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 A B S T R A C T

Supply chain networks face the critical challenge of enhancing resilience to disruptions while 
controlling the costs associated with resilience improvements. In this paper, we introduce an 
adaptive resilience improvement framework designed to sustain material flow by responding 
dynamically to emerging network vulnerabilities. Our framework centers on the production 
chain as a core element in resilience planning, integrating vulnerability assessment and rein-
forcement strategies through a tri-level optimization model. This model adapts to the network’s 
changing conditions by (i) incorporating disruption scenario generation as an integral part of 
the decision-making process, allowing for the dynamic identification of vulnerabilities, and 
(ii) optimizing reinforcement strategies in response to them. We demonstrate the framework’s 
effectiveness through two distinct case studies: a steel supply chain, where production flexibility 
improves resilience by 30%, and a pharmaceutical supply chain affected by climate-related 
disruptions. Our computational results confirm the scalability and effectiveness of this approach 
in strengthening network-wide resilience as vulnerabilities evolve.

. Introduction

This paper introduces an adaptive resilience improvement framework for enhancing the resilience of supply chain networks, 
ith a focus on sustaining material flows during disruptions. As supply chains expand across regions and industries, their increasing 
cale and interdependence expose them to a broader range of disruptions. Although localized vulnerabilities can often be identified, 
 more complex challenge lies in assessing how disruptions at one point in the network can lead to significant supply shortfalls at 
ther points.
Network resilience in supply chains involves long-term strategies to strengthen the network’s capacity to withstand and absorb 

isruptions (Wieland and Durach, 2021). Enhancing network resilience relies on three interrelated components: scenario mapping 
o outline potential chains of disruption, assessment to measure the impact of each scenario on the supply chain operation, and 
argeted reinforcement strategies for improvement.
Research on supply chain resilience primarily falls into two groups. The first group focuses on assessing supply chain networks’ 

ulnerability to disruptions (see, for example, Kim et al., 2011; Dixit et al., 2020). The second group, in contrast, focuses on 
etermining cost-effective reinforcement strategies for supply chain networks (see, for example, Aldrighetti et al., 2023; Alikhani 
t al., 2023; Goldbeck et al., 2020). Key strategies include redundancy — such as establishing alternative suppliers or increasing 
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reserve stock levels — and flexibility, which enables adjustments in production processes or redirecting flows through alternate 
logistics paths to maintain continuity (Tang, 2006).

A primary objective in reinforcing network resilience is to achieve maximum network-wide resilience with minimal cost. Studies 
on supply chain resilience typically rely on a set of predefined scenarios to guide reinforcement strategies. These scenarios are 
identified based on the anticipated impact of specific disruptions on the existing network structure. However, reinforcement 
strategies based on predefined scenarios may not necessarily improve overall network resilience. When reinforcement strategies 
are applied, the network structure is altered. This potentially introducing new vulnerabilities with similar or even greater negative 
impacts. Given these limitations, effective resilience planning requires adaptable scenario generation within the decision-making 
process.

To address these challenges, we develop an integrated optimization framework that jointly determines vulnerability assessments 
and adaptive reinforcement strategies to enhance supply chain resilience. A central contribution of this work is the explicit modeling 
of the production chain as the structural conduit linking scenario-based vulnerability identification with strategic reinforcement 
planning. By endogenizing disruption scenarios within the decision process, we formulate a tri-level mixed-integer optimization 
model. The first level characterizes the production process and associated resource flows; the second level constructs endogenous 
vulnerability scenarios; and the third level selects reinforcement actions that mitigate network-wide risk exposure. To ensure 
computational tractability for large-scale instances, we introduce a customized decomposition framework that partitions the problem 
into a single-level master problem and a bilevel subproblem.

A further contribution lies in the empirical validation of both scalability and practical relevance. We demonstrate computational 
performance via benchmark tests that quantify the influence of key structural parameters on solution time. Practical value is 
illustrated through two real-world case studies. In a steel supply chain, we show that production flexibility improves delivery 
reliability by 30% without incurring additional reinforcement costs. In a global pharmaceutical network, the framework supports 
both system redesign and long-term resilience planning under climate-induced disruptions. These case studies underscore how the 
proposed framework can inform strategic investment in resilience for complex and evolving supply chain environments.

The structure of the paper is as follows: Section 2 reviews the existing literature on supply chain resilience. Section 3 introduces 
the conceptual model and its mathematical formulation. Section 4 describes the resolution strategy. Finally, Section 5 presents the 
computational experiments and case studies.

2. Related literature

Supply chain resilience strategies aim to mitigate vulnerabilities and maintain continuity amid disruptions by addressing 
resilience across three key dimensions: Organizational Resilience, Operational Resilience, and Structural Resilience. Organizational 
resilience focuses on relational factors that support adaptability and coordination; operational resilience emphasizes immediate 
decision-making for response; and structural resilience involves long-term strategies to reinforce supply chain networks. This review 
is structured around these dimensions. For broader discussions on supply chain resilience, see Hosseini et al. (2019), Ivanov et al. 
(2017), Kamalahmadi and Parast (2016), Ribeiro and Barbosa-Povoa (2018), Tukamuhabwa et al. (2015).

Organizational resilience relies on relational factors and digital tools that support adaptability and quick response to disrup-
tions. Studies highlight the role of social capital — trust, shared goals, and communication — in strengthening resilience. For 
instance, Brusset and Teller (2017) demonstrate that integration (coordination across functions) and flexibility (the ability to adapt 
quickly) are essential for managing disruptions. Similarly, Johnson et al. (2013) and Wieland and Wallenburg (2013) find that 
social capital, including shared networks, enhances resilience by building trust and collaboration. Extending this concept, Saglam 
et al. (2022) show that communication quality, commitment, and reciprocity contribute to resilience by reinforcing trust-based 
relationships.

Digital tools are also crucial for resilience. Tiwari et al. (2024) show that visibility and digital technologies improve information 
flow and coordination, enabling healthcare supply chains to respond more effectively to disruptions. Liu et al. (2024) find that 
supplier and customer integration, supported by big data analytics, enhances adaptability and stability. Supplier integration promotes 
rapid adaptation, while customer integration aids continuity through real-time data. Similarly, Blackhurst et al. (2011) and Boone 
et al. (2013) demonstrate that real-time monitoring and adaptive inventory management allow for early risk detection and swift 
response. Finally, Brandon-Jones et al. (2015) find that slack resources and visibility help absorb shocks and maintain performance 
during disruptions.

Operational resilience is an organization’s capacity to respond to disruptions, manage risks, and prevent cascading failures. A key 
challenge is managing ripple effects, where disruptions spread across interconnected components. Dolgui et al. (2018) and Ivanov 
et al. (2014) suggest that combining redundancy with material flow reconfiguration helps contain these effects, while Han and Shin 
(2016) propose using structural metrics to monitor disruption spread. Building on these concepts, Pavlov et al. (2017) recommend a 
hybrid approach integrating proactive and reactive measures for enhanced resilience.  Recent extensions address risk-averse decision-
making and disruption recovery across varied contexts. Sawik and Sawik (2024) introduce a viability-preserving model under 
disruption propagation; Li and Yuan (2024) develop profitability-aware recovery strategies for joint supply–demand disruptions; 
and Roi et al. (2023) propose an adaptive framework under stochastic conditions. In a distinct application, Sawik (2023) examine 
supply chain optimization in the context of space mission risk and sustainability. Meanwhile, consumer-centric resilience efforts are 
emerging, as in Sawik (2024), which explores last-mile delivery robustness through smart lockers and crowdshipping. 

Effective disruption management also aligns internal capabilities with network resources. For instance, Li et al. (2023) find 
that matching internal competencies, like product diversity, with network features enhances resilience. Studies during the COVID-
19 pandemic, such as Ramani et al. (2022), further illustrate how network vulnerabilities affect supply chains. To address these 
2 



M. Hart Nibbrig et al. Transportation Research Part E 200 (2025) 104172 
Table 1
Positioning of the current study within the resilience literature.
 Study Uncertainty Type Scenario Approach Resilience  
 Source Type Generation (SO/RO/AO) Strategy  
 Yılmaz et al. (2023) Demand Unknowable Exogenous SO + RO Redundancy  
 Yılmaz et al. (2021) Supply Knowable Exogenous SO Redundancy  
 Özçelik et al. (2021) Supply Knowable Exogenous RO Redundancy  
 Hasani and Khosrojerdi (2016) Demand Knowable Exogenous RO Redundancy, Flexibility 
 Aldrighetti et al. (2023) Supply, Demand Knowable Exogenous SO Redundancy  
 Goldbeck et al. (2020) Supply Knowable Exogenous SO (multi-stage) Redundancy  
 This study Supply Unknowable Endogenous AO Redundancy, Flexibility 

issues, Hosseini and Ivanov (2022) and Liu et al. (2023) recommend assessing supplier vulnerabilities and leveraging network 
support.

Redundancy and flexibility are key resilience strategies. Redundancy provides buffers, such as inventory and diversified 
suppliers, while flexibility supports adaptation through production adjustments. Ishfaq (2012) and Wang et al. (2016) show that 
flexible transportation and rerouting can help manage disruptions, though rerouting may sometimes reduce robustness (Adenso-
Díaz et al., 2018). Beyond transportation, resilience can be enhanced through buffer stock, alternative routes, and multi-echelon 
networks (Carvalho et al., 2012; Cardoso et al., 2015).  Recent studies have extended the analysis of ripple effects to reverse supply 
chains, employing both robust and stochastic optimization frameworks. For example, Yılmaz et al. (2021) develop a two-stage 
stochastic model that jointly minimizes cost and environmental impact under disruption scenarios. In a related effort, Özçelik 
et al. (2021) formulate a robust optimization approach to enhance the resilience of reverse logistics networks, validated through an 
industrial case study. 

Inventory management complements these strategies by maintaining flow during disruptions. Approaches such as Risk Mitigation 
Inventory (RMI), dual sourcing, and agile responses position inventory effectively and ensure continuity (Lücker and Seifert, 2017; 
Gao et al., 2019). Extending this, Sawik (2022) show that pre-positioned RMI and backup suppliers improve service levels during 
multi-regional disruptions like COVID-19.

Unlike organizational and operational resilience, which focus on responding to disruptions as they arise, structural resilience 
adopts a proactive approach, aiming to design robust network configurations capable of withstanding disruptions. This requires 
identifying network features that help maintain material flow and absorb shocks before disruptions occur.

Several studies assess structural resilience by examining static network properties that influence disruption propagation. For 
example, Kim et al. (2011) highlight that network features like centrality and density support resilience by sustaining operations, 
whereas Bode and Wagner (2015) find that high structural complexity can increase disruption frequency. Studies like Hearnshaw 
and Wilson (2013) and Kim et al. (2015) argue that scale-free networks with centralized hubs offer better resistance to cascading 
failures, though they depend heavily on hub robustness.

Moving beyond static topologies, research has expanded to balance vulnerabilities and capabilities within networks. Pettit et al. 
(2013) introduce a framework for pairing risks with mitigating capabilities, while Raaymann and Spinler (2024) show that tier-
specific resilience strategies are essential in complex supply chains, such as automotive. Adaptive assessment methods also emerge 
in recent studies: Burgos and Ivanov (2021) use digital twins to evaluate resilience in food retail during COVID-19, and Dixit et al. 
(2020) find that networks with lower density, higher connectivity, and larger size better withstand cascading disruptions.

While these assessment studies focus on identifying weak points and simulating disruption impacts, they often overlook 
strategies to actively fortify the network. Addressing this gap, studies like Yılmaz et al. (2023) and Goldbeck et al. (2020) propose 
reinforcement strategies under demand-side and supply-side uncertainties, respectively. These include redundancy investments, 
decentralized configurations, and scenario-based planning for resilience. Expanding to both supply and demand disruptions, Hasani 
and Khosrojerdi (2016) and Aldrighetti et al. (2023) develop models that balance preparedness with recovery, integrating strategies 
like facility dispersion, safety stock, and multi-sourcing. 

Table  1 presents a comparative synthesis of the most relevant contributions to supply chain resilience, structured around core 
modeling dimensions. These include the origin of uncertainty — whether disruptions arise from supply-side failures (e.g., facility 
outages) or demand-side volatility — and the nature of uncertainty, categorized as known (probabilistic), knowable (bounded but 
partially characterized), or unknowable (unpredictable, high-impact events such as adversarial disruptions).

The table also distinguishes how disruption scenarios are modeled: exogenously, based on predefined data or expert input, 
or endogenously, as part of the optimization process. Modeling frameworks are classified as stochastic optimization (SO), robust 
optimization (RO), or adversarial optimization (AO), each reflecting distinct assumptions about disruption behavior and anticipation 
strategies. Finally, resilience mechanisms are grouped into two categories: redundancy, involving structural buffers such as backup 
capacity and inventory; and flexibility, defined as the system’s adaptive capability through production switching or configuration 
reallocation. 

While existing studies provide valuable insights into managing specific disruptions, targeted reinforcements alone often fall short 
of enhancing resilience across the entire network. This is because, in interconnected supply chains, interventions can inadvertently 
create new vulnerabilities, leading to a costly cycle of reassessment and reinforcement. Addressing this gap, our study introduces 
an integrative approach that embeds vulnerability identification and impact assessment within reinforcement strategies, enabling a 
more comprehensive improvement in network resilience while managing associated costs. Section 3 outlines the key components 
of our mathematical model.
3 
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3. Problem description

This study investigates the strategic design of a multi-stage supply chain to enhance structural resilience against worst-case 
disruptions under fixed budgetary constraints. Decisions on node fortification and production reconfiguration are made ex-ante, 
assuming full knowledge of network structure, reinforcement options, and the available resilience budget. The supply chain 
comprises four sequential stages: suppliers () for raw material procurement, producers () for manufacturing and assembly,
warehouses () for distribution, and end-users () who receive final products. Commodities—represented by the set 𝑃—include raw 
materials, intermediates, and finished goods, flowing through these stages via a predefined bill of materials. Disruptions are modeled 
adversarially to simulate worst-case conditions that challenge network operability. The objective is to identify reinforcement and 
transformation strategies that maximize delivery performance under such stress. The decision framework comprises four core 
components, detailed in the following sections. 
Supply Chain Operation. The supply chain operation is modeled as a multi-commodity network flow problem on a graph 
𝐺 = {𝑉 ,𝐸}, which integrates the production process, represented by the graph �̃�, and the physical network, denoted by the graph 
�̄�. The graph �̃� captures the transformation of commodities through production processes as defined by Bills of Materials (BoMs). 
Let 𝑝 ∈ 𝑃  denote a commodity from the set of commodities, and 𝑏 ∈ 𝐵 represent a production step in the BoM. The production 
process is modeled as a directed graph �̃� = {𝑁, �̃�}, where 𝑁 contains the following nodes: 𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑝  (entry of commodity 𝑝), 𝑛𝑆𝑡𝑜𝑟𝑒𝑝
(storage of 𝑝), 𝑛𝑆𝑖𝑛𝑘𝑝  (final delivery of 𝑝), and 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑏  (conversion of inputs to outputs according to the BoM). The arcs �̃� represent 
the flows of commodities between these production stages.

The graph �̄� = {𝑉 , �̄�} models the transportation of commodities between supply chain locations, where 𝑉 = 𝑉  ∪𝑉  ∪𝑉  ∪𝑉 

represents the locations of suppliers (), producers (), warehouses (), and end-users (), respectively. The set of arcs �̄� denotes 
the available transportation links between these locations. By mapping �̃� onto �̄�, we form the supply chain operation graph 𝐺. 
Nodes from �̃�, such as 𝑛𝑆𝑜𝑢𝑟𝑐𝑒𝑝 , 𝑛𝑆𝑡𝑜𝑟𝑒𝑝 , 𝑛𝑆𝑖𝑛𝑘𝑝 , and 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑏 , are mapped to their corresponding physical locations (𝑉 ) in �̄�. The arcs 
in 𝐸 represent the movement of commodities between these locations, considering the available transportation modes and flows of 
commodities 𝑝 ∈ 𝑃 .

Disruption. Supply chain disruptions are defined as shocks that impair one or more components of the supply chain, such as 
facilities, suppliers, transportation links, or production capacities. Each node in the supply chain network is associated with a 
function that quantifies the risk at that node, typically measured in terms of reduced operational capacity. These risks can originate 
from various sources, including external factors like climate-induced events. As noted by Forster et al. (2021), climate-induced 
events — such as floods, storms, and heatwaves — are driven primarily by region-specific meteorological systems and geographical 
conditions, making them generally uncorrelated across different locations. Given this spatial and temporal independence, we assume 
that the occurrence of such events at geographically dispersed nodes in the supply chain can be treated as independent.

We aim to uncover critical vulnerabilities and assess the resilience of the supply chain by identifying the worst possible timing and 
combination of disruptions. To achieve this, we introduce the concept of a hypothetical adversary, representing strategic foresight, 
tasked with selecting a set of disruptions that would cause the maximum possible damage to the supply chain. This adversarial 
approach serves as a stress-test, simulating how strategic foresight can anticipate and prepare for the most harmful combinations 
of disruptions. The analysis is conducted under a budget constraint.
Recovery Period. After a disruption, the supply chain adjusts to meet demand under new operational constraints. The time required 
to restore functionality at different locations varies depending on factors such as the severity of the disruption, the node’s role 
within the supply chain, and the availability of recovery resources. Our goal is to evaluate the supply chain’s performance over an 
extended period. The recovery period is modeled as the union of intervals representing the restoration of functionality at individual 
components, capturing the heterogeneity in recovery across various locations.
Resilient Design and reinforcement. Resilient design, also known as reinforcement, refers to a set of actions aimed at increasing the 
robustness and adaptability of the supply chain. These actions can be implemented at individual nodes (e.g., suppliers, warehouses) 
or across the entire network. Conceptually, resilient design strategies are divided into two primary approaches: adding redundancy 
(e.g., increasing the number of suppliers or expanding storage capacity) and enhancing production flexibility (e.g., enabling 
production shifts between locations). Each resilience or reinforcement strategy incurs a specific cost, which must be managed within 
a predefined budget constraint.
Illustrative Example: Consider a simplified supply chain network comprising 2 suppliers (S1, S2), 3 production facilities (P1, P2, 
P3), 1 warehouse (W1), and 2 customers (C1, C2). Material flows for six product types (𝑀1–𝑀6) follow a predefined bill of materials 
(BoM). Fig.  1(a) shows the baseline network configuration.

Assume that the model identifies P1 as the most critical node through vulnerability assessment under a given resilience budget. 
To enhance network resilience, it recommends two feasible reinforcement strategies, each aligned with a different budget level: 

• Strategy 1 – Production Flexibility: Under a limited budget, the model upgrades P2 to absorb part of P1’s output (specifically 
𝑀5), introducing cross-facility flexibility (Fig.  1(b)).

• Strategy 2 – Facility Expansion: With a moderately higher budget, the model adds a new production facility (P4) that receives 
input from both suppliers and replicates part of P1’s output. This reduces reliance on P1 and improves structural robustness 
(Fig.  1(c)).

This example demonstrates how the model adapts to resource constraints and supports strategic trade-offs between flexibility 
and redundancy to strengthen operational resilience.
4 
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Fig. 1. Illustrative example of resilient supply chain redesign: (a) original network; (b) improved via production flexibility; (c) improved via added facility.

3.1. Formulation

We model the problem as a tri-level optimization framework involving three agents: the Operator (), the Disruptor (i.e., Strategic 
foresight) (), and the Resilience Designer (i.e., Fortification) (). Each agent’s objective represents a distinct decision-making 
process. The Operator () seeks to minimize operational costs while meeting customer demand, given the current state of the system. 
The Disruptor (i.e., Strategic foresight) () aims to maximize disruption by targeting critical nodes or links within the supply chain, 
constrained by a disruption budget 𝛽, with the goal of increasing unmet demand. The Resilience Designer (i.e., Fortification) () 
implements strategic interventions to minimize the impact of disruptions, subject to a resilience budget 𝛽.

The tri-level optimization problem () is formulated as follows:
 min

𝒙
max
𝒙

min
𝒙

𝛤(𝒙,𝒙 ,𝒙)

s.t. 𝒙 ∈ 𝑋(𝒙 ,𝒙),

𝛤(𝒙 ) ≤ 𝛽,

𝛤(𝒙) ≤ 𝛽.

The objective function 𝛤 represents the operator’s performance cost, which is influenced by the decisions of both the disruptor 
(𝒙) and the resilience designer (𝒙). The operator’s decision variables 𝒙 are constrained by the feasible operation set 𝑋, which 
is shaped by both disruption and resilience strategies. The disruptor and resilience designer are each subject to their respective 
budget constraints, 𝛤(𝒙 ) ≤ 𝛽 for the disruptor and 𝛤(𝒙) ≤ 𝛽 for the resilience designer. Detailed models for the decisions 
of each agent are presented in the following sections.

3.2. Supply chain operation

The operator’s problem is formulated as a multi-commodity network flow problem on the graph 𝐺. The vector of operational 
variables is given by:

𝒙 =
[

𝒒 𝒒 𝒒 𝒒 �̄� 𝒚 𝒛
]

,

where 𝒒 , 𝒒 , and 𝒒  represent decision variables for the quantities of commodities at suppliers (), producers (), and warehouses 
(), respectively. The variables 𝒒 and �̄� denote the quantities of products delivered and not delivered to end-users (), 
respectively. The movement of commodities between locations is captured by the variables 𝒚, while 𝒛 represents the number of 
transport trips required between locations.

The operator’s problem includes constraints related to production continuity, facility capacity, production rates, and transporta-
tion. The detailed formulations of these constraints are provided below.
Continuity of Commodities. Constraints (1)–(7) ensure the movement of processed commodities between facilities, represented by 
the variable 𝑦𝑖,𝑗,𝑝. Let 𝜎−(𝑖,𝑝) be the set of locations from which location 𝑖 receives commodity 𝑝, and 𝜎+(𝑖,𝑝) the set to which location 𝑖
sends commodity 𝑝.

The supply constraints (1) ensure that the raw materials 𝑞ℎ,𝑝 supplied by each supplier ℎ ∈ 𝑉  are transferred to producers. The 
warehouse flow balance constraints (2) maintain the balance of commodities entering and leaving warehouses 𝑗 ∈ 𝑉  . Finally, the 
delivery constraints (3) ensure that the final products 𝑞𝑘𝑝 are delivered to customers 𝑘 ∈ 𝑉  .

𝑞ℎ𝑝 =
∑

𝑖∈𝜎+(ℎ𝑝)

𝑦ℎ𝑖𝑝 ∀ℎ ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (1)

𝑞𝑗𝑝 =
∑

𝑖∈𝜎−(𝑗𝑝)

𝑦𝑖𝑗𝑝 =
∑

𝑘∈𝜎+(𝑗𝑝)

𝑦𝑗𝑘𝑝 ∀𝑗 ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (2)

𝑞𝑘𝑝 =
∑

−
𝑦𝑗𝑘𝑝 ∀𝑘 ∈ 𝑉 𝐶 ,∀𝑝 ∈ 𝑃 (3)
𝑗∈𝜎(𝑘𝑝)

5 
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𝑦𝑖𝑗𝑝 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐸,∀𝑝 ∈ 𝑃 (4)

Constraints (5) ensure that the sum of the delivered amount 𝑞𝑘𝑝 and the unfulfilled amount 𝑞𝑘𝑝 of final products equals the 
customer demand 𝐷

𝑘𝑝.

𝑞𝑘𝑝 + 𝑞

𝑘𝑝 = 𝐷

𝑘𝑝 ∀𝑘 ∈ 𝑉 𝐶 ,∀𝑝 ∈ 𝑃 (5)

𝑞𝑘𝑝 ≥ 0 ∀𝑘 ∈ 𝑉 𝐶 ,∀𝑝 ∈ 𝑃 (6)

𝑞𝑘𝑝 ≥ 0 ∀𝑘 ∈ 𝑉 𝐶 ,∀𝑝 ∈ 𝑃 (7)

Production Rate. Constraints (8) and (9) regulate the production rate of facilities 𝑖 ∈ 𝑉   for each commodity. The Bill of Materials 
(BoM) defines two parameters: 𝐺𝐼𝑛𝑏𝑝  and 𝐺𝑂𝑢𝑡𝑏𝑝 , representing the quantities of commodity 𝑝 ∈ 𝑃  consumed and produced per production 
step 𝑏 ∈ 𝐵. These constraints adjust the production rate based on the required inputs, using the commodity flow variables 𝑦𝑖𝑗𝑝.

∑

𝑏∈𝐵
𝑞𝑖𝑏 ⋅ 𝐺

𝐼𝑛
𝑏𝑝 ≤

∑

ℎ∈𝑛−(𝑖𝑝)
𝑦ℎ𝑖𝑝 ∀𝑖 ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (8)

∑

𝑏∈𝐵
𝑞𝑖𝑏𝐺

𝑂𝑢𝑡
𝑏𝑝 ≥

∑

𝑗∈𝑛+(𝑖,𝑝)
𝑦𝑖𝑗𝑝 ∀𝑖 ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (9)

Transportation. The transportation cost is determined by the average number of trips required to move commodities between loca-
tion pairs. For commodity 𝑝, 𝜆𝑝 represents the standardized transportation capacity. Let 𝑀(𝑖,𝑗) be the set of available transportation 
modes between nodes 𝑖 and 𝑗, with 𝜇𝑚 denoting the average load size per trip for mode 𝑚. Using 𝜇𝑚 and 𝜆𝑝, Constraints (10) estimate 
the number of trips required for each mode 𝑚 between locations (𝑖, 𝑗) ∈ 𝐸.

∑

𝑝∈𝑃(𝑖,𝑗)

𝑦𝑖𝑗𝑝 ⋅ 𝜆𝑝 ≤
∑

𝑚∈𝑀(𝑖,𝑗)

𝑧𝑖𝑗𝑚 ⋅ 𝜇𝑚 ∀(𝑖, 𝑗) ∈ 𝐸 (10)

𝑧𝑖𝑗𝑚 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐸,𝑚 ∈𝑀 (11)

Facility Capacity. The facility capacity constraints (12)–(15) ensure that the quantities of commodities do not exceed the capacities 
of suppliers, producers, or warehouses, as defined by the parameters 𝑄

ℎ𝑝, 𝑄
𝑖𝑏, and 𝑄

𝑗𝑝 .

𝑞ℎ𝑝 ≤ 𝑄
ℎ𝑝 ∀ℎ ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (12)

𝑞𝑖𝑏 ≤ 𝑄
𝑖𝑏 ∀𝑖 ∈ 𝑉  ,∀𝑏 ∈ 𝐵 (13)

𝑞𝑗𝑝 ≤ 𝑄
𝑗𝑝 ∀𝑗 ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (14)

𝑞ℎ𝑝, 𝑞

𝑖,𝑏, 𝑞


𝑗𝑝 ≥ 0 ∀ℎ ∈ 𝑉  ,∀𝑖 ∈ 𝑉  ,∀𝑗 ∈ 𝑉  ,∀𝑝 ∈ 𝑃 ,∀𝑏 ∈ 𝐵 (15)

3.3. Disruption

The disruptor agent  makes decisions represented by the vector 𝒙𝑨 =
[

𝝓 𝝓 𝝓 𝝍 𝝍 ], where 𝝓 , 𝝓 , and 𝝓  are 
binary variables indicating the full disablement of a supplier (), producer (), or warehouse (), respectively. Partial disruptions 
at facilities are captured by 𝝍 and 𝝍 , representing disruption levels for suppliers and producers.

We quantify partial disruptions using disruption impact levels 𝑓 ∈ 𝐹 (𝑖), where 𝑢𝑓  represents the percentage of capacity lost due 
to failure 𝑓 . These variables adjust facility capacities to account for both partial and complete disruptions. Consequently, constraints 
(12)–(14) are replaced by constraints (16)–(18) to reflect the impact of disruptions on supply chain operations.

𝑞ℎ𝑝 ≤ 𝑄
ℎ𝑝min(1 − 𝜙

ℎ , 1 − 𝑢𝑓𝜓

ℎ𝑝𝑓 ) ∀𝑓 ∈ 𝐹 (𝑖),∀ℎ ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (16)

𝑞𝑖𝑏 ≤ 𝑄
𝑖𝑏min(1 − 𝜙

𝑖 , 1 − 𝑢𝑓𝜓

𝑖𝑏𝑓 ) ∀𝑓 ∈ 𝐹 (𝑖),∀𝑖 ∈ 𝑉  ,∀𝑏 ∈ 𝐵 (17)

𝑞𝑗𝑝 ≤ 𝑄
𝑗𝑝 (1 − 𝜙


𝑗 ) ∀𝑗 ∈ 𝑉  ,∀𝑝 ∈ 𝑃 (18)

In constraints (16)–(18), the min function manages multiple capacity-limiting terms. The term 𝑄⋅
𝑖,𝑝(1−𝜙

⋅
𝑖) reduces facility 𝑖’s capacity 

for commodity 𝑝 to zero if fully disabled. Similarly, the terms 𝑄
𝑖𝑝(1 − 𝑢𝑓𝜓


𝑖𝑝𝑓 ) and 𝑄

𝑖𝑝(1 − 𝑢𝑓𝜓

𝑖𝑝𝑓 ) represent the capacity reduction 

due to partial disruptions.
For each location 𝑖 ∈ 𝑉 , the function 𝛩(𝑖) quantifies the disruption risk as a scalar. Using this, we define �̄�ℎ as the cost of 

disabling facility ℎ, and �̃�ℎ𝑝𝑓  as the cost of disrupting the flow of commodity 𝑝 due to incident 𝑓 at facility ℎ. The total disruptor 
budget, 𝛤, is computed based on these costs, with constraint (19) ensuring that disruptions stay within the budget 𝛽.

𝛤 =
∑

ℎ∈𝑉 
�̄�ℎ𝜙


ℎ +

∑

𝑖∈𝑉 
�̄�𝑖𝜙


𝑖 +

∑

𝑗∈𝑉
�̄�𝑗𝜙


𝑗

+
∑

ℎ∈𝑉 

∑

𝑓∈𝐹

∑

𝑝∈𝑃
�̃�ℎ𝑝𝑓𝜓


ℎ𝑝𝑓 +

∑

𝑖∈𝑉 

∑

𝑓∈𝐹

∑

𝑏∈𝐵
�̃�𝑖𝑏𝑓𝜓


𝑖𝑏𝑓 ≤ 𝛽 (19)
6 
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Constraints (20)–(22) define the domains of the variables:

𝜙
𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝑉  , 𝑉  = 𝑉  ∪ 𝑉  ∪ 𝑉  (20)

𝜓
ℎ𝑝𝑓 ∈ {0, 1} ∀ℎ ∈ 𝑉  ,∀𝑝 ∈ 𝑃 ,∀𝑓 ∈ 𝐹 (21)

𝜓
𝑖𝑏𝑓 ∈ {0, 1} ∀𝑖 ∈ 𝑉  ,∀𝑏 ∈ 𝐵,∀𝑓 ∈ 𝐹 (22)

3.4. Resilience strategies

The decision-making process of the resilient agent  involves two key strategies: adding redundancy (e.g., multi-sourcing, 
redundant production and storage capacity) and enhancing production flexibility (e.g., flexible sourcing and production chains). In 
this problem, production flexibility is integrated into the production graph �̃�. All decisions, including those related to redundancy, 
are captured by the vector 𝒙 =

[

𝒙 𝒙 𝒙
]

, where 𝒙 , 𝒙 , and 𝒙  are binary variables that determine the establishment of 
facility locations for suppliers (ℎ ∈ 𝑉  ), producers (𝑖 ∈ 𝑉  ), and warehouses (𝑗 ∈ 𝑉  ).

To incorporate these design decisions, we modify the facility capacity constraints (16)–(18). The revised constraints ensure that 
a facility’s capacity for process 𝑝 can only be utilized if the facility is included in the system design through the binary variable 𝑥⋅𝑖. 
The modified constraints are:

𝑞ℎ𝑝 ≤ 𝑄
ℎ𝑝min(𝑥ℎ , 1 − 𝜙


ℎ , 1 − 𝑢𝑓𝜓


ℎ𝑝𝑓 ) ∀𝑓 ∈ 𝐹 , ℎ ∈ 𝑉  , 𝑝 ∈ 𝑃 (23)

𝑞𝑖𝑏 ≤ 𝑄
𝑖𝑏min(𝑥𝑖 , 1 − 𝜙


𝑖 , 1 − 𝑢𝑓𝜓


𝑖𝑏𝑓 ) ∀𝑓 ∈ 𝐹 , 𝑖 ∈ 𝑉  , 𝑏 ∈ 𝐵 (24)

𝑞𝑗𝑝 ≤ 𝑄
𝑗𝑝 min(𝑥𝑗 , 1 − 𝜙


𝑗 ) ∀𝑗 ∈ 𝑉  , 𝑝 ∈ 𝑃 (25)

We assume a limited budget for improving system resilience, denoted by 𝛽. For each decision, the parameter 𝐶𝑖 represents the 
cost of implementing improvements at location 𝑖 ∈ 𝑉 . Constraint (26) ensures that the total resilience improvement cost, 𝛤, stays 
within the budget 𝛽. Constraints (27) define the domain of the decision variables.

𝛤 =
∑

ℎ∈𝑉 
𝐶ℎ𝑥


ℎ +

∑

𝑖∈𝑉 
𝐶𝑖𝑥


𝑖 +

∑

𝑗∈𝑉
𝐶𝑗𝑥


𝑗 ≤ 𝛽 (26)

𝑥ℎ ∈ {0, 1},∀ℎ ∈ 𝑉  , 𝑥𝑖 ∈ {0, 1}∀𝑖 ∈ 𝑉  , 𝑥𝑗 ∈ {0, 1}∀𝑗 ∈ 𝑉  (27)

3.5. Optimization model

Based on the above description, the formulation of the  problem is presented below.

 min
𝒙

max
𝒙

min
𝒙

𝛤 = 𝜌𝑐 ⋅ 𝛤 𝑐𝑜𝑠𝑡 + 𝜌𝑟 ⋅ 𝛤 𝑙𝑜𝑠𝑠

s.t.
Operator Constraints (1) − (11), (23) − (25)
Disruptor Constraints (19) − (22)
Resilience Designer Constraints (26) − (27)

In , the objective function 𝛤𝑂 evaluates supply chain performance by combining operational costs (𝛤 𝑐𝑜𝑠𝑡) and penalty costs for 
unmet demand (𝛤 𝑙𝑜𝑠𝑠). The parameters 𝜌𝑐 and 𝜌𝑟, with 𝜌𝑐 + 𝜌𝑟 = 1, balance these costs. Penalty costs are incurred for undelivered 
quantities 𝑞𝑘𝑝 and are weighted by the penalty rate �̃�𝑘𝑝: 

𝛤 𝑙𝑜𝑠𝑠 =
∑

𝑘∈𝑉 𝐶

∑

𝑝∈𝑃
�̃�𝑘𝑝𝑞


𝑘𝑝 (28)

Operational costs include fixed, process, and transport costs: 

𝛤 𝑐𝑜𝑠𝑡 = 𝛤 𝑓𝑖𝑥𝑒𝑑 + 𝛤 𝑝𝑟𝑜𝑐 + 𝛤 𝑡𝑟𝑎𝑛𝑠 (29)

Fixed costs cover rent and administrative expenses for suppliers, producers, and warehouses, and are calculated as: 

𝛤 𝑓𝑖𝑥𝑒𝑑 =
∑

ℎ∈𝑉 
�̄�ℎ𝑥


ℎ +

∑

𝑖∈𝑉 
�̄�𝑖𝑥


𝑖 +

∑

𝑗∈𝑉
�̄�𝑗𝑥


𝑗 (30)

where 𝑥ℎ , 𝑥𝑖 , and 𝑥𝑗  are binary variables indicating the use of each facility. Process costs are tied to the supply, production, and 
storage of commodities: 

𝛤 𝑝𝑟𝑜𝑐 =
∑ ∑

�̂�
ℎ𝑝𝑞


ℎ𝑝 +

∑ ∑

�̂�
𝑖𝑏𝑞


𝑖𝑏 +

∑ ∑

�̄�
𝑗𝑝 𝑞


𝑗𝑝 (31)
ℎ∈𝑉  𝑝∈𝑃 𝑖∈𝑉  𝑏∈𝐵 𝑗∈𝑉 𝑝∈𝑃
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Transport costs are associated with moving commodities between locations: 

𝛤 𝑡𝑟𝑎𝑛𝑠 =
∑

(𝑖,𝑗)∈𝐸

∑

𝑚∈𝑀(𝑖,𝑗)

�̌�𝑖𝑗𝑚𝑧𝑖𝑗𝑚 (32)

where 𝑧𝑖𝑗𝑚 is the number of trips between locations 𝑖 and 𝑗 using transport mode 𝑚, and �̌�𝑖𝑗𝑚 represents the associated transport 
cost.

4. Resolution approach

We propose a decomposition approach to solve the tri-level optimization problem (), inspired by the methods of Alderson 
et al. (2011) and Ghorbani-Renani et al. (2021). Our approach decomposes the tri-level  model into two interconnected 
problems: a single-level master problem (-Master), which provides a lower bound, and a bi-level disruptor sub-problem (-
Sub), which defines the upper bound. This decomposition facilitates a more tractable solution to the hierarchical decision model 
in .  Although the iterative structure of our decomposition resembles classical Benders or L-shaped methods, the approaches 
differ fundamentally in formulation and applicability. Benders decomposition is suited for two-stage problems with a linear recourse 
subproblem, leveraging dual solutions to generate optimality cuts. In contrast, our model adopts a tri-level structure, where the 
lower two levels form a bilevel adversarial game between the disruptor and the operator. To solve this, we reformulate the 
bilevel subproblem as a single-level mixed-integer quadratic program (MIQP) via dualization. This enables tractable identification 
of worst-case disruption scenarios—an element not addressed by classical Benders or L-shaped frameworks. 

For a given disruption vector �̂�𝒌 , there exists a corresponding operational response �̂�𝒌 , forming the pair (�̂�𝒌 , �̂�𝒌 ). The -

Master problem determines the optimal system design 
∗
𝒙 for a given set of potential disruptions, yielding the disruption-response 

pair (
∗
𝒙 ,

∗
𝒙). Conversely, the -Sub problem identifies the worst-case disruption vector 

∗
𝒙 for a fixed system design �̂�. This 

iterative exchange between the master and sub-problem allows for continuous refinement of the solution.
In Algorithm 1, the iterative process begins by initializing an empty set of disruption vectors, starting with an initial feasible 

disruption vector �̂�𝟎  (e.g., ‘‘no disruption’’). The algorithm first solves the -Master problem for the initial disruption vector to 
obtain the system design 𝒙1  and an initial operational cost 𝑧. The initial lower bound is set to 𝑧𝐿𝑂 = 𝑧, and the upper bound is 
initialized to infinity, 𝑧𝑈𝑃 = +∞.

At each iteration, the algorithm first solves the -Sub problem for the current system design �̂�𝑲  to identify the worst-case 
disruption vector 𝒙𝑲 , which maximizes the operational cost. If this cost is lower than the current upper bound, the upper bound is 
updated, 𝑧𝑈𝑃 ← 𝑧, and the optimal design and disruption vectors are updated to 

∗
𝒙 and 

∗
𝒙 , respectively.

The set of disruption vectors is then updated by adding the newly found disruption vector to the set: �̂�𝒌 ← �̂�𝒌 ∪ {𝒙𝑲}. The 
-Master problem is re-solved for the updated set of disruption vectors to find the new optimal system design 𝒙𝑲+𝟏, and the 
lower bound is updated if necessary, 𝑧𝐿𝑂 ← 𝑧.

This process repeats until the gap between the upper and lower bounds, 𝑧𝑈𝑃 − 𝑧𝐿𝑂, falls below a predefined tolerance 𝜀, or 
until the iteration limit 𝐾𝑀𝐴𝑋 is reached. This guarantees convergence to an 𝜀-optimal solution with a bounded suboptimality gap. 
Upon termination, the algorithm solves the operator problem (mO) to obtain the optimal operational response 

∗
𝒙, given the optimal 

design 
∗
𝒙 and the worst-case disruption vector 

∗
𝒙 . The final output is the triplet (

∗
𝒙,

∗
𝒙 ,

∗
𝒙).

Algorithm 1:  Iterative Resolution
Input: 𝜀, 𝐾𝑀𝐴𝑋

Output: (
∗
𝒙,

∗
𝒙 ,

∗
𝒙 )

Initialize �̂�𝟎 ← {∅}, select �̂�𝟎 , solve  −𝑀𝑎𝑠𝑡𝑒𝑟 to get 𝒙1 and 𝑧∗, set 𝑧𝐿𝑂 ← 𝑧∗, 𝑧𝑈𝑃 ← +∞, 𝐾 ← 1.
while 𝑧𝑈𝑃 − 𝑧𝐿𝑂 > |𝑧𝐿𝑂| ⋅ 𝜀 and 𝐾 < 𝐾𝑀𝐴𝑋 do

Solve  − 𝑆𝑢𝑏 for �̂�𝑲 to get 𝒙𝑲 and 𝑧;
if 𝑧 < 𝑧𝑈𝑃  then

𝑧𝑈𝑃 ← 𝑧, 
∗
𝒙 ← �̂�𝑲 , 

∗
𝒙 ← 𝒙𝑲 ;

end 
Update set: �̂�𝑲 ← �̂�𝑲 ∪ {𝒙𝑲};
Solve  −𝑀𝑎𝑠𝑡𝑒𝑟 for �̂�𝑲 to get 𝒙𝑲+𝟏 and 𝑧;
if 𝑧 > 𝑧𝐿𝑂 then

𝑧𝐿𝑂 ← 𝑧;
end 
Increment 𝐾.

end 
Solve mO for 

∗
𝒙 given (

∗
𝒙,

∗
𝒙 );

return (
∗
𝒙,

∗
𝒙 ,

∗
𝒙 ).
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4.1. Master problem -master

The -Master problem optimizes the system design, 
∗
𝒙, for a given set of disruption vectors, �̂�𝒌 . In addition to the design 

variables, it introduces a continuous variable, 𝑍, which represents an upper bound on the worst-case system performance across all 
disruption scenarios. The problem also includes operational variables, 𝒙𝒌 , which describe the system’s response to each disruption 
vector �̂�𝒌 .

The objective of the master problem is to minimize 𝑍, subject to several constraints. The design variables, 𝒙, are restricted 
to the feasible design space 𝑋, ensuring that the selected design satisfies all system requirements. The operational variables, 𝒙𝒌 , 
must satisfy the operational constraints defined by 𝑋(𝒙, �̂�𝒌 ) for each disruption scenario 𝑘. Finally, 𝑍 must be greater than or 
equal to the total system cost, 𝛤 total(𝒙, �̂�𝒌 ,𝒙𝒌 ), for every disruption-response pair (�̂�𝒌 ,𝒙𝒌 ).

Thus, the master problem is formulated as follows:
[ −𝑀𝑎𝑠𝑡𝑒𝑟]

min𝑍,𝒙 ,𝒙1 ,…,𝒙𝐾
𝑍 (33)

s.t. 𝒙 ∈ 𝑋 (34)

𝒙𝑘 ∈ 𝑋(𝒙, �̂�𝒌 ) ∀𝑘 ∈ 𝐾 (35)

𝑍 ≥ 𝛤 total(𝒙, �̂�𝒌 ,𝒙

𝒌 ) ∀𝑘 ∈ 𝐾 (36)

4.2. Disruptor sub-problem -sub

The -Sub problem is formulated to identify the worst-case disruption vector 
∗
𝒙, which maximizes the operational cost 

for a fixed system design �̂�. To solve this bi-level optimization problem, we employ a ‘‘dualize-and-combine’’ approach based 
on the duality theory of Dempe and Zemkoho (2020). This method reformulates the bi-level structure of -Sub into a single-
level mixed-integer quadratic problem (MIQP) by replacing the inner minimization problem (the operator’s model) with its dual 
maximization.

Since the operator’s model is linear, this reformulation transforms the sub-problem into a tractable MIQP. The objective of -
Sub is to find the disruption vector that causes the most damage to the operator’s performance while respecting the constraints of 
the fixed system design.

5. Computational analysis

We conduct our experiments using Python and Gurobi 11.0.2. All experiments are carried out on a computer with a Core i5 
processor and 16 GB of RAM. In Section 5.1, we report the computational performance of our decomposition approach. In Section 5.2, 
we investigate the impact of having a flexible production chain on improving supply chain resilience. Finally, in Section 5.3, we 
present a resilience analysis of a pharmaceutical supply chain considering climate-related hazards.

5.1. Computational performance

We evaluate the computational performance of our proposed decomposition approach using 12 instances, generated by combining 
four distinct production chain layouts with three network sizes. The production chains range from a simple single-step process 
(Simple) to a complex multi-input, multi-output network (Complex), varying in the number of production steps and commodities. 
To capture different levels of complexity and scale, these production chains are paired with three network sizes—Small, Medium, 
and Large—representing local to global supply chains. Table  2 summarizes the characteristics of each instance, detailing the 
physical network and production processes, including the number of suppliers (||), producers (||), warehouses (||), customers 
(||), production steps (|𝐵|), and commodities (|𝑃 |) in each configuration.

For each configuration, we assess computational performance by varying both disruption and resilience budgets. These budgets 
are expressed in relative terms, with disruption budgets representing the resources available to disrupt operations and resilience 
budgets reflecting the resources allocated for fortification. In the experiment, the cost hierarchy for establishing new facilities is 
structured as follows: adding a new supplier incurs the lowest cost, followed by establishing a new warehouse, while adding a new 
producer requires the highest cost.

Table  3 details the disruption impact levels and the corresponding number of new facilities that can be established under 
each resilience budget. Disruptions are categorized by severity, ranging from Mild (10% reduction in capacity) to Catastrophe
(complete shutdown), and are quantified by the disruptor budget (𝛤). Similarly, the resilience budget (𝛤) determines the number 
of new facilities that can be introduced to enhance the supply chain’s resilience.

Table  4 summarizes the computational performance of the model, reporting both the solution time (in seconds) and the optimality 
gap (in %) for the generated instances. The rows correspond to the different production chain configurations, organized by disruption 
budget, while the columns represent network sizes, organized by resilience design budget.
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Table 2
Computational performance instances.
 Network-Production || || || || |𝐵| |𝑃 | 
 Small-Simple 10 5 5 10 1 3  
 Small-LinSingl 10 5 5 10 5 8  
 Small-LinMulti 10 5 5 10 15 24  
 Small-Complex 10 5 5 10 43 74  
 Medium-Simple 30 15 15 50 1 3  
 Medium-LinSingl 30 15 15 50 5 8  
 Medium-LinMulti 30 15 15 50 15 24  
 Medium-Complex 30 15 15 50 43 74  
 Large-Simple 50 25 25 200 1 3  
 Large-LinSingl 50 25 25 200 5 8  
 Large-LinMulti 50 25 25 200 15 24  
 Large-Complex 50 25 25 200 43 74  

Table 3
Scenarios - Disruptor and Design Budgets and their relative resource value.
 Disruption Level New Facilities
 𝛤 Minor Heavy Major Fatal 𝛤

|| || ||  
 None 0 0 0 0 None 0 0 0  
 Mild 1 0 0 0 Min. 1 0 0  
 Mod. 25 5 1 0 Mod. 10 0 1  
 Sev. 50 12 2 0 Ext. 100 1 10  
 Cat. 200 50 8 2 Glob. 500 5 50  

The results show that the model is capable of solving a wide range of realistically sized instances within a reasonable time frame. 
For all cases, the minimum optimality gap (𝜀) was set at 10−5, with a maximum computation time of 90 min (5400 s). Out of the 
300 instances tested, 291 were successfully solved within this time limit.

Three key factors were identified as influencing computational performance: (1) network size, (2) disruption budget, and (3) 
resilience design budget. Larger networks increase the number of design decisions (𝐱), which directly impacts the size of the 
-Master problem and computational performance. However, the complexity of the production chain (in terms of the number 
of steps and commodities) had little effect on solution times. While more complex chains require additional operational decisions 
(𝐱), this did not significantly prolong computation.

Additionally, higher disruption and resilience design budgets (𝛽 and 𝛽) generally increased computational time. Larger budgets 
allow for a wider range of design and disruption decisions, thus expanding the solution space and increasing the time required to find 
the optimal solution. Conversely, smaller budgets impose stricter constraints, enabling the model to eliminate infeasible solutions 
more quickly, thereby reducing computation times.

5.2. Production chain flexibility and its impact on resilience

In this subsection, we evaluate the resilience of a steel manufacturing supply chain, focusing on the impact of both production 
chain and physical network flexibility. We define four instances that vary based on these flexibilities. The base case, 𝐼0, models a 
single-path production chain with no physical flexibility, where crude coal and crude iron are transformed into finished 
goods through a linear process (see Fig.  2). The network consists of 2 suppliers, 4 producers, 10 warehouses, and 100 customers 
with randomized locations.

In 𝐼1, physical network flexibility is introduced by adding potential facilities, expanding the network to 10 suppliers, 16 
producers, and 30 warehouses, while maintaining the same customer base. In 𝐼2, production chain flexibility is incorporated by 
introducing alternative paths (represented by dashed lines in Fig.  2), such as using iron pellets, direct reduced iron
(DRI), and an electric arc furnace, which substitutes scrap metal for coal. The physical network remains the same as 
in 𝐼0. Finally, 𝐼3 combines both the production chain flexibility from 𝐼2 and the physical network flexibility from 𝐼1, representing 
the most comprehensive flexibility scenario. To assess the effectiveness of the proposed designs under different disruptions, we 
introduce two key metrics: system performance and system resilience. System performance (P) measures how well a design 𝒙
fulfills the demand under a disruption scenario 𝒙 , expressed as the total percentage of fulfilled demand for each end-user 𝑘 ∈ 𝐿𝐶 :

𝙿(𝒙 ,𝒙) =
∑ ∑

𝑞𝐶𝑘𝑝
𝐶

𝑘∈𝐿𝐶 𝑝∈𝑃 𝐷𝑘𝑝
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Table 4
Computational results.
 Net. Size Small Medium Large

Prod. 𝛤𝑅/ 𝛤𝐷 None Min. Mod. Ext. Glb None Min. Mod. Ext. Glb None Min. Mod. Ext. Glb  
Simple None Time (s) 0 0.01 0.01 0.02 0.01 0.01 0.01 0.10 0.42 0.12 0.04 0.06 0.39 2.06 2.62  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Mild Time (s) 0.03 0.18 0.24 0.10 0.08 0.13 1.12 3.78 5.59 0.60 0.53 2.20 71.39 3.88 4.43  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Mod. Time (s) 0.03 0.15 0.30 0.12 0.12 0.12 0.59 41.98 261.42 0.81 0.47 2.25 392.79 3.90 4.44  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Sev. Time (s) 0.04 0.14 0.26 0.19 0.12 0.12 0.63 42.23 263.82 0.73 0.46 2.25 382.06 4.05 4.70  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Cat. Time (s) 0.03 0.24 0.24 2.49 5.34 0.13 1.63 1.49 5400 1787.82 0.53 5.34 5.88 5400 5400  

Gap (%) 0 0 0 0 0 0 0 0 173.64 0 0 0 0 174.23 0.58  
LinSingl None Time (s) 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.22 0.32 0.14 0.06 0.07 0.29 1.43 1.77  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Mild Time (s) 0.06 0.53 0.77 0.57 0.69 0.21 1.11 4.41 12.80 9.48 0.73 2.96 1023.97 586.64 387.14  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Mod. Time (s) 0.06 0.41 0.62 2.60 0.59 0.29 1.15 5.86 84.93 21.81 0.61 3.00 57.81 5400 5190.04 

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 50.96 0.21  
Sev. Time (s) 0.05 0.24 0.55 1.38 0.81 0.20 0.88 5.66 11.84 11.38 1.62 4.60 107.02 2132.22 5283.48 

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05  
Cat. Time (s) 0.08 0.28 0.73 3.70 4.35 0.27 1.26 6.04 2299.32 5400 0.68 3.10 7.71 5400 5400  

Gap (%) 0 0 0 0 0 0 0 0 0 102.87 0 0 0 101.71 103.23  
LinMulti None Time (s) 0.01 0.01 0.01 0.01 0.01 0.02 0.05 0.11 0.17 1.22 0.09 0.12 0.63 2.44 2.73  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Mild Time (s) 0.10 0.47 0.49 0.42 0.50 0.32 1.42 6.73 62.16 2885.99 2.37 10.10 594.24 5400 5400  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 10.73 10.98  
Mod. Time (s) 0.22 0.49 0.47 0.75 0.49 0.42 1.59 65.08 3977.50 5357.82 2.24 16.78 4290.81 5400 5400  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 15.08 66.13  
Sev. Time (s) 0.22 0.58 0.61 0.80 0.54 0.39 2.65 11.62 568.13 1077.06 1.24 15.65 92.26 5400 5400  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 35.42 108.72  
Cat. Time (s) 0.31 0.93 1.47 2.39 1.42 0.54 5.25 5.13 195.72 5400 1.36 14.35 161.47 2857.83 5400  

Gap (%) 0 0 0 0 0 0 0 0 0 35.29 0 0 0 0 221.10  
Complex None Time (s) 0.02 0.01 0.03 0.02 0.03 0.09 0.26 0.10 0.08 0.15 0.17 0.17 0.34 0.34 0.48  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Mild Time (s) 0.55 2.27 2.04 2.48 2.70 1.24 4.10 4.30 3.62 3.58 2.06 9.39 24.80 77.03 1672.71 

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Mod. Time (s) 0.67 2.28 2.36 2.44 2.32 0.99 4.39 7.66 4.41 4.32 3.35 10.88 24.99 200.51 4175.57 

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Sev. Time (s) 0.44 2.16 2.19 1.96 2.05 0.88 6.42 6.60 3.62 3.59 2.50 11.37 40.83 166.07 5400  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Cat. Time (s) 0.55 3.82 3.16 3.19 3.22 0.80 3.51 3.63 3.60 3.54 2.15 9.74 17.85 33.09 92.05  

Gap (%) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

ig. 2. Production graph for instances 𝐼0 to 𝐼3. Solid lines represent the single-path production chain of 𝐼0 and 𝐼1, while dashed lines show the additional 
omponents in 𝐼2 and 𝐼3. Only Convert nodes are shown.

ystem resilience (R-score) captures the robustness of a design by calculating the area under the performance curve (P) across 
arying disruption budgets. For a set of disruptor budgets 𝛼, the resilience score is computed using the trapezoidal rule:

𝚁 − 𝚜𝚌𝚘𝚛𝚎(𝒙) = ∫

∞

0
𝙿 𝑑(𝛽) = 1

2
∑

𝛼
(𝛽𝛼+1 − 𝛽


𝛼 )(𝙿𝛼 + 𝙿𝛼+1)

System performance (P) was evaluated as a function of the disruption budget (𝛽) for both simple and complex production 
hains without network flexibility (instances 𝐼  and 𝐼 ), as shown in Fig.  3. The black line in the figure illustrates the degradation 
0 2
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Fig. 3. Performance 𝑃 and objective function components for instances 𝐼0 and 𝐼2.

in performance as the disruption budget increases. The left 𝑦-axis displays performance, while the right 𝑦-axis breaks down the 
objective function into its cost components. Similarly, Fig.  4 demonstrates the impact of network flexibility by varying the design 
budget (𝛽) for instances 𝐼1 and 𝐼3.

To assess resilience, the area under the performance curve (R-score) was calculated for each instance and is presented 
in Fig.  5. Increasing the design resource budget enhances resilience significantly, particularly when both production chain and 
network flexibility are incorporated. Without production chain flexibility, resilience improves by 254% at the highest design 
budget (𝛽 = 5, 000, 000). When production chain flexibility is added, resilience increases by 30.6% at a smaller design budget 
(𝛽 = 1, 000, 000) and by 284% at the larger budget. These findings underscore the value of combining both types of flexibility to 
achieve greater resilience.

5.3. Assessing resilience in a global pharmaceutical supply chain

This section outlines the expansion plan of a pharmaceutical company producing three drugs: ProductA, ProductB, and
ProductC. These drugs are primarily sold in the US and Europe, with additional demand in Latin America, South Africa, and the 
Asia-Pacific region. The production process includes drug substance manufacturing, vial filling, and packaging, with raw materials 
sourced from biological suppliers.
ProductA is filled into vials of 10, 20, or 30 mg, while ProductB is filled into vials of 5, 10, 15, 20, or 25 mg. These vials 
are packed into units of 1, 2, 5, 6, or 10 and distributed globally. Fig.  6 presents a simplified version of the company’s production 
process.

The company’s supply chain consists of suppliers, production sites, warehouses, and demand cities. It operates four production 
facilities: MU - UnitedStates, MU-Belgium, MU-Italy, and MU-Ireland, each specializing in different production steps and 
products. For instance, MU-Belgium operates multiple filling lines, and vial packs of 5 and 10 are produced exclusively in the US, 
while packs of 1 and 6 are produced in Europe. Packs of 2 vials are produced in both regions.

The distribution network connects approximately 30 warehouses to 189 demand cities globally. Transportation modes include 
truck, rail, and sea between suppliers, producers, and warehouses, with customer deliveries primarily using Less Than Truckload 
(LTL) services.

To meet growing demand, particularly from Asia, the company plans to expand by adding new production sites in Germany, 
India, Indonesia, Egypt, and Brazil. These locations, each with different production capacities, are part of the Supply Chain Decision 
Network. Additionally, ten new raw material suppliers and 30 potential warehouse locations have been identified, each with distinct 
investment costs.
Quantifying Climate-Related Disruption. We model disruptions based on climate hazards and geopolitical risks. To assess 
resilience against climate risks, we assign each location 𝑖 a risk score 𝛩(𝑖) for each hazard 𝑟, ranging from 0 (low risk) to 1 (high risk). 
These scores represent the likelihood of a location being affected by a hazard before 2050. The disruption cost 𝛤 for disrupting a 
facility 𝑖 at disruption level 𝑓 is given by:

𝛤
𝑖𝑓 = �̄�𝑓 ⋅

(

1 −
∑

𝑟∈𝑅
𝐾𝑟𝑓 ⋅ 𝛩(𝑖)

)

Here, 𝛩(𝑖) represents the susceptibility of facility 𝑖 to hazard 𝑟, and 𝐾𝑟𝑓  links each hazard to a disruption level. For example, 
earthquakes are more likely to cause a FATAL disruption, while heat may lead to MINOR or HEAVY disruptions. The level bias 
�̄�𝑓  reflects the likelihood of different disruption levels, with minor disruptions being more probable than fatal ones. Disruption 
levels are defined in Table  5 and range from minimal impact (−10% capacity) to total disruption.
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Fig. 4. Effect of physical flexibility on performance 𝑃 and objective function components for instances 𝐼1 and 𝐼3, with various design budgets 𝛽.

Fig. 5. Resilience score R-score of the difference instances and design budgets 𝛽.
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Fig. 6. Diagram of production steps.

Table 5
Climate hazard and disruption level definitions.
 Trop. Wild Air Hum.  
 𝑓 𝑢𝑓 �̄�𝑓 Heat Cold Rain Snow Storm fire Qual. Flood Drght Earthq. Confl. 
 MINOR 10 1 0.020 0.020 0.020 0.020 0.005 0.005 0.010 0.005 0.020 0.005 0.005 
 HEAVY 20 4 0.020 0.020 0.020 0.020 0.010 0.010 0.005 0.010 0.020 0.010 0.010 
 MAJOR 50 25 0.010 0.010 0.010 0.010 0.050 0.050 0.005 0.050 0.010 0.050 0.050 
 FATAL 100 100 0.005 0.005 0.005 0.005 0.050 0.050 0.001 0.050 0.010 0.050 0.050 

Fig. 7. Map, 𝛽 = 0, 𝛽 = 0.

Assessing Resilience of the Current Network. This section examines the resilience of the supply chain network by first establishing 
a baseline under normal operating conditions. By setting both the disruption budget (𝛽) and the resilience budget (𝛽) to zero, 
the model identifies the optimal configuration of the supply chain, as shown in Fig.  7.

Next, to understand how disruptions affect the network, we simulate various disruption scenarios by gradually increasing the 
disruption budget (𝛽), ranging from minor (𝛽 = 1) to major (𝛽 = 100). The analysis reveals that minor disruptions have limited 
effects, while larger disruptions expose significant vulnerabilities, sometimes leading to a near-total breakdown of the system. Table 
6 details the facilities affected at different disruption levels, highlighting how the critical nodes in the supply chain shift as the 
severity of disruptions increases.

For example, facilities such as MU-Belgium PACKAGING experience a gradual escalation from MINOR disruption at 𝛽 = 1 to
FATAL at 𝛽 = 300, indicating its heightened vulnerability. Similarly, MU-UnitedStates DRUGPROD and MU-UnitedStates 
PACKAGING are heavily impacted at higher disruption budgets, marking them as critical points in the network.

Geographical vulnerabilities are spread throughout the network. US and Belgium facilities face disruptions at multiple levels, 
while MU-Ireland DRUGPROD and MU-Italy PACKAGING only become vulnerable at higher disruption budgets. This suggests 
that resilience efforts should focus on facilities with greater risk exposure, prioritizing protection for those vulnerable to a wider 
range of disruptions. By targeting critical nodes based on their specific risk levels, resilience strategies can be more efficiently 
applied.

To assess the impact of climate-adjusted disruption costs on strategic design decisions, we examine the frequency with which 
each facility is targeted for disruption and selected in the final network configuration across multiple scenarios. Figs.  8 and 9 report 
these outcomes.

The disruption frequency results indicate that critical vulnerabilities are concentrated in a small subset of facilities — particularly
MU Belgium PACKAGING and MU UnitedStates PACKAGING — which are selected disproportionately across scenarios. This 
reflects their structural centrality and lack of operational redundancy.
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Table 6
Disrupted facilities by 𝛽 with 𝛽 = 0.
 Facility 𝛽 0 1 5 25 50 100 200 300  
 MU Belgium PACKAGING MINOR MINOR HEAVY MAJOR FATAL 
 MU UnitedStates DRUGPROD MINOR MINOR HEAVY FATAL FATAL  
 MU UnitedStates PACKAGING HEAVY MAJOR MAJOR FATAL 
 SU CellBoost US MINOR MINOR  
 MU Ireland DRUGPROD MINOR HEAVY MAJOR FATAL  
 WH Germany GRIESHEIM MINOR MINOR  
 WH NETHERLANDS Nijmegen MINOR  
 MU Italy PACKAGING FATAL 

Fig. 8. Disruption frequency by facility across scenarios. Facilities in bold were not part of the initial network and require investment to be activated.

Fig. 9. Frequency of facility selection in network design across scenarios. Facilities in bold were not in the original network configuration.

In contrast, facility inclusion results exhibit greater dispersion, with frequent selection of both incumbent and new warehouse 
nodes. This suggests that, under sufficient resilience budgets, the model favors network diversification, primarily through expanded 
storage and distribution capacity.
Strategic Supply Chain Expansion. This section examines the firm’s expansion strategy, emphasizing optimization of efficiency and 
resilience. To determine the optimal configuration of new suppliers, production sites, and warehouses, we conducted a sensitivity 
analysis across multiple resilience budget levels (𝛽). Table  7 details the facilities added at each budget level, illustrating how the 
network evolves as investment capacity increases.

At lower budgets, the model prioritizes cost-effective enhancements, such as the addition of suppliers. For example, with a 1×104
budget, SU CellBoost US TEXAS and SU CellBoost United Kingdom are selected to expand supply capacity and geographic 
reach. As the budget increases, the model incorporates new warehouses — such as WH USA LEWISBERRY, PENNSYLVANIA and
WH Australia PERTH — to reduce transport costs and enhance service coverage.

The framework also evaluates trade-offs between reinforcing existing infrastructure and entering new regions. At a 5×106 budget, 
the selection of MU Brazil and WH Brazil VINHEDO reflects strategic expansion into South America. At higher investment levels 
(e.g., 1 × 108), the model recommends broader diversification, including facilities such as MU Germany PACKAGING, MU India, 
and MU Egypt, optimizing for both cost efficiency and resilience under heterogeneous threat scenarios.
15 



M. Hart Nibbrig et al. Transportation Research Part E 200 (2025) 104172 
Table 7
Newly included facilities in the design, by 𝛽, with 𝛽 = 0.
 New facility 0 1 × 104 2 × 104 5 × 106 1 × 107 2 × 107 5 × 107 1 × 108 2 × 108 
 SU CellBoost US TEXAS ✓ ✓ ✓  
 SU CellBoost United Kingdom ✓ ✓ ✓  
 WH USA LEWISBERRY, PENNSYLVANIA ✓ ✓ ✓ ✓ ✓  
 WH Australia PERTH ✓ ✓ ✓  
 WH Canada CALGARY ✓ ✓  
 WH Germany KARLSRUHE ✓  
 MU Brazil ✓ ✓ ✓  
 MU Germany PACKAGING ✓ ✓  
 WH Brazil VINHEDO ✓ ✓  
 SU CellBoost Singapore ✓  
 MU India ✓  
 MU Egypt ✓  

Fig. 10. Resilience grids of 𝛽 and 𝛽 versus objective value and demand delivered [%].

To explore the interaction between resilience and disruption pressures, we conducted a grid-based sensitivity analysis by jointly 
varying the resilience budget (𝛽) and disruption budget (𝛽). The resulting resilience grids (Fig.  10) quantify system performance 
in terms of delivery reliability and operational cost across different budget combinations.

These grids indicate that higher resilience investment enhances disruption absorption through strategies such as multi-sourcing, 
capacity scaling, and flow rerouting. These adaptive mechanisms sustain service levels and control cost volatility, even under 
elevated stress conditions.

The analysis further shows that investment levels between 1 × 106 and 2 × 107 provide the most balanced trade-off—delivering 
robust performance under moderate disruption scenarios (𝛽 ≤ 50) while avoiding diminishing returns. Under severe disruptions 
(𝛽 > 100), marginal gains decline, reinforcing the value of targeted, efficiency-driven allocation.

Findings and discussion

The computational results provide clear insights into supply chain resilience under climate-related disruptions. Vulnerabilities 
are concentrated in structurally central facilities — most notably the packaging units in Belgium and the United States — 
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which lack redundancy and serve as critical hubs in material flows. These nodes are consistently prioritized as disruption targets 
across scenarios, suggesting that topological centrality, rather than geographic exposure, is the dominant determinant of systemic 
vulnerability.

By contrast, facility selection in the final network design exhibits greater dispersion. As resilience budgets expand, the model 
favors diversification not through uniform expansion but via targeted, high-leverage interventions. These include warehouse 
expansions, selective supplier inclusion, and strategic geographic entry into regions such as Brazil, India, and Egypt. This pattern 
reflects the model’s emphasis on cost-efficient flexibility and redundancy under constrained investment.

A central finding from the climate-adjusted disruption modeling is that while location-specific climate risk shapes relative 
disruption costs, it does not materially alter which nodes are identified as structurally critical. Disruption and inclusion frequencies 
align more closely with network topology than with climate risk scores. This does not diminish the role of climate factors. Rather, in 
the current configuration, central facilities happen to reside in moderately exposed regions. In scenarios where climate exposure and 
structural centrality coincide, climate-adjusted costs would likely exert greater influence. Thus, climate risk functions as a secondary 
modifier, amplifying or moderating vulnerability in interaction with network structure.

Finally, sensitivity analysis across budget levels reveals that moderate resilience investments — particularly in the range of 106
to 2 × 107 — generate the highest marginal gains in delivery performance and cost efficiency. Beyond this range, returns diminish, 
especially under high-disruption conditions. This inflection point underscores the strategic value of calibrated investment, enabling 
firms to balance robustness with financial discipline in resilience planning.

6. Conclusion

This paper introduced a tri-level optimization framework designed to enhance supply chain resilience by adaptively addressing 
evolving network vulnerabilities. By incorporating both production chain and network flexibility, the model provides strategic 
guidance for targeted reinforcement and recovery. Computational results showed that increasing flexibility improves resilience 
significantly, especially when larger design budgets are available. Applying the framework to a pharmaceutical supply chain 
illustrated its practical value in mitigating climate risks and sustaining operations.

The proposed tri-level optimization framework explicitly models adversarial disruptions, supports adaptive transformation strate-
gies, and integrates fortification with operational flexibility. This structure facilitates anticipatory resilience planning under deep 
uncertainty by aligning reinforcement and transformation decisions with system-wide vulnerabilities before disruption realization. 
However, the formulation assumes centralized decision-making under full information and clearly articulated resilience priorities. 
While this offers a tractable and coordinated foundation for optimization, it abstracts from the decentralized and often conflicting 
nature of real-world supply chain governance. In practice, supply chains involve multiple stakeholders with divergent goals—ranging 
from asset prioritization and budget allocation to disruption perception. To address this gap, model outputs could be embedded 
within a multi-criteria decision-making (MCDM) framework that incorporates stakeholder preferences, enabling adaptation to 
complex, real-world decision environments. 

From a managerial perspective, the findings suggest that resilience investments should target structurally central and hard-
to-substitute facilities—particularly core production and packaging nodes. Diversification through multi-sourcing and flexible 
warehousing yields higher returns than uniform capacity expansion, especially under constrained budgets. Scenario-based stress 
testing, as enabled by our model, offers a proactive tool for uncovering latent vulnerabilities and guiding strategic resource 
allocation. 

While the model captures complex disruption-defense interactions, it currently assumes deterministic input data and a single-
period planning horizon. Extending the framework to incorporate demand uncertainty and time-dependent disruptions would 
broaden its applicability. Future research could also integrate recovery logistics and examine organizational dimensions of resilience 
investment—such as decentralized governance, competing objectives, and adaptive learning in uncertain environments. 

Future research could expand the disruption model by introducing a multi-component budget to address a range of disruption 
severities, from minor to catastrophic. This refinement would allow the framework to prioritize adaptive resilience strategies that 
remain effective across diverse disruption scenarios.
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