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Introduction

Amsterdam Airport Schiphol (AAS) is planning a potential restructuring of its Center area, which requires KLM Cargo
to relocate its cargo terminal to AAS Southeast. This realocation of KLM Cargo brings significant logistical and op-
erational changes, both inside and outside the cargo terminal. One of which to the airside cargo transportation the
movement of cargo between the cargo terminal and aircraft using the airports service roads. The relocation is partic-
ularly critical for cargo transported via passenger aircraft, as the resulting expanded service road network increases
travel distances and introduces new complexities, such as the Kaagbaantunnel.

Airside cargo transportation is a vital component of the air cargo supply chain, requiring efficient and timely
cargo movement to ensure shipments reach their intended flights without delay. Any disruption in this process can
lead to missed flight connections, forcing cargo to be rebooked on later flights, which in turn disrupts supply chains,
incurs financial consequences, and affects service quality. Airside cargo transportation is an important part of the air
cargo supply chain, requiring efficient and timely cargo transport ensuring that cargo is transported. Delays in air-
side transportation can result in cargo missing its flight, meaning the cargo needs to be rebooked onto another flight.
This disrupts the air cargo supply chain resulting in financial consequences and impacting service quality. Addition-
ally, efficient airside cargo transportation is crucial for minimizing travel time and optimizing resource utilization
which by themself influence manpower and fuel consumption.

A key aspect of the airside cargo transportation problem is recognizing that KLM Cargo and AAS have distinct
perspectives and objectives. KLM Cargo prioritizes an timely, efficient, cost-effective transportation operation to
maintain its service reliability, while AAS focuses on optimizing airport-wide traffic flow and infrastructure utiliza-
tion. These differing priorities make it an intriguing challenge to evaluate how various transportation strategies, both
within and outside the cargo terminal, impact airside cargo transportation and what implications they hold for both
stakeholders.

Conducting this thesis in collaboration with AirportCreators provides an independent perspective on the prob-
lem, enabling an objective evaluation of the findings and their broader implications for both stakeholders involved.
It also provided the opportunity to explore a new and innovative methodology - aligned with AirportCreators’ values
- by formulating a Mixed-Integer Linear Programming (MILP) model for airside cargo transportation, an area that
had not been previously addressed.

This thesis is structured into two main parts. Part I presents the scientific paper, describing the research con-
ducted during the thesis, including the methodology, results, and conclusion. Part II covers the literature study con-
ducted prior to the research, providing a literature review, identifying the literature gap of this thesis, and outlining
the research plan for the thesis.
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Optimizing the routing and scheduling of airside belly cargo
transportation for a cargo hub airport

Iris Scheer,∗

Delft University of Technology, Delft, The Netherlands

Abstract
Airside cargo transportation is a critical component of the air cargo supply chain, requiring timing and coor-
dination to minimize operational costs and ensure high service quality for the airline transporting the cargo.
The Airside Cargo Transportation Problem (ACTP) addresses the efficient routing and scheduling of cargo
vehicles carrying ULDs across the airport’s service roads between the cargo terminal and passenger aircraft
stands while adhering to operational and safety requirements. Key aspects of the ACTP include vehicle ca-
pacity utilization, differentiation between cargo commodities, and the consideration of time-dependent travel
times. This paper presents a Mixed-Integer Linear Programming (MILP) formulation of the ACTP as a Set
Partitioning Problem. The sets cover all possible consolidations of various cargo transportation requests on
paths generated using preprocessing algorithms. The ACTP is computationally feasible by applying a rolling
horizon-based heuristic. The model is applied to a case study at Amsterdam Airport Schiphol (AAS) after
a potential relocation of KLM Cargo’s terminal. This relocation provides a unique opportunity to evaluate
various strategies to optimize airside cargo transportation and study the implications for both KLM Cargo
and AAS. Two strategies were evaluated to optimize network capacity: one focusing on spatial distribu-
tion and the other on time distribution by using traffic predictions. While the spatial distribution strategy
degrades the overall performance, the traffic prediction strategy resulted in poor solution quality due to
increased model complexity. Accordingly, it could not be proven that its results are comparable to those
of other strategies. In addition, two strategies examined the impact of different cargo terminal operational
concepts on cargo transportation. The pull strategy, which schedules cargo to arrive at the aircraft stand
just in time for loading, improved overall airside cargo transportation performance. In contrast, the push
strategy, which transports cargo immediately after processing at the cargo terminal, resulted in a decline in
overall airside cargo transportation performance.

1 Introduction
Airside cargo transportation is a critical part of the air cargo supply chain, requiring timing and coordination
to ensure the movement of cargo between cargo terminals and aircraft stands. Adherence to flight schedules
is the main driver for cargo transported in the belly of passenger aircraft, as these flights are rarely delayed
to accommodate late cargo. Failure to deliver cargo to the aircraft within the specified timeframe results in it
being left behind, meaning the cargo has to be rebooked onto another flight. This impacts not only the airline’s
service quality and reputation but also results in financial losses from cargo rebooking and unused belly cargo
space, highlighting the importance of reliable airside cargo transportation.

During airside cargo transportation of belly cargo, cargo is transported between cargo terminals and aircraft
stands using the airport’s service roads. In this paper, one cargo unit, whether an air pallet, baggage cart
carrying mailbags, animal cage, etc., is referred to as a Unit Load Device (ULD). Airside transportation is
divided into two flows: inbound and outbound. Inbound cargo arrives by aircraft at an aircraft stand, where
the ULDs are unloaded onto dollies and parked at the aircraft stand. Then, vehicles pick up these ULDs
and transport them to a cargo terminal. A directing center assigns specific ULDs to vehicles, enabling them
to consolidate multiple ULDs from different aircraft stands into a ULD train, with a maximum capacity of
six ULDs [HSE Risk and Compliance, ]. In the terminal, these ULDs are forwarded to landside transport or
transits to the outbound cargo flow. The latter also arrives at the cargo terminal by landside transport. In the
terminal, the outbound cargo ULDs are prepared for flight and loaded onto dollies, after which a control center
consolidates them into a train of ULDs of up to six ULDs [HSE Risk and Compliance, ]. Subsequently, these
ULD trains are parked at the cargo terminal’s shunting area and assigned to vehicles that transport the ULDs
from the terminal to the aircraft stand of their corresponding flight.

The airside cargo transportation problem focuses on the routing and scheduling of vehicles to transport cargo
while efficiently using vehicle capacity and differentiating between commodity types. Efficient vehicle capacity

∗Msc Student, Sustainable Air Transport, Faculty of Aerospace Engineering, Delft University of Technology
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utilization is determined by consolidating ULDs into inbound and outbound ULD trains and reducing empty
vehicle movements by combining the transportation of inbound and outbound trains for one vehicle. Both
influence the required number of vehicles and consequently impact the total travel time and travel distances of
all vehicles. Cargo is classified into various commodity types, each with specific handling requirements. These
requirements can be categorized based on transportation and time constraints. Transportation requirements
focus on how the cargo moves across airside, including the type of ULD used and cargo consolidation into a
ULD train. Time requirements refer to the specified pick-up and delivery time windows at the cargo terminal
and aircraft stand. By addressing these distinct requirements, airside cargo transportation can accommodate
the diverse needs of different commodity types.

The limited available service roads on airside make airside cargo transportation vulnerable to service road
conditions such as congestion and road closure, as it impacts travel times. Service road travel times highly
depend on road capacity and traffic flow and vary throughout the day. Failing to account for travel time
variability can result in cargo missing its delivery deadline, leading to reduced service quality. If traffic flow
approaches the road’s maximum capacity, travel speed decreases resulting in increased travel times [Greenshields
et al., 1935]. When flow exceeds the maximum capacity, congestion occurs, causing a further increase in travel
time. The traffic flow resulting in travel time variability on airport service roads is influenced not only by cargo
transport vehicles but mainly by the broader traffic flow, which is predominantly generated by ground-handling
vehicles, authority vehicles, contractors, etc. Most of these vehicles’ movements are constant throughout the
day, whereas the traffic flow of ground-handling vehicles fluctuates, driven by the demand for aircraft turnaround
based on flight schedules. As a result, travel times across the network are time-dependent, fluctuating with
the road’s traffic flow. Incorporating these time-dependent travel times better reflects real-world conditions,
improving the model’s reliability.

During the real-life application of the airside cargo transportation problem, operational inputs arrive and
update continuously throughout the day of operation. These inputs comprise airside road travel times, aircraft
stand allocation, aircraft arrival and departure times, and landside cargo deliveries at the cargo terminals.
Considering this dynamic nature of the problem ensures that airside cargo transportation remains adaptive to
changing conditions.

This paper presents a model for the Airside Cargo Transportation Problem (ACTP), which considers the
routing and scheduling of cargo vehicles carrying ULDs across airport service roads with time-dependent travel
times while efficiently using vehicle capacity and accounting for differentiation among commodity types. The
model is applied to a case study at Amsterdam Airport Schiphol (AAS) to evaluate the impact of the potential
relocation of the KLM Cargo terminal from Schiphol Centre to Schiphol Southeast on airside cargo transporta-
tion due to the restructuring of AAS Centre. The relocation would increase the airside network over which
cargo is transported, as the distance between the new cargo terminal and the passenger aircraft stands would
increase substantially. Additionally, a tunnel, which is prone to closure, is included in the network increasing its
complexity. A key aspect of this case study is the differing objectives of its two main stakeholders, KLM Cargo
and AAS, in airside cargo transportation. KLM Cargo prioritizes efficiency and cost-effectiveness, while AAS
focuses on optimizing airport-wide network capacity utilization. The case study is conducted independently of
both stakeholders in collaboration with AirportCreators 1, ensuring an objective evaluation of the findings and
their broader implications for all stakeholders.

The relocation facilitates a unique opportunity to evaluate various strategies to optimize airside cargo trans-
portation and study the implications for both stakeholders. Two strategy levels are defined: network-level
strategies, which influence the use of the network’s capacity, and terminal-level strategies, which affect the
terminal operating procedures. The latter has implications for airside cargo transportation. Consequently, this
paper aims to determine whether there are network-level and terminal-level strategies that can optimize the
airside belly cargo transport between cargo terminals and passenger aircraft across the airport’s service roads.

Figure 1: Scope of the Airside Cargo Transportation Problem (highlighted in the blue box).

The scope of this paper is limited to the airside transportation of belly cargo between the cargo terminal’s
shunting area, and the passenger aircraft stands as visualized in Figure 1. The remainder of this article is
organized as follows. Section 2 reviews related literature and presents the research gap filled by this paper.
Section 3 describes the ACTP formulation and solution approach. Then, the KLM Cargo case study is explained

1AirportCreators is a consultancy specializing in the field of airport development
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in Section 4. Next, the strategies and corresponding results are presented and evaluated in Section 5. Finally,
a conclusion is drawn and recommendations for future research are provided in Section 6.

2 Literature Review
Airside cargo transportation involves moving goods between paired pick-up and delivery locations, closely
aligning with Pickup and Delivery Problems (PDPs). Accordingly, Subsection 2.1 explores relevant PDPs to
provide insights into optimizing routing and scheduling. Next, Subsection 2.2 examines other closely related
airport transportation problems to gain insight into the state of literature in these fields.

2.1 Pick-up and Delivery Problem
The PDP is a generalization of the Vehicle Routing Problem (VRP), which describes the problem of finding a set
of least-cost routes for vehicles to visit every customer exactly once while starting and ending each route from
a depot [Dantzig and Ramser, 1959]. While the VRP enforces deliveries from depots to customers, the PDP
generalizes this by requiring both pick-up and delivery locations for each request, ensuring that all demands
follow predefined origin-destination pairs. Lokin [Lokin, 1979] first described the PDP. Since then, the PDP
has been a widely studied problem with numerous variations, which are extensively reviewed in the following
surveys: Berbeglia et al. [Berbeglia et al., 2007], Cai et al. [Cai et al., 2023], Oyola et al. [Oyola et al., 2018],
and Psaraftis et al. [Psaraftis et al., 2016].

This paper studies a variant of the PDP with transportation requests that cannot be rejected and have
predefined origins and destinations. All PDPs discussed share these characteristics. In addition, this paper’s
PDP variant involves hard pick-up and delivery time windows, limited vehicle capacity, time-dependent travel
times, road closure, explicit routing throughout the network, and commodity differentiation. Dumas et al.
[Dumas et al., 1991], Narny and Barnes [Nanry and Barnes, 2000], and Chami et al. [Chami et al., 2018]
have studied PDPs with a combination of this first two characteristics. All three PDPs determine the routing
between customer nodes, assuming direct travel between nodes and excluding explicit sc of throughout the
network. This means they do not ensure safe separation between vehicles and the problem formulation does
not include intersection nodes of the network.

Time-dependent travel times are described in terms of the PDP by Haghani and Jung [Haghani and Jung,
2005] and by Schilde et al. [Schilde et al., 2014] in terms of the dial-a-ride problem, a generalization of the
PDP transporting passengers. Both papers show that considering traffic condition variations as time-dependent
travel times significantly outperform models that do not. Haghani and Jung [Haghani and Jung, 2005] specify a
time-dependent value for each time period on every road within the considered network. In contrast, Schilde et
al. [Schilde et al., 2014] apply stochastic travel times that become available once a vehicle starts traveling along
its assigned paths. In addition, Haghani and Jung [Haghani and Jung, 2005] also demonstrate that the model
works well in scenarios where accidents cause substantial congestion. This effect of an accident can be compared
to the closure of the tunnel. Nevertheless, both papers allow pick-up and delivery time windows violation.

The PDP becomes computationally infeasible for large-scale instances as it is an NP-hard problem [Cordeau
et al., 2008]. Subsequently, the PDP is solved using exact methods for small instances of up to 25 requests
[Parragh et al., 2006]. Large-scale instances require alternative solution approaches, with various options avail-
able. The solution approaches of the previously mentioned papers are shortly mentioned as an indication of the
various options. Dumas et al. [Dumas et al., 1991] formulate the PDP as a Set Partitioning Problem (SPP).
An SPP partitions a set into smaller subsets and seeks to determine the minimum-cost solution in which each
element is assigned to exactly one subset. In this context, the PDP requires selecting a subset of all feasible
paths to ensure that every pick-up and delivery request is fulfilled exactly once. The resulting PDP is solved
using column generation, providing an optimal solution for instances up to 55 requests. Narny and Barnes
[Nanry and Barnes, 2000] use a reactive tabu search as a solution approach. Chami et al. [Chami et al., 2018]
divide the PDP using a rolling horizon approach of isolated subproblems, which are solved sequentially. These
subproblems of up to 25 requests are solved using a genetic algorithm. Haghani and Jung [Haghani and Jung,
2005] uses a genetic algorithm, while Schilde et al. [Schilde et al., 2014] uses a block scheduling algorithm.

2.2 Airport Airside Transport
To the best of the author’s knowledge, the only publicly available research on airside cargo transportation
examines the impact of various transportation strategies on on-time cargo delivery to aircraft under clean
apron conditions [van Rugge, 2019]. The study uses a simulation to evaluate push, pull, and variations of such
strategies. In addition to focusing on outbound cargo, that study does not account for travel time variations,
commodity distinction, or dynamic changes in road availability. Other studies regarding airside transportation
consider other ground-handling activities. Guo et al. [Guo et al., 2020] applies a PDP using a genetic algorithm
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to solve airside baggage transportation, and Zhu et al. [Zhu et al., 2022] studies a VRP solved by using a
branch-and-bound algorithm for the combined operation of two ground-handling services. Both studies show
similarities with the problem studied in this paper, as they consider paired demand, time windows, and no
request rejections. The first study also considers limited vehicle capacity. However, time-dependent travel
times, road closure, explicit routing throughout the network, and commodity differentiation remain undiscussed
in these study contexts.

Atkin et al. [Atkin et al., 2010] surveys the frequently studied aircraft ground routing problem in which
aircraft movement is scheduled between the runway and parking positions. Guépet et al. [Guépet et al., 2016]
consider a ground routing problem with predetermined alternate paths, which allows the problem to be solved as
an SPP using a Rolling Horizon algorithm. This paper explicitly schedules the aircraft throughout the network,
including intersection nodes into the problem formulation. However, this paper allows time window violations
and only considers a one-way trip between runway and aircraft stands instead of round trips. Moreover, this
problem does not consider the transportation of goods.

2.3 Research gap
This paper presents a Mixed-Integer Linear Programming (MILP) formulation for the ACTP that is a com-
bination of Guépet et al. [Guépet et al., 2016], Chami et al. [Al Chami et al., 2018], and Haghani and Jung
[Haghani and Jung, 2005]. Chami et al. [Chami et al., 2018] provide the base for a multi-period PDP which can
be solved using a rolling horizon approach. This is extended by the explicit routing throughout the network by
including intersection nodes into the problem formulation as presented by Guépet et al. [Guépet et al., 2016].
Additionally, Guépet et al. [Guépet et al., 2016] also provide the base to solve the problem as an SPP. Haghani
and Jung [Haghani and Jung, 2005] provide the base for incorporating time-dependent travel times and tunnel
closure. Moreover, this combination of models is extended by the differentiation between cargo commodities.

Table 1: Comparison of MI(L)P models discussed in the literature review. HTW = Hard Time Window, VC = Vehicle
Capacity, TTT = Time-dependent Travel Time, RC = Road Closure, ER = Explicit Routing, CD = Commodity
Differentiation.

Reference HTW VC TTT RC ER CD Solution Approach

[Dumas et al., 1991] ✓ ✓ SPP + column generation
[Nanry and Barnes, 2000] ✓ ✓ Reactive tabu search
[Chami et al., 2018] ✓ ✓ Rolling horizon + genetic algorithm
[Haghani and Jung, 2005] ✓ ✓ ✓ Genetic algorithm
[Schilde et al., 2014] ✓ ✓ Block scheduling algorithm
[Guo et al., 2020] ✓ ✓ Genetic algorithm
[Zhu et al., 2022] ✓ Branch-and-bound algorithm
[Guépet et al., 2016] ✓ SPP + rolling horizon

3 Methodology
The ACTP is formulated as an SPP. Implementing the problem requires executing a preprocessing algorithm
to generate the required sets and variables and then solving the ACTP. First, the problem formulation and
the corresponding notation are provided in Subsection 3.1. Then, the set generation algorithm is described in
Subsection 3.2. The mathematical formulation of the ACTP and its solution approach is presented in Subsection
3.3 and Subsection 3.4, respectively.

3.1 Notation
Let G = (V , A) be a directed transportation network (see Figure 2), where V is the set of nodes and A is the
set of arcs. For the arcs, a distinction is made between main service road arcs (Am), designed to distribute
vehicles throughout the network, and access road arcs (Aa), which facilitate vehicle access to aircraft stands.
For any arc v → w ∈ A, let Tvw be the minimum travel time and Dτ

vw delay factor from node v to node w during
time period τ . The delay factors for the arcs are time-dependent. Accordingly, the travel time is calculated as
the minimum travel time multiplied by the arc’s delay factor for the period τ and hence time-dependent. The
nodes are categorized into three types (V = Vi ∪ Vs ∪ {O,D}): intersection nodes Vi, aircraft stand nodes Vs,
and depot nodes {O,D}. The intersection nodes Vi present intersections where directional choices are made.
Two vehicles should have a minimum separation time at each intersection node of S seconds. Aircraft stand
nodes Vs represent the location at the aircraft stand where vehicles can pick up or deliver cargo for a flight.
The depot node represents the cargo terminal from which all paths start and terminate. They are modeled as a
separate origin O and destination D node, respectively. Vehicles can wait at aircraft stand nodes and the depot
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Figure 2: Visual representation of the graph G.

node O, whereas no waiting is allowed at the intersection nodes. It is assumed that the coupling or decoupling
of ULDs to the train takes 120 seconds (H), including all handling required by the driver. This handling time
is modeled as additional handling time on the arc between the aircraft stand node and its two corresponding
access road arcs.

The fleet of homogeneous vehicles is represented by set K, each with a maximum capacity of a train
of six ULDs. Cargo transportation requests are represented by set R. Each cargo transportation request
involves transporting cargo either from the depot node to an aircraft stand node or in the reverse direction.
A transportation request consists of one commodity type and, at most, six ULDs. Splitting a request is not
allowed. Thus, each request r has to be transported by one vehicle. If multiple commodities need to be picked
up or delivered from one flight, they are treated as separate transportation requests. Each transportation
request is associated with two distinct time windows. The time window [αpick-up

r , βpick-up
r ] specifies the earliest

and latest pick-up times of request r, while [αdelivery
r , βdelivery

r ] denote the earliest and latest delivery times of
request r. Evidently, a pick-up should precede the delivery of a request r. The specific values are defined by
the transportation flow (inbound or outbound) and commodity type of the request.

A vehicle travels a round trip starting and ending at the depot on which it can visit one or multiple aircraft
stands. A set of all paths P are generated by Algorithm 3.2. Based on these paths, each intersection node u
is duplicated by the maximum number of times the node is visited across all paths and stored in set Vu. This
duplication enables a vehicle k to visit a node u multiple times along a path p if necessary.

A vehicle k on a path p can fulfill a request combination c consisting of one or multiple requests from R. All
possible request combinations are given by set C generated by Algorithm 1. To fulfill a request combination
c, a vehicle is assigned to a path p from the request combination’s set of alternate paths Pc, such that it visits
the right aircraft stand nodes to pick up and/or deliver requests. For each request combination c on a specific
path p, the sequential nodes and arcs used in p are denoted by V p and Ap. All alternate paths for a request
combination Pc are determined in Algorithm 1. Once a vehicle departs the depot, the path p and the to-fulfill
request combination c on that path cannot be altered.

The ACTP differentiates commodity types by implying different transportation requirements and pick-
up and delivery time windows. The problem distinguishes six commodities types: general, passive cooled,
active cooled, express, secure, and live. General, passive cooled, and active cooled cargo comprises cargo with
neither special transportation requests nor deviating time windows. While passive and active cooled cargo
is transported in specialized ULDs that maintain the required temperature conditions, this distinction is not
explicitly addressed in the ACTP, as all ULDs are assumed to be uniform. Express cargo is accepted at the cargo
terminal shortly before a flight’s departure. As a result, the pick-up and delivery time windows for outbound
express cargo are closer to the departure time of the flight. Secure cargo, comprising high-value goods, requires
security during airside transportation, while live cargo, consisting of living creatures, demands additional care.
Accordingly, both commodity types have specific transportation requirements prohibiting their consolidation
with any other commodity type during airside transport.

3.2 Set Generation Algorithm
Formulating the ACTP as an SPP, set C should be generated before setting up the model. The Set Generation
Algorithm (Algorithm 1) generates all feasible request combinations C with corresponding paths to deliver one
or multiple requests from R.

The algorithm starts by generating the set of paths P that visits a permutation of aircraft stands, starting
(O) and ending at the depot (D). First, the permutations of subsets of aircraft stand nodes (SP ) are generated
based on the maximum number of aircraft stands visited on one path (Smax). That means creating permutations
of aircraft stand nodes (Vs) taking a subset of one aircraft stand, a subset of two aircraft stands, and so on, up
to a subset of Smax aircraft stands. Then, for each aircraft stand permutation in SP , all possible paths that
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Table 2: Notation of the sets.
Notation Description
V Set of nodes indexed by u, v or w

Vi Subset of intersection nodes
Vs Subset of aircraft stand nodes
V p
s Subset of aircraft stand nodes on path p

V p Subset of nodes in path p

Vu Subset of duplicate nodes for intersection node u

A Subset of arcs
Ap Subset of arcs in path p

Ap
m Subset of main service road arcs in path p

Ap
a Subset of access road arcs in path p

K Set of vehicles indexed by k

R Set of cargo transportation requests indexed by r

C Set of transportation request combinations indexed by c

Cr Subset of transportation request combinations containing request r

P Set of paths indexed by p

Pc Subset of alternate paths for transportation request combination c

Pu Subset of paths containing node u

Table 3: Notation of the parameters.
Notation Description
Cmax Maximum number of request r to be fulfilled along a path p

Dτ
vw Delay factor of arc (v, w) during time period τ

H Handling time in seconds to (de)couple ULDs at the aircraft stand
S Minimum separation time between vehicles at intersection nodes
Smax Maximum number of aircraft stands visited along a path p

TTvw Minimum travel time of arc (v, w)

[ατ , βτ ] Earliest and latest time of time period τ

[αp
O, βp

O] Earliest and latest departure time from depot node O on path p

[αpick-up
r , βpick-up

r ] Earliest and latest pick-up time of request r

[αdelivery
r , βdelivery

r ] Earliest and latest delivery time of request r

visit all aircraft stands in the aircraft stand permutation are determined. Paths P , store the index of each path
p along with the set of sequential nodes V p, sequential arcs Ap, and the aircraft stand nodes visited on the path
V p
s . To constrain the size of the path set P , it is assumed that only the shortest path is used between aircraft

stands. However, between an aircraft stand and the depot, in either direction, all possible paths are considered.
Then, the set of request combinations RC is determined containing all possible combinations of a subset

containing one request, two requests, and so on, up to the maximum number of requests per combination (Cmax)
are generated. It is important to note that the size of set RC grows factorially as the size of the set R increases,
as this impacts the model size significantly.

Then, for each request combination c in RC, it is determined which aircraft stands s need to be visited to
fulfill all requests in rc. Accordingly, all paths that visit these aircraft stands s are retrieved from the set P and
stored in set Pc. For all these alternate paths for request combination c in Pc, the load and departure time from
the depot node O are calculated. During the load calculation, the number of ULDs carried during each step
along the path p is determined (L). The depot departure time window calculation determines the earliest and
latest time to leave the depot node O to fulfill all requests in the request combination c within their pick-up and
delivery time windows on path p ([ αp

O,βp
O]). A path from Pc can be infeasible for request combination c in two

ways. Firstly, the path p is infeasible if, at any step, the maximum vehicle capacity of six ULDs is exceeded or if
a secure or live commodity is transported alongside any other commodity. Secondly, the path p is infeasible for
that request combination c whenever not all requests can be delivered within their defined pick-up and delivery
time windows. If the request combination c on a path p is feasible based on the load and the depot departure
time window, it is stored in the C along with the sequential set of nodes V p and arcs Ap of path p and depot
departure time window [ αp

O,βp
O].

3.3 Airside Cargo Transportation Problem
This ACTP model aims to efficiently route and schedule vehicles to fulfill all transportation requests in R
by selecting the optimal subset of request combinations of C on their shortest paths in terms of travel time.
The problem considers vehicle capacity utilization while accounting for commodity differentiation and time-
dependent travel times. The objective is to minimize the total travel time of all vehicles, as this metric indirectly
addresses multiple aspects of the problem, including maximizing the number of requests transported per vehicle,
reducing travel distance, and minimizing the number of vehicles used. The decision variables of this problem
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Algorithm 1 Set Generation Algorithm
Require: Smax, G, R, Cmax

1: SP ← All aircraft stand permutations SP based on Smax

2: P ← All possible paths using G for each aircraft stand permutations SP
3:
4: RC ← Generate Request Combinations C based on requests R using Cmax

5: C ← {}
6:
7: for each c in RC do
8: Determine the aircraft stands s to visit to fulfill all requests in c
9: Pc ← All paths that visit aircraft stands s to fulfill c

10:
11: for each p in Pc do
12: Determine load L of c on each step of path p
13: Determine depot departure time window [αp

O ,βp
O] for c on path p using the minimum travel times in G

14:
15: if L or [αp

O ,βp
O] not feasbile then

16: C ← C \ {c}
17: else
18: C[c, p]← {nodes: V p, arcs: Ap, departure time window: [αp

O ,βp
O]}

19: return C

are defined in table 4.

Table 4: Notation of the decision variables.
Notation Description
xp
k = 1 if vehicle k uses path p, = 0 otherwise

ycpk = 1 if vehicle k uses path p to deliver the pick-up and delivery request combination c, = 0 otherwise
zklvw = 1 if the visit of vehicle k arrives at node v before node vehicle l at node w, with v and w being

duplicate of node u, = 0 otherwise
bτkvw = 1 if vehicle k starts to travel from node v to node w in time period τ , = 0 otherwise
tpkv = time vehicle k reaches node v through path p

The mathematical Mixed-Integer Programming (MIP) model of the ACTP is formulated as follows:

min
∑
k∈K

∑
p∈P

(tpkD − tpkO) (1)

subject to:∑
k∈K

∑
c∈Cr

∑
p∈Pc

ycpk = 1 ∀r ∈ R (2)

∑
p∈P

xp
k ≤ 1 ∀k ∈ K (3)

ycpk ≤ xp
k ∀k ∈ K, c ∈ C, p ∈ Pc (4)∑

c∈C

∑
p∈Pc

ycpk =
∑
p∈P

xp
k ∀k ∈ K (5)

tpkv ≤ M ∗ xp
k ∀k ∈ K, p ∈ P, v ∈ V p (6)

tpkO ≥ αp
O ∗ xp

k −M ∗ (1− ycpk ) ∀k ∈ K, c ∈ C, p ∈ Pc (7)
tpkO ≤ βp

O ∗ xp
k +M ∗ (1− ycpk ) ∀k ∈ K, c ∈ C, p ∈ Pc (8)

tpkw − tpkv = TTvw ∗
∑
τ∈T

(Dτ
vw ∗ bτkvw) ∗ x

p
k ∀k ∈ K, p ∈ P, (v, w) ∈ Ap

m (9)

tpkw − tpkv ≥ H/2 + TTvw ∗
∑
τ∈T

(Dτ
vw ∗ bτkvw) ∗ x

p
k ∀k ∈ K, p ∈ P, (v, w) ∈ Ap

a (10)∑
τ∈T

bτkvw = xp
k ∀k ∈ K, p ∈ P, (v, w) ∈ Ap (11)

tpkv ≥ ατ ∗ bτkvw ∀k ∈ K, p ∈ P, (v, w) ∈ Ap, τ ∈ T (12)
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tpkv < βτ +M ∗ (1− bτkvw) ∀k ∈ K, p ∈ P, (v, w) ∈ Ap, τ ∈ T (13)

zklvw ≤
∑
p∈Pu

xp
k ∀k, l ∈ K, k ̸= l, u ∈ V, v, w ∈ Vu (14)

zlkwv ≤
∑
p∈Pu

xp
l ∀k, l ∈ K, k ̸= l, u ∈ V, v, w ∈ Vu (15)

zklvw + zklvw ≤ 1 ∀k, l ∈ K, k ̸= l, u ∈ V, v, w ∈ Vu (16)∑
p∈Pw

tplw ≥ S +
∑
p∈Pv

tpkv −M ∗ (1− zklvw) ∀k, l ∈ K, k ̸= l, u ∈ V, v, w ∈ Vu (17)

zklvw + zlkwv ≥ −1 +
∑
p∈Pu

xp
k +

∑
p∈Pu

xp
l ∀k, l ∈ K, k ̸= l, u ∈ V, v, w ∈ Vu (18)

xp
k ∈ {0, 1} ∀k ∈ K, p ∈ P (19)

ycpk ∈ {0, 1} ∀k ∈ K, c ∈ C, p ∈ Pc (20)
zklvw ∈ {0, 1} ∀k, l ∈ K, k ̸= l, u ∈ V, v, w ∈ Vu (21)
bτkvw ∈ {0, 1} ∀k ∈ K, (v, w) ∈ A, τ ∈ T (22)
tpkv ≥ 0 ∀k ∈ K, v ∈ V, p ∈ P (23)

The objective function (1) minimizes the total travel time of all vehicles, defined as the arrival time at the depot
node (O) minus the departure time at the depot node (O) for all vehicles.

All constraints are divided into four types: request combination and path selection constraints, time con-
straints, precedence constraints, and variable type constraints. The first four constraints consider the request
combination and path selection constraints. Constraint 2 ensures that every request r is fulfilled in one request
combination c on one path p. Constraint 3 ensures that every vehicle k drives at most one path p. Constraint 4
addresses that a vehicle can only fulfill a request combination c on a certain path p if it also travels along that
path p. Constraint 5 ensures consistency between selecting a path p and assigning a request combination c for
each vehicle k.

The following seven constraints are time constraints. Constraint 6 regulates that arrival time at a node v of
vehicle k on path p can only be higher than zero if vehicle k travels along path p. Constraint 7 and 8 enforces
that if a vehicle k uses path p to deliver request combination c, then vehicle k should leave the depot O within
the departure time window [αp

O, βp
O]. Constraints 9 and 10 include the time-dependent travel times into the

formulation and make it non-linear. Constraint 9 addresses that the travel time of k across arc (v, w) is exactly
equal to the minimum travel time of that arc multiplied by the delay factor of the time period τ in which k
start to travel along this arc. Constraint 10 implies the same but allows waiting of vehicle k at the aircraft
stand nodes. Constraint 11 - 13 ensure that the decision variable bτkvw is equal to one if vehicle k start to travel
across arc (v, w) during time period τ .

The next five constraints address the precedence relations between vehicles at an intersection node. Con-
straints 14 and 15 enforce that the precedence relation between vehicle k and l is only defined when vehicle
k and l visit one of the duplicate nodes of u on their path p. Constraint 16 ensures that for every visit to a
duplicate node of u on the paths of two vehicles, there exists a precedence relationship. Next, constraint 17
ensures that if vehicle k and l visit a duplicate of node u on their paths, their arrival times are separated by
the minimum separation time S. Constraint 18 enforces that if vehicle k and l visit a duplicate of node u on
their paths, either one of the vehicles visits the node first.

Finally, constraints 19 up until 23 define the domains of the decision variables.

3.4 Solution approach
The ACTP, as described in Subsection 3.3, is a generalization of the NP-hard VRP and becomes computa-
tionally infeasible for large-scale instances. The computational burden is reduced by solving the ACTP using
a Rolling Horizon-based heuristic, which divides the problem into smaller subproblems with shorter time hori-
zons. Each subproblem includes only a subset of transportation reuqest that can be fulfilled within its respective
time horizon. This approach ensures that large-scale instatnce are broken down into computationally feasible
subproblems.

First, the general description of the rolling horizon algorithm for the ACTP is described in Subsubsection
3.4.1. Accordingly, specific details of this formulation are explained in depth in the following subsections: Sub-
subsection 3.4.2 describes the greedy initial solution heuristic, Subsubsection 3.4.3 describes the mathematical
subproblem formulation, and Subsubsection 3.4.4 details the precedence constraints used to resolve separation
violations.
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Figure 3: Schematic representation of rolling horizon algorithm with a total planning horizon of seven periods (τs = 7 )
and two forward horizons (f = 2) [Glomb et al., 2022].

3.4.1 Rolling Horizon formulation

The problem is divided into smaller, sequential subproblems with a fixed horizon length solved iteratively to
solve the ACTP problem for the total planning horizon H. Each subproblem has two horizons: a current
horizon (Hτ ) and a forward horizon (Hf ). The current horizon Hτ represents a time period of length ∆t.
The forward horizon Hf immediately follows Hτ and spans a time period of ∆t multiplied by the number of
forward horizons f included in the subproblem. In every step of the rolling horizon algorithm, the subproblem
is built and solved considering Hτ and Hf . Once solved, the decision variables within Hτ are fixed to guide and
constrain subsequent subproblems during the next step. This process is repeated iteratively, advancing Hτ and
Hf by ∆t for each subproblem until the total planning horizon H is covered. Figure 3 provides a schematic
representation of the rolling horizon algorithm. The overlapping horizons between subproblems ensure solution
quality as the approach assures continuity and avoids short-term decisions that could arise from solving each
horizon in isolation. Nevertheless, it should be outlined that the combined solution of all subproblems does not
guarantee an optimal solution for the entire problem’s horizon [Glomb et al., 2022].

The rolling horizon algorithm for the ACTP is provided in Algorithm 2 and works as follows: First, the
required parameters and sets are obtained and generated: graph G (including the nodes V and arcs A), total
planning horizon H, time period length ∆t, number of forward horizons f , all paths P based on graph G
(calculated by line 1-2 of Algorithm 1), initial time period τ = 0, and the final time period τs. After that, the
iterative loop to solve each subproblem is initiated. This loop is finished after the time period τ equals the final
time period τs.

Within each iteration, four steps are executed: defining parameters and sets for the subproblem, building
and initially solving the subproblem, resolving minimum separation violations, and fixing variables. First,
the relevant parameters and sets are defined. The current horizon Hτ and forward horizon Hf are updated in
accordance with the current time period τ . The delay factors parameters for all arcs are updated for time period
τ . Then, all requests R to be fulfilled during the subproblem’s horizon (Hτ ∪Hf ) are identified. Subsequently,
Algorithm 1 determines all possible request combinations C based on the set of requests R of the subproblem.
This algorithm is applied from lines 4 to 19 as presented in Subsection 3.2, except for the depot departure time
window calculation in line 13. Instead, the depot departure time window is determined based on the actual
travel times for each arc, calculated by multiplying the arcs minimum travel time TT by the applicable delay
factor during the subproblem’s time period τ . For each request combination in C, only the shortest path in
terms of actual travel time is retained reducing the size of set C substantially. Next, the set K is constructed,
consisting of two subsets. Kn represents vehicles with unassigned request combinations and Ke represents
vehicles that have been assigned to a request combination and departed from the depot O during the previous,
current horizon Hτ−1 but did not return to the depot D in that horizon. These vehicles are included because
their scheduling steps are not yet fully fixed, making them integral to the current subproblem’s formulation.
The size of the unassigned vehicle set Kn is determined using an initial feasible solution generated by a greedy
heuristic, detailed in Subsubsection 3.4.2. This heuristic provides an initial feasible solution that improves the
computational efficiency of the subproblem in two ways, one of which is elaborated upon in the Subsubsection
3.4.2. At this stage, the heuristic’s solution is used to estimate the size of the unassigned vehicle set Kn. The
size of this set significantly impacts the size and computational efficiency of the subproblem.

In the second step, the ACTP subproblem is built using the defined sets and parameters. The formulation of
the ACTP subproblem differs from the ACTP formulation presented in Subsection 3.3. The subproblem ACTP
formulation is detailed in Subsubsection 3.4.3. The main difference is that the subproblem formulation excludes
the precedence constraints as explained in Subsubsection 3.4.4). The problem’s binary decision variables are
warm started using the initial feasible solution determined by the greedy heuristic. Providing a good initial
solution to the solver can improve the required computational time. Next, the subproblem ACTP is solved
using a branch-and-bound algorithm, and an initial solution for the subproblem is obtained.

In the third stage, the initial subproblem’s solution is checked for minimum separation violations, defined as
two vehicles that arrive at a node with a separation of less than S seconds. If at least one separation violation is
detected, the subproblem formulation is extended by precedence constraints as further detailed in Subsubsection
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3.4.4. Re-solving the subproblem including these constraints results in a solution without separation violations
satisfying the problem’s safety requirements.

In the final stage, the subproblem’s solution is stored for vehicles that left within the current horizon Hτ

are stored. This entails that for all vehicles that have left the depot node O before βτ , the binary decision
variables xp

k and ycpk are fixed. Besides, all scheduling decision variables tpku smaller than βτ are also fixed. A
distinction is made between vehicles that finish their path before βτ , which are added to the finished vehicles
set Kf , and those still en route at βτ ; these are added to the en route vehicles set Ke. For the en route vehicles,
its (k, c, p) indices are stored in set F . The decision variables of the finished vehicles are stored to ensure all
solutions can be combined after solving all subproblems. As a result, these vehicles are excluded from the next
subproblem’s formulation, while en route vehicles are included in the next subproblem formulation since their
path p still requires partial scheduling. Accordingly, their routing decision variables (xp

k and ycpk ) are fixed, and
their scheduling decision variables are partially fixed in the next subproblem’s formulation.

Finally, the time period τ is increased by one. If the stopping condition is met, the stored objective functions
and decision variables are combined into one solution of the entire planning horizon H.

Algorithm 2 Rolling Horizon algorithm for the ATCP
Require: G, H, ∆t, f

1: Initialize
2: Determine all paths P based on G using line 1-2 of Algorithm 1
3: τ = 0
4: τs = H/∆t
5:
6: while τ ̸= τs do
7: Hτ = [τ ∗∆t, (τ + 1) ∗∆t]
8: Hf = [(τ + 1) ∗∆t, (τ + f + 1) ∗∆t]
9: Update delay factors Dvw for time period τ

10:
11: Determine R within planning horizons Hτ and Hf

12: Determine C using line 4-19 of Algorithm 1
13: Determine feasible initial solution using a greedy heuristic (Subsubsection 3.4.2)
14: Create set of vehicles K including en route vehicles Ke based on greedy heuristic solution
15:
16: Build subproblem of ACTP for planning horizons Hτ and Hf (Subsubsection 3.4.3)
17: if τ > 0 then
18: Fix xp

k, ycp
k , tpkv for en route vehicles Ke using F

19:
20: Warmstart xp

k and ycp
k with greedy heuristic solution

21: Solve subproblem ACTP for planning horizon Hτ and Hf

22:
23: Determine separation violations in solution
24: if seperation violation then:
25: Fix xp

k and ycp
k for remaining of subproblem

26: Add precedence constraints 32-33
27: Solve ACTP including precedence constraints for planning horizon Hτ and Hf

28:
29: Determine finished vehicles Kf and en route vehicles Ke

30: Store indexes (k, c, p, v) of non-zero decision variables of en route vehicles Ke to set F
31: Store subproblem solution for finished vehicles Kf

32: τ ← τ + 1

33:
34: Combine solutions of all subproblems

3.4.2 Greedy heuristic

As previously stated, a heuristic has been included to warm-start the problem with an initial feasible solution
to improve its computational time by making an informed estimate of the size of unassigned vehicles set Kn.
Additionally, the feasible solution provides a good initial solution to the solver and can significantly improve its
computational performance by guiding the solver toward promising regions of the solution space.

As the objective of the ACTP is to minimize the total travel time of all vehicles, it is apparent that solutions
with a few vehicles are relatively good. Therefore, this heuristic aims to find a solution in which many requests
are combined and transported by the same vehicle. Every combination c in C gets a score based on two targets.
The first target is maximizing the number of requests in a combination, while the second is minimizing the total
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travel time of the path p to deliver all requests in request combination c. By multiplying the first objective by
C, the first objective is prioritized above the second objective by multiplying the first. In this paper, C was set
to 1000. This score is mathematically formulated as follows:

score(c, p) = len(c) ∗ C − travel time path p (24)
The scores for all request combinations in C are sorted in descending order. Iteratively, the highest-scoring
request combination c is added to the initial solution. To prevent duplication of requests in the initial solution,
any request combination that includes a request already covered by the initial solution is removed from consid-
eration. This process continues until the initial solution covers all requests in R exactly once. At this point,
the heuristic terminates, resulting in an initial feasible solution.

3.4.3 Subproblem formulation

The subproblem formulation of the ACTP differs from the formulation presented in Subsection 3.3. Decision
variables xp

k, ycpk , and tpkv are defined as previously. The precedence decision variable zklvw is not initially added
to the subproblem formulation. Besides, as a subproblem lasts for one time period only, the travel time period
decision variable bτkvw is unnecessary. The subproblem formulation is presented below.

min
∑
k∈K

∑
p∈P

tpkD − tpkO (25)

Subject to:
(2− 8), 19, 20, 23 (26)
tpkw − tpkv = TTvw ∗Dvw ∗ xp

k ∀k ∈ Kn, p ∈ P, (v, w) ∈ Ap
m (27)

tpkw − tpkv ≥ H/2 + TTvw ∗Dvw ∗ xp
k ∀k ∈ Kn, p ∈ P, (v, w) ∈ Ap

a (28)
tpkw − tpkv ≥ TTvw ∗Dvw ∗ xp

k + T ∗ δt ∀(k, c, p) ∈ F, (v, w) ∈ Ap (29)
tpkv ≥ ατ −M ∗ (1− xp

k) ∀k ∈ Kn, v ∈ V, p ∈ P (30)∑
p∈P

xp
l ≤

∑
p∈P

xp
k ∀k, l ∈ K, for l < k (31)

The subproblem formulation consists of the same objective function as described in Subsection 3.3 and consists
of 16 constraints. The request combination and path selection constraints 2 - 5, the first three time constraints
6 - 8, and decision variable domain constraints 19, 20, and 23 from section 3.3 are still valid in this formulation.
Constraint 27 addresses that the travel time of vehicle k across arc (v, w) is exactly equal to the minimum
travel time of that arc multiplied by the arc’s delay factor of the subproblem’s time period τ . Constraint 28
implies the same but allows vehicle k to wait at aircraft stand nodes. Constraint 29 also implies the same but
introduces an additional travel time if vehicle k has been waiting before a closed tunnel in the previous horizon.
δt is the waiting time for the closed tunnel, and T is a binary parameter equal to one if the tunnel was closed
during the previously current horizon Hτ−1. Constraint 30 ensures that if vehicle k travels along path p it can
only be scheduled during the current planning horizon or later. Constraint 31 introduces a distinction between
vehicles in the homogeneous fleet, reducing symmetry in the problem and decreasing computational time.

3.4.4 Precedence constraints

If a violation of the minimum separation is detected in the solution of a subproblem, they are resolved by
introducing precedence constraints. To achieve this, first, the solution containing the separation violation is
used to fix vehicles to their assigned paths (xp

k) and request combinations (ycpk ). The scheduling decision variable
(tpkv) remains unfixed. Then, precedence constraints are added for all these vehicles of which the binary decision
variables have been fixed. The precedence constraints consist of two types are formulated below.
zklvw + zlkwv = 1 ∀k, l ∈ Kc, k ̸= l, u ∈ V pk ∩ V pl , v, w ∈ Vu (32)
tpl

lw ≥ S + tpk

kv −M ∗ (1− zklvw) ∀k, l ∈ Kc, k ̸= l, u ∈ V pk ∩ V plv, w ∈ Vu (33)
Constraint 32 guarantees that if vehicles k and l both visit a duplicate of node u on their respective paths, the
precedence of their visits is determined, ensuring that one vehicle visits the node before the other. Constraint 33
ensures that the arrival times of vehicle k and l at a duplicate node u are separated by the minimum separation
time S.

By incorporating these constraints at this stage into the subproblem formulation, they are included for
vehicles that have been assigned to a path and only for a single path per vehicle. This approach significantly
reduces the required number of precedence constraints to resolve separation violations, improving computational
efficiency while preserving the precedence relations. As a result, the model’s flexibility is reduced due to the
fixed decision variables, which may lead to suboptimal solutions.
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4 Case study
The model is applied to a case study at AAS to evaluate the impact of the potential relocation of KLM Cargo’s
terminal on airside cargo transportation. The relocation is driven by the potential restructuring of the AAS
Centre, where the cargo terminal is currently located. Subsequently, the potential new location for the KLM
Cargo terminal is at Schiphol Southeast. In Figure 4, the current cargo terminal is located to the right of
roundabout 1 (RA1), and the potential new cargo terminal is beneath the Kaagbaan runway. This chapter first
describes the stakeholder perspectives in Subsection , after which the case study input data is outlined in the
subsequent sections. The AAS airside service road network is formulated as a mathematical graph G as detailed
in Subsection 4.2. In Subsection 4.3, the generation of the cargo transportation request data resulting in the
set R is explained. Subsection 4.4 explains how the delay factors for the AAS airside network are determined.
Then, the concept and differences among input instances are detailed in Subsection 4.5.

4.1 Stakeholder perspectives
The two main stakeholders involved in the airside cargo transportation problem are KLM Cargo and AAS.
KLM Cargo, responsible for airside cargo transportation, aims to ensure timely pick-up and delivery between
the cargo terminal and aircraft stands while minimizing costs. These costs can be defined in multiple ways.
Fuel consumption and sustainability are impacted by travel time and distance, while the required manpower
is influenced by travel time and number of vehicles needed. Given the labor shortages and high labor costs,
reducing manpower is important. In addition, the Kaagbaantunnel is a key operational concern, as the tunnel is
prone to closure. When closed, vehicles must take the longer Kaagbaantunnel detour road, increasing travel time
and costs. KLM Cargo wants to better understand the impact of the Kaagbaantunnel on its daily operations
as well as minimize its reliance on this tunnel.

For AAS, maintaining adequate traffic flows on the service roads is essential to ensure efficient vehicle
movements for all users. Increased traffic leads to congestion, causing delays that impact all road users. Delays
in ground handling can result in late aircraft departures, affecting service quality and reducing the AAS’
operational capacity. AAS is interested in optimizing the distribution of traffic across both time and space.
Currently, traffic flow (especially on roads near the piers: Rinse Hofstra (RH) road South, DE-road, EF-road
in Figure 4) is heavily influenced by flight schedules, as ground handling vehicles activity peak around aircraft
turnaround times. At AAS, arrivals and departures are concentrated into seven peak periods throughout the
day, leading to corresponding peaks in ground handling traffic. Additionally, there is a significant imbalance in
road usage, with some routes being overutilized while others remain underused. Improving the time and spatial
distribution of vehicles would help AAS maximize network capacity while maintaining reliable travel times for
all users.

4.2 AAS airside road network
Figure 4 visually displays the graph of the airside road network at AAS for KLM Cargo’s belly cargo trans-
portation. The graph of AAS comprises 61 nodes and 126 arcs, among which 26 aircraft stands, 33 intersection
nodes, and the cargo terminal nodes (O and D). The aircraft stand nodes that are included in the network
are the wide-body passenger aircraft stands generally used by KLM on the D, E, and F-pier, as most of KLM
Cargo’s belly cargo is transported by KLMs wide-body aircraft.

The weight of the arcs represents the minimum travel time between the two nodes. To do so, the distance
of the arc is divided by the maximum travel speed along that arc. According to AAS regulations [HSE Risk
and Compliance, ], the maximum speed limit is 30 km/h on service roads and 15 km/h on service roads with
ramps. However, according to KLM Cargo, driving at a 30 km/h speed with a vehicle carrying a train of ULDs
introduces a swing that leads to an increased risk of vehicle failure, ULD connection failure, and/or dropping
objects from ULDs. This results in degrading airside cargo transportation performance and hence is unfavorable.
Subsequently, the maximum speed for cargo vehicles is slightly corrected to 25 km/h. The maximum speed
limit of 15 km/h remains on main service roads with ramps. Main service roads with ramps are indicated
by parallel black lines in Figure 4. The Kaagbaantunnel detour arc is assumed to be in place, as this is a
requirement for KLM Cargo’s relocation to AAS Southeast to provide redundancy to the Kaagbaantunnel. The
minimum separation time S between two vehicles at an intersection node is assumed to be 10 seconds, which
ensures a separation of approximately 70 and 40 meters at the maximum travel speed of 25 km/h and 15 km/h.
Considering a vehicle carrying six ULDs has a length of 30 meters, this ensures safe operations at both speeds.
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Figure 4: AAS service road graph after KLM Cargo’s relocation to AAS Southeast. RA = roundabout

4.3 Cargo transportation requests
The cargo transportation request set R for the KLM Cargo case study is based on a combination of KLM
Cargo’s airside cargo transport data and a synthetic AAS flight schedule for KLM passenger aircraft. KLM
Cargo’s airside cargo transport data provides the Tonnes of belly cargo transported according to commodity
type and transportation flow by KLM cargo was available for 2022. To convert cargo Tonnes to a number of
ULDs, it is estimated that on average X (dummy value X for confidentiality) Tonnes of Cargo are packed onto
a ULD carried by passenger aircraft. The express commodity is handled as an exemption as this usually entails
mail, which is small and lightweight. However, an entire ULD (baggage cart) is generally used to transport this
across airside. To account for this, it is assumed that an average express ULD weighs Y kg (dummy value Y
for confidentiality). Using this, the average number of ULDs according to commodity type and transportation
process are calculated and summarized in table 5.

Table 5: Average ULDs per day according to transportation flow and commodity type. For confidentiality, these values
are replaced with dummy values.

Commodity type ULDs per day
Inbound Outbound

General 180 290
Express 95 130
Secure 45 60
Live 25 40
Passive cooled 75 85
Active cooled 55 70

A flight schedule for KLM passenger-cargo combination flights is synthesized for an average day in 2022 to align
with the same year as the airside cargo transportation data used. Based on flight data from AAS [Royal Schiphol
Group, ] and CBS [StatLine, ], April 2022 represents an average month of 2022 with approximately 119 daily
intercontinental KLM flights. Moreover, given the 2022 KLM cargo data, KLM passenger-cargo combination
flights carried an average of Z ULDs in 2022 (dummy value Z for confidentiality). Accordingly, considering this
average ULDs per flight and the average number of daily ULDs, 76 out of the 119 international KLM flights
carry ULDs. All these 76 intercontinental KLM flights are assumed to be by wide-body aircraft. Next, the
flight schedule is synthesized for these 76 intercontinental KLM flights. All flights arrive and depart between
6 AM and 10 PM, concentrating their arrivals and departures into seven waves [Vos, 2019]. This is a typical
flight schedule pattern for airlines’ operation at their hub airport as it allows short connections between flights.
In the KLM operation at AAS, there are seven peaks for intercontinental flights throughout the day.

All 76 wide-body flights are assigned a random arrival time within one of the seven peaks and depart after
their turnaround time of approximately 1.5 to 2 hours. The exact turnaround time is randomly assigned.
Moreover, the aircraft stand at which a flight is parked is also randomly assigned to a flight while satisfying
that no other aircraft is parked at that stand during its turnaround time. This last constraint, together with
the limited number of aircraft stands, means that even though the flights get randomly assigned to an arrival
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time, the flights are spread out throughout the day. Next, the daily ULDs are randomly assigned to the total of
76 KLM cargo flights while satisfying the constraints that each flight gets at least one ULD, at most ten ULDs,
and at least four flights have 10 ULDs. The latter flights imitate fully packed cargo flights to other cargo hubs.

Each flight in the synthesized flight schedule carries inbound cargo when it arrives at AAS and outbound
cargo when it departs. Inbound cargo generates transportation requests with the aircraft stand as the origin and
the cargo terminal as the destination. Conversely, outbound cargo generates transportation requests from the
cargo terminal to the aircraft stand of the corresponding flight. Requests are separated according to commodity
type.

All commodity types have the same time windows for inbound cargo, while the time windows for outbound
cargo vary among commodity types. These time windows are summarized in Table 6 and are based on KLM
Cargo’s process flows and KLM Ground Services Ground Operations Manual. In addition, it is assumed that
one-fourth of the outbound General cargo is ready to be transported across airside before its earliest pick-up
time window. For these one-fourths of the outbound General cargo, the earliest pick-up time is randomly
assigned between 300 and 200 minutes (dummy values for confidentiality).

Multiple ULDs of the same commodity type destined or originating from the same aircraft are consolidated
into one transportation request, which obliges the model to transport them together. If the number of ULDs
of a request exceeds the maximum vehicle capacity of six, the request must be divided into two.

The cargo transportation request data consists of the following information per transportation request:
flight number, flight’s arrival/departure time, request number, request origin, request destination, commodity
type, number of ULDs, time window origin, and time window destination.

Table 6: Pick-up and delivery time windows in minutes, categorized by transportation flow and commodity type. * =
One-fourth of the outbound General cargo is ready for early transport. For confidentiality, these values are replaced with
dummy values.

Flow Commodity Type α
pick-up
r β

pick-up
r α

delivery
r β

delivery
r

Outbound
General cargo 200* 100 - 60
Express 90 50 - 40
Other 170 100 - 50

Inbound All 15 120 - 180

4.4 Delay factors
As mentioned before, travel speed decreases if traffic flows increase, resulting in increased travel times. The
factor between the increased travel time and the minimum travel time of an arc is the arc’s delay factor.
This delay factor of an arc depends on the location of an arc in the network and the time period τ during
which the arc is traveled, making the delay factor arc-specific and time-dependent. As mentioned before,
the arrival and departure of KLM flights are concentrated into seven peaks throughout the day at AAS to
enable short connections between flights. As the wide-body turnaround times are longer, wide-body peaks
enclose the narrow-body peaks to allow passenger transfers between narrow-body and wide-body aircraft while
minimizing the ground time of an aircraft to its turnaround time. As a consequence, a high number of aircraft
are simultaneously at the airport requiring ground handling for their turnaround. This generates high traffic
flows of ground-handling vehicles.

The delay factor of the RH-road South and the DE-road is predominantly generated by the traffic flow of
ground-handling vehicles for narrow-body aircraft turnaround. In contrast, the delay factor of the EF-road is
generated by the traffic flow of ground-handling vehicles for wide-body aircraft turnaround. Accordingly, the
traffic flow of these ground-handling vehicles is driven by the demand for aircraft turnaround based on the
narrow-body and wide-body flight schedules, respectively. The delay factors of the RH-road North and the
Kaagbaantunnel detour are 1, equal to no delay, regardless of the time period τ . When the Kaagbaantunnel is
open, its delay factor is set to 1. However, when it is closed, a large delay factor is assigned, making the detour
around the Kaagbaantunnel a substantially shorter alternative.

The time-dependent travel time of an arc is calculated by multiplying the minimum travel time of that arc
by the arc’s delay factor of the time period τ at which the arc is traveled. On the narrow-body and wide-body
arc, delay factors on the interval of [1, 2] and [1, 1.65] apply, respectively. Accordingly, the travel speed intervals
in km/h are [25, 12.5] for narrow-body arc and [25, 15.2] for wide-body arc. This narrow-body delay interval
is greater compared to the wide-body interval, as a narrow-body peak consists of more aircraft resulting in a
higher number of required ground-handling vehicles on the service roads.

The delay factor throughout the day is primarily driven by narrow-body aircraft turnaround demand for the
RH-road South and the DE-road, while wide-body aircraft turnaround demand drives the EF-road delay factors.
Therefore, these delay factors can be estimated by determining the number of aircraft of each type on the ground
simultaneously, based on a synthesized flight schedule. Based on the same April 2022 data, the average daily
flights are 916 continental flights and 198 intercontinental flights. It is assumed that all continental flights were
narrow-body aircraft and all intercontinental flights were wide-body aircraft. Again, the flights arriving and
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departing between 6 AM and 10 PM are concentrated into seven waves, with the narrow-body peaks nested into
the wide-body peaks, except for the first inbound wave and the last outbound wave. The average turnaround
time of wide-body aircraft remains between 1.5 to 2 hours, while for narrow-body aircraft, this is assumed to
be between 45 minutes and 75 minutes.

Using the synthesized flight schedule, the number of aircraft on the ground during any time period τ
according to aircraft type (A), either narrow-body or wide-body aircraft, is calculated. This is used as input
for the delay factors according to aircraft type. The lowest and highest delay factors for each aircraft type are
assigned to the time periods with the minimum (countmin(A)) and maximum number of aircraft (countmax(A))
on the ground of the aircraft type, respectively. For all other time periods, the delay factor is calculated based
on the ratio of the aircraft type count for that time period τ to the minimum and maximum counts using the
following formula:

delay factor(A, τ) = 1 +
count(A, τ)− countmax(A)

countmin(A)− count(A, τ)
(34)

4.5 Instances
An instance refers to an input data set defining a single day of KLM cargo’s airside cargo transportation at
AAS. It consists of a graph, cargo transportation request, and delay factors. The performance of each strategy
is evaluated over multiple operational days, each represented by a distinct instance. To ensure robustness and
avoid bias from any single day, results are averaged across these instances. This approach enhances the validity
and generalizability of the results. Although the instances vary, they share key similarities that allow results
to be averaged across them. Subsequently, the graph, number of flights, number of ULDs per commodity type,
commodity pick-up and delivery time windows, and seven-wave structure are similar between instances. The
tunnel closes for one time period τ once during every instance.

The difference between instances is found in the randomly assigned parameters: gate assignment of a flight,
arrival time of flight, departure time of flight (based on turnaround time), ULD assignment to flight, and time
period during which the tunnel closes. The number of problem instances required for reliable data for the
KPIs is determined based on the convergence of the coefficient of variation. The coefficient of variation (CV)
measures the dispersion around the mean. The CV is based on the objective function of the ACTP, which is the
total travel time. As the number of instances increases, the CV is expected to converge, indicating a reduced
variability among the results. Sufficient instances have been included to ensure robust and reliable data for
evaluating results.

5 Results
Relocating the cargo terminal to Schiphol Southeast provides the opportunity to revise KLM Cargo’s operating
procedures, both outside and inside the cargo terminal. The ACTP allows a top-view analysis of the effect of
different network and terminal strategies on KLM Cargo’s airside cargo transportation at AAS. The various
strategies are based on the different perspectives on airside cargo transportation by KLM Cargo, AAS, and
AirportCreators. The baseline strategy is introduced first in Subsection 5.1, followed by the results of the two
strategy levels: the network-level in Subsection 5.2 and the terminal-level in Subsection 5.3.

All results are obtained with Gurobi 11.0.3 using a laptop (AMD Ryzen 5 PRO 6650U 2.90 GHz, 16
GB RAM) under Windows 11 Pro. Python was used to define the models. The results are obtained by
setting the model and rolling horizon settings that resulted from a trade-off between the objective function
value and computational time on small test instances. These parameter values are Cmax = 4, Smax = 3,
∆t = 20, and f = 1. Solving subproblems with a high number of transportation requests to optimality remains
computationally heavy, for which an additional measure is taken: after reaching a time limit of 500 seconds, an
optimality gap condition of 0.1 is provided to the solver. In addition, a new time limit is set to 1000 seconds.
Accordingly, solving the subproblem cannot take longer than 1500 seconds. However, the computational time
of Algorithm 1 remains unlimited, while it increases significantly by the number of requests in a subproblem
formulation (as described in Subsection 3.2). As a result, this algorithm becomes the bottleneck of subproblems
with a high number of requests.

5.1 Baseline
The baseline represents KLM Cargo’s current belly cargo transportation and terminal operations with the KLM
Cargo terminal relocated to AAS Southeast, serving as a standard against which the effectiveness of alternative
strategies can be measured. This baseline was also used during model validation using a graph representation
of the AAS network before KLM Cargo’s relocation to Southeast. As this baseline is validated, it ensures that
the evaluation of results is grounded in a realistic operational context, highlighting the added value of various
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strategies compared to existing practices. The number of problem instances required for a stabilized CV is
based on this baseline and converges after five problem instances. Accordingly, the results of all strategies will
be based on the averages across five problem instances.

5.2 Network-level strategies
The network-level strategies aim to use the network capacity more effectively. This capacity is based on the
capacity of the roads within the network, which is defined as the maximum traffic flow that a certain road can
accommodate during a specific time period [Greenshields et al., 1935]. Network capacity is affected by vehicle
distribution in the network throughout space and time [Sun et al., 2014]. This distribution can be mitigated
through two network-level strategies. Subsubsection 5.2.1 and Subsubsection 5.2.2 describe the spatial distri-
bution and traffic prediction strategy, respectively. Subsequently, the results of both strategies are presented in
Subsubsection 5.2.3, after which the results are discussed in Subsubsection 5.2.4.

5.2.1 Spatial Distribution Strategy

The distribution of vehicles across the network affects the network’s capacity. In the AAS network, two roads
connect the cargo terminal with the RA2 node on the opposite side of the Kaagbaan, as shown in Figure
4. Under normal conditions - without Kaagbaantunnel closure - it is evident that the Kaagbaantunnel road
offers the shortest travel distance and time. Following the relocation of KLM Cargo to Schiphol Southeast, the
Kaagbaantunnel will primarily be used by vehicles transporting cargo. For paths between the RA1 node and the
piers, the RH-road South road offers a shorter travel distance than the RH-road North road. However, unlike
the Kaagbaantunnel, the RH-road South’s capacity is largely occupied by ground-handling vehicles involved in
the aircraft turnaround. Accordingly, the delay factors on the RH-road South, DE-road, and EF-road determine
which path between the RA1 node and piers results in the shorter travel time.

As the problem optimizes the total travel time, vehicles are assigned to paths using arcs with the shortest
travel times. This results in higher traffic flows on arcs with shorter travel times and underutilized arcs with
longer travel times. In addition, high utilization of the Kaagbaantunnel increases the risk of a tunnel closure,
due to the increased risk of vehicle failure or dropped cargo, which would result in all vehicles having to
use the longer Kaagbaantunnel detour instead. This risk can be mitigated by reducing the utilization of the
Kaagbaantunnel. To address this imbalance and mitigate the risk of tunnel closure, the proposed strategy aims
to better distribute cargo vehicles across the network by increasing the use of underutilized arcs. The aim is to
alleviate traffic flow on the Kaagbaantunnel, RH-road South, DE-road, and EF-road arcs. As a result, vehicles
are expected to be distributed more evenly throughout the network, improving the flow on main service road
arcs significantly.

To achieve this, vehicles transporting General cargo are obliged to take the Kaagbaantunnel detour arc
instead of the Kaagbaantunnel arc, which is roughly half of the ULDs. Similarly, General cargo originating
from and destined for the F-pier is assigned to RH-road North instead of using the RH-road South, DE-road,
and EF-road. This additional transportation requirement for General cargo is implemented in Algorithm 1. In
line 10, a subset of set Pc is obtained such that all General cargo can only be transported by the obliged paths.
It is expected that this strategy will lead to improved vehicle distribution but longer total and average vehicle
travel times and distances compared to the baseline.

5.2.2 Traffic Prediction Strategy

The network capacity is also affected by the distribution of vehicles over time, as high traffic flows during the
same period reduce travel speeds, leading to increased travel times. As mentioned before, the traffic flows at
AAS at the RH-road South, DE-road, and EF-raod are heavily influenced by flight schedules, as ground handling
vehicle activity peak around aircraft turnaround times. As aircraft arrivals and departures are concentrated into
seven peaks throughout the day at AAS, similar peaks are observed in ground handling traffic flows. To improve
vehicle distribution over time, the traffic prediction strategy is evaluated. This strategy aims to incentivize the
traveling of the cargo vehicles during time periods with the lowest traffic flows of other ground handling vehicles
by taking into account the current and future traffic conditions.

The implementation of this strategy requires constraints 27, 28, and 29 of the subproblem formulation to
change. Two additional binary decision variables are introduced to formulate the additional constraints linearly.
This linear formulation improves the computational efficiency of the resulting model. These constraints are
detailed in Table 7.

Table 7: Mathematical notation of additional decision variables for the Traffic Prediction Strategy.
Notation Description
bpτkvw = 1 if vehicle k travels from node v to node w of path p during current horizon Hτ , = 0 otherwise
bpfkvw = 1 if vehicle k travels from node v to node w of path p during forward horizon Hf , = 0 otherwise
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Five constraints are included in the subproblem formulation to define bpτkvw and bpfkvw. These constraints are:

tpkv ≤ βHτ
+M ∗ (1− bpτkvw) ∀k ∈ K, p ∈ P, (v, w) ∈ Ap (35)

tpkv > βHτ −M ∗ (1− bpfkvw) ∀k ∈ K, p ∈ P, (v, w) ∈ Ap (36)

bpτkvw + bpfkvw = xp
k ∀k ∈ K, p ∈ P, (v, w) ∈ Ap (37)

bpτkvw ≤ xp
k ∀k ∈ K, p ∈ P, (v, w) ∈ Ap (38)

bpfkvw ≤ xp
k ∀k ∈ K, p ∈ P, (v, w) ∈ Ap (39)

Accordingly, the subproblem’s travel time constraints 27, 28, and 29 are reformulated to include these new
decision variables. This new formulation, presented below, considers the influence of the delay factor during the
current horizon Hτ and the forward horizon Hf on the travel time of the arcs.

tpkw − tpkv = TTvw ∗ (Dτ
vw ∗ bpτkvw +Df

vw ∗ bpfkvw) ∀k ∈ Kn, p ∈ P, (v, w) ∈ Ap
m (40)

tpkw − tpkv ≥ H/2 + TTvw ∗ (Dτ
vw ∗ bpτkvw +Df

vw ∗ bpfkvw) ∀k ∈ Kn, p ∈ P, (v, w) ∈ Ap
a (41)

tpkw − tpkv ≥ TTvw ∗ (Dτ
vw ∗ bpτkvw +Df

vw ∗ bpfkvw) + δt ∗ T ∀(k, c, p) ∈ F, (v, w) ∈ Ap (42)

This strategy’s advantage lies in considering the arcs’ current and future traffic conditions. By incorporating this
information, it is expected that the model makes better-informed scheduling decisions about when to transport
cargo. Subsequently, the total travel time of all vehicles is expected to improve compared to the baseline
strategy.

5.2.3 Results of network-level strategies

Table 8 presents the network-level strategies results compared with the baseline. Figure 5 visualizes the distri-
bution of the cargo vehicles throughout the day and Figure 6 visualizes the spatial distribution of the vehicles.

Table 8: KPIs for network-level strategies. SD = Spatial Distribution, TP = Traffic Prediction, ATL = Average ULD
Train Length, TT = Travel Time, TD = Travel Distance.

Vehicle Utilization Total Routing Average Vehicle Routing
Strategy Vehicles [#] ATL [# ULD] TT [h] TD [km] TT [min] TD [km]
Baseline 127 2.93 64.7 958.0 30.5 7.5
SD 126 (-0.94%) 2.95 (+0.68%) 73.4 (+13.49%) 1230.3 (+28.42) 35.0 (+14.71%) 9.8 (+30.30%)
TP 133 (+5.98%) 2.80 (-4.40%) 66.4 (+ 3.79%) 978.3 (+3.03 %) 30.0 (-2.10%) 7.4 (-2.83%)

Figure 5: Vehicles en route in the network for the network-level strategies with traffic flow indications of others throughout
the operational day.
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For the spatial distribution strategy, it is observed that the number of vehicles slightly reduces, increasing
the average ULD train length a little. As expected, the total and average travel time and distance increase
substantially as vehicles carrying General cargo are obliged to take the longer detour roads. The percentage
increase in travel distance is roughly twice that of travel time for both total and average vehicle routing. This
indicates an increase in travel with higher speeds, which may result from traveling arcs without delay factors
(such as the Kaagbaantunnel detour and the RH-road North) or traveling during time periods with lower delay
factors. Figure 5 shows that the latter is not the case, as the distribution of cargo vehicles throughout the
day remains approximately the same during both peak and off-peak traffic periods of other ground vehicles
compared to the baseline. Additionally, the figure indicates an overall increase in the number of vehicles in
the network throughout the day. This rise is attributed to the increased average travel time, causing vehicles
to remain in the network for longer durations. Figure 6 shows that the distribution of vehicles between the
Kaagbaantunnel arc and the Kaagbaantunnel detour arc substantially improves compared to the baseline. In
contrast, only a slight increase in distribution is observed between the RH-road South and RH-road North.

For the traffic prediction strategy, it is observed that the number of vehicles increases significantly, decreasing
the ULD train length. Accordingly, the total travel time and distance increase, while the vehicle average travel
time and distance decrease. These results suggest an decrease in the average number of requests fulfilled by a
vehicle (Figure 8 in Appendix A). Accordingly, vehicles need to visit fewer aircraft stands on their paths, making
the average paths shorter (Figure 7 in Appendix A). Figure 5 shows that the distribution of vehicles throughout
the peak and off-peak periods of other ground handling vehicles improves. For instance, it is observed that during
06:00-07:00 and 10:40-11:40, the number of vehicles in the network increased during the off-peak of the other
ground handling vehicles. This improvement is also reflected in the higher increase in average vehicle distance
compared to time, suggesting higher travel speed compared to the baseline. Besides, the vehicle distribution
throughout the network slightly degrades compared with the baseline as can be seen in Figure 6.

(a) Baseline (b) Spatial distribution strategy

(c) Traffic prediction strategy
Figure 6: Spatial distribution of vehicles across the network for the terminal-level strategies.

5.2.4 Discussion of network-level strategies

The spatial distribution strategy performance degrades compared with the baseline on the total and vehicle av-
erage route performance, while the vehicle utilization slightly increases. The distribution of vehicles throughout
time degrades as vehicles remain in the network for a longer duration. Accordingly, this strategy only improves
cargo transportation in terms of its intended performance field: spatial vehicle distribution throughout the net-
work. Although only a substantial improvement in spatial distribution is found between the Kaagbaantunnel
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and the Kaagbaantunnel detour, only a slight improvement is observed between the RH-road South and North.
This strategy is not appealing for AAS as vehicle distribution through time decreases. In addition, the

benefits of spatial distribution are minor for AAS, as their main interest in spatial distribution is to reduce the
use of the already busy RH-road South, DE-road, and EF-road. The spatial vehicle distribution between the
Kaagbaantunnel and its detour is substantial, mitigating the risk of tunnel closure which is important for KLM
Cargo’s transportation. Although that does not outweigh the significant total routing degradation increasing
the operational costs of the transport for KLM Cargo. In addition, it indicates that an additional nine travel
time hours are required per operational day, necessitating more manpower, which undesirable for KLM Cargo.

The results of the traffic prediction strategy do not align with the expectations. It was expected that the
total and average routing performance would improve, making this strategy appealing to both KLM Cargo
and AAS. However, the results indicate the opposite: both vehicle utilization and total routing performance
degrades. These deviations from the expectations are likely due to the increased model complexity of this
strategy. As a result, the optimization of multiple subproblems terminated after the predefined time limit
of 1500 seconds with substantial optimality gaps up to 80%, affecting the solution quality. In contrast, the
baseline and spatial distribution strategy solved most of these subproblems with an optimality gap of 10% or
even optimality. Consequently, it cannot be proven that the results of the traffic prediction strategy are directly
comparable with those of the baseline and spatial distribution strategies.

5.3 Terminal-level strategies
It is of interest to KLM Cargo to evaluate the effect of various terminal operational concepts on airside cargo
transportation. The terminal-level strategies are derived from two potential operational concepts for the cargo
terminal and their respective impacts on airside cargo transportation: pull and push. Subsubsection 5.3.1 and
Subsubsection 5.3.2 explain the pull and push strategy, respectively. Accordingly, the results of both strategies
are presented in Subsubsection 5.3.3, after which the results are discussed in Subsubsection in 5.3.4.

5.3.1 Pull Strategy

The pull strategy schedules outbound cargo transport so that cargo arrives at the aircraft stand just in time for
loading onto the aircraft. This requires transportation of the outbound cargo to be triggered by the aircraft’s
loading time, which is defined in the ACTP model as the delivery deadline at the aircraft stand (βdelivery

r ).
This strategy prevents cargo from being parked for a long time at the aircraft stand before loading, increasing
the aircraft stand’s safety and orderliness. It requires cargo to be stored at the cargo terminal for longer
times, increasing the required terminal storage capacity. An advantage of this strategy is that cargo with short
connecting times at the cargo terminal can be added to already stored ULDs with remaining available capacity.
This approach aligns well with KLM Cargo’s hub operations, where providing short cargo connecting times is
part of the profit model. The pull strategy is implemented by narrowing the delivery time window for outbound
cargo to 15 minutes before the cargo’s delivery deadline at the aircraft stand. The pick-up and delivery time
windows for this strategy are given in Table 9.

Despite these benefits, the pull strategy introduces certain risks in the real-life application. Since cargo is
transported later, the on-time performance of outbound cargo becomes vulnerable to traffic conditions. High
transport delays can result in cargo arriving late, making this strategy riskier in unpredictable airside road
traffic scenarios. This could result in cargo not making it to the flight and being rescheduled onto a later flight
having financial consequences.

Table 9: Pick-up and delivery time windows for the pull strategy, categorized by transportation flow and commodity
type, with deviations from the baseline strategy highlighted in bold. For confidentiality, these values are replaced with
dummy values.

Flow Commodity Type α
pick-up
r β

pick-up
r α

delivery
r β

delivery
r

Outbound
General cargo 105 - 75 60
Express 85 - 55 40
Other 95 - 65 50

Inbound All 15 120 - 180

5.3.2 Push strategy

The push strategy involves transporting outbound cargo across airside immediately after it has been built up
in ULDs at the cargo terminal. This ensures that cargo reaches the aircraft stand well before loading begins,
reducing susceptibility to traffic conditions and enhancing overall reliability. Additionally, the required storage
capacity at the cargo terminal decreases. Instead, the cargo is stored at the aircraft stand for longer periods of
time, decreasing safety and orderliness. The push strategy is implemented by narrowing the outbound cargo’s
pick-up time window to 15 minutes after the earliest cargo pick-up time. The pick-up and delivery time windows
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implemented for the push strategy are presented in Table 10. As the cargo departs from the cargo terminal
well ahead of flight departure, the on-time arrival of the cargo at the aircraft stand is less vulnerable to traffic
conditions.

Table 10: Pick-up and delivery time windows for the push strategy, categorized by transportation flow and commodity
type, with deviations from the baseline strategy highlighted in bold. * = One-fourth of the outbound General is ready
for early transport. For confidentiality, these values are replaced with dummy values.

Flow Commodity Type α
pick-up
r β

pick-up
r α

delivery
r β

delivery
r

Outbound
General cargo 200* 185 - 60
Express 90 75 - 40
Other 170 155 - 50

Inbound All 15 120 - 180

5.3.3 Results of terminal-level strategies

Table 11 presents the terminal-level strategies results compared with the baseline. Figure 7 visualizes the
distribution of the cargo vehicles throughout the day.

Table 11: KPIs for terminal-level strategies. ATL = Average ULD Train Length, TT = Travel Time, TD = Travel
Distance.

Vehicle Utilization Total Routing Average Vehicle Routing
Strategy Vehicles [#] ATL [# ULD] TT [h] TD [km] TT [min] TD [km]
Baseline 127 2.93 64.7 958.0 30.5 7.5
Pull 120 (- 5.51%) 3.09 (+5.51%) 63.8 (- 1.33%) 927.7 (- 3.17%) 31.8 (+4.20%) 7.7 (+2.23%)
Push 128 (+0.79%) 2.91 (- 1.55%) 66.1 (+2.20%) 977.7 (+2.05%) 30.9 (+1.37%) 7.6 (+1.20%)

Figure 7: Vehicles en route in the network for the terminal-level strategies with traffic flow indications of other ground
handling vehicles throughout the operational day.

For the pull strategy, it noted that the number of vehicles is reduced leading to increased average ULD train
length. Accordingly, the total travel time and distance decrease, while the average vehicle travel time and
distance increase. These results imply that the average requests transported per vehicle increase, resulting in
on average longer paths to pick up and deliver all requests (substantiated by Figure 10 and Figure 11 in Appendix
A). The difference between the percentage increase in vehicle average travel time and distance indicates that
the average travel speeds decrease, suggesting increased travel during periods with higher delay factors. This
is substantiated by Figure 7, which visualizes that the distribution of cargo vehicles over time coincides more
with that of other ground handling vehicles compared to the baseline. Additionally, the figure indicates that
the distribution of vehicles is concentrated more into peaks compared to the baseline.
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For the push strategy, the number of vehicles slightly increases resulting in shorter average ULD train
lengths. The total and vehicle average travel time and distance increase. This implies that the average number
of requests per vehicle reduces while the average path length to fulfill these requests increases (substantiated
by Figure 10 and Figure 11 in Appendix A).

Moreover, it is observed that the percentage increase in travel time and distance is approximately equal for
both total routing and vehicle average routing. This suggests approximately similar travel speeds compared to
the baseline, indicating that vehicles operate during time periods with comparable delay factors. This is also
observed in Figure 7, where the distribution of vehicles over time closely resembles that of the baseline. In
addition, the figure indicates. Additionally, the figure shows a slight increase in the number of vehicles in the
network throughout the day, as a result of the increased number of vehicles required and the increase in average
vehicle travel time.

5.3.4 Discussion of terminal-level strategies

The pull strategy substantially improves the vehicle utilization and the total routing performance, which is com-
promised by the increase in average vehicle routing performance. The distribution of vehicles throughout time
degrades as cargo vehicle activity becomes more concentrated into peaks. In addition, these peaks increasingly
align with the peak activity of other ground-handling vehicles, leading to higher delay factors. This results
from the increased overlap of the pull strategy’s outbound cargo delivery time windows (as presented in 9) with
the narrow- and wide-body turnaround peaks, during which ground handling vehicle traffic causes significant
delays.

This strategy benefits KLM Cargo as it improves operational costs due to improved vehicle utilization and
reduced vehicle total routing performance. Additionally, fewer manhours are theoretically required due to a
reduction in total travel time. However, the actual impact on manhours depends on how the vehicle paths are
assigned to drivers. This is at the cost of increasing terminal storage capacity. During the KLM Cargo terminal
design phase, it should be evaluated whether these airside cargo transportation improvements outweigh the
costs of increasing the terminal’s storage capacity. AAS benefits from this strategy as the number of vehicles in
the network reduces as well as the total time spend in the network. However, these advantages are offset by the
drawback of increased vehicle movements during periods with high delay factors, pushing traffic flows closer to
the network’s capacity.

The results of the push strategy degrade the vehicle utilization and total and average vehicle routing per-
formance. The vehicle distribution throughout time slightly degrades as the number of vehicles in the network
increases as well as their average time spend in the network.

This strategy is not beneficial for KLM Cargo as the operational costs increase, including the required
manhours. The only positive aspect of this strategy would be the reduction in storage capacity at the cargo
terminal. Similar to the pull strategy, it should be determined during the new KLM Cargo terminal design
phase whether the reduced storage capacity required for this strategy outweighs the airside cargo transportation
degradation. This strategy is not beneficial for AAS, as it slightly decreases the vehicle distribution throughout
the day.

6 Conclusions and future research
This paper proposes the first MIP formulation for the airside transportation of cargo ULDs between passenger
aircraft and cargo terminals, considering vehicle capacity utilization, cargo commodity differentiation, and
time-dependent travel times on the airport’s service roads. A rolling horizon-based heuristic is applied, making
the problem formulation linear and computationally feasible. This model was applied to a case study of the
potential relocation of KLM Cargo’s terminal at Amsterdam Airport Schiphol (AAS) to a new site. This
relocation provides the opportunity to evaluate the effect of various strategies, for the network usage and the
new cargo terminal’s operating procedures, on airside cargo transportation. Subsequently, the aim of this paper
is to determine whether there are network-level and terminal-level strategies that can optimize the airside belly
cargo transport between cargo terminals and passenger aircraft across the airport’s service roads.

The network-level strategies aim to use the airside road network capacity more effectively, for which two
strategies are compared with the baseline strategy, representing business-as-usual airside cargo transportation.
The spatial distribution strategy aims to relocate vehicles between over- and underutilized roads, while the traffic
prediction strategy aims to incentivize travel during periods with less traffic. These strategies are evaluated
based on vehicle utilization (number of vehicles and average ULD train length), total routing performance (total
travel time and distance), average vehicle performance (average vehicle travel time and distance), and network
distribution (distribution of vehicles across space and time in the network). The spatial distribution strategy
degrades the total and vehicle average routing performance of the cargo transportation substantially, against
a minor increase in vehicle utilization. The spatial distribution strategy improves the distribution between the
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Kaagbaantunnel and its detour road but distributes the vehicles between other over- and underutilized roads
less than intended. Accordingly, this slight improvement is outweighed by the significantly degrading average
vehicle routing performance, making this strategy beneficial for AAS. Moreover, this strategy is not beneficial
for KLM Cargo either, as the total routing performance substantially degrades. Contrary to expectations, the
traffic prediction strategy degrades airside cargo transportation performance. This unexpected outcome is likely
due to the reduced solution quality caused by the increased model complexity introduced by this strategy. As
a result, the optimization is stopped at the predefined time limit with a significantly higher average optimality
gap compared to other strategies. Consequently, its cannot be proven that its results are comparable with the
results of the baseline and spatial distribution strategy.

The terminal-level strategies evaluate the impact of potential cargo terminal operational concepts on airside
cargo transportation to the baseline, for which two strategies are defined: pull and push strategy. These
strategies are evaluated on the same aspects as the network-level strategies, except for the spatial distribution.
In the pull strategy, outbound cargo is scheduled so that cargo arrives at the aircraft stand just in time for
loading onto the aircraft, such that it does not have to be parked at the aircraft stand to await loading. The
pull strategy improves the performance of airside cargo transportation in terms of total route performance and
vehicle utilization. This is beneficial for KLM Cargo as it reduces operational costs, like manhours and fuel
consumption. In addition, AAS also benefits from improved vehicle utilization and total routing performance.
However, this does not outweigh the fact that the distribution of cargo vehicles over time significantly coincides
with the peak activity of other ground-handling vehicles. This is undesirable for AAS, as the increased cargo
vehicle movements during periods of high traffic flow push the network closer to its capacity, leading to delays.
In the push strategy, outbound cargo is transported across airside immediately after it has been built up in
ULDs at the cargo terminal. This push strategy degrades the performance of airside cargo transportation on all
evaluated aspects: vehicle utilization, total and average vehicle routing performance, and vehicle distribution.
Hence, this strategy does not optimize the airside cargo transportation and is not beneficial for either KLM
Cargo or AAS.

In conclusion, airside belly cargo transportation is optimized on a terminal-level by the pull strategy, while
on the network-level the baseline strategy outperforms the suggested strategies.

Next, recommendations for future research are presented, starting by addressing model recommendations
followed by strategy-specific recommendations.

A characteristic of the ACTP is that cargo pick-up and delivery must occur within hard time windows, as
any delays within the airside belly cargo transportation can lead to financial losses and reduced service quality.
A potential direction for future research is to incorporate soft time windows into the problem formulation,
allowing for delays that can be penalized within the model. This adjustment would also make the model
applicable to full freighter cargo transport, where adherence to flight schedules is less strict compared to belly
cargo transportation. Guepet et al. [Guépet et al., 2016] can serve as a reference for incorporating time window
deviations into the problem formulation.

Another future research direction is to improve the model’s computational efficiency to enable using the
model for real-time routing and scheduling of cargo throughout an operational day. Currently, the model is
not suitable for continuous operational use, a the compuational time for certain subproblems (with a large size
of request set R) exceeds the subproblem’s planning horizon. This is primarily due to the time required for
generation of the request combination set C by Algorithm 1 and solving the subproblem itself. To address this,
it is recommended to investigate methods for generating request combination set C more efficiently, avoiding
its factorial growth with respect to the request set R. Additionally, to improve the subproblem’s solving time,
implementing a column generation algorithm is suggested to reduce the subproblem’s solution space.

In addition, a more efficient generation of the request combination set C, as suggested above, would also
allow an increase in the size of the request set R. This is particularly relevant because the current cargo
transportation request set R groups ULDs of the same commodity type, originating from or destined for the
same flight, into a single request. As a result, all ULDs within a request must be transported together in one
ULD train by the same vehicle. However, if the model’s efficiency improved, each ULD could be treated as a
separate request, allowing for greater flexibility in consolidating ULDs into ULD trains and improving overall
transportation efficiency.

Due to the increased model complexity introduced by the traffic prediction strategy, its solution quality was
significantly affected, making it uncertain whether its results are directly comparable to those of the baseline
and spatial distribution strategies. To address this, it is recommended to run the baseline and both network-
level strategies on smaller instances where the traffic prediction strategy can also generate reliable solutions.
This would allow for a meaningful comparison between these strategies and accordingly, improve the conclusion
regarding the effectiveness of network-level strategies on airside cargo transportation.

The pull strategy increases the vulnerability of the on-time performance of outbound cargo transportation
to traffic conditions, which is not assessed in the ACTP presented in this paper. Therefore, it is recommended
to re-evaluate the pull strategy using the ACTP with soft time windows. As mentioned before, Guepet et al.
[Guépet et al., 2016] can serve as a reference for incorporating these soft time windows. An ACTP formulation
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with soft time windows would enable a more comprehensive evaluation of the pull strategy.
In addition, it is recommended to investigate the combination of network-level and terminal-level strategies

to improve airside cargo transportation, as at each level a different strategy can be implemented. Furthermore,
combinations within strategy levels can also be assessed. One particularly interesting strategy is a hybrid push
and pull strategy. Assuming limited storage capacity at the cargo terminal, a pull strategy could be employed as
long as storage space is available. Once the storage reaches full capacity, the push strategy would be activated
to avoid the need for storage of the cargo at the terminal. As storage capacity becomes available again, the
system could revert to the pull strategy.
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Appendices
Appendix A presents two additional visualizations for the network-level and terminal level, respectively. These
figures support the results as presented in Subsubsection 5.2.3 and Subsubsection 5.3.3.

A Additional results
For the network-level strategies, Figure 8 visualizes the number of requests transported per vehicle and Figure
9 visualizes the number of aircraft stands visited during a vehicle’s round trip.

Figure 8: Number of requests transported per vehicle
for the network-level strategies

Figure 9: Number of aircraft stands visited during a
vehicle’s round-trip for the network-level strategies

For the terminal-level strategies, Figure 10 visualizes the number of requests transported per vehicle and Figure
11 visualizes the number of aircraft stands visited during a vehicle’s round trip.
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Figure 10: Number of requests transported per vehicle
for the terminal-level strategies

Figure 11: Number of aircraft stands visited during a
vehicle’s round-trip for the terminal-level strategies
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1
Introduction

This research proposal describes the thesis’s conceptual and technical research design. In addition, a literature re-
view is included to substantiate the literature gap that will be filled during the proposed thesis. This chapter gives
an introduction to the thesis problem. First, the background of the research problem is described in Section 1.1.
Then, the research objective and questions are defined in Section 1.2 and Section 1.3, respectively. The initial re-
search scope is confined in Section 1.4. Finally, an overview of the remaining chapters in this proposal is provided in
Section 1.5

1.1. Background
To facilitate passenger growth at Schiphol, a new A-pier is currently being constructed on the south side of Schiphol
Centre, connected to the B-pier. Correspondingly, a new baggage handling system might be required to accommo-
date the increase baggage amounts. In addition, the increase passenger growth might require an additional pas-
senger terminal. To accommodate these developments, KLM Cargo’s terminals (Vrachtgebouw 1, 2, and 3) must be
relocated to make room. The new KLM Cargo Terminal, New Cargo Terminal (NCT), will most likely be located at
Schiphol Southeast, on the other side of the Kaagbaan. The Schiphol Southeast area is called CargoCity, as all cargo
handlers are consolidating in this area. Other cargo handlers are already located at CargoCity or will move to CargoC-
ity before the NCT is operational. Subsequently, these relocations lead to changes in the airside cargo transportation
process.

The airside cargo transportation process focusses on the transportation of cargo between cargo terminals and
aircraft. This process can be divided into two flows: import and export. Import cargo arrives by aircraft at an aircraft
stand, where it is unloaded onto dollies. Trucks pick up these dollies and transport them to the cargo terminal of the
corresponding cargo handler. In the terminal, the cargo is either forwarded to landside transport or transits to the
export cargo flow. Export cargo can also arrive at the cargo terminal by landside transport. In the terminal, the export
cargo is prepared for flight and loaded onto dollies. These dollies are then transported by truck from the terminal to
the aircraft stand of the corresponding flight.

Trucks make use of the airport service roads to perform airside cargo transportation. At Schiphol, other vehicles
also use these airport service roads, such as other ground handling vehicles, authority vehicles, (office) suppliers,
contractors, and construction workers. The activity of other ground-handling vehicles depends on Schiphol’s flight
schedule, while the activity of the other vehicles is approximately constant between office hours. On the service
roads, the regular traffic regulations apply with some additional restrictions, such as a speed limit of 30 km/u. Gen-
erally, the service road’s traffic flow does not exceed its capacity. However, the service roads at Schiphol Centre are
very busy, especially between the A- and D-pier. Speeds are reduced whenever a service road’s traffic flow exceeds
its capacity. This implies that service roads are characterized by dynamic travel speeds that depend on traffic flow.

Most cargo handlers at Schiphol transport their cargo by freighter aircraft. Freighter aircraft are parked at freight
stands at Schiphol South or Southeast. After the relocation of KLM Cargo to the NCT, most freighter aircraft are ex-
pected to be parked at freight stands at Schiphol Southeast. These stands are near the cargo terminals at CargoCity,
resulting in short airside cargo transport distances on the service roads. However, KLM Cargo transports approxi-
mately 75-80% of its cargo as belly freight in its passenger aircraft’s bellies. Some other cargo handlers also transport
small amounts of their cargo as belly freight. Passenger aircraft are parked at passenger aircraft stands connected to
or close to the passenger terminals and piers at Schiphol Centre. Moving the cargo terminals from Schiphol Centre
(or DNATA from Schiphol South) to CargoCity increases the distance between the cargo terminals and the passenger
aircraft stands.

The only service road connection between Schiphol Centre or Schiphol South and Schiphol Southeast is a tunnel
underneath the Kaagbaan, named the Kaagbaantunnel. Figure 1.1 visualizes this connection between the several
Schiphol areas. When KLM Cargo would agree with the relocation to CargoCity, an additional connection is re-
quested between Schiphol Centre and CargoCity to provide redundancy for the Kaagbaantunnel. The additional
connection will be a service road around the 06 head of the Kaagbaan. Compared to using the Kaagbaantunnel, this
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connection will increase the travel time by approximately seven minutes between Schiphol Centre and CargoCity.
Therefore, the Kaagbaantunnel is a critical connection for airside belly cargo transportation between the cargo ter-
minals at CargoCity and Schiphol Centre, even with the additional connection in place. Hence, the Kaagbaantunnel’s
traffic flow, capacity, and reliability are essential for handling belly cargo.

Figure 1.1: Visualization of the Kaagbaantunnel connection between the Schiphol Centre, South and Southeast areas.

The tunnel is perpendicular to the Kaagbaan and has two lanes in opposite directions. The Kaagbaantunnel ends
in a roundabout at both ends. The tunnel’s capacity is the maximum vehicle throughput within a time interval. Ac-
cording to the Servicemanager Tunnel Safety at Schiphol, theoretical and safety capacities are distinguished. The
theoretical capacity is the maximum number of vehicles within a certain time interval that physically limits the tun-
nel’s throughput. Studies performed for Schiphol indicated that the capacity of the roundabouts limits the tunnel’s
theoretical capacity. Nevertheless, it is not expected that the changing traffic movements due to the move of cargo
handlers to CargoCity will reach the capacity limit of these roundabouts. The safety capacity concerns the allowed
capacity within a certain time interval to ensure a safe tunnel operation. As the tunnel is longer than 250 meters,
the Dutch ’Tunnelwet’ applies to it. This Tunnelwet enforces the European Tunnel Directive. The Tunnelwet di-
rectly influences the reliability of the tunnel. For example, the Tunnelwet specifies that the tunnel should be closed
whenever a vehicle is not moving or if an item is dropped in the tunnel. In such a case, the Schiphol authority has
to visit the tunnel, investigate the situation, and solve the problem. Only after the authority gives an all-clear sign
will the tunnel be opened again. In addition, some vehicles may have a reduced speed in the tunnel, for instance,
due to the combination of the vehicle weight and the tunnel’s slope. This results in a moving bottleneck due to the
unavailability of space to overtake the slower vehicle.

Currently, all cargo handlers perform their airside cargo transportation separately. In addition, these airside cargo
transportations are executed by truck drivers who receive a single task at the time: pick up cargo at the terminal and
deliver it to an aircraft stand, or vice versa. Then, when the truck is empty, it returns to its first location to receive a
new task. As a result, the truck does not carry any cargo on one way of its journey, which reduces the efficient use
of the service road capacity. Besides, the task of a driver can entail dropping off two cargo dollies at an aircraft, even
though the truck’s maximum capacity is six dollies. Therefore, the carrying capacity of a truck carrying is not fully
utilized.

Cargo can be divided into numerous commodities with different handling requirements. This differentiation
influences airside cargo transportation operations. Different handling requirements among the commodities that
are important for airside cargo transportation:

• Pick-up time: time interval when a truck can pick up cargo at the terminal or the aircraft to be transported over
airside.

• Delivery time: time interval when a truck can deliver cargo at the terminal or aircraft stand.
• Security/handling: whether the cargo requires a special form of airside cargo transportation. For instance, for

special cargo transportation due to dangerous or valuable goods.
• Size: airside cargo transportation in ULDs or any other form.
• Weight

Airside cargo transportation depends on other activities within the air cargo supply chain and the airport’s operation.
This introduces uncertainty into the airside cargo transportation process. For instance, the reliability of the Kaag-
baantunnel also results in uncertain tunnel availability. Uncertainty is also introduced by the unpredictability of the
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demand for air cargo demand due to short time intervals between bookings and transportation and the common
situation of (partial) cargo no-shows [11]. Moreover, uncertainty arises from delayed flight or landside transport,
influencing the pick-up and delivery time. Finally, the aircraft gate assignment determines the demand location.

In this research, the cargo transportation system refers to all things working together to provide airside cargo
transportation as part of a complex whole. The system can be divided into smaller subsystems, which are also sys-
tems on themselves. The cargo transportation system is divided into the cargo transportation process and the service
road network. In a later stage, these subsystems are further analyzed.

For clarity, the current and new state of the cargo transportation system is defined. The current cargo transporta-
tion system refers to the current situation at Schiphol in 2024 and consists of:

• Current service road network: including the current KLM Cargo Terminal (CCT) (Vrachtgebouw 1, 2, and 3)
located at Schiphol Centre.

• Current cargo transportation process: in which belly cargo is transported between the CCT and passenger
aircraft.

The new cargo transportation system refers to the Schiphol situation that arises after the KLM Cargo’s relocation to
CargoCity. Definitions within this new system are referred to as:

• New service road network: including the New KLM Cargo Terminal (NCT), located at Schiphol Southeast. After
this relocation, all of Schiphol’s cargo terminals are located at Schiphol Southeast, also named CargoCity.

• New cargo transportation process: in which belly cargo is transported between the NCT and passenger aircraft.
The research evaluates the effect of various strategies on the system’s performance. These strategies comprise any
change in part of the new system.

1.2. Research Objective
In Schiphol’s cargo transportation system, the cargo transportation process uses the service road network to pick up
and deliver commodities between cargo terminals and aircraft stands. The entire system can be formulated as a Pick-
up and Delivery Problem (PDP) in which multiple characteristics differentiate commodities, including the pick-up
and delivery time. As mentioned before, Schiphol’s service roads are crowded, influencing travel speed. In addition,
the utilization of cargo vehicles is inefficient, resulting in a loss of effective service road capacity. Besides, several
factors introduce uncertainty in the system, such as tunnel availability, cargo demand, cargo arrival and departure
time, and aircraft stand allocation. Thus, the current cargo transportation system already has its own complications.

In addition, relocating cargo terminals to CargoCity will change Schiphol’s airside cargo transportation system.
In particular, the Kaagbaantunnel’s capacity and reliability are important new characteristics of the service road
network. This leads to additional complications in the belly cargo transportation system between CargoCity and
Schiphol Centre. Consequently, the new belly cargo transportation system might not perform optimally due to the
current and new complications. Hence, changes to the system might improve the performance of the belly cargo
transportation system. Changes to the system are hereafter referred to as strategies.

This study aims to identify a belly cargo transportation strategy that improves the new system between Schiphol
Centre and CargoCity. The research objective is:

Determine an optimal cargo transportation strategy for belly cargo between CargoCity and passenger aircraft
stands at Schiphol Centre after KLM Cargo’s relocation by using a Pick-up and Delivery Problem formulation.

1.3. Research Questions
To achieve the objective, the main research question addressed during the thesis is:

What cargo transportation strategy can be used to optimize the system used to transport belly cargo between
CargoCity and passenger aircraft stands at Schiphol Centre after KLM Cargo’s relocation to CargoCity?

The main research question is divided into five subquestions, defined as follows:
1. What is the current state of the belly cargo transportation system, and what will change in the system when

KLM cargo relocates to the NCT?
2. What are critical points within the current and new belly cargo transportation system that limit the system’s

performance?
3. What are the belly cargo transportation system’s requirements, and how can the system be modeled as an

Mixed-Integer Linear Programming (MILP) model while satisfying these requirements?
4. Which belly cargo transportation strategies can be implemented in the belly cargo transportation system, and

how can these be modeled?
5. How do different belly cargo transportation strategies affect the performance of the belly cargo transportation

system?

1.4. Scope
The scope of this research is confined to the airside cargo transportation process between the cargo terminal and the
aircraft stands. This process scope is visualized in Figure 1.2.

After the relocation of KLM Cargo to CargoCity, all full freight aircraft are assumed to be assigned to freighter
aircraft stands at Schiphol Southeast. This implies that cargo transportation between cargo terminals and freighter
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aircraft stands is short and does not use the Kaagbaantunnel. Therefore, only the belly cargo transportation is in-
cluded in the problem.

Besides, the research concerns the route planning stage of airside cargo transportation. Route execution is not
part of the research. Hence, flows are studied, while collision avoidance is not included in the research.

Figure 1.2: Visualization of the airside cargo transportation process with scope boundaries specified in blue

1.5. Proposal structure
The remainder of this proposal starts with a literature review of PDPs with numerous variations related to the pro-
posal’s problem in Chapter 2. In Chapter 3, the proposed research framework is discussed in detail, including the
research activities and methods. Accordingly, Chapter 4 provides the thesis planning containing all these activities.



2
Literature review

The airside cargo transportation system can be described as a PDP. PDP is a widely studied problem, which will be
discussed in Section 2.1. After which, the incorporation of some significant network characteristics into a routing
problem is discussed in Section 2.2. Section 2.3 reviews relevant studies within the airport cargo transportation
industry. Finally, the proposed literature gap to be filled by this thesis is described in Subsection 2.4

2.1. Pick-up and Delivery Problem
The PDP originates from the Travelling Salesman Problem (TSP). The TSP describes the problem of finding the route
with the least costs for a vehicle to visit every customer in a network exactly once and returning to the first customer
[16]. The network can be modeled as a graph with nodes and edges. Nodes represent customers, and edges rep-
resent the distance between two customers. A generalization of the TSP is the Vehicle Routing Problem (VRP). The
VRP describes the problem of finding a set of least-cost routes for a vehicle to visit every customer exactly once while
starting and ending each route from a depot [10]. Compared with the TSP, multiple routes can be constructed and
executed by one or multiple vehicles. A generalization of the VRP is the Pick-up and Delivery Problem (PDP) (or
the Vehicle Routing Problem with Pick-up and Delivery (VRPPD)), which describes the problem of assigning a set
of least-cost routes to a vehicle such that commodities are picked up and delivered between locations in a network.
Lokin [21] first described the PDP variation of the VRP. Compared to the VRP, additional constraints regarding prece-
dence relations are included in the problem formulation to ensure that a commodity is picked up before delivery.
The PDP is a widely studied problem as different problem characteristics result in numerous variations. Psarafatis
et al. [26] and Berbeglia et al. [4] define classification schemes to describe various PDP characteristics. Even though
characteristics are distinct, some characteristics are interdependent.

The context of this proposal’s problem already defines fixed characteristics that should included in the PDP for-
mulation, while other PDP characteristics remain undefined during this proposal stage. First, the fixed and unfixed
PDP characteristics of the problem formulated in this proposal are defined in Subsection 2.1.1. Then, literature with
(almost) similar fixed characteristics and various combination of the unfixed characteristics are reviewed. Subsec-
tion 2.1.2 and Subsection 2.1.3 review PDP that are both deterministic, while the PDPs in the first Subsection are
static and in the latter the PDPs are dynamic. Subsection 2.1.4 describes static and stochastic PDPs. Finally, dynamic
and stochastic PDPs are reviewed in Subsection 2.1.5

2.1.1. Characteristics of the Pick-up and Delivery Problem
The structure of the PDP at hand is one-to-one (1-1). This means that a commodity has a specific pick-up and
delivery node, sometimes called paired pick-ups and deliveries. Multiple vehicles are considered in the problem.
However, whether the number of vehicles is limited or unlimited depends on other characteristics. At customer
nodes, commodities are picked up and/or delivered, which might be performed either separately or combined. The
commodity pick-up and delivery times are important for the context of the proposal’s problem. Accordingly, time
constraints in the form of the earliest pick-up and delivery time windows are part of the PDPs’ formulation. A dis-
tinction is made between hard and soft time windows. Hard time window constraints cannot be violated, while soft
time window constraints can be violated in return for a penalty in the objective function. Whether time window
constraints are hard or soft is not yet defined, as this decision also depends upon other PDP characteristics. Finally,
the problem context specifies that vehicles have limited capacities and that pick-up and delivery requests may not
be rejected.

The type of time constraint, limited or unlimited vehicles, and customer rejection are interdependent PDP char-
acteristics, as some combinations can lead to infeasible problems. In the proposal’s problem context, only customer
rejection is fixed. The other two characteristics (multiple vehicles and some type of time constraints) are partially
defined. Their exact formulation is defined in a later stage of the research.

Unfixed characteristics are the type of problem, objective function, and solution method. PDPs can be classified
into four types of problems: Static and Deterministic (SD), Static and Stochastic (SS), Dynamic and Deterministic
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(DD), and Dynamic and Stochastic (DS). A PDP is SD unless otherwise specified. Static in the PDP context means all
inputs are available and fixed before the routes between requests are determined. Deterministic in PDPs means all
inputs are known with certainty. Dynamic refers to the fact that inputs are received and/or updated simultaneously
with the route determination and execution. The following dynamic elements can be included in PDPs according to
literature ([26], [6]): requests (including new requests, cancellations, changes in locations, and/or demands), vehicle
availability, travel times, and service times. The first three elements could fit the problem definition. As mentioned
before, the demand in the air cargo industry is highly unpredictable due to the short time intervals between booking
and transportation and cargo (partial) no-shows [11]. Besides, the vehicle availability for airside cargo transportation
depends on the materials and drivers available. The travel times rely on the service road network’s real-time traffic
and road conditions. The loading and unloading of dollies by the truck would result in service times; however,
variations in service times are outside the scope of this research. Stochastic, in terms of the PDP, refers to inputs
with probabilities or probability distributions. Psaraftis et al. [26] and Oyola et al. [25] distinguish the following
stochastic elements: request (location and demand size), travel time, and service time. Again, variation in service
time is outside the scope of this research, but the other two stochastic elements could fit the problem’s context. It
is argued that solving the PDP without considering real-life conditions or uncertainties during the planning stage
results in poor results in the operational stage [30].

The problem’s objective function is not yet defined at this stage. Common minimization objective functions in
PDPs are route cost, route distance, travel time, total lateness, number of vehicles, service cost, customer dissat-
isfaction, and makepan. Common maximization objectives in the PDP are quality of service and profit. Multiple
objectives are also frequently used in PDPs.

Finally, the solution method is a very broad class. PDP can be solved using exact, heuristic, meta-heuristic, and
learning-based methods. The solution method is usually selected based on considering computational time and
acceptable deviation from the optimal solution.

Exact methods provide optimal solutions, such as branch-and-bound, branch-and-cut, and branch-and-price
algorithms. These algorithms only provide optimal solutions in the current state of the problem and thus do not
guarantee optimality in dynamic PDPs, where new information arrives throughout the solution process [6]. Besides,
the PDP problem is computationally complex and belongs to the class of NP-hard problems. Subsequently, solving
the problem to optimality within a reasonable computational time requires small problem instances. According to
Cai et al. [6], there is little hope of substantially improving exact methods to solve larger instances. However, exact
methods are sometimes combined with other solution methods to solve the problem.

Heuristics usually obtain good-quality results in short computational times by using simple rules. A frequently
used heuristic in PDPs is the insertion heuristic, in which a set of small initial routes are extended by inserting cus-
tomers into the route [6]. Local search heuristics are also used to solve the PDP [4]. This heuristic starts with an
initial feasible solution, which is a set of feasible routes. The neighborhood of the solution is explored to find slightly
different solutions. Once an improved solution has been found, that solution is adopted. Accordingly, the process is
repeated iteratively until no improved solution can be found.

Meta-heuristics are problem-independent algorithms that use strategies to develop heuristics for an optimiza-
tion problem. The main meta-heuristics used to solve PDPs are Variable Neighborhood Search (VNS), Tabu Search
(TS), Evolutionary Algorithm (EA), and Swarm Intelligence (SI). VNS systematically changes the search space of local
search to avoid getting trapped in local optima and search the solution’s neighborhood more extensively. TS searches
the solution space by iteratively moving from a current solution to the best neighboring solution, even when this
leads to deteriorating objective value. Moving from a current solution to the previous solution is prohibited for a
certain number of iterations. EA are techniques based on biological concepts, including the Genetic Algorithm (GA).
GA is inspired by the biological natural selection process. It starts with a set of feasible solutions, of which the best
solutions are iteratively changed using mutation and cross-over procedures. Finally, SI is inspired by the behavior of
natural systems. Two commonly used SI algorithms are Ant Colony Optimization and Particle Swarm Optimization.
Both are based on a population of agents interacting with an environment to achieve a collective goal.

The final class of solution methods is learning-based methods, in which models learn from training sets to de-
termine an optimization approach for a problem. However, as this solution method requires training sets, it is not
deemed applicable to this problem context. Therefore, only exact methods, heuristics, and metaheuristics are con-
sidered in further literature review.

In summary, the proposal’s problem is a 1-1 PDP with multiple vehicles, time constraints, limited vehicle capac-
ity, and no customer rejection. The criteria that are still open for definition are a type of time constraint, limited or
unlimited number of vehicles, type of problem, objective function, and solution method. Unless indicated other-
wise, all papers presenting a PDP in the literature review have similar characteristics as the fixed characteristics of
the proposal’s problem. The purpose of the coming subsections is to present an overview of relevant papers with
different unfixed characteristic combinations.

For a full review of all possible characteristic combinations, refer to one of the following surveys: [4] for a survey
on static PDPs, to [6] for a review of dynamic PDPs, [25] for a review on stochastic PDPs, and to [26] for a survey of
dynamic and/or stochastic PDPs.
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2.1.2. Static and Deterministic Pick-up and Delivery Problem

Three SD PDPs are reviewed and an overview is provided in Table 2.1. Dumas et al. [12] present a PDP in which the
time windows are hard, and the number of vehicles is unlimited. The latter is minimized in the objective, together
with the total travel cost. The paper formulates the PDP as a Set Partitioning Problem (SPP). To solve the PDP with an
SPP, a set of all possible feasible routes is generated. The goal of the SPP is to select the subset of routes that satisfies
the constraints while optimizing the objective. The paper proposes an exact algorithm to solve the problem using
column generation. The paper illustrates that time windows and the number of requests significantly influence the
algorithm’s computational time. The problems evaluated in this problem range between 19 and 55 requests. Mitrovi-
Mini and Laporte [23] solve a PDP using an insertion heuristic. This research studies a PDP with transhipments and
shows that the use of transhipments reduces total travel distance, especially in large problem instances. Nanry and
Barnes [24] propose a TS for the PDP. Results show that this metaheuristic’s computational time is consistently faster
than that of exact methods while optimal or near-optimal solutions are obtained.

Table 2.1: Reviewed papers of SD PDPs with identical characteristics to the proposal’s problem

Ref Type
Time
constraint

Amount of
vehicles

Dynamic
element

Stochastic
element

Solution
method

Deviation Addition

[12] SD Hard Inf. Exact +
CG

SPP

[23] SD Hard Inf. Insertion
Tranship-
ments

[24] SD Soft Limited TS

2.1.3. Dynamic and Deterministic Pick-up and Delivery Problem

Six DD PDPs are reviewed with varying stochastic elements. An overview of these papers is provided in Table 2.2.
Fabri and Recht[15], Cheung et al. [8], and Li et al. [20] all present a dynamic PDP with similar characteristics
to this proposal’s problem, except that they all allow for customer rejection. This is required to avoid infeasible
problem formulations, as the time windows are hard and the number of vehicles is limited. Fabri and Recht [15]
include dynamically arriving requests into the problem. It proposes a two-stage solution algorithm that first assigns
requests to vehicles using a local search heuristic, after which the vehicles are optimally routed. Whenever a new
request arrives, it is either accepted or rejected based on whether a feasible solution can be found for a vehicle
while incorporating the new request. Cheung et al. [8] include both dynamically arriving requests and dynamic
travel times. Dynamic travel times are obtained by translating real-time GPS data (such as vehicle location and
distribution over the network) into travel time. The problem is solved by initially solving a static problem using
a GA. A re-optimization is performed every time a request or travel time update arrives. A new request is either
served by a new vehicle,ăif not all vehicles are occupied. Otherwise, the request is inserted into an existing route
using an insertion heuristic, after which a refinement procedure is applied to improve the solution. A request is
rejected if there is no feasible way to include it in the solution. The refinement procedure is also applied after travel
time updates because this influences the total travel time objective. The dynamic element in Li et al. [20] is vehicle
availability, in which the problem formulation allows for service disruptions due to vehicle breakdowns. Accordingly,
vehicles need to be rerouted to perform unfinished requests by broken-down vehicles. The solution method is an
insertion heuristic combined with Lagrangian relaxation.

Beaudry et al. [3] consider a Dial-a-Ride Problem (DARP), which is a special form of the PDP in which persons
are transported instead of goods. The paper describes the problem of patient transportation in hospitals where new
requests arrive dynamically. At initialization, empty routes are scheduled. Beaudry et al. [3] use a two-stage solution
approach that is iteratively used whenever a new request arrives. First, a new request is inserted into an existing
route, after which the current solution is optimized using an improved TS. Taniguchi and Shimamoto [29] present a
similar PDP with dynamic travel time; apart from that, it is not a 1-1 problem. Instead, the problem is formulated as
a one-to-many-to-one (1-M-1) problem that considers the transportation of one commodity type between a depot
and customers. The travel times are determined and updated using a dynamic traffic simulation. This simulation
consists of two components: flow simulation and route choice simulation. The study adopts a GA to calculate a
solution, which is recalculated every time the travel time is updated. Results of the study indicate that including
real-time dynamic travel times in the model reduces total costs compared to forecasting travel times. Haghani and
Jung [18] describe a PDP with time-dependent travel times and dynamic requests. The PDP has a one-to-many-
to-one structure instead of a 1-1 structure as the proposal’s problem. In this problem, one type of commodity is
considered that is transported between customers and a depot. The problem’s time period is divided into discrete
time intervals. Accordingly, a travel time is defined for every network connection at all intervals. Every time interval,
the travel times are updated, new requests are incorporated into the existing routes, and the routes are revised. If
this leads to infeasibility, new vehicles are included in the problem. This study shows that the dynamic version of the
PDP becomes superior to the static PDP when uncertainty in travel time increases.
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Table 2.2: Reviewed papers of DD PDPs with identical characteristics to the proposal’s problem

Ref Type
Time
constraint

Amount of
vehicles

Dynamic
element

Stochastic
element

Solution
method

Deviation Addition

[15] DD Hard Limited Requests
Exact +
LS

CR

[8] DD Hard Limited
Requests
+ TT

GA CR
GPS
data

[20] DD Hard Limited
Vehicle
avail.

Insertion
+ LR

CR
Vehicle
failure

[3] DD Soft Limited Requests
Insertion
+ TS

DARP

[29] DD Soft Limited TT GA

[18] DD Soft Limited Requests GA 1-M-1
Time
dep. TT

2.1.4. Static and Stochastic Pick-up and Delivery Problem
Typically, stochastic formulations of the PDP contain one or two stochastic elements due to the difficulty of solving
problems with many stochastic elements [25]. The reviewed SS PDPs are summarized in Table 2.3.

Christiansen and Lysgaard [9] present a PDP with stochastic demand size, meaning that only a probability dis-
tribution of customers’ demand size is known when the routes are determined. The structure of the PDP is many-
to-many (M-M) instead of 1-1, meaning that a customer’s pick-up demand can be used to satisfy the demand of any
delivery customer. The paper formulated the PDP as an SPP, which is solved using a column generation algorithm.

Tas et al. [30] and Tas et al.[31] both present an M-M PDP including stochastic travel times. The travel times used
have a known probability distribution, and the actual travel times become available after finding the solution. Con-
sequently, earliness and lateness at a customer are penalized in the objective function. Tas et al. [30] first construct
a feasible solution using an insertion heuristic while taking into account the stochastic travel time variations. The
feasible solution is then improved by using a TS. In [31], the problem is formulated as an SPP, and an exact solution
is found by combining column generation with a branch-and-price algorithm.

Table 2.3: Reviewed papers of SS PDPs with identical characteristics to the proposal’s problem

Ref Type
Time
constraint

Amount of
vehicles

Dynamic
element

Stochastic
element

Solution
method

Deviation Addition

[9] SS Hard Limited Request
Exact +
CG

M-M SPP

[30] SS Soft Limited TT
Exact +
CG

M-M

[31] SS Soft Limited TT
Insertion
+ TS

M-M SPP

2.1.5. Dynamic and Stochastic Pick-up and Delivery Problems
Three papers that combine dynamic and stochastic elements are reviewed. An overview is provided in Table 2.4.
Schilde et al. [28] consider a DARP including dynamic requests, time-dependent travel speed, and stochastic travel
speeds. Some requests are static, while others become known after the start time of the problem. Time-dependent
travel speeds are determined based on historical data before the problem starts. Actual travel speeds, including
stochastic influences, are revealed once a vehicle departs. Routes cannot be changed after the vehicle departs the
depot, while the actual travel speeds influence the objective value. Besides, the influence of traffic accidents on travel
speed is included using the probability of accidents during hours of the day based on historical accidents. The model
is solved using a two-stage approach. First, an initial solution is generated in which requests are sequenced into
routes, after which the routes are improved using a dynamic or dynamic stochastic variation on the VNS. Second,
the routes are scheduled based on time constraints while considering time-dependent travel times. Introducing
time-dependent and stochastic travel speeds into the problem significantly reduces time window violations in real-
life situations, as changing traffic conditions are considered.

Yang et al. [37] propose a similar PDP problem as described in this proposal, except that it allows customer
rejection, extended by dynamic requests. The paper evaluates several optimization strategies, including a policy
considering stochastic requests with a known probability distribution. Results indicate that the strategy, including
stochastic requests, performed best.

Xiang et al. [36] introduce a dynamic and stochastic PDP that satisfies the fixed criteria, except that it allows
customer rejection. The dynamic element is the requests that arrive throughout the problem, and the travel times
are stochastic.
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Table 2.4: Reviewed papers of DS PDPs with identical characteristics to the proposal’s problem

Ref Type
Time
constraint

Amount of
vehicles

Dynamic
element

Stochastic
element

Solution
method

Deviation Addition

[28] DS Soft Inf. Request
Requests
+ TT

Multiple
heuristics

DARP
Time
dep. TT

[37] DS Hard Limited Requests Location
Insertion
+ LS

CR

[36] DS Hard Limited Requests TT
Insertion
+ LS

DARP,
CR

2.2. Network characterisitics
Two main aspects of the airside cargo transportation system at Schiphol are two characteristics of Schiphol’s service
road network: the service roads’ capacity, including that of the Kaagbaantunnel, and the Kaagbaantunnel’s reliability.
This section reviews related papers on PDP-related problems incorporating flow-dependency and tunnel availability
in Subsection 2.2.1 and Subsection 2.2.2.

2.2.1. PDP and flow-dependent travel times
Some references to PDPs with stochastic and dynamic travel times were already presented in the previous section.
Cheung et al. [8] use GPS data to update traffic conditions dynamically, while Taniguchi and Shimamoto [29] use a
traffic simulation model based on real-time traffic distributions for this purpose. The first approach can only be used
during the operational use of the model, as actual GPS data is required. The latter requires a separate simulation
model. Besides, Haghani and Jung [18] and Schilde et al. [28] include time-dependent travel times and speeds,
respectively. An average travel time or speed is determined for each time period. Tas et al. [30] and Tas et al. [31]
use stochastic travel times, in which real travel times only become available after the routes are determined. These
models aim to construct routes considering possible travel time variations. These approaches require knowledge
about traffic distribution before solving the problem. They do not consider the effect of the vehicles scheduled by
the problem on the resulting traffic flow. Subsequently, the effects of traffic flows exceeding the road’s capacity are
not included. Although it is known that traffic flow, capacity, and travel speed are strongly related [35].

Even though traffic flow and travel speed are highly dependent upon each other, not one PDP with flow-dependent
travel speed (or travel time) has been found in the literature. Besides, only limited work considering flow dependency
within PDP-related problems has been found. Two papers are discussed in which the effect of the scheduled traffic
is taken into account in determining the travel times.

Van Woensel et al. [35] describe a VRP with dynamic travel times based on the queueing theory. It considers an
unlimited number of vehicles with limited capacity, no time windows, and no customer rejection. Moreover, it com-
pares the queueing theory approach for dynamic travel times with two descriptive approaches. The first descriptive
approach is time-independent travel times in which an average speed for the entire time period is determined. The
second descriptive approach is time-dependent, in which the time period is divided into three time steps, and an
average speed for each time step is determined. These approaches model the outcome of the speed-flow-density
diagrams, which describe the traffic flow theory. In contrast, the queueing theory approach models the underlying
process that results in the speed-flow-density diagram, allowing a more analytical approach. The presented model
by Van Woensel et al. [35] divides roads into road segments of a minimum vehicle length. Each road segment is
considered as a service station. The time a vehicle travels through the service station is called the service time. The
paper uses a state-dependent GI/G/m queueing model in which the service time is a function of the traffic flow. The
service time of each service station is determined based on the length of the service station and speed. The speed can
be determined by correcting the free flow speed with a congestion factor. The free flow speed is the speed without
any waiting time (due to congestion). The congestion factor depends on several factors based on traffic conditions
and network characteristics. In the flow-dependent model, the speed for every service station is updated every 10
minutes based on traffic conditions. The model uses a TS solution method. Results show that the queueing approach
outperforms the other approaches significantly in terms of minimizing travel costs, although computational times
increased.

Hou et al. [19] consider a ride-matching problem with associated vehicle routing. It is closely related to the DARP
model, but the drivers themself also have an origin and destination in which the ride-matching should be inserted.
The model has hard time windows, limited vehicle capacity, a limited number of vehicles, and customer rejection is
allowed. The paper presents a flow-dependent model in which the delays at nodes depend on the traffic flows on
closely located arcs. The paper suggests that congestion at one point of the network influences geographically close
areas. Therefore, it defines the network into several areas that are geographically close. Accordingly, delays are mod-
eled as service times at nodes using a delay function. The delay function is defined for each area using an M/M/1
queueing model based on service times without delays and the flow on arcs within the area. This delay function is
incorporated into the constraint that defines node arrival times. The model uses a LNS heuristic. The objective func-
tion of the model is to minimize the total travel time. As expected, the objective function was significantly increased
compared to an instance of the problem that does not consider any congestion. In addition, the computational time
increased increased.
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Ref Type
Time
constraint

Amount of
vehicles

Dynamic
element

Stochastic
element

Solution
method

Deviation Addition

[35] DD Non Limited TT TS VRP
Queueing
theory

[19] DD Hard Limited TT LNS CR,
DARP+

2.2.2. PDP and tunnel reliability
Despite the fact that network uncertainty can be caused by various reasons (road blockades, traffic accidents, road
construction), no PDP or PDP-related studies regarding dynamically changing networks have been found during this
literature review. However, uncertain networks are included in humanitarian logistic designs, in which emergency
support should be distributed as quickly as possible after a natural disaster to minimize human suffering and deaths.
These models consider uncertain road availability due to the chance of a natural disaster closing a road. For instance,
Mete and Zabinsky [22] and Tofighi et al. [32] both consider a two-stage approach. In the first stage, humanitarian
logistics are planned without knowing the effects of the natural disaster. During the second stage, road unavailability
due to natural disasters becomes accessible. The planned humanitarian logistics are adjusted accordingly. In both
papers, road unavailability is implicitly modeled as very long (almost infinite) travel times.

2.3. Airport Cargo transportation
This final section presents transportation-related studies on airport cargo transportation, which can be divided into
landside and airside transportation. In landside transportation, the cargo is transported by trucks between the
freight forwarder and the cargo handler. Although landside cargo transportation is outside this research’s scope,
many similarities can be found with airside cargo transport. Hence, studies on landside transport are reviewed in
Subsection 2.3.1. Airside cargo transportation involves all activities between the cargo handler’s landside and the
aircraft. The activities within the cargo terminal are outside the scope of this research. Hence, only the transporta-
tion between the cargo handler’s airside and the aircraft is considered in the airside cargo transportation. Papers on
airside transportation are discussed in Subsection 2.3.2. PDP papers on both landside and airside transportation are
summarized in Table 2.5.

2.3.1. Landside cargo transportation
Many articles study landside cargo transportation at airports. Azadian et al. [2] present a PDP concerning landside
cargo transportation from the freight forwarder’s perspective in a multi-airport region. The goal of the problem is
to optimize the pickup and delivery of cargo between the freight forwarder’s depot and one of the airports, taking
into account airports’ flight itineraries. The PDP is DD with one commodity type and considers soft time windows,
limited vehicles, and no customer rejection. The included dynamic element is time-dependent delivery costs. The
model is solved using a Successive Subproblem Solving (SSS) method. Bombelli and Fazi [5] demonstrate the benefits
of collaboration among freight forwarders in landside cargo transportation under truck docking space constraints
using a hybrid version of the PDP and a Machine Scheduling Problem (MSP). The PDP concerns truck routing, while
the latter schedules the sequence of the trucks at the ground handlers’ docks. The PDP is formulated as an SD with
one commodity type that does not allow customer rejection, contains hard time windows, and has a limited number
of trucks. The model is solved using CPLEX, but a variation on the LNS metaheuristic has been developed to improve
computational times.

Ankersmit et al. [1] and Romero-Silva and Mota [27] consider the potential of horizontal collaboration by freight
forwarders in landside cargo transportation between cargo handlers and customers using a simulation model of
Schiphol. Collaborating freight forwarders share their truck capacity to transport consolidated cargo shipments
Ankersmit et al. [1] consider one ground handler and multiple freight forwarders, which are all collaborating. This
study’s main finding is that collaboration among all freight forwarders can significantly improve the performance of
landside cargo transportation while reducing costs. Romero-Silva and Mota [27] consider all five ground handlers at
Schiphol Airport and include that only part of the freight forwarders collaborate. This study shows that horizontal
collaboration is not always beneficial when not all freight forwarders are included in the collaboration. In some
cases, the collaboration of some freight forwarders only benefits the non-collaborating freight forwarders.

2.3.2. Airside cargo transportation
To my best knowledge, the only airside cargo transportation-related research studies the redesign of KLM Cargo’s
cargo handling procedure for outbound cargo to comply with the Clean VOP strategy of Schiphol Airport [34]. The
study evaluates different cargo handling strategies using a Discrete-Event Simulation. The strategies are push sys-
tems, pull systems, and variations on such systems. The main difference between this study and the research pro-
posed in this proposal is that it is a simulation study that focuses on the interaction of the vehicles within the en-
vironment, while the proposed research aims to study the flow of the network. Besides, van Rugge [34] exclusively
concerns outbound cargo and no dynamic elements are included, only stochastic aircraft arrival times.

Other studies that consider airside transportation consider other ground-handling activities other than cargo
transportation. For instance, Guo et al. [17] propose an improved GA to be applied to solve airside baggage trans-
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port PDP. The PDP considers the pick-up and delivery of baggage between a depot and an aircraft. The PDP is SD,
contains hard time windows, unlimited vehicles with limited capacity, and does not allow customer rejection. Zhu
et al. [38] study a VRP of two types of ground handling services (refuellers and shuttle buses) considering flight ar-
rival time uncertainty. The VRP is SS and contains soft time windows, a limited number of vehicles, and does not
allow customer rejection. The model is solved using CPLEX. The aim of including this uncertainty is to increase
resource utilization by minimizing service costs and time losses. The study demonstrates that including flight time
uncertainty results in significant service improvement.

Moreover, recent studies on airside transportation focus on autonomous airside transportation. Chen et al. [7]
and van der Zwan [33] consider fully autonomous ground handling. Whereas Duzijn [13] focuses on towing oper-
ations only. Instead of using a linear programming approach, these studies use agent-based modeling to allocate
tasks among agents and route collision-free paths. The latter is not an objective in this study.

Table 2.5: Reviewed papers of PDPs (or related models) within airport cargo transportation

Ref Type
Time
constraint

Amount of
vehicles

Dynamic
element

Stochastic
element

Solution
method

Deviation Addition

[2] DD Soft Limited Delivery
cost

SSS

[5] SD Hard Limited Exact +
LNS

PDP +
MSP

Collabor-
ation

[17] SD Hard Inf. GA

[38] SS Soft Limited
Task
arrival

Exact VRP

2.4. Literature gap
In summary, the PDP is a widely studied problem with numerous characteristic combinations applied to many lo-
gistical problems. However, the PDP has not yet been applied to airside cargo transportation, which will be the focus
of the proposed thesis. Airside cargo transportation contributes considerably to the overall traffic movements on the
service roads. Therefore, the impact of airside cargo transportation on traffic flow needs to be considered. Traffic
flow is related to travel speed and, accordingly, to travel time. Hence, including flow-dependent travel times in the
PDP is fundamental. The only two papers found using flow-dependent travel times incorporate queueing theory
into a VRP and a DARP. To my best knowledge, no literature on PDPs with flow-dependent travel times is available.
This is the knowledge gap that the proposed thesis aims to fill. Finally, the thesis also aims to incorporate stochastic
road availability into a PDP, as tunnel closure is a main characteristic of the studied service road network at Schiphol.
The incorporation of road availability in a PDP has also not been encountered during this literature study.
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Methodologies

A research framework is used to structure and systematically perform the thesis research. The proposed research
framework is an adapted version of the Engineering Design Process by [14]. According to Dym and Brown, the Engi-
neering Design Process is "the systematic, intelligent generation and evaluation of specifications for artifacts whose
form and function achieve stated objectives and satisfy specified constraints" [14]. In terms of this research, a new
belly cargo transportation strategy is designed and evaluated. The strategy must perform a certain function while
adhering to the requirements of the air cargo transportation system

The research framework comprises five phases: research proposal problem definition, conceptual design, strat-
egy design, and the concluding phase. This research framework is presented in Figure 3.1. All phases, including their
steps and methods, are described in detail below.

Figure 3.1: Research framework including phases and corresponding steps and methods

The research proposal phase involves the development of this research proposal. It outlines the context of the prob-
lem, objective, research questions, scope, assumptions, literature review, research framework, and research plan-
ning.

The objective of the problem definition phase is to understand the current state system thoroughly and to ana-
lyze the problems and shortcomings within the system subsequently. Desk research and expert interviews will map
the state of the current and new cargo transportation system. The desk research is used to get a general overview of
the system. However, not all aspects of the system are documented, especially not airport-specific or cargo handler-
specific details. Therefore, expert interviews are fundamental to thoroughly understanding the system at Schiphol
for cargo handlers such as KLM Cargo. Every step of the cargo transportation process is systemically outlined using
an activity diagram (and/or swimlane diagram). This provides a detailed overview of the activities within the process
that influence and depend upon each other. Moreover, a network analysis is performed to study the characteristics
of different parts of the network and their interdependencies. These characteristics include capacity, average speed,
traffic flow (of non-cargo handling vehicles), reliability, rules, and regulations. In particular, the Kaagbaantunnel,
its specifications, and the tunnelwet are examined extensively. KPIs are identified and used to quantify the current
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system’s performance. In addition, expectations for the new system’s KPIs are predicted. This performance infor-
mation is then used to expose and analyze critical points within the process, such as process shortcomings, bottle-
necks, complexities, and/or unused redundancies. Root causes for the critical points are analyzed. In a later phase,
these critical points are used to determine future cargo transportation strategies. Moreover, a stakeholder analysis is
performed to obtain stakeholders’ perspectives on the process. Their interest and power within the system are de-
termined, which is used to decide how to weigh their perspectives and thoughts on the system, obtained during the
expert interviews. In contrast, optional targets and restrictions are not crucial to constitute a representative system
image.

The purpose of the conceptual design phase is to develop a baseline model for the system. The model require-
ments are defined based on the retrieved system information in the previous phase. These requirements also define
further PDP characteristics, such as objective function, dynamic and stochastic elements, type of time constraints,
and limited or unlimited number of vehicles. Accordingly, the model requirements are used to define the model’s
solution approach. The solution approach provides insight into the method used to obtain the desired outputs from
the inputs. It comprises intermediate steps to be taken, such as data generation/preprocessing, PDP formulation,
solution method, model assumptions, and simplifications. A queueing model that complies with the system re-
quirements is integrated into the PDP formulation. Additionally, the availability of the tunnel is incorporated into
the solution approach. Then, the solution approach is verified to assess whether it complies with the system re-
quirements. Subsequently, a computer model in Python is assembled based on the validated conceptual model. The
computer model is validated using the KPIs for the current and new cargo transportation systems. Real KPI values
are used for the current system, and the expected KPI values are used for the new system.

Different cargo transportation strategies are evaluated in the future design phase. To do so, first, the different
cargo transportation strategies are determined based on the identified critical points within the cargo transportation
system. Then, a variation on the baseline model is constructed for every cargo transportation strategy by changing
the model inputs or some of the constraints. Accordingly, the performance of the cargo transportation system under
the various cargo transportation strategies is evaluated. This evaluation is performed using either a scenario or
strategy analysis, which results in a ranking of the various strategies.

Finally, the concluding phase provides the main findings, conclusions, and recommendations of this research.
In this phase, the main research question is answered.



4
Planning

This chapter provides the research planning in Figure 4.1 and Figure 4.2. The planning includes the phases of the
methodology and the corresponding steps of each phase. Red stars indicate deliverables or reviews. The provisional
dates for the deliverables and reviews, in chronological order, are:

• Friday, 25 October 2024: Mid-term deliverable
• Friday, 1 November 2024: Mid-term review
• Wednesday, 13 January 2025: Draft thesis deliverable
• Wednesday, 5 February 2025: Green light review
• Friday, 28 February 2025: Research portfolio deliverable
• Friday, 14 March 2025: Thesis defense

Six weeks of the holiday have been included in the planning. Two weeks (Holiday W1 and W6) are fixed, while the
dates of the other four holiday weeks are tentative. These four weeks can also be used for unforeseen circumstances
like illnesses or other thesis work interruptions.

Figure 4.1: Thesis planning from thesis week 7 until week 19. PD = Problem Definition phase, CD = Conceptual Design phase, FD = Future Design
phase, C = Concluding phase
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Figure 4.2: Thesis planning from thesis week 19 until week 32. PD = Problem Definition phase, CD = Conceptual Design phase, FD = Future Design
phase, C = Concluding phase
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[7] Chen, S.-T., Ermiş, G., and Sharpanskykh, A. (2023). Multi-agent planning and coordination for automated air-
craft ground handling. Robotics and Autonomous Systems, 167:104480.

[8] Cheung, B. K.-S., Choy, K., Li, C.-L., Shi, W., and Tang, J. (2008). Dynamic routing model and solution methods
for fleet management with mobile technologies. International Journal of Production Economics, 113(2):694–705.
Special Section on Advanced Modeling and Innovative Design of Supply Chain.

[9] Christiansen, C. H. and Lysgaard, J. (2007). A branch-and-price algorithm for the capacitated vehicle routing
problem with stochastic demands. Operations Research Letters, 35(6):773–781.

[10] Dantzig, G. B. and Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1):80–91.

[11] Delgado, F. and Mora, J. (2021). A matheuristic approach to the air-cargo recovery problem under demand
disruption. Journal of Air Transport Management, 90:101939.

[12] Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem with time windows. European
Journal of Operational Research, 54(1):7–22.

[13] Duzijn, M. (2023). Integrating multi-agent task allocation and path planning to minimize delays of aircraft
engine-off towing operations.

[14] Dym, C. L. and Brown, D. C. (2012). Engineering design: Representation and reasoning. Cambridge University
Press.

[15] Fabri, A. and Recht, P. (2006). On dynamic pickup and delivery vehicle routing with several time windows and
waiting times. Transportation Research Part B: Methodological, 40(4):335–350.

[16] Flood, M. M. (1956). The Traveling-Salesman Problem. Operations Research, 4.

[17] Guo, W., Xu, P., Zhao, Z., Wang, L., Zhu, L., and Wu, Q. (2020). Scheduling for airport baggage transport vehicles
based on diversity enhancement genetic algorithm. Natural Computing, 19:663–672.

[18] Haghani, A. and Jung, S. (2005). A dynamic vehicle routing problem with time-dependent travel times. Com-
puters & Operations Research, 32(11):2959–2986.

[19] Hou, L., Li, D., and Zhang, D. (2018). Ride-matching and routing optimisation: Models and a large neighbour-
hood search heuristic. Transportation Research Part E: Logistics and Transportation Review, 118:143–162.

[20] Li, J.-Q., Mirchandani, P. B., and Borenstein, D. (2009). Real-time vehicle rerouting problems with time windows.
European Journal of Operational Research, 194(3):711–727.

[21] Lokin, F. (1979). Procedures for travelling salesman problems with additional constraints. European Journal of
Operational Research, 3(2):135–141.

44



Bibliography 45

[22] Mete, H. O. and Zabinsky, Z. B. (2010). Stochastic optimization of medical supply location and distribution in
disaster management. International Journal of Production Economics, 126(1):76–84.

[23] Mitrovi-Mini, S. and Laporte, G. (2006). The pickup and delivery problem with time windows and transship-
ments. Information Systems and Operational Research, 44(3):613–622.

[24] Nanry, W. P. and Barnes, J. W. (2000). Solving the pickup and delivery problem with time windows using reactive
tabu search. Transportation Research Part B: Methodological, 34(2):107–121.

[25] Oyola, J., Arntzen, H., and Woodruff, D. L. (2018). The stochastic vehicle routing problem, a literature review,
part i: models. EURO Journal on Transportation and Logistics, 7(3):193–221.

[26] Psaraftis, H. N., Wen, M., and Kontovas, C. (2016). Dynamic vehicle routing problems: Three decades and
counting. Networks, 67(1):3–31.

[27] Romero-Silva, R. and Mota, M. M. (2022). Trade-offs in the landside operations of air cargo hubs: Horizontal
cooperation and shipment consolidation policies considering capacitated nodes. Journal of Air Transport Man-
agement, 103:102253.

[28] Schilde, M., Doerner, K., and Hartl, R. (2014). Integrating stochastic time-dependent travel speed in solution
methods for the dynamic dial-a-ride problem. European Journal of Operational Research, 238(1):18–30.

[29] Taniguchi, E. and Shimamoto, H. (2004). Intelligent transportation system based dynamic vehicle routing and
scheduling with variable travel times. Transportation Research Part C: Emerging Technologies, 12(3):235–250. In-
telligent Transport Systems: Emerging Technologies and Methods in Transportation and Traffic.

[30] Tas, D., Dellaert, N., van Woensel, T., and de Kok, T. (2013). Vehicle routing problem with stochastic travel times
including soft time windows and service costs. Computers Operations Research, 40(1):214–224.

[31] Tas, D., Gendreau, M., Dellaert, N., van Woensel, T., and de Kok, A. (2014). Vehicle routing with soft time win-
dows and stochastic travel times: A column generation and branch-and-price solution approach. European Jour-
nal of Operational Research, 236(3):789–799. Vehicle Routing and Distribution Logistics.

[32] Tofighi, S., Torabi, S. A., and Mansouri, S. A. (2016). Humanitarian logistics network design under mixed uncer-
tainty. European journal of operational research, 250(1):239–250.

[33] van der Zwan, M. (2023). Multi-agent task allocation and path planning for autonomous ground support equip-
ment.

[34] van Rugge, T. (2019). A-pier clean vop.

[35] Van Woensel, T., Kerbache, L., Peremans, H., and Vandaele, N. (2008). Vehicle routing with dynamic travel times:
A queueing approach. European journal of operational research, 186(3):990–1007.

[36] Xiang, Z., Chu, C., and Chen, H. (2008). The study of a dynamic dial-a-ride problem under time-dependent and
stochastic environments. European Journal of Operational Research, 185(2):534–551.

[37] Yang, J., Jaillet, P., and Mahmassani, H. (2004). Real-time multivehicle truckload pickup and delivery problems.
Transportation Science, 38(2):135–148.

[38] Zhu, S., Sun, H., and Guo, X. (2022). Cooperative scheduling optimization for ground-handling vehicles by
considering flights uncertainty. Computers & Industrial Engineering, 169:108092.


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	I Scientific Paper
	II Literature Study
	Introduction
	Background
	Research Objective
	Research Questions
	Scope
	Proposal structure

	Literature review
	Pick-up and Delivery Problem
	Characteristics of the Pick-up and Delivery Problem
	Static and Deterministic Pick-up and Delivery Problem
	Dynamic and Deterministic Pick-up and Delivery Problem
	Static and Stochastic Pick-up and Delivery Problem
	Dynamic and Stochastic Pick-up and Delivery Problems

	Network characterisitics
	PDP and flow-dependent travel times
	PDP and tunnel reliability

	Airport Cargo transportation
	Landside cargo transportation
	Airside cargo transportation

	Literature gap

	Methodologies
	Planning
	Bibliography


