
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Geometry-Guided
Video Generation with
Diffusion Feature
Textures
MSc Computer Science
Jorge Romeu Huidobro

Geometry-Guided
Video Generation

with Diffusion
Feature Textures

by

Jorge Romeu Huidobro

Advisor: Dr. Ricardo Marroquim

Supverisors: Dr. Petr Kellnhofer & Ir. Lukas Uzolas

Project Duration: August 2024 - July 2025

Faculty: Electrical Engineering, Mathematics and Computer Science (EEMCS)

Abstract

Recent advances in generative AI have enabled high-quality video generation

from text prompts. However, the majority of existing approaches rely

exclusively on prompts, making it difficult for an artist to control the generated

scene layout and motion. In this thesis, we propose a novel method for

geometry-guided Text To Video generation. Our method takes as input an

animated mesh sequence and a text prompt and generates a video following

both the text prompt and input geometry. Our pipeline consists of two main

stages: Firstly, we use an existing text-driven texture generation method to

create an initial rough texture for the geometry. Next, a depth-conditioned

T2I model is used to generate video frames following the guidance animation,

using the generated texture to enforce temporal consistency across frames.

By generating video frames rather than directly using the result of the

texture generation, our method supports generating deformations from the

guidance geometry and variable lighting and by using the texture for feature

alignment, we acheive significantly stronger robustness to occlusions and

camera motion than existing controllable video-generation approaches. We

begin by identifying the failure modes of existing methods through a set of

initial experiments, we then use these findings to propose our method and

finally evaluate it through a series of comparisons and ablations.

i

Acknowledgements

Firstly, I thank my supervisors, Dr. Petr Kellnhofer and Lukas Uzolas, for their

guidance and support throughout this work. Much like diffusion models,

a master student needs sufficient compute and high-quality guidance to

produce good results, which is exactly what you provided over the past year.

Without your help, the quality of this thesis would likely resemble the leftmost

row of Figure 3.4a. I am also grateful to Prof. Ricardo Marroquim and Prof.

Elmar Eisemann for their advice on this work, and to the CGV Group for the

courses, colloquia, and for introducing me to the field of Computer Graphics.

Thanks as well to Xucong Zhang for serving on the committee of this thesis.

I would like to thank the friends I’ve made throughout my years in Delft, as

well as friends back home, Gonzalo, Alberto, Chrysanthos, and Violeta for

making these past couple of years so enjoyable. And of course, it goes without

saying that I am grateful to my parents for their support throughout my

university years, and for giving me the opporutnity to study abroad. Finally,

this section would be incomplete without acknowedging the contribution of

my friends, Pavlos Makridis and Rodrigo Alvarez Lucendo, not only for their

advice on this work, but more importantly for their company during our

(often too-long) phone calls. If the saying is true, and we really do become

the average of the people we spend the most time with, then I’m incredibly

lucky to have had it be the two of you.

Jorge Romeu Huidobro
Delft, June 2025

ii

Contents

1 Introduction 1
1.1 Outline . 2

2 Related Work 3
2.1 Video Generation . 3

2.2 Controllable Video Generation . 3

2.3 3D Generation . 4

2.4 Controlled Generation via Diffusion Feature Manipulation 4

2.5 Summary of related works . 5

3 Background 6
3.1 Diffusion Models . 6

3.1.1 Conditional Generation . 8

3.1.2 Guidance . 9

3.1.3 Latent Diffusion Models . 9

3.2 Stable Diffusion . 10

3.2.1 Model Architecture . 10

3.2.2 Controlling Stable Diffusion by feature manipulation 12

3.2.3 Summary . 16

4 Exploration of Existing Methods 17
4.1 System Setup . 17

4.2 Generative Rendering . 18

4.2.1 Generative Rendering Method . 18

4.2.2 Generative Rendering Experiments . 19

4.3 TexGen applied to Video Generation . 21

4.3.1 TexGen Method . 21

4.3.2 TexGen Experiments . 21

4.4 Summary of Findings . 22

5 Method 23
5.1 Overview . 23

5.2 Texture Generation . 24

5.2.1 Quality-based multi-view sampling . 24

5.3 Texture Driven Noise Initialization . 25

5.4 Consistent Denoising with Feature Injection . 25

5.4.1 Source Frame Selection . 25

5.4.2 Feature Extraction and Injection . 26

5.5 Texture Rendering and Inverse Rendering . 27

6 Experiments 28
6.1 Comparisons . 28

6.1.1 Qualitative Comparison . 29

6.1.2 Quantitative Comparison . 29

6.2 Ablations . 33

7 Discussion And Conclusion 36
7.1 Limitations and Future Work . 36

7.2 Conclusion . 38

References 39

iii

1
Introduction

......

Animated Mesh Sequence

"Stormtrooper Dancing Rumba"

G
en

er
at

iv
e

Re
nd

er
in

g
St

at
ic

 Te
xt

ur
e

O
ur

s

Figure 1.1: We present a novel method for Geometry-Guided Text To Video Given a text prompt and an animated mesh

sequence, our method generates a video following the guidance geometry and prompt. We employ an existing texture generation

method [32] to generate an initial texture for the mesh and then use a depth-conditioned T2I Diffusion Model to generate video

frames, leveraging the texture to enforce temporal consistency. Our two-stage approach improves visual quality and temporal

consistency compared to Generative Rendering [8] and is capable of capturing deformations from the guidance geometry, unlike

techniques based on texturing [32].

Traditional 3D tools for creating videos offer complete artistic control by providing explicit control

over scene geometry, appearance, and camera motion. However, this approach is time-consuming,

laborious, and requires significant artist expertise. Recent advances in generative AI, such as Text To

Image (T2I) [55, 47, 58, 62] and Text To Video (T2V) [7, 31, 30] models, based on Diffusion Models

(DMs), offer a promising alternative as they enable the generation of high-quality visuals from text

prompts. However, the majority of existing video-generation methods rely solely on prompts, making it

difficult for artists to control the layout and motion of the generated videos.

Recently, Generative Rendering (GR) [8] proposed geometry-guided T2V. Their method takes as input

an artist-provided low-fidelity animated mesh, and a text prompt, and uses a depth-conditioned T2I

DM to generate a temporally consistent video that adheres to the guidance geometry. Artists can then

rapidly prototype a scene using traditional 3D tools and use the generative model to create the final

video. While their approach is promising, our initial experiments reveal that the generated videos

exhibit substantial temporal inconsistency and visual artifacts when the input geometry contains

occlusion or camera movement. In this thesis, we propose a novel method for geometry-guided T2V

which aims to address these limitations.

Our key idea is to build on the approach of GR by incorporating an existing text-driven texture

generation method [10, 57, 12], specifically TexGen [32]. This family of methos enable the generation

of a globally consistent texture for a mesh given a text prompt. We can immediately apply these

techniques to our task by simply generating a texture for the guidance mesh and rendering it to the

target animation. However, this introduces a new set of limitations, as a static texture cannot model

1

1.1. Outline 2

various effects, such as lighting or deformations from the guidance geometry.

Our method combines the strengths of both approaches with a two-stage pipeline. Firstly, we use a

text-driven texture generation method to generate an initial texture for the guidance geometry. Next,

we utilize a depth-conditioned DM to generate the video frames, enforcing temporal consistency by

conditioning the generation of each frame on the texture. This conditioning is done via two mechanisms.

Firstly, we use the texture to initialize the latent noise used to generate each video frame in a multi-view

consistent manner, using a technique inspired by SDEdit [43]. Next, at each denoising step, we extract

intermediate features from the reverse diffusion process that generated the texture and inject them into

the generation of each video frame through a mechanism similar to the one used by GR.

Figure 1.1 shows an example video generated with our method, and compares it to GR and texture

generation and rendering. As can be observed, GR is unable to handle camera zoom, resulting in

blurry and corrupted frames for close-up views. On the other hand, using a static texture is robust but

cannot model the geometry of the helmet. Our method can model these deformations while offering

stronger visual fidelity than GR.

We begin by reproducing and systematically evaluating GR [8] and TexGen [32] and explore the

advantages of both approaches in our setting. We use these findings to motivate the design of our

method, which we evaluate through a series of comparisons and ablations. In summary, we make the

following contributions:

1. Reproduce and systematically evaluate two state-of-the-art methods, namely GR [8] and TexGen

[32], on the task of Geometry-guided T2V, and identify and understand their respective failure

cases.

2. Propose a novel method for geometry-guided T2V that uses a text-driven texture generation

method as a pre-processing step, resulting in stronger robustness to occlusion and camera

𝑧-movement than GR.

3. Evaluate our method on a variety of animation sequences and text prompts through a series of

comparisons and ablations.

1.1. Outline
We start by giving an overview of related works and theoretical background in chapters 2 and 3. Next,

in chapter 4, we formally describe our task, and evaluate two representative methods from the literature

to identify and understand their falure cases. Guided by these findings, we present our method in

chapter 5, and then evaluate it in chapter 6 through a series of experiments. Finally, we discuss our

findings, and give concluding remarks in chapter 7.

2
Related Work

This chapter provides an overview of the relevant literature. We begin by covering existing methods for

video generation and controllable video generation. Next, we cover the related task of 3D generation,

focusing on texture generation, which we use in our method. Finally, we cover the main techniques for

controlling T2I diffusion models by manipulating their intermediate features. Later, in chapter 3, we

dive deeper into the theory behind the techniques presented here.

2.1. Video Generation
T2V models extend T2I models to video by training on large-scale video datasets. Most works

achieve this by fine-tuning a T2I model on video data [30, 7, 31]. This is typically done by inflating

2D convolutional layers to 3D pseudo-convolutions, incorporating temporal attention layers, and

fine-tuning only the newly introduced parameters. Training high-quality T2V models, however, is

computationally demanding and challenging due to the limited availability of large captioned video

datasets. For this reason, other works extend T2I models to video with no additional training, which is

the approach we also follow in this thesis. These methods modify the denoising process to enforce

approximate temporal consistency. Text2Video-Zero [35] proposes using a T2I model to generate

video frames, ensuring temporal consistency through principled noise initialization and aligning the

intermediate features of the U-Net across frames. While these approaches have proven successful at

generating video, they lack fine-grained structural control of the video.

2.2. Controllable Video Generation
Various works have attempted to add spatial control to T2V models. Text-guided video stylization

approaches [78, 11, 79, 53, 21] take a source video and text prompt as input and generate a new

video that follows the motion of the source video but adheres to the new prompt. Tune-A-Video [78]

accomplishes this by extending a T2I model to process video and fine-tuning on a single input video.

The resulting model can generate videos with motion included in the training video but with a new

prompt. Follow-up works [11, 79, 53, 21] obtained comparable results using inversion techniques [66,

46] on the input video frames and re-generate the video with additional modifications to the model to

enforce temporal consistency. These techniques are methodologically similar to our method, as we also

generate video frames with a T2I model and enforce consistency via feature manipulation; however,

they are not directly applicable to our task, as they require a full input video.

Most similar to our work are methods for geometry-guided T2V generation. Gen-1 [19] and CTRL-

Adapter [40] fine-tune video diffusion models to support depth-conditioning. However, their reliance

on video models makes these methods computationally expensive and limited to very short or low-

framerate videos. On the other hand, GR [8] tackles this same task using only a T2I model, enabling

efficient generation of arbitrarily long videos. While their method works well, our initial experiments

presented in chapter 4 find that it is not robust to camera 𝑧-movement or occlusion.

3

2.3. 3D Generation 4

2.3. 3D Generation
A related line of work is Text-to-3D. While distinct from video generation, these methods can, in

principle, be adapted to our task by first generating a 3D model from a text prompt and reposing and

rendering the generated asset according to the guidance animation. Early works towards 3D generation

include DreamFusion [52] and its follow-ups [44, 39, 77, 70]. These methods generate a 3D model from

a text prompt by Score Distillation Sampling (SDS), which proposes optimizing a 3D representation

such as a NeRF or 3DGS [45, 34] such that its renders have high likelihood under a frozen T2I diffusion

model. Follow-up works train diffusion models on 3D data [64, 42], yielding stronger results. While

these methods are successful at generating 3D, they are not straightforward to adapt to our setup, as

the generated model would have to be skinned and animated to follow the guidance geometry.

More closely related to our task is text-driven texture generation. Given a 3D mesh with UV mapping,

these methods aim to synthesize a globally consistent texture for the mesh based on a text prompt [12,

57, 10, 32]. Most of these approaches follow a similar overall pipeline shown in figure 2.1. To generate

a texture for a mesh, cameras are placed surrounding the object, and a depth map is rendered for each

view. We then use a depth-conditioned T2I to generate a textured image for each view, and assemble

the final texture projecting the generated images to the UV space of the mesh.

Input Mesh and Text Prompt Render multi-view depth maps
Multi-View consistent

Depth2Image
"Deadpool Cat Statue"

Output Texture

Figure 2.1: Texture generation with depth conditioned diffusion models Given a 3D Mesh and a text prompt, a texture

is generated by placing cameras surrounding the object, rendering a depth map for each camera and generating an image

conditioned on each depth map with a depth-conditioned T2I model. The resulting images are inverse rendered to the UV space

of the mesh to assemble a final texture. Methods differ in how they enforce view-consistent generation.

These methods differ in how they ensure the generated views are multi-view consistent. Early works [12,

57] perform sequential generation, where the first view is fully generated, and each subsequent view is

conditioned on all previous views via inpainting. However, this approach suffers from noticeable seams

due to irreconcilable artifacts from the early views. TexFusion [10] proposes Sequential Interlaced

Multiview Sampling (SIMS), which interleaves the inpainting over multiple denoising steps, leading to

significantly stronger results. However, a limitation of SIMS is that when used with a Latent Diffusion

Model (LDM) [58], the consistency is only enforced in the low-resolution latent space, resulting in

minor inconsistencies when decoded to RGB. Their solution is to fit a neural color field to smooth

out the inconsistency, but this leads to over-smoothed textures. Most recently TexGen, [32] employs a

strategy similar to SIMS but enforces consistency in the RGB space by adapting inpainting techniques

for LDMs [4], resulting in a more straightforward method and better results.

While these methods are successful at generating textures for static meshes, they are still limited when

applied to our task, as they produce textures with baked illumination and hence cannot model variable

lighting or deformations over the proxy geometry. We instead find that they can be used as a suitable

pre-processing step when combined with end-to-end video generations described previously.

Lastly, a concurrent work, Tex4D [6], adapts SIMS to video diffusion models to synthesize multi-view

consistent and temporally consistent video textures. This resolves some issues with static texturing,

as the generated video texture can capture appearance variation; however, it still does not support

generating reasonable deformations from the guidance geometry and suffers from the limitations of

existing publicly available video diffusion models discussed previously.

2.4. Controlled Generation via Diffusion Feature Manipulation
Recent work has found that intermediate activations extracted from T2I DMs during image generation

encode valuable information about the structure and content of the generated image. This has led to a

2.5. Summary of related works 5

surge of works that extract these features for various downstream tasks such as establishing image [71,

82, 25, 69] and 3D shape [16, 75] correspondences, depth estimation [73] and more.

Other works instead propose to manipulate these features during the image generation process. This has

shown to be a practical framework for controlling the generated image. Prompt-to-prompt [26] observed

that by manipulating the cross-attention layers, it is possible to control the relation between the spatial

layout of the image and each word in the text. Plug-and-Play Diffusion [74] found that manipulating

the spatial features enables controlling the overall layout of the generated image. Tune-A-Video [78]

finds that by manipulating the keys and values of the self-attention layers, the overall appearance and

style of the generated image can be controlled. Many following works employ combinations of these

core techniques to implement various control mechanisms such as style-control [27, 13, 2], zero-shot

adaptation of T2I models to video [35, 53, 11, 79, 21], text driven image editing [9, 72] and more [50,

18]. While these methods do not address our task, our method employs many of the underlying

techniques developed by this family of works. Subsection 3.2.2 provides more in-depth explanation of

the particular feature manipulation techniques used in our method.

2.5. Summary of related works
To summarize, geometry-guided T2V can be approached via 3D generation or end-to-end video

generation. Techniques based on 3D generation trivially guarantee perfect temporal consistency, but

are not straightforward to adapt to our task. Texture Generation can be easily adapted to our task,

but they cannot model deformations from the guidance geometry or view-dependent lighting effects.

On the other hand, video generation techniques such as GR can handle this, but they suffer from

occlusion and 𝑧-movement. We summarize the related works in table 2.1. Our method is the only one

that exclusively uses a T2I model, supports generating deformations and view-specific lighting, and is

robust to occlusion and camera z-movement.

Method T2I-only Deformations Lighting Occlusion Cam 𝑧-mvmnt

Static Texture [10, 32, 12, 57] ✓ ✓ ✓
Video Texture [6] ✓ ✓ ✓
CTRL-Adapter [40], Gen-1 [19] ✓ ✓ ✓ ✓
GR [8] ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓

Table 2.1: Summary of methods for Geometry-Guided T2V Our method is the only one that support generating variable

lighting, deformations from the guidance geometry, and is robust to occlusion and camera 𝑧-movement using only a T2I DM.

3
Background

This chapter covers the background required to understand this work. We provide an overview of

diffusion models in general, the Stable Diffusion T2I model specifically, and an overview of techniques

for inference time control of T2I diffusion models through feature manipulation, which we employ in

our method.

3.1. Diffusion Models
Generative Models are a class of machine learning models that aim to learn the underlying distribution

of a dataset in order to generate new samples. The overall pipeline behind generative modeling is shown

in figure 3.1. Given a dataset𝒟 of observations 𝒙 drawn from some unknown probability distribution

𝑝
data

, generative models fit a model 𝑝𝜃 that approximates 𝑝
data

by maximizing the log-likelihood that

𝑝𝜃 assigns to the samples in the dataset, typically via gradient-based optimization. Once trained, such

a model can be used to generate plausible samples resembling those in the training data by sampling

the learned distribution 𝑝𝜃.

Data Distribution Generative Model

Novel Data Samples

sample

Dataset

Figure 3.1: Overview of Generative Modeling Generative Models generate novel samples resembling those in the training

dataset by learning a model of the probability distribution the training dataset was drawn from.

Various families of generative models have been proposed, which differ in how 𝑝
data

is parameterized,

such as Variational Autonencoders (VAEs) [37], Generative Adversarial Networks (GANs) [22],

autoregressive models [48], flow-based models [36], and more. Among these, DMs [65, 28, 67,

68] have recently gained significant attention for their ability to produce very high-quality samples,

especially for images, video, and audio. DMs approximate the data distribution by learning to reverse

a pre-specified corruption process over the data distribution, which gradually transforms it into

a standard Gaussian. Once trained, new samples can be generated by sampling from a Gaussian

distribution and reversing the corruption process to convert it to a sample from 𝑝𝜃.

This corruption process is the forward diffusion process, defined as a stochastic process which maps a

data sample 𝒙 ∼ 𝑝
data

into a series 𝑇 of progressively noisier samples 𝒙0:𝑇 , defined by

𝒙𝑡 =
√
𝛼𝑡𝒙0 +

√
1 − 𝛼𝑡𝝐, where 𝝐 ∼ 𝒩(0, 𝑰). (3.1)

6

3.1. Diffusion Models 7

Figure 3.2: Forward Diffusion Process Illustration of the forward diffusion process on a 2D MoG and an RGB image. As the

noise level 𝑡 increases, the marginal distribution gradually approaches a standard Gaussian.

Where 𝛼0:𝑇 defines the noise schedule, determining how much the original sample is maintained at each

noise level 𝑡. Equivalently we can express the distribution 𝑞(𝒙𝑡 |𝒙0) followed by a noisy sample 𝒙𝑡 at

noise level 𝑡 given an initial 𝒙0, as a normal distribution centered at

√
𝛼𝑡 with covariance (1 − 𝛼𝑡)𝑰

𝑞(𝒙𝑡 | 𝒙0) = 𝒩
(
𝒙𝑡 ;
√
𝛼𝑡𝒙0 , (1 − 𝛼𝑡)𝑰

)
. (3.2)

The noise schedule is constructed so that 𝑞(𝒙0) is close, or equal to the data distribution 𝑝
data

and

𝑞(𝒙𝑇) resembles a standard Gaussian distribution. Figure 3.2 shows the effect of the forward diffusion

process on the Probability Distribution Function (PDF) of a 2D Mixture of Gaussians (MoG), as well as

an RGB image. As the noise level increases, the structure in the data is gradually removed and the

distribution approaches a standard Gaussian.

DMs reverse the forward diffusion process, by learning how to map a sample 𝒙𝑡 ∼ 𝑞(𝒙𝑡) to a

corresponding sample 𝒙𝑡−1 ∼ 𝑞(𝒙𝑡−1) at a lower noise level. Multiple parameterizations for such a

model have been proposed [65, 28, 67, 41], one widely adopted approach is noise matching where we

fit a neural network 𝝐𝜃(𝒙𝑡 , 𝑡) to predict the noise 𝝐 added to a sample 𝒙𝑡 at a given noise level 𝑡 in

equation (3.1), the training objective is then

ℒDM = E𝒙∼𝒟 ,𝑡∼𝑈[0,𝑇],𝜖∼𝒩(0,𝑰)
[
||𝜖 − 𝜖𝜃(𝒙𝑡 , 𝑡)||2

2

]
. (3.3)

Once trained, 𝜖𝜃 can be used to generate new samples by initializing 𝒙𝑇 ∼ 𝒩(0, 𝑰) as Gaussian noise

and iteratively applying the denoising model 𝝐𝜃(𝒙𝑡 , 𝑡) to predict the noise in 𝒙𝑡 and removing it until

reaching 𝒙0, which is a sample from the learned distribution. While there are many ways to perform

this sampling process [28, 67, 41] one widely adopted approach is Denoising Diffusion Implicit Models

(DDIM) [66]. To denoise a sample from 𝒙𝑡 to 𝒙𝑡−1 with DDIM sampling, the following equation is

applied

𝒙𝑡−1 =
√
𝛼𝑡−1 �̂�𝑜 +

√
1 − 𝛼𝑡−1𝝐𝜃(𝒙𝑡 , 𝑡), with �̂�0 =

1 −
√

1 − 𝛼𝑡𝝐𝜃(𝒙𝑡 , 𝑡)√
𝛼𝑡

. (3.4)

In other words, the noise prediction 𝝐𝜃(𝒙𝑡 , 𝑡) is used to estimate the fully denoised sample �̂�0 from the

noisy input 𝒙𝑡 . Then a less noisy sample 𝒙𝑡−1 is obtained by re-introducing noise to �̂�0 to noise level

𝑡 − 1, using the noise prediction as the noise. This can be interpreted as taking a deterministic step from

𝒙𝑡 in the direction of �̂�0. In this work we employ a model trained with noise matching, and use DDIM

sampling for generation. The overall procedure for training sampling is illustrated in algorithm 1 and 2.

3.1. Diffusion Models 8

Deadpool Stormtrooper Darth Vader Abraham Lincoln George Washington Tabby Cat

Figure 3.3: Example Images Generated with Control-Net-Depth By fine-tuning on a paired dataset, ControlNet enables

generating images conditioned on both a text prompt and a depth map.

Algorithm 1 Noise Matching (Training)

repeat
𝒙 ∼ 𝑝

data
⊲ Sample data point

𝑡 ∼ 𝑈[0, 𝑇] ⊲ Sample Noise Level

𝝐 ∼ 𝒩(0, 𝑰)
𝒙𝑡 ←

√
𝛼𝑡𝒙 +

√
1 − 𝛼𝑡𝝐 ⊲ Add noise (3.1)

Take gradient step on ∇𝜃∥𝝐 − 𝝐𝜃(𝒙𝑡 , 𝑡)∥2
2

until converged

Algorithm 2 DDIM Sampling (Generation)

𝒙𝑇 ∼ 𝒩(0, 𝑰)
for 𝑡 = 𝑇, . . . , 0 do

�̂�← 𝝐𝜃(𝒙𝑡 , 𝑡)
�̂�𝑡

0
← (𝒙𝑡 −

√
1 − 𝛼𝑡 �̂�)/

√
𝛼𝑡

𝒙𝑡−1 =
√
𝛼𝑡−1 �̂�

𝑡
0
+
√

1 − 𝛼𝑡−1 �̂� ⊲ DDIM Step (3.4)

end for
return 𝒙0

3.1.1. Conditional Generation
So far, we have discussed modeling a distribution from unlabeled data, however, this approach does not

allow for control over the generated samples. Fortunately, diffusion models have also been shown to be

successful at modeling conditional distributions 𝑝(𝒙|𝒄) where the learned distribution can be controlled

with a conditioning signal 𝒄 such as a text prompt.

There are various ways to perform conditional generation. The most straightforward is to train the

model on labeled dataset 𝒟 = {(𝒙 , 𝒄)} of samples with an accompanying label (e.g., images with

text captions). The model 𝝐𝜃 is then modified to take an additional conditioning input 𝒄, and the

training objective and sampling procedure are updated accordingly to pass the condition. The updated

noise-matching objective for a conditional diffusion model is then

ℒ
Conditional-DM

= E(𝒙 ,𝒄)∼𝒟 ,𝑡∼𝑈[0,1],𝜖∼𝒩(0,𝑰)
[
||𝜖 − 𝜖𝜃(𝒙𝑡 , 𝒄, 𝑡)||2

2

]
. (3.5)

This approach is used by T2I models for text-conditioning, due to the availability of large captioned

image datasets. However, naively training and sampling conditional models this way often leads to

suboptimal results, so it is typically combined with guidance, discussed in subsection 3.1.2.

An issue with this approach is the reliance on a large labeled dataset, which makes it impractical for

various conditioning signals where such datasets are unavailable. Other works instead incorporate

an additional condition into a pre-trained model by fine-tuning on a comparatively smaller labeled

dataset. This is the approach followed by ControlNet [83] and related adapter methods [81, 40]. They

propose a parameter-efficient method for fine-tuning pre-trained T2I models by introducing additional

layers in the form of an adapter network which accept the new condition, such as a depth map, canny

edges, human poses, etc. The adapter-model is the fine-tuned on a smaller dataset, while keeping the

base model frozen. Figure 3.3 shows some example outputs using a ControlNet trained for depth

conditioning.

Lastly, zero-shot control strategies propose controlling generated samples without any additional training.

Instead, these methods explicitly alter the denoising process to control the generated samples. This

has been shown to be effective at controlling the style, layout and appearance of generated images

with T2I models. Subsection 3.2.2 covers two relevant such techniques. We employ all three kinds

of conditioning in our method. We use a pre-trained T2I model trained with text-conditioning, a

ControlNet fine-tuned for depth-conditoning, and various zero-shot control techniques to enforce

temporal consistency.

3.1. Diffusion Models 9

3.1.2. Guidance
Early work on conditional diffusion models struggled to generate high-quality samples. Training such

models directly using equation (3.5) often results in the ignoring or downplaying the conditioning

signal. Guidance methods enable explicit control over the strength the model gives to a conditioning

signal, and have proven essential for high-quality conditional generation. The most widely used

technique is Classifier Free Guidance (CFG) [29]. The main idea behind CFG is to replace the noise

prediction at each denoising step with a guided noise prediction �̃�, by combining the outputs of both a

conditional and unconditional model. More specifically, the guided noise prediction is a barycentric

combination with weight 𝛾 of both noise predictions

�̃�(𝒙𝑡 , 𝑡 , 𝒄) = 𝝐𝜃(𝒙𝑡 , 𝑡) + 𝛾(𝝐𝜃(𝒙 , 𝑡 , 𝒄) − 𝝐𝜃(𝒙 , 𝑡)). (3.6)

In practice, a single model 𝝐(𝒙𝑡 , 𝑡 , 𝒄) is used, where during training the conditioning signal 𝒄 is

occasionally dropped and replaced with a null value ∅, allowing the resulting model to be used in

both conditional and unconditional modes. The parameter 𝛾 in equation (3.6), is the guidance scale. For

𝛾 = 0 the guided noise prediction is equivalent to the unconditional one, and for 𝛾 = 1 the conditional

one. CFG takes effect when 𝛾 > 1. Figure 3.4a shows the effect of CFG on samples from a T2I model.

When 𝛾 > 1, the generated samples follow the text prompt better, and are higher-quality, at the cost of

diversity and oversaturation for very high guidance scales. We additionally show the impact of CFG

on the modeled distribution for a toy 2D MoG in Figure 3.4b. As the guidance scale increases, the

distribution focuses on the higher-likelihood regions corresponding to the condition. CFG and related

techniques [15, 61] have proven crucial for producing high quality samples with DMs, and we employ

it in our method.

Unconditional Conditional Guided

"C
ut

e
Ki

tte
n"

(a) Impact of CFG on samples from a T2I model. Using 𝛾 > 1 results in higher sample quality at the cost of diversity. When the guidance is too

strong, the generated images are often over-saturated.

(b) Impact of guidance scale on a 2D MoG, each mixture component representing data conditioned on a class. The leftmost plot has the non-guided

marginal density, and the left-to-right densities have increasing guidance strength. A high guidance scale focuses the distribution on the

higher-likelihood areas corresponding to the condition. (Results from [29])

Figure 3.4: Classifier-Free Guidance Impact of guidance scale on samples from a T2I model (a) and the marginal distribution of

2D MoG (b). CFG enables generating much higher-quality samples at the cost of diversity.

3.1.3. Latent Diffusion Models
When applying DMs to high-dimensional data, such as high-resolution images, performing the reverse

diffusion process can become computationally intensive since generating a single sample would require

multiple forward passes through a large neural network. To mitigate this issue, LDMs [58] propose

3.2. Stable Diffusion 10

512x512 512x512

64x64

LDM InferencePre-trained autoencoder

Figure 3.5: Latent Diffusion Models use a pre-trained autoencoder that maps from image space to a lower resolution latent

space and back. During smapling, the reverse diffusion process takes place over the lower-resolution latent space, and the

denoised latent is decoded to an image.

using a pre-trained autoencoder (ℰ,𝒟), typically a VAE [37] or VQ-VAE [20, 56], which compresses

samples into a perceptually meaningful, lower-dimensional latent space. We can then train the diffusion

model over the lower-dimensional latent space, enabling the use of a much smaller model.

Figure 3.5 shows an illustration of how LDMs are used for image generation. During training, the

image is encoded into a lower-resolution latent using the encoder ℰ, and the forward diffusion process

is applied over the encoded image normally. During sampling, an initial latent is sampled 𝒛𝑇 ∼ 𝒩(0, 𝑰),
and iteratively denoised to obtain the fully denoised latent 𝒛0 which is decoded to an image 𝒙0 with

the decoder 𝒟 once fully denoised. We use an LDM in our method which is further described in

subsection 3.2.1.

3.2. Stable Diffusion
In this work, we use a T2I diffusion with depth-conditioning, specifically Stable Diffusion (SD) [58],

with a ControlNet [83] for depth-conditioning. SD is a widely used, publicly available T2I trained on

large-scale image datasets such as LAION-5B [63]. This section discusses the aspects of the model

most relevant to our method. We begin with an overview of the model architecture, focusing on the

behavior of the self- and cross-attention layers. We then discuss two common strategies for controlling

the generated images by manipulating intermediate features of these layers.

3.2.1. Model Architecture
Stable Diffusion is an LDM and parameterizes the denoising network 𝝐𝜃 as a U-Net-like model [59]

with spatial-self attention layers and time and text conditioning. Figure 3.6 shows an illustration of

the model architecture. At each denoising step, SD takes as input the current noisy latent 𝒛𝑡 , the time

step 𝑡, and a text condition 𝒄. It follows a U-Net architecture composed of a series of blocks that first

downsample (encoder) and then upsample (decoder) the image features, with skip connections between

corresponding encoder-decoder blocks. Each block takes in image features at a given resolution and

applies convolutional layers with a ResNet block [24], followed by self- and cross-attention layers. The

time-step 𝑡 is embedded using positional encoding 𝜓 [76] and injected into each ResNet block, and the

text condition 𝒄 is embedded using a text encoder 𝜏, typically CLIP [54], and passed to each block at

the cross-attention layer.

Optional depth conditioning is introduced by passing an additional depth map 𝒅 through an auxiliary

ControlNet, whose output is injected into the skip connections of each decoder block. Our method

enforces temporal consistency by modifying the features of the self-attention layers, in the next section

we cover these layers more in depth.

Self- and Cross-Attention layers in Stable Diffusion
In this section we cover the inner workings of the self- and cross-attention layers in the SD U-Net. We

begin by covering attention [5] broadly, and then discuss how it is used by SD. The attention operation

receives as input three sequences: queries 𝑸 ∈ R𝑇,𝑑QK , keys 𝑲 ∈ R𝑇ctx ,𝑑QK and values 𝑽 ∈ R𝑇ctx ,𝑑
where

the query and key sequences have matching dimensionality 𝑑QK, and the key and value sequences

have matching length 𝑇ctx. The output of attention is a sequence 𝒚 ∈ R𝑇,𝑑, computed like so

𝒚 = Attention(𝑸 ,𝑲 ,𝑽) = A𝑽 , A = softmax

(
𝑸𝑲𝑇√
𝑑QK

)
. (3.7)

3.2. Stable Diffusion 11

ResBlock

+

Self Attention

+

Cross-Attention

+

Text
Embeddings

Individual U-Net Block

Time
Embeddings

Prompt Time

Input

Encoder Block
64x64

Encoder Block
32x32

Encoder Block
8x8

Encoder Block
16x16

Mid Block
8x8

Decoder Block
8x8

Decoder Block
16x16

Decoder Block
64x64

Decoder Block
32x32

Output

Model Architecture

Time
Enc

Text
Enc

ControlNet

Depth Map

Prompt & Text

Block Input Features

Block Output Features

Figure 3.6: Stable Diffusion + ControlNet Model Architecture SD takes as input a noisy latent 𝒛𝑡 , a noise level 𝑡, and a text

condition 𝒄. The model follows a U-Net like architecture. Optional depth conditioning is introduced by passing a depth map 𝒅
through an auxiliary ControlNet, whose output is injected into the SD model. Each U-Net block consists of a ResNet block, and

self/cross-attention layers.

The equation is more clearly understood when written explicitly for each output 𝒚[𝑖]

𝒚[𝑖] =
∑
𝑗

𝑽 [𝑗]A[𝑖 , 𝑗], A[𝑖] = softmax
©«
[
𝑸[𝑖]𝑲[𝑗]√

𝑑QK

]
𝑗

ª®¬ . (3.8)

Intuitively, each entry in the output sequence 𝒚[𝑖] is a weighted sum of all values in 𝑽 where the weight

A[𝑖 , 𝑗] assigned to a particular value 𝑽 [𝑗] is softmax-normalized, and determined by the similarity

between query 𝑸[𝑖] and the key 𝑲[𝑗] corresponding to the value. We say that a query attends to a value

when it assigns a high weight to that value. In practice, attention is usually computed over multiple

heads by splitting all three sequences across their 𝑑-dimension into ℎ chunks, each corresponding to a

different head, computing the attention of each chunk independently and using a linear layer to unify

the heads into a single output.

The SD U-Net employs attention in two kinds of layers: cross-attention and self-attention, as shown on

Figure 3.6. Cross-attention layers receive two sequences as input, an input sequence 𝒇 of image features,

and a conditioning sequence 𝒄 of text embeddings. The output is computed by deriving keys/values

from learnable linear projections of the conditioning sequence and queries from projections of the

input sequence

CrossAttention𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 (𝒇 , 𝒄) = Attention(𝑊𝑄 𝒇 ,𝑊𝐾𝒄,𝑊𝑉 𝒄). (3.9)

In other words, in cross-attention layers, the image features 𝒇 attend to the conditioning sequence

𝒄. This is the mechanism through which SD models the influence of the text prompt on the model

output. Figure 3.7 shows a visualization of the cross-attention maps extracted from a particular

cross-attention layer when generating an image, each map corresponds to column in the attention matrix

A corresponding to a particular token in the conditioning sequence, and shows how each image pixel

3.2. Stable Diffusion 12

attends to that token. As can be seen, cross-attention layers learn intuitive representations, assigning

higher activation to pixels that correspond to the token.

"kitten and
puppy best friends" kitten and puppy best friends

Figure 3.7: Cross-Attention maps Visualization of cross-attention maps at a particular denoising step and cross-attention layer.

Each map corresponds to a token in the prompt, and is a column in the attention matrix A, reshaped to 2D. The weight assigned

at a pixel represents how much the corresponding query attends to the token.

Conversely, self-attention layers, receive only a single input sequence 𝒇 of image features and derive

keys, queries and values from this single sequence. Intuitively, this layer allows the image features to

attend to themselves, hence the name self-attention

SelfAttention𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 (𝒇) = Attention(𝑊𝑄 𝒇 ,𝑊𝐾 𝒇 ,𝑊𝑉 𝒇). (3.10)

Figure 3.8 shows some example self-attention maps for various query pixels for a particular denoising

step, layer, and attention head. Each map corresponds to a row in the attention matrix A reshaped to

2D and displays which keys/values a query pixel attends to. Like cross-attention layers, self-attention

layers learn intuitive representations which attend to pixels with similar semantics and appearance to

itself.

"Cute cat watercolor"

Figure 3.8: Self-Attention Maps Comparison of self-attention maps for a given layer and denoising step at various query pixels.

Each map corresponds to a row in the attention matrix A reshaped to 2D, showing what the query attends to. Queries assign

higher weights to pixels with similar appearance/semantics to itself.

Due to the interpretability of these layers, many works, including ours, manipulate the intermediate

queries keys, values or attention maps during image generation, with the goal of controlling the

generated image. The subsequent section gives an overview two such techniques we apply in our

method, specifically, spatial feature injection and cross-image attention.

3.2.2. Controlling Stable Diffusion by feature manipulation
Recent work, discussed in section 2.4 has found that manipulating the intermediate features of the

SD U-Net during image generation is effective at controlling the generated image. In this section we

cover two of the main underlying techniques behind this family of works, spatial feature injection for

controlling the structure and layout of the generated image and cross-image attention for controlling the

overall appearance of the generated image. Later in chapters 4 and 5 we cover how these techniques

are used by existing works, and our own method for the task of geometry-guided video generation.

Spatial Feature Injection
Tumanayan et al. [74] found that features extracted from intermediate layers of the SD U-Net during

image generation act as high-dimensional spatial descriptors of the generated image. Figure 3.9

visualizes these features across various generated images. For each image, at a given denoising step 𝑡,

we extract features 𝑭 𝑙𝑡 from the output of several layers 𝑙 in the decoder block the denoising U-Net. We

3.2. Stable Diffusion 13

Image Layer=1 Layer=2 Layer=3 Layer=4 Layer=5 Layer=6 Layer=8 Layer=9 Layer=10 Layer=11

Figure 3.9: Visualization of Diffusion Features We generate multiple images, extracting features 𝑭 𝑙𝑡 at a denoising step 𝑡,

roughly halfway through the generation process, from several decoder layers 𝑙 of the U-Net. We visualize the top three principal

components of these features as RGB channels. Early layers assign similar features to semantically related regions (head, legs,

torso), while later layers assign similar features to regions with similar visual characteristics across images.

then apply Principal Component Analysis (PCA) to these features and visualize them as RGB to reveal

regions with similar features across images. As shown, features extracted from early layers capture

semantics, grouping related parts such as head, legs, and torso, while features obtained from deeper

layers encode appearance, coloring regions with similar visual traits across images.

Given that these features encode rich spatial information about the generated image, they can

be manipulated during the image generation process to control the generated image’s layout and

appearance. This is typically achieved by extracting features while generating a source image and

injecting them into the model during the generation of a target image, blending the target’s native

features with those from the source image.

In our setting, spatial-feature injection can be used for generating images of the same geometry under

different poses. This is shown in Figure 3.10, the source image is generated normally, using a depth-map

of a T-posed character as conditioning, and at each denoising step 𝑡 we additionally extract the output

features 𝑭 𝑙𝑡 from various layers 𝑙 in the U-Net. The target image is then generated with a depth-map at

a different pose, where at each denoising step 𝑡, we inject the reposed features �̄� 𝑙𝑡 into the U-Net by

blending them with the naturally generated features according to an alpha parameter

(1 − 𝛼) 𝒇 𝑙 ,𝑖𝑡 + 𝛼 𝒇
𝑙 ,𝑖

𝑡 . (3.11)

As can be seen this technique is effective at ensuring fine-grained spatial control, but since it directly

overwrites the intermediate features in the target image, it can result in considerable visual artifacts,

especially when using a high 𝛼 or performing this feature injection at late layers and denoising steps.

Cross-Image Attention
Another widely used feature manipulation technique is Cross-Image Attention. Cross-image attention

proposes replacing the keys and values in self-attention layers with those extracted from one or more

source images. This was initially proposed by [78] but has since been generalized by several subsequent

works that have found it to be effective at controlling the overall appearance and style of generated

images [27, 13, 2, 35].

Recall from equation (3.10) that a self-attention layer 𝑙 in the SD U-Net receives input features 𝒇 𝑙 ,
projects them into queries, keys, and values, and computes attention over these sequences. Cross-

Image Attention proposes extracting the input features 𝒇 𝑙 ,src

, which we call pre-attention features, when

3.2. Stable Diffusion 14

Source Target With Injection Target No Injection

Figure 3.10: Spatial Feature Injection Spatial Feature Injection can be used with a depth-conditioned T2I model to generate

spatially consistent images. At each denoising step features are extracted from the source image, and rendered to the target pose.

The target image is then spatially consistent

denoising a source image, and then, generating a target image where the self-attention layers are altered

to compute keys and values from the extracted pre-attention features. The modified self-attention layer

for the target image becomes

CrossImageAttention𝑊𝑄 ,𝑊𝑘 ,𝑊𝑣
(𝒇 𝑙 , 𝒇 𝑙

src
) = Attention(𝑊𝑄 𝒇 𝑙 ,𝑊𝐾 𝒇

𝑙
src
,𝑊𝑉 𝒇 𝑙

src
). (3.12)

Intuitively, this is equivalent to replacing each self-attention layer with a cross-attention layer that

attends to features from the source image. As a result, the queries in the modified self-attention layer

attend to the injected values and return a weighted sum of the source features. Additionally, since

attention does not require the key and value sequences to match the length of the query sequence, this

can be further generalized to attend to multiple source images by simply injecting the concatenation of

the source features extracted from multiple source images.

Figure 3.11 shows examples of images generated with Cross-Image Attention. We generate three

images, each with a unique prompt and initial noise latent under various cross-image attention schemes:

1) attending to itself i.e. standard self-attention, 2) attending to a reference image, 3) attending to

a reference image and itself, and lastly 4) attending to all three images. For each scenario, we also

visualize the self-attention maps, discussed in Figure 3.8, for a particular layer, denoising step, and

query pixel 𝑝qry. When each image attends only to its own features (standard self-attention), the

resulting images display distinct content and appearance. However, when attending to other source

frames, the generated image adopts a combination of the appearances of the source images. By

examining the self-attention weights, we can see that when cross-image attention is used, the query

pixel attends to semantically similar features across the source images it attends to.

Unlike spatial feature injection, which resulted in noticeable artifacts, cross-image attention is consider-

ably less destructive. This is because instead of overwriting the output of a given layer, we rely on the

attention mechanism to determine which injected features to use based on their similarity to the image

queries. Generally this works well, however we note that in order for this to work effectively, the injected

source features be semantically similar to the image features. When this is not the case, the attention

weights will be very sparse, and after softmax-normalization will become uniform, resulting in chaotic

results in the generated image. Figure 3.12 shows various images generated with self-attention, and

attending to a source image. When the source image is semantically similar to the target we obtain

good results, but when they are very different the generated images are incoherent.

We employ cross-image attention in our method to generate video frames displaying the consistent

appearance, and we further incorporate spatial feature injection to enforce fine-grained consistency

3.2. Stable Diffusion 15

At
te

nd
 to

 R
ef

At
te

nd
 to

 S
el

f +
 R

ef
At

te
nd

 to
 S

el
f

At
te

nd
 to

 A
ll

(Ref)

(Ref)

Generated Images Attention maps for

Figure 3.11: Cross-Image Attention we generate three images under four different cross-image attention schemes, where an

arrow indicates an image attends to the keys and values of another. The Left column shows the generated images, and right

column shows the attention weights extracted from a particular denoising timestep, layer and query pixel 𝑝qry marked in red.

When an image is generated attending to the features of one or more source images, the overall appearance of the source image

is transfered to the target image, as it allows the query pixel to attend to its features.

At
te

nd
 to

 S
el

f
At

te
nd

 to
 S

rc

(Src)

"Cute Cat"

"Cute Puppy" "Lion" "Mouse" "Rolex Watch" "Cup of Coffee" "Potted Tulips" "Matterhorn"

Figure 3.12: Cross-image attention across diverse images We show generated images for various prompts, as well as the

resulting image when cross-attending to a reference image. Cross-image attention relies on the image queries establishing

sensible correspondences to the injected key and value features. This fails when the injected keys and values are taken from

semantically very different images, giving incoherent results.

3.2. Stable Diffusion 16

3.2.3. Summary
In summary, we have discussed the architecture of the SD U-Net as well as two common feature-

manipulation techniques for controlling the generated image. Spatial feature injection is conceptually

simple and enables spatially controlling the overall layout and appearance of the generated image by

simply blending the image features with desired image features, but can lead to significant visual

artifacts. Cross-Image attention instead manipulates the keys and values in self-attention layers, which

enables controlling the overall appearance of the generated image. These feature manipulations are

used by prior work, as discussed in chapter 4, as well as in our proposed method discussed in chapter 5.

4
Exploration of Existing Methods

Before presenting our method, we explore two existing approaches to our task. From the related

works, we identify that GR [8] is the only prior work that directly addresses our task using only a T2I

model. We additionally note that techniques for texture generation, discussed in section 2.3, can be

readily adapted to our task by generating a texture for a single static pose and rendering it to the target

geometry.

We begin by formally describing our problem formulation in section 4.1; we then implement and

evaluate both of these methods through a series of targeted experiments. Our main finding is that

the two techniques are complementary: GR has several desirable properties but is not robust to all

geometries, specifically occlusions and camera 𝑧-movement. Texture Generation, on the other hand, is

straightforward and robust, but cannot model deformations or lighting. Our method, presented in

chapter 5, builds on these findings by combining both approaches into a single unified framework that

addresses these failure cases.

4.1. System Setup
Our overall system setup is shown in figure 4.1. Given a text prompt 𝒄 and guidance geometry 𝒜,

our goal is to generate a sequence of frames 𝐼1...𝑁 forming a video aligned with both the text prompt

and guidance geometry. The guidance geometry 𝒜 is represented as an animated mesh sequence

𝒜 = {(𝒞𝑖 ,ℳ𝑖)}𝑁𝑖=1
consisting of 𝑁 camera-mesh pairs, where each meshℳ𝑖 = (𝑉𝑖 , 𝐹) shares a common

topology 𝐹, and UV mapping Φ : 𝒱 → [0, 1]2.

Generated Frames
Prompt : "Stormtrooper Dancing"

Guidance GeometryUV mapping

...

Figure 4.1: System Setup Given a text prompt 𝒄, and guidance geometry𝒜 represented as an animated mesh sequence with UV

mapping, our goal is to generate video frames 𝐼1...𝑁 which adhere to both the text prompt 𝒄 and the input geometry𝒜.

Additionally, we define texture rendering and inverse rendering functions ℛ and ℛ−1
for the guidance

geometry. Rendering a texture𝒰 from UV space to frame 𝑖 of𝒜 is denoted as ℛ𝑖(𝒰), while inverse

rendering an image 𝐼 from camera space at frame 𝑖 to UV space is denoted as ℛ−1

𝑖
(𝐼).

17

4.2. Generative Rendering 18

4.2. Generative Rendering
Generative Rendering [8] is a recent work which addreses our task directly. They propose using a

depth-conditioned T2I model to generate video frames following an animated mesh sequence, and

enforce consistency between frames by aligning the features in the DM across frames, using the

techniques from subsection 3.2.2. We describe their feature alignment strategy in subsection 4.2.1, and

based on their method pose hypothesized failure cases, which validate empirically.

4.2.1. Generative Rendering Method
Given an animated mesh sequence𝒜 = {(ℳ𝑖 ,𝒞𝑖)}𝑁𝑖=1

, and a text prompt 𝒄, GR generates video frames

following the animation with a depth-conditioned DM. This is done by initializing a Gaussian noise

latent for each frame 𝒛 𝑖
𝑇
, and repeatedly denoising them to obtain the final video frames 𝒛1..𝑁

0
. GR

enforces consistency among frames at each denoising step from 𝒛1...𝑁
𝑡 to 𝒛1...𝑁

𝑡−1
. This is done by, at each

denoising step, randomly selecting a set frames from𝒜 as keyframes, which are used to condition the

denoising of all other frames. Specifically, the keyframe-latents 𝒛KF

𝑡 are passed through the U-Net to

extract features, which are subsequently used to guide the denoising of the remaining frames in the

animation.

Keyframe Feature Extraction Firstly we describe the keyframe-feature extraction. The latents

corresponding to the selected keyframes 𝒛KF

𝑡 are passed to the U-Net, and denoised with extended
attention, discussed in subsection 3.2.2, where the self-attention layers are modified to attend to all

other keyframes. The modified self-attention layer with extended attention is then:

SelfAttn
extr

𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉
(𝒇 𝑙 ,𝑖𝑡) = do 𝒇 𝑙 ,KF

𝑡 ← [𝒇 𝑙 ,𝑖𝑡 , . . . , 𝒇
𝑚
𝑡]

𝑭 𝑙 ,𝑖𝑡 ← Attention(𝑊𝑄 𝒇 𝑖𝑡 ,𝑊𝐾 𝒇
𝑙 ,KF

𝑡 ,𝑊𝑉 𝒇 𝑙 ,KF

𝑡)
return 𝑭 𝑙 ,𝑖𝑡 .

(4.1)

We additionally save the attention output 𝑭 𝑙 ,𝑖𝑡 for each keyframe, and the concatenated attention input

features 𝒇 𝑙 ,KF

𝑡 at each self-attention layer 𝑙 and denoising timestep 𝑡. We denote a full forward pass

through the denosing U-Net with extended attention and feature extraction like so

𝒇 𝑙1 ,...𝑙𝑁𝑡 , 𝑭 (𝑙1 ...𝑙𝑁 ,𝑖...𝑁)𝑡 ← 𝝐extr

𝜃 (𝒛
KF

𝑡 , 𝑡 , 𝒄, 𝒅KF). (4.2)

Denoising with Keyframe Feature Injection The extracted keyframe features are now used to

condition the denoising of each animation frame. Firstly, for each layer the extracted post-attention

features are projected to the UV space to assemble a feature texture 𝑭 𝑙 ,UV

𝑡 . This is done by inverse-

rendering the extracted keyframe post-attention features 𝑭 (𝑙 ,𝑖)𝑡 onto the mesh and averaging, like

so

𝑭 𝑙 ,UV

𝑡 =
1

𝑁

𝑁∑
𝑖=1

ℛ−1

𝑖

(
𝑭 (𝑙 ,𝑖)

)
. (4.3)

Given the assembled feature textures, we now denoise each frame latent 𝒛 𝑖𝑡 . We do this by rendering

the feature textures to the frames pose, �̄� 𝑙 ,𝑖𝑡 = ℛ𝑖(𝑭 𝑙𝑡) and use these rendered features as, well as the

extracted keyframe pre-attention features 𝒇KF

𝑡 to compute a noise prediction for the frame by denoising

its latent with feature injection, denoted like so:

�̂�𝑖 ← 𝝐
inj

𝜃 (𝒛
𝑖
𝑡 , 𝑡 , 𝒄, 𝒅𝑖 , { 𝒇 𝑙𝑡 , �̄�

𝑙 ,𝑖
𝑡 }). (4.4)

Internally, each self-attention layer in the U-Net is modified to compute keys and values from the

concatenation of the image features and the injected keyframe pre-attention features 𝒇 𝑙 ,KF

𝑡 . Additionally,

4.2. Generative Rendering 19

the output of each attention layer is alpha blended with the rendered post attention features. The

modified self-attention layer with feature injection is

SelfAttn
inj

𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉
(𝒇 𝑙 ,𝑖𝑡 , { 𝒇

𝑙 ,KF

𝑡 , �̄� 𝑙 ,𝑖𝑡 }) = (1−𝛼)·Attention(𝑊𝑄 𝒇 𝑙 ,𝑖𝑡 ,𝑊𝐾[𝒇 𝑙 ,𝑖𝑡 , 𝒇
𝑙 ,KF

𝑡],𝑊𝑉 [𝒇 𝑙 ,𝑖𝑡 , 𝒇
𝑙 ,KF

𝑡])+𝛼�̄� 𝑙 ,𝑖𝑡 . (4.5)

This combines both cross-image attention and spatial feature injection, using the keyframes as the

source frames. By having each animation frame cross-attend to the keyframe features 𝒇 𝑙 ,KF

𝑡 , consistent

global appearance is maintained, and by alpha-blending the self-attention output features with the

rendered post-attention features �̄� (𝑙 ,𝑖)𝑡 spatial consistency is also maintained. Finally, we obtain the less

noisy video frames by bringing them to a lower noise level with the computed noise prediction with

DDIM sampling.

4.2.2. Generative Rendering Experiments
We now perform a series of experiments with our implementation of GR. Since their method relies

on rendering features from one set of frames to another, we hypothesize that this will cause issues in

scenes where features at some frames cannot be rendered to all other frames. This can occur when the

guidance geometry contains occlusion, as not all frames cover the same UV space, or when the mesh

appearas at different scales throughout the animation. In the following sections we validate each of

these hypothesees.

Inconsistency due to Occlusion We hypothesize that GR will struggle to generate temporally

consistent frames in scenes with occlusion, i.e., when different frames observe disjoint regions in

the UV space. Since only a subset of keyframes is used for feature alignment at each denoising

step, it is possible that the randomly selected keyframes do not cover the entire UV space. In such

cases, the rendered features will be incomplete in the unseen regions, potentially leading to temporal

inconsistencies. Our findings support this hypothesis. Figure 4.2 shows a video generated with GR for

a scene with occlusion, as well as a visualization of the extracted keyframe features (purple border)

and the rendered features for all animation frames. Due to the randomness of keyframe selection, the

assembled feature texture only covers the front of the character, and the resulting rendered features

contain holes in the frames showing the back of the character, resulting in temporal inconsistencies in

these frames, as highlighted by the zoom windows.

G
R

 O
u
tp

u
t

Fe
a
tu

re
s

Figure 4.2: Inconsistency due to Occlusion An example GR output for a scene displaying occlusion, along with a PCA

visualization of the extracted keyframe post-attention features (purple border) and rendered post-attention features for a

particular time step and layer. If the randomly selected keyframes do not span the whole UV space, then the uncovered regions

do not receive any spatial feature injection. In this particular scene this leads to visible inconsistency in the back of the character,

highlighted by the zoom windows.

We further validate this hypothesis by generating multiple videos altering only the seed that determines

which keyframes are selected at each denoising step. The results of this experiment are presented

in figure 4.3. We observe that the choice of keyframes influences where inconsistencies appear on

the mesh. For each generated video, we display the frames and highlight specific regions using

zoom windows, marking them in red when inconsistencies are present and in green when they are

not. As shown, the first row exhibits inconsistencies on the front of the character, the second on

4.2. Generative Rendering 20

the back, and the third shows no inconsistency. Since the only change across these generations is

keyframe-selection seed, we conclude that the randomness of keyframe selection directly causes the

observed inconsistencies.
KF

 s
ee

d:
 0

KF
 s

ee
d:

 1
KF

 s
ee

d:
 2

Figure 4.3: Altering Keyframe-Selection Randomness GR outputs generated with different seeds for keyframe selection. The

resulting videos display inconsistency in different areas of the mesh highlighted with zoom windows, with a red border when

inconsistent and purple border when consistent. The first row shows inconsistency in the front of the character, the second in the

back, and the third displays no inconsistency.

We note that the severity of this issue can be partially mitigated by selecting a large number of

keyframes, increasing the likelihood of covering the entire mesh. However, due to the use of extended

attention for feature extraction in equation (4.1), using many keyframes becomes memory intensive

and impractical, particularly for long animation sequences or scenarios where only a small subset of

frames covers a specific region of the UV space. Our method avoids this limitation entirely by instead

extracting features from the images used to generate a texture that is guaranteed to cover the relevant

parts of the UV space.

Blurring due to Camera z-movement We further hypothesize that the GR feature-alignment strategy

will struggle in scenes where the mesh appears at various scales. If, at a given denoising step, the

randomly selected keyframes show the subject from far-away, then when these features are rendered to

close-up frames, they will be heavily blurred. Figure 4.4 shows an example output for such a scene as

well as a visualization of the extracted and rendered features. As can be seen, the extracted features

depict the subject from far away, so the resulting rendered features are blurred in the close-up frames

resulting in visible corruption.

G
R

 O
u
tp

u
t

Fe
a
tu

re
s

Figure 4.4: Blurring due to Camera z-movement We show an example GR output for a scene with camera 𝑧-movement, along

with a PCA visualization of the keyframe post-attention features (purple border) and the rendered post-attention features at a

particular time step and layer. When the randomly chosen keyframes show the mesh from far away, the rendered features in the

close-up frrames are blurred, resulting in a corrupted output frame.

Unlike the occlusion issue, this failure case cannot be mitigated by increasing the amount of keyframes

used, as it will manifest even if all frames are used for feature extraction, since the feature texture

4.3. TexGen applied to Video Generation 21

is constructed by averaging all frames. Our method resolves this issue by extracting features from

latents used to generate a texture, and using a heuristic to ensure we only inject features from views at

a similar scale as the target frame.

4.3. TexGen applied to Video Generation
While not originally developed for our task, we note that recent work on text-driven texture generation,

described in section 2.3 can be readily adapted to our setting, by simply generating a texture for the

guidance mesh and rendering it to all other frames in𝒜 to obtain a video. In this section we explore

the viability of this approach. We implement a recent method, namely TexGen [32] and evaluate its

suitability video-generation through a series of experiments. We find that while effective at generating

textures, the results obtained when adapted to video generation are limited by the capabilities of what

a static texture can model.

4.3.1. TexGen Method
TexGen receives as input a text prompt 𝒄 and a meshℳ = (𝐹,𝑉)with UV mapping Φ : 𝒱 → [0, 1]2, and

generates a texture for the mesh according to the text prompt. TexGen follows the general pipeline of

most text-driven texture generation methods, shown in figure 2.1, by placing 𝑁 cameras surrounding

the object and using a depth-conditioned T2I model to generate an image for each camera. To enforce

consistency between the generated views, TexGen uses sequential inpainting at each denoising step.

Specifically, at each denoising step 𝑡 we denoise each view 𝑖 sequentially, and when denoising camera 𝑖

we condition on the result of denoising all previous cameras by with Blended Latent Diffusion [3]. In

this section we focus on the viability of a static texture, in general, for video generation, so we don’t

cover the details of the method in depth. For more details, see the paper [32] and supplementary

material for detailed pseudocode. Our implementation of TexGen additionally incorporates a few

minor modifications over their method which we find beneficial described in subsection 5.2.1.

4.3.2. TexGen Experiments
We run experiments with our implementation of TexGen to show the limitations of texture-generation

for geometry-guided video generation. We generate a video by creating a texture for the first frame

and rendering it to all target frames. We additionally compare our results to GR, to highlight the

limitations of this approach. Specifically, we show that a static texture cannot model deformations

from the guidance geometry, or variable lighting.

Deformations From the Guidance Geometry Figure 4.5 shows an example video generated with GR

and with a static texture. As can be observed, for this particular choice of prompt and geometry, GR is

abele to generate video frames depicting deformations from the reference geometry around the helmet

of the character. On the other hand the resulting video using a static texture depicts the head with the

geometry from the mannequin.

G
R

S
ta

ti
c

Te
x
tu

re

Figure 4.5: A static texture cannot model deformations For this particular choice of prompt and geometry, GR is able to generate

suitable deformations from the reference geometry, but a static texture cannot model these effects.

4.4. Summary of Findings 22

View-Specific Appearance Variations An additional issue with using a static texture, is that it cannot

model appearance variation over time. Figure 4.6 shows an example scene where this is prblematic. The

scene depicts an object with view-dependent materials. GR is able to generate suitable view-variation,

but a static texture cannot model these effects.

G
R

S
ta

ti
c

Te
x
tu

re

Figure 4.6: A static texture cannot model view-specific apperance variations In this scene GR is able to generate suitable

appearance variation between frames, placing the specularities at different places on the mesh. A static texture on the other

hand cannot model asigning a different color to the same texel across views.

4.4. Summary of Findings
In summary, we implement two existing methods and evaluate them in our setting. Our main finding

is that the advantages and limitations of these two methods are complementary. GR generates frames

directly with a depth-conditioned T2I model and enforces consistency via feature alignment, which

has several desireable properties, such as generating reasonable deformations from the guidance

geometry, and generating desireable per-view appearance variation. However, their approach suffers

in scenes with occlusion or camera 𝑧-movement. On the other hand, using a static texture is simple

and robust to all geometries, but when used for video generation cannot model appearance variation

or deformations.

5
Method

From our experiments in chapter 4, we identified that GR is effective at generating temporally consistent

videos, but is not robust to occlusion or camera 𝑧-movement. We also noted that generating and

rendering a texture with TexGen is simple and robust, but when directly applied to our setting, cannot

model various desireable effects. In this section, we present our method, which aims to resolve these

issues by bridging both approaches into a single framework. We begin by giving an overview of our

method, and then describe each of its components in depth.

5.1. Overview
Our method pipeline is shown in figure 5.1. We receive as input a text prompt 𝒄, and two animated

mesh-sequences𝒜src, and𝒜tgt parameterized as sequences of camera-mesh pairs {(𝒞𝑖 ,ℳ𝑖)}𝑖=1

𝑁
both

depicting the same mesh, with shared UV-mapping. The target sequence𝒜tgt is the animation we aim

to generate a video for, and the source sequence𝒜src consists of a set of cameras facing the subject from

various viewpoints and scales, which can be provided explicitly, or automatically generated (e.g. by

placing cameras in a 360
◦

around the first frame of the animation sequence at various distances/FoVs).

Given these inputs our method generates a video, in two main stages.

Firstly, the source sequence is used to generate a full RGB texture for the mesh by applying a modified

version of TexGen to generate a set of multi-view consistent images depicting the subject mesh, which

are used to assemble an RGB texture. We additionally save the intermediate latent trajectory 𝒛src

𝑇...0
of

noisy latents used to generate these source views, as it will be used later for feature extraction.

The second stage uses the generated texture to generate a video following the target sequence. This is

done by generating an image for each frame in the target sequence using a depth-conditioned DM

where we additionally condition the generation of each target frame on the generated texture, to ensure

consistent appearance across frames. This is done via two mechanisms. Firstly, the generated texture is

used to initialize the noisy latents 𝒛
tgt

𝑇′ used to generate each target frame, which we call Texture Driven
Noise Initialization. Next, at each denoising step from 𝒛

tgt

𝑡 to 𝒛
tgt

𝑡−1
we extract features from the source

frames used to generate the texture and inject them into the denoising model when generating each

target frame, using a feature injection approach similar to the one used by GR. Once the target frames

are fully denoised, the final video is obtained by decoding each target latent into an RGB image.

In the following sections we describe each of these method components in depth. We begin by

discussing the texture generation stage in section 5.2. Next, we describe our texture-driven noise

initialization in section 5.3, and finally, we cover the feature extraction and injection in section 5.4.

23

5.2. Texture Generation 24

Figure 5.1: Overview of our pipeline: Our method receives as input a text prompt 𝒄 and two animated mesh sequences

𝒜src ,𝒜tgt depicting the same subject. Firstly we use TexGen to generate a set of multi-view consistent images of the subject

according to the source sequence. Next, we use a depth-conditioned DM to generate video frames following the target sequence,

and enforce temporal consistency among the generated frames using the generated texture from the previous stage.

5.2. Texture Generation
In the first stage of our method the goal is to generate a series of multi-view consistent images of the

subject according to the source sequence𝒜src. We then use the generated views to assemble an RGB

texture for the mesh, and additionally save the intermediate diffusion trajectory used to generate them.

We accomplish this by using a modified implementation of TexGen [32], however in principle, any

text-driven texture generation method should be applicable. In the next section we briefly cover the

modifications we made to TexGen to improve the quality of the generated textures.

5.2.1. Quality-based multi-view sampling
Our initial implementation of TexGen, following the method described in the paper resulted in

significant seams in the generated textures. We observe that this issue is caused when texels filled at

early views from a camera with poor view of the texel are enforced in subsequent views. Inspired

by TexFusion [10] we incorporate a heuristic based on image space UV gradients to determine which

camera to use to fill each texel. We measure camera quality using the negative Jacobian determinant

magnitude of the image space UV gradients, i.e. the change in uv-coordinate per infinitesimal change

in image space. This quantity is often used to determine mip-mapping scale. More specifically, for a

given camera view we calculate its view quality 𝑄(𝑝, 𝑞) at pixel (𝑝, 𝑞) like so

𝑄(𝑝, 𝑞) = −
����𝜕𝑢𝜕𝑝 · 𝜕𝑣𝜕𝑞 − 𝜕𝑢

𝜕𝑞
· 𝜕𝑣
𝜕𝑝

���� . (5.1)

Figure 5.2 shows a visualization of this view-quality measure for cameras arranged in a 360
◦

ring around

an object. As can be seen, areas on the mesh viewed directly and up-close have a high view-quality

(blue), wheras areas on the mesh viewed at a high grazing angle are assigned a low quality (red).

We then modify the multi-view sampling algorithm described in section 3.2 of the TexGen paper [32] to

only fill a texel when inverse rendering a view to the texture space, if the new view is the highest-quality

view seen so far for at that texel. Later in figure 6.7, we ablate the impact of this modification.

5.3. Texture Driven Noise Initialization 25

Figure 5.2: UV-Quality Maps We show the UV-quality maps computed with equation (5.1) for cameras placed in a 360
◦

around

an object. We modify the multi-view sampling method proposed in TexGen [32] to fill each texel with the camera which has the

best quality at each texel according to this metric.

5.3. Texture Driven Noise Initialization
We now focus on the second stage of our method, which uses the result of the generated texture to

generate the final video frames. Before generating each frame, we initialize the latent noise 𝒛
tgt

𝑇′ used to

generate it. We do this by rendering the generated texture𝒰 to the frames of the target animation

𝒙 𝑖
ren

= ℛ𝑖(𝒰). (5.2)

Each render is then used to obtain an initial latent for the sequence. Inspired by SDEdit [43], for each

render we encode it into the latent space with the VAE encoder ℰ and add noise up to an initial noise

level 𝑇′ according to equation (3.1). To further boost initial consistency, instead of adding independent

Gaussian noise to each frame, we instead sample a UV noise texture 𝝐UV and render it to each target

frame to have multi-view consistent initial noise. The initial noise latent 𝒛 𝑖
𝑇′ for each target frame is

then:

𝒛 𝑖𝑇′ =
√
𝛼𝑇′ ℰ(𝒙 𝑖ren

) +
√

1 − 𝛼𝑇′ℛ𝑖(𝝐UV), 𝝐UV ∼ 𝒩(0, 𝑰). (5.3)

From here on, these latents are only denoised from 𝑇′ to 0. The parameter 𝑇′ determines the strength

of the noise initialization. If 𝑇′ = 𝑇, then 𝒛 𝑖
𝑇′ will resemble Gaussian noise, and as 𝑇′ decreases the

initialization becomes stronger. We find a suitable value of 𝑇′ in most cases to be roughly 40% of the

denoising process, which is high-enough to provide strong initialization, but low-enough to enable

generating deformations and view-dependent effects for each frame. We ablate the impact of this

parameter in figure 6.5.

5.4. Consistent Denoising with Feature Injection
While noise initialization boosts similarity between frames, it is not sufficient for full temporal

consistency. Therefore, we use a feature manipulation approach similar to the one used by GR, but

instead of sourcing features from randomly selected keyframes, we obtain them from the reverse

diffusion process that generated the texturing views in the previous stage. Firstly, we automatically

select a representative set of source frames for each target frame using heuristics to assess frame

similarity described in subsection 5.4.1. Once a good set of source frames has been selected, we use

them to perform feature injection.

5.4.1. Source Frame Selection
To perform feature injection from source views to a target frame, we first select a set of source frames

that best represent the target. For each target frame, we aim to select 1-3 source frames that sufficiently

cover its UV space, depict the subject at a similar scale, and show similar overall content. We select

these source frames using a simple greedy algorithm that repeatedly chooses the best source frame,

stopping when either the maximum number of frames is selected or the target UV space is adequately

covered. To assess the similarity between a source frame (ℳsrc ,𝒞src) and a target frame (ℳtgt ,𝒞tgt), we

rely on two heuristics:

Scale Distance Given a source and a target frame, we measure whether they depict the subject at a

similar scale using UV gradients. For each frame, we estimate its scale by computing the mean value of

its UV-quality map, as defined in equation (5.1). The scale distance between two frames is then defined

as their absolute difference raised to a power

5.4. Consistent Denoising with Feature Injection 26

Target Seq

Source Seq

Figure 5.3: Source Camera Selection For each frame in the target sequence, we select a representative set of cameras in the source

sequence, according to our camera selection heuristic. We show the selected cameras for an example source and target sequence.

𝑑
scale

= ∥scalesrc − scaletgt∥𝛾scale . (5.4)

UV-IoU Distance We also employ a heuristic to assess whether two views depict similar content by

measuring their overlap in UV space. Specifically, we compute the Intersection Over Union (IoU) of

the regions each frame covers in the UV map, denoted as𝒰src and𝒰tgt. The UV-IoU distance is then

defined as

𝑑UV-IoU = 1 −
𝒰src ∩𝒰tgt

𝒰src ∪𝒰tgt

. (5.5)

Figure 5.3 illustrates an example source and target sequence, along with the selected source frames

for each target frame in the animation. Our heuristics ensure that the selected frames depict similar

content to the target frame, at a similar scale.

5.4.2. Feature Extraction and Injection
Once a suitable set of source frames has been selected for a particular target frame 𝑖 we use them to

condition the denoising of 𝒛 𝑖𝑡 . Firstly, we extract features from the selected latents by passing them

through the denoising U-Net, and at each self-attention layer 𝑙, we extract the input and output features

𝒇
𝑙 , 𝑗

𝑡 and 𝑭
𝑙 , 𝑗

𝑡 for each selected source frame 𝑗. We denote this feature extraction like so:

𝒇 𝑙1 ,...𝑙𝑛 ,𝑖...𝑁𝑡 , 𝑭 𝑙1 ...𝑙𝑛 ,𝑖...𝑁𝑡 ← 𝝐extr

𝜃 (𝒙
src

𝑡 , 𝑡 , 𝒄, 𝒅). (5.6)

Note, that unlike GR we do not perform extended attention, and instead simply perform standard

self-attention, while extracting the input and output features. The extracted features are now used to

condition the generation of the target frame. Like in GR, for each layer 𝑙 we assemble a feature texture

from the extracted post-attention by inverse rendering them to the texture space

𝑭 𝑙 ,UV

𝑡 =
1

𝑁

𝑁∑
𝑖=1

ℛ−1

𝑖

(
𝑭 𝑙 ,𝑖

)
. (5.7)

We now use the assembled feature texture and the extracted pre-attention features to denoise the target

frame. We do this by rendering the feature textures to the target pose �̄� 𝑙 ,𝑖𝑡 = ℛ(𝑭 𝑙 ,UV

𝑡), and by providing

the concatenated pre-attention features for the layer, like so

�̂�𝑖 ← 𝝐
inj

𝜃 (𝒛
𝑖
𝑡 , 𝑡 , 𝒄, 𝒅, {[𝒇

𝑙 ,1..𝑛
𝑡], �̄� 𝑙 ,𝑖𝑡 }). (5.8)

5.5. Texture Rendering and Inverse Rendering 27

Where 𝝐
inj

𝜃 is the denoising model with feature injection. At each self-attention layer, we perform

cross-image attention and spatial feature injection with some 𝛼 , according to equation (4.5). Later we

ablate the inpact 𝛼 in figure 6.6.

5.5. Texture Rendering and Inverse Rendering
Our method makes use of the texture rendering and inverse rendering functions ℛ𝑖 and ℛ−1

𝑖
we defined

in section 4.1. In principle our method can be used with any geometry representation for which these

operations can be defined, but in practice we use a triangle meshℳ = (𝑉, 𝐹) with UV mapping. In this

section we give additional details about how these operations are implemented.

Texture Rendering To render a texture to from UV space to some camera, camera we employ standard

rasterization techniques. Firstly, the mesh is projected to the camera plane and rasterized. The color at

each pixel is then obtained by sampling the texture at its interpolated UV coordinate. Unlike most

setups we do-not model any shading effects and instead directly output the sampled texture color.

When rendering RGB textures, as is done during texture generation (section 5.2) and texture-driven

noise initialization, (section 5.3) we employ mip-mapping and antialiasing, however for rendering

feature images, as is done in section 5.4, or Gaussian noise, as is done in equation (5.3), we find it better

to not use these techniques and instead use nearest neighbor filtering. We implement texture-rendering

with nvdiffrast [38].

Texture Inverse Rendering To inverse render an image 𝐼 from camera space to the UV space of a

mesh we employ texture baking. Specifically, we compute the 2D coordinate each texel projects to in

camera space, and fill each texel by sampling ℐ at this coordinate. To determine the projected 2D

coordinate of each texel we first rasterize the UV triangulation with a resolution matching the texture

resolution to efficiently obtain, for each texel, which face it is in and its barycentric coordinates. We

then obtain the 3D coordinate of each texel on the surface of the mesh by interpolating the world-space

coordinates of the vertices of the texels triangle. These 3D coordinates are then mapped to the 2D

camera space with the camera matrix, and we additionally perform a visibility test to only fill visible

texels. By performing texture-baking instead of naively filling the texture map based on the rendered

UV coordinates, we ensure every visible texel is filled regardless of image and texture resolution.

Precomputing and reusing inverse and forward mappings A naive implementation of our method

can be computationally costly, as we perform rendering and inverse rendering for each frame, layer

and timestep throughout the generation of a video. We note that even though the textures and images

we are rendering change over time, the geometry remains fixed throughout the generation process.

Thus, we can precompute rasterization fragments and texel-camera mappings once, and then to render

or inverse render a texture we only need to perform sampling. We find this optimization to be critical

for efficient generation, especially when using many denoising steps.

6
Experiments

In this chapter, we evaluate our method through a series of experiments. In section 6.1 we compare

our method to those described in chapter 4, and show that it does not suffer from the failure cases we

identified. Next, in section 6.2 we ablate several of the key components of our method, and show the

impact of various hyperparameters on the generated videos.

6.1. Comparisons
We begin by comparing our method to the existing approaches described in chapter 4 with the aim

of validating if our two-stage generation approach addresses the identified failure cases of GR while

maintaining its desireable properties.

Baselines We use the methods described in chapter 4 as baselines, namely TexGen [32] and GR [8].

Both baselines are our best-effort reproductions of the original papers, as none of them have code

available. For completeness, we additionally compare to full per-frame generation by simply using the

depth-conditioned model to generate each frame independently. All methods are implemented with

SD v1.5 [58] with ControlNet-Depth [83] as the backbone model. We use 15 DDIM denoising steps,

with a CFG guidance scale of 7.5 in all videos, and use the same initial noise across methods, to ensure

fairness in comparison.

Datasets We construct a variety of inputs depicting diverse animations, camera motions and prompts

which we use to test our method. We construct these scenes using a variety of animated humans

performing dance sequences obtained from Mixamo [1], as well as various static meshes sourced from

PolyHaven [51] and Objaverse [14]. For meshes which do not have a UV mapping we automatically

generate one using xatlas [33]. To validate our hypothesees, we group our test scenes into three

categories:

1. GR Failure Cases: These scenes contain the failure modes discussed in subsection 4.2.2, such as

occlusion or camera 𝑧-motion. In these cases, we aim to show that our method performs on par
with TexGen.

2. TexGen Failure Cases: These scenes involve low-fidelity geometry and prompts where deforma-

tions or lighting variations are desirable. Here, we aim to show that our method performs on par
with GR.

3. Combined Failure Cases: These scenes combine both types of failure: they benefit from

deformations or variable lighting and also involve occlusion or camera 𝑧-motion. In these cases,

we aim to show that our method performs best.

For each category, we create approximately 10 test inputs and generate three videos per input using

different seeds. We qualitatively inspect selected outputs to support our hypotheses and further

validate them by computing quantitative metrics over the generated videos.

28

6.1. Comparisons 29

6.1.1. Qualitative Comparison
For each scene category, we qualitatively compare selected example results across methods, as shown

in figures 6.1 to 6.3. We use green bounding boxes and zoom windows to highlight desirable effects,

and red ones to indicate undesirable artifacts. We discuss the results for each category separately:

GR Failure Cases Figure 6.1 shows results for scenes with the failure cases of GR. As seen in

Figure 6.1a, in scenes with occlusion, GR produces temporally inconsistent results, as highlighted by

the zoom windows. It is important to note that these specific outputs are cherry-picked for GR, as

the occurrence of this artifact is stochastic, as demonstrated in figure 4.3. The remaining results are

not cherry-picked. On the other hand, Figure 6.1b shows results for scenes with camera 𝑧-movement.

In these cases, GR consistently produces overly blurred and distorted results in close-up views, as

highlighted by the bounding boxes. Neither TexGen, nor our method exhibit any of these artifacts.

TexGen Failure Cases We now focus our attention on the failure cases of TexGen. Figure 6.2a

shows results in scenes where the prompt and geometry benefit from having deformations from

the guidance geometry. In these scenes, GR effectively generates these effects as highlighted by the

zoom windows. TexGen on the other hand cannot model them, as it is restricted by the guidance

geometry. In these scenes, our method performs on-par with GR, generating very similar deformations.

Figure 6.2b instead shows scenes that benefit from view-specific lighting, due to the presence of

view-dependent materials. In these cases, TexGen produces static results, while GR is able to generate

minor view-dependent variations. Our method also produces reasonable view variations and further

demonstrates significantly higher visual fidelity.

Combined Failure Cases Finally, figure 6.3 shows results in scenes constructed to suffer from both

sets of failure cases. In these scenes our method is the only one that consistently gives good results.

Videos generated with GR either suffer from inconsistency due to occlusion, or heavy blurring, and

results generated with TexGen do not model deformations or lighting. Our method is able to address

both of these issues simultaneously.

6.1.2. Quantitative Comparison
We additionally report various metrics for the generated videos. We report a collection of video

metrics used in prior works [8, 11, 19, 21, 7] based on CLIP. These are Frame Consistency (FC), which is

computed as the mean cosine-similarity between the CLIP-image embeddings of all frames, and Prompt

Fidelity (PF), which is measured by computing the mean similarity between frame CLIP embeddings

and the prompt CLIP embedding. Additionally, we report our own UV Mean Squared Error (UV-MSE)

metric, computed by inverse rendering each generated frame to UV space and computing the mean

squared error between consecutive frames. We compute these metrics for all generated videos and

report the average value for method

Method Prompt Fidelity (↑) Frame Consistency (↑) UV-MSE (↓)
Per-Frame 0.3155 0.9090 0.0763

GR 0.3122 0.9666 0.0138

TexGen 0.3152 0.9678 0.0001
Ours 0.3194 0.9653 0.0134

Table 6.1: Quantiative Comparison Following prior works we compute prompt fidelity and frame consistency with CLIP. We

additionally use our UV-MSE metric. Our method obtains the highest prompt-fidelity, and competetive frame-consistency.

Our method obtains the highest prompt fidelity across all baselines and frame-consistency and UV-MSE

competetive with GR. Trivially, TexGen obtains the lowest UV-MSE, our method obtains lower UV-MSE

than GR.

6.1. Comparisons 30
Pe

r-F
ra

m
e

GR
Te

xG
en

O
ur

s

"Spiderman" "Deadpool"

(a) Qualitative Comparisons in scenes with occlusion. Highlighted content is temporally inconsistent with GR

(b) Qualitative comparisons in scenes with camera 𝑧-movement. Frames displaying up-close content apperar blurry with GR.

Figure 6.1: Qualitative Comparison - GR Failure Cases Comparison across methods for scenes containing the failure cases of GR, described in

subsection 4.2.2. In these scenes GR consistently produces blurry or temporally inconsistent results. Static texturing, and ours do not suffer from

these limitations.

6.1. Comparisons 31
Pe

r-F
ra

m
e

GR
Te

xG
en

O
ur

s

"Stormtrooper" "Darth Vader"

(a) Qualitative comparison in scenes with desireable defomrations. Our method generates similar defomrations to GR.

Pe
r-
Fr
a
m
e

G
R

Te
x
G
e
n

O
u
rs

"Metalic Cat Statue" "Silver Mandalorian Helmet"

(b) Qualitative comparisons for scenes view dependent materials. Our method is able to generate plausible view-specific lighting.

Figure 6.2: Qualitative Comparisons - TexGen Failure Cases Comparison across methods for scenes which suffer from the failure cases of

TexGen, identified in subsection 4.3.2. In these scenes a static-texture cannot capture desireable effects. Our method generates these effects

on-par with GR.

6.1. Comparisons 32
Pe

r-F
ra

m
e

GR
Te

xG
en

O
ur

s

"Stormtrooper" "Lion"

Pe
r-
Fr
a
m
e

G
R

Te
x
G
e
n

O
u
rs

"Stormtrooper" "Silver Lion Statue"

Figure 6.3: Qualitative Comparisons - Combined Failure Cases Comparison across methods for scenes displaying both the failure cases of GR

and TexGen. In these scenes a static-texture cannot capture desireable effects and GR displays temporal inconsistency and blurring. Our method

is able to address both of these issues simultaneously.

6.2. Ablations 33

6.2. Ablations
To further justify the design of our method we perform a series of qualitative ablations, showing the

impact of each of our individual method components. We additionally show the impact of various

hyperparameters on the generated videos.

Impact of Method Components To better understand the role of each of our method components, we

generate an example video with several key components disabled. Specifically, we show the generated

frames under four configurations: 1) Full per-frame generation, so with all method components

disabled, 2) Using texture-driven noise initialization only, 3) Using noise initialization, and additionally

performing cross-image attention in equation (4.5), and finally, 4) Using our full method, with noise

initialization, and full feature injection with both cross-image attention and spatial feature injection.

Pe
r-

Fr
a
m

e

N
o
is

e
 I
n
it

 +

C
ro

ss
-I

m
a
g
e
 A

tt
n

Te
x
tu

re
-N

o
is

e
 I
n
it

F
u

ll
 M

e
th

o
d

Figure 6.4: Main Ablation We generate a video disabling various method components. Texture-driven noise-initialization

significantly boosts appearance similarity between frames but is insufficient for full consistency. Cross-Image attention further

boosts overall appearance similarity, and finally, incorporating spatial-feature injection gives full fine-grained spatial consistency.

Our results for this experiment are summarized in figure 6.4. Texture-driven noise initialization results

in significantly stronger overall appearance similarity than full per-frame generation but by itself is not

sufficient. Incorporating cross-image attention, further boosts consistency, but still does not provide full

fine-grained spatial consistency. Finally, incorporating spatial feature injection with features extracted

from the texturing views gives fine-grained spatial consistency, at the cost of introducing minor visual

artifacts in the generated frames.

Importance of Noise Initialization From figure 6.4, it is clear that feature injection is the primary

component enforcing temporal consistency. This raises the question: is texture-driven noise initialization

necessary, or is feature injection sufficient? To answer this, we show two example frames for a video

generated under three configurations: 1) using feature injection only, with no noise, 2) directly rendering

the generated texture, and 3) our full method combining feature injection with noise initialization at

varying strengths 𝑇′.

The results of this experiment are presented in figure 6.5. Without noise initialization, the generated

frames exhibit strong visual artifacts. We hypothesize that these artifacts arise from a strong mismatch

between the injected features, derived from the texturing views, and the native features of the target

frame. Incorporating noise initialization mitigates this issue, as it encourages stronger initial alignment

between injected and native features. We further note the importance of selecting an appropriate initial

noise level 𝑇′. While a stronger initialization reduces artifacts and improves temporal consistency, it

also diminishes view-dependent effects and deformations, as shown by the zoom windows on the fur

of the Lion. We find 𝑇′ = 0.4 to provide a good trade-off in most cases, and we adopt this value in our

comparisons.

6.2. Ablations 34

No Noise Init T' at 20% T'= at 40% T' at 60% T' at 80% Rendered Texture

Figure 6.5: Impact of Texture-Guided Noise Initialization When we disable texture-driven noise initialization, the resulting

video (left col) displays considerable artifacts due to the mismatch between the native and injected features. When noise

initialization is incorporated, these artifacts are reduced significantly. The strength of the initialization is also relevant. When

using a stronger initialization, the artifacts are weaker, but the desireable deformations and view-specific lighting are weakened

as well.

Impact of Feature Injection Alpha We further ablate the 𝛼 parameter used to blend rendered features

from the texturing views to the animation views in equation (4.5). Figure 6.6 shows two example

videos generated with various 𝛼 values, with the appropriate alpha value for each video shown in

green. Higher 𝛼 values promote stronger temporal consistency, at the cost of weakening the generated

lighting and deformations. On the other hand, a smaller alpha enables desireable view-variation, but

may introduce undesireable temporal inconsistency. The right choice of 𝛼 is scene-dependent, and we

leave it as an open parameter for the artist to adjust.

R
e
n
d
e
re

d
 T

e
x
tu

re
=
0
.1

=
0

.3
=

0
.5

"Metalic Cat Statue"

R
e
n
d
e
re

d
 T

e
x
tu

re
=

0
.1

=
0

.3
=
0
.5

"Spiderman Fox"

Figure 6.6: Impact of Feature Blend Alpha We show two example generated videos with varying 𝛼 values. A higher alpha

results in stronger consistency, at the cost of weakening the generated deformations and lighting. The right choice of alpha

depends on the scene.

6.2. Ablations 35

Importance of Quality-Based Texture Generation Lastly, we ablate the importance of our quality-

based texturing described in subsection 5.2.1. Our original implementation of TexGen, following the

methodology in the paper, produced noticeable seams in the generated textures. We addressed this

issue by using a heuristic based on image space UV gradients to select the optimal camera for each texel.

As shown in figure 6.7, this modification substantially improves the robustness of texture generation,

significantly reducing visible artifacts.

N
o

Q
ua

lit
y-

Ba
se

d
Te

xt
ur

in
g

Q
ua

lit
y-

Ba
se

d
Te

xt
ur

in
g

N
o

Q
ua

lit
y-

Ba
se

d
Te

xt
ur

in
g

"Metalic Cat Statue" "Boba Fett Helmet"

Figure 6.7: Importance of Quality-Based Texturing Our initial implementation of TexGen exhibited notable seams in the

generated textures. By using our quality-based texturing approach described in subsection 5.2.1, our generated textures are

considerably stronger.

7
Discussion And Conclusion

We now discuss the results from the limitations of our method and give recomendations towards

future work. We finish this section with concluding remarks about our work.

7.1. Limitations and Future Work
Our method successfully addresses the failure cases of GR [8] and TexGen [32] we identified in chapter 4,

however it still suffers from several limitations, some of which are inherited from GR, and others

intrinsic to our approach. In this section we explain these limitations, and indicate directions for future

research.

Lack of Meaningful Quantitative Evaluation In subsection 6.1.2 we use the FC and PF metrics based

on CLIP, following convention set by prior work [8, 7, 11, 21, 19] as well as our UV-MSE metric to

quantiatively evaluate our method. However, due to the subjective nature of our work, these metrics

do not accurately capture the goals of our method, hence the majority of our evaluation and ablations

are done qualitatively. To adequately assess our method a user study would be neccesary.

Pixel-Level Inconsistencies Our method is implemented using an LDM [58] but enforces temporal

consistency only in the low-resolution latent space. Since each frame’s latent is decoded to RGB

independently, minor inconsistencies in the latent space are amplified, appearing as noticeable flicker in

the decoded RGB videos. This effect is illustrated in figure 7.1, where the zoomed-in head shows slight

variations across frames. This limitation is inherited from GR, but it could potentially be mitigated

with techniques such as Pixel-Wise Guidance [17] or the "guided latent update" in [11], which optimize

the latents during generation to encourage similarity in RGB space.

Figure 7.1: Pixel-Level Inconsistencies Our method only operates on the low-dimensional latent space of the LDM, so minor

inconsistencies are inflated into noteicable inconsistencies in the RGB space.

Physically Inaccurate Lighting Our method distinguishes itself from static texturing by its ability to

generate plausible lighting for each frame, as shown in Figure 6.2b. However, similar to other image

and video generation techniques based on diffusion models, the generated lighting is not physically

accurate. Figure 7.2 shows an example video where, although the lighting appears visually plausible,

it does not adhere to physical correctness.

36

7.1. Limitations and Future Work 37

Figure 7.2: Physically Unrealistic Lighting Our method can generate plausible lighting for view-dependent materials, but is not

physically realistic.

Background Inconsistency We observe that in some scenes, our method produces inconsistent

artifacts in the background, as highlighted in figure 7.3. This limitation is also inherited from GR, and

occurs because our mehtod only explicitly enforces temporal consistency in the regions of the image

covered by the guidance geometry. Background consistency is only enforced via noise initialization

and cross-image attention, which do not enforce fine-grained consistency. This, of course, could be

resolved by simply using guidance geometry with multiple meshes, and ensuring that every pixel is

covered by at least one mesh, by placing a floor, or background plane.

Figure 7.3: Background inconsistency Our method occasionally produces inconsistent artifacts in the background. This is

because we only explicitly enforce temporal consistency in the areas covered by the mesh. This could be addressed by using

guidance geometry which fully covers the image plane, by placing a plane/ground in the background of the scene.

Reliance on generated texture Since our method employs TexGen as a pre-processing step to generate

a rough texture for the mesh, the quality of our generated video depends on the generated texture.

In most cases, the generated texture is sound, however TexGen can occasionally produce unnatural

results, which are then present in the generated video as shown in figure 7.4.

Generated Texture Resulting Video Frames

Figure 7.4: Degenerate Texture Our method generates a texture as a pre-processing step. If this generated texture is incoherent,

the resulting video inherits these issues.

Reliance on a T2I model Our method relies exclusively on a depth-conditioned T2I model, both to

generate the initial texture and to produce the final video frames. This is advantageous, as T2I models

and datasets are widely available and computationally efficient. However, during the course of this

thesis, both 3D generation and video generation models, trained natively on 3D and video data, have

advanced significantly [49, 60, 23, 80]. Leveraging more recent models would likely improve visual

quality and address several of the limitations discussed above. Specifically, video-models do not suffer

from per-pixel inconsistencies [7]. While expanding our method to these models is nontrivial, our core

idea of first generating a textured 3D representation and then using it as guidance for controllable

video generation could, in principle, be adapted to more recent models, potentially enabling stronger

7.2. Conclusion 38

geometric coherence and temporal consistency than existing methods based on video models [40, 19].

We believe this represents an exciting direction for future research.

7.2. Conclusion
In conclusion, we introduce a novel method for reometry-guided Text To Video (T2V), which enables

generating videos controlled by a guidance animated mesh sequence. Our approach first generates a

rough texture for the input geometry using an existing texture-generation method, and then leverages

a depth-conditioned T2I model to synthesize video frames, enforcing temporal consistency betweeen

frames by conditioning each generated frame on the previously generated texture, using a feature-

manipulation strategy similar to the one proposed by GR. Our experiments show that our method can

produce videos with desireable deformations and lighting effects comparable to results obtained with

GR, while at the same time, being robust to several of the failure cases of GR. We further justify the

importance of each of our method components through a series of ablations. This work represents a

step forward in the emerging field of geometry-guided video generation, and we hope it will motivate

further research in this direction.

References

[1] Adobe Inc. Mixamo: Web-based character auto-rigging and animation. https://www.mixamo.com.
2025.

[2] Yuval Alaluf, Daniel Garibi, Or Patashnik, Hadar Averbuch-Elor, and Daniel Cohen-Or. Cross-
Image Attention for Zero-Shot Appearance Transfer. Nov. 6, 2023. (Visited on 10/19/2024). Pre-

published.

[3] Omri Avrahami, Ohad Fried, and Dani Lischinski. “Blended Latent Diffusion”. In: ACM Transac-
tions on Graphics 42.4 (Aug. 2023), pp. 1–11. (Visited on 12/05/2024).

[4] Omri Avrahami, Dani Lischinski, and Ohad Fried. “Blended Diffusion for Text-driven Editing of

Natural Images”. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,

LA, USA: IEEE, June 2022, pp. 18187–18197. (Visited on 03/30/2025).

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly
Learning to Align and Translate. May 19, 2016. (Visited on 10/23/2024). Pre-published.

[6] Jingzhi Bao, Xueting Li, and Ming-Hsuan Yang. Tex4D: Zero-shot 4D Scene Texturing with Video
Diffusion Models. Oct. 14, 2024. (Visited on 10/18/2024). Pre-published.

[7] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,

and Karsten Kreis. Align Your Latents: High-Resolution Video Synthesis with Latent Diffusion Models.
Dec. 28, 2023. (Visited on 10/28/2024). Pre-published.

[8] Shengqu Cai, Duygu Ceylan, Matheus Gadelha, Chun-Hao Paul Huang, Tuanfeng Yang Wang,

and Gordon Wetzstein. Generative Rendering: Controllable 4D-Guided Video Generation with 2D
Diffusion Models. Dec. 3, 2023. (Visited on 12/04/2024). Pre-published.

[9] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinqiang Zheng.

“MasaCtrl: Tuning-Free Mutual Self-Attention Control for Consistent Image Synthesis and

Editing”. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV). 2023 IEEE/CVF

International Conference on Computer Vision (ICCV). Paris, France: IEEE, Oct. 1, 2023, pp. 22503–

22513. (Visited on 03/27/2025).

[10] Tianshi Cao, Karsten Kreis, Sanja Fidler, Nicholas Sharp, and Kangxue Yin. TexFusion: Synthesizing
3D Textures with Text-Guided Image Diffusion Models. Oct. 20, 2023. (Visited on 12/04/2024). Pre-

published.

[11] Duygu Ceylan, Chun-Hao Paul Huang, and Niloy J. Mitra. Pix2Video: Video Editing Using Image
Diffusion. Mar. 22, 2023. (Visited on 06/25/2024). Pre-published.

[12] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee, Sergey Tulyakov, and Matthias Nießner.

“Text2Tex: Text-driven Texture Synthesis via Diffusion Models”. In: 2023 IEEE/CVF International
Conference on Computer Vision (ICCV). 2023 IEEE/CVF International Conference on Computer

Vision (ICCV). Paris, France: IEEE, Oct. 1, 2023, pp. 18512–18522. (Visited on 08/16/2024).

[13] Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style Injection in Diffusion: A Training-free Approach
for Adapting Large-scale Diffusion Models for Style Transfer. Mar. 20, 2024. (Visited on 11/12/2024).

Pre-published.

[14] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig

Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A Universe of Annotated
3D Objects. Dec. 15, 2022. (Visited on 05/12/2025). Pre-published.

[15] Prafulla Dhariwal and Alex Nichol. “Diffusion Models Beat GANs on Image Synthesis”. In: ().

39

https://www.mixamo.com

References 40

[16] Niladri Shekhar Dutt, Sanjeev Muralikrishnan, and Niloy J Mitra. “Diffusion 3D Features

(Diff3F): Decorating Untextured Shapes with Distilled Semantic Features”. In: (Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) June 2024),

pp. 4494–4504.

[17] Abdelrahman Eldesokey and Peter Wonka. LatentMan: Generating Consistent Animated Characters
Using Image Diffusion Models. June 2, 2024. (Visited on 08/24/2024). Pre-published.

[18] Dave Epstein, Allan Jabri, Ben Poole, Alexei A. Efros, and Aleksander Holynski. Diffusion Self-
Guidance for Controllable Image Generation. June 11, 2023. (Visited on 11/24/2024). Pre-published.

[19] Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis

Germanidis. Structure and Content-Guided Video Synthesis with Diffusion Models. Feb. 6, 2023.

(Visited on 10/20/2024). Pre-published.

[20] Patrick Esser, Robin Rombach, and Björn Ommer. Taming Transformers for High-Resolution Image
Synthesis. June 23, 2021. (Visited on 10/18/2024). Pre-published.

[21] Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel. TokenFlow: Consistent Diffusion Features
for Consistent Video Editing. Nov. 20, 2023. (Visited on 09/10/2024). Pre-published.

[22] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. June 10, 2014. (Visited on

05/06/2025). Pre-published.

[23] Google Cloud / DeepMind. Veo 3 is now available for everyone in public preview on Vertex AI.
https://cloud.google.com/blog/products/ai-machine-learning/veo-3-available-for-
everyone-in-public-preview-on-vertex-ai. June 2025.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. Dec. 10, 2015. (Visited on 04/20/2024). Pre-published.

[25] Eric Hedlin, Gopal Sharma, Shweta Mahajan, Xingzhe He, Hossam Isack, Abhishek Kar Helge

Rhodin, Andrea Tagliasacchi, and Kwang Moo Yi. Unsupervised Keypoints from Pretrained Diffusion
Models. May 21, 2024. (Visited on 08/27/2024). Pre-published.

[26] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.

Prompt-to-Prompt Image Editing with Cross Attention Control. Aug. 2, 2022. (Visited on 10/22/2024).

Pre-published.

[27] Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. “Style Aligned Image

Generation via Shared Attention”. In: 2024 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). Seattle, WA, USA: IEEE, June 16, 2024, pp. 4775–4785. (Visited on 10/22/2024).

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Dec. 16, 2020.

(Visited on 06/09/2024). Pre-published.

[29] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. July 26, 2022. (Visited on

10/12/2024). Pre-published.

[30] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.

Fleet. Video Diffusion Models. June 22, 2022. (Visited on 10/19/2024). Pre-published.

[31] Jonathan Ho et al. Imagen Video: High Definition Video Generation with Diffusion Models. Oct. 5, 2022.

(Visited on 01/15/2025). Pre-published.

[32] Dong Huo, Zixin Guo, Xinxin Zuo, Zhihao Shi, Juwei Lu, Peng Dai, Songcen Xu, Li Cheng, and

Yee-Hong Yang. “TexGen: Text-Guided 3D Texture Generation with Multi-view Sampling and

Resampling”. In: arXiv, Aug. 2, 2024. (Visited on 08/16/2024).

[33] jpcy. xAtlas: Mesh parameterization / UV unwrapping library. https://github.com/jpcy/xatlas.
2025.

[34] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. “3D Gaussian

Splatting for Real-Time Radiance Field Rendering”. In: ACM Transactions on Graphics 42.4 (Aug.

2023), pp. 1–14. (Visited on 05/06/2024).

https://cloud.google.com/blog/products/ai-machine-learning/veo-3-available-for-everyone-in-public-preview-on-vertex-ai
https://cloud.google.com/blog/products/ai-machine-learning/veo-3-available-for-everyone-in-public-preview-on-vertex-ai
https://github.com/jpcy/xatlas

References 41

[35] Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang

Wang, Shant Navasardyan, and Humphrey Shi. Text2Video-Zero: Text-to-Image Diffusion Models
Are Zero-Shot Video Generators. Mar. 23, 2023. (Visited on 08/24/2024). Pre-published.

[36] Diederik P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions.
July 10, 2018. (Visited on 06/27/2025). Pre-published.

[37] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. Dec. 10, 2022. (Visited on

03/30/2025). Pre-published.

[38] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
Primitives for High-Performance Differentiable Rendering. Nov. 6, 2020. (Visited on 06/16/2025).

Pre-published.

[39] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten

Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-Resolution Text-to-3D Content
Creation. Mar. 25, 2023. (Visited on 08/14/2024). Pre-published.

[40] Han Lin, Jaemin Cho, Abhay Zala, and Mohit Bansal. Ctrl-Adapter: An Efficient and Versatile Frame-
work for Adapting Diverse Controls to Any Diffusion Model. May 24, 2024. (Visited on 11/11/2024).

Pre-published.

[41] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow Matching
for Generative Modeling. Feb. 8, 2023. (Visited on 01/21/2025). Pre-published.

[42] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.

Zero-1-to-3: Zero-shot One Image to 3D Object. Mar. 20, 2023. (Visited on 06/29/2025). Pre-published.

[43] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.

SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations. Jan. 5, 2022. (Visited

on 11/23/2024). Pre-published.

[44] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-NeRF
for Shape-Guided Generation of 3D Shapes and Textures. Nov. 14, 2022. (Visited on 06/16/2024).

Pre-published.

[45] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,

and Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Aug. 3, 2020.

(Visited on 04/04/2024). Pre-published.

[46] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-Text Inversion
for Editing Real Images Using Guided Diffusion Models. Nov. 17, 2022. (Visited on 04/25/2025).

Pre-published.

[47] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,

Ilya Sutskever, and Mark Chen. GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models. Mar. 8, 2022. (Visited on 06/29/2025). Pre-published.

[48] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel Recurrent Neural Networks.
Aug. 19, 2016. (Visited on 06/27/2025). Pre-published.

[49] OpenAI. Sora is here: Introducing OpenAI’s Text-to-Video Model. https://openai.com/index/sora-
is-here/. Dec. 2024.

[50] Or Patashnik, Rinon Gal, Daniel Cohen-Or, Jun-Yan Zhu, and Fernando De la Torre. Consolidating
Attention Features for Multi-view Image Editing. Feb. 22, 2024. (Visited on 11/23/2024). Pre-

published.

[51] Poly Haven. https://polyhaven.com. 2025.

[52] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion: Text-to-3D Using 2D
Diffusion. Sept. 29, 2022. (Visited on 06/18/2024). Pre-published.

[53] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng

Chen. FateZero: Fusing Attentions for Zero-shot Text-based Video Editing. Oct. 11, 2023. (Visited on

10/17/2024). Pre-published.

[54] Alec Radford et al. Learning Transferable Visual Models From Natural Language Supervision. Feb. 26,

2021. (Visited on 05/23/2024). Pre-published.

https://openai.com/index/sora-is-here/
https://openai.com/index/sora-is-here/
https://polyhaven.com

References 42

[55] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,

and Ilya Sutskever. Zero-Shot Text-to-Image Generation. Feb. 26, 2021. (Visited on 06/29/2025).

Pre-published.

[56] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating Diverse High-Fidelity Images with
VQ-VAE-2. June 2, 2019. (Visited on 05/02/2025). Pre-published.

[57] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or. TEXTure: Text-
Guided Texturing of 3D Shapes. Feb. 3, 2023. (Visited on 06/16/2024). Pre-published.

[58] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. Apr. 13, 2022. (Visited on 06/16/2024).

Pre-published.

[59] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. May 18, 2015. (Visited on 04/18/2024). Pre-published.

[60] Runway AI. Introducing Runway Gen-4. https://runwayml.com/research/introducing-
runway-gen-4. Mar. 2025.

[61] Seyedmorteza Sadat, Otmar Hilliges, and Romann M. Weber. Eliminating Oversaturation and
Artifacts of High Guidance Scales in Diffusion Models. Oct. 3, 2024. (Visited on 02/17/2025).

Pre-published.

[62] Chitwan Saharia et al. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding.

May 23, 2022. (Visited on 06/29/2025). Pre-published.

[63] Christoph Schuhmann et al. LAION-5B: An Open Large-Scale Dataset for Training next Generation
Image-Text Models. Oct. 16, 2022. (Visited on 10/18/2024). Pre-published.

[64] Yichun Shi, Peng Wang, Jianglong Ye, Mai Long, Kejie Li, and Xiao Yang. MVDream: Multi-view
Diffusion for 3D Generation. Apr. 18, 2024. (Visited on 11/14/2024). Pre-published.

[65] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsu-
pervised Learning Using Nonequilibrium Thermodynamics. Nov. 18, 2015. (Visited on 06/16/2024).

Pre-published.

[66] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. Oct. 5, 2022.

(Visited on 06/16/2024). Pre-published.

[67] Yang Song and Stefano Ermon. Generative Modeling by Estimating Gradients of the Data Distribution.

Oct. 10, 2020. (Visited on 07/26/2024). Pre-published.

[68] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and

Ben Poole. Score-Based Generative Modeling through Stochastic Differential Equations. Feb. 10, 2021.

(Visited on 02/18/2025). Pre-published.

[69] Nick Stracke, Stefan Andreas Baumann, Kolja Bauer, Frank Fundel, and Björn Ommer. CleanDIFT:
Diffusion Features without Noise. Dec. 4, 2024. (Visited on 12/06/2024). Pre-published.

[70] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. DreamGaussian: Generative
Gaussian Splatting for Efficient 3D Content Creation. Mar. 29, 2024. (Visited on 08/14/2024).

Pre-published.

[71] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emergent
Correspondence from Image Diffusion. Dec. 6, 2023. (Visited on 09/04/2024). Pre-published.

[72] Yoad Tewel, Omri Kaduri, Rinon Gal, Yoni Kasten, Lior Wolf, Gal Chechik, and Yuval Atzmon.

Training-Free Consistent Text-to-Image Generation. May 30, 2024. (Visited on 01/10/2025). Pre-

published.

[73] Fabio Tosi, Pierluigi Zama Ramirez, and Matteo Poggi. Diffusion Models for Monocular Depth
Estimation: Overcoming Challenging Conditions. July 23, 2024. (Visited on 06/29/2025). Pre-

published.

[74] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel. Plug-and-Play Diffusion Features for
Text-Driven Image-to-Image Translation. Nov. 22, 2022. (Visited on 10/17/2024). Pre-published.

[75] Lukas Uzolas, Elmar Eisemann, and Petr Kellnhofer. Surface-Aware Distilled 3D Semantic Features.
Mar. 24, 2025. (Visited on 03/25/2025). Pre-published.

https://runwayml.com/research/introducing-runway-gen-4
https://runwayml.com/research/introducing-runway-gen-4

References 43

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. Aug. 1, 2023. (Visited on 03/23/2024).

Pre-published.

[77] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu.

ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation.

Nov. 22, 2023. (Visited on 10/22/2024). Pre-published.

[78] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,

Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-A-Video: One-Shot Tuning of Image Diffusion
Models for Text-to-Video Generation. Mar. 17, 2023. (Visited on 06/26/2024). Pre-published.

[79] Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change Loy. Rerender A Video: Zero-Shot Text-Guided
Video-to-Video Translation. Sept. 17, 2023. (Visited on 08/24/2024). Pre-published.

[80] Yuanbo Yang, Jiahao Shao, Xinyang Li, Yujun Shen, Andreas Geiger, and Yiyi Liao. “Prometheus:

3D-Aware Latent Diffusion Models for Feed-Forward Text-to-3D Scene Generation”. In: CoRR
abs/2412.21117 (2024).

[81] Denis Zavadski, Johann-Friedrich Feiden, and Carsten Rother. ControlNet-XS: Rethinking the
Control of Text-to-Image Diffusion Models as Feedback-Control Systems. Aug. 12, 2024. (Visited on

02/10/2025). Pre-published.

[82] Junyi Zhang, Charles Herrmann, Junhwa Hur, Eric Chen, Varun Jampani, Deqing Sun, and Ming-

Hsuan Yang. “Telling Left from Right: Identifying Geometry-Aware Semantic Correspondence”.

In: ().

[83] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding Conditional Control to Text-to-Image
Diffusion Models. Nov. 26, 2023. (Visited on 05/11/2024). Pre-published.

	Introduction
	Outline

	Related Work
	Video Generation
	Controllable Video Generation
	3D Generation
	Controlled Generation via Diffusion Feature Manipulation
	Summary of related works

	Background
	Diffusion Models
	Conditional Generation
	Guidance
	Latent Diffusion Models

	Stable Diffusion
	Model Architecture
	Controlling Stable Diffusion by feature manipulation
	Summary

	Exploration of Existing Methods
	System Setup
	Generative Rendering
	Generative Rendering Method
	Generative Rendering Experiments

	TexGen applied to Video Generation
	TexGen Method
	TexGen Experiments

	Summary of Findings

	Method
	Overview
	Texture Generation
	Quality-based multi-view sampling

	Texture Driven Noise Initialization
	Consistent Denoising with Feature Injection
	Source Frame Selection
	Feature Extraction and Injection

	Texture Rendering and Inverse Rendering

	Experiments
	Comparisons
	Qualitative Comparison
	Quantitative Comparison

	Ablations

	Discussion And Conclusion
	Limitations and Future Work
	Conclusion

	References

