1

δ̂2 = (δ2
0 , δ

2
1 , δ

2
2) → ‖Â3(δ̂2)‖ ≥ 1

...

(4.25)

Such tuples can always be found since Lemma 4.4 implies that

1 ≤ σ̄(R) = inf
k∈N

(σ̄k(R))
1
k .

Now define the sequences τ0, τ1, . . . as follows:

τ0 = (δ0
0 , δ1

0 , δ2
0 , δ3

0 , . . .)
τ1 = (0, δ1

1 , δ2
1 , δ3

1 , . . .)
τ2 = (0, 0, δ2

2 , δ3
2 , . . .)

...
...

(4.26)

Since the elements of τ0 are taken from a compact set δ, the sequence τ0 has a
converging subsequence s0, the limit point of which is denoted δ̄0. Similarly, one
can find a subsequence s1 of τ1, being also a subsequence of s0, which converges to
δ̄1. The sequence δ̄ = (δ̄0, δ̄1, δ̄2, . . .) defined in this fashion can be shown to satisfy
‖ÂN (δ̄)‖ ≥ 1

κ for all N and κ > 0 in (4.17). In order to prove this fact, let us fix N ,
and suppose that a subsequence (lν)ν=1,2,... has been constructed that satisfies

lim
ν→∞ τ

i
lν = δ̄i, i = 0, 1, 2, . . . , N.

Note that there always exists ν0 such that lν ≥ N for all ν ≥ ν0. By construction of
the sequence (lν)ν=1,2,..., it certainly holds that

‖Alν (δlν )‖ ≥ 1 ∀ν ≥ ν0.
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By using (4.17) it hence follows that

1 ≤ ‖A(δlνlν )A(δlνlν−1) · · ·A(δlνN+1)A(δlνN ) · · ·A(δlν0 )‖ ≤
κ‖A(δlνN ) · · ·A(δlν0 )‖, (4.27)

for all ν ≥ ν0, which implies that

‖A(δlνN ) · · ·A(δlν0 )‖ ≥ 1
κ
, ∀ν ≥ ν0.

Since N was arbitrary, the constructed parameter sequence (δ̄k)k=0,1,2,... proves that
the LPV system is not exponentially stable. A corresponding suitable initial condi-
tion x0 can be constructed along the lines of the proof of Lemma 4.3.

The condition σ̄(R) < 1 for verifying stability of an LPV system can be viewed
as an extension of a famous result, known as Gelfand’s formula, which proves that
the spectral radius of a matrix is equivalent to the limit of a particular sequence of
norms.

Theorem 4.2 Let ‖ · ‖ be a matrix norm. Then

ρ(A) = lim
k→∞

‖Ak‖ 1
k (4.28)

for any matrix A ∈ Rn×n.

Proof. A proof can be found in [94].

The limit expression in (4.28) is not very useful in the context of the analysis of
stability of the LTI system xk+1 = Axk, since efficient algorithms for computing the
spectral radius of a matrix are available. By contrast, if considering the uncertain
LTI system

xk+1 = A(δ)xk x(0) = x0, δ ∈ δ k = 0, 1, . . . , (4.29)

a systematic solution for computing the worst-case spectral radius of A(δ) is provided
not so obvious. A numerically tractable approach is based on the following result.

Corollary 4.1 Let A(δ) be a real-valued continuous function of δ ∈ δ, and let δ be
a compact set. Then

max
δ∈δ

ρ(A(δ)) = lim
k→∞

max
δ∈δ
‖A(δ)k‖ 1

k

Consequently, the uncertain LTI system (4.29) is uniformly exponentially stable if
and only if

lim
k→∞

max
δ∈δ
‖A(δ)k‖ 1

k < 1.
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Proof. Since Theorem 4.1 applies to general sets R satisfying Assumption 4.1, it
certainly holds for the specific choice R = δ × {0}.

Theorem 4.1 thus provides a proof that Gelfand’s formula holds for parameter de-
pendent matrices, if computing the worst-case spectral radius. For general regions
R in which the parameter is time-varying, the condition σ̄(R) < 1 can be viewed as
a generalization of Gelfand’s formula, see also [181].

The computation of σ̄(R) for general compact sets R is a non-tractable prob-
lem. However, for fixed N , and choosing the standard singular value norm, the
computation of σ̄N (R) for fixed N can be translated into a robust SDP problem
(4.15) or (4.16), for which suitable relaxation schemes can be constructed. Existing
algorithms for (approximately) computing the joint spectral radius of a set of ma-
trices can be found in [25] and [137], the latter of which is based on sum-of-squares
programming.

4.1.5 Proving instability via periodic parameter sequences

Although the characterization in Theorem 4.1 is both necessary and sufficient for
the stability of the considered LPV system, computations are performed for some
finite value of N . Therefore, the conditions for stability are often sufficient only. In
this section, we address the converse question of proving instability by constructing
R-admissible destabilizing parameter sequences. It will provide direct information
on the level of conservatism that exists if applying Theorem 4.1.

Recall that the LPV system (4.4) is said to be unstable if there exists an admissi-
ble parameter sequence for which the corresponding time-varying system is unstable.
The following sufficient condition for instability is an analogue to Proposition 4.1.

Proposition 4.2 Let a region of variation R be given for the LPV system (4.4)
and let R̂N , ÂN be defined in (4.10) and (4.11) respectively. Define the following
function

ρ̄N (R) := max
δ̂∈R̂N

ρ(ÂN (δ̂)), (4.30)

in which ρ(.) denotes the spectral radius. Then, the LPV system is unstable if
ρ̄N (R) ≥ 1 for some N ∈ N.

Proof. Suppose that ρ̄N (R) ≥ 1 for some N . Then, for some R-admissible N -
tuple δ̂ = (δ̂1, . . . , δ̂N ), the matrix ÂN (δ̂) has an eigenvalue λ ≥ 1. Hence, with the
sequence δ defined as

δ = (δ̂1, . . . , δ̂N , δ̂1, . . . , δ̂N , δ̂1, . . . , ), (4.31)

we have
ρ(ÂNk(δ̂)) ≥ 1 for k = 1, 2, . . . .
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By using Lemma 4.3, we have proven that the LPV system is unstable.

Note that the condition in Proposition 4.2 is again sufficient only. In order to
come to a necessary condition for instability of the LPV system, we introduce the
function

ρ̄(R) = lim sup
k→∞

ρ̄k(R̂)
1
k .

Observe the analogy with the definition of σ̄(R) in (4.24). In the case of switched
systems, ρ̄(R) is called the generalized spectral radius of a set of matrices. As
conjectured in [48] and [19], the equality σ̄(R) = ρ̄(R) holds true in case R is a
bounded set of matrices and no bounds on the variation is imposed, e.g. R =
δ × (−∞,∞).

So far, our results do not imply that ρ̄(R) = σ̄(R) for general sets R. This
would require, for instance, a proof of the fact that ρ̄(R) < 1 is both necessary and
sufficient for the LPV system to be unstable. For continuous-time LPV systems with
general regions of variations, the fact ρ̄(R) = σ̄(R) has been proven by Wirth [181].
At the end of this section, in remark 4.7, we will explain that necessity of ρ̄(R) < 1
is anyhow irrelevant from a practical perspective.

The relation ρ̄(R) = σ̄(R) can be viewed as a generalization of Gelfand’s formula.
Moreover, the following relation holds for arbitrary compact regions R :

ρ̄k(R)
1
k ≤ ρ̄(R) = σ̄(R) ≤ σ̄k(R)

1
k for any k ≥ 1.

In the next section we will discuss how to implement the characterizations for sta-
bility and instability of LPV system as given in Theorem 4.1 and Proposition 4.2.

4.1.6 A numerical procedure for computing stability margins

In this section, we address the computation of the R-stability margin of an LPV
system by using the sufficient conditions for stability and instability, as given by
Theorem 4.1 and Proposition 4.2 respectively. Recall that this margin is defined
as the largest r for which the system is stable for all rR-admissible parameter se-
quences. As illustrated in Figure 4.3, the suggested procedure verifies for some fixed
N , whether σ̄N (R) < 1 or ρ̄N (R) ≥ 1 holds.

First, let us concentrate on computing a lower bound on the R-stability margin
by implementing condition (4.16). That is, for some fixed N ∈ N and r ∈ R, the
following optimization problem is considered:

Minimize γ subject to X(δ̂) � 0 and(
I

ÂN (δ̂)

)′( −X(δ̂) 0
0 X(θ̂)

)(
I

ÂN (δ̂)

)
≺ γI, ∀(δ̂, θ̂) ∈ rR̂2N , (4.32)
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with optimal value γopt. Note that the set rR̂2N (R) is equal to R̂2N (rR). If the
optimal value of (4.32) is negative, the LPV system is guaranteed to be stable for
all rR-admissible parameter sequences. In order to turn this condition into a robust
SDP problem, let the Lyapunov matrix be parameterized as

X(δ̂) = X0 +
m∑
j=1

Xj δ̂
αj (4.33)

with multi-degrees α1, . . . , αm ∈ RNs. As discussed in Chapter 2, a suitable re-
laxation scheme can be constructed that approximately solves (4.32). Recall that
γrel denotes the optimal value of such a relaxation scheme. With the knowledge
that γrel ≥ γopt holds, we arrive at a alower bound on the stability margin when-
ever γrel < 0. The largest r for which γrel < 0 can be obtained from a bi-section
procedure.

N N

σN
— σN

—

ρN
—

ρN
—

Figure 4.3: The analysis approach based on the quantities σ̄N in (4.20) and ρ̄N
in (4.30). On the left the LPV system is proven stable, on the right it is proven
unstable.

Second, let us consider the condition ρ̄N (R) ≥ 1. It is used for the construc-
tion of destabilizing parameter sequences and provides an upper bound on the R-
stability margin. Note that the statement in Proposition 4.2 involves a particular
R-admissible sequence for which ρ̄(ÂN (δ̂)) > 1 holds for some δ̂ ∈ R̂N .

We stress that the search for such a worst-case δ̂ is fundamentally different from
solving robust semi-definite programming problems. At present, the construction of
destabilizing parameter sequences is largely an open problem. In view of the fact
that we have reduced the analysis problem to a real-µ analysis problem with the
uncertainty δ̂ ∈ R̂N , one could suggest using a a power iteration method, as it is
implemented in commercial software [133].

If the parameters can vary in some specified box, and no bounds on the time-
variation are imposed, one might possibly benefit from algorithms that have been
developed for the construction of destabilizing strategies of switched systems, see
[166, 143, 38, 26, 50] and references therein. However, by allowing the parameter to
take its values only at the extreme points of a given polytopic region R, it is likely
that conservatism is added to the problem. It is an interesting research question
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whether any of these existing algorithms can be extended to general compact sets
R with (non-trivial) parameter variation bounds.

As we will see in the numerical example of Section 4.3, it is possible to find
destabilizing N -periodic parameter sequences by computing the maximum eigen-
value of ÂN (δ̂) for a finite number of values δ̂ ∈ R̂N . A more systematic approach
for computing destabilizing parameters is needed though, since the computational
complexity of such a gridding approach grows exponentially with the lifting horizon
N . In this respect, the exactness test of Section 2.4.2 might prove a valuable tool in
developing new algorithms for the construction of worst-case parameters.

Extracting destabilizing parameter sequences from relaxation exactness

In Section 2.4.2, we have presented a procedure for extracting worst-case parameters
from a computed multiplier-based relaxation scheme, provided that it is exact. Let
us illustrate how to apply Theorem 2.6 in the context of stability analysis of LPV
systems.

In the sequel, let a parametrization of the Lyapunov matrix be given as shown
in (4.33). It is important to realize that instability of the LPV system cannot
be concluded from the optimal value of (4.32) being positive. If, however, some
multiplier-based relaxation scheme for the robust SDP (4.32) is exact and a single
representative pair (δ̂0, θ̂0) ∈ R̂2N exists as well, instability of the LPV system does
follow from γrel = γopt ≥ 0.

The crucial observation that enables to extract good lower bound values is
the fact that if (δ̂0, θ̂0) ∈ R̂2N is a single representative pair for the robust SDP
(4.32), so is the pair (δ̂0, δ̂0) ∈ R̂2N . Then, the time-invariant parameter sequence
(δ̂0, δ̂0, δ̂0, . . .) destabilizes theN -lifted system (4.12) so that the original LPV system
is unstable for the N -periodic parameter sequence (δ̂0

1 , . . . , δ̂
0
N , δ̂

0
1 , . . . , δ̂

0
N , δ̂

0
1 , . . .).

Recall that a single representative pair has the property that the LMI problem

γlb := inf
{
γ : subject to(

I

ÂN (δ̂0)

)′( −X(δ̂0) 0
0 X(θ̂0)

)(
I

ÂN (δ̂0)

)
≺ γI} (4.34)

has optimal value γlb = γopt, which is why such a pair is said to ’represent’ the
original robust SDP constraint.

Corollary 4.2 Suppose that the robust SDP (4.32) for some value of r ∈ R has
optimal value γopt ≥ 0 and let (δ̂0, θ̂0) ∈ rR̂2N be a single representative pair leading
to γlb = γopt ≥ 0 with γlb defined in (4.34). Then,

ρ(ÂN (δ̂0)) ≥ 1,

and (δ̂0, θ̂0) ∈ rR̂2N is a single representative pair as well.
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Proof. Suppose that the pair (δ̂0, θ̂0) ∈ rR̂2N leads to γlb = γopt ≥ 0. Hence, (4.34)
is infeasible for γ < 0. Suppose ÂN (δ̂0) is stable. Then there exist decision variables
X0, X1 = 0, . . . , Xm = 0 for which (4.34) is feasible with γ < 0. This contradicts the
assumption that (δ̂0, θ̂0) was a single representative pair for the robust SDP (4.32).

Let us now prove that (δ̂0, δ̂0) is also a representative pair. Since γlb ≥ 0, the least
γ for which the constraint in (4.32) is feasible for some set of matrices X0, . . . , Xm,
is nonnegative. Hence, with the particular choice X0, X1 = 0, . . . , Xm = 0, the
constraint in (4.32) is feasible only for non-negative values of γ, i.e.

X0 � 0, and ÂN (δ̂0)′X0ÂN (δ̂0)−X0 ≺ γ

has a solution X0 only if γ ≥ 0, which again proves that ρ(ÂN (δ̂0)) ≥ 1. Notice
that performing the substitution θ̂0 → δ̂0 yields the same constraint as if choosing
X1 = 0, . . . , Xm = 0. Therefore, (δ̂0, δ̂0) is a representative pair which finishes the
proof.

Hence, a destabilizing rR-admissible parameter sequence that is N -periodic can be
extracted from a multiplier relaxation of robust SDP (4.32), once a single represen-
tative pair has been found. We stress the fact that it is a priori unknown whether
such a pair exists. Theorem 2.6 provides a procedure for verifying exactness of the
relaxation as well as constructing a pair (δ̂0, θ̂0) by solving a suitable system of poly-
nomials.

Remark 4.7 Let us again point to the fact that the condition in Proposition 4.2 is
sufficient for proving instability. It might however happen for a certain region R,
that

σ̄(R) = ρ̄(R) = 1 while ρ̄N (R) < 1 and σ̄N (R) > 1 ∀N ∈ N. (4.35)

In such cases, we are neither able to prove stability nor instability of the LPV system.
A numerical example in which this phenomenon occurs is found in [24].

Fortunately, in the context of the stability analysis of LPV systems, we need not
bother much about the pathological case σ̄ = ρ̄ = 1. This is caused by the iterative
nature of our analysis method. To be precise, we either compute for some fixed N

the largest r for which σ̄N (rR) < 1, by solving a sequence of feasibility tests of the
form (4.32), or we compute the smallest r for which ρ̄N (rR) ≥ 1, by verifying (4.34)
for different values of r. If the situation in (4.35) is encountered, scaling the region
R with any factor r 6= 1 will guarantee the existence of N ∈ N for which either
σ̄N (rR) < 1 or σ̄N (rR) ≥ 1.
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4.1.7 Evaluation of the proposed analysis method

Let us finally compare the proposed procedure for the stability analysis of LPV
systems with other approaches based on non-quadratic Lyapunov functions. The
most important observation is the following. Our construction of the asymptotically
exact family of analysis conditions that was based on the monodromy matrix ÂN
does not involve non-quadratic Lyapunov function. In fact, there is not even a need
for using a parameter dependent Lyapunov matrix, since the family of conditions
in Proposition 4.1 is asymptotically exact. Nevertheless, choosing the Lyapunov
matrix as being parameter dependent might lead to significant improvements in
specific analysis problems.

The proposed analysis method is definitely not suited for LPV systems with a
large number of parameters δ1, . . . , δs, since the resulting robust SDP depends on
a total of Ns parameters. For a small number of parameters though, the method
has a great advantage over alternative techniques that are based on homogeneous
Lyapunov functions, see [34, 189]. Note that it is much harder to modify or update
the analysis condition, when tuning of the Lyapunov function involves the selection
of basis functions that depend on both the state and parameter.

A comparison of our approach with polyhedral norm Lyapunov functions is
more complicated, since these tests do not (yet) translate into robust LMIs, see
[142, 187, 127], and is not further investigated here.
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4.2 Performance analysis

So far, our discussion focussed on the computation of the R-stability margin of a
given LPV system. This quantity can be obtained from the analysis of the corre-
sponding N -periodic LPV system, as long as N is chosen sufficiently large. In this
section, we will demonstrate the prominent role of N -periodic parameter sequences
in analyzing performance of LPV systems.

Recall the LPV system in (4.1), which reads as

xk+1 = A(δk)xk +B(δk)wk, x0 = x̄0,

zk = C(δk)xk +D(δk)wk
(4.36)

in which xk ∈ Rn denotes the state, wk ∈ Rnw the disturbance, zk ∈ Rne the
controlled output and δk = (δk,1, . . . , δk,s) ∈ Rs the (time-varying) parameter. The
parameter variation is again characterized by the region R, as in Definition 4.1.
Similar to the Chapter 3, the desired behavior is expressed in terms of input/output
channels. We will address both the quadratic performance measure and an H2-
performance measure.

4.2.1 Quadratic performance

Let us recall the definition of quadratic performance for discrete-time systems re-
ferring to Appendix A for the continuous time version, see also Section 3.1. It can
capture bounds on the induced energy gain, or other types of performance measures.

Definition 4.3 The LPV system satisfies quadratic performance with performance
index matrix

Pp =
(
Qp Sp
S′p Rp

)
, Rp � 0,

if it is uniformly exponentially stable and if there exists ε > 0 such that for x0 = 0,
and any R-admissible parameter sequence, we have

∞∑
k=0

(
wk
zk

)′
Pp

(
wk
zk

)
� −ε‖w‖2, for every w ∈ l2. (4.37)

Note that this notion of performance is based on a worst-case philosophy, similar
as was done in the previous chapter. The following sufficient condition can be used
to verify whether an LPV system satisfies a given quadratic performance measure.
It is a rather direct extension of the LMI characterization of quadratic performance
for LTI systems, which can be found in Appendix A.

92



Proposition 4.3 For a given region of variation R defined in (4.3), the LPV system
(4.36) is uniformly exponentially stable and admits quadratic performance if there
exists a matrix function X(δ) = X(δ)′ satisfying

X(δ) � 0 (4.38)

and 
I 0

A(δ) B(δ)
0 I

C(δ) D(δ)


′ −X(δ) 0 0

0 X(θ) 0
0 0 Pp




I 0
A(δ) B(δ)

0 I

C(δ) D(δ)

 ≺ 0, (4.39)

for all (δ, θ) ∈ R̂.

Proof. Stability follows from the left-upper block of (4.39), i.e.

−X(δ) +A(δ)′X(θ)A(δ) + C(δ)′RpC(δ) ≺ 0

Since Rp � 0, the matrix function X(δ) also satisfies (4.7) which is known to imply
uniform exponential stability. For proving quadratic performance, first note that

there exists some ε > 0 for which Pp =
(
Qp + εI Sp
S′p Rp

)
still satisfies (4.39).

Take any R-admissible parameter sequence (δk)k=1,2,... and any input sequence
(wk)k=1,2,... in l2. Let (xk)k=1,2,... be the resulting evolution of the state with zero
initial condition. Then, by multiplying (4.39) from left and right with(

xk
wk

)′
and

(
xk
wk

)
respectively, as well as substituting the R-admissible pair (δ, θ) = (δk, δk+1), one
arrives at

−xTkX(δk)xk + xTk+1X(δk+1)xk+1 +
(
wk
zk

)′
Pp

(
wk
zk

)
≤ −εw′kwk.

Summation from k = 0 to k = N , using the fact that x0 = 0, we infer

xNX(δN )xN +
N∑
k=0

(
wk
zk

)′
Pp

(
wk
zk

)
≤ −ε

N∑
k=0

wTk wk.

SinceX(δ) � 0 for all (δ, .) ∈ R, the term xNX(δN )xN can be dropped and quadratic
performance criterion is satisfied as we let N →∞
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4.2.2 H2-performance

As already mentioned in Section 3.2, an extension of theH2-norm to non-linear time-
varying systems is by far unique. In order words, if we extend the deterministic and
stochastic interpretation of the H2-norm, as can be found in Appendix A, we usually
end up having two different measures of performance. However, for LTV systems a
natural extension exists for which the two notions coincide, see for example [13, 107].

Let us sketch how to arrive at the generalization of the H2-norm for LTV systems
by adopting the deterministic interpretation. That is, for a SISO system, the H2-
norm amounts to the energy, or equivalently, the l2-norm of the impulse response.
Once the system is time-varying, the response of the system depends on the specific
time instant when the impulse is initiated. Hence, we are motivated to take an
average over all time-shifts of impulsive sequences. That is, we introduce the inputs

wη,j = (0, 0, . . . , 0, eη, 0, 0, . . .) for η = 1, . . . , nw, j = 1, 2, . . . , (4.40)

in which the vector eη is the jth element in the sequence wη,j , and picks the ηth

component of input w, as defined earlier in (3.15). Then, for the linear time-varying
system defined as

xk+1 = Akxk +Bkwk, x0 = 0,

zk = Ckxk +Dkwk
(4.41)

the H2-performance measure reads as

‖G‖2 :=

√√√√ lim
k→∞

1
k

k∑
j=0

nw∑
ν=1

‖zη,j‖2, (4.42)

in which ‖zη,j‖ denotes the l2-norm of the response of system (4.41) to the input
sequence wη,j . If G is LTI, no averaging over time-shifts j is needed and the formula
reduces to the impulse response interpretation of the standard H2-norm, see also
Appendix A.

Since an LPV system can be viewed as a family of parameterized LTV systems,
we can adopt the formula (4.42). In fact, in this thesis the H2-performance level of
an LPV system is defined as the worst possible value (4.42) that can be achieved
over all R-admissible parameter sequences.

Our next result characterizes the worst-case H2-performance for LPV systems.
For convenience we assume D(δ) = 0, a property that is needed for continuous-time
systems in order the H2-norm to be finite.

Proposition 4.4 For a given region R, let δ and R̂ be defined in (4.2) and (4.3)
respectively. The LPV system (4.36) is uniformly exponentially stable and has an
H2-performance level smaller than γ if there exists a matrix function X(δ) = X(δ)′
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and Z(δ) = Z(δ)′ that satisfy

max
δ∈δ

Tr(Z(δ)) ≤ γ2,

(
Z(δ) B′(δ)X(δ)

X(δ)B(δ) X(δ)

)
� 0, (4.43)

and (
X(δ)−A(δ)′X(θ)A(δ) C(δ)′

C(δ) −I
)
≺ 0, (4.44)

for all (δ, θ) ∈ R̂.

Proof. Uniform exponential stability immediately follows from the upper-left block
in inequality (4.43). The proof for robust H2-performance uses similar arguments
as Theorem 3.2.

Let us fix some R-admissible parameter sequence δ = (δ0, δ1, . . .) and choose an
input wη,j of the form (4.40) for some fixed numbers of η, j. Since the state remains
zero until the impulse wη,j affects the system at time j, the resulting evolution of
the state xη satisfies

xηk = 0 for k = 0, . . . , j − 1,
xηj = B(δj)eη.

Since D(δ) = 0, this also implies zk = 0 for k = 0, . . . , j − 1.

By applying Schur’s Lemma to (4.44), we infer

A(δ)′X(θ)A(δ)−X(δ) + C(δ)′C(δ) ≺ 0.

Let us multiply this expression from left and right with xηk
′ and xηk, and substitute

(δ, θ) = (δk, δk+1), in order to get

V (xηk+1, k + 1)− V (xηk, k) + ‖zη,jk ‖2 ≤ 0, for k = 0, 1, 2, . . . (4.45)

in which the notation V (x, k) = x′X(δk)x is used. Applying Schur’s complement
formula on the second condition in (4.43), we obtain

Z(δ)−B′(δ)X(δ)B(δ) � 0, for all (δ, θ) ∈ R,

from which we get
xηj
′
X(δj)x

η
j < eη ′Z(δj)eη. (4.46)

Summation of (4.45) over k = 1, 2, . . . yields

−xηj ′X(δj)x
η
j + ‖zη,j‖22 ≤ 0,

where we used the fact that the system is uniformly exponentially stable. If we now
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exploit (4.46), it follows that

−eη ′Z(δj)eη + ‖zη,j‖22 ≤ 0.

Finally, let us take the summation over η = 1, . . . nw in order to arrive at

nw∑
η=1

‖zη,j‖22 ≤ Tr(Z(δj)).

Since the R-admissible parameter sequence δ was arbitrarily chosen, we can average
over j = 1, 2, . . . and take the limit, i.e.

lim
k→∞

1
k

k∑
j=1

nw∑
η=1

‖zη,j‖22 ≤ lim
k→∞

1
k

k∑
j=1

Tr(Z(δj)) ≤ max
δ∈δ

Tr(Z(δ)) ≤ γ2,

which proves that the robust H2-performance level is bounded by γ.

Remark 4.8 According to the notion of H2-performance that we just presented,
analysis and controller synthesis of polytopic LPV systems has been addressed in
[71], see also [53] for similar results in continuous time.

Notice that all conditions in Proposition 4.4 can be formulated as a robust SDP
constraint, for any fixed parameterizations of Z(δ) and X(δ) that are linear in the
coefficient matrices, such as

X(δ) = X0 +
m∑
j=1

Xjδ
αj and Z(δ) = Z0 +

m∑
j=1

Zjδ
αj ,

with multi-degrees α1, . . . , αm ∈ Rs. In fact,

max
δ∈δ

Tr(Z(δ)) ≤ γ2

can be implemented by constructing a relaxation scheme for the robust linear in-
equality

e1′Z(δ)e1 + . . .+ enw ′Z(δ)enw ≤ γ2.

Summarizing this section, we have shown how to determine least upper bounds
γ on the H2-performance level in a single optimization step, by fixing a certain
parametrization of Z(δ) and X(δ) and constructing suitable relaxation schemes.
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4.2.3 Lifting of discrete-time LPV systems

In Section 4.1.3, sufficient conditions for stability of discrete-time LPV systems in
terms of the monodromy matrix ÂN (δ̂) were derived, by exploiting the fact that the
LPV system is stable if and only if its N -lifted system is stable. In this section,
we show that a similar lifting operation exists for input-output systems of the form
(4.36). The application of a lifting technique is well-understood in the field of multi-
rate systems, see for example [73, 106, 11, 12, 45] and will be employed to derive
alternative conditions for computing the robust H2- or l2-gain performance level of
LPV systems.

Starting from the discrete-time LPV system (4.36), the N -lifted system is for-
mally constructed by first collecting N sequential inputs, outputs and parameter
values into the vectors ŵt, ẑt and δ̂t. For t = 0, 1, 2, . . . we therefore define

ŵt =


wNt
wNt+1

...
wN(t+1)−1

 , ẑt =


zNt
zNt+1

...
zN(t+1)−1

 , δ̂t =


δNt
δNt+1

...
δN(t+1)−1

 . (4.47)

As before, we will also denote δ̂t = col(δ̂t,1, . . . , δ̂t,N ). An easy computation shows
that

x1 = A(δ0)x0 +B(δ0)w0

x2 = A(δ1)A(δ0)x0 +A(δ1)B(δ0)w0 +B(δ1)w1

...

xN = A(δN−1)A(δN−2) · · ·A(δ0)x0 +A(δN−1)A(δN−2) · · ·A(δ1)B(δ0)w0

+ . . .+A(δN−1)B(δN−2)wN−2 +B(δN−1)wN−1,

and that the outputs of system (4.36) satisfy

z0 = C(δ0)x0 +D(δ0)w0

z1 = C(δ1)A(δ0)x0 + C(δ1)B(δ0)w0 +D(δ1)w1

...

zN−1 = C(δN−1)
(
A(δN−2)A(δN−3) · · ·A(δ0)x0 + . . .+

+A(δN−2)B(δN−3)wN−3 +B(δN−2)wN−2

)
+D(δN−1)wN−1.

If defining the sequence ξ = (x0, xN−1, x2N−1, . . .), one can consider the system

ξt+1 = ÂN (δ̂t)ξt + B̂N (δ̂t)ŵt, ξ0 = x̄0,

ẑt = ĈN (δ̂t)ξt + D̂N (δ̂t)ŵt,
(4.48)
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in which δ̂ is R̂N -admissible as defined in (4.10) and the matrix functions ÂN , B̂N ,
ĈN , D̂N are defined as(

ÂN (δ̂t) B̂N (δ̂t)

ĈN (δ̂t) D̂N (δ̂t)

)
=

ANAN−1 · · ·A1 AN · · ·A2B1 AN · · ·A3B2 . . . BN
C1 D1 0 . . . 0
C2A1 C2B1 D2 . . . 0

...
...

...
. . .

...
CNAN−1 · · ·A1 CNAN−1 · · ·A2B1 CNAN−1 · · ·A3B2 . . . DN

,

with the abbreviations Ai = A(δ̂t,i), Bi = B(δ̂t,i), Ci = C(δ̂t,i) and Di = D(δ̂t,i) for
i = 1, . . . , N . The system (4.48) is referred to as theN -lifted system that corresponds
to the LPV system (4.36).

The N -lifted system is an equivalent representation of the original LPV system
in the following sense. For any R-admissible parameter sequence δ and any feasible
x, z, w that satisfy the system dynamics (4.36), the sequence ξ = (x0, xN−1, x2N−1, . . .)
and ẑ, ŵ as defined in (4.47) are compatible with the N -lifted system dynamics
(4.48). Conversely, given any R̂N -admissible δ̂ and sequences ξ, ŵ, ẑ that are feasible
for the system (4.48), one can again construct δ, w, z that are feasible for the original
LPV system such that the state x satisfies xNt = ξt for t = 0, 1, . . .. In fact, the lat-
ter construction amounts to decomposing δ̂t into its components δ̂t,1, . . . δ̂t,N ∈ Rs,
and placing them in the sequence

(δk)k=1,2,... = (δ̂1,1, δ̂1,2, . . . , δ̂1,N , δ̂2,1, . . . , δ̂2,N , δ̂3,1, . . .).

The sequences w, z can be formed in a similar fashion.

Remark 4.9 When the parameter dependent system matrices in (4.36) are given
as an LFR, using the formulae from Appendix B, one can directly build the LFR
descriptions of ÂN , B̂N , ĈN , D̂N for any given N . It then naturally follows that the
resulting uncertainty structure is block diagonal.

In view of the one-to-one correspondence between the input and output sequences of
the original system and its N -lifted version, a natural question arises as to whether
we can analyze the performance of the LPV system through the analysis of the N -
lifted system. This is the subject of our next two sections, in which both quadratic
performance and the H2-performance measure are addressed.

Analysis of quadratic performance via lifting

The quadratic performance measure for a given index Pp can equivalently be an-
alyzed by considering the N -lifted system, provided that we use an appropriate
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performance index matrix. In view of Definition 4.37, the quadratic performance
measure can be characterized in terms of the N -lifted system if there exists a matrix
P̂p for which

∞∑
k=0

(
wk
zk

)′
Pp

(
wk
zk

)
=
∞∑
t=0

(
ŵt
ẑt

)′
P̂p

(
ŵt
ẑt

)
holds for any input w ∈ l2 and initial condition x0 = ξ0 = 0. It is not difficult to
verify that this relation holds for P̂p = IN ⊗ Pp, which brings us to the following
result.

Corollary 4.3 For a given region of variation R, the LPV system (4.36) is uni-
formly exponentially stable and satisfies quadratic performance if there exists a ma-
trix function X(δ̂) = X(δ̂)′ that satisfies

X(δ̂) � 0 (4.49)

and
I 0

ÂN (δ̂) B̂N (δ̂)
0 I

ĈN (δ̂) D̂N (δ̂)


′−X(δ̂) 0 0

0 X(θ̂) 0
0 0 IN ⊗ Pp




I 0
ÂN (δ̂) B̂N (δ̂)

0 I

ĈN (δ̂) D̂N (δ̂)

 ≺ 0 (4.50)

for all (δ̂, θ̂) ∈ R̂2N .

Proof. First, note that (4.50) implies

−X(δ̂) + ÂN (δ̂)′X(θ̂)A(δ̂) + ĈN (δ̂)′(IN ⊗Rp)ĈN (δ̂) ≺ 0 ∀(δ̂, θ̂) ∈ R̂2N .

Since Rp � 0 the matrix function X(.) serves as a Lyapunov matrix for the N -
lifted system (4.48), and proves that it uniformly exponentially stability. By similar
arguments as in the proof of Proposition 4.1, the original LPV system is seen to be
uniformly exponentially stable.

For proving quadratic performance, we choose some R-admissible (δk)k=0,1,...

and some sequence w ∈ l2. Let (xk)k=0,1,2,... denote the resulting evolution of the
state, with x0 = 0, and define the sequence ξ = (x0, xN−1, x2N−1, . . .). Furthermore,
construct the sequences δ̂, ŵ as in (4.47).

Note that for some ε > 0 the quadratic cost criterion

P̂p = I ⊗
(
Qp + εI Sp
S′p Rp

)
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still satisfies (4.50). Using this perturbed quadratic cost criterion, we now multiply
(4.50) from left and right with(

ξt
ŵt

)′
and

(
ξt
ŵt

)
respectively, also substituting δ̂ → δ̂t, θ̂ → δ̂t+1, and get

− ξ′tX(δ̂t)ξt + ξ′t+1X(δ̂t+1)ξt+1 +
(
ŵt
ẑt

)′
(IN ⊗ Pp)

(
ŵt
ẑt

)
=

− ξ′tX(δ̂t)ξt + ξ′t+1X(δ̂t+1)ξt+1+
N(t+1)−1∑
k=Nt

(
wk
zk

)′
Pp

(
wk
zk

)
≤ −ε

N(t+1)−1∑
k=Nt

w′kwk. (4.51)

Summation over t = 0, 1, . . ., we infer

−ξ′0X(δ̂0)ξ0 +
∞∑
k=0

(
wk
zk

)′
Pp

(
wk
zk

)
≤ −ε‖w‖2.

Since X(δ̂0) � 0, the first term can be dropped and the LPV system is shown to
satisfy the quadratic performance measure.

Analysis of H2-performance via lifting

Since the definition given in (4.42) involves a summation over the total number
of inputs, it is immediately clear that the H2-norm of a multi-input multi-output
system grows unbounded if the number of inputs and/or outputs increases. However,
for the N -lifted system, this trouble can be easily overcome by adding a scaling
factor, which makes sure that the H2-norm is preserved under lifting.

Following the lines of Section 4.2.2, we notice that at each particular time instant
t = i of the lifted system (4.48), a total number of Nnw different impulsive inputs
with which the system can be excited. Let the impulsive inputs be defined

ŵν,i = (0, 0, . . . , 0, eν , 0, 0, . . .) for ν = 1, . . . , Nnw, i = 1, 2, . . . ,

and denote ẑν,i as the output of the N -lifted system due to input ŵν,i. It is stressed
that the total (infinite) number of different impulsive inputs that can be given to the
system stays the same if lifting the system. By definition of the l2-norm on vectors,
the following relation holds

k∑
i=1

Nnw∑
ν=1

‖ẑν,i‖22 =
Nk∑
j=1

nw∑
η=1

‖zη,j‖22
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which implies that

lim
k→∞

1
k

k∑
i=1

Nnw∑
ν=1

‖ẑν,i‖22 = N lim
k→∞

1
k

k∑
i=1

nw∑
η=1

‖zη,j‖22.

Thus, the H2-norm of the N -lifted system is increased by a factor 1
N . By including

the factor N , the following characterization of H2-performance of the LPV system
is obtained.

Corollary 4.4 For a given region of variation R, the LPV system (4.36) is uni-
formly exponentially stable and has an H2-performance level smaller than γ if there
exists a matrix function X(δ̂) = X(δ̂)′ and Z(δ̂) = Z(δ̂)′ that satisfy

Tr(Z(δ̂))
N

≤ γ2,

(
Z(δ̂) B̂′N (δ̂)X(δ̂)

X(δ̂)B̂N (δ̂) X(δ̂)

)
� 0,

and (
X(δ̂)− ÂN (δ̂)′X(θ̂)ÂN (δ̂) ĈN (δ̂)′

ĈN (δ̂) −I

)
≺ 0, (4.52)

for all (δ̂, θ̂) ∈ R̂2N .

Proof. The result can be derived along the lines as in Proposition 4.4, using also
the arguments in Corollary 4.3.

For recent developments on H2-analysis or controller synthesis of linear N -periodic
systems, which are obtained from the N -lifted system if the lifted parameter is time-
invariant, see [182, 104, 13, 107]. Recently, in [71] the robust H2-synthesis problem
was addressed.

Remark 4.10 In view of the previous discussion, one certainly questions why the
standard definition of the H2-norm does not include the scaling factor 1/nw. In that
case, the H2-norm would naturally be preserved under the lifting operation.

4.2.4 Asymptotically exact performance analysis

The characterization of the quadratic performance- and H2-performance measure,
as given in Propositions 4.3 and 4.4, as well as in Corollaries 4.3 and 4.4, generally
provides an upper bound value on the worst case performance level. This is partly
due to the fact that the conditions are derived for Lyapunov functions of the form
V (x, k) = x′X(δk)x, which is generally known to consist of a restrictive function class
for proving stability of uncertain time-varying systems. In addition, the results will
always depend on the chosen parametrization ofX(δ), Z(δ) as well as the constructed
relaxation scheme.
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In view of the asymptotic properties that were derived for the analysis of stability
in Section 4.1.4, the following question arises: Do the guaranteed performance lev-
els from the characterizations as given by Corollaries 4.3 and 4.4 converge to the
exact robust performance levels of the LPV system, as we let N go to infinity? In
order to answer this question on the exactness of the family of performance analysis
conditions, we first clarify the link between periodically time-varying and generally
time-varying linear systems.

It is a well-known fact that an N -periodic system can be obtained by truncating
a given LTV system. From a practical point of view, N periodic systems can ap-
proximately describe the LTV system, as long as the period N is chosen large enough.
Consider the following periodically time-varying system:

xk+1 = AP (k)xk +BP (k)wk, x0 = 0,

zk = CP (k)xk +DP (k)wk,
(4.53)

in which
AP (k + jN) = A(k), BP (k + jN) = B(k)
CP (k + jN) = C(k), DP (k + jN) = D(k),

for j = 0, 1, . . ..

As N increases, the induced l2-gain of system (4.53) can be shown to converge
to the l2-gain of the original LTV system (4.41). A similar fact holds for the H2-
performance measure, see for example [13, 107].

This valuable insight proves useful if adopting the usual worst-case notion of perfor-
mance for LPV systems. Appendix D contains a proof of the fact that the worst-case
l2-gain of an LPV system can be approximated at any desired accuracy, by restrict-
ing the parameter sequence to be periodically time-varying and increasing period
N . A similar fact is expected to hold also for the robust H2-performance level of an
LPV system, though a proof is not contained in this thesis.

Let us discuss some practical implications. If considering our initial characterization
of performance of the LPV system in Sections 4.2.1 and 4.2.2, the least upper bounds
on, for example, the l2-gain performance level depend on the chosen parametrization
of X(δ) and Z(δ). It so happens that this source of conservatism typically does not
vanish as we increase the total degree of the matrix functions X(δ), Z(δ).

On the contrary, if using the suggested family of analysis conditions in Section
4.2.3 this potential source of conservatism does not exist. We actually benefit from
the fact that the class of Lyapunov functions of the form V (x, k) = x′X(δk)x is
not restrictive for uncertain LTI systems, since analyzing an N -periodic LPV sys-
tem is equivalent to analyzing the uncertain N -lifted system, which happens to be
LTI. Moreover, as shown in [23], the Lyapunov matrix X(δ) can be chosen to be a
polynomial matrix function in δ without loss of generality.
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Since numerical computations are performed for some finite value of N , it may still
be beneficial to work with parameter dependent matrices X(δ̂) and Z(δ̂). In our
experience though, the analysis results often do not improve further by choosing the
total degree of X(δ̂), Z(δ̂) greater that 2. Hence, it makes sense to keep the order
of X(δ̂), Z(δ̂) low while increasing the lifting horizon N . As we already stressed in
Section 4.1.7, the lifting approach is most suited for LPV systems with a (possibly)
large state dimension and a low number of parameters.

Remark 4.11 It is an interesting question, whether the performance analysis test
based on the N -lifted system becomes non-conservative as N → ∞, if using a pa-
rameter independent Lyapunov function of the form V (x) = xTXx. This fact holds
true for the stability analysis problem and directly follows from Theorem 4.1. To be
precise, σ̄N (R) < 1 (using the singular value norm) is equivalent to (4.15), which is
again identical to (4.16) if the Lyapunov matrix is chosen to be the identity matrix,
i.e. X(δ̂) = I. For performance analysis, it is unknown whether X(δ̂) = X can be
assumed without loss of generality.

Lower bound computations from N-periodic parameter sequences

In order to estimate the level of conservatism and to be able to interpret the com-
puted upper bounds on the performance level, there is a need for computing lower
bounds.

The construction of worst-case periodic parameter sequences is a difficult prob-
lem. Similar to construction of destabilizing parameter sequences in order to com-
pute the R-stability margin, we will search among all R-admissible parameter se-
quences for an N -periodic sequence that yields poor performance. The sequence
δwc will be called ”worst-case” if the performance level of any other R-admissible
parameter sequence is at least as good as the level of performance corresponding to
δwc. In general, a periodic worst-case parameter sequence need not exist.

If the LPV system has only a few parameters and the horizon N is chosen to
be small, lower bound values on the performance level can be easily computed by
gridding the N -lifted parameter region R̂N . Analogous to what we have seen in the
construction of destabilizing parameter sequences, a more systematic approach is
provided by applying Theorem 2.6. Let us briefly sketch this procedure.

Lower bounds from exactness of the relaxation

For the purpose of this section, we consider the l2-gain performance measure. Sup-
pose an upper bound on the robust l2-gain of the N -lifted LPV system has been com-
puted by implementing a relaxation scheme for the robust SDP constraints (4.49)-
(4.50) for some chosen parametrization of X(δ̂). Note that this involves semi-infinite
constraints in the lifted parameter vector (δ̂, θ̂) ∈ R̂2N .

Since (δ̂, δ̂) ∈ R̂2N , any upper bound that is obtained from the analysis conditions
in Corollaries 4.3 and 4.4 serves as an upper bound on any N -periodic LPV system.
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The question arises as to find a suitable δ̂ for which the performance of the N -lifted
system is poor.

We further assume that the constructed relaxation scheme is exact with optimal
value γrel, and that a single representative parameter pair (δ̂0, θ̂0) ∈ R̂2N exists. Our
goal is to construct a worst-case parameter sequence based on this tuple (δ̂0, θ̂0).

Let us follow the procedure for constructing destabilizing parameter sequences, as
discussed in Section 4.1.6. By definition of (δ̂0, θ̂0) ∈ R̂2N being a single worst-case
parameter vector (see Section 2.4.2), we infer that γrel equals the optimal value of the
LMI problem that results from the substitution (δ̂, θ̂) → (δ̂0, θ̂0) into (4.49)-(4.50).
In contrast to the result in Corollary 4.2, in which any given single representative
pair (δ̂0, θ̂0) ∈ R̂2N proves instability of the LPV system, we have to distinguish
between the case in which δ̂0 = θ̂0 and δ̂0 6= θ̂0.

A guaranteed lower bound on the worst-case l2-gain is easily obtained in the case
of having δ̂0 = θ̂0. In fact, substituting the (time-invariant) parameter sequence
δ̂ = (δ̂0, δ̂0, . . .) into the N -lifted system (4.48) yields an LTI system with an H∞-
norm γrel. Since the l2-gain is not affected by lifting, the value γlb = γrel serves as a
lower bound on the worst-case l2-gain of LPV system (4.36), with the R-admissible
N -periodic sequence chosen as δ = (δ̂0

1 , . . . , δ̂
0
N , δ̂

0
1 , . . . , δ̂

0
N , δ̂

0
1 , . . .).

If δ̂0 6= θ̂0, the construction of a worst-case parameter sequence is less obvious.
An ad hoc solution would be to compute the l2-gain for the N -periodic parameter
sequence (δ̂0

1 , . . . , δ̂
0
N , δ̂

0
1 , . . . , δ̂

0
N , δ̂

0
1 , . . .) or (θ̂0

1, . . . , θ̂
0
N , θ̂

0
1, . . . , θ̂

0
N , θ̂

0
1, . . .). However,

these sequences not necessarily result in poor performance. In order to be able to
extract a parameter sequence for which the l2-gain equals the upper bound value
of the computed relaxation, a different problem should have been solved. That is,
exactness is required of a multiplier-based relaxation scheme for the robust l2-gain
analysis problem of an N -periodic LPV system (4.36), rather than for the generally
time-varying LPV system. The corresponding test amounts to first performing the
substitution θ̂ → δ̂ in the robust SDP constraints (4.49)-(4.50), after which the semi-
infinite constraints are imposed on the lifted parameter region R̂N , rather than R̂2N .
In this fashion, we are guaranteed that once the relaxation scheme with optimal value
γrel is exact and δ̂0 ∈ R̂N is single-representative, the N -periodic parameter sequence
(δ̂0

1 , . . . , δ̂
0
N , δ̂

0
1 , . . . , δ̂

0
N , δ̂

0
1 , . . .) leads to an l2 gain value γrel.

In the following section, we present a numerical example that further illustrates
the developed analysis method for discrete-time LPV systems.
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4.3 Numerical example: l2-gain analysis

In order to illustrate the proposed analysis method and compare it with the analysis
tools based on IQCs as discussed in the previous chapter. Recall the discrete-time
LPV system from Section 3.4:

xk+1 =
(

0 1
−0.5 −0.5 + δk

)
xk +

(
1
1

)
wk, x0 = x̄0

zk =
(

0 1
)
xk.

(4.54)

The goal in this section is to compute the worst-case l2-gain γwc of channel
w → z for a given class of parameter trajectories described by a region of variation
R according to Definition 4.1. The considered region of variation R̂ is a box i.e.
R̂ = δ×δ ⊂ R2 with δ = [−1, 1], and involves the (trivial) parameter variation bound
|δk+1−δk| ≤ 2. We will first apply Proposition 4.3 with a parameter independent or
parameter dependent Lyapunov matrix X(δ) for the original system matrices. Then,
the N -lifted system is considered in order to improve upper- and lower bounds.

4.3.1 Stability analysis

Recall that the R-stability margin is defined as the largest r for which the LPV
system is stable for all rR-admissible parameter sequences. As discussed in Section
4.1.6, a lower bound r on the stability margin is obtained from any relaxation scheme
for the robust SDP problem (4.32), whenever the optimal value γrel < 0. Let the
Lyapunov matrix have the following structure

X(δ̂) = TX(δ̂)′XcTX(δ̂), (4.55)

in which Xc represents a (full) symmetric coefficient matrix. In particular, we choose

TX(δ̂) =

(
I

δ̂ ⊗ I

)
, (4.56)

which is assumed to be given as an LFR, and δ̂ ∈ R̂N . The symbol I denotes the
identity matrix of size 2, corresponding the state-dimension of system (4.54).

For the horizon N = 1, . . . , 4, a convex hull relaxation scheme is employed for
robust SDP (4.32), from which the LPV system is proven stable for |δ| < 0.57.
Moreover, by gridding the lifted parameter region R̂N for various values of N , a 3-
periodic destabilizing switching sequence of amplitude |δ| = 0.58 was found, which is
identical to the one obtained in [111]. Hence, we conclude that the stability margin
lies in the interval [0.57, 0.58].
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4.3.2 l2-gain analysis

The robust performance analysis problem is performed with a reduced uncertainty
size, so to make sure that the LPV system is uniformly exponentially stable. We
consider the intervals δ ∈ δ = [−r, r] for a number of values r ∈ [0.3, 0.45]. Based
on Proposition 4.3, upper bounds on the worst-case l2-gain will be computed. The
results will depend on the chosen parametrization forX(.) as well as on the particular
relaxation scheme. With X(δ) of the form (4.56), for some fixed matrix TX(δ̂)
the resulting robust SDP constraints (4.38) and (4.39) should first be written in
the general symmetric form (2.2). Then, by making use of the relaxation toolbox
[55], one can easily build a whole range of different relaxation schemes from which
numerical results can be obtained. For the case N = 1, let us show in detail how
the robust SDP constraints are put into the form (2.2).

First, a particular version of Schur’s Lemma is applied to (4.39), see Appendix
A, that will remove the rational dependence on γ. In fact, (4.39) is equivalent to

F̃ (δ, θ)′J̃(Xc, γ)F̃ (δ, θ) ≺ 0 for all (δ, θ) ∈ R̂, (4.57)

with the abbreviations

J̃(Xc, γ) =



−Xc 0 0 0 0 0
0 Xc 0 0 0 0
0 0 −γI 0 0 0
0 0 0 0 I 0
0 0 0 I 0 0
0 0 0 0 0 −γI


and

F̃ (δ, θ) =



TX(δ) 0 0
TX(θ)A(δ) TX(θ)B(δ) 0

0 I 0
0 0 I

C(δ) D(δ) 0
0 0 I


.

Note that, due to the particular structure of X(δ), the decision variables can easily
be separated from the known parameter dependent terms. Next, construct an LFR
F̃1(δ, θ) = PF1F1(δ, θ) in which

PF1 =
(

I 0
DF1 CF1

)
and F1(δ, θ) =

(
∆F1(δ, θ)(I −AF1∆F1(δ, θ))−1BF1

I

)
.

By defining J1(Xc, γ) = P ′F1
J̃(Xc, γ)PF1 , we arrive at

F1(δ, θ)′J1(Xc, γ)F1(δ, θ) ≺ 0 for all (δ, θ) ∈ R̂, (4.58)
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which is precisely the general robust SDP constraint (2.2) from Chapter 2. In a
similar fashion, the robust SDP constraint

X(δ) � 0 for all δ ∈ δ (4.59)

can be turned into the general form (2.2) leading to

F2(δ, θ)′J2(Xc, γ)F2(δ, θ) ≺ 0 for all (δ, θ) ∈ R̂, (4.60)

for some appropriate matrices AF2 , BF2 , J2 and F2 of the form

F2(δ, θ) =
(

∆F2(δ, θ)(I −AF2∆F2(δ, θ))−1BF2

I

)
.

All of the relaxation schemes in this section are multiplier-based, and make use of
the convexity arguments from Section 2.3.1. If we denote, again for N = 1, the four
generators of the region R̂ = [−r, r] × [−r, r] as (δν , θν), ν = 1, . . . , 4, an upper
bound on the l2-gain γwc is obtained by infimizing γ subject to the LMI constraints(

I 0
AFi BFi

)′
Πi

(
I 0
AFi BFi

)
+ Ji(Xc, γ) ≺ 0, (4.61)

in which full block multipliers Πi = Π′i satisfy(
∆Fi(δ

ν , θν)
I

)′
Πi

(
∆Fi(δ

ν , θν)
I

)
� 0, ν = 1, . . . , 4 (4.62)

and (
I

0

)′
Πi

(
I

0

)
≺ 0 (4.63)

for i = 1, 2.

Discussion of the numerical results

In the first upper bound computation, referred to as UB-0, the Lyapunov matrix is
chosen to be a parameter independent matrix, i.e. X(δ) = Xc. As shown above, the
condition (4.39) for quadratic performance turns into a robust SDP (4.58). Since
Xc does not depend on the parameter, the outer factor F1(δ, θ) in (4.58) no longer
depends on θ.

The convex hull relaxation for guaranteeing conditions (4.62)-(4.63) with a single
parameter involves a total of 3 LMIs. Moreover, the relaxation is guaranteed to be
exact, since we use a full block multiplier, see for a proof [156, 124]. In Figure 4.4
the resulting l2-gain upper bound values are shown and a comparison with other
relaxation schemes in this section is made in Table 4.1. The upper bounds of UB-0
are conservative, as is shown next.
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Parameter dependent Lyapunov matrix

From now on, the Lyapunov matrix is chosen to be of the form (4.55) with TX(δ)
defined in (4.56). The multiplier-based convex hull relaxation scheme is applied to
the robust SDP (4.58) for the region of variation R̂ = δ×δ. The resulting values γrel

are plotted in Figure 4.4 and referred to as UB-1. While it is immediately clear that
the results improve if using a parameter dependent Lyapunov matrix. Nevertheless,
in this example, the upper bounds do not decrease further when adding higher order
monomials to the basis TX(δ).

0.3 0.35 0.4 0.45

5

10

15

20

r

γ

 

 
UB-0 (quadratic stability)
UB-1
UB-2
UB-3

Figure 4.4: l2-gain analysis for system (4.54) with time-varying parameters, upper
bound computations. Also indicated is the exact lower bound for time-invariant
parameters (dashed), which is obtained by sampling the set δ.

Improved upper bounds using the N-lifted system

As explained in Section 4.2.3, analyzing performance of the N -lifted system (with
N > 1) is expected to improve our results. In view of the fact that the time-varying
parameter can vary arbitrarily in the interval [−r, r], the region R̂2N amounts to
a box around the origin in R2N , see again Figure 4.1. A convex hull relaxation
therefore involves 22N = 4N LMI constraints corresponding to the generators of

108



R̂2N . The upper bounds obtained for N = 2, . . . , 6 are denoted by UB-2,UB-3,UB-
4,UB-5 and UB-6, with the corresponding results shown in Table 4.1. We observe
that the upper bound on the worst case l2-gain no longer improves when choosing
N greater than 4.

TX(δ) ] xi ] LMIs ] Vars γ for r = 0.45
UB-0 1 1 4 +1 8 88.56
UB-1 1, δ1 2 6 +4 47 16.78
UB-2 1, δ1 4 18 +6 193 14.73
UB-3 1, δ1 6 66 +10 443 14.47
UB-4 1, δ1 8 256 +18 797 14.41
UB-5 1, δ1 10 1026 +32 1255 14.41
UB-6 1, δ1 12 4098 +64 1817 14.41

Table 4.1: l2-gain upper bounds for various relaxations. The number of uncertain
parameters is indicated by ] xi. The number of the LMIs corresponding the relax-
ations for (4.58) and (4.60) respectively, is denoted by ] LMIs.

Exactness and computation of lower bounds

As it is proven in Appendix D, the worst-case lower bounds of N -periodic LPV
systems will get arbitrarily close to γwc as the horizon N is increased. Therefore,
we now sample the lifted parameter region R̂N , for values N = 1, . . . 4. Using a
uniform grid of 5N points, the worst-case l2-gains that are found by computing the
H∞-norm of the N -lifted LTI system have been listed in Table 4.2. Note that the
lower bound in Figure 4.4 is compatible with the value γ = 4.63 at r = 0.45.

The lower bound value γ = 14.41 for the 3-periodic parameter sequence proves
exactness of relaxations UB-4,UB-5,UB-6. Unfortunately, this triple (r,−r, r) could
not be extracted from the exactness test in Theorem 2.6. In fact, condition (2.69) was
infeasible and the polynomial system constructed by an element wise implementation
of (2.68) could not be solved due to the complexity of the problem. In order to give
an impression, the relaxation UB-3 involves a dual multiplier M in (2.68) of size
22× 22, and rank(M)=7, and the size of Zν is 8.

worst-case δ γ for r = 0.45
(r, r, . . .) 4.63
(r,−r, r, . . .) 6.69
(r, r,−r, r, . . .) 14.41
(r,−r, r,−r, r, . . .) 6.69

Table 4.2: N -periodic parameter sequences. The indicated l2 gain levels γ corre-
spond to periodic time-varying systems and therefore provide a lower bound value
on the worst case l2-gain of the LPV system.
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4.4 Summary

With an initial focus on computing the stability margin of LPV systems, the first
analysis test that was considered makes use of a quadratic-in-the-state Lyapunov
function which is parameter dependent. A family of robust SDP constraints is
obtained by increasing the order of the parameter dependent Lyapunov matrix.
Generally speaking, the analysis conditions in this family are sufficient for stability
only, since a quadratic in the state Lyapunov function need not exist.

At present, it is unknown how to estimate the level of conservatism of the
Lyapunov-based sufficient conditions for stability of uncertain systems. With a lack
of efficient numerical algorithms for the so-called “converse theorems”, we have made
initial steps towards an alternative framework for stability and performance analysis
of general LPV systems in discrete time. As one of the main results, the proposed
method provides a systematic reduction of the level of conservatism by constructing
a suitable family of robust SDPs.

The family of sufficient conditions for stability is based on the monodromy matrix
ÂN and closely linked to the notion of the joint spectral radius, as it is known for
the analysis of switched systems. Theorem 4.1 shows that the constructed family
is asymptotically exact, which means that for some large N , the derived stability
condition is necessary and sufficient for stability. This fundamental result can be
seen as an extension of Gelfand’s formula, providing a numerically tractable solution
for analyzing stability of LPV systems with general regions of variation.

Despite the asymptotic exactness of the derived family of stability conditions,
it is of practical interest to estimate the level of conservatism in particular numer-
ical computations. For this reason, we discussed periodic destabilizing parameter
sequences as a tool for proving instability, leading to upper bounds on the stability
margin. When combining the proposed approach with the exactness test in Section
2.4.2, destabilizing parameter sequences can (in principle) be extracted from the
multiplier-based relaxations, provided the computed relaxation scheme is exact.

What can be done for stability has been extended to performance by making
use of a conceptually simple lifting technique. Analysis conditions have been pre-
sented in terms of the N -lifted LPV system for the quadratic performance and H2-
performance measures. Once the parametrization of the Lyapunov matrix is fixed,
these conditions amount to solving a robust SDP. The crucial role of N -periodic
parameter trajectories establishes a close link between our approach to the stability
analysis and performance analysis problem.

Finally, the proposed analysis tools have been illustrated on a numerical example,
in which the l2-gain of a given LPV system was investigated. The very same system
was analyzed in Section 3.4 by using the alternative analysis method based on IQCs.
For the presented example, the Lyapunov based analysis method showed significant
improvements. Exactness of the N -lifted analysis conditions was proven by con-
structing a worst-case N -periodic parameter sequence, providing a lower bound on
the robust l2-gain of an LPV system.
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Chapter 5

A convex robust synthesis

solution for specific

generalized plant structures

In the previous two chapters we have discussed two existing approaches to the mod-
eling and analysis of uncertain systems. First, in Chapter 3, we presented the IQC
framework, which allows to incorporate all sorts of uncertainties. Second, for the
particular class of parametric uncertainties, the analysis of LPV systems based on
Lyapunov arguments was addressed in Chapter 4.

In this and the next chapter we further elaborate on the use of these two differ-
ent modeling environments and focus on the following question: Given an uncertain
system, can a certain performance level be achieved by applying feedback control?
Second, how to compute such a controller? While the present chapter focusses on
controller synthesis in the IQC framework, the next chapter is concerned with the
design of scheduled controllers for LPV systems.

Following the analysis approach of Chapter 3, let a parameterized class of multi-
pliers Π ∈ Π be given for a specified set of uncertain operators ∆. As we will see
in Section 5.3, robust controller design in the IQC framework involves optimiza-
tion over both the multiplier variables and the controller matrices. At present, it is
unknown whether simultaneous optimization over these variables is possible while
keeping the problem convex, which is why iterative schemes have been suggested.
Such heuristic methods are based on either fixing the scalings while searching over
the controller variables or fixing the controller and finding suitable multipliers. In
this chapter, we will show that no such heuristics are needed when the generalized
plant has a certain structure, and that optimal robust controllers can be obtained
from a single convex optimization problem.
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This chapter is organized as follows. In the next section, we give a motivating
controller design problem that naturally leads to a particularly structured general-
ized plant. In Section 5.2 we formally state the problem, after which a brief recap on
IQC analysis will be given. Our main robust synthesis result is presented in Section
5.3. We first show how to characterize stability of the nominal closed loop system,
and then exploit the problem structure in order to arrive at the LMI synthesis con-
ditions. It is also shown how to eliminate controller variables, similar as it can be
done in the nominal output feedback synthesis problem. The numerical example of
Section 5.4 concerns the rejection of time-varying sinusoidal disturbances with (a
priori) unknown frequency that vary slowly in time. By making use of a suitable
multiplier class as proposed in [113], see also Section 3.3, we are able to improve
performance by incorporating parameter variation bounds. A closing section will
finally summarize the results.

5.1 Motivating example: uncertainty in the distur-

bance model

The well-known H∞- or H2-synthesis procedure involve adding suitable transfer
functions to the plant input/output such that norm minimization of the weighted
plant results in satisfactory performance of the closed-loop system. In case that the
nature of the disturbance input can be nicely captured by an LTI filter, this filter
typically acts as a weight on the input. For instance, measurement noise with certain
spectral properties can be effectively dealt with by adding a suitable coloring filter
at the plant input. Despite the fact that various parameterized disturbance models
are available in the literature, e.g. for describing wind turbulence acting on aircraft,
[91, 95], water waves acting on ships, [121], or models of the road roughness used in
ride quality analysis of land vehicles, [84], most controller synthesis techniques do
not exploit this knowledge as already recognized by some authors, see [49].

G F

∆

p

q

u

v w

K

z

Py

Figure 5.1: System interconnection with uncertain filter F
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Figure 5.2: Filtered white noise for filter D(s, δ) in (5.1) with V = 150 m/s and two
turbulence scales L.

As a particular design example in which the disturbance filter is affected by uncer-
tainty, consider the goal of designing a flight controller to improve passenger comfort
or dampen the flexible structure. Referring to the interconnection of Figure 5.1, sup-
pose G represents the LTI model dynamics of an aircraft flying in turbulent air. The
gust input, acting horizontal or vertical direction, is denoted by v and z represents
the vertical acceleration. The LTI filter F at the plant input represents the atmo-
spheric turbulence which depends on altitude, the speed of the aircraft and the type
of weather in which the aircraft is flying. With the control input denoted by u and
the measurement output denoted by y, we consider the goal of designing a controller
K that achieves the least possible level of vertical acceleration.

Atmospheric turbulence can be viewed as a random process whose power spec-
trum is known. It is often approximated by a filtered white noise signal, with
parameterized filters of the form

D(s, δ) =

√
δ

δs+ 1
, (5.1)

in which δ = L
V and where V is the airspeed and L the so-called ’turbulence scale’,

see [95, 49] and references therein. In Figure 5.2, the output of the filter is shown
for a particular realization of a white noise source and for two different values of L.

Now consider the problem of minimizing the worst-case variance of the vertical
acceleration for a fixed class of disturbance filters. In view of the fact that both
the stochastic and impulse response interpretations of the H2-norm, as given in Ap-
pendix A, are equivalent for LTV systems, we will employ the robustH2-performance
measure from Section 3.2. Let a minimal realization of G be given as

G :=
(
Gzv Gzu
Gyv Gyu

)
=

 A Bv Bu
Cz Dzv Dzu

Cy Dyv 0


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and let the parameter dependent filter be given in LFR form, i.e. Fδ(s, δ) = ∆(δ) ?
F (s) with

F :=
(
Fqp Fqw
Fvp Fvw

)
=

 AF Bp Bw
Cq Dqp Dqw

Cv Dvp Dvw


and ∆(δ) = δI. The interconnection of F with ∆ is defined as

p = ∆(q)
q = Fqpp+ Fqww

v = Fvpp+ Fvww.

Since the dynamics of F are not affected by the control input, all eigenvalues of AF
are assumed to lie in the open left half plane. The generalized plant P is formed by
merging the dynamics of F with those of the plant P , that is

P =

 Fqp Fqw 0
GzvFvp GzvFvw Gzu
GyvFvp GyvFvw Gyu

 , (5.2)

as indicated by the dashed box in Figure 5.1. Note that the transfer matrix from u

to q is zero, which is an immediate consequence of the fact that the uncertainty only
affects F and not G. It is precisely this property that will enable us to derive a convex
solution to the synthesis problem. We point to the recent work [56], in which our
synthesis algorithm in this chapter has been applied to a magnetic bearing system.

Related work on robust disturbance rejection

The problem of disturbance rejection against more specific families of disturbances
has been considered in various contexts. First, building on the flight control design
example, Davison in [49] has developed a number of frequency domain techniques
for SISO systems. Second, inspired by [82], Scherer in [154] considers random dis-
turbance inputs of which the (uncertain) covariance coefficients are specified in an
a priori given set. Related work on the control of uncertain systems with stochastic
uncertainty can be found in [175, 134] and references therein.

In [103], a class of disturbance signals is directly described in terms of an integral
quadratic constraint and a suitably chosen multiplier class. It is an interesting topic
of future research to investigate the modeling power of such an approach in solving
practical disturbance rejection problems.

Finally, in [27], the robust optimal H∞- or H2- synthesis problem is solved for a
so-called “signal polytope”. The uncertain state-space matrices of the disturbance
filter are assumed to lie in a given convex polytope which explains the terminology.
It is closely related to the general synthesis solution that we propose though our
solution allows for general rational parameter dependence of the system matrices of
the filter.
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5.2 Problem formulation

The convex conditions for the robust controller synthesis problem that are contained
in the next section are derived for the generalized plant configuration in Figure 5.3,
where

P =

 Pqp Pqw 0
Pzp Pzw Pzu
Pyp Pyw Pyu

 . (5.3)

It is assumed that P represents an LTI system in continuous time. The measured
output and control input are denoted by y and u respectively, and the performance
channel is denoted as w → z. The uncertain operator ∆ maps signals q ∈ Lnq2,e

to p ∈ Lnp2,e and affects the nominal plant P in the usual feedback interconnection,
defined through the relations

p = ∆(q),
q = Pqpp+ Pqww.

(5.4)

The interconnection of P with ∆ is assumed to be well-posed, that is I − Pqp∆
has a causal and bounded inverse for all ∆ ∈ ∆, in which ∆ is a predefined set of
uncertain operators, see also Chapter 3.

K
uy

P

∆
pq

z w

Figure 5.3: Generalized plant

The robust controller synthesis problem can be formulated as follows: Design an
LTI controller, denoted by

K(s) :=

[
AK BK
CK DK

]
, (5.5)

which achieves, for all ∆ ∈ ∆, the desired closed-loop performance measure as it is
specified on the channel w to z.

Despite the fact that dynamic IQCs can capture a vast amount of different types
of uncertainties, there are only few results on designing robust controllers in the IQC
framework, see e.g. [4]. Although the robust synthesis problem is formulated without
specifying the uncertainties, we will more carefully study time-varying parameters.
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5.3 Robust synthesis via LMIs

The robust synthesis solution that is developed in this section was first published in
our paper [62] for static multipliers, after which the general solution with dynamic
multipliers followed in [59, 63].

We will start from an LMI characterization of performance from Chapter 3,
that is either a quadratic performance such as the induced L2-gain or some H2-
performance criterion. Since the IQC-based analysis result for stability and perfor-
mance can only be applied if the nominal closed loop system is stable, a recently
developed characterization of nominal stability is discussed in Section 5.3.2. By
making use of two existing congruence transformations, our main synthesis solution
is presented in Section 5.3.3. Finally, the algorithm is illustrated on a numerical
example.

5.3.1 From analysis to controller synthesis

The design of a (robust) optimal feedback controller in the LMI framework typically
starts with an LMI characterization of the desired performance measure, e.g. the
H∞-norm or H2-norm. These are found in Appendix A and in Chapters 3 and 4
for uncertain systems. As for all H∞- or H2- norm based design methodologies, this
design method involves choosing suitable weighting functions at the plant input and
output.

Since the system matrices depend on to-be-designed controller variables, the
conditions for example in Proposition 3.1 are no longer affine in the multiplier Π
and the controller variables. Thus, LMI solvers are unable to solve the synthesis
problem directly. Let us examine the precise difficulties that one encounters when
using an analysis condition for controller design purposes.

For this purpose, let us introduce the following realization for the closed loop
system

P (s) ? K(s) =
( Pqp(s) Pqw(s)
Pzp(s) Pzw(s)

)
=

 A Bp Bw
Cq Dqp Dqw
Cz Dzp Dzw

 . (5.6)

In the next section, we give the explicit dependence of these matrices on the controller
variables AK , BK , CK , DK . For the moment, we do not yet introduce a realization
of P , and keep the details for later. The following analysis result is a direct conse-
quence of Proposition 3.1 in Section 3.1. Recall the fact that the dynamic multiplier
was factorized as Π = Ψ′QΨ in which AΨ, CΨ, BΨi , DΨi for i = 1, 2 denoted the
realization matrices of Ψ.

Corollary 5.1 The closed-loop system (5.6) with performance channel w → z sat-
isfies quadratic performance for all ∆ ∈∆ if A is stable and, for some Q ∈ Q there
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exists X , partitioned as

X =
( X11 X12

X21 X22

)
, (5.7)

such that

(
..
)′


0 X 0 0
X 0 0 0
0 0 Q 0
0 0 0 Pp




AΨ BΨ1Cq BΨ1Dqp +BΨ2 BΨ1Dqw
0 A Bp Bw
CΨ DΨ1Cq DΨ1Dqp +DΨ2 DΨ1Dqw
0 0 0 I

0 Cz Dzp Dzw

 ≺ 0.

(5.8)

Proof. The result directly follows by considering condition (3.13) for the closed
loop plant, rather than the given LTI plant M . In particular, the outer factor in
(5.8) is defined by the realization matrices of

 Ψ1 Ψ2 0 0
0 0 I 0
0 0 0 I




I 0
Pqp Pqw
0 I

Pzp Pzw

 . (5.9)

If Theorem 3.1 is to be used for controller synthesis purposes, there are two main
issues that need to be solved in order to render the synthesis conditions convex in all
variables. First, due to the multiplication of the controller variables in A,Bp, . . . with
the matrices X and Q, it is not possible to simultaneously optimize over all decision
variables by semi-definite programming. A suitable congruence transformation will
resolve this problem, by exploiting the fact that Pqu = 0.

Second, the condition in Corollary 5.1 proves robust performance under the as-
sumption that A is stable. Clearly, for an a priori known system this can easily be
verified. In order to guarantee that the resulting synthesis solution has the property
that the closed loop system is stable for ∆ = 0, a suitable constraint must be added,
which is the topic of our next section.

5.3.2 A new characterization of nominal stability

The purpose of this section is to give an elementary proof for a recently developed
characterization of stability of A in (5.8) in terms of an LMI constraint. Note
that Q ∈ Q is generally an indefinite matrix, which implies that positivity of the
Lyapunov matrix X is no longer the appropriate condition for characterizing closed
loop stability, see [8, 162] for a detailed discussion. Recently, a full characterization
of stability has been presented in [161]. As compared to the proof given there,
we provide an alternative and elementary proof that does not rely on a particular
structure of the realization matrices of Ψ.
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Recall the notation from Chapter 3 and suppose that we are given a multiplier
Π = Ψ∗QΨ for which the IQC (3.2) holds for all ∆ ∈∆. Further, let the realization
of Ψ be given as

Ψ =
(

Ψ1 Ψ2

)
=

[
AΨ BΨ1 BΨ2

CΨ DΨ1 DΨ2

]
(5.10)

with stable AΨ ∈ RnΨ×nΨ . Under the assumption that 0 is contained in the set ∆,
it follows from (3.2) that

Π22(iω) � 0 for all ω ∈ R ∪ {∞}.

If Π satisfies (3.11), note that Πε = Π +
(

0 0
0 εI

)
is admissible and still satisfies

(3.11) for some small ε > 0. Therefore, without loss of generality, we can assume

Π22(iω) � 0 for all ω ∈ R ∪ {∞}.

This translates into

Ψ2(iω)∗QΨ2(iω) � 0 for all ω ∈ R ∪ {∞} (5.11)

Then, by the KYP lemma, the frequency domain inequality (5.11) is equivalent to
the existence of X̌ = X̌T such that I 0

AΨ BΨ2

CΨ DΨ2

′ 0 X̌ 0
X̌ 0 0
0 0 Q

 I 0
AΨ BΨ2

CΨ DΨ2

 � 0. (5.12)

In the next theorem, we characterize robust performance, without assuming that
the closed loop system is stable, as opposed to Corollary (5.1). Stability of A can
be captured by an additional LMI constraint.

Theorem 5.1 Consider the generalized plant in Figure 5.3, and let a controller K
be connected, resulting in the realization (5.6). Suppose Q ∈ Q and X , partitioned
as in (5.7), are solutions to (5.8) and X̌ a solution to (5.12). Then, the matrix A
is Hurwitz if and only if ( X11 − X̌ X12

X21 X22

)
� 0. (5.13)
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Proof. If considering (5.8), that is

(
..
)′


0 0 X11 X12 0 0
0 0 X21 X22 0 0
X11 X12 0 0 0 0
X21 X22 0 0 0 0
0 0 0 0 Q 0
0 0 0 0 0 Pp





I 0 0 0
0 I 0 0
AΨ BΨ1Cq BΨ1Dqp +BΨ2 BΨ1Dqw
0 A Bp Bw
CΨ DΨ1Cq DΨ1Dqp +DΨ2 DΨ1Dqw
0 0 0 I

0 Cz Dzp Dzw


≺ 0,

let us use (5.12) in order to get

(
..
)′


0 0 −X̌ 0 0 0
0 0 0 0 0 0
−X̌ 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 −Q 0
0 0 0 0 0 Pp





I 0 0 0
0 I 0 0
AΨ BΨ1Cq BΨ1Dqp +BΨ2 BΨ1Dqw
0 A Bp Bw
CΨ DΨ1Cq DΨ1Dqp +DΨ2 DΨ1Dqw
0 0 0 I

0 Cz Dzp Dzw


� 0.

By adding these two LMIs, the terms that multiply with Q cancel, and we arrive at
I 0
0 I

AΨ BΨ2C

0 A
0 Cz


′

0 0 X11 − X̌ X12 0
0 0 X21 X22 0

X11 − X̌ X12 0 0 0
X21 X22 0 0 0
0 0 0 0 Rp




I 0
0 I

AΨ BΨ2C
0 A
0 Cz

 ≺ 0.

Recall the fact that

Pp =
(
Qp Sp
S′p Rp

)
, with Rp � 0.

Note that by Lyapunov, any matrix A is stable if there exists X � 0 for which
XA+A′X ≺ 0. Hence, we conclude that the matrix(

AΨ BΨ2C
0 A

)
(5.14)

is stable if and only if (5.13) is satisfied. The proof finishes by the observation that
the eigenvalues of (5.14) equal the union of the eigenvalues of A and AΨ, the latter
of which is stable by assumption.

If using static multipliers, which corresponds to Ψ = I, (5.12) is dropped and (5.13)
reduces to X � 0, which is the usual characterization of stability.
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5.3.3 Derivation of the convex synthesis conditions

With the IQC analysis result of Theorem 3.1 and the characterization for nominal
stability in Theorem 5.1, our main synthesis result is established by exploiting the
structure in the plant.

First, recall the fact that (5.8) in Corollary 5.1 is non-linear in the decision variables
X , Q and the controller variables AK , BK , CK , DK . By following the arguments
from [159, 122], in which the nominal output feedback control problem was rendered
convex, we can overcome the bi-linearity in X and AK , BK , CK , DK , after which we
will handle the product of the controller matrices with Q ∈ Q.

Without loss of generality we can consider the following realization of the generalized
plant P in (5.3):

P =


A1 A12 Bp1 Bw1 Bu
0 A2 Bp2 Bw2 0
0 Cq Dqp Dqw 0
Cz1 Cz2 Dzp Dzw Dzu

Cy1 Cy2 Dyp Dyw 0

 . (5.15)

In fact, the zero in (0 Cq) follows immediately from Pqu = 0 when (A1, Bu) is chosen
to be a controllable pair.

We will first merge the generalized plant matrices with the dynamics of Ψ before
closing the loop with the controller. As a result, the composite transfer matrix
(5.9) of the closed loop system, as it is needed in Corollary 5.1, can alternatively be
obtained by interconnecting the controller K(s) with the weighted open-loop plant

 Ψ1 Ψ2 0 0
0 0 I 0
0 0 0 I




I 0 0
Pqp Pqw 0
Pzp Pzw Pzu
Pyp Pyw Pyu

 =

 Ψ1Pqp + Ψ2 Ψ1Pqw 0
Pzp Pzw Pzu
Pyp Pyw Pyu

 , (5.16)

for which the following realization is determined

A1 0 A12 Bp1 Bw1 Bu
0 AΨ BΨ2Cq BΨ1 +BΨ2Dqp BΨ2Dqw 0
0 0 A2 Bp2 Bw2 0

0 CΨ DΨ1Cq DΨ1 +DΨ2Dqp DΨ2Dqw 0

Cz1 0 Cz2 Dzp Dzw Dzu

Cy1 0 Cy2 Dyp Dyw 0


. (5.17)
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For this composite transfer matrix, we introduce the following abbreviation

P̃ =


Ã B̃p B̃w B̃

C̃q D̃qp D̃qw 0

C̃z Dzp Dzw Dzu

C̃ Dyp Dyw 0

 . (5.18)

By the usual computations, the realization matrices of P̃ (s) ? K(s) are given by


Ã B̃p B̃w
C̃q D̃qp D̃qw
C̃z D̃zp D̃zw

 =


Ã 0 B̃p B̃w
0 0 0 0

C̃q 0 D̃qp D̃qw

C̃z 0 Dzp Dzw

+


0 B̃

I 0
0 0
0 Dzu


(
AK BK
CK DK

)(
0 I 0 0
C̃ 0 Dyp Dyw

)
. (5.19)

The following intermediate result illustrates that (5.8) can be transformed into a
more convenient form, in which the Lyapunov matrix X no longer multiplies with
the controller variables. Rather than assuming that the nominal closed loop system
is stable, as was done in Corollary 5.1, our next result makes use of the stability
characterization in Theorem 5.1.

Lemma 5.1 The following conditions for robust stability and quadratic performance
of the closed loop system (5.6) are equivalent:

• There exist controller matrices AK , BK , CK , DK and matrices X , X̌,Q ∈ Q
such that the system matrix Ã in (5.19) is stable, (5.12) holds and the inequal-
ities

(
..
)′


0 X 0 0
X 0 0 0
0 0 Q 0
0 0 0 Pp




I 0 0
Ã B̃p B̃w
C̃q D̃qp D̃qw
0 0 I

C̃z D̃zp D̃zw

 ≺ 0, (5.20)

and

X −
(
E(X̌) 0

0 0

)
(5.21)
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are satisfied. Here, the block-structured matrix

E(X̌) =

 0 0 0
0 X̌ 0
0 0 0

 (5.22)

is compatible with the structure of Ã in (5.17)-(5.18), i.e. the size of the
diagonal blocks of X̌ are compatible with the size of A1, AΨ and A2 respectively.

• There exist matrices X,Y, X̌,K,L,M,N and Q ∈ Q for which (5.12) and the
following inequalities hold:

(
..
)′


0 I 0 0
I 0 0 0
0 0 Q 0
0 0 0 Pp




I 0 0
A Bp Bw

Cq Dqp Dqw

0 0 I

Cz Dzp Dzw

 ≺ 0 (5.23)

and (
Y I

I X

)
−
(
Y E(X̌)Y Y E(X̌)
E(X̌)Y E(X̌)

)
� 0. (5.24)

Here, the boldface symbols are defined as

 A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

 =


ÃY Ã B̃p B̃w
0 XÃ XB̃p XB̃w

C̃qY C̃q D̃qp D̃qw

C̃zY C̃z Dzp Dzw

+

+


0 B̃

I 0

0 0
0 Dzu


(

K L

M N

)(
I 0 0 0
0 C̃ Dyp Dyw

). (5.25)

Proof. The result follows by applying a congruence transformation proposed in
[159]. From Corollary 5.1 it is immediately clear that the existence of X ,X̌, AK ,
BK , CK , DK and Q ∈ Q which satisfy (5.12) and (5.20)-(5.21) implies robust
quadratic performance. Note that there always exists ε for which X +εI is invertible
while still satisfying (5.20) and (5.21). Provided that the controller order is chosen
large enough, the following parametrization of X exists:

X =
(

X U

UT ∗
)
, and X−1 =

(
Y V

V T ∗
)
, (5.26)

with block dimensions compatible with the closed-loop system matrix Ã in (5.19).
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The matrices U, V with V having full row rank, are chosen such that I−XY = UV T

holds. It immediately follows that(
Y V

I 0

)
X =

(
I 0
X U

)
. (5.27)

We will now apply a congruence transformation Y to (5.20), with Y defined as

Y =


Y I 0 0
V T 0 0 0
0 0 I 0
0 0 0 I

 . (5.28)

If we define new controller parameters (K,L,M,N) as(
K L

M N

)
=
(
U XB̃

0 I

)(
AK BK
CK DK

)(
V T 0
C̃Y I

)
+
(
XAY 0

0 0

)
, (5.29)

the boldface matrices in (5.25) are precisely equal to

Y ′
 XÃ X B̃p XB̃w
C̃qX D̃qp D̃qw
C̃zX D̃zp D̃zw

Y. (5.30)

Hence, by applying the congruence transformation Y to (5.20) we arrive at (5.23).
Moreover, with X being factorized as in (5.26), it follows that(

Y I

V T 0

)
has full column rank, and hence(

Y I

V T 0

)′
X
(

Y I

V T 0

)
=
(
Y I

I X

)
� 0.

With the observation that(
Y I

V T 0

)′(
E(X̌) 0

0 0

)(
Y I

V T 0

)
=
(
Y E(X̌)Y Y E(X̌)
E(X̌)Y E(X̌)

)
,

it is shown that (5.21) implies (5.24).

In order to prove the reverse statement, suppose that X,Y, X̌, K,L,M,N and Q ∈ Q
satisfy (5.12), (5.23), and (5.24). Then, there always exists ε for which both Xε =
X+ εI, Yε = Y + εI as well as I−XεYε are non-singular, while still satisfying (5.23)-
(5.24). Hence, we can factorize I −XεYε = UV ′ for some square and non-singular
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U, V . Since
(

I 0
X U

)
in (5.27) and Y in (5.28) are square and invertible as well,

we can choose X , AK , BK , CK , DK that satisfy (5.27) and (5.29). By construction,
the expression (5.30) is equal to (5.25). Note also, that the controller has the same
order of the plant. If applying the congruency transformations

Y−1 and
(

Y I

V ′ 0

)−1

to (5.23) and (5.24) respectively,

we arrive at (5.20) and (5.21), which finishes the proof.

Since Pqu = 0 implies Dqp = D̃qp, Dqw = D̃qw, the only non-linearity that remains
in (5.23) is caused by the term C′qQC′q. In order to arrive at the synthesis solution,
we need to get rid of this non-linearity. Moreover, we have to see how to render the
coupling condition (5.24) convex at the same time. It turns out that by applying
a suitable congruence transformation S1, we can at the same time remove all the
decision variables from Cq by enforcing C̃qY S1 = C̃q, as well as convexify (5.24).

The synthesis solution based on Corollary 5.1 is developed by first partitioning
the matrices X,Y according to Ã in (5.17), i.e.

X =

 X11 X12 X13

XT
12 X22 X23

XT
13 XT

23 X33

 , Y =

 Y11 Y12 Y13

Y T12 Y22 Y23

Y T13 Y T23 Y33

 , (5.31)

in which X11, Y11 are of compatible size with A1, while the same holds for X22, Y22

and AΨ, X33, Y33 and A2, respectively. Moreover, we let the matrix T be partitioned
in a similar fashion, i.e.

T =

 T11 T12 T13

TT12 T22 T23

TT13 TT23 T33

 . (5.32)

Our next theorem is based on Lemma 5.1 and contains the main synthesis result of
this paper.

Theorem 5.2 The closed-loop system (5.6) with performance channel w → z sat-
isfies quadratic performance for all ∆ ∈ ∆ if for some Q ∈ Q there exist T,X, X̌,
K̄, L, M̄ , N for which

(
..
)′


0 I 0 0
I 0 0 0
0 0 Q 0
0 0 0 Pp




I 0 0
A Bp Bw

Ce D̃qp D̃qw

0 0 I

Cz Dzp Dzw

 ≺ 0, (5.33)
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hold with Ce =
(
C̃q C̃q

)
, as well as (5.12) and the coupling condition

X :=


T11 0 0 I T12 T13

0 T22 − X̌ T23 0 T22 − X̌ T23

0 T ′23 T33 0 T ′23 T33

I 0 0 X11 X12 X13

T ′12 T22 − X̌ T23 X ′12 X22 − X̌ X23

T ′13 T ′23 T33 X ′13 X ′23 X33

 � 0 (5.34)

are satisfied. The boldface symbols depend on the decision variables in an affine
fashion. With the structured matrices

S1 =

 I 0 0
T ′12 T22 T23

T ′13 T ′23 T33

 and S2 =

 T11 −T12 −T13

0 I 0
0 0 I

 , (5.35)

these are defined as

[
A Bp Bw

Cz Dzp Dzw

]
=

 S′1ÃS2 S′1Ã S′1B̃p S′1B̃w
0 XÃ XB̃p XB̃w

C̃zS2 C̃z Dzp Dzw


+

 0 B̃

I 0
0 Dzu

( K̄ L

M̄ N

)(
I 0 0 0
0 C̃ Dyp Dyw

)
.

(5.36)

Remark 5.1 The existence of T , X, X̌, K̄, L, M̄ , N and Q ∈ Q for which (5.12),
(5.33)-(5.34) is equivalent to any of the two sets of conditions in Lemma 5.1.

Proof. Similar as in Lemma 5.1, we can perturb X,T such that X and T , and
hence also S1, S2, are non-singular. Moreover, without loss of generality we assume
that I −XS2S

−1
1 are invertible as well. Defining the matrices

Y = S2S
−1
1 , K = K̄S−1

1 , M = M̄S−1
1 , (5.37)

we have found matrices X, X̌, Y,K,L,M,N and Q ∈ Q which satisfy the conditions
(5.23)-(5.24) and (5.12). By following the arguments in the proof of Lemma 5.1, it
the closed loop system is shown to satisfy robust quadratic performance.

Second, let us prove that the existence of X, X̌, Y,K,L,M,N and Q ∈ Q that sat-
isfy (5.12), (5.23) and (5.24) implies the existence of T,X, X̌, K̄, L, M̄ ,N and Q ∈ Q
satisfying (5.12), (5.33)-(5.34). As mentioned in Lemma 5.1, the matrices X,Y and
I −XY can be taken to be non-singular, possibly after a small perturbation. Let Y
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be factorized such that

Y

 I 0 0
T ′12 T22 T23

T ′13 T ′23 T33

 =

 T11 −T12 −T13

0 I 0
0 0 I

 ,

for some non-singular T in (5.32) and let the structured matrices S1, S2 be defined
in (5.35). Then, with V̄ := S′1V , define Ȳ as

Ȳ = Y


S1 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

 =


S2 I 0 0
V̄ ′ 0 0 0
0 0 I 0
0 0 0 I

 , (5.38)

in which Y is given in (5.28). Note that the particular structure of S2 has been
chosen to enforce C̃qS2 = C̃q. In fact, left-and right multiplication with Ȳ ′, Ȳ will
transform (5.20) into (5.33) with the substitutions as in (5.36). Note that, as we
transform Cq in (5.25) into Ce =

(
C̃q C̃q

)
, the expression (5.33) becomes affine

in all decision variables {T,X, X̌, K̄, L, M̄ ,N, } and Q ∈ Q.

Finally, it can be verified that the coupling condition (5.24) yields (5.34) by

applying the congruence transformation
(
S1 0
0 I

)
. This finishes our proof.

Remark 5.2 A numerical implementation requires to render condition (5.33) affine
in Cz,Dzp, which is make possible by Schur’s lemma, see also Section 5.3.5.

Controller reconstruction

The controller matrices can be reconstructed from the solution matrices X,T ,X̌,
K̄, L, M̄ , N in the following fashion. First, we construct matrices K,M, Y as in
(5.37) and find square matrices U, V such that UV T = I −XY . Once X,Y ,U ,V are
available, the controller matrices can be obtained as

DK := N

CK := (M −DKC̃X)U−T

BK := V −1(L− Y B̃DK)
AK := V −1

(
K − V BKC̃X

−Y B̃CKUT − Y (Ã+ B̃DKC̃)X
)
U−T .

(5.39)

An alternative approach is to first compute X from X,T , and then to solve (3.24)
for the controller matrices AK , BK , CK , DK , while keeping X fixed. Note that the
controller variables enter the closed loop matrices A,B, C,D in an affine fashion.
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5.3.4 Robust H2-synthesis

Similar to the synthesis result regarding the quadratic performance measure, one
can start from the characterization of robust H2-performance that was shown in
Theorem 3.2.

Theorem 5.3 Consider the realization (5.15) and let Dzw = 0 and Dzu = 0. Then,
there exists a controller such that the H2-performance level of the closed loop channel
w → z is smaller than γ if there exist T,X, X̌, K̄, L, M̄ ,N and Q ∈ Q for which
Tr(Z) ≤ γ2, 

I 0
A Bp

Ce D̃qp

Cz Dzp


′

0 I 0 0
I 0 0 0
0 0 Q 0
0 0 0 I




I 0
A Bp

Ce D̃qp

Cz Dzp

 ≺ 0, (5.40)

with Ce =
(
C̃q C̃q

)
, as well as(

Z B′w
Bw X

)
� 0 (5.41)

and condition (5.12) are satisfied.

Remark 5.3 Note that X � 0 need not be separately imposed, since it already
follows from (5.41). Again, one must first apply Schur’s lemma in order to render
condition (5.40) affine in Cz,Dzp.

Proof. A sketch of the proof will be given by following the same steps as were used
in the derivation of Theorem 5.2. Note that considering (3.18) for the closed loop
system leads to (5.40). Moreover, condition (3.17), as considered for the closed loop
system, reads as

B̃′wXB̃′w − Z ≺ 0. (5.42)

Since X is not necessarily a positive definite matrix, we cannot immediately
apply Schur’s Lemma and resolve the non-linearity in (5.42). However, in view of
the stability characterization of Theorem 5.1, the relation X � 0 must be imposed,
which motivates us to write (5.42) alternatively as

B̃′w
(X − E)B̃w + B̃′wEB̃w − Z ≺ 0 (5.43)

with E = E(X̌) defined in (5.22). Due to the structure of B̃w in (5.19), it imme-
diately follows that EB̃w = 0. If now applying the Schur complement formula to
(5.43), we finally arrive at(

Z B̃′w
(X − E)(X − E)B̃w X − E

)
=
(

Z B̃′wX
XB̃w X − E

)
� 0.
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This matrix inequality can be rendered convex, analogously to the congruence trans-
formation (5.38). In fact, if we multiply this condition from left- and right with I 0 0

0 Z I

0 V̄ T 0


′

and

 I 0 0
0 Z I

0 V̄ T 0

 ,

respectively, we arrive at condition (5.41) and have finished the proof.

5.3.5 Elimination of the controller parameters

In order to reduce the number of variables, thereby speeding up the numerical com-
putations, one can eliminate (part of) the transformed controller variables K̄, L, M̄ ,N .
In the context of the nominal output feedback synthesis problem, this was first ob-
served in [159, 122]. In this section we show that similar arguments allow for elim-
ination in the robust synthesis problem as well. Recall our earlier notation for the
augmented plant in (5.17)-(5.18).

The elimination of variables requires that we first turn the synthesis conditions
affine in the decision variables X,T, K̄, L, M̄ ,N and γ. Thus, by applying the Schur
complement formula on (5.33), using the index Pp as

Pp =

(
−γ 0
0 1

γ

)
,

which represents an the L2-induced gain to be bounded by γ, we arrive at


A + A′ Bp Bw 0

B′p 0 0 0
B′w 0 0 0
0 0 0 0

+


0 0 0 C′z
0 0 0 D′zp
0 0 −γI D′zw

Cz Dzp Dzw −γI

+


C ′e
D̃′qp
D̃′qw

0

Q
(
Ce D̃qp D̃qw 0

) ≺ 0, (5.44)

with boldface symbols defined in (5.36). We are further motivated to introduce the
following matrices. Let

Ker
(

0 I 0 0 0
B̃ 0 0 0 Dzu

)
, Ker

(
I 0 0 0 0
0 C̃ Dyp D′yw 0

)
(5.45)
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have the basis matrices 
Φ1

0
Φ2

Φ3

 and


0

Ψ1

Ψ2

Ψ3


respectively and define Φ′ =

(
Φ′1 Φ′2 Φ′3

)
and Ψ′ =

(
Ψ′1 Ψ′2 Ψ′3

)
.

Theorem 5.4 The synthesis conditions in Theorem 5.2 are satisfied if and only if
there exists X, X̌, T and Q ∈ Q such that conditions (5.12) and (5.34) hold, as well
as

Φ′(U ′QU + J1)Φ ≺ 0 and Ψ′(U ′QU + J2)Ψ ≺ 0, (5.46)

in which

J1 = sym


XÃ XB̃p XB̃w 0

0 0 0 0
0 0 −γ2 I 0
C̃z Dzp Dzw −γ2 I

 ,

J2 = sym


S′1ÃS2 S′1B̃p S′1B̃w 0

0 0 0 0
0 0 −γ2 I 0

C̃zS2 Dzp Dzw −γ2 I

 ,

and
U =

(
C̃q D̃qp D̃qw 0

)
.

Here, S1, S2 are as defined in (5.35).

Proof. By using the boldface symbols defined in (5.36) and the matrices Ψ,Φ from
(5.45), we can alternatively write (5.44) as

sym


0 B̃

I 0
0 0
0 0
0 Dzu


(

K̄ L

M̄ N

)(
I 0 0 0 0
0 C̃ Dyp D′yw 0

)
+

Υ(X,T,Q, γ) ≺ 0, (5.47)
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in which Υ(X,T,Q, γ) is defined as

(
..
)′



0 0 I 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0 0 0
0 0 0 0 Q 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0
0 0 0 0 0 0 −γI 0 I 0
0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 −γI





I 0 0 0 0
0 I 0 0 0

S′1ÃS2 S
′
1Ã S′1B̃p S

′
1B̃w S′2C̃

′
z

0 XÃ XB̃p XB̃w C̃ ′z

C̃q C̃q D̃qp D̃qw 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 D′zp
0 0 0 0 D′zw
0 0 0 0 I



. (5.48)

From the projection lemma, see for example [163], it follows that (5.47) holds for
some K̄, L, M̄ ,N,X, T,Q and γ if and only if for some X,T,Q and γ

Φ1

0
Φ2

Φ3


′

Υ


Φ1

0
Φ2

Φ3

 ≺ 0 and


0

Ψ1

Ψ2

Ψ3


′

Υ


0

Ψ1

Ψ2

Ψ3

 ≺ 0.

It is easily verified that these two conditions amount to (5.46), which finishes the
proof.

When solving the eliminated version of the synthesis conditions, an additional step
is required for computing optimal (transformed) controller variables. In fact, if X,T
are solutions to (5.46), one can substitute these variables in (5.33) and solve for
K̄, L, M̄ ,N , from which the controller matrices can be reconstructed as discussed in
Section 5.3.3.

Remark 5.4 The conditions for robust H2-performance only allow for elimination
of variables K̄ and L. Detailed arguments can be found in [163], for the nominal
output feedback control problem, which easily extends to the robust case.

5.3.6 Other interconnections of uncertain systems

In view of the synthesis result for a structured generalized plant with Pqu = 0,
the natural question arises whether our controller synthesis result can be extended
to more general interconnections of uncertain systems. An interconnection which
is closely related to our initial configuration in Section 5.1 is shown in Figure 5.4.
Uncertainty only enters a filter at the plant output, and a motivation for this problem
is given next.

InH∞- andH2-synthesis, weighting functions that are placed at the plant output
can effectively represent performance specifications. For instance, in the manufac-
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Figure 5.4: System interconnection corresponding to generalized plant (5.49)

turing of cars or aircraft, the allowable intensity of the vibrations at the passenger
seats strongly depends on frequency. It is also not hard to imagine a parameter
dependent weight in order to reflect multiple (parameterized) criteria.

In a general standard S/KS design scheme in which the performance weight
Wp(δ) on the sensitivity S is parameter dependent, the weight Wu which penalizes
the control input typically does not depend on the parameter. That is, the typical
mixed sensitivity robust controller design problem reads as

min
K stabilizing

max
δ∈δ

∥∥∥∥ Wp(δ)S(K)
WuKS(K)

∥∥∥∥
∞
,

for some compact set δ. Such controller design problems naturally lead to the system
interconnection in Figure 5.4.

Let us mention the related work done in [64], in which an LPV synthesis ap-
proach was proposed for designing a so-called trade-off controller. Such controllers
are re-tuned in situ, i.e. after the controller has been implemented. This feature is
desired if the system characteristics change, e.g. due to aging of components, or a
change in the temperature coefficients.

We will now show in detail the robust synthesis solution corresponding the inter-
connection in Figure 5.4. Let the following realization of the generalized plant P be
given:

P =


Ã B̃s B̃v B̃

C̃r Drs Drv Dru

C̃z̄ Dz̄s Dz̄v Dz̄u

C̃ 0 Dyv 0

 =


A1 A12 Bs Bv1 Bu1

0 A2 0 Bv2 Bu2

Cr1 Cr2 Drs Drv Dru

Cz̄1 Cz̄2 Dz̄s Dz̄v Dz̄u

0 Cy 0 Dyv 0

 , (5.49)
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in which Ã, B̃, C̃ are of course different from those seen in (5.18). Moreover, we
restrict ourselves to static multipliers, i.e. Ψ = I and consider parametric uncer-
tainties, i.e. ∆ is a set of (structured) matrices. The set of admissible symmetric
multipliers is denoted by Π. That is, for any Π ∈ Π it holds that(

∆
I

)′
Π
(

∆
I

)
� 0 for all ∆ ∈∆. (5.50)

Then, the synthesis condition (5.33), as considered for the plant (5.49) reads as

(
..
)′


0 I 0 0
I 0 0 0
0 0 Π 0
0 0 0 Pp





I 0 0
A Bs Bv

0 I 0
Cr Drs Drv

0 0 I

Cz̄ Dz̄s Dz̄v


≺ 0, (5.51)

with the substitutions

A →
(
ÃY + B̃M Ã+ B̃NC̃

K XÃ+ LC̃

)
,

Bs →
(

B̃s
XB̃s

)
,

Bv →
(
B̃v + B̃NDyv

XB̃v + LDyv

)
,

Cr → (
C̃rY +DruM C̃r +DruNC̃

)
,

Cz̄ → (
C̃z̄Y +Dz̄uM C̃z̄ +Dz̄uNC̃

)
,

Drv → Drv +DruNDyv,

Dz̄v → Dz̄v +Dz̄uNDyv.

(5.52)

The following lemma leads to the solution of the controller synthesis problem.

Lemma 5.2 Let M ∈ Rn×m and Φ ∈ R(n+m)×k be given and let P ∈ Sn+m be non-

singular. Moreover, let im
(

I

M

)
and im(Φ) be complementary subspaces whose

sum equal Rn+m. Then(
I

M

)′
P

(
I

M

)
≺ 0 and Φ′PΦ � 0

is equivalent to( −M ′
I

)′
P−1

( −M ′
I

)
� 0 and Φ̃′P−1Φ̃ � 0,
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in which Φ̃ is any basis matrix of the orthogonal complement of im(Φ).

Proof. A proof of this dualization lemma can be found in [163].

The outer factor in (5.51) has the form
(

I

M

)
after a suitable permutation of the

rows. Hence, a basis matrix of the orthogonal complement can be explicitly written
down. If we define Π̃ = Π−1 and P̃p = P−1

p and apply Lemma 5.2, defining also
Ψ = Ker(Drs), it follows that (5.51) together with

(
..
)′


0 I 0 0
I 0 0 0
0 0 Π 0
0 0 0 Pp





0 0 0
I 0 0
0 0 0
0 Ψ 0
0 0 0
0 0 I


� 0 (5.53)

is equivalent to

(
..
)′


0 I 0 0
I 0 0 0

0 0 Π̃ 0

0 0 0 P̃p





−AT −CT
q −CT

z

I 0 0

−BT
s −DT

rs −DT
z̄s

0 I 0

−BT
v −DT

rv −DT
z̄v

0 0 I


� 0 (5.54)

and

(
..
)′


0 I 0 0
I 0 0 0

0 0 Π̃ 0

0 0 0 P̃





I 0 0
0 0 0
0 I 0
0 Ψ̃ 0
0 0 I

0 0 0


� 0, (5.55)

in which Ψ̃ is a basis matrix of the orthogonal complement of Im(Ψ).

Our first observation concerns the fact that AT ,BT
s in (5.52) have a similar

structure as A,Cq in condition (5.18). By following the arguments in the proof of
Theorem 5.2, we are therefore able to resolve the non-linear coupling terms between
Π̃ and −BT

s . Hence, a tractable synthesis solution for the robust controller design
problem depicted in Figure 5.4 is obtained once we can construct a class of admissible
inverse multipliers Π̃ ∈ Π̃, described by finitely many LMI constraints, provided that
both (5.53) and (5.55) are guaranteed to hold.
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Note that (5.53) implies(
0
I

)′
Pp

(
0
I

)
� 0 and

(
0
Ψ

)′
Π
(

0
Ψ

)
� 0, (5.56)

and (5.55) implies(
I

0

)′
P̃p

(
I

0

)
� 0 and

(
I

Ψ̃

)′
Π̃
(

I

Ψ̃

)
� 0. (5.57)

Here, the constraint on Pp and P̃p are naturally satisfied if using the L2-gain
performance measure, see (A.6). By contrast, the conditions on Π and Π̃ must
follow from the multiplier class Π̃. Suppose the set Π̃ is defined as

Π̃ =
{

Π̃ ∈ Snp+nq :
(

I

−∆T

)′
Π̃
(

I

−∆T

)
≺ 0 for all ∆ ∈∆,

and
(

0
I

)′
Π̃
(

0
I

)
� 0
}
. (5.58)

It then follows, again by applying Lemma 5.2 for any fixed ∆ ∈∆, that Π̃−1 satisfies
(5.50), and is therefore guaranteed to be an admissible multiplier.

As a result, for any chosen set Π̃ of the form (5.58), the existence ofX,Y,K,L,M,N

and Π̃ ∈ Π̃ that satisfy (5.54) and the coupling condition(
Y I

I X

)
� 0, (5.59)

implies that the closed-loop system with performance channel w → z satisfies robust
quadratic performance, provided that (5.56)-(5.57) hold for the chosen Pp, P̃p = P−1

p .
Due to the structure of A,−BT

s in (5.54), Theorem 5.2 applies and the synthesis
conditions can be rendered convex. Note that the stability characterization (5.24)
reduces to (5.59) if using static scalings.

Remark 5.5 If the output filter uncertainty is described by dynamic (rather than
static) IQCs, or the problem involves non-parametric uncertainties, characterizing a
suitable set of inverse multipliers Π̃ for a given uncertainty set ∆ is more difficult.

A conjecture on robust output feedback controller synthesis

The synthesis result in previous sections addressed two different configurations. If
restricting ourselves to parametric uncertainties, these correspond to following gen-
eralized plant structures(

Gzw(s, δ) Gzu(s)
Gyw(s, δ) Gyu(s)

)
and

(
Gzw(s, δ) Gzu(s, δ)
Gyw(s) Gyu(s)

)
.
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It is our belief that an LMI solution to the robust synthesis problem exists for all
systems of the form

G =
(
Gzw(s, δ) Gzu(s, δ)
Gyw(s, δ) Gyu(s)

)
.

Note that the channel u→ y of the uncertain system is not affected by uncertainty.
We can always construct an LFR of G from an LFR description of each of the four
blocks of G, and arrive at G = ∆(δ) ? P with ∆(δ) being a diagonal block and P of
the form

P =


Pqp,11 Pqp,12 Pqw,1 Pqu

0 Pqp,22 Pqw,2 0
Pzp,1 Pzp,2 Pzw Pzu

0 Pyp Pyw Pyu

 . (5.60)

Conjecture 5.1 For the structured generalized plant (5.60), an LMI solution ex-
ists for the robust output feedback synthesis problem with general sets of dynamic
multipliers that admit a convex parametrization.

The LMI synthesis solution is intended not to be based on Lemma 5.2, since the
dualization arguments is not expected to be promising in extending the synthesis
result towards more general interconnections and uncertainty sets.
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5.4 Case study: parameter dependent disturbance

filter

In our final section, the synthesis algorithm of Theorem 5.2 is applied to a design
example that is similar to the problem sketched in Section 5.1. Here, the focus
is on sinusoidal disturbances, which prevail in applications containing rotational
mechanics such as helicopters, CD players or disk drives, see [118] and references
therein. The period/frequency of the sinusoidal disturbance changes in time, which
leads to non-stationary sinusoidal signals. As is shown below, such signals can be
effectively modeled as the output of a parameter dependent oscillator, see also [114]
and references therein.

Similar as was shown in Section 3.3 for the discrete-time case, let δ(t) denote
the single time-varying parameter for a continuous-time LPV system. For specified
bounds on the parameter δ(t) and its rate-of-variation δ̇(t), a family of suitable
classes of dynamic multipliers have been proposed in [112] and references therein.
We will show that synthesis result based on static D/G scalings is conservative
as compared to synthesis results based on dynamic multipliers. The example thus
demonstrates the importance of taking a bound on the rate-of-variation into account.

K
r 

F

∆

w
We Wu

zuze

v
e

y
G

p q

Figure 5.5: System interconnection for the disturbance rejection problem.

Consider the interconnection in Figure 5.5 in which G is the plant model given as

G(s) =
s+ 0.1

(s+ 0.2)(s+ 0.5)
,

and We,Wu are given weighting functions at the output. Adopting the well-known
S/KS methodology for solving the disturbance rejection problem, let the perfor-
mance output be defined as z = col(ze, zu), in which ze is the weighted tracking
error. With an additional weight Wu at the control output and a weight We on the
tracking error, the generalized plant P becomes

P =

 −We −WeG

0 Wu

−I −G

 .
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The disturbances v are (non-stationary) sinusoidal signals with nominal frequency
ω0 that are generated as the second state of the system

ξ̇ =
(

0 ω0(1 + δ)
−ω0(1 + δ) 0

)
, ξ(0) =

(
1
0

)
,

v =
(

0 1
)
ξ

(5.61)

in which δ is a time-varying parameter, bounded by δ̄. Since the algorithm outlined
in this chapter requires the filter to be stable, we slightly perturb the system matrix
in (5.61) by adding a non-zero damping term ζ ∈ R, ζ 6= 0. To be precise, the
following realization is chosen to represent our disturbances:

ξ̇ =
(

0 ω0

−ω0 −2ζω0

)
ξ +

(
0 ω0

−ω0 −2ζω0

)
p+

(
1
0

)
w

q =
(

1 0
0 1

)
ξ

v =
(

0 2ω0

)
ξ +

(
0 2ω0

)
p+ κw,

(5.62)

and the parameter trajectory δ(t) satisfies (δ(t), δ̇(t)) ∈ [−δ̄, δ̄]× [−ν̄, ν̄]. Closing the
uncertainty channel amounts to setting

p(t) =
(
δ(t) 0

0 δ(t)

)
q(t).

If the parameters are time-invariant, i.e. δ(t) = δ for some δ ∈ [−δ̄, δ̄], the dynamical
system (5.62) corresponds to the uncertain filter

Fδ(s, δ) = δI ? F (s) = κ+
2ζωδs

s2 + 2ζωδs+ ω2
δ

, (5.63)

in which ωδ = ω0(1 + δ). The term κ can be used to include a certain level of
excitation over all frequencies. In electrical applications, this may be caused by a
noise source.

Numerical results

Upper bounds on the worst case L2-gain have been computed from the weighted
input u to the weighted output z = col(ze, zu), based on the algorithm of Theorem
5.2. The weight on the control input u is chosen to be Wu = 1 and the weight on e

pushes down the closed-loop gain at low frequencies, and is chosen to be

We =
0.5s+ 0.35
s+ 0.01

.

We take the nominal frequency ω0 = 0.05 with 30% error, i.e. δ̄ = 0.3. The damping
coefficient ζ need not be chosen large and is set to ζ = 0.005. The direct feed through
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term κ was found to significantly influence the designs and was merely treated as a
tuning variable, and was chosen to be κ = 0.2.

Our first design is denoted by KDG and is based on using static D/G scales, similar
as has been done in [62]. It therefore provides stability and performance guarantees
against arbitrarily fast time-varying parameters. With a synthesis optimal value
of γ = 1.25, the resulting closed-loop sensitivity from v → e, that is without the
disturbance filter, is shown in Figure 5.6,

Now let us apply Theorem 5.2, making use of a class of dynamic multipliers
as proposed in Theorem 3.3. Following the arguments in Section 3.3, considered
in continuous-time, we have constructed a dynamic multiplier class for β = 1 and
λ = −1, i.e. the pole-location of the stable (continuous-time) filter H, see again
[112]. By employing a convex hull relaxation for implementing the inclusion Q ∈ Q
in (3.21), the controllers denoted by K1, K2 are obtained by choosing the bounds
|δ̇| < 1 and |δ̇| < 0.06 respectively. The synthesis optimal values are γ = 1.32 and
γ = 1.28 for K1, K2 respectively.

Time-domain simulations have been performed with a non-stationary sinusoidal
disturbance input v generated as the initial response of the system (5.62) in which
ζ = κ = 0 and collected in Figure 5.7. It is clearly visible from these plots that the
best performance is achieved by controller K2.

We finally comment on our observations. We have been able to reduce the con-
servatism in handling non-stationary sinusoidal disturbance signals by using a class
of dynamic multipliers in designs K1,K2. As a result, the disturbance rejection per-
formance was improved. In particular, if the parameter is allowed to vary arbitrarily
fast, as is the case in KDG, the resulting closed-loop frequency response involves a
notch close to the highest frequency in the interval [ω0(1− δ̄), ω0(1 + δ̄)], which does
not effectively account for the fact that the sinusoidal frequency is specified in an in-
terval. Once the rate-of-variation is bounded, this notch shifts to a lower frequency,
as shown by design K1. In case the bound on δ̇ is further reduced, the sharp notch
eventually vanishes. Moreover, the design K2 shows that the closed loop gain from
v → e is lower in an average sense, at the cost of a high gain at frequencies greater
than 1 rad/s.

Remark 5.6 Since numerical algorithms (generally) provide upper bound values on
the worst case L2-gain, reducing the bound on δ̇ need not always result in lower
optimal values.

138



10-2 10-1 100
10-3

10-2

10-1

100

ω [rad/s]

 

 

KDG
K1, rov-bound 1
K2, rov-bound 0.06

W(s,δ) for δ ∈ {-0.3, 0, 0.3}
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Figure 5.7: Tracking error e for designs KDG (with dots), K1 and K2 (bold). On
top, signals δ and v (dashed) are shown.
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5.5 Summary

Motivated by a robust disturbance rejection problem, in which disturbances are de-
scribed by an uncertain filter at the plant input, we have given an LMI solution
for the corresponding robust output feedback controller synthesis problem. The
method adopts the IQC framework for the analysis of uncertain systems, and allows
for general dynamic IQC multipliers. Throughout this chapter, a class of admissi-
ble multipliers, parameterized by finitely many LMI constraints along the lines in
Chapter 3, was assumed to be known.

In order to infer robust performance of the closed loop system by applying an
IQC-based analysis test from Chapter 3, it is essential that the nominal closed loop
system is stable. An LMI characterization of this property has recently been devel-
oped, for which a new elementary proof has been given. The synthesis solution boils
down to a combination of two congruence transformations from the existing litera-
ture. One of these transformations is well-known, since it solves the nominal output
feedback synthesis problem. Synthesis conditions were presented that guarantee a
worst-case bound on the L2-gain or H2-performance level.

It is expected that an LMI solution to the robust output feedback synthesis prob-
lem exists for many other interconnections of uncertain systems. As a preliminary
study, we have considered the dual problem in which uncertainty enters a filter at
the plant output. A solution to this problem could be obtained, when parametric
uncertainties are involved and a class of static multipliers is used. In view of the
fact that the general robust output feedback problem is largely open, it is a chal-
lenging research question which kind of interconnections of uncertain systems can
be handled by convex optimization in the LMI framework. It is conjectured that the
only structural property needed for a synthesis solution to exist in terms of LMIs,
is the fact that the transfer matrix from control input to measurement output is
not affected by uncertainty. Hence, the interconnections that can be handled in this
fashion will cover a specific class of controller design problems only. In particular,
it will not include the disturbance rejection problem for a single-input single-output
system in which the plant model is affected by an additive uncertain element.

In our final section, we have presented a numerical example that illustrates the
algorithm, making use of the multiplier class from Section 3.3 and showing the
benefit of incorporating the parameter rate-of-variation, which agrees with our earlier
observations on the analysis of uncertain systems.
In the next chapter, the unknown parameters are on-line measurable, and it is our
aim to design scheduled (rather than robust) controllers for LPV systems. By making
use of a Lyapunov function rather than IQC multipliers, this synthesis problem can
be turned into a robust SDP.
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Chapter 6

Scheduled controller

synthesis

Control theory of linear parameter-varying (LPV) systems has originally been mo-
tivated by the limitations of existing gain-scheduling methods [152]. The classical
approach towards gain-scheduling was a time-consuming process which involved the
interpolation of a collection of local controller designs. In modern LPV controller
synthesis methods, most of the time and effort are spent on building a trustwor-
thy LPV model of the plant. The LPV synthesis algorithms then provide a gain-
scheduled controller at one shot, providing guaranteed robust stability and perfor-
mance of the closed-loop system, at least if numerical aspects are left out for the
moment.

Existing solutions for LPV synthesis are variations and extensions of two closely
related solutions. The first, developed by [130] and [3], assumes the system matrices
to be given in LFR form and accounts for the uncertainties by using the so-called
D-scalings. By taking the to-be-designed controller in an LFR, the robust optimal
control problem can be transformed into a convex optimization problem. In order
to reduce the conservatism that is involved when D-scalings are used, more general
classes of multipliers have been proposed, see for example [86, 165, 155, 183].

The second approach as proposed by [2] does not start from an LFR structure
of the plant and controller. On the contrary, it is derived from an existing synthesis
result in [159, 122], which considers the nominal output feedback problem for LTI
systems. The sufficient conditions are formulated in terms of a robust SDP. Initial
algorithms [2, 155] relied on sampling the parameter dependent LMI constraint on
a finite grid of parameter values. As an immediate consequence of this method,
the synthesis solutions no longer guarantee robust stability or performance of the
closed-loop system, and an additional analysis test is needed. If the design specifi-
cations are not met, the parameter grid is refined and a new controller is computed.

141



Recently, in [184], the controller synthesis solution could be directly formulated in
terms of a robust SDP, for general rational dependence in the problem data, there-
fore avoiding the need for gridding the parameter space.

The controller synthesis approach as presented in this chapter is based on [184, 61]
and has been published in [63] in a slightly different form. Our focus is on minimizing
the worst-case induced L2-gain of the closed loop system. Making use of the relax-
ation tools from Chapter 2, LPV controllers are found by means of standard LMI
optimization. The synthesis result is presented for continuous time LPV systems,
though a discrete-time version of the derived synthesis result is quite straightforward,
see [184].

In the next section, a characterization of L2-gain performance is presented that
is analogue to the formulation in Proposition 4.3 for discrete-time LPV systems.
After the synthesis conditions are derived, it is then shown how to eliminate the
controller parameters in order to reduce computational complexity. A numerical
example taken from [96] will be presented to illustrate the potential benefits of the
LPV synthesis approach as well as the benefits of using sum-of-squares relaxations.

6.1 LPV synthesis by robust semi-definite program-

ming

Consider the following LPV system in continuous time

ẋ = A(δ(t))x+B1(δ(t))w +B2(δ(t))u
z = C1(δ(t))x+D11(δ(t))w +D12(δ(t))u
y = C2(δ(t))x+D21(δ(t))w,

(6.1)

in which δ(t) is a time-varying parameter, w → z represents the performance channel,
u is the control input and y the measured output. The size and the rate-of-variation
of admissible parameter trajectories are assumed to satisfy (δ(t), δ̇(t)) ∈ R for all
t ≥ 0 for some given compact set R. Analogous to the definition in Chapter 4, a
trajectory is admissible if (δ(t), δ̇(t)) ∈ R holds for all t ≥ 0. Further, it is assumed
that D22 = 0 without loss of generality.

Under the assumption that the parameter δ(t) is on-line measurable, the LPV
controller synthesis problem amounts to designing continuous mappings Ak(.),Bk(.),
Ck(.), Dk(.) such that the controller

ẋk = Ak(δ(t), δ̇(t))xk +Bk(δ(t))y
u = Ck(δ(t))xk +Dk(δ(t))y

(6.2)

interconnected with system (6.1) guarantees closed-loop stability and performance
for all admissible parameter trajectories. The fact that only Ak(., .) is a function of
δ̇ will follow naturally from the presented synthesis algorithm. Assuming the system
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matrices of the plant and controller are continuous functions of the parameter, the
realization of the interconnected system reads as

( A(δ(t)) B(δ(t))
C(δ(t)) D(δ(t))

)
=

 A(δ(t)) 0 B1(δ(t))
0 0 0

C1(δ(t)) 0 D11(δ(t))

+

 0 B2(δ(t))
I 0
0 D12(δ(t))

( AK(δ(t)) BK(δ(t))
CK(δ(t)) DK(δ(t))

)(
0 I 0

C2(δ(t)) 0 D21(δ(t))

)
. (6.3)

Recall the quadratic performance criterion from Appendix A. Along similar argu-
ments as used in Section 4.2 in discrete time, the closed-loop system can be shown
to satisfy quadratic performance with respect to the performance index Pp if there
exists a continuously differentiable X (.) that satisfies for all (δ, ν) ∈ R the inequali-
ties

X (δ) � 0, (6.4)
I 0
A(δ) B(δ)

0 I

C(δ) D(δ)


′ ∂X (δ, ν) X (δ) 0

X (δ) 0 0
0 0 Pp




I 0
A(δ) B(δ)

0 I

C(δ) D(δ)

 ≺ 0, (6.5)

in which ∂X (δ, ν) is defined as

∂X(δ, ν) =
s∑
j=1

∂X

∂δj
(δ)νj . (6.6)

A proof can be found for example in [185]. The scheduled controller design problem
amounts to computing matrix functions X (.) and AK(.),BK(.),CK(.),DK(.) that
satisfy (6.4) and (6.5). Although these functions must certainly be parameterized for
rendering the problem computationally tractable, let us for the moment concentrate
on resolving the non-linear dependence of (6.5) on these matrix functions. The
following arguments strongly resemble the ones used in Section 5.3.3.

As initially developed in [159, 122], the nominal output feedback synthesis prob-
lem is solved by a suitable congruence transformation and a change of variables.
An extension of this result that can be applied to parameter dependent systems was
developed in [2]. As a first step, let the Lyapunov matrix X be partitioned according
to A in (6.3) and denote

X =
(

X U

UT ∗
)
, X−1 =

(
Y V

V T ∗
)
.

We assume U, V to be square matrices, which corresponds to a controller order that
equals the order of the plant. The dependence on δ is omitted for notational conve-
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nience. We apply on both (6.4) and (6.5) a particular congruence transformation,
that will be clarified in the next theorem. With

Y =
(

Y I

V T 0

)
and Z =

(
I 0
X U

)
we obtain the identities

YTX = Z and I −XY = UV T

The differential operator ∂ as defined in (6.6) is now applied to the first functional
identity, by which we arrive at (∂Y)TX + YT (∂X ) = ∂Z. Right-multiplying this
relation by Y leads to

YT (∂X )Y = (∂Z)Y − (∂Y)TZT =( −∂Y −(∂Y )X − (∂V )UT

(∂X)Y + (∂U)V T ∂X

)
. (6.7)

Moreover, let v denote functional matrices

v(δ, ν) = {K(δ, ν), L(δ), M(δ), N(δ), X(δ), Y (δ)} (6.8)

with K,L,M,N being defined through the relation(
K L

M N

)
=
(
U XB2

0 I

)(
AK BK
CK DK

)(
V T 0
C2Y I

)
+
(
XAY + (∂X)Y + (∂U)V T 0

0 0

)
. (6.9)

With these preparations, the existence of X (.),AK(.),BK(.),CK(.),DK(.) that satisfy
(6.4)-(6.5) can be turned into the following synthesis conditions that are convex in
the new functional variables v(δ, ν).

Theorem 6.1 (LPV synthesis) Let R be a compact set that characterizes the ad-
missible parameter trajectories δ(.), i.e. (δ(t), δ̇(t)) ∈ R for all t ≥ 0. There exists
an LPV controller of the form (6.2) that robustly stabilizes the LPV system (6.1) and
satisfies quadratic performance with respect to Pp for any R-admissible parameter
trajectory, if there exist matrix-valued functions (6.8) for which

X(v) � 0, (6.10)
I 0

A(v) B(v)
0 I

C(v) D(v)


T  Z(v) I 0

I 0 0
0 0 Pp




I 0
A(v) B(v)

0 I

C(v) D(v)

 ≺ 0 (6.11)
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holds for all (δ, ν) ∈ R, where we use the abbreviations

A(v) =
(
∂Y + sym(AY +B2M) (A+B2NC2) +KT

(A+B2NC2)T +K ∂X + sym(AX + LC2)

)
,

B(v) =
(
B1 +B2ND21

XB1 + LD21

)
,

C(v) =
(
C1Y +D12M C1 +D12NC2

)
,

D(v) =
(
D11 +D12ND21

)
,

Z(v) =
( −∂Y 0

0 ∂X

)
, X(v) =

(
Y I

I X

)
,

(6.12)

and sym(P ) ≡ P + PT .

Remark 6.1 As we already addressed in Chapter 5, Schur’s Lemma is needed to
render (6.11) affine in the functional variables v(δ, ν).

Proof. The proof can be found in [185, 188] and is a direct extension of the LMI
solution of the nominal output feedback problem as discussed in [159]. A sketch of
the proof is as follows. By using the definitions in (6.9), it follows that(Y 0

0 I

)T ( XA+ 1
2∂X XB
C D

)(Y 0
0 I

)
equals AY − 1

2∂Y A B1

0 XA+ 1
2∂X XB1

C1Y C1 D11

+

 0 B2

I 0
0 D12

( K L

M N

)(
I 0 0
0 C2 D21

)

=
(

A(v) + 1
2Z(v) B(v)

C(v) D(v)

)
. (6.13)

Brief calculations show, using also the variable definition (6.9), that X(v) = YTXY
and (6.11) is obtained by left-and right multiplication of (6.5) with( Y 0

0 I

)T
,

( Y 0
0 I

)
respectively.

We observe from (6.9) and the definition of ∂X , ∂Y, that L,M,N depend on δ only,
whereas K depends on ν as well. In fact, if the system matrices do not depend on
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ν, the matrix function K(., .) has the structure

K(δ, ν) = K0(δ) +
s∑
j=1

Kj(δ)νj ,

which is fully defined by the matrix functions K0(δ), . . .Ks(δ). Note that from (6.9)
it follows that AK(δ, δ̇), which had already been displayed in (6.2).

Hence, with a priori chosen functions fi, i = 1, . . . ,m assumed continuously
differentiable on δ, and linear parametrization of the form

Kj(δ) =
∑m
i=1K

j
i fi(δ), j = 0, 1, . . . s,

L(δ) =
∑m
i=1 Lifi(δ), M(δ) =

∑m
i=1Mifi(δ), N(δ) =

∑m
i=1Nifi(δ),

X(δ) =
∑m
i=1Xifi(δ), Y (δ) =

∑m
i=1 Yifi(δ),

(6.14)
the synthesis conditions (6.10)-(6.11) both become robust SDP constraints in the de-
cision variables Xi, Yi,K

j
i , Li,Mi, Ni, for which the relaxations methods from Chap-

ter 2 can be employed. How to select the functions f1, . . . , fm, as well as the number
m, requires further investigation, which is why it is currently a matter of experience.

Controller reconstruction

One should not underestimate the difficulty of implementing an LPV controller in
practice. Clearly, for matrix functions v(δ, ν) that satisfy the synthesis conditions,
controller matrices can be obtained as(
AK BK
CK DK

)
=
(
U XB2

0 I

)−1(
K −XAY − [(∂X)Y + (∂U)V T ] L

M N

)(
V T 0
C2Y I

)
.

At each time-step, one must compute the matrices AK(.), BK(.), CK(.), DK(.)
for the measured parameter values (δ(t), δ̇(t)). The reconstruction of these constant
matrices has already been discussed in Section 5.3.3, see also [2, 159, 122]. Since the
operations involve matrix inversion, it is a challenging problem to develop reliable
and fast LPV controller implementation schemes.

An heuristic approach is proposed in [81], and uses a linear approximation of the
(generally) rational matrix functions AK , BK , CK , DK . Before implementing the
modified LPV controller, an additional analysis test is then needed in order to prove
closed-loop stability and performance.

Remark 6.2 If system matrices are affine functions on the parameter and R is a
convex polytope, the matrix functions in (6.14) are often chosen to be affine also.
The resulting robust LMIs then depend quadratically on the parameter, which enables
the construction of standard relaxation schemes based on multi-convexity arguments,
see [77, 174, 5].
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6.1.1 Elimination of parameters

Rather than directly solving (6.11) for a fixed parametrization of the functional
variables v(δ, ν), the variables K(.), L(.),M(.), N(.) can be eliminated in order to
reduce the problem size. This result is provided by the so-called projection lemma,
see [76] for a reference, under the following hypotheses:

Assumption 6.1
(
BT2 (δ) DT

12(δ)
)

and
(
C2(δ) D21(δ)

)
have full row rank for all

(δ, .) ∈ R.
With quadratic performance index Pp, we denote

P−1
p =

(
Qp Sp
S′p Rp

)−1

=
(
Q̃p S̃p
S̃′p R̃p

)
.

As shown in [188, 14], conditions (6.10)- (6.11) in Theorem 6.1 are equivalent to
the existence of smooth symmetric matrix functions Y (.) and X(.) which satisfy

UY (δ)T


−∂Y (δ, ν) Y (δ)
Y (δ) 0

0

0
−Q̃p S̃p
S̃′p −R̃p

UY (δ) ≺ 0 (6.15)

UX(δ)T


0 X(δ)

X(δ) ∂X(δ, ν)
0

0
Qp Sp
S′p Rp

UX(δ) ≺ 0 (6.16)

(
Y (δ) I

I X(δ)

)
� 0 (6.17)

for all (δ, ν) ∈ R. Here, we used the abbreviations

UY (δ) =


I 0

AT (δ) CT1 (δ)
0 I

BT1 (δ) DT
11(δ)

NY (δ),

UX(δ) =


A(δ) B1(δ)
I 0

C1(δ) D11(δ)
0 I

NX(δ), (6.18)

in which NY (δ),NX(δ) are basis matrices for the kernels of
(
BT2 (δ) DT

12(δ)
)

and(
C2(δ) D21(δ)

)
respectively. Due to the full rank property in Assumption 6.1, an

LFR description of NY (δ) and NX(δ) can be constructed from the LFR description
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of the system matrices, see Appendix B. It is stressed that this essential observation
was made in [184], which leads to an LPV synthesis solution that no longer requires
the introduction of a parameter grid.

In view of the relaxation methods in Chapter 2, it is convenient to choose

Y (δ) = TY (δ)TPTY (δ), X(δ) = TX(δ)TQTX(δ) (6.19)

for some fixed polynomial (or rational) basis matrices TY (δ), TX(δ), with P and Q

the to-be-computed symmetric coefficient matrices. With these choices, the synthesis
conditions (6.15)-(6.17) can easily be expressed in the general form

Fi(δ, ν)TJi(P,Q)Fi(δ, ν) ≺ 0, i = 1, 2, 3, (6.20)

as used in Chapter 2. The matrix functions Ji depend affinely on the decision
variables y = (P,Q) and Fi is a known matrix function in the parameters (δ, ν) ∈
R of which an LFR description can be constructed. The robust LMIs in (6.20)
correspond to the conditions presented in [184].

Remark 6.3 As mentioned in [163], it is possible to extend the LPV synthesis
approach to H2-control and to the other quadratic performance specifications.

Remark 6.4 In order to arrive at convex synthesis conditions, it turns out to be es-
sential that the parameters can be measured online. For non-parametric uncertainties
or parameters that cannot be measured online, the output feedback control problem
appears to be non-convex, as already mentioned in Chapter 5. In case parameters
are measurable, but the measurements are corrupted by noise, an LPV controller
approach involves filtering the parameter before actually using it for gain-scheduling.
At present, a systematic and numerically tractable solution for this modified LPV
synthesis problem has not been found.
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6.2 Numerical example

In order to illustrate the LPV controller synthesis approach, we construct an LPV
system with a system matrix that is based on the µ-analysis example of Section 2.1.
By adding a control and performance channel, we consider the following family of
system, parameterized by p ∈ [0.6, 2]:


ẋ

zu
z

y

 =



−1 1 1 1 1 1 0 1
0 0 1 0 1 0 0 0
0 0.5 0 0.5 0 0 1 0
0 2p 0 p 0 p 0 0
0 0 −2p 0 −p 0 0 1
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
1 1 0 0 0 0 0 0




x

wu
w

u

 (6.21)

For each fixed value of p, we will apply the LPV synthesis as outlined in the previous
section. The parameters that are used for scheduling are δ1, δ2, which enter the plant
in a feedback configuration, defined by the relation wu = ∆(δ1, δ2)zu, in which

∆(δ1(t), δ2(t)) =


δ1(t) 0 0 0 0

0 δ1(t) 0 0 0
0 0 δ2(t) 0 0
0 0 0 δ2(t) 0
0 0 0 0 δ2(t)

 . (6.22)

One can easily verify that the interconnection of (6.21) with ∆ is well-posed for
all δ ∈ δ. The time-varying parameters δ(t) = (δ1(t), δ2(t)) are assumed to satisfy
δ(t) ∈ δ for all t ≥ 0, with

δ = [−0.4, 0.4]× [−0.4, 0.4], (6.23)

and no bound on δ̇1(t), δ̇2(t) is imposed.

The goal in this section is to design an LPV controller K(δ) : u → y that robustly
stabilizes the closed loop system and minimizes a bound γ on the worst case L2-gain
of the channel w → z. Our focus is on computing the achievable performance, and
not on reconstructing the controller, by solving the LPV synthesis conditions (6.15)-
(6.17). The Lyapunov matrix is chosen to be parameter independent, i.e. X(δ) = Q,
Y (δ) = P , which reduces (6.17) to a genuine LMI. Note that Q and P are scalar
variables, since the state-dimension is one.
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Following the arguments from Section 6.1.1, we introduce the abbreviations

MX(δ) =


A(δ) B1(δ)
I 0

C1(δ) D11(δ)
0 I

 , MY (δ) =


I 0

AT (δ) CT1 (δ)
0 I

BT1 (δ) DT
11(δ)

 .

By applying Lemma B.1, we construct parameter-dependent matrices KX(δ),KY (δ)
that satisfy(

C2(δ) D21(δ)
)
KX(δ) ≡ 0 and

(
BT2 (δ) DT

12(δ)
)
KY (δ) ≡ 0. (6.24)

Since X(δ) = Q and Y (δ) = P , the parameter dependent LMI constraints (6.15)-
(6.16) are in the general form of Chapter 2, i.e.

Fi(δ)′Ji(P,Q)Fi(δ) ≺ 0, i = 1, 2, (6.25)

if defining F1 = MX(δ)KX(δ) and F2 = MY (δ)KY (δ), as well as

J1(P,Q) =


0 Q 0 0
Q 0 0 0
0 0 −γ 0
0 0 0 γ−1

 , J2(P,Q) =


0 P 0 0
P 0 0 0
0 0 γ−1 0
0 0 0 −γ

 . (6.26)

It can be verified that F1(δ), F2(δ) are both rational matrix functions of δ. The cor-
responding LFRs that are needed for the construction of multiplier based relaxation
schemes are denoted by

Fi(δ) = Di + Ci∆i(δ)(I −Ai∆i(δ))−1Bi, for i = 1, 2,

for some affine matrix functions ∆1,∆2. As we pointed out in Chapter 2, any
robust LMI that depends rationally on the parameters can be transformed into an
equivalent polynomially robust LMI. In the sequel, we compare the direct approach
of Section 2.2.3 with the S-procedure-based method as discussed in Section 2.3.

Multiplier relaxation

The first and most common approach of handling the rational parameter dependence
is the S-procedure of Section 2.3. That is, a set of admissible multipliers Πi is
parameterized for (6.25), such that the semi-infinite constraint(

∆i(δ)
I

)′
Πi

(
∆i(δ)
I

)
� 0, ∀δ ∈ δ

is satisfied for all Πi ∈ Πi, for i = 1, 2.
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Although it was not explicitly stated in [184], the LPV synthesis approach relies on
F1(δ) and F2(δ) both being well-posed on the set δ. It is important to realize that
well-posedness of KY (δ) and KX(δ) is not guaranteed by the formula in Lemma B.1.
Indeed, for p > 1.4, some element of the matrix functions F1(δ) and F2(δ) becomes
unbounded on the domain [−0.4]× [0.4]. This is also indicated in Table 6.1.

Recall the fact that if KX(δ) and KY (δ) had been chosen to be polynomial
matrix functions, a well-posed LFR always exists, see [39] for a possible algorithm.
Here, both KX(δ) and KY (δ) have a single column, which is why we can simply
multiply with suitably chosen scalar polynomials dX(δ) and dY (δ), and arrive at the
polynomial matrix functions

K̃X(δ) = KX(δ)dX(δ), K̃Y (δ) = KY (δ)dY (δ).

For the purpose of illustration, the following polynomials have been used at p = 1.5:

dY (δ) =
3
38
δ2
1δ

3
2+

27
38
δ1δ

3
2−

15
19
δ3
2−

13
38
δ2
1δ

2
2+

1
19
δ1δ

2
2+δ2

2−
2
19
δ2
1δ2−

4
19
δ1δ2+

2
19
δ2
1−

4
19
,

dX(δ) =
1
2
δ2
1δ

3
2 −

1
2
δ2
1δ

2
2 −

2
9
δ2
1δ2 +

2
9
δ2
1 +

1
2
δ1δ

3
2 +

1
3
δ1δ

2
2 − δ3

2 + δ2
2 +

4
9
δ2 − 4

9
.

If we define

F̃1(δ) = MX(δ)KX(δ)dX(δ) and F̃2(δ) = MY (δ)KY (δ)dY (δ), (6.27)

and J1(P,Q), J2(P,Q) as in (6.26), the robust LMI constraints (6.15)-(6.16) amount
to

F̃i(δ)′Ji(P,Q)F̃i(δ) ≺ 0, i = 1, 2, (6.28)

with the LFR now written as

F̃i(δ) = D̃i + C̃i∆̃i(δ)(I − Ãi∆̃i(δ))−1B̃i, i = 1, 2,

for some affine matrix functions ∆̃1, ∆̃2. Assuming without loss of generality that
the LFR of the polynomial matrix F̃1(δ) and F̃2(δ) is well-posed on δ, the LPV
synthesis conditions can be implemented by constructing relaxation schemes based
on the S-procedure. Note that the points δ ∈ δ at which the LFR of KX(δ) or
KY (δ) is not defined consists of a set of measure zero. By continuity argument, it
is therefore justified to impose the robust LMIs on the whole domain δ.

A convex hull relaxation from Section 2.3.1 has been employed for characterizing
a set of admissible multipliers Πi, for which the robust LMI constraint(

∆̃i(δ)
I

)′
Πi

(
∆̃i(δ)
I

)
� 0, ∀δ ∈ δ,

is satisfied for all Πi ∈ Πi, for i = 1, 2. With full block multipliers and a partial (or
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multi-) convexity argument, see e.g. in [5], the relaxation is referred to as ’CH-PC’.

0.6 0.8 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

KX(δ) + + + + + + - - - - - - -
dim ∆̃1(δ) 10 10 10 10 10 10 40 40 40 40 40 40 40
KY (δ) + + - - - - - - - - - - -
dim ∆̃2(δ) 10 10 43 51 50 51 51 51 51 51 51 51 48

Table 6.1: Well-posedness of the LFRs KX(δ) and KX(δ) on the δ in (6.23) for
different values of p ∈ [0.6, 2]. A ‘+’ indicates that the LFR is well-posed. Also
indicated are the sizes of the blocks ∆̃i(δ) of the LFR F̃i(δ).

In Figure 6.1, the minimal achievable γ-level (of the closed loop system) is shown for
different values of the parameter p. As shown in Table 6.2, the number of variables
grows excessively as we increase the value of p. This is due to the increased sizes of
F̃X(δ) and F̃Y (δ), as indicated in Table 6.2, as polynomials dX(δ), dY (δ) are added
to the problem. Let us point out that the number of variables for given multiplier
based relaxation scheme therefore depends on the data matrices in (6.21). In view
of the fact that it is currently unknown how to construct the most compact LFRs
(in multiple variables), the indicated numbers in Table 6.1 depend on the algorithms
that are employed.

p Multiplier-based convex hull Direct sum-of-squares
0.6 424 1099
0.8 424 1099
1 3955 1099
1.1 5467 1099
1.2 5264 1099
1.3 5467 1099
1.4 8497 1099
1.5 8497 1099
1.6 8497 1099
1.7 8497 1099
1.8 8497 1099
1.9 8497 1099
2 7900 1099

Table 6.2: Number of LMI variables in the multiplier based relaxation scheme con-
vex hull with partial convexity arguments (CH-PC) and the direct sum-of-squares
relaxation (SOS).

Remark 6.5 Note that if using the LFT calculus in Appendix B for computing the
product A(δ)B(δ), the resulting LFR is only well-posed if both A(δ) and B(δ) are. If

152



the product A(δ)B(δ) is a polynomial matrix, an LFR that is well-posed can always
be constructed, see again [39]. As compared to the formula (B.4), this typically
results in an increased size of the ∆-block.

Direct sum-of-squares relaxation

Motivated by the computational complexity that arises if employing multiplier re-
laxations, we now construct relaxations that are not based on the S-procedure. Sim-
ilarly to the construction of relaxation CH-PC, the parameter dependent matrices
KX(δ),KY (δ) satisfying (6.24) are obtained from Lemma B.1. We again multiply
with suitable denominator polynomials dX(δ), dY (δ) in order to arrive at polynomial
expressions.

For a polynomial robust LMI constraint, we can directly employ matrix-sum-of-
squares techniques. The obtained robust LMIs actually correspond to the polynomial
constraint (2.35), in which the matrix P̃ (y) represents the J1(P,Q) (or J2(P,Q))
whereas U(x) represents F̃1(δ) (or F̃1(δ)) in (6.28). The following two constraints
are used to bound the parameters:

V (δi)′G̃Vi(δi) =
(

1
δi

)′( −0.42 0
0 1

)(
1
δi

)
≤ 0, for i = 1, 2. (6.29)

Following the lines of Section 2.2.3, it turns out that the relaxation scheme (2.39)
is infeasible if including all possible Tj(δ) with monomial elements of total degree
at most 3. If, however, the monomials as depicted in Table 6.3 are employed, the
sum of squares relaxation is feasible. In fact, as shown in Figure 6.1, the same
guaranteed L2-gain bounds are obtained as for CH-PC, with less number of variables.
The computation time of CH-PC at p = 1.5 is in the order of hours, whereas the
relaxation SOS takes only minutes to solve. Note that the computational complexity
is also influenced by the number and size of the LMI constraints, which are in the
same order of magnitude for relaxations CH-PC and SOS.

Robust LMI monomials in basis Tj(δ), j = 1, 2

F̃1(δ)′J1(P,Q)F̃1(δ) ≺ 0 1, δ1, δ2, δ1δ2, δ2
1 , δ

2
2

F̃2(δ)′J2(P,Q)F̃2(δ) ≺ 0 1, δ1, δ2, δ1δ2, δ2
1 , δ

2
2 , δ1δ

2
2 , δ2δ

2
1 , δ

3
1 , δ

3
2 , δ1δ

3
2 , δ

3
1δ2

Table 6.3: Monomials terms of sum-of-squares basis Tj in (2.32), for the two robust
LMIs in (6.28). The indicated monomial bases are used for each of the constraints
in (6.29).

If compared to multiplier relaxations with convex hull arguments, matrix sum of
squares techniques offer a way to systematically reduce conservatism, with the extra
benefit of allowing for far more general parameter regions than polytopes or boxes.
The example of this section shows that the direct relaxation based on matrix sum-
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of-squares is to be preferred, if the parameter dependent LMI constraints involves
high order rational or polynomial functions.

Remark 6.6 It is stressed that the suggested matrix sum of squares relaxation tech-
nique can be applied to any of the multitude of problems in robust control which
can be translated into the generic formulation (2.3). In particular, different ver-
sions of LPV synthesis conditions can be chosen as a starting-point. For example,
as pointed out in [5], one can employ Finsler’s Lemma to obtain robust LMIs for
synthesis which avoids the projection onto the null-spaces of

(
BT2 (δ) DT

12(δ)
)

and(
C2(δ) D21(δ)

)
respectively.

Remark 6.7 In CH-PC, the construction of the LFR relies on automated procedures
in Matlab, using the Symbolic Toolbox and the Robust Control Toolbox. It is expected
that an LFR of smaller size typically exists.

Remark 6.8 Note that since the parameter region is a convex polytope, a direct
Pólya relaxation method is also possible.

0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

p

γ

 

 
Multiplier-based, convex hull
Direct sum-of-squares

Figure 6.1: Guaranteed L2-gain levels for the LPV synthesis problem for two differ-
ent relaxation methods.
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6.3 Summary

A solution to the LPV controller synthesis presented and amounts to a set of ro-
bust LMIs, for which relaxation schemes can be found in Chapter 2. As opposed to
relaxations based on convexity arguments, which are typically employed in the liter-
ature, matrix sum-of-squares relaxations enable to describe the parameter region by
general semi-algebraic constraints. In view of the fact that, at least in principle, the
relaxation gap can be reduced to zero, the only source of conservatism in the LPV
presented synthesis approach is caused by the fact that it is based on a (possibly)
restricted class of quadratic-in-the-state Lyapunov functions.

It has been demonstrated how the transformed controller variables can be elim-
inated from the synthesis conditions for the robust quadratic performance measure.
In a numerical example, the computational complexity could be significantly reduced
by making use of direct sum-of-squares relaxations instead of the more common S-
procedure based approach.

We again stress the versatility of the framework, which allows us to (approximately)
solve the LPV synthesis problem by constructing any of the relaxation schemes
from Chapter 2. Moreover, the approach can handle both continuous-time as well
as discrete-time LPV synthesis.

We also note that the LPV synthesis algorithm could also be applied to an N -
lifted system in discrete time, as discussed in Chapter 4. Note however, that the
purpose of such an approach would be to get to know the limits of performance,
more than controller design itself, since the controller that results from an N -lifted
system runs slower (the sampling frequency is reduced by a factor of N) and has an
increased number of inputs and outputs. Whether such controllers can be used in
practice requires further investigation.

The LPV synthesis approach has been implemented and added to the developed
Matlab-toolbox [55]. Once the data is given and the problem is formulated, robust
controller solutions can immediately be computed.
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Chapter 7

Conclusions

Let us summarize the contributions of this thesis and outline some directions for
future research. Recall the two main objectives formulated at the beginning.

Objective 1: Improve the usability of the LMI framework for solving
robust control problems.

Here, we have been concerned with the analysis of LPV systems in discrete-time and
the synthesis of robust controllers in the IQC framework.

An overview of the IQC approach towards stability and performance analysis of
uncertain systems was given in Chapter 3. Analysis conditions were shown for ro-
bust stability, robust quadratic performance as well as for robust H2-performance,
as measured in the impulse response definition of Appendix A. As already stressed
in [135], it is unclear how to characterize a bound on the H2-performance level of an
uncertain system, if the stochastic interpretation is chosen. The IQC analysis tools
were applied to an LPV system with a single time-varying parameter, for which
upper bounds on the worst-case L2-gain were computed by constructing various re-
laxation schemes. Within the considered class of dynamic multipliers, the relaxation
gap could not be brought to zero.

Under the assumption that a class of dynamic IQC multipliers is parameterized
in terms of finitely many LMI constraints, we have been able to solve the robust
controller synthesis problem by exploiting the structure of the generalized plant,
see Chapter 5. The LMI synthesis conditions provide an elegant solution to the
robust disturbance rejection problem in which disturbances are characterized by an
uncertain disturbance filter. Our algorithm has been illustrated on a small numerical
example and was recently applied on a model of a magnetically levitated bearing
system, see [56].

The presented synthesis result applies to a somewhat specific (though well-
motivated) structure of the generalized plant. In addition, if uncertainty is only
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caused by an uncertain filter that is positioned at the plant output, we were able to
also derive a convex solution. As a matter of fact, we expect that robust synthesis
can be convexified for general interconnections of uncertain systems, as long as the
control channel of the generalized plant is not affected by uncertainty. As it seems
very hard (if not impossible) to solve the output feedback robust synthesis problem
in its full generality, one should exploit the problem structure that occurs in practi-
cally relevant system interconnections. The following interesting research topics are
mentioned:

• The comparison of our robust synthesis algorithm with alternative techniques
as mentioned in Section 5.1, in the context of optimal robust disturbance
rejection against a class of uncertain disturbance signals. It is particularly
interesting to investigate which approach requires the least effort in terms of
the number design iterations and computational cost.

• The development of the discrete-time analogue of the stability characterization
given in Theorem 5.1, which is not expected to be too difficult. Then, the
controller synthesis algorithm with dynamic IQCs can be applied to discrete-
time systems as well.

• The development of a convex solution to the robust output feedback controller
synthesis problem as suggested in Conjecture 5.1, in which the system inter-
connection can be general, provided that control channel is not affected by
uncertainty. As a first step, a solution is needed for the problem sketched in
Section 5.3.6, that does not rely on the dualization Lemma 5.2.

• The development of analysis and synthesis techniques for effectively handling
mixtures of parametric and dynamic uncertainties. In particular, it is unknown
how to design an LPV controller for a plant of which not all uncertain elements
are parametric and on-line measurable.

Concerning the analysis of the class of discrete-time LPV systems in Chapter 4, it
has been shown that sufficient conditions for stability and performance are provided
by Lyapunov theory. Moreover, a family of sufficient conditions could be formu-
lated in terms of robust LMIs by making use of a well-known lifting technique. This
family of stability tests is asymptotically exact, which implies that exact analysis
results can be obtained by using a quadratic-in-the-state Lyapunov function, as long
as the lifting horizon is chosen large enough. If combining this remarkable fact with
an asymptotically exact family of LMI relaxations (i.e. Pólya, sum-of-squares), a
systematic procedure for analyzing LPV systems is obtained. As opposed to most
alternative Lyapunov function-based approaches to the analysis of non-linear and
uncertain systems, our method is constructive. In other words, the analysis condi-
tions are formulated in terms of tractable LMI relaxation schemes. The method is
also marked by a moderate growth in computational complexity, as the state dimen-
sion increases, as compared to existing algorithms that rely on higher order in the

158



state Lyapunov functions. Note, however, that the success of the analysis approach
of Chapter 4 will always depend on the particular system that is considered, and a
general statement is hard to make.

Finally, Chapter 6 addresses the LPV controller synthesis problem. By following
a well-known solution approach that results based on a robust LMI problem, we
have shown that computational complexity can be reduced if direct matrix sum-
of-squares arguments are employed, rather than relaxations based on the full block
S-procedure. Again, we stress the versatility of the LMI based approach. A list of
interesting research topics concerning LPV systems is given next.

• The construction of destabilizing parameter trajectories or trajectories with
worst-case performance for continuous-time LPV systems.

• A numerical example that illustrates the potential use of lifted systems for
LPV controller synthesis.

• An extension of the stability analysis framework such that rationally parameter
dependent Lyapunov functions can be employed. Although such functions have
been considered, for example in [64, 54], it is yet unknown how to turn (4.7)
into a robust SDP, in case of having parameter variation bounds unequal to
zero, and without a priori fixing the denominator polynomials in X(δ).

• A proof of the fact that ρ̄(R) > 1 is necessary for instability of the discrete-time
LPV system, analogous to what was done by Wirth [181] in the continuous-
time case. (see Section 4.1.5)

• The development of a reliable procedure for building and validating LPV mod-
els.

Objective 2: Develop a unified framework for constructing LMI relax-
ations.

Relaxation schemes allow one to compute feasible solutions of (non-tractable) robust
LMI problems. In Chapter 2, three types of relaxation schemes were presented in a
unified setting: relaxations based on convex hull arguments, on Polya’s theorem and
on matrix sum-of-squares decompositions. The flexibility of constructing all sorts
of LMI relaxation schemes has been illustrated on a number of academic examples.
A more detailed discussion on the implementation of the relaxation schemes from
Chapter 5 can be found in the developed Matlab toolbox [55].

Two families of relaxation schemes, both of which are asymptotically exact, were
constructed based on Pólya’s theorem or sum-of-squares decompositions. Hence, we
are able, at least theoretically speaking, to come arbitrarily close to the genuine
optimum of a robust LMI problem.
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A new implementation of matrix sum-of-squares relaxations has been developed
that does not involve linear equation constraints and therefore results in a genuine
LMI optimization problem. Although a numerical comparison with the previous
approach by Scherer and Hol [160] was not carried out, our proposed method is
expected to perform better, since existing LMI solvers do not explicitly account for
linear equation constraints.

It is emphasized that any given robust LMI constraint which is rational in the
parameters can be transformed into an equivalent polynomial one. An elegant and
often numerically efficient tool that can be used to perform this task is the so-called
full block S-procedure. Relaxation schemes based on the full-block S-procedure are
referred to as multiplier-based.

Relaxation schemes generally provide approximate solutions to a robust SDP prob-
lem, which explains the importance of estimating the level of conservatism. For the
class of so-called multiplier-based relaxations, a condition for verifying exactness
was proposed in the recent paper [157]. This test involves a solution to a system of
polynomials. An extension to problems with multiple robust SDP constraints has
been given in Section 2.4.2. In the case of having only scalar constraints, which
correspond to the class of so-called robust linear programming problems, an efficient
implementation of this test was obtained by reducing the number of polynomials
and variables. As one of the main contributions in Chapter 2, a new algorithm for
solving polynomial systems was proposed, which does not rely on structural knowl-
edge on the polynomial system in terms of a Gröbner basis.

It remains an important research topic how to make use of information from previ-
ous computations in order to construct new, less conservative, relaxation schemes.
The reader is referred to [96] for some practical experience on the choice of basis
functions in using sum-of-squares relaxations. The following problems all relate to
the goal of solving robust LMI problems in a systematic fashion:

• Efficient and reliable tools are needed to estimate the level of conservatism
of relaxation schemes in general robust SDPs. A powerful test for verifying
exactness of multiplier-based relaxations is given in Theorem 2.6. Similar to
what could be done for robust linear programming problems, there is a need
for an efficient numerical implementation of condition (2.68) for general robust
SDPs.

• Without having a means to systematically reduce conservatism, the guaranteed
convergence of the family of sum-of-squares relaxations has limited practical
value. The number of possible relaxation schemes that can be constructed
for a given bound on the total degree d of the sum-of-squares basis Tj(x)
grows combinatorially with d. Based on existing computations, one should
be able to decide which monomials should be added in order to arrive at
less conservative relaxation schemes. This also involves the issue whether, for
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a given relaxation scheme, certain monomial terms can be removed without
degrading the computed upper bounds.

• If employing the relaxation schemes based on the S-procedure of Section 2.3,
block-structured multipliers can be used in order to reduce the size of the prob-
lem. Surprisingly, adding such a block-structure need not worsen the results as
compared to the full block case, as was shown in Section 2.4.3. Similar to the
argument in the previous item, tools are needed that systematically reduce the
number of multiplier variables, without adding conservatism to the problem.

Let us finally discuss the important issues to overcome so that the tools as presented
in this thesis become easily accessible to a control engineer.

7.1 Towards a systematic and practical design pro-

cedure

As in all engineering problems, the design of a control system is an iterative pro-
cess. In classical PID control, the designer directly tunes over the controller pa-
rameters whereas in H∞-synthesis he iteratively adjusts weighting functions at the
input/output of the plant.

The process of translating design specifications into suitable weighting functions
in an H∞- or H2- synthesis problem requires training, but is a relatively straightfor-
ward task. The difficulty typically arises from a large number of inputs and outputs
of the system. For a synthesis approach based on robust SDPs, the presence of
robust LMI constraints complicates the design process even for small system dimen-
sions. Let us address some of the troubles that are caused by the fact that robust
LMIs can only be solved approximately.

• The inability to distinguish ”good” designs from ”bad” designs.
InH∞-synthesis, the synthesis-optimal-value equals theH∞-norm of the closed-
loop weighted plant. This number indicates the performance that can be ex-
pected. Based on this norm, one decides whether to reconstruct the controller
in order to perform a more detailed evaluation of the design.
The algorithms for robust controller design problems typically involve relax-
ation schemes for robust SDPs. Hence, in view of the possibly large relaxation
gap, a high synthesis optimal value (γrel) no longer indicates that the weighting
functions were inappropriately chosen.

• The increased cost of the intermediate analysis.
As the designer reaches the limits of performance, the weighting functions can
only be successfully modified if one knows the level of conservatism. This
requires the construction of multiple relaxation schemes, lower bound com-
putations and/or verification of exactness. Hence, the intermediate analysis
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not only involves the analysis of the designed controller, but also of the LMI
solution itself. This clearly slows down the design process.

• The increased number of tuning variables
The improved performance and the flexibility of modern optimal control al-
gorithms is, to some extent, based on an increase in the degrees of freedom
(controller order) over which the design takes place. However, too many tun-
ing knobs make it difficult to find a suitable controller. In particular, the
Lyapunov based methods of Chapter 4 and 6 rely on the pre-defined structure
of the Lyapunov matrix, as well as on the chosen relaxation scheme, whereas
the IQC-based method in Chapter 3 and 5 depend on the chosen parametriza-
tion of a class of the suitable multipliers and the chosen relaxation scheme, if
relaxation is required.

A very important and essential aspect, that has not been mentioned yet, concerns
the numerical computation of LMI relaxations. Despite the significant amount of
literature on LMI problems in control, see for example [29, 69], it is important to
make LMI-based controller design techniques more accessible for industry. Hence,
there is a need for dedicated reliable interior point solvers that numerically solve
LMI problems arising from the systems and control field, in particular for solving
LMI relaxations. Let us finish with the following two considerations.

• The outcome of existing LMI algorithms applied to control related problems
often depends on the different numerical representations of the data. New
LMI solvers should exploit the particular problem structure as seen in control
applications and should probably pre-condition the data. The development of
new interior point algorithms should be intertwined with the construction of
relaxation schemes in order to arrive at reliable solvers.

• An LMI constraint is not always strictly feasible. Since existing solvers cannot
handle non-strict LMIs, such cases are likely to cause numerical troubles. In
order to fully benefit from the power of sum-of-squares relaxations, a general
understanding is needed of how to a priori guarantee that the constructed LMI
constraints are strictly feasible. Only then, the selection of basis functions
T1, . . . TM in (2.32) can be done in a systematic and numerically efficient way.

Robust LMIs will definitely play an important role in various engineering design
problems. At present, the construction of relaxation schemes involve some techni-
calities that make the overall procedure inconvenient from a numerical point of view.
Once numerically efficient and reliable computation of the relaxation gap has been
established, as well as a systematic reduction thereof, the potential benefit of robust
SDPs will become visible.
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Appendix A

Analysis of LTI systems

through LMIs

In this appendix we briefly summarize the basic notions on system theory of finite
dimensional systems described by differential equations of the form

ẋ(t) = Ax(t) +Bw(t), x(0) = x0,

z(t) = Cx(t) +Dw(t).
(A.1)

Here, x(t) ∈ Rn is the state, w(t) ∈ Rnd the disturbance and z(t) ∈ Re the per-
formance output. The coefficient matrices A,B,C,D are real-valued and the sys-
tem can alternatively be represented by the corresponding transfer matrix G(s) =
C(sI −A)−1B +D, provided that the realization is minimal.

A.1 Stability

Stability of system (A.1) is equivalent to stability of the autonomous system

ẋ = Ax, x(0) = x0. (A.2)

The equilibrium x̄ = 0 is asymptotically stable if the state goes to zero for all initial
conditions x(0) = x0, i.e.

lim
t→∞ ‖x(t)‖ = 0 for all x0 ∈ Rn.

The system is called exponentially stable if for some positive constants α, β, all
trajectories of the system satisfy

‖x(t)‖ ≤ αe−β(t−t0)‖x(t0)− x̄‖ for all t ≥ t0 ≥ 0
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For the LTI system (A.1), exponentially stability is equivalent to the property that
all eigenvalues of A are in the open left half plane. Note also that due to linearity
of the system dynamics, the origin x = 0 is a global equilibrium.

A.2 Performance measures

For LTI systems, input-output specifications have traditionally been described in
the frequency domain, by suitable norm bounds on the transfer matrix G(s).

A.2.1 H∞-norm

The H∞-norm of a transfer matrix G(s) is defined as

‖G‖∞ = sup
ω∈R

σmax(G(iω)),

provided that G is stable. In order to see the relevance of the H∞-norm in char-
acterizing performance, suppose ŵ, ẑ are the Fourier transformed signals for any
given w(.) and z(.) that satisfy the system dynamics. Since z(iω) = G(iω)w(iω),
it immediately follows that ‖G‖∞ provides a bound on the worst case steady-state
amplification of a sinusoidal input. Recall the vector space of real or complex signals
with finite energy, defined as follows:

L2 := {x : [0,∞)→ Rm| ‖x‖2 <∞},

with ‖.‖2 the standard vector l2-norm.

Definition A.1 (Induced L2-gain) The induced L2-gain of system (A.1) is de-
fined as the smallest γ for which

‖z‖2 ≤ γ‖w‖2 for every w ∈ L2

if the output z(.) corresponding the zero initial condition x(0) = 0 and input w ∈ L2

satisfies (A.1).

If the system (A.1) is exponentially stable, it always has a finite L2-induced gain.
Moreover, the induced energy gain of an LTI system equals the H∞-norm of the
corresponding transfer matrix. That is, the following equality holds:

‖G‖∞ = sup
w∈L2,w 6=0

‖z‖2
‖w‖2 .

The H∞-norm is directly linked to robust stability guarantees, by the so-called
small gain theorem. In particular, ‖G‖∞ < 1 ensures invertibility of I −G, which is
extremely useful if verifying well-posedness of an interconnected system, as well as
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stability. The H∞-norm captures performance in a worst case sense, and is therefore
not always the best measure for expressing performance.

A.2.2 H2-norm

Whenever the spectral content of a (random) disturbance signal w is known, the H2-
norm is usually a good measure for disturbance rejection performance. It is defined
for LTI systems, as

‖G‖2 =

√
1

2π

∫ ∞
−∞

Tr
(
G∗(iω)G(iω)

)
,

in which transfer matrix G(s) with z = Gw is defined as G(s) = C(sI −A)−1B, For
discrete time systems with realization matrices Ad, Bd, Cd, Dd and transfer matrix
Gd(z) = Cd(zI −Ad)−1Bd +Dd, the H2-norm is defined as

‖G‖2 =

√
1

2π

∫ π

−π
Tr
(
G∗(iω)G(iω)

)
,

There are several motivations for using the H2-norm as a performance measure, of
which the following two interpretations are relevant.

The impulse response interpretation

For scalar inputs, ‖G‖22 is the energy of the impulse response. In case of multiple
inputs, say m, the H2-norm equals an average (or strictly speaking a sum) over all
impulsive inputs

‖G‖22 =
m∑
i=1

‖GzwiδD‖22

in which
G =

(
Gzw1 Gzw2 · · · Gzwnw

)
and Gzwi represents the transfer matrix from the ith input to the output z and
δD = δD(t) is the Dirac impulse function. The H2-norm can thus be used to mea-
sure (typically an error signal of) a transient response due to impulsive inputs or,
equivalently, non-zero initial conditions. By adding a suitable shaping filter at the
output, one can hence capture any desired trajectory.

Stochastic interpretation

Suppose the input w is a realization of a stochastic process having spectral density
Sw(iω) and let Sz(iω) be the spectral density of the output z. Since the system is
LTI, these two spectra are related as

Sz(iω) = G(iω)Sw(iω)G(iω)∗.
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The expectation of the asymptotic variance E(|z(t)|2 can be expressed as

E(|z(t)|2) =
1

2π

∫ ∞
−∞

TrG(iω)Sw(iω)G(iω)∗ =

=
1

2π

∫ ∞
−∞

TrG(iω)G(iω)∗Sw(iω) = ‖G‖22 (A.3)

Thus, the H2-norm can be interpreted as the asymptotic output variance for any
input taken generated by a white noise source, i.e. S(iω) = I. Similar as in the
previous interpretation, an additional filter can be used to shape the input signal
characteristics (colored noise).

Although the terminology ’H2-norm’ is abusive for systems that are not LTI,
one can show that both interpretations of the H2-norm coincide when the system is
linear time varying, see [107, 12]. Hence, for LTV systems the H2-norm performance
measure can be used unambiguously. For non-linear systems one has to be more
careful, since there are multiple extensions possible, as mentioned in [169, 172, 12,
135] and references therein.

Remark A.1 The standard H2-norm equals the induced L2−L∞ norm if the output
of the system is scalar, see for example [151]. This interpretation is particularly
meaningful in the context of disturbance rejection, and is another reason why the H2-
norm is important when it comes to measuring disturbance rejection performance.

A.2.3 Quadratic performance

The notion of quadratic performance generalizes the induced L2-gain.

Definition A.2 (Quadratic Performance) The system (A.1) is said to satisfy
quadratic performance with respect to performance index

Pp =
(
Qp Sp
STp Rp

)
, Rp � 0, (A.4)

if it is exponentially stable and if there exists ε > 0 such that for x0 = 0 the following
property∫ ∞

0

(
w(t)
z(t)

)T
Pp

(
w(t)
z(t)

)
dt ≤ −ε‖wp‖22, for every w ∈ L2 (A.5)

holds.

It is easy to see that L2-gain performance corresponds to the performance index

Pp =
( −γ2I 0

0 I

)
or Pp =

(
−γI 0

0 1
γ I

)
. (A.6)
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A.3 LMI characterization of stability and perfor-

mance

Linear matrix inequalities have long been present in systems theory. They go back
to Lyapunov who showed around 1900 that the autonomous LTI system

ẋ = Ax

is exponentially stable if and only if there exists a positive definite solution X � 0
to the Lyapunov inequality

A′X +XA ≺ 0. (A.7)

The existence of such a solution X implies that A is a stable matrix, i.e. it has
all its eigenvalues in the open left half plane. The Lyapunov inequality (A.7) is an
example of an LMI for which a solution X can be constructed explicitly.

Formally, an LMI is a matrix inequality of the form

P (y) = P0 +
nd∑
i=1

Piyi ≺ 0 (A.8)

in which y ∈ Rnd are the decision variables and P0, P1, . . . , Pnd are known Hermitian
matrices. A convex optimization with LMI constraints of the form

infimize c1y1 + . . .+ cndynd
subject to P0 + P1y1 + . . .+ Pndynd ≺ 0.

(A.9)

is called a Semi-Definite-Program (SDP). As shown, the inequality is taken in a
strict sense, which means that all eigenvalues of P (y) are non-zero and negative.
LMIs allow for a wide range of convex constraints on y and it has become clear that
many control problems can be translated into convex optimization problems. LMI’s
have become so popular over the past two decades mainly due to the fact that they
can be efficiently solved by using interior point algorithms. For a nice overview on
convex optimization, the relations to linear and quadratic programming and some
practical applications, see [30, 29, 17]. Among the many LMI solvers now available,
we refer to numerical solvers such as LMILAB, Sedumi, see [170], CSDP, the latter
two which are available on the internet.

LMI characterization of quadratic performance

Quadratic performance for an LTI system can be verified by solving an LMI problem.
One way of showing this fact starts with the observation that with transfer matrix
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G(s) = D + C(sI −A)−1B, the semi-infinite constraint(
I

G(iω)

)∗
Pp

(
I

G(iω)

)
≺ 0, for all ω ∈ R ∪ {∞}. (A.10)

is a sufficient condition for quadratic performance of system (A.1). Let us denote
the Fourier transformed signals as ẑ, ŵ respectively. Then expression (A.10) being
strictly negative definite means adding −εI to the right-hand side is allowed while
still being feasible. Left-and right multiplication with ŵ(iω)∗, ŵ(iω) respectively,
using the fact ẑ(iω) = G(iω)ŵ(iω), we infer that∫ ∞

−∞

(
ŵ(iω)
ẑ(iω)

)∗
Pp

(
ŵ(iω)
ẑ(iω)

)
dω ≤ −ε‖ŵ‖22, for every w ∈ L2. (A.11)

Finally, by Parseval’s relation, the condition for quadratic performance (A.5) is
satisfied.

As such, constraint (A.10) is not immediately tractable due to its semi-infinite
nature. However, frequency domain inequalities (FDI) of this form can be reduced
to an LMI, as the following lemma shows.

Proposition A.1 The system (A.1) is asymptotically stable and admits quadratic
performance if and only if there exists a solution X = XT � 0 satisfying(

I 0
A B

)′(
0 X

X 0

)(
I 0
A B

)
+
(

0 I

C D

)′
Pp

(
0 I

C D

)
≺ 0. (A.12)

Remark A.2 It now becomes clear why Rp � 0 is assumed in the definition of
quadratic performance. In fact, the upper-left term in (A.12) yields A′X + XA +
C ′RpC ≺ 0 which implies that A is stable.

A proof of this proposition is based on the following lemma that relates a semi-
infinite constraint on the imaginary axis to a finite-dimensional LMI optimization
problem.

Lemma A.1 (Kalman Yakobovich Popov) Let G(s) = D+C(sI −A)−1B and
assume det(iω−A) 6= 0 for all ω ∈ R. Then, (A.10) holds if and only if there exists
(generally indefinite) X = XT for which (A.12) holds.

Proof. see [9, 148].

With this lemma we can complete the proof of Proposition A.1.

Proof of Proposition A.1 :
Using the KYP Lemma, (A.10) is equivalent to (A.12). Further, stability of A is in-
ferred by the additional property X � 0, exploiting the fact Rp � 0. An alternative
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derivation of (A.12) is based on a Lyapunov function V (x) = xTXx in combination
with the performance indicator (A.5). The proof also extends to linear time-varying
and uncertain systems.

The equivalence between the LMI (A.12) and the boundedness of ‖G‖∞ is com-
monly known as the bounded real lemma, see for example [190]. The following
Lemma will be used in order to render matrix inequality affine in the decision vari-
able γ.

Lemma A.2 (Schur) For any given symmetric matrix M ∈ Rn×n partitioned as

M =
(
M11 M12

MT
12 M22

)
define S = M22 − MT

12M
−1
11 M12, known as the Schur complement of M11 in M .

Then,
M � 0 ↔ M11 � 0 and S � 0

By applying Schur’s lemma and the fact that Rp � 0, one can equivalently rewrite
(A.12) as  XA+ATX XB + CTSTp CT

BTX + SpC sym(SpD) +Qp DT

C D R−1
p

 ≺ 0. (A.13)

The induced L2 gain performance measure corresponds to Qp = γ,Rp = γ−1 and
Sp = 0. The application of Schur’s lemma in this context is often referred to as the
linearization lemma since γ enters (A.13) in an affine fashion.

LMI characterization of H2-norm

Similar as the H∞-norm admits an LMI characterization, the following result shows
how theH2-norm of an LTI system can be computed in terms of state-space matrices.

Proposition A.2 Suppose the system (A.1) is asymptotically and let G(s) denote
its transfer function Then, ‖G‖2 < γ if and only if D = 0 and the following state-
ments are equivalent

• ‖G‖2 < γ

• There exists K = KT � 0 and Z such that(
ATK +KA KB

BTK −I
)
≺ 0;

(
K CT

C Z

)
� 0; Tr(Z) < γ2

• There exists K = KT � 0 and Z such that(
AK +KAT KCT

CK −I
)
≺ 0;

(
K B

BT Z

)
� 0; Tr(Z) < γ2
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Appendix B

Linear fractional

transformations

In order to be able to reduce LPV analysis and synthesis conditions into a robust
SDP, the system matrices of the LPV system must be well-posed for the given set
of admissible parameter values. Moreover, the construction of the multiplier based
relaxations of Section 2.3 require that a Linear Fractional Representation (LFR) of
the parameter dependent system matrices exists.

Definition B.1 Let G be a mapping from the indeterminate variables δ1, . . . , δs into
Rp×m. Then, we say that the relation

η = G(δ)ξ (B.1)

admits the LFR (
z

η

)
=
(
A B

C D

)
︸ ︷︷ ︸

H

(
w

ξ

)
, w = ∆(δ)z (B.2)

defined with the constant matrix H with sub-matrices A,B,C,D and with parameter
block ∆(δ) depending linearly on δ if the following holds: For all δ for which I −
A∆(δ) is invertible and for all ξ ∈ Rm, η ∈ Rp, the relation (B.1) holds if and only
if there exists w ∈ Rnw , z ∈ Rnz such that (B.2) holds. This relation is pictorially
expressed in Figure B.1.

Observe that the existence of an LFR implies the function G(δ) to be rational.
Moreover, it can be proven that any matrix-valued multi-variable rational function
without pole in zero admits an LFR. Thus, when the LPV system matrices in (6.1)
admit an LFR we can alternatively pull out the uncertainty and equivalently repre-
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1.2. LINEAR FRACTIONAL REPRESENTATIONS OF RATIONAL FUNCTIONS 3

»
H

¢(±)

G(±)» ´

z w

´

Figure 1.1: Linear Fractional Representation.

Definition 1.1 We say that
η = G(δ)ξ (1.2.1)

admits the LFR (
z
η

)
=

(
A B
C D

)
︸ ︷︷ ︸

H

(
w
ξ

)
, w = ∆(δ)z (1.2.2)

defined with the constant matrix H with submatrices A, B, C, D and with ∆(δ) depending
linearly on δ if the following relation holds: For all δ for which I − A∆(δ) is invertible and
for all (ξ, η), ξ and η are related by (2.2.1) if and only if there exist w, z such that (1.2.2)
holds.

This relation is pictorially expressed in Figure 1.1. Only for reasons of concise descriptions
we call ∆(δ) the parameter-block of the LFR, and the LFR is said to be well-posed at δ
if I −A∆(δ) is invertible. Given ξ, η, we observe for all δ for which the LFR is well-posed:

∃ w, z : z = Aw + Bξ, η = Cw + Dξ, w = ∆(δ)z ⇐⇒
⇐⇒ ∃ z : (I −A∆(δ))z = Bξ, η = C∆(δ)z + Dξ ⇐⇒
⇐⇒ ∃ z : z = (I −A∆(δ))−1Bξ, η = C∆(δ)z + Dξ ⇐⇒

⇐⇒ η = [D + C∆(δ)(I −A∆(δ))−1B]ξ ⇐⇒ η = [∆(δ) � H]ξ.

Define Operation � on maps in appendix? earlier?

We conclude that (1.2.2) is an LFR of (2.2.1) iff

G(δ) = ∆(δ) � H on the parameter set {δ ∈ Rm : I −A∆(δ) is invertible}.
Since ∆(δ) is affine in δ, this formula reveals that any G(δ) with an LFR is a rational
function of δ. Since ∆(0) � H = D it is clear that zero is no pole of this function. The
main point of this section is to prove that the converse is true as well: Any matrix-valued
multivariable rational function without pole in zero admits an LFR.

Before proving this essential insight we would like to comment on how to actually manipulate
LFR’s. For this purpose and for far-reaching generalizations it is very advantageous to

Figure B.1: LFR for rational matrix function G(δ)

sent the LPV system as
ẋ(t)
zδ(t)
z(t)
y(t)

 =


Ā B̄1 B̄2 B̄

C̄1 D̄11 D̄12 D̄13

C̄2 D̄21 D̄22 D̄23

C̄ D̄31 D̄32 D̄33




x(t)
wδ(t)
w(t)
u(t)

 , (B.3)

wδ(t) = ∆(δ(t))zδ(t) δ ∈ δ,

and appropriately chosen matrices Ā, B̄1, . . .. Moreover, when no specific size of the
realization is required, the parameter block ∆(δ), δ ∈ Rs can always be chosen of
the form

∆(δ(t)) =

 δ1(t)Ir1
. . .

δs(t)Irs

 .

In general, verifying well-posedness of an LFR for a given set δ is a non-tractable
problem.

LFT calculus of LTI systems

State space realizations of (proper) transfer functions are a particular type of LFR,
i.e. the transfer function for the LTI system (A.1) can be computed as

G(s) =
1
s
I ?

(
A B

C D

)
, s ∈ C0 ∪ C+.

It will not come as a surprise that the LFR can be defined to operate on LTI
systems rather than (structured) matrices. An essential tool in the generalized plant
framework is the use of linear fractional transformations.

Suppose we are given the following LTI system:

M =
(
M11 M12

M21 M22

)
.

with M11 ∈ RHn1×m1∞ ,M22 ∈ RHn2×m2∞ and LTI systems ∆l ∈ RHm2×n2∞ and
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∆u ∈ RHm1×n1∞ . Then, the upper fractional transformation with respect to ∆u is
defined as

Fu(M,∆u) = M22 +M21∆u(I −M11∆u)−1M12

and the lower fractional transformation with respect to ∆l as

Fl(M,∆l) = M11 +M12∆l(I −M22∆l)−1M21

where ∆l,∆u are of compatible sizes. Upper- and lower LFTs are actually special
cases of the star-product, for a definition see [190]. In our discussion, only Fu and
Fl are needed, more compactly written as

Fl(M,∆l) = M ?∆l Fu(M,∆u) = ∆u ? M.

Well-posedness of Fu(M,∆u) in whichM,∆u are LTI systems, means that I−M22∆u

is an invertible transfer matrix. In an analogue fashion, well-posedness of Fl(M,∆l)
can be defined.

LFTs provide a powerful data structure for uncertain matrices or systems and
can be added, multiplied, and inverted provided that D is invertible.

Example B.1 Given LFR

Ā(x) = Inx ?

(
A B

C D

)

then the product Ā(x)Ā(y) admits the LFR

(
xIn 0
0 yIn

)
?

 A BC BD

0 A B

C DC DD

 (B.4)

Moreover, the LFT of LFT is again an LFT, which is easily seen by the fact that

δ2 ?
(
δ1 ?

 A11 A12 B1

A21 A22 B2

C1 C2 D

) = δ1 ?
(
δ2 ?

 A22 A21 B2

A12 A11 B1

C2 C1 D

). (B.5)

can be written as ∆(δ) ? M , in which

∆(δ) =
(
δ1 0
0 δ2

)
, and M =

 A11 A12 B1

A21 A22 B2

C1 C2 D

 ,

The final important property of LFTs has been used in Section 6.1.
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M1

∆1 ∆2

M2

M3

∆3
∆

M

Figure B.2: An interconnected system

Lemma B.1 Consider the following LFT

G(∆) = ∆ ?

[
M11 M12

M21 M22

]
.

If M22 has dimension Rn2×m2 and rank n2, the SVD of M22 is given by M22 =
U
[

Σ 0
]
V ∗. V is partitioned into the first n2 and last (m2 − n2) columns as

V =
[
V1 V2

]
. Then, the null space of G(∆) can be parameterized via an LFT as

follows:

N (G(∆)) = Im

[
∆ ?

[
M11 −M12V1Σ−1U∗M21 −M12V2

V1Σ−1U∗M21 V2

] ]
.

Proof. The proof can be found in [177, 184].

Remark B.1 In view of Definition B.1, the LFR of G(δ) equals the upper LFT
of the systems H with ∆, in which H is a constant gain and ∆ is a parametric
uncertainty block.

Structured uncertainties and interconnected systems

The main reason for LFTs to play such an important role in system theory, is the
way it unifies the notion of interconnected systems. Consider the case of having
three uncertain components that are interconnected as shown in Figure B.2. By
separating the uncertain elements from the known dynamics M1,M2,M3, a process
sometimes referred to as “pulling out the uncertainties”, the interconnected system is
represented by a single loop P , the generalized plant, and the structured uncertainty
block

∆ =

 ∆1 0 0
0 ∆2 0
0 0 ∆3


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Thus, interconnections of uncertain systems naturally lead to structured uncertainty
blocks once unknown blocks are isolated from the known blocks. Note that relation
(B.5) implies that interconnecting multiple uncertain component systems can be
done in arbitrary order.

Linear fractional representations apply to LTI systems, which includes parametric
(static) blocks. In Chapter 5 a framework is developed that enables to consider
more general uncertain operators ∆, such as static non-linearities or time-varying
parameters. We stress the fact that interconnection of non-linear subsystems is much
more precarious and LFT operations should be used with greatest care.
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Appendix C

Equivalence of the

sum-of-squares

approximations

As mentioned in Section 2.2.3, an alternative proof of Theorem 2.4 started from
(2.29) rather than (2.32). Although the latter two sum-of-squares programming
problems appear to be different, either one can be derived from the other by a suit-
able change of variables.

Let us start from (2.29), with P (x, y) of size p × p and G(x) of size q × q and
obtain an explicit formula for

(G(x), S(x))p = Trp((Ip ⊗G(x))S(x))

with sum-of-squares matrix S(x) of dimension pq. Note that there exists a polyno-
mial matrix T (x) with pq rows and r columns for which

S(x) = T (x)T (x)T .

With basis matrices Bν , let T be parameterized as

T =
N∑
ν=1

ανBν =
N∑
ν=1

αν

 bν,11 . . . bν,1r
...

. . .
...

bν,p1 . . . bν,pr


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with q-column vectors bν,jk, k = 1, . . . , r. Then

TTT =
N∑
ν=1
µ=1

αναµ

 bν,11 . . . bν,1r
...

. . .
...

bν,p1 . . . bν,pr


 bTµ,11 . . . bTµ,p1

...
. . .

...
bTµ,1r . . . bTµ,pr

 =

∑
ν,µ,j

αναµ

 bν,1j
...

bν,pj

( bTµ,1j · · · bTµ,pj
)
.

Using the previously introduced definition of Trp we get

Trp((Ip ⊗G)S) = Trp

∑
ν,µ,j

αναµ

 Gbν,1j
...

Gbν,pj

( bTµ,1j · · · bTµ,pj
) =

=
∑
ν,µ,j

αναµ

 Tr(Gbν,1jbTµ,1j) · · · Tr(Gbν,1jbTµ,pj)
... · · · ...

Tr(Gbν,pjbTµ,1j) · · · Tr(Gbν,pjbTµ,pj)

 .

By using the properties of the trace operator we then arrive at

∑
ν,µ,j

αναµ

 bTµ,1jGbν,1j · · · bTµ,pjGbν,1j
... · · · ...

bTµ,1jGbν,pj · · · bTµ,pjGbν,pj

 =

=
∑
ν,µ,j

αναµ

 bTµ,1jGbν,1j · · · bTµ,1jGbν,pj
... · · · ...

bTµ,pjGbν,1j · · · bTµ,pjGbν,pj

 =

=
∑
ν,µ,j

αναµ

 bTµ,1j
...

bTµ,pj

G
(
bν,1j · · · bν,pj

)
=

=
r∑
j=1

∑
µ

αµ

 bTµ,1j
...

bTµ,pj


G

(∑
ν

αν
(
bν,1j · · · bν,pj

))
.

Finally, by defining

Tj =
∑
ν

αν
(
bν,1j · · · bν,pj

)
, j = 1, . . . , r, (C.1)
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we have shown that constraint (2.29) can be turned into (2.32).

In order to show the converse, let M and T1, . . . , TM in (2.32) be given. Let r = M

and decompose Tj as in (C.1) and further define

S =
∑
ν,µ,j

αναµ

 bν,1j
...

bν,pj

( bTµ,1j · · · bTµ,pj
)
.

By applying the converse arguments, it follows that

(G(x), S(x))p =
M∑
j=1

Tj(x)TG(x)Tj(x).

Thus, it has been shown how to transform (2.29) into (2.29) and vice versa.
When the a priori bound l on the total degree of Tj(x) in (2.34) is increased,

without removing any of the monomial terms already represented, the extended
relaxation scheme is guaranteed not to be worse.
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Appendix D

Asymptotic exactness in

L2-gain analysis

Referring to Section 4.2.4, we give proof of the fact that by restricting ourselves
to N -periodic LPV systems, we can get arbitrarily close to the worst case l2-gain.
For any R-admissible parameter trajectory δ = (δk)k=1,2,... and any input w =
(wk)k=1,2,... ∈ l2, let z = z(w, δ, x0) be the output of system (4.36) with initial
condition x0 = 0. Recall the worst-case l2-gain that, defined as

γwc := sup
δ(.) admissible

sup
w 6=0

‖z‖
‖w‖ (D.1)

Define the shift operator SN (.) as SN (z) = (zN+1, zN+2, . . . , ) and remind the fact
that TN (z) is the truncated signal defined as TN (z) = (z1, z2, . . . , zN , 0, 0, ...). More-
over, for any R-admissible parameter sequence (δk)k=0,1,..., let the mapping PN
generate periodic parameter trajectories in the following fashion:

PN (δ) = (δ1, δ2, . . . , δN , δ1, δ2, . . .).

Theorem D.1 Assume that the LPV system (4.36) is exponentially stable and let
γ be the worst case l2-gain. Then, for any given ε > 0 there exists an N ∈ N such
that

sup
δ(.) admissible

sup
w 6=0,‖w‖=1

‖z(w,PN (δ))‖
‖w‖ > γ − ε.

Proof. Let ε > 0 be given. By definition of γ in (D.1), there exists δ̄, w̄ such that
the output z̄ = z(w̄, δ̄) satisfies the relation

‖z̄‖ > γ − ε

8
, as well as ‖z̄‖2 > γ2 − ε2

16
. (D.2)

181



Second, choose N such that

‖TN (z̄)‖2 > ‖z̄‖2 − 3ε2

16
. (D.3)

Note that such an N exists since the term on the left hand side of the inequality
converges to ‖z̄‖2 as N →∞, and ‖z̄‖ was chosen to satisfy (D.2). Since

‖z̄‖2 = ‖SN (z̄)‖2 + ‖TN (z̄)‖2,

we infer that

‖SN (z̄)‖2 ≤ ‖z̄‖2 − ‖TN (z)‖2 ≤ 3ε2

16
. (D.4)

By definition of the worst case l2-gain γ, the energy of z(w̄, δ) is bounded by γ

for any R-admissible sequence δ, which hence implies

‖SN (z(w̄, δ))‖2 ≤ γ2 − ‖TN (z(w̄, δ))‖2.

Let us use this fact for the particular periodic sequence δ = PN (δ̄) and observe that
TN (z(w̄, δ̄)) = TN (z̄) since the first N elements of z̄ and z(w̄, δ̄) are the same. Thus,
we get

‖SN (z(w̄, PN (δ̄)))‖2 ≤ γ2 − ‖TN (z̄)‖2 ≤

γ2 − ‖z̄‖2 +
3ε2

16
≤ ε2

16
+

3ε2

16
≤ ε2

4
. (D.5)

Combining (D.4) and (D.5), we get

‖z̄ − z(w̄, PN (δ̄))‖ ≤ ‖SN (z̄)− SN (z(w̄, PN (δ̄)))‖ ≤

‖SN (z̄)‖+ ‖SN (z(w̄, PN (δ̄)))‖ ≤
√

3ε2

16
+
ε

2
≤ ε

4
+
ε

2
=

3ε
4
. (D.6)

and finally arrive at

‖z(w̄, PN (δ̄))‖ ≥ ‖z̄‖ − ‖z̄ − z(w̄, PN (δ̄))‖ ≥ ‖z̄‖ − 3ε
4
≥ γ − ε

8
− 3ε

4
> γ − ε,

which finishes the proof.
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Summary

Analysis and Control of Uncertain Systems by Using Robust

Semi-Definite Programming

Over the past century, many interesting problems in the field of systems and con-
trol have been solved by formulating them as a mathematical optimization problem.
Many of these optimal control problems, like the well-knownH∞- orH2-optimal con-
trol, can be formulated as a linear optimization subject to Linear Matrix Inequalities
(LMIs). Typically, these algorithms for controller design rely on the assumption that
the underlying system is linear time-invariant (LTI). In practice though, the system
dynamics often varies in time and some system components will be non-linear. Nev-
ertheless, simple mathematical models are preferred for controller design purposes in
view of the numerical complexity that arises when using high order complex models.

In this thesis, we investigate how to compute optimal robust and scheduled con-
trollers for systems with uncertainty by using LMI methods. The philosophy of
robust controller design is to consider a nominal LTI plant model of modest com-
plexity that is augmented with a class of uncertain elements, such that the real
system lies within the family of models so constructed. Then, it is possible to ana-
lyze, by using linear analysis tools, whether the original system is stable or satisfies a
certain performance criterion. However, contrary to the analysis conditions for LTI
systems, so-called robust LMIs dominate the problem, which consist of a parame-
terized family of LMIs. It significantly increases the computational complexity since
the parameters take infinitely many values in general. Any (linear) optimization
problem, in which the decision variables are constrained by a robust LMI, is called
robust semi-definite programming.

The class of robust semi-definite programming problems is introduced in Chapter 2
by means of an elementary example from linear algebra. It arises from a well-known
analysis problem for uncertain systems, also known as µ-analysis. It is shown that
robust SDPs are approximately solved by constructing so-called relaxation schemes.
Throughout the thesis, the proposed relaxation methods have been applied to a
number of problems taken from the system’s and control field. Emphasis is put on
improving existing analysis or controller synthesis methods, since the LMI conditions
are often sufficient but not necessary.
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In Chapter 3 we give an overview of the analysis method for uncertain systems,
that is based on so-called “integral quadratic constraints”. It allows to analyze
stability as well as a certain performance level. Moreover, it can incorporate a wide
range of uncertainties, such as static non-linearities or time-varying parameters. A
numerical example is presented for a discrete-time LPV system with a single time-
varying parameter.

In Chapter 4, we consider the analysis of linear parameter varying (LPV) sys-
tems. An LPV model can be viewed as an LTI model, of which the system matrices
depend on some (time-varying) parameters. The question whether a given LPV
system is stable for a given family of allowable parameter trajectories, is typically
approached by using a Lyapunov function. This leads to sufficient conditions, and
little is known in general about the required Lyapunov function in order for analysis
conditions to be exact. For discrete-time LPV systems, we have proposed a system-
atic procedure, based on a lifting argument, that allows for the construction of a
family of asymptotically exact analysis conditions. Whether exact computations can
be expected in practical problems essentially depends on the available computational
power.

In the Chapters 5 and 6 we aim at designing robust and scheduled controllers.
Based on the IQC-analysis methodology, we have given an LMI solution for the
corresponding robust output feedback controller synthesis problem. Contrary to
existing methods that rely on iterative schemes, it turns out that the problem can be
rendered convex if assuming a particular structure of the generalized plant. Although
the synthesis solution applies to a specific class of problems, the structure is definitely
of practical interest, as a motivating example at the beginning of the chapter shows.

If parameters of an LPV system can be measured online, one typically wishes
to design a controller that depends on the parameters of the system. This can
significantly improve the performance of the closed loop system. A well-known
design approach in this respect is known as LPV synthesis, which forms the topic
of Chapter 4. Robust LMIs naturally follow from the design problem, and the
relaxation methods from Chapter 2 are again employed in a numerical example.

Finally, conclusions are drawn in Chapter 7. On the one hand, these concern the
applicability and issues of implementing the relaxation schemes of Chapter 2. On
the other hand, we address the contributions when it comes to turning analysis and
controller design problems into a robust SDP problem.
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Samenvatting

Het Analyseren en Regelen van Systemen met Onzekerheid

door Gebruik te Maken van Robuust Semi-Definiet Program-

meren.

In de loop van de vorige eeuw zijn vele regeltechnische problemen opgelost door ze
als een wiskundig optimilisatie probleem te formuleren. Veel van deze optimale rege-
laarontwerp methoden, zoalsH∞-ofH2-regelaarsynthese, kunnen worden geschreven
in termen van lineaire matrix ongelijkheden (LMI’s). Deze problemen behoren tot de
convexe optimalisatie, waarvoor diverse algoritmen zijn ontwikkeld. Echter, veelal
wordt het systeem als lineair tijdinvariant (LTI) verondersteld, ook al zal de dy-
namica van het systeem variëren met de tijd, of hebben bepaalde componenten een
duidelijk niet-lineair karakter. Toch is, met het oog op de numerieke complexiteit
die gepaard gaat met het gebruik van hoge orde modellen, een eenvoudig wiskundig
model gewenst voor het ontwerpen en analyseren van regelaars.

In dit proefschrift wordt onderzocht hoe er met LMI technieken optimale robu-
uste en parameter afhankelijke regelaars kunnen worden gevonden voor systemen
met onzekerheid. De gedachte achter robuust regelaarontwerp is om gebruik te
maken van een nominaal LTI model in combinatie met een te beschrijven onzeker-
heidsklasse. Door ervoor te zorgen dat de op deze manier vastgelegde verzameling
van modelle het daadwerkelijke systeem omvat, kan er met lineaire theorie een uit-
spraak worden gedaan over stabiliteit en over de haalbare prestatie van een geregeld
systeem. Echter, in tegenstelling tot de condities die kunnen worden afgeleid voor
LTI systemen, spelen zogenaamde robuuste LMI’s een cruciale rol bij het analyseren
van systemen met onzekerheid. Deze bestaan uit een geparametriseerde familie van
LMI’s. Indien voor een gegeven (lineaire) optimalisatie, de beslissingsvariabelen
door een robuuste LMI wordt beperkt, spreekt men van robuust semi-definiet pro-
grammeren (SDP). De complexiteit van robuuste SDPs wordt veroorzaakt door het
feit dat de beslissingsvariabelen door oneindig veel LMI’s worden beperkt.

In Hoofdstuk 2 wordt de klasse van robuuste semi-definiete problemen gëıntroduceerd
aan de hand van een elementaire vraag in de lineaire algebra. Het heeft zijn oor-
sprong in de analyse van stabiliteit voor een onzeker systeem, beter bekend als µ-
analyse. Het numeriek oplossen van robuuste LMI’s gaat gepaard met benaderingen,
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de zogenoemde relaxaties. In de overige hoofdstukken van dit proefschrift worden
de gepresenteerde relaxatie technieken toegepast op problemen die voortkomen uit
the regeltheorie. De nadruk ligt dan met name op het verbeteren van condities voor
zowel de analyse van onzekere systemen als voor regelaarsynthese. Deze condities
zijn in de regel enkel voldoende en niet noodzakelijk.

Hoofdstuk 3 geeft een beknopt overzicht van een methode gebaseerd op zoge-
naamde “integral quadratic constraints” (IQC), waarmee zowel de stabiliteit als de
prestatie van een gegeven systeem met onzekerheid kan worden bepaald. Bovendien
kan een breed scala aan onzekerheden in rekening worden gebracht, zoals statische
niet-lineariteiten, tijdvariërende parameters etc. Een numeriek voorbeeld laat zien
hoe de methode werkt in het geval van een tijdvariërende parameter.

In Hoofdstuk 4 richten we ons eveneens op het analyse vraagstuk, ditmaal voor de
klasse van “Linear Parameter Varying”-systemen. Een LPV model heeft eenzelfde
structuur als een LTI model, maar de systeem matrices hangen van een aantal (ti-
jdvariërende) parameters af. De vraag of een LPV model robuust stabiel is voor
een gegeven familie van parameter variaties, kan worden behandeld door gebruik
te maken van een Lyapunov functie. Helaas is over het algemeen weinig bekend
over de vereiste structuur van de Lyapunov functie, waarvoor exacte condities wor-
den verkregen. Voor LPV systemen in discrete-tijd zal een systematische procedure
worden ontwikkeld, gebaseerd op het zogenaamde “liften” van het systeem. Deze
maakt een exacte analyse voor stabiliteit van het LPV systeem mogelijk, echter zal
beperkte rekencapaciteit dit in de praktijk niet altijd toelaten.

De volgende twee hoofdstukken richten zich op het ontwerpen van een robuuste of
parameter afhankelijke regelaar. Gebaseerd op het IQC-raamwerk uit Hoofdstuk 3
wordt in Hoofdstuk 5 een nieuw algoritme gepresenteerd om optimale robuuste rege-
laars te ontwerpen. Gezien de condities voor robuuste regelaarsynthese tot dusver
niet convex zijn bevonden, zijn bestaande synthese technieken gebaseerd op een iter-
atieve procedure. Het voorgestelde algoritme bevat uitsluitend LMI’s, en is daarmee
convex in de beslissingsvariabelen. Ook al heeft het resultaat betrekking op inter-
connecties met een specifieke structuur, het voorbeeld aan het begin van Hoofdstuk
5 laat zien dat deze zeker voor de praktijk relevant kunnen zijn.

Indien de parameters in een LPV systeem kunnen worden gemeten gedurende
de tijd dat de regelaar operationeel is, wordt meestal een regelaar ontworpen die
zich continue aanpast aan de waarde van de parameter. Een veelgebruikte tech-
niek hiervoor, beter bekend als LPV synthese, wordt in Hoofdstuk 6 beschreven.
Het berekenen van een optimale LPV regelaar kan relatief eenvoudig worden gefor-
muleerd als een robuust SDP door gebruik te maken van de LMI condities die eerder
al zijn afgeleid voor het nominale regelaar probleem. Wederom worden verschillende
relaxatietechnieken uit Hoofdstuk 2 toegepast.

Tot slot wordt in Hoofdstuk 7 een opsomming gegeven van de voornaamste
conclusies. Enerzijds worden de gepresenteerde relaxatie technieken vergeleken,
anderzijds wordt een blik geworpen op de mogelijkheden nieuwe problemen in de
regeltheorie te formuleren als een robuust SDP.
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