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ABSTRACT

To better understand the increasing human impact on the water cycle and the feedbacks between
hydrology and society, the International Association of Hydrological Sciences (IAHS) organized the
scientific decade “Panta Rhei — Everything Flows: Change in hydrology and society” (2013-2022). A key
finding is the need to use integrated approaches to assess the co-evolution of human-water systems in
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order to avoid unintended consequences of human interventions over long periods of time. Additionally,

substantial progress has been made in leveraging new data sources on human behaviour, e.g. through
text mining of social media posts. Much has been learned about detecting hydrological changes and
attributing them to their drivers, e.g. quantifying climate effects on floods. To achieve further progress,
we recommend broadening the understanding, the discipline and training activities, while at the same
time pursuing synthesis by focusing on key themes, developing innovative approaches and finding

sustainable solutions to the world’s water problems.

1 Introduction

The feedbacks between hydrology and society have accel-
erated in recent decades, highlighting the need for the
hydrological community to better understand the interac-
tions between these systems (Montanari et al. 2013,
Brondizio et al. 2016). Climate change, land use and
socio-economic changes significantly alter the water cycle,
leading to changes in water availability, quality and distri-
bution, and related hazards. For instance, flood and
drought impacts have already significantly increased in
many regions and are expected to increase further (IPCC
2012, 2022). Freshwater scarcity is becoming a major limit-
ing factor for societal development and security (United
Nations 2018, GCEW 2023). Thus, it is important to
understand, assess, predict and manage these accelerating
changes in order to mitigate their adverse impacts and to
ensure sustainability (Montanari et al. 2013, Ceola et al.
2016, McMillan et al. 2016, Di Baldassarre et al. 2019). This
review aims to present key scientific advances on change in
hydrology and society, with a focus on the feedbacks
between humans and water, particularly over decadal to
centennial time scales.
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KEYWORDS
socio-hydrology; predictions
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1.1 The IAHS scientific decade: Panta Rhei - Everything
Flows: Change in hydrology and society

The overall aim of the International Association of
Hydrological Sciences (IAHS) science decades is to coordinate
efforts in order to accelerate research progress on a particular
hydrological problem. The success of the scientific decades
PUB - Predictions in Ungauged Basins 2003-2012 and Panta
Rhei - Everything Flows: Change in hydrology and society
2013-2022 led to the current scientific decade, “Science for
solutions: Hydrology Engaging Local People IN one Global
world (HELPING),” 2023-2032 (Arheimer et al. 2024). At the
close of the PUB scientific decade (Bloschl et al. 2013,
Hrachowitz et al. 2013), the IAHS community started a global
discussion to identify the most relevant societal challenges to
shape the next IAHS scientific decade. The discussions on a
blog, which attracted thousands of visits and many comments,
converged on the understanding that “change” was the key-
word for hydrological sciences in the 21st century and that a
broad perspective on global change is necessary. The new
decade should highlight the key role of hydrology in predicting
future trends of environmental dynamics shaped by human-
water feedbacks (Montanari et al. 2013).
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IAHS Commissions
ICSIH Snow and Ice Hydrology
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ICT Tracer

ICCLAS Coupled Land-
Atmosphere Systems

ICSH Statistical Hydrology

ICWQ Water Quality

ICRS Remote Sensing
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Figure 1. Links and cooperation between the Panta Rhei working groups and the IAHS commissions. International Commission on Snow and Ice Hydrology (ICSIH),
International Commission on Continental Erosion (ICCE), International Commission on Groundwater (ICGW), International Commission on Tracers (ICT), International
Commission on Coupled Land-Atmosphere Systems (ICCLAS), International Commission on Statistical Hydrology (ICSH), International Commission on Water Quality
(ICWQ), International Commission on Remote Sensing (ICRS), International Commission on Surface Water (ICSW), International Commission on Water Resources

Systems (ICWRS).

To emphasize the focus on change, this decade was called
“Panta Rhei - Everything Flows: Change in hydrology and
society” after the aphorism attributed to the Greek philosopher
Heraclitus of Ephesus, which conveys the idea that nature and
societies are continuously changing. Supporting a community-
based bottom-up organization, an open call for Working
Groups (WGs) was issued, which resulted in over 30 groups
that initiated joint studies, scientific papers, conference ses-
sions and workshops within the frame of the IAHS scientific
decade. An overview of the Panta Rhei working groups and
their cooperation with IAHS commissions (Fig. 1) emphasizes
the variety of scientific challenges being addressed and the
diversity of approaches to solving them.

During the decade, the substantial increase in the network
of hydrologists and scientists in a range of disciplines, includ-
ing social sciences, stimulated large-scale cooperation based
on the exchange of knowledge and data, which was supported

by the emergence of the open science paradigm (UNESCO
(United Nations Educational Scientific and Cultural
Organization) 2021; Cudennec et al. 2022b, Hall et al.
2022). Examples are the Panta Rhei opinion paper series in
the Hydrological Sciences Journal (Kreibich et al. 2017) and
the international collaborative effort to collect and analyse
the Panta Rhei benchmark dataset of paired events of floods
and droughts, to which more than 90 scientists contributed
(Kreibich et al. 2022b, 2023). Remarkable progress in under-
standing interconnected change in hydrology and society has
also been made due to relevant research projects and pro-
grammes supported by governmental agencies and funding
organizations. Furthermore, the long-term partnership of
IAHS with several agencies of the United Nations (UN) and
the UN Water coordination mechanism allowed strong
synergies with, and scientific inputs to, multilateral efforts,
including the implementation of Sustainable Development
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Figure 2. Panta Rhei research encompasses three domains - socio-hydrology (SH), predictions under change (PUC), and integrated water resources management
(IWRM) - to achieve its three targets (figure adapted from Montanari et al. 2013, Thompson et al. 2013).

Goal (SDG) 6: “Clean Water and Sanitation” and interlin-
kages within Agenda 2030 (e.g. Young et al. 2015, Cudennec
et al. 2020, 2022a, Mahé et al. 2021, Dixon et al. 2022, ISC
2023).

1.2 The three domains of Panta Rhei research

The Science Plan of Panta Rhei organized the scientific work
around three targets and six science questions (Montanari et
al. 2013). The three targets are closely related to the three
domains: (1) socio-hydrology (Target 1), (2) predictions
under change (Target 2), and (3) integrated water resources
management (IWRM, Target 3), as Panta Rhei aimed to bridge
past developments with new opportunities (Fig. 2).

The domain of socio-hydrology attempts to understand the
complex interactions and feedbacks between human and water
systems (Sivapalan et al. 2012). It contributes to deciphering
hydrological change and its interaction with societies (Target 1
in Montanari et al. 2013). The innovation of socio-hydrologi-
cal research is to model the co-evolution of human-water
systems with an integrated approach to better understand the
above-mentioned feedbacks and unintended consequences of
human interventions over long periods of time. Along with
empirical research across scales and places, stylized models
based on differential equations are promising tools that can
help explore socio-hydrological dynamics and contribute to
theory development (Di Baldassarre et al. 2015). In addition,
socio-hydrology draws on tools developed in research on
socio-ecological and complex systems to expand socio-hydro-
logical knowledge (Troy et al. 2015). With these tools, how-
ever, predictability is debatable in view of the contingent
nature of some environmental and societal processes, as well
as the importance of retroactive loops and the possible pre-
sence of tipping points (Sivapalan and Bléschl 2015, Bai et al.
2016). The goal is, rather, the projection of alternative, plau-
sible and co-evolving trajectories of the socio-hydrological
system, which may help stakeholders identify safe or desirable

operating spaces (Srinivasan et al. 2017a). As such, socio-
hydrology aims to be a use-inspired science to inform the
complex water sustainability challenges faced in the
Anthropocene (Sivapalan et al. 2014, Sivapalan and Bloschl
2015, Di Baldassarre et al. 2019) and be applied to policy-
making (Troy et al. 2015).

The domain of predictions under change aims to under-
stand and model changes in hydrological systems in
response to various environmental and human-induced dri-
vers. It improves the estimation and prediction of hydrolo-
gical processes under change, including design variables for
flood and drought risk mitigation (Target 2 in Montanari et
al. 2013). The drivers of change include climate change, river
regulation, land use change, water abstraction or storage,
and others (e.g. Milly et al. 2008). Detection and attribution
of past changes help to understand trends (IPCC 2022).
While detection demonstrates that a change has been
observed and is statistically significantly different from
what can be explained by natural variability, attribution
associates detected changes with the corresponding drivers
and rules out alternative explanations that are not causally
associated with observed outcomes (Merz et al. 2012). On
this basis, models and methods are developed to predict
future changes in hydrological systems under changing con-
ditions, supporting decision making in the management and
planning of water resources.

The domain of integrated water resources management
(IWRM) is a holistic approach to managing water resources
that considers the multiple uses and users of water within a
given area (Biswas 2004, Uysal et al. 2024). It has high societal
relevance and, therefore, aims for iterative exchanges among
science, technology, and societies. It brings science into prac-
tice, including policymaking and implementation (Target 3 in
Montanari et al. 2013). IWRM aims to ensure that water
resources are managed in an equitable, sustainable and effi-
cient manner that considers both social and environmental
aspects. Key principles of IWRM include a focus on basin-



Table 1. Organization of this review along the Panta Rhei science questions
(Montanari et al. 2013).

Panta Rhei Science Questions (Montanari et al.
2013)

How can we advance our monitoring and data 2. Monitoring and data
analysis capabilities to predict and manage analysis
hydrological change?

What are the external drivers and internal 3. Drivers of change
system properties of change? How can
boundary conditions be defined for the
future?

How do changes in hydrological systems 4. Understanding socio-
interact with, and feedback to, natural and hydrological systems
social systems driven by hydrological
processes? What are the boundaries of
coupled hydrological and societal systems?

How can we use improved knowledge of 5. Modelling and prediction
coupled hydrological-social systems to
improve model predictions, including
estimation of predictive uncertainty and
assessment of predictability?

How can we support societies to adapt to 6. Water management and
changing conditions by considering the adaptation to change
uncertainties and feedbacks between natural
and human-induced hydrological changes?

What are the key gaps in our understanding of
hydrological change?

Sections of review

7. Summary of achievements
Recommendations

®

level planning, stakeholder participation, the integration of
water management across different sectors, and the considera-
tion of social, economic, and environmental factors. The
approach also emphasizes the need for adaptive management,
which involves continuously monitoring and assessing water
resources, and adapting management strategies as needed to
meet changing conditions (Medema et al. 2008, Kreibich et al.
2014).

This review is organized along the Panta Rhei science ques-
tions (Montanari et al. 2013), as shown in Table 1. The aim is
to present scientific progress and to illustrate it using specific
research findings from the scientific decade.

As a basis for this review, a collection of 351 key scientific
papers that contribute to answering these science questions
was compiled (see Supplementary material). The spreadsheet
for the collection of key papers (see Supplementary material)
has been made publicly available and the authors of the present
article have each contributed up to five key papers. The collec-
tion also contains a brief summary of the most important
results and scientific advances for each paper, as well as infor-
mation on which of the scientific questions of Panta Rhei the
paper contributes to answering (see Supplementary material).
With 58 to 89 papers per question, i.e. with shares between
17% and 25%, the distribution of papers among the questions
to be answered is fairly even. This collection demonstrates the
recent progress by many experts in the field of change in
hydrology and society worldwide.

2 Scientific progress on monitoring and data analysis

Improving our understanding of the long-term co-evolution of
hydrological systems has required associating geophysical and
anthropogenic processes that have historically been observed
at disparate temporal, spatial, and social scales. Improving data
interoperability and accessibility to enable interdisciplinary
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research was therefore an essential component of the Panta
Rhei scientific decade. Many initiatives and approaches have
improved data accessibility, discovered new, unconventional
data, developed innovative approaches to data integration and
analyses, and used citizen science, thus contributing to answer-
ing the science question “How can we advance our monitoring
and data analysis capabilities to predict and manage hydro-
logical change?” The Panta Rhei collection of key scientific
papers contains 58 papers (17%) that contribute to answering
this question (see Supplementary material).

2.1 Improved data accessibility

Over the past decade there have been major innovations in data
collection, in the combination of disparate data into easy-to-use
large-sample datasets, and in data sharing and open-access
initiatives that improved the accessibility of hydrological and
socio-economic data. For instance, flow monitoring at thou-
sands of stations over decades has been the basis for detecting
changes in high flows and seasonality that were attributed to
climate change across Europe (Hall et al. 2014, Bloschl et al.
2019b) and globally (Wang et al. 2024). New data have enabled
advances in detecting human influence on river flow, for
instance by showing that water abstractions aggravate droughts
(Van Loon et al. 2022) and must be taken into account to
successfully predict the baseflow index (Bloomfield et al.
2021). Analysis of paired events identified improved governance
and high investment in integrated risk management as success
factors in managing unprecedented flood and drought events
(Kreibich et al. 2019, 2022b). Newly released global datasets,
such as freshwater withdrawal and consumption rates, enabled
Huggins et al. (2022) to map socio-ecological vulnerability to
freshwater stress and storage loss and identify hotspots for
prioritizing interventions such as IWRM practices.

Considerable effort has been spent on making data more
accessible and useful via collation across locations and
domains (Gupta et al. 2014). For example, the Catchment
Attributes and Meteorology for Large-sample Studies
(CAMELS), Caravan and EStreams datasets combine daily
hydro-meteorological time series with landscape attributes (e.
g. reservoir type and capacity, water abstraction and return,
consumptive water use, and surface and groundwater rights)
for more than 20 000 catchments in over 35 countries
(Newman et al. 2015, Addor et al. 2017, Alvarez-Garreton et
al. 2018, Chagas et al. 2020, Coxon et al. 2020, Fowler et al.
2021, Hoge et al. 2023, Kratzert et al. 2023, Do Nascimento et
al. 2024). These datasets have been instrumental in demon-
strating that wastewater discharges dominate urban hydrology
signals across England and Wales (Coxon et al. 2024), that
water uses exacerbated hydrological drought conditions dur-
ing the megadrought in central Chile after 2010 (Alamos et al.
(2024) and that stream water losses are higher in areas of
extensive groundwater pumping (Uchda et al. 2024). Other
studies target specific environments that are sensitive to
change, such as high-mountain snow cover in semi-arid
regions (Polo et al. 2019); or focus on anthropogenic processes,
e.g. storage and release policies for approximately 2000 reser-
voirs in the US (Turner et al. 2021).
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Important progress has been made in the last decade
through the structured documentation of extreme events and
the recording of their impacts in databases (De Groeve et al.
2014, Rudari et al. 2017). Examples include flood fatality data
across 12 territories in Europe and its surroundings
(Papagiannaki et al. 2022), drought impact data extracted
from nearly 5000 reports (Stahl et al. 2016), and object-specific
flood damage data from fluvial, pluvial and groundwater
flooding stored in the Flood Damage Database HOWAS 21
(Kellermann et al. 2020).

2.2 New, unconventional data

The increasing availability and volume of digital data have also
opened up new opportunities for the prediction and manage-
ment of hydrological change by including unstructured and
qualitative data types in the research design. For example, ana-
lysing the minutes of water board committee meetings,
Carvalho et al. (2024) found that water allocation decisions
were increasingly based on seasonal forecasts and data on ocea-
nic indices in Northeast Brazil from 1997 to 2021. An analysis of
the number of news articles published about drought revealed
that single-family customers reduced their water consumption
most quickly following heavy drought-related news coverage
(Quesnel and Ajami 2017, Roby et al. 2018). Web-scraping
and text mining have made social media popular for analysing
public opinion on extreme events (Cervone et al. 2016,
Kryvasheyeu et al. 2016, Smith et al. 2017), improving flood
mapping (Fohringer et al. 2015, Scotti et al. 2020), and monitor-
ing the occurrence of disasters (Kryvasheyeu et al. 2016). Data
collected through car navigation apps such as Waze or Mapbox
have been shown to be powerful in estimating the extent of
traffic impacts due to flooding (Praharaj et al. 2021, Safaei-
Moghadam et al. 2023), as well as anomalies in human activity
(Farahmand et al. 2022). Similarly, Google Trends has emerged
as a way to measure public awareness regarding drought (Kam
et al. 2019, Kim et al. 2019, Alencar et al. 2024), track flood
disasters (Thompson et al. 2021), and understand the dynamic
social response to past droughts (Gonzales and Ajami 2017).
Earth observation products have become common for
assessing key environmental variables at large scale, such as
Landsat data employed for surface water dynamics (Pekel et al.
2016), Gravity Recovery and Climate Experiment (GRACE)
data used for terrestrial water storage evolution (Chen and
Rodell 2021, Kvas et al. 2024), and the Surface Water and
Ocean Topography (SWOT) mission aimed at monitoring
river hydraulic properties (Frasson et al. 2019). Local-scale
monitoring has recently been fostered by low-cost innovative
wireless sensor networks (WSN), employed for example in the
meteorological, hydrological, agricultural, water management
and services sectors (Ojha et al. 2015, Marais et al. 2016,
Pimentel et al. 2017, Tauro et al. 2018, Bardossy et al. 2021).

2.3 Data integration and machine learning

The combination of datasets with both process-based model-
ling and machine learning (ML) approaches can be integrated
in tools that decision makers can use to investigate the long-
term effects of their management decisions (Xia et al. 2021).

Furthermore, alongside large-scale or large-sample efforts,
there are bespoke small-scale efforts to harness local hydro-
logical understanding for improved social outcomes. For
example, Hund et al. (2018) developed a data-based drought
early warning system for communities dependent on an aqui-
fer in Costa Rica, with predictions based on the local under-
standing of what climatic conditions typically lead to drought-
induced hardship.

Interdisciplinary perspectives that integrate qualitative and
quantitative data are needed to understand complex human-
water systems (Di Baldassarre et al. 2021, Rangecroft et al. 2021,
Vanelli et al. 2022). While quantitative data allow researchers to
identify generalizable patterns and dynamics, qualitative data pro-
vide insights into the socio-political drivers of water management
through detailed analyses of local contexts (Riedlinger and Berkes
2001, Ruska and Di Baldassarre 2019, Alexander et al. 2020). Several
innovative approaches have been developed that combine qualita-
tive and quantitative data in a meaningful way, in particular for
nexus studies (Liu et al. 2017a, Cudennec et al. 2018, Heal et al.
2022). Another example is provided by Ferdous et al. (2018), who
triangulated quantitative data from household surveys and qualita-
tive data from focus group discussions in a socio-hydrological
study. Sarmento Buarque ef al. (2020) present a sequential mixed
design, where a modelling-based quantitative analysis was sup-
ported by qualitative data obtained from newspapers and photo-
graphs. Van Loon et al. (2015) analysed quantitative and qualitative
data in an iterative manner to investigate the frequency of occur-
rence of different drought types in cold climates.

With the increasing accessibility of big data from diverse
data sources, artificial intelligence (AI) and ML approaches are
increasingly used to overcome the challenges posed by the high
complexity, non-linearity, and non-stationarity of change in
hydrology and society (Kratzert et al. 2019, Ke et al. 2020, Mao
et al. 2021, Yu et al. 2023). For instance, ML is used to auto-
matically label built-up areas based on night-time lights or
buildings and map roads using aerial or satellite imagery
(Alshehhi and Marpu 2017, Jia et al. 2022). Other examples
include real-time identification or mapping of floods based on
social media posts (Annis and Nardi 2019), and analyses of
flood damage processes using decision tree or Bayesian
approaches (Carisi et al., 2018, Schoppa et al. 2020, Paprotny
et al. 2021). Human perceptions and decisions were assessed
based on insurance uptake using interpretable ML (Knighton
et al. 2021, Veigel et al. 2023).

2.4 Citizen science

Citizen science and related data acquisition techniques such as
volunteered geographic information (VGI), participatory tools
and crowdsourcing have emerged to complement observations,
raise awareness, promote innovative thinking, and encourage
scientist—citizen cooperation in addressing water management
issues (Woolley et al. 2010, Buytaert et al. 2014). Citizen science
and related methods have a significant role in improving commu-
nity sensitivity and engagement with water-related issues.
Through citizen science initiatives, people can actively participate
in data collection, analysis, and interpretation, promoting univer-
sal and equitable access to scientific data and information (de



Sherbinin et al. 2021). Additionally, citizen science projects can
have educational and outreach aspects, promoting awareness and
understanding of water issues among the broader public, and even
increasing citizen engagement in local governance processes
(Nardi et al. 2022).

Citizen science has gained increasing prominence in
hydrology, addressing the need for more dispersed and
diverse observations of multiple water-related variables
(Nardi et al. 2022) and is used to collect large amounts
of data over wide areas (Buytaert et al. 2014, Walker et al.
2021). It additionally enables the observation of social,
economic, educational, and behavioural dynamics that are
difficult to capture (Jollymore et al. 2017).

Applications of citizen science in hydrology can range
from local-scale studies involving a single volunteer to
global-scale studies involving tens of thousands of volun-
teers (Walker et al. 2021). Examples of data commonly
acquired include water levels (Lowry and Fienen 2013,
Jan et al. 2019), water quality (Rangecroft et al. 2023,
2024), building footprints obtained from OpenStreetMap
(Cerri et al. 2021), and meteorological observations (“Met
Office WOW - Home Page” n.d.). Comprehensive over-
views of citizen science projects in the field of hydrology
are provided by Buytaert et al. (2014), Anna et al. (2019),
Njue et al. (2019), See (2019), Kelly-Quinn et al. (2022),
and Nath and Kirschke (2023).

Summary on monitoring and data analysis: Our monitoring and data
analysis capabilities to predict and manage hydrological change have
advanced significantly: (1) Accessibility and usefulness of (time series)
data has increased by sharing and combining data across locations and
domains, including quantified human impacts. Examples are the CAMELS
datasets (e.g. Alvarez-Garreton et al. 2018, Fowler et al. 2021, Hoge et al.
2023), Panta Rhei benchmark datasets (e.g. Kreibich et al. 2023) and
impact datasets (e.g. Stahl et al. 2016, Papagiannaki et al. 2022). (2)
Repurposing and combining of data and increased exploration of new,
unconventional data sources such as social media, novel sensors (e.g.
Fohringer et al. 2015, Kryvasheyeu et al. 2016, Scotti et al. 2020) and new
methods of analysis such as machine learning and text mining (e.g.
Knighton et al. 2021, Paprotny et al. 2021, Veigel et al. 2023) have
increased the availability and potential of qualitative and quantitative
data. (3) Advancements in citizen science have demonstrated its value in
monitoring various processes, promoting community engagement and
supporting education in hydrology (e.g. Jollymore et al. 2017, Nardi et al.
2022).

3 Scientific progress on drivers of change

The pace and scope of change of hydrological systems has
accelerated, and with them the risks to society and the envir-
onment. This has also increased the importance of assessing
the drivers of change. Effects of climate, land use and socio-
economic changes on freshwater quantity and quality trends
were frequently assessed, and new approaches for attribution
were developed to answer the following scientific questions:
“What are the external drivers and internal system properties
of change? How can boundary conditions be defined for the
future?” The Panta Rhei collection of key scientific papers
contains 67 papers (19%) that contribute to answering these
questions (see Supplemental material).
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3.1 Climate change

Climate change is expected to significantly influence the water
cycle, through changes in the global atmospheric circulation
and the larger water-holding capacity of a warmer atmosphere.
Using 7250 observations around the world covering the years
1971-2010, Gudmundsson et al. (2021) found evidence for the
role of anthropogenic climate change as a causal driver of
recent trends in river flow. Wang et al. (2024) detected a
clear trend of weakening seasonality in river flow in high-
latitude regions of the Northern Hemisphere, which is closely
linked to anthropogenic climate change. Yang et al. (2021)
showed that, at a global scale, long-term annual streamflow
has remained stationary in 79% of catchments with minimal
human disturbance, while the percentage is only 38% for those
catchments where substantial human interventions have
occurred.

Climate change and human behaviour also jointly drive
changes in hydrological extremes and exacerbate their effects
(Arheimer et al. 2017, Caretta et al. 2022, Chagas et al. 2022).
Based on a meta-analysis, Merz et al. (2021) found that in more
than half of catchments worldwide, floods have increased in
recent decades. River floods in Europe have increased in mag-
nitude in the northwest and decreased in the south and east in
the last 60 years (Bloschl et al. 2019b, Bertola et al. 2020).
Changing seasonality of floods has been detected, more clearly
than for their magnitudes (Bloschl et al. (2017) for Europe,
Collins (2019) for the US, Chagas et al. (2022) for Brazil).
These studies usually consider river flooding, but flash flood-
ing is also expected to increase due to increased atmospheric
convection in a warmer climate (Llasat et al. 2016, Huang et al.
2022).

Changes in drought frequency and severity have been
detected with various confidence levels depending on the
drought type (Van Loon 2015). While meteorological droughts
have increased in a few regions of Africa and South America,
socio-hydrological droughts have increased in megacities
(Souza et al. 2022) and agricultural (soil-moisture) droughts
have increased in several regions on all continents (IPCC
2022). Brunner et al. (2023) find that high-elevation catch-
ments in the Alps have experienced a stronger change in
drought type (from rainfall-driven to temperature-driven)
and drought severity (shorter and higher deficit) than low-
elevation catchments. Brunner and Tallaksen (2019) found
that four regions in Europe, i.e. southeast England, southeast
France, central Norway, and the Pre-Alpine area, may become
more affected by multi-year droughts in the future as stream-
flow becomes less snow influenced. The increasing trend in
drought severity in the Po River basin (Italy) was found to be
mainly driven by the type and seasonality of precipitation,
rather than its total amount, and the expansion of irrigated
areas (Montanari et al. 2023).

3.2 Land use and socio-economic change

Land use changes such as deforestation and urbanization have
often caused increased surface runoff and a decreased baseflow
(Levy et al. 2018, Miiller et al. 2021). This effect, along with the
regulation of river flows, e.g. for hydropower production,
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industrial use or flood protection, has substantially affected
discharge regimes in many parts of the world (Vorogushyn
and Merz 2013, Wang et al. 2017, Arheimer and Lindstrom
2019, Shrestha et al. 2022).

Considering the combined effects of anthropogenic altera-
tions to natural water streams and changing climate has
resulted in a new framework of droughts, that defines anthro-
pogenic drought as a compound multidimensional and multi-
scale phenomenon (AghaKouchak et al. 2015, Van Loon et al.
2016). Anthropogenic droughts are governed by the combina-
tion of natural water variability, climate change, human deci-
sions and activities, and altered micro-climatic conditions due
to changes in land and water management (AghaKouchak et
al. 2021). Human activities have a major impact on hydrolo-
gical droughts as well, in some cases exacerbating the effects of
climate change, despite management efforts (Van Loon et al.
2022). Alborzi et al. (2018) report on the combined effects of
meteorological drought and unsustainable water resource
management, which contributed to the rapid shrinkage of
Lake Urmia in Iran, after it had reached a tipping point. Van
Oel et al. (2018) document the exacerbating effect of reservoir
operations on downstream hydrological drought in a river
basin in Brazil, while a continental-scale study in the US
shows that reservoirs can also alleviate drought severity in
many instances (Brunner 2021). Increasing water demand
and decreasing surface water availability are frequent causes
of groundwater overexploitation (Nlend et al. 2018). Declining
groundwater resources are exacerbated by misaligned incen-
tives associated with the common-pool nature of the resource
(Mullen et al. 2022).

Flood impacts are also strongly influenced by changes in
land use and socio-economic processes, next to atmospheric
drivers (Formetta and Feyen 2019, Merz et al. 2021). Shifts in
socio-economic systems foster human encroachment into
floodplains and increase flood exposure. Thus, increasing
exposure was the main driver of the increase in flood losses
during recent decades, in Europe (Stevens et al. 2016, Paprotny
et al. 2018) and elsewhere (Tanoue et al. 2016, McAneney et al.
2019). It is expected that future flood impacts will continue to
increase (Rojas et al. 2013, Dottori et al. 2018), due to a
combination of changes in hazard, exposure and vulnerability
(Rojas et al. 2013, Vousdoukas et al. 2018, Steinhausen et al.
2022, Schoppa et al. 2024). Sauer et al. (2021) quantified
hazard, exposure and vulnerability changes for flood events
globally, finding that for Europe the increase in flood losses
was driven almost entirely by exposure, with some small
decline in hazard and vulnerability.

3.3 Changes in water quality

Climate change in terms of rising temperatures, changes in
precipitation patterns, and extreme weather events have
affected the water cycle, also leading to changes in water
quality (e.g. Meier et al. 2014, Bartosova et al. 2019). In coastal
areas, sea level rise, storm surges, drought, land subsidence and
erosion were reported to affect salinity and water quality in
soils, estuaries and aquifers (Dasgupta et al. 2015, Jasechko et
al. 2020, Phlips et al. 2020). Water scarcity also impacts water

quality, as pollution is more concentrated, so that recent
scientific advances have been in the direction of quality-related
and ecological water scarcity (Liu et al. 2016, 2022). Integrated
assessments of water quality, quantity, and environmental
flows have been widely applied at global, national, and local
levels (Liu et al. 2017b, van Vliet et al. 2017, Ma et al. 2020).

Urbanization and changes in land use have resulted in
increased impervious surfaces, such as roads, which can lead
to higher levels of pollutants, e.g. nutrients and chemicals
being washed into water bodies (Dailey et al. 2014). Diffuse
pollution that remains in the environment for a very long time
makes it challenging to achieve water quality goals (Van Meter
et al. 2018). In particular, new science questions on the use,
fate and impacts of persistent anthropogenic chemicals, such
as PFAS (Ackerman Grunfeld et al. 2024) and microplastics
(Eerkes-Medrano et al. 2015), were raised during the Panta
Rhei scientific decade.

At the same time, traditional water-quality problems due to
agricultural activities have not yet been solved, e.g. the use of
fertilizers and animal waste that result in nutrient runoff and
contamination of water bodies, leading to eutrophication
(Finger et al. 2013) and intensive irrigation that increases
salinity in downstream water bodies (Thorslund et al. 2021).
Direct implications for human health are expected from indus-
trial discharges, including the release of pollutants and chemi-
cals that contaminate water sources (Ma et al. 2020), and
mobilization of geogenic contaminants (e.g. arsenic) due to
groundwater overuse (Erban et al. 2013).

Addressing these complex and interlinked water quality
challenges requires a holistic approach that includes sustain-
able water management, land use planning, pollution control
and public awareness (Hipsey and Arheimer 2013, Rahman et
al. 2019). Modelling was found to be instrumental in planning
remedial measures at the catchment scale (Arheimer et al.
2015) and regionally (Bartosova et al. 2021). Nature-based
solutions have proven to be efficient in addressing some of
these challenges (Huang et al. 2020, Oral et al. 2021, Carvalho
et al. 2022) although their effect at large scale has been ques-
tioned, e.g. regarding wetland constructions for nutrient
reduction (Arheimer and Pers 2017). Technological advances
have contributed to significantly improve both detection and
treatment of water contaminants. Stricter environmental poli-
cies, regulations and standards are needed to reduce pollution,
by improving wastewater treatment, reducing the impact of
agricultural practices, and managing landscapes (Hanrahan et
al. 2018, Cheng et al. 2022, Penny et al. 2022).

3.4 Methodological advancements in the attribution of
change

Hydrological systems are spatially heterogeneous and tightly
coupled with human and ecological systems at a variety of
spatial and temporal scales (Kingston et al. 2020, Bertassello
et al. 2021). Studying changes in these human-water systems
requires addressing the twin challenges of detection and
attribution. Detecting hydrological change implies distin-
guishing persistent changes in hydrological outcomes from
the effects of stationary but long-memory climate variability
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Figure 3. Approximative typology of attribution approaches: DL (diagnostic learning), XAl (explainable artificial intelligence), TS (time series analysis), GC (Granger
causality analysis), CCM (convergent cross-mapping), Bl (Bayesian inference), PC (paired catchments), PA (panel analysis), IV (instrumental variable), RD (regression
discontinuity), DiD (difference-in-difference), NB (narrative-based analysis), MH (multiple hypotheses), FO (field observation), SH (socio-hydrological modelling), PB
(process-based or physical modelling), FP (fingerprinting).

and random observation errors (Hall et al. 2014, Data-based inductive approaches use statistical models
Koutsoyiannis and Montanari 2015, Milly et al. 2015, that rely on the detection and interpretation of statistical
Serinaldi and Kilsby 2015, Yang et al. 2019, Villarini and relationships, in time (Arheimer and Lindstrom 2019, Lan
Wasko 2021). Much methodological development during the et al. 2020) or with observable covariates (Khazaei et al. 2019,
Panta Rhei decade has focused on addressing the second Shao et al. 2022), or both (Chagas and Chaffe 2018,
challenge of attribution, which investigates the causal rela- Franceschinis et al. 2021, Miller et al. 2021). In terms of
tionship between changes and their hypothesized drivers attribution, three alternative strategies are deployed. First,
(Merz et al. 2012). Elucidating such causal relationships is the structure of the data themselves can be used to infer
necessary to improve predictions (Srinivasan et al. 2017a, causal relationships, for instance through time series analysis
Miiller and Levy 2019) and to develop and evaluate policies such as Granger causality analysis (Singh and Borrok 2019) or
to avert or mitigate these changes (Thompson et al. 2013). convergent cross-mapping (Bonotto et al. 2022). Second, the
This subsection discusses current attribution approaches characteristics of the data-generating process can be lever-
with regard to their deductive (model-based) vs. inductive aged by identifying so-called natural experiments (Miiller
(data-based) nature and their focus on internal “Newtonian” and Levy 2019), for instance through panel regression analy-
(small sample size) vs. external “Darwinian” (large sample sis (Blum et al. 2020, Davenport et al. 2020, Mondino et al.
size) variability (Fig. 3). 2021) or covariate matching (Wagenaar et al. 2018, Brunner
Deductive process-based models are developed, calibrated 2021). Third, ML can be leveraged to explicitly control for all
and validated to test causal hypotheses about the key physical plausible sources of variations, for instance using explainable
processes assumed to govern hydrological dynamics (Ferraro Al (Althoff et al. 2021, Veigel et al. 2023) or autoencoders
et al. 2019), such as hydroclimatic change (Chiang et al. 2021), (Bassi et al. 2024).
changes in streamflow (Hundecha and Merz 2012, Duethmann Complementary to the previously described Darwinian
et al. 2015, Badjana et al. 2017, Mao and Liu 2019, Collar et al.  (large sample) approaches are the Newtonian (small sample)
2022) and flood risk (Metin et al. 2018). In a related approach, ones that tackle attribution by seeking to reconstruct a plau-
hydrological change is analysed by identifying a fingerprint: sible narrative to explain the observed phenomena for a
specific signatures of changes in the hypothesized drivers limited number of cases (internal validity) (Harman and
(Viglione et al. 2016, Arheimer and Lindstrom 2019, Bertola Troch 2014). Approaches seeking to elucidate the internal
et al. 2019, 2021, Kemter et al. 2020). For example, Viglione e mechanics of a small number of units, through either statis-
al. (2016) leverage the fact that different processes govern tical analysis or process-based modelling, fall under the latter
floods in catchments of different sizes to identify the most category, along with other approaches, including compara-
likely drivers of changing flood characteristics. Challenges to tive case studies (Kreibich et al. 2017, Garcia et al. 2019),
this approach are related to data scarcity and the complexity of socio-hydrological or agent-based models (Kandasamy et al.
systems, where feedbacks with social and ecological processes 2014, Mustafa et al. 2018, Penny et al. 2021, Schoppa et al.
can be both drivers and outcomes of hydrological change 2022) and narrative-based approaches (Treuer et al. 2017,
(Srinivasan et al. 2017b, Duethmann et al. 2020). Leong 2018).
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Figure 4. Causal loop diagram showing how hydrological, economic, political, technological, and social processes are all interlinked and gradually coevolve (continuous
thin arrows), while being abruptly altered (continuous thick arrows) by the sudden occurrence of an extreme event. Depending on the choice of specific state variables
and feedback mechanisms it can help simulate phenomena, e.g. unintended consequences such as the levee effect (figure adapted from Di Baldassarre et al. 2013,

Sivapalan and Bloschl 2015).

Summary on drivers of change: Significant advancements were achieved
in detecting and attributing hydrological changes: (1) Climate change
leads to both increasing and decreasing trends of hydrological extremes
in different regions of the world (e.g. Bloschl et al. 2019b, Merz et al.
2021, Brunner and Tallaksen 2019) and for different types of events (e.g.
Van Loon 2015, Huang et al. 2022). (2) Land use and socio-economic
change, such as the construction of hydraulic structures, were also
identified as drivers of change, particularly in terms of flood and drought
impacts (e.g. Vorogushyn and Merz 2013, Nlend et al. 2018, Paprotny et
al. 2018). (3) Climate and global change, e.g. urbanization, leads to
higher levels of pollutants and changes in water quality (e.g. Dailey et
al. 2014, Meier et al. 2014, Bartosova et al. 2019). (4) The development of
various attribution approaches, e.g. deductive (model-based) vs. induc-
tive (data-based) ones, led to a better quantification of the interactions
between drivers and a better separation of the individual contributions of
drivers to change (e.g. Viglione et al. 2016, Arheimer and Lindstrom 2019,
Ferraro et al. 2019).

4 Scientific progress on socio-hydrological systems

The impact of humans on water systems has increased and
with it the need to understand the interactions and feedbacks
between social and hydrological systems. To this end, new
socio-hydrological concepts and approaches were developed
to answer the following questions: “How do changes in hydro-
logical systems interact with, and feedback to, natural and
social systems driven by hydrological processes? What are
the boundaries of coupled hydrological and societal systems?”
The Panta Rhei collection of key scientific papers contains 89
papers (25%) that contribute to answering these questions (see
Supplementary material).

4.1 Concepts for socio-hydrological systems

It is well known that human societies increasingly influence
the hydrological regime, deliberately or otherwise, by: (a)
building dams and reservoirs to store water for different pur-
poses; (b) diverting water flows for urban, industrial or agri-
cultural use; (c) changing the characteristics of watersheds via
land use change, including deforestation, urbanization, or

drainage of wetlands; and (d) altering the regional or global
climate via greenhouse gas emissions (Savenije et al. 2014).

Concurrently, changes in the hydrological regime, includ-
ing the occurrence of extreme events, influence human socie-
ties. Water crises, droughts and floods impact societies in
multiple ways, and can cause serious human and economic
losses. Moreover, individuals, communities, and societies
adapt and respond to extreme events by changing policies or
social contracts (Adger et al. 2013) as well as collective beha-
viour, or patterns of human settlements (Mard et al. 2018).

An important scientific advancement in relation to the
change in hydrology and society is the concept of socio-hydro-
logical systems, which is based on a two-way coupling between
human actions and water quantity and quality (Sivapalan et al.
2012, Sivapalan and Bléschl 2015). To illustrate this, Fig. 4
shows a causal loop diagram, consisting of system states and
feedbacks. It illustrates how hydrological, economic, political,
technological and social processes are all interlinked and either
gradually co-evolve or are abruptly altered by the sudden
occurrence of an extreme event, e.g. a flood (Di Baldassarre
et al. 2013, Sivapalan and Bléschl 2015). In general, while
humans influence hydrological flows, water storage, and the
distribution of floods and droughts, they also respond to
hydrological risk by changing (deliberately or not) demogra-
phy, behaviour, water governance and infrastructure. Thus,
human influences on and adaptive responses to hydrological
processes are changing in space and time, indicating that
simulations without sufficient inclusion of human interaction
tend to underestimate temporal dynamics of human awareness
and actions that alter hydrology (Di Baldassarre et al. 2015,
Van Loon et al. 2016, AghaKouchak et al. 2021).

These complex interactions and feedbacks between human
and water systems (e.g. Fig. 4) can generate socio-hydrological
phenomena, i.e. patterns across places or even across contexts
(Sivapalan and Bloschl 2015, Di Baldassarre et al. 2019). These
phenomena consist of actual outcomes, paradoxical dynamics,
or unintended consequences that arise from water manage-
ment to achieve a desired societal objective (Table 2). The large
range of socio-hydrological phenomena was organized into a
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Table 2. Examples of archetypes and socio-hydrological phenomena (adapted from Di Baldassarre et al. 2019).

Archetype Archetype definition

General phenomenon

Characteristics of phenomenon Sub-phenomena

Fixes that fail
in the short term, but often fail in
the long run. In this way, they will
aggravate the original problem or
create even more challenging
problems.

al. 2024)

Rebound effect
(Alcott 2005)

Limits to growth Continuous and accelerating growth of
demand makes the system go
beyond the limits unintentionally,
thus experiencing a subsequent
decline.

cycle
(Kallis 2010)

Pendulum swing
(Kandasamy et al. 2014)

Success to the
successful

Good performance secures more
resources relative to others,
enabling the generation of further
success which in turn secures still
more resources.

Institutional complexity

Shortcut solutions might seem to work Safe-development paradox
(Kates et al. 2006, Fusinato et

Supply-demand

Adaptation effect
(Di Baldassarre et al. 2015)

Aggregation effect

Levee effect

(White 1945)
Reservoir effect
(Di Baldassarre et al.

Protection measures generate a false
sense of security that reduces
coping capacities thereby increasing
social vulnerability.

2018)
Increasing efficiency leads to higher  Irrigation efficiency
consumption. paradoxes

(Dumont et al. 2013)
Fixes that backfire
(Gohari et al. 2013)

Increasing supply enables growth that
in turn generates higher demands.

Frequent extreme events increase
coping capacities, thereby reducing
social vulnerability.

Adaptation to drought can worsen
flood losses, and vice versa.

Changing priorities from pursuing
economic prosperity or
environmental protection.

Flood risk adaptation

Kreibich et al. (2017)

Sequence effect

(Di Baldassarre et al.
2017)

Peak water paradoxes

Gleick and Palaniappan
(2010)

Environmental Kuznets
curve

(Dinda 2004)

Collective action

(Olson 1965,

Ostrom 1990)

Water injustice

(Zwarteveen et al. 2017)

Undesirable outcomes at the system
scale from aggregated optimal
decisions at the individual scale.
Desirable outcomes at the system
scale from aggregated inequalities
at the individual scale.

Trade-off between resilience and
efficiency or between resilience to
different disturbance regimes.

Robustness—fragility
trade-off
(Csete and Doyle 2002)

small number of system archetypes (Table 2). For instance, the
most common example of the “fixes that fail” archetype is the
levee effect (Di Baldassarre et al. 2018, 2019).

4.2 Approaches for assessing human-water systems

The Panta Rhei initiative has successfully contributed to a
societal impact assessment that goes beyond project evaluation
to include, for example, feedback mechanisms and the legacy
of past and projected future changes based on implemented or
proposed actions on a multi-decadal or centennial scale. Many
conceptualizations of mechanisms and potential boundaries
have been suggested (e.g. Elshafei et al. 2014, Miiller et al.
2024). System dynamics models based on causal loop diagrams
seem to be a promising way to study and validate long-term
dynamics (Di Baldassarre et al. 2015, Barendrecht et al. 2017,
Schoppa et al. 2022).

Models for large-scale studies primarily focus on the water—
energy—-food nexus or other aspects within the framework of
the SDGs and have been adopted by institutional investors
such as the World Bank (Liu et al. 2017a, Payet-Burin et al.
2019). Recently we have seen the development of models with
very fine resolutions based on agent-based modelling (Wens et
al. 2020, Ghoreishi et al. 2021) or various applications of
statistical or ML methods to study interactions on the micro-
scale. The purpose of modelling has shifted, to some degree,
from finding universal modelling paradigms to finding suita-
ble boundaries that ensure a simplicity that enables decision
making while having the complexity that allows for robust
assessment of the main impacts (Arnbjerg-Nielsen et al.
2022). Approaches have been developed to integrate

quantitative and qualitative information in order to better
understand the hydrological, socio-political, economic, and
cultural contexts in different locations (Rangecroft et al.
2018, Vanelli et al. 2022), supported by socio-hydrology
(Sivapalan and Bloschl 2015).

In detail, conceptual models have been proposed to
demonstrate that demographic and socio-economic charac-
teristics such as income levels or social status further differ-
entiate population vulnerabilities to water and livelihood
insecurities (Haeffner et al. 2017, Teweldebrihan et al. 2020,
Savelli et al. 2021, Savelli and Mazzoleni 2023).
Understanding and modelling the co-evolution of water
institutions has shown that vulnerabilities interact with live-
lihood insecurity in cities and floodplains (Yu et al. 2017,
Muneepeerakul et al. 2020).

The Panta Rhei community has progressed our under-
standing of drought through the lens of human influences
and coupled system co-evolution (Park et al. 2018, Cavus
and Aksoy 2020, Wens et al. 2020). Such studies have
revealed a strong linkage between human behaviour and
drought effects across increasing time scales, which help
to form a foundation for understanding and communicat-
ing such complexities within operational drought manage-
ment (Cavus et al. 2022). Similarly, the conceptual basis
for connecting social processes (adaptation, management)
with flood events has been strengthened by incorporating,
for instance, bounded rationality and prospect theories
(Di Baldassarre et al. 2015, Kreibich et al. 2017,
Michaelis et al. 2020). Progress has continuously been
made in predicting basin-scale socio-hydrological
dynamics of water use for agricultural and environmental
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purposes and its effects on societal conditions such as
migration into agricultural basins and flood plains (Di
Baldassarre et al. 2017, Roobavannan et al. 2018). There
has also been progress in simulating the interplay between
multiple hazards, water management, and societies. For
example, Mazzoleni et al. (2021) showed that changes in
flood and drought awareness can help contribute to the
emergence of multiple human-water phenomena (e.g.
sequence effect, reservoir effect, supply-demand cycle,
and levee effect).

Comparative studies across socio-economic and cultural
gradients of human water relations as well as hydroclimatic
gradients provided a better understanding of the interplay
between water hazards and societal responses, e.g. with respect
to flood protection and poor water quality (Gupta et al. 2014,
Kreibich et al. 2017, 2022a, Daniel et al. 2022). An example of
this is disentangling the effect of social norms on the way water
is abstracted for intensive agriculture from the effect the latter
has on the formation of norms that encourage such water use
(Troy et al. 2015, Alam et al. 2022). Another example is
provided by Zhao et al. (2019), who introduced comparative
advantage theory to track the driving forces of virtual water
trade based on the spatial-temporal distribution of resource
productivity and opportunity costs of land, labour and water
use in agricultural and non-agricultural sectors across Chinese
provinces.

Summary on understanding socio-hydrological systems: Significant
advancements were achieved in conceptualizing and assessing socio-
hydrological systems: (1) A better understanding of the feedbacks
between hydrology and society has been achieved, based on the concept
of a two-way coupling between human actions and water quantity and
quality (e.g. Sivapalan et al. 2012, Sivapalan and Bloschl 2015). These
complex feedbacks can generate phenomena such as the levee effect (e.
g. Di Baldassarre et al. 2013, 2018). The generic and transferable descrip-
tions of socio-hydrological phenomena and their organization into sys-
tem archetypes should be considered in decision making (e.g. Di
Baldassarre et al. 2019). (2) Integrated approaches were developed to
assess the co-evolution of human-water systems in order to avoid unin-
tended consequences of human interventions over long periods of time,
described as phenomena. The development of socio-hydrological models
made it possible to simulate long-term developments, including future
projections (e.g. Barendrecht et al. 2017, Schoppa et al. 2022). Synthesis
studies stressed the importance of space-time aspects as well as of
understanding causalities to even better address important societal chal-
lenges (e.g. Van Loon et al. 2016, Zhao et al. 2019).

5 Scientific progress on modelling and prediction

The evolution of hydrological systems motivates the need
to improve modelling and prediction to support better risk
assessment, planning, and infrastructure design. Various
approaches and models were developed in response to the
following question: “How can we use improved knowledge
of coupled hydrological-social systems to improve model
predictions, including estimation of predictive uncertainty
and assessment of predictability?” The Panta Rhei collec-
tion of key scientific papers contains 61 papers (17%) that
contribute to answering this question (see Supplementary
material).

5.1 Recognition of the change in hydrology and society
led to advances In Modelling

Although we know that “stationarity is dead” (Milly et al.
2008) due to the changes observed over time in hydrological
response (Montanari et al. 2013, Ceola et al. 2016, McMillan
et al. 2016), it can still be useful to model hydrological
processes under known conditions to make reliable predic-
tions, such as for the design of civil structures (Koutsoyiannis
2011, Lins and Cohn 2011, Matalas 2012, Koutsoyiannis and
Montanari 2015). Nevertheless, gradual and sudden changes
in the form of a trend, a jump or a shift (Fowler et al. 2022,
Volpi et al. 2024) due to the natural variation of a hydro-
logical process or anthropogenic interventions should not be
ignored, as, for instance, they have the potential to increase
the frequency and intensity of extreme hydrological events.
Similarly, in the more complex context of human-water
systems, inertia in culture and institutions, poor governance
and the hierarchical and cross-sectoral size of organizations
influence human decision making. Roobavannan et al. (2018)
and Amirkhani et al. (2022) incorporated changing beliefs
about how important the environment is with respect to
agricultural production as a function of community sensitiv-
ity to environmental degradation. Statistical techniques such
as breakpoint analysis have been used, for example, to eval-
uate the impact on flow from human-induced changes in
catchment characteristics (Arheimer and Lindstrom 2019)
or to identify changes in reservoir operating rules and to
develop amended rules using inverse modelling (Giuliani
and Castelletti 2016).

5.2 Quantitative and qualitative human-water systems
modelling

Traditional hydrological models are best suited for simulation
and prediction in natural catchments, assuming that condi-
tions have not been influenced by societal interaction. Human
influences were often only included as management scenarios
during the simulation, frequently at a specific point in time
(Montanari et al. 2013). The predictive capabilities of tradi-
tional hydrological models are based on empirical observa-
tions, with which the models are calibrated and validated
(Aguilar et al. 2017). However, complex human-water system
models must reflect human and social dynamics such as chan-
ging water institutions. The data needed to calibrate such
models often include observations of choices made by humans
or the evolution of institutions (Sarmento-Buarque et al.
2020). Further, modelling concepts have gone beyond the
physics-based principles to include the governing principles
behind human actions such as rules based on behavioural
theories and evolutions of water institutions and governance
that are a result of long-term slow-moving processes of values,
norms and culture (Sivapalan and Bloschl 2015, Wesselink et
al. 2017, Bartosova et al. 2021, Schrieks et al. 2021). For
instance, a system-of-systems regional flood model was used
to quantify the effect of changes in various risk components,
including changes in land use, assets, and vulnerability, on
flood risk (Metin et al. 2018). Recent models of human-
water decision making have benefited from the novel



application of concepts that exist in the social sciences domain,
such as game theoretic concepts, agent-based models, and
behavioural models (Bartosova et al. 2021, Schrieks et al.
2021). For example, heterogeneous decision making of farmers
has been extensively modelled using agent-based models
(Tamburino et al. 2020, Wens et al. 2020, 2022). Yu et al.
(2017) used game theoretic concepts to incorporate collective
action in a stylized human-water system model of flood resi-
lience. The model rules which describe how humans interact
with their water environment were also inspired by beha-
vioural theories such as the theory of planned behaviour, so
that the models provided realistic predictions of societal
inequities and unintended consequences of agricultural water
interventions (Pouladi et al. 2020, Alam et al. 2022).
Integrating empirical data, e.g. from recorded events, into
socio-hydrological models supports the simulation of real,
long-term processes in human-flood systems, including future
projections (Schoppa et al. 2024). Using Bayesian inference
allows models to be calibrated with qualitative and quantitative
data and even to include expert knowledge as a prior
(Barendrecht et al. 2019).

The application of hydrological models as well as human-
water system models is not objective and models’ subjectivity
should be better recognized (Lane 2014, Merz et al. 2015,
Beck and Krueger 2016, Melsen et al. 2018, Addor and
Melsen 2019, Yu et al. 2022). It is now acknowledged that
the predictability of human-water systems is affected by
factors such as biased selection in choosing stakeholders for
model co-development, social effects that stem from model
results, mutual reinforcement of model development and
model shaping by the involved parties (modellers, scientists,
stakeholders), a lack of neutrality in political implications,
and difficulties with transdisciplinary collaboration between
academic and non-academic actors (Melsen et al. 2018). Yu et
al. (2022) have highlighted that the complexities of human-
water systems, such as decision making at various spatial,
temporal and organizational scales, affect system
predictability.

In line with the modelling traditions of social sciences,
where mixed methods are often used, models have been cali-
brated on narratives or narratives are built on model predic-
tions (Leong 2018, Mostert and Mostert 2018, Rangecroft et al.
2018, Yu et al. 2022). Such an interplay of qualitative and
quantitative methods to improve predictions and their signifi-
cance for societies is important in the coupled modelling of
human-water systems.

It is increasingly acknowledged that human-water models
developed to capture extremely long-term phenomena
should be explicit about their uncertainty when applied to
short-term decision making (Srinivasan et al. 2017a). Merz et
al. (2015) argue that surprise is particularly important in
attempting to overcome potential cognitive biases within
coupled human-water management. Techniques such as
behavioural experiments and surveys have been proposed to
test hypotheses about human behaviour and biases in deci-
sion making (Tian et al. 2019, Yu et al. 2022). As such, the
concept of scale, and how human-water processes may shift
according to the lens through which they are studied and by
whom, are of importance in bridging the gap between
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understanding human-water co-evolution and utilizing
such insights for prediction. In this light, a means for defin-
ing, capturing, and communicating human-water model
uncertainty, especially in narratives or qualitative causal
loop diagrams developed for diverse decision makers, is
essential (e.g. Hollermann and Evers 2019). Formal
Bayesian and other methods have been proposed to analyse
uncertainty in such models. Barendrecht et al. (2019) incor-
porated survey data in a human-flood systems model and
provided quantitative uncertainty information based on
Bayesian statistics.

5.3 Approaches to predict future trajectories

A spectrum of data and modelling methods were developed, to
unravel complex human-societal phenomena in order to pre-
dict future trajectories of human-water systems in diverse
contexts. For instance, novel concepts describing community
sensitivity to drought and flood events were used to under-
stand vulnerability dynamics in the past and predict possible
future trajectories (Di Baldassarre et al. 2017, Roobavannan et
al. 2018, Wens et al. 2021, Rusca et al. 2023).

Several socio-hydrological studies, mostly in human-agri-
cultural and human-flood systems, have used diverse data
sources to simultaneously calibrate social parameters, such as
perception of risk to flooding, alongside hydrological para-
meters of the models using novel calibration strategies
(Roobavannan et al. 2018, Barendrecht et al. 2019, Schoppa
et al. 2024). Such calibrated models were then used to identify
conditions under which the coupled system would sustain-
ably evolve. For example, using a lumped socio-hydrological
model at basin scale, Roobavannan et al. (2018) found that a
higher level of diversification in the basin economy increases
sustainability and makes it less reliant on water availability.
Schoppa et al. (2024) calibrated a socio-hydrological model
for flood risk assessment with survey data and simulated a
wide range of potential futures. Results showed that inte-
grated adaptation strategies (i.e. combined structural and
non-structural measures) can reduce the average flood risk
by up to 60%.

Summary on modelling and prediction: Progress in modelling and pre-
dicting future trajectories was achieved: (1) Various powerful socio-hydro-
logical model approaches were developed which describe feedbacks;
examples are stylized models, system-of-systems models and agent-
based models (e.g. Yu et al. 2017, Metin et al. 2018, Wens et al. 2020).
These approaches allow, for example, the incorporation of changes in risk
perceptions, beliefs and community sensitivities into (long-term) model-
ling (e.g. Giuliani and Castelletti 2016, Amirkhani et al. 2022). (2) Using
Bayesian inference, qualitative and quantitative data as well as expert
knowledge can be used for model parameterization (e.g. Rangecroft et al.
2018, Yu et al. 2022). The combination of socio-hydrological modelling
and empirical data provides additional insights into human-water sys-
tems to realistically explore possible system evolutions comprehensively,
including unlikely futures (e.g. Barendrecht et al. 2019, Schoppa et al.
2024). (3) Calibrated socio-hydrological models are used to predict future
trajectories of human-water systems in diverse contexts and to identify
conditions under which the systems would sustainably evolve (e.g.
Roobavannan et al. 2018, Wens et al. 2021, Schoppa et al. 2024).
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6 Scientific progress on water management and
adaptation to change

Since it is not possible to plan under stable hydrological con-
ditions, adaptive management approaches need to be devel-
oped that are more flexible to changing conditions. The
development of realistic long-term scenarios, adaptive man-
agement and participatory governance are suggested
approaches to answer the following question: “How can we
support societies to adapt to changing conditions by consider-
ing the uncertainties and feedbacks between natural and
human-induced hydrological changes?” The Panta Rhei collec-
tion of key scientific papers contains 76 papers (22%) that
contribute to answering this question (see Supplementary
material).

6.1 Scenarios and possibility spaces

Prediction is central to water resources management and plan-
ning. Socio-hydrological models aim to show under what
circumstances sustainable development or a “lock-in” situa-
tion can arise (Ceola et al. 2016, Schoppa et al. 2024). Various
socio-hydrological models have been developed to describe
possible consequences of both “hard” infrastructure and
“soft-path” solutions (Garcia et al. 2022, Genova and Wei
2023).

The predictions obtained from the socio-hydrological mod-
els are not mere scenarios that represent snapshots of the
world at some specific future points in time, as is usual in
conventional water resources planning. Predictions produced
from the socio-hydrological models are alternative, plausible
and co-evolving trajectories of coupled human-water systems.
Collectively, these trajectories map out the future possibility
space of socio-hydrological systems (Sivapalan and Blgschl
2015, Srinivasan et al. 2016). The possibility space creates a
range of options by exploring the future more independently
of initial views regarding probability and desirability. It covers
future pathways involving disruptive changes, i.e. changes that
do not necessarily follow the pattern of past transitions and are
impossible to obtain through scenario analyses, and it greatly
expands the possibility range by simulating various combina-
tions of multiple variables within the system boundaries of the
models. This possibility space makes it easier to be imagina-
tive, systematic and explicit about hypothetical “What if?”
questions. It can assist in identifying safe or desirable solutions
for water availability and use while warning against maladap-
tive actions for socio-hydrological systems with alternate stable
states of multiple variables (Rockstrom et al. 2009). The pos-
sibility space provides the basis for developing adaptive and
participatory water governance.

6.2 Adaptive water management

Adaptive water management is a planning process that is decid-
edly adaptive, aims to keep multiple pathways to the future
open, and incorporates the knowledge and perspectives of sta-
keholders (Versteeg et al. 2021). In this way, it aims to avoid the
following three problems that often lead to the failure of plan-
ning processes in water management: (1) traditional planning

processes often emphasize the technical aspects of water man-
agement while ignoring the practices and knowledge of water
users and other stakeholders; (2) they are based on an overly
rational and linear ideal of the controllability of hydrology and
infrastructure, which is untenable in a time of environmental
change, non-stationarity and uncertainty; and (3) the planning
processes are often not suitable for balancing the competing
interests of stakeholders while keeping an eye on the feasibility
and economic viability of the measures now and in the future
(Butsch et al. 2022b, Conallin et al. 2022, Pham et al. 2022,
Ward et al. 2020).

The Panta Rhei initiative has supported adaptive water
management through inter- and transdisciplinary research
and collaboration between hydrologists, social scientists, and
a range of stakeholders, considering non-stationarity, uncer-
tainty and change in hydrology and society. Furthermore, new
ideas and advancements are created by meeting changing
social needs (Sivapalan and Bloschl 2017). In the community
paper that launched the IAHS Prague statement on the adap-
tation of water resource systems, Ceola et al. (2016) promote
resilient, adaptive water resources systems management and
advocate for a bottom-up approach that starts with analysing
the vulnerabilities of a particular system in context and with
stakeholders, rather than adopting a one-size-fits-all (“top-
down”) perspective. van Nooijen and Kolechkina (2021)
applied control theory for a water resources control system
with time-varying delays in the feedback loop in a changing
and unpredictable environment. Garcia et al. (2020) modelled
reservoir dynamics before proposing a multi-level approach to
flood and drought management which includes consideration
of cognitive biases and systematic errors in decision making
(Garcia et al. 2022). Kreibich et al. (2014) suggested integrating
the cost assessment cycle into the risk management cycle so
that continuous monitoring of the costs associated with nat-
ural hazards and their management enables early identification
of inefficient risk mitigation strategies and supports adapta-
tion. Such solutions provide tools to support the planning,
monitoring, implementation and evaluation of adaptive
water management under changing climatic and socio-eco-
nomic conditions over long periods of time.

6.3 Participatory water governance

Participatory water governance approaches are particularly
suited to managing complex, integrated, dynamic human-
water systems. These approaches are adaptive and nested,
and span scales of problems and jurisdictions; they actively
involve communities and stakeholders, and incorporate all
kinds of knowledge to inform decision making (Lemos 2015,
Carnohan et al. 2020). The growing importance of participa-
tion in water management can generally be attributed to its
potential to initiate social learning processes and build capacity
(Evers et al. 2016). Understanding the conflicting demands
and views of stakeholders can strengthen trust between them
and enables the inclusion of local knowledge and different
values, interests and perspectives in planning and management
processes, which promotes acceptance of the proposed mea-
sures (Gooch and Huitema 2008, Evers et al. 2016).
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Figure 5. Summary of progress in research on change in hydrology and society in terms of hydrological science and practical water management.

As the following examples demonstrate, the Panta Rhei initia-
tive’s contributions to supporting participatory water governance
range from novel approaches to theoretical frameworks, inclusion
and quantification of social variables and the participatory imple-
mentation of water management. Rangecroft et al. (2021) devel-
oped a working approach for bridging the gap between
hydrologists and social scientists by embracing the concepts of
research ethics, power dynamics and communication barriers. Di
Baldassarre et al. (2019) discuss the role of socio-hydrology as a
disciplinary framework to accommodate social heterogeneity,
power relations, cultural beliefs and cognitive biases. Godinez-
Madrigal et al. (2020) have shown how scientists were involved in
the long-standing controversies surrounding the Zapotillo dam
and water transfer project in Mexico, and how a participatory
approach to hydrological modelling can give voice to previously
marginalized concerns and proposals.

An implementation example is the transdisciplinary restora-
tion of the damaged aquatic ecosystem in the Heihe River catch-
ment area in China. Experts in hydrology, social development and
ecosystem health together with authorities and other stakeholders
implemented an interdisciplinary network approach leading to
satisfactory restoration results (Liu et al. 2019).

In another case, hydrologists worked with the Scottish
government to develop a web-based tool to help prioritize
the location of riparian tree planting to provide shade for
preventing water temperature extremes and protect fisheries
as a climate change adaptation strategy (Jackson et al. 2018,
2021). Many other examples demonstrate how co-design with
potential end-users from the public and private sector as well
as civil society organizations lead to improved preparedness,
early warning and resilience to floods and droughts (Léschner
et al. 2016, Rangecroft et al. 2018, Lienert et al. 2022).

However, caution needs to be taken, as social learning can
be characterized by power differences and strategic behaviour
(Bou Nassar et al. 2021, Nicollier et al. 2022), and foreground-
ing integration, consensus and neutrality in transdisciplinary
research may reinforce differences in value, knowledge and
power (Ruska and Di Baldassarre 2019, Brelsford et al. 2020,
Hayashi et al. 2021).

Summary on water management and adaptation to change: (1) Water
management can consider future scenarios that consist of plausible, co-
evolving trajectories of human-water systems and form possibility spaces
that enable an assessment of the circumstances under which sustainable
development may arise (e.g. Sivapalan and Blschl 2015, Srinivasan et al.
2016). (2) Adaptive management concepts, which anticipate changes over
time, keep multiple pathways to the future open, and incorporate the
perspectives of stakeholders, have been developed (e.g. Garcia et al. 2020,
Versteeg et al. 2021). Water management is seen as a continuous process
with regular monitoring and revisiting management decisions, e.g. via the
integrated cost assessment cycle (Kreibich et al. 2014). (3) Participatory
and inclusive governance is needed as it initiates social learning processes,
builds capacity, enables the inclusion of local knowledge and promotes
acceptance of the proposed measures (e.g. Evers et al. 2016, Godinez-
Madrigal et al. 2020). Advice from the scientific community should also
play an essential role in participatory governance, as promoted in the
Prague statement of the International Association of Hydrological Sciences
in 2015 (Ceola et al. 2016).

7 Summary of scientific achievements

Inter- and transdisciplinary collaboration has generated con-
cepts, methods, results and applications that have filled many
important gaps in our understanding of change in hydrology
and society and led to progress in science and practical water
management, as presented in the different sections of this
review, which we visualize in Fig. 5 and summarize as follows.

7.1 Cross-cutting

In addition to the creation of knowledge, an important out-
come of the Panta Rhei initiative is non-tangible, namely the
large and diverse community that formed during the decade,
in line with the TAHS mandate. Cooperation of hydrologists,
social scientists, and practitioners at local, regional, and inter-
national levels led to mutual benefits and new outcomes.
Transdisciplinary project teams transformed our understand-
ing of human-water systems, improving predictions and deci-
sion making. Close communication between scientists and
stakeholders was essential, as new ideas and advancements
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are often generated by addressing changing societal needs with
new approaches and technologies. The co-alignment of
research with the UNESCO Intergovernmental Hydrological
Programme (IHP) priorities for a water secure world in a
changing environment, and with the efforts of the World
Meteorological Organization (WMO) to support operational
hydrology, enabled more stakeholders to participate in the
creation of a new and sustainable water culture through co-
creative knowledge and transformative education actions at
several scales of governance.

7.2 Monitoring and data analysis

The accessibility and usefulness of data have increased signifi-
cantly, particularly due to increasing community data-sharing
initiatives, which match hydrological data with socio-eco-
nomic and behavioural data, e.g. CAMELS initiatives or
Panta Rhei benchmark data compilations. Open and equitable
data sharing is supported by international principles such as
the FAIR data principles of findability, accessibility, interoper-
ability, and reusability (FAIR) (Wilkinson et al. 2016), the
CARE Principles for Indigenous Data Governance which are
Collective benefit, Authority to control, Responsibility, and
Ethics (CARE) (Carroll et al. 2020) and open science principles
(Ramachandran et al. 2021).

New methods of analysis (e.g. ML, text mining), repurpos-
ing of data and increased exploration of new, unconventional
data sources (e.g. social media, novel sensors) have increased
the availability of data in general, but especially of data on
socio-economic aspects and human behaviour. The value of
citizen science for monitoring, but also in terms of community
sensitization, educational aspects and knowledge generation
through the involvement of multiple points of view, was
further confirmed and consolidated.

7.3 Drivers of change

Significant advancements have been achieved in detecting and
attributing hydrological changes, particularly on the basis of
monitoring and data analyses. Especially, the effects of climate
change and land use change were quantified for past and
potential future developments. Additionally, other socio-eco-
nomic processes, such as urbanization, the construction of
hydraulic structures or groundwater exploitation, have also
been identified as drivers of change.

In particular, assessments that considered many, in some
cases all, relevant drivers of change led to a better quantifica-
tion of the interactions between drivers and a better separation
of their individual contributions to change. These comprehen-
sive, mainly model-based (deductive), but occasionally also
data-based (inductive) analyses improved our understanding
of the long-term developments of complex human-water sys-
tems, and stressed the importance of human actions, e.g. to
mitigate flood and drought risks.

7.4 Understanding socio-hydrological systems

Socio-hydrological research, based on both the analysis of long
time series and the in-depth assessment of case studies, has led

to a better understanding of the processes in human-water
systems. It is crucial to understand and consider the causalities
and feedbacks that can lead to phenomena such as the levee
effect. The development of socio-hydrological models made it
possible to simulate long-term developments, including future
projections. Combinations of model- and data-based
approaches increase the relevance for practical water
management.

Comparative studies enabled the identification of common-
alities and differences between places and the recognition of
patterns. As such, generic and transferable descriptions of
long-term changes that involve a two-way coupling between
human actions and water quantity or quality were developed,
which also led to organizing the range of socio-hydrological
phenomena into a small number of system archetypes (e.g.
fixes that fail). Archetypes are expressed in terms of generic
causal loop diagrams. Syntheses and meta-analyses across
socio-hydrological studies stressed the importance of space
and space-time aspects as well as of understanding causalities
to even better address important societal challenges.

7.5 Modelling and prediction

Various powerful socio-hydrological model approaches have
been developed which describe feedbacks, e.g. causal loops,
and include new conceptualizations of human behaviour such
as risk awareness and community sensitivity. Examples are
stylized models (i.e. system characteristics simplified into a
set of differential equations), system-of-systems models (spa-
tially explicit coupled models that capture different hydrologi-
cal and socio-economic processes of the system) and agent-
based models (theory-based models that describe the decisions
and interactions between agents).

Significant progress in parameter estimation has been
achieved thanks to improved accessibility as well as new,
unconventional data that also describe new parameters like
community sensitivity. The use of Bayesian inference allows
modellers to introduce their degree of belief in certain pro-
cesses as priors. Further, it opens up the possibility to integrate
empirical qualitative and quantitative data. Both these
advancements in modelling improved the simulation of past
and future complex pathways, e.g. including tipping points
and non-linear system dynamics.

7.6 Water management and adaptation to change

Future scenarios (and partly possibility spaces) are now com-
monly considered in water management, e.g. as required by
the EU Water Framework Directive and the Floods Directive.
Adaptive management concepts, which do not rely on design
values but anticipate changes over time, have been developed.
Water management is seen as a continuous process with reg-
ular monitoring and revisiting management decisions.
Preferences for a particular measure are not only determined
by cost-benefit analyses, but the flexibility and adaptability of
the measures are also considered.

Participatory and inclusive governance is needed, involving
all relevant stakeholders (users, planners and policymakers at
all levels, in particular at the river basin scale, thus from
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different countries if relevant). Advice from the scientific com-
munity should also play an essential role in participatory
governance as promoted in the IAHS’ 2015 Prague statement.

8 Recommendations

The IAHS Panta Rhei scientific decade has ended, but change
is still ongoing — everything is still flowing, literally. We under-
stand flow and change better now than in 2013. However, we
also realize that the more our knowledge of nature and humans
increases, the larger is the number of relevant interactions and
feedbacks that will come to our attention, and as such the
greater the complexity and uncertainty in our understanding
and predictions. We continue our endeavour to answer the
question “What are the key gaps in our understanding of
hydrological change” and to fill these gaps. Thus, we need
both continued excellent science on change in hydrology and
society and a pragmatic and holistic approach to translating
scientific innovation into policy and practice.

The Panta Rhei scientific decade inspired worldwide
research efforts on change in hydrology and society that have
created a vibrant and productive community of natural, social
and interdisciplinary scientists and practitioners (Pande et al.
2022), which is an important and lasting outcome of this
initiative. Intensive transdisciplinary collaboration on changes
in hydrology and society has resulted in many new concepts,
approaches, results and applications that have already
improved practical water management for the benefit of socie-
ties, as illustrated in this review. We recommend continued
effort and support for transdisciplinary collaboration in this
field, by providing mid- to long-term funding for transdisci-
plinary research, supporting improved interdisciplinary edu-
cation, improving the mechanisms to assess the value of
scholarly work, and bringing together scientists and practi-
tioners from various disciplines within the framework of
IAHS and beyond (Kreibich et al. 2022a). These are all recom-
mendations geared towards a broadening of our activities.

As we expand knowledge, we should also equally con-
solidate and synthesize, to avoid fragmentation of the field.

We need a clear science agenda for future research on water
and societies, which the new IAHS International
Commission on Human-Water Feedbacks (ICHWF) is
designed to spearhead. We must synthesize knowledge to
identify patterns in the apparent disorder and high com-
plexity, using both scientific discourse and targeted efforts
such as periodic meta-analyses. Finally, our improved
knowledge and predictive capabilities regarding human-
water systems should be leveraged to solve water problems
in a way that accounts for the long-term feedbacks between
humans and water.

We therefore recommend that the community takes a
broader view of the hydrological sciences in three dimensions,
while at the same time pursuing synthesis, also in three dimen-
sions (Fig. 6).

Broadening:

¢ Broadening the understanding of hydrological sciences
by promoting comparative studies across spatial gradi-
ents of socio-economic and hydro-climatic systems,
which can be supported by making data freely available.

¢ Broadening the discipline by mainstreaming the con-
cept of coupled human-water systems in hydrology,
because people are affected by, and affecting, all aspects
of water systems.

¢ Broadening the training and education in hydrology
towards more interdisciplinary understanding of inte-
grated systems.

Synthesis:

e Focusing on key themes, e.g. as proposed by the
Unsolved Problems in Hydrology initiative (UPH;
Bloschl et al. 2019a), in order to strengthen the coherence
within the discipline and its impact on other disciplines
and societies.

¢ Developing innovative approaches by drawing upon
new ideas and technologies (e.g. inter- and
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transdisciplinary approaches; analysing new data with
ML and AI) in order to advance the hydrological sciences
even further in a coherent way.

¢ Finding sustainable solutions as proposed by the new
TAHS scientific decade (2023-2032) on “Science for solu-
tions: Hydrology Engaging Local People IN one Global
world (HELPING)” (Arheimer et al. 2024).
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