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1
Executive Summary

This thesis is aimed at improving the efficiency of search-and-rescue (SAR) missions in urban indoor

disaster scenarios, where rapid victim detection and comprehensive environmental assessment are vital

for saving lives. In order to tackle, the inherent complexity and uncertainty of these disaster environments,

an adaptive hierarchical control architecture was designed explicitly for collaborative, multi-agent systems

composed of unmanned aerial vehicles and unmanned ground vehicles. The motivation behind this is that

the UAV’s broader perception and rapid maneuverability enable it to swiftly map expansive areas, while the

UGV can focus on detailed searches, navigating through debris-laden or hazardous zones inaccessible to

aerial platforms.

The proposed mission-planning framework effectively leverages the distinct and complementary capabilities

of UAVs and UGVs to optimize the efficiency of victim detection and enhance situational awareness. This

was done by integrating decentralized heuristic controllers employing Fuzzy Logic Control (FLC) with a

centralized supervisory controller based on Model Predictive Control (MPC). At the local level, the UAV

and UGV independently manage their sensor data, assess environmental conditions, prioritize search

areas, and execute paths guided by FLC algorithms. At the higher supervisory level, the centralized MPC

controller continuously evaluates real-time environmental data collected by the agents, intervening only

when necessary to strategically allocate tasks among agents. This supervisory intervention is driven by

real-time assessments of environmental limitations, and it tries to ensure that each agent operates within

the scenarios most suited to their capabilities, thus maximizing overall mission optimality.

Extensive simulation experiments conducted within randomized indoor SAR environments demonstrated

that the proposed hierarchical cooperative approach consistently outperforms baseline methods, achieving

superior victim detection, area coverage, energy efficiency and better overall efficiency outcomes.

Despite these encouraging results, several avenues for future development remain, especially in modeling

environmental uncertainties, adaptive and robust control frameworks, which can be scaled to coordinate

larger and more diverse multi-robot systems, and perception techniques.
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Hierarchical MPC-FLC Control Architecture for Energy-Efficient Area
Coverage and Victim Detection in Indoor Search-and-Rescue Scenarios
via UAV-UGV Collaboration
Shubham Singh

Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft, 2629 HS, the Netherlands.

Abstract

In time-critical disaster scenarios, heterogeneous robotic teams combining unmanned aerial vehicles (UAVs) and unmanned ground vehicles
(UGVs) have the potential to enhance situational awareness and improve navigation capabilities in complex indoor environments. This research
presents a hierarchical mission planning approach designed for multi-agent search-and-rescue systems (SaRS), explicitly leveraging the distinct
sensory and physical capabilities of UAVs and UGVs to maximise victim detection, area coverage, and energy efficiency. At the local control level,
each SaR agent utilizes a heuristic controller based on fuzzy logic control (FLC) and the A* pathfinding algorithm, enabling efficient determination
of individual targets and paths. At a higher level, a centralised supervisory controller employing model predictive control (MPC) coordinates
global mission activities, intervening specifically when an agent’s capabilities become suboptimal within certain regions of the environment. Under
randomised indoor SaR simulations featuring varied victim distributions, obstacle placements, and environmental conditions—including terrain
complexity and visibility, the proposed cooperative approach consistently outperformed baseline methods. Although an exploration-focused
heuristic approach (ACS) achieved slightly higher area coverage, the cooperative framework provided comparable coverage while achieving
significantly higher victim detection performance, superior consistency, and better overall efficiency. Specialised scenario evaluations further
illustrated that the cooperative approach can allocate and execute SaR-related search tasks more effectively, achieving superior operational
performance compared to purely local-control-based (selfish) methods. These findings demonstrate that the hierarchical integration of heuristic
local control and centralised MPC-based supervision, combined with the complementary capabilities of heterogeneous UAV-UGV teams, results in
robust, scalable, and efficient mission planning solutions suitable for complex, uncertain indoor SaR scenarios.

Keywords: Search and Rescue, Multi-Agent Systems, UAV-UGV Collaboration, Hierarchical Control, Cooperative Search, Mission Planning, Model Predictive
Control, Fuzzy Logic Control

Rho LaTeX Class c This document is licensed under Creative Commons CC BY 4.0.

1. Introduction

Over the past few decades, the field of search and rescue (SaR) has
witnessed a significant integration of robotic systems, driven by their
potential to enhance safety, efficiency, and effectiveness in disaster
response scenarios. Deploying autonomous robots in hazardous
environments minimises the risks faced by human rescuers, as they
can operate in conditions that may be too dangerous or inaccessible
for humans [1] [2]. Additionally, automating search tasks allows
limited human resources to be allocated to critical areas such as
medical aid and logistics [3]. The rapid deployment capabilities of
autonomous robots like unmanned aerial vehicles (UAVs) and robust,
detailed search capabilities of Unmanned Ground Vehicles (UGVs),
enable swift mapping of disaster-struck regions and timely victim
detection—a crucial factor in improving survival rates during SaR
missions [4]. In such scenarios, situational awareness, which involves
gathering vital information about unknown disaster environments
like victim locations, hazardous materials, and structural instabilities,
is extremely important [5][6]. An important consideration in
SaR missions is their varied operational environments. Outdoor
SaR typically involves vast, unstructured terrains, such as forests,
mountains, or flood zones, where search areas are large. Indoor SaR,
on the other hand, takes place in confined, structurally compromised
settings like collapsed buildings or tunnels. These environments
are often GPS-denied, cluttered with debris, and feature complex,
multi-level layouts that challenge navigation, localization, and
communication [7] [8] [9].

In this context, multi-robot systems enhance the coverage,
speed, and robustness of SaR missions, enabling more thorough
and efficient search efforts [10]. They also provide redundancy
and perform tasks in parallel, making them well-suited for the
demanding conditions of time-sensitive SaR scenarios. Here, a

critical distinction exists between homogeneous and heterogeneous
multi-robot systems. Homogeneous systems consist of robots with
identical capabilities, simplifying coordination. In such systems,
multiple identical robots can be assigned to perform the same type
of task concurrently, leading to faster completion of the overall
mission [11]. In contrast, heterogeneous systems comprise robots
with diverse functionalities, such as the combination of UAVs and
UGVs. By strategically combining robots with different strengths,
a heterogeneous team can address a wider range of challenges
encountered in complex disaster scenarios [12]. Evidence of this
can be seen in research by Asadi et al. and Sask et al. [13][14],
where they design and implement a UAV-UGV collaborative system
for monitoring and surveillance of indoor spaces. Earlier, such
systems were operated under close human supervision, limiting their
autonomy and placing considerable cognitive demands on operators
[15]. Challenges such as localisation difficulties and data integration
issues often lead to human-induced errors during missions. This has
motivated research in autonomous multi-robot SaRS [16], [17], [18],
and [19].

Cooperative, multi-agent search approaches are required for
efficient SaR and can be categorised as destination-oriented and
coverage-oriented search approaches. In scenarios where some
prior knowledge of the environment exists, destination-oriented ap-
proaches are applied. Their primary goal is to reach pre-determined
targets, and they are less focused on gaining additional knowledge of
the environment. However, in scenarios where no prior knowledge
of the environment exists, as is often the case in disaster situations,
gaining new information is crucial. This requires a coverage-oriented
search approach. In recent times, significant research has gone
into cooperative path planning techniques for multi-robot systems.
The objective is to compute a set of feasible paths for each robot
in the team, which they must execute to completely scan, explore

1–24
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or survey the structure or environment of interest [20]. Existing
literature has explored heuristic approaches like A*, Fuzzy Logic
and bio-inspired algorithms like Ant Colony System [21] [22] [23].
Other studies have investigated the application of learning-based
approaches like reinforcement learning and neural networks [24]
[25] [26]. While these methods can adapt to the environments they
were trained in, their performance may degrade when encountering
novel or unforeseen situations [27]. However, there is little research
on approaches that combine both target/victim-oriented and
coverage/area exploration search behaviours. An implementation of
a combined approach can be seen in [28], where agents adopt both
victim detection and exploratory behaviours. Each agent is assigned
a personality type, which determines whether they execute victim
detection, area exploration or communication facilitation tasks.
Thus, overall, the team can execute multiple objectives. However,
here, individual SaR agents are restricted to a set of fixed behaviour
types, limiting the flexibility of the search strategy. An improved
approach is seen in [29], where the agents dynamically adopt
exploration or target visitation roles depending on the environment
state and mission requirements.

In the context of control architecture, multi-agent SaR sys-
tems employ either centralised or decentralised approaches.
Centralised control involves a single entity processing information
and directing all agents [30] [31]. Such approaches provide better
task-assignment, coordination and global mission performance.
Computationally demanding algorithms can be run on a centralised
ground station, and tasks/paths can be relayed to dispersed agents.
However, centralised control relies heavily on communication
between the ground station and agents. This makes them vulnerable
to single-point failures [32]. In a decentralised framework, agents
in the systems independently make decisions with respect to each
other, without the presence of an overarching single point of control
[33] [34] [35]. Each robot has its own controller, making it robust to
communication failures. However, a decentralised approach, where
each agent acts locally, may be sub-optimal for the globalmission [36].

Hybrid or hierarchical control architectures aim to combine
the strengths of both approaches, coordinating decentralised agents
through a centralised framework to balance robustness and efficiency
[37]. Such approaches can be particularly useful in multi-robot SaRS,
by addressing the challenge of coordinating multiple, decentralised
and non-optimal controllers held by individual agents, and adding
robustness against communication failures. These advantages have
been demonstrated in research by de Koning et al. [38], where they
proposed a hierarchical framework using FLC controllers at the local
level for real-time decision-making and path prioritisation. FLC
controllers use heuristic IF-THEN rules to assign urgency scores to
areas within the robot’s perception field, which are then evaluated
using A* for shortest paths. These candidate paths are graded and
selected based on their strategic value for the search mission. At the
global level, MPC ensures coordination between robots, avoiding
redundant effort by assigning unique search regions to each agent.
This combines the real-time adaptability of a local controller with
a consideration for global mission optimality. Further, evidence
of a hierarchical controller can be found in [39], where a 3-layer
hierarchical controller for a multi-robot system was implemented.
However, the body of research on hierarchical or hybrid control of
heterogeneous robotic teams in SaR applications is still limited and
is emerging.

This research focuses on developing a hierarchical mission planning
approach tailored for a heterogeneous fleet of UAVs and UGVs in
cooperative search operations. By exploiting the complementary
sensory and operational capabilities of each agent, the objective is
to enhance search performance in a complex, indoor disaster envi-
ronment. The primary aim is to maximise situational awareness by

optimising area coverage and victim detection time while minimising
the energy cost. This entails formulating a novel control strategy that
dynamically allocates tasks and coordinates movements based on
real-time environmental data and agent-specific capabilities. Finally,
the report is structured in the following manner: Section 2 lists the
primary contributions of the research. Section 3 defines the search
problem and related elements. Further, Sections 4 and 5 describe
the proposed control framework and case studies to evaluate its per-
formance, respectively. Section 6 discusses the performance of the
proposed approach in the simulated cases and compares it with other
baseline approaches. Finally, sections 7 and 8 provide a summary
of the contents of this paper and some recommendations for future
research.

2. Main Contributions

The primary contributions of this research are:

1. A collaborative search strategy is proposed for Indoor SAR mis-
sions, utilising a heterogeneous robotic team consisting of UAVs
and UGVs. UAVs provide rapid and extensive aerial searches,
whereas UGVs can perform detailed ground-level inspections.
Despite their individual strengths, each agent type experiences
limitations in mobility and perceptual performance under spe-
cific environmental conditions, such as reduced visibility or chal-
lenging terrain. This research demonstrates that the strategic
collaboration between UAVs and UGVs, leveraging their comple-
mentary capabilities, can enhance overall search effectiveness
and provide system-level robustness to the environmental con-
straints encountered during SAR missions.

2. A hierarchical control framework, adapted from de Koning’s
work in [38], is proposed to systematically realise the collab-
orative UAV-UGV search strategy. The framework combines
low-level, decentralised FLC controllers with a high-level, cen-
tralised MPC controller. The low-level FLC controller allows
rapid, computationally efficient decision-making inspired by
human reasoning, and driven by the objectives of area coverage,
victim detection, and energy efficiency. At the global supervisory
level, the MPC controller maintains situational awareness of en-
vironmental conditions as well as the operational capabilities of
individual agents. It intervenes by reallocating agents whenever
their performance degrades due to environmental conditions,
assigning them to areas more compatible with their sensory and
locomotion capabilities. Thus, the system benefits from the com-
putational efficiency, robustness, and intuitive decision-making
provided by a decentralised FLC layer while simultaneously
leveraging the predictive capability, global optimality, and sys-
tematic constraint handling inherent to MPC.

3. The proposed hierarchical control framework for energy-
efficient area coverage and victim detection by a UAV-UGV team
is implemented and validated through extensive simulations in
a dynamic indoor environment. Further, a comparison with
state-of-the-art methods is presented using multiple benchmark-
ing criteria, including the overall certainty of the environmental
mapping, the number of victims successfully detected, the time
required for victim detection, and the total energy consumption
throughout the mission.

3. Problem Formulation

In this section, the definition and formulation of themission planning
problem for cooperative heterogeneous SaR agents is presented. The
mathematical formulations are based on the relations proposed in
[38], but have been extended to take into account environmental
conditions and the UAV-UGV collaboration.
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3.1. SaR Environment

The search-and-rescue (SaR) environment, denoted as 𝐸 is modeled
as a 2D bounded rectangular area consisting of 𝐿𝑥 × 𝐿𝑦 cells. Each
cell is uniquely identified by its central coordinates (𝑥, 𝑦), and is
characterised by multiple quantified properties that influence agent
navigation, perception, and exploration. These attributes include
scan certainty, terrain difficulty, observability, and occupancy status,
all of which collectively determine how SaR agents interact with the
environment. The scan certainty value, 𝑐(𝑥, 𝑦, 𝜏) ∈ [0,1], represents
the degree of information available about a given cell at time step 𝜏.
This value is computed based on whether the cell has been previously
visited and scanned by an agent, and, if so, the degree to which the
acquired sensor data accurately represents the cell’s true state. A
cell with 𝑐(𝑥, 𝑦, 𝜏) = 0 is entirely unexplored, while 𝑐(𝑥, 𝑦, 𝜏) = 1
signifies complete knowledge of its contents. Cells with intermediate
values represent regions where uncertainty remains due to limited or
imprecise sensing. To track and manage scan certainty across the
environment, a scan certainty map, denoted as 𝒞(𝜏), is maintained.

Each cell within the environment may either be completely
unoccupied or contain static obstacles such as walls, pillars, rubble,
etc, as well as dynamic entities, including victims or SaR agents.
Some obstacles may render a cell completely inaccessible, while
others may only partially obstruct access, allowing agents to navigate
through or around them with difficulty. The terrain difficulty index,
denoted as 𝑡(𝑥, 𝑦) ∈ [0, 1], quantifies the difficulty of traversing
a cell at ground level. A value of 𝑡(𝑥, 𝑦) = 0 indicates that the
cell is open and fully accessible to ground-based agents (UGVs),
whereas 𝑡(𝑥, 𝑦) = 1 corresponds to a heavily congested terrain, such
as collapsed structures or dense debris, making the cell entirely
impassable. Intermediate values indicate varying degrees of traversal
difficulty, which may influence UGVs to modify their paths or
expend additional energy to navigate through partially obstructed
areas. The terrain index of all cells is recorded in the terrain map,
denoted as 𝒯(𝜏), which allows SaR agents to assess the feasibility
of different paths before execution. This information is particularly
crucial for ground-based agents, as terrain difficulty directly impacts
their mobility in navigating an environment.

In addition to terrain difficulty, each cell is characterised by
an observability index, denoted as 𝑜(𝑥, 𝑦) ∈ [0, 1], which represents
the ease with which the cell can be perceived using onboard sensors.
The observability of a cell is influenced by occlusive elements in
the environment, such as debris, smoke, or structural obstacles,
which may obscure sensor readings and reduce the accuracy of
gathered information. Observability is particularly relevant for UAV
operations, as aerial perception is more susceptible to occlusion
effects due to the vertical separation between UAVs and ground-level
obstacles [40]. Moreover, safety constraints may prevent UAVs
from flying at lower altitudes to improve visibility. A value of
𝑜(𝑥, 𝑦) = 0 implies extremely low observability, meaning that aerial
scanning is ineffective and information about the cell is difficult to
obtain. Conversely, a value of 𝑜(𝑥, 𝑦) = 1 signifies high observability,
allowing UAVs to acquire complete and reliable information through
rapid scanning at a higher flight altitude. Intermediate values
indicate varying degrees of perceptual ease, where a cell may be
partially observable. In such cases, the UAV might be required to
modify its path or adjust its scanning strategy, i.e, reduce its altitude
to reduce the impact of occlusive elements and improve perception.
The observability index of all cells is recorded in the observability
map, denoted as 𝒪(𝜏). This enables agents, more specifically UAVs,
to assess the feasibility of different paths based on the mission
requirements and mobility constraints.

The occupancy map, denoted as𝒲(𝜏), stores information about cells
that are completely inaccessible to the agents and victims due to large

static obstacles. With regard to victim occupancy, it is assumed that a
cell can be occupied by only a single victim at a time. Depending on
the control strategy governing the SaR agents (discussed in in Section
4), these maps can be global, where all agents share information to
build a common representation, or local, where each agent relies
solely on its own observations. Figures 1a and (1b) show a schematic
representation of the environment mapped with the ground truth ter-
rain and the observability conditions of the environment, respectively.

It is important to note that in this research, the environment
is dynamic in the sense that the victim positions may change with
time step 𝜏 (discussed in Section 3.4). However, for simplicity, the
physical environmental conditions (like observability, 𝑜(𝑥, 𝑦), and
terrain difficulty, 𝑡(𝑥, 𝑦)) remain static.

(a) Terrain Map

(b) Observability Map

Figure 1. Simulated SAR environment with: (a) Terrain Map, (b)
Observability Map

3.2. SaR Agents

This research utilizes a multi-agent system composed of 𝑁 hetero-
geneous agents, including rotary-wing UAVs and ground-based
UGVs. Each agent is denoted as 𝑎𝑖,𝑗 , where 𝑖 ∈ [1,𝑁] represents
the agent index, and 𝑗 indicates the agent type (𝑗 = 1 for UAVs and
𝑗 = 0 for UGVs). The agents are characterised by varying sensing
capabilities.Firstly, SaR agents may have different perception radii
𝑟p𝑖,𝑗 , which defines the spatial extent to which an agent can scan
and acquire information. The perception field of agent 𝑖, denoted
as 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗), consists of all cells within a circular region of

radius 𝑟p𝑖,𝑗 , centered at the agent’s current position, (𝑥𝑖 , 𝑦𝑖). The
perception field of each agent is a subset of the SaR environment, i.e.,
𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗) ∈ 𝐸. Secondly, the perceptual uncertainty reduction rate

𝜂𝑖,𝑗 for various SaR agents may be different, which is a parameter
that quantifies the accuracy of an agent’s sensor [38]. Lastly,
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environmental conditions introduce occlusion effects, which impact
the perception capabilities of SaR agents to different extents. To
model this variation, an occlusion sensitivity factor 𝛼𝑖,𝑗 is introduced.
This parameter quantifies how strongly an agent’s sensing ability is
degraded by occlusions such as debris, smoke, or structural obstacles.
It can have a value belonging to the set (0, 1]. Agents with higher 𝛼𝑖,𝑗
values (specifically UAVs) experience significant perception loss in
occluded regions, while those with lower 𝛼𝑖,𝑗 values (such as UGVs)
perceive better due to their proximity to the ground.

The SaR agents differ in their movement capabilities, which are influ-
enced by their mode of locomotion and the environmental conditions
they encounter. Each agent’s position at any given time step is repre-
sented as a discrete cell within the grid-based environment, E. For
UGVs, movement is heavily influenced by terrain, as rough or ob-
structed ground surfaces affect their navigability. It is assumed that a
UGV can advance by at most one cell per time step. In contrast, UAVs
operate independently of ground conditions and are assumed to be
capable of moving at their maximum forward velocity. As a result,
UAVs can traverse up to two cells per time step. All agents can move
in any of the 8 directions (north, northeast, east, southeast, south,
southwest, west, and northwest), as illustrated in Figure 2.
It is assumed that the agents can freely move about their central axis,
inside the current cell. Hence, an agent can move in any of the 8
possible directions, unconstrained by its orientation.

Figure 2. Perception field and possible directions for movement of an agent

3.3. Sensory Capabilities of SaR Agents

Each SaR agent is equipped with onboard optical cameras used for
victim detection and acquisition of visual data from the environment.
The gathered information is subsequently recorded in the correspond-
ing maps for scan certainty (𝒞), observability (𝒪), and terrain diffi-
culty (𝒯). These maps can be either global or local, depending on the
adopted search strategy.
SaR agents may operate with inherent sensor imperfections, meaning
that a single scan does not guarantee complete knowledge of all cells
within an agent’s perception field. In this research, we have consid-
ered three primary sources of sensory imperfections: (I) a single scan
at a given time step may fail to provide complete certainty about a cell
due to the intrinsic limitations of the agent’s sensors. To account for
this, Dempster’s rule of combination [41] is applied, allowing infor-
mation frommultiple scans over time to gradually reduce uncertainty.
This reduction is characterized by the perceptual uncertainty reduc-
tion rate 𝜂𝑖,𝑗 ∈ (0, 1] associated with agent 𝑎𝑖,𝑗 . (II) Although all cells
within the perception field 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗) of agent 𝑎𝑖,𝑗 are scanned by

its (imperfect) sensor, the efficacy of the scan is modulated by the dis-
tance between the agent and the target cell. Cells located further from
the agent experience a lower certainty update rate due to decreasing
sensor precision with increasing range. (III) The physical conditions
of a cell, such as the presence of rubble, smoke, or structural obstruc-
tions, directly affect an agent’s ability to accurately sense and map its

environment. A higher density of such occlusive elements translates
into lower observability and, subsequently, a lower rate of change
of scan certainty. The degree to which the perception capability of
agent 𝑎𝑖,𝑗 is degraded by environmental occlusion, or in other words,
is impacted by observability conditions, is represented by the occlu-
sion sensitivity factor, 𝛼𝑖,𝑗 . The following equation, adapted from [38],
mathematically expresses the uncertainty reduction rate 𝜎(𝑥, 𝑦, 𝜏) for
a cell (𝑥, 𝑦):

𝜎(𝑥, 𝑦, 𝜏) =
𝑁∏

𝑖=1,𝑗=0|1

max
{
𝜎𝑖,𝑗(𝑥, 𝑦, 𝜏), 1

}
(1)

with:

𝜎𝑖,𝑗(𝑥, 𝑦, 𝜏) = 1 − (1 − 𝜂𝑖,𝑗) ⋅ 𝑒
−
(
𝑟𝑖,𝑗 (𝑥,𝑦,𝑧,𝜏)+𝛼𝑖,𝑗

ℎ𝑖,𝑗 (𝑥𝑖 ,𝑦𝑖 ,𝜏)⋅𝑜(𝑥,𝑦)
)

⋅
1 − 𝑠𝑖𝑔𝑛

(
𝑟𝑖,𝑗(𝑥, 𝑦, 𝑧, 𝜏) − 𝑟p𝑖,𝑗

)

2

(2)

where the exponential decay term accounts for the effect of both
agent-cell proximity and observability constraints on scan effective-
ness. The Euclidean distance 𝑟𝑖,𝑗(𝑥, 𝑦, 𝑧, 𝜏) models the proximity
effect, where scan certainty diminishes as the target cell is located
farther from the agent. The effect of observability constraints is
represented by the second term, where the observability index 𝑜(𝑥, 𝑦)
is modulated by the occlusion sensitivity factor 𝛼𝑖,𝑗 .

As discussed earlier, UAV search agents will have a higher
value for 𝛼𝑖,𝑗 , indicating that their ability to scan has greater
sensitivity to the observability conditions. The factor ℎ𝑖,𝑗(𝑥𝑖 , 𝑦𝑖 , 𝜏)
represents the current vertical position of the agent (here 𝑗 = 0 for
UGV and 𝑗 = 1 for UAV) and its product with the 𝑜(𝑥, 𝑦) is meant to
indicate an altitude-observability interaction. As the search agent
(specifically UAVs) increases its operational altitude [42], its ability
to accurately scan a given cell may diminish. This may be due to a
reduction in sensor resolution, making it difficult to identify partially
occluded objects (such as victims in regions of extremely high smoke
density). In regions that have high observability, the UAV may
choose to fly at a higher altitude to enhance operational safety and
energy efficiency (discussed in Section 4), as the reduction in scan
accuracy due to the proximal and environmental occlusion effects
(quantified by observability index) is relatively minor. Alternatively,
in low-observability regions where occlusion is high, the UAV might
choose to reduce its flight altitude as the loss in scan accuracy may
be unreasonably high at higher flight altitudes. In the case of UGVs,
this factor is significantly less relevant since its vertical separation
from the ground level is minimal (i.e., low ℎ𝑖,0(𝑥𝑖 , 𝑦𝑖 , 𝜏)), and it can
overcome observability constraints to a certain extent by performing
much closer inspections of regions of interest. Mathematically, this
translates to a low value for 𝛼𝑖,0.
Note that 𝑟𝑖,𝑗(𝑥, 𝑦, 𝑧, 𝜏) = 𝑟𝑖,0(𝑥, 𝑦, 0, 𝜏) in the case of UGVs, as
their vertical displacement is negligible. In (2), 𝜎𝑖,𝑗(𝑥, 𝑦, 𝜏) denotes
the individual contribution of SaR agent 𝑎𝑖,𝑗 to the uncertainty
reduction rate for cell (𝑥, 𝑦). According to the proposed model,
when 𝑟𝑖,𝑗(𝑥, 𝑦, 𝑧, 𝜏) = 0, i.e., the agent is located at the cell, the
corresponding uncertainty reduction rate is determined by both
the observability constraints and the perceptual reduction rate
𝜂𝑖,𝑗 . If 𝑟𝑖,𝑗(𝑥, 𝑦, 𝑧, 𝜏) ≥ 𝑟p𝑖,𝑗 , meaning the cell lies outside the agent’s
perception range, the contribution is zero. Equation (1) captures
the aggregate effect on scan certainty, of all 𝑁 SaR agents operating
within the environment. To ensure that agents located too far from
a given cell do not affect the overall uncertainty update, the max
function is employed in (1).
Finally, the updated scan certainty for cell (𝑥, 𝑦) is computed as:

𝑐(𝑥, 𝑦, 𝜏 + 1) = 1 − 𝑢(𝑥, 𝑦, 𝜏 + 1) (3)
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with:

𝑢(𝑥, 𝑦, 𝜏 + 1) = 𝜎(𝑥, 𝑦, 𝜏) ⋅ 𝑢(𝑥, 𝑦, 𝜏) ∀ (𝑥, 𝑦) ∈ 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟
p
𝑖,𝑗) (4)

Here, the degree of uncertainty of a cell 𝑢(𝑥, 𝑦, 𝜏) forms the comple-
ment of 𝑐(𝑥, 𝑦, 𝜏).

3.4. Victim Modelling
The number, and location of the victims are initially unknown to the
SaR robots. The victims follow a random pattern of movement, i.e.,
victim 𝑣 with position (𝑥V𝑣 (𝜏), 𝑦V𝑣 (𝜏)) at time step 𝜏may remain in the
current cell with probability 𝑝𝑠 or move to a neighbouring cell with
probability 1 − 𝑝𝑠. This results in an equal probability:

𝑝m𝑣 =
(1 − 𝑝𝑠)

𝑛free𝑣 (𝑥V𝑣 (𝜏), 𝑦V𝑣 (𝜏), 𝜏)
(5)

where 𝑛free𝑣 (𝑥V𝑣 (𝜏), 𝑦V𝑣 (𝜏), 𝜏) is the number of free neighbouring cells
for cell (𝑥V𝑣 (𝜏), 𝑦V𝑣 (𝜏)) at time step 𝜏. Thus, the relation in (5) indicates
the probability of moving to any one of the free neighbouring cells
adjacent to the victim’s current position.
In this study, a victim is considered detected by a SaR agent only when
both the agent and the victim occupy the same cell. Upon detection,
the agent records the victim’s location and the corresponding time
step in its local victim map, denoted as 𝒱𝑖(𝜏). Since this information
is stored locally, each SaR agent retains knowledge exclusively of the
victims it has individually identified.

4. Hierarchical Control System

This section outlines the hierarchical control architecture that
determines how the SaR agents carry out their search behaviour, and
the control strategies employed at different levels. The proposed
controller operates at two levels, as illustrated in Figure 3, ensuring
that agents perform search operations efficiently while learning
about the environment.

At the lower level, a decentralised control system manages
the local search behaviour of each SaR agent autonomously (see
Section 4.1 for details). These independent controllers dictate the
movement and scanning strategies of their respective agents based
on local sensory data, within the agent’s immediate surroundings.
At the higher level, a centralised supervisory controller oversees
the global coordination of the entire fleet of SaR agents. The
primary role of this supervisory controller is to strategically allocate
agents to regions where their mode of translation and sensory
capabilities are most effective. Specifically, UAVs are directed
toward high-observability regions, where aerial scanning is most
efficient, while UGVs are assigned to terrain-accessible areas,
where ground traversal is feasible (discussed in Section 3.1). This
strategic coordination ensures that agents operate in optimal regions,
enhancing the overall efficiency of the search-and-rescue mission.
A key characteristic of this control architecture is that SaR agents
communicate exclusively with the supervisory controller rather than
directly with each other. This design integrates the advantages of
both centralised and decentralised control approaches. While the
local controllers enable SaR agents to autonomously navigate and
adapt to dynamic conditions, the supervisory controller ensures
global mission coordination, optimising resource allocation and
constraint satisfaction. This hybrid control structure enhances
system robustness, as local agents can continue operating even in the
event of communication failures, while computationally intensive
tasks, such as mission-wide decision-making, are handled at the
centralised control level.

4.1. Local Controller
The local controller of each SaR agent functions in two primary stages.
In the first stage, the agent utilises its local sensory inputs to gener-

Figure 3. Hierarchical architecture of the cooperative mission planning
controller

ate a priority map over its perception field. This map assesses the
significance of visiting each cell and estimates the associated effort
or energy cost required for traversal. This priority map provides a
basis for decision-making, guiding the agent toward areas where in-
formation gain is maximised while considering traversal constraints.
Once the priority map is established, the controller selects the path
that yields the highest net benefit, quantified through a path-grading
mechanism. Each potential path is assigned a grade, reflecting how
favourable it is relative to the mission’s objectives. These objectives
include maximising search efficiency and coverage while minimis-
ing both time and energy expenditure. As a result, the path grading
process incorporates the following three criteria:

1. Reduction of time: The SaR agents prioritise reaching targets
of interest in the shortest possible time, thereby reducing the
overall duration of the SaR mission.

2. Increase of exploration: The agents aim to scan the maximum
number of previously unexplored cells as possible along it’s route,
increasing the total area covered during the mission.

3. Reduction of energy consumption:The agents seek to re-
duce energy expenditure while navigating by avoiding energy-
intensive scenarios such as UGV movement through difficult
terrain or UAV operations in low-observability regions.

These three path grading criteria introduce conflicting priorities in
the agent’s decision-making process. The time efficiency objective
encourages a destination-oriented approach, selecting the shortest
path to a target cell. Conversely, the exploration objective promotes a
coverage-oriented strategy, favouring paths that pass through multi-
ple unexplored regions, even at the cost of increasing travel time. The
reduction of energy consumption criterion further complicates this
trade-off, as certain paths that optimise time or coverage may require
higher energy expenditure, particularly in high-difficulty terrain for
UGVs or low-observability regions for UAVs. The local controller is
designed to balance these competing objectives, ensuring that the
selected path balances speed, coverage, and energy efficiency to en-
hance overall SaR mission performance.

4.1.1. Search Priority Assignment

The first component of the local controller of each SaR agent is the
task priority allocation mechanism. In this research, the primary
objective of SaR agents is environmental scanning. Accordingly,
task priority is defined as the degree of urgency associated with
scanning a specific cell within the environment. A priority score
is assigned to each cell within the perception field 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗) of

an agent using FLC. The choice of FLC as the control approach is
motivated by its computational efficiency and its ability to model
human decision-making in a mathematically structured manner.
Given that SaR agents operate with limited onboard computational
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resources, the control method must be both lightweight and effective.
In real-world rescue operations, human operators are still primarily
responsible for resource allocation and mission planning, making it
beneficial for an autonomous SaR system to replicate human-like
reasoning. For this, the local controller utilises a rule-based
Mamdani fuzzy inference system (FIS). It relies on a set of𝑀 if-then
rules, which define the agent’s priority assignment strategy and are
structured as follows:

ℛ𝑚 ∶ If 𝑃𝑉(𝑥, 𝑦) is 𝐴𝑚,1 , 𝑐(𝑥, 𝑦, 𝜏) is 𝐴𝑚,2 and 𝑞e𝑗 (𝑥, 𝑦) is 𝐴𝑚,3

then 𝜌(𝑥, 𝑦, 𝜏) is 𝐵𝑚,1, and 𝜒(𝑥, 𝑦) is 𝐵𝑚,2
𝑚 = 1, 2, … ,𝑀, (𝑥, 𝑦) ∉ 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗). (6)

In the proposed fuzzy inference system (FIS), both the antecedent
propositions 𝐴𝑚,𝑎 and the consequent propositions 𝐵𝑚,𝑏—where
𝑎 ∈ {1, 2, 3} and 𝑏 ∈ {1, 2}, are represented as fuzzy sets, each mathe-
matically defined by its respectivemembership function. The task pri-
ority allocation module processes three primary inputs, all of which
are derived from the local sensory knowledge of each SaR agent. Since
agents do not share perception data, each SaR agent operates based
solely on information available in its scan certainty map 𝐶𝑖(𝜏), victim
map 𝒱𝑖(𝜏) and the relevant environmental condition map, 𝑄e

𝑗(𝜏). For
UAVs, 𝑄e

𝑗(𝜏) corresponds to the observability map, 𝒪(𝜏) and 𝑞
e
𝑗 (𝑥, 𝑦)

corresponds to 𝑜(𝑥, 𝑦). While for UGVs it corresponds to the terrain
difficulty map, 𝑡(𝑥, 𝑦) and 𝑞e𝑗 (𝑥, 𝑦) corresponds to 𝑡(𝑥, 𝑦). As a result,
individual SaR agents lack direct knowledge of victims detected or
areas scanned by other agents, ensuring that each agent’s priority
assignment is based entirely on its localised perception.
The first input is the victim probability 𝑃𝑉 , i.e, the probability that
a particular cell is accurately identified as containing a victim. In
other words, the degree of confidence with which that agent identifies
a victim-occupied cell. Cells expected to be unoccupied by victims
have a probability of zero, whereas cells where a victim is detected,
are assigned a small positive value, which is distance-dependent to
account for potential proximity-related sensor inaccuracies, as seen
in equation (7).

𝑃𝑉(𝑥, 𝑦) = −(
𝑟(𝑥𝑖 , 𝑦𝑖 , 𝑥, 𝑦)

𝑟p𝑖,𝑗
)
2

+ 1 ∀(𝑥, 𝑦) ∈ 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟
p
𝑖,𝑗) (7)

where 𝑟(𝑥𝑖 , 𝑦𝑖 , 𝑥, 𝑦) is the distance from the agent’s position (𝑥𝑖 , 𝑦𝑖)
to a cell (𝑥, 𝑦) within the current perception field of the agent,
𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗). Thus, according to this formulation, closer cells

receive a higher probability value, reflecting the agent’s increased
confidence in detecting victims at shorter distances [38]. The second
input is scan status 𝑐(𝑥, 𝑦, 𝜏) and has been discussed in Section 3.3.
The third input, the environmental condition parameter 𝑞e𝑖 (𝑥, 𝑦),
accounts for agent-specific environmental constraints that influence
its movement. As mentioned earlier, for UAVs this input is the
observability index 𝑜(𝑥, 𝑦) and for UGVs it is the terrain difficulty
index 𝑡(𝑥, 𝑦).

Using these inputs, the FIS generates two outputs. First, we get the
search priority score 𝜌(𝑥, 𝑦, 𝜏) for each cell in 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗), which

represents the urgency to scan that cell. The search priority is
determined solely by victim probability and scan status, ensuring
that, in general, areas with a higher likelihood of containing victims
and lower scan certainty are prioritised for visitation. The second
output is the environmental constraint that the cell, based on the
prevailing environmental conditions, imposes on the agent. For
UGVs, this is in the form of predicted translation velocity (𝑣pred𝑖,0 (𝑥, 𝑦)),
while traversing through a cell at (𝑥, 𝑦). A higher terrain index results
in difficulty in moving forward and, thus, a lower ground translation
velocity. For UAVs, the constraint is on the predicted flying altitude

(ℎpred𝑖,1 (𝑥, 𝑦)) while traversing through a cell at (𝑥, 𝑦). A higher
observability value permits operation at greater altitudes, whereas
low observability necessitates flying at lower altitudes to improve
scan accuracy. All the inputs and the second output (ℎpred𝑖,1 (𝑥, 𝑦) for
UAV and 𝑣pred𝑖,0 (𝑥, 𝑦) for UGV), have the fuzzy membership functions
as Low, Medium, and High, while the priority output (𝜌(𝑥, 𝑦, 𝜏)) has
the membership functions as Very High, High, Medium, Low and
Very Low. These can be seen in Figure 4 for the UGV and Figure 5
for the UAV. The Trapezoidal membership function was selected
because it allows an input variable to belong fully to a particular
fuzzy category within a range of values rather than at a single precise
point. This is beneficial as the variables being handled here (victim
probability and environmental conditions) are often uncertain.
Additionally, it provides a smooth transition between membership
levels. This is important, since, one of the outputs is a control action
(ℎpred𝑖,1 (𝑥, 𝑦) for UAVs and 𝑣pred𝑖,0 (𝑥, 𝑦) for UGVs). Further, based on
the rule structure in (6), the complete rule base for the UAV and
the UGV can be seen in Table 1 and Table 2, respectively. It is
important to note that the search priority score is independent of
the environmental conditions; rather, the environmental constraint
influences the mission time and energy cost, which are separate
grading criteria within the local controller. This will be discussed in
Section 4.1.3. Finally, cells in𝒲(𝜏) are assigned a priority score of
zero, so that SaR agents do not attempt to navigate impassable regions.

4.1.2. Path Planning

Next, we consider the path planning module, which is the second
component of the local mission planning controller. It determines
the optimal movement strategy for the SaR agent. Given the time con-
strained nature of SaRmissions, the SaR agent is partially destination-
oriented, requiring an approach that prioritises shortest-path naviga-
tion. However, since the SaR agent must also maximise exploration,
its path planning considers all cells within its perception field as po-
tential target destinations. The first stage of the path planning process
identifies the globally shortest path 𝑝1𝑖 from the SaR agent’s position,
(𝑥𝑖 , 𝑦𝑖), at current time-step 𝜏, represented by 𝑠𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜏), to any given
potential target cell 𝑓𝑖(𝑥, 𝑦) within 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗). To achieve this, the

controller employs the A* search approach [43], which is an extension
of Dijkstra’s algorithm [44]. A* search limits the number of evaluated
paths. Instead of exhaustively exploring all possible paths, it incor-
porates a heuristic function that prioritises paths leading roughly
towards the goal while disregarding paths that diverge significantly.
This significantly decreases the computational cost and time required
to identify the optimal path, particularly in grid-based environments
where distances between cells are uniform. Once the shortest path
is determined, the next step is to identify alternative paths that are
comparable in length but traverse different areas within the percep-
tion field. This aligns with the coverage-oriented objective of the SaR
agent. To achieve this, the controller uses Yen’s algorithm [45], which
efficiently computes 𝐾 shortest paths ℙ𝐾

𝑖,𝑗= {𝑝1𝑖 , 𝑝
2
𝑖 , … , 𝑝

𝐾
𝑖 } for agent

𝑎𝑖,𝑗 . This algorithm systematically generates these alternative paths
by iteratively modifying the previously found shortest path [38]. It
does so by systematically closing subsequent nodes within the previ-
ously found shortest path 𝑝𝑘−1𝑖 , evaluating the resulting alternative
routes, and storing them in a set. The next shortest path𝑝𝑘𝑖 , is selected
from this set, and the process repeats until 𝐾 distinct shortest paths
are identified. These shortest paths omit cells present in𝒲(𝜏), in
order to avoid obstacles.

4.1.3. Path Grading

After identifying, 𝐾 shortest paths for each potential target cell (all
cells in 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟

p
𝑖,𝑗)), the next step is to evaluate and grade each

target-path combination to determine the path with maximum
reward for the SaR agent. As previously discussed, the path grade
reflects the favourability of a given path based on three key factors:
travel time, exploration gain, and energy cost. These factors
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(a) Membership function for 𝑃𝑉 (b) Membership function for 𝑐(𝑥, 𝑦, 𝜏)

(c) Membership function for 𝑡(𝑥, 𝑦) (d) Membership function for 𝜌(𝑥, 𝑦, 𝜏)

(e) Membership function for 𝑣pred𝑖,0

Figure 4. Input and Output Membership Functions for UGV
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(a) Membership function for 𝑃𝑉 (b) Membership function for 𝑐(𝑥, 𝑦, 𝜏)

(c) Membership function for 𝑜(𝑥, 𝑦) (d) Membership function for 𝜌(𝑥, 𝑦, 𝜏)

(e) Membership function for ℎpred𝑖,1 (𝑥, 𝑦)

Figure 5. Input and Output Membership Functions for UAV
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ℛ𝑖 𝑃𝑣 𝑐(𝑥, 𝑦, 𝜏) 𝑜(𝑥, 𝑦) 𝜌(𝑥, 𝑦, 𝜏) ℎpred𝑖,1 (𝑥, 𝑦)
1 High Unknown High Very High High
2 High Unknown Medium Very High Medium
3 High Unknown Low Very High Low
4 High Partial High High High
5 High Partial Medium High Medium
6 High Partial Low High Low
7 High Known High Medium High
8 High Known Medium Medium Medium
9 High Known Low Medium Low
10 Medium Unknown High High High
11 Medium Unknown Medium High Medium
12 Medium Unknown Low High Low
13 Medium Partial High Medium High
14 Medium Partial Medium Medium Medium
15 Medium Partial Low Medium Low
16 Medium Known High Low High
17 Medium Known Medium Low Medium
18 Medium Known Low Low Low
19 Low Unknown High Medium High
20 Low Unknown Medium Medium Medium
21 Low Unknown Low Medium Low
22 Low Partial High Low High
23 Low Partial Medium Low Medium
24 Low Partial Low Low Low
25 Low Known High Very Low High
26 Low Known Medium Very Low Medium
27 Low Known Low Very Low Low

Table 1. FIS rule base for UAV

ℛ𝑖 𝑃𝑣 𝑐(𝑥, 𝑦, 𝜏) 𝑡(𝑥, 𝑦) 𝜌(𝑥, 𝑦, 𝜏) 𝑣pred𝑖,0 (𝑥, 𝑦)
1 High Unknown High Very High Slow
2 High Unknown Medium Very High Medium
3 High Unknown Low Very High Fast
4 High Partial High High Slow
5 High Partial Medium High Medium
6 High Partial Low High Fast
7 High Known High Medium Slow
8 High Known Medium Medium Medium
9 High Known Low Medium Fast
10 Medium Unknown High High Slow
11 Medium Unknown Medium High Medium
12 Medium Unknown Low High Fast
13 Medium Partial High Medium Slow
14 Medium Partial Medium Medium Medium
15 Medium Partial Low Medium Fast
16 Medium Known High Low Slow
17 Medium Known Medium Low Medium
18 Medium Known Low Low Fast
19 Low Unknown High Medium Slow
20 Low Unknown Medium Medium Medium
21 Low Unknown Low Medium Fast
22 Low Partial High Low Slow
23 Low Partial Medium Low Medium
24 Low Partial Low Low Fast
25 Low Known High Very Low Slow
26 Low Known Medium Very Low Medium
27 Low Known Low Very Low Fast

Table 2. FIS rule base for UGV

introduce conflicting objectives. For instance, while the shortest path
minimises travel time, it may lead the agent through low-priority
regions, missing opportunities for better exploration. Conversely, a
path that maximises exploration may significantly increase mission

duration and energy consumption if it passes through a sub-optimal
region for the specific agent’s operation. These factors are expressed
mathematically to logically grade a path.

The time required to traverse a path depends on both the path length
and the agent’s predicted speed of movement along the path. For
UAVs, speed 𝑣pred𝑖,1 is assumed to be constant at all positions (𝑥, 𝑦) and
time steps 𝜏, as they can move unhindered at maximum velocity
across the environment. Thus, the path duration 𝑇p𝑖,1 is simply,
𝐿p𝑖,1
𝑣𝑖,1
, where 𝐿p𝑖,1 is the Euclidean distance of the path, and 𝑣𝑖,1 is the

constant velocity of traversal, for agent 𝑎𝑖,1. However, movement
speed for UGVs is terrain-dependent, as difficult terrain reduces
mobility, whereas easily traversable terrain allows for higher speed.
Therefore, the predicted time required to traverse a certain path, for
an agent 𝑎𝑖,0, is computed as:

𝑇p𝑖,0 =
𝐿p𝑖,0

𝑣average𝑖,0

(8)

where 𝑣average𝑖,0 for the path is computed as:

𝑣average𝑖,0 = 1
𝑁cells

𝑁𝑐𝑒𝑙𝑙𝑠∑

𝑖=1

𝑣pred𝑖,0 (𝑥, 𝑦) (9)

As mentioned earlier, 𝑣pred𝑖,0 (𝑥, 𝑦) is the predicted UGV velocity (ob-
tained from its FIS) for all cells (𝑖 = 1, … ,𝑁cells) belonging to the path.
Secondly, the extent of environmental exploration along a path is
considered as a grading criterion. While this can be done by counting
the number of cells that the agent visits along the way, this could lead
the agent to visit many low-priority cells before finally reaching the
goal cell. To mitigate this, the discounted return framework is used to
ensure that paths prioritising visiting high-value cells earlier receive
higher scores. The discounted return 𝑅p𝑖,𝑗 of a path is computed in the
following manner:

𝑅p𝑖,𝑗 =
𝐻p
𝑖,𝑗∑

𝜏=0

𝛾𝜏𝜌(𝑥, 𝑦, 𝜏) (10)

The discounted return represents the cumulative reward obtained by
an agent over a sequence of actions. In this context, the actions exe-
cuted by agent 𝑎𝑖,𝑗 correspond to the sequence of cells visited within
its prediction horizon𝐻p

𝑖,𝑗 , with each cell associated with a priority
score 𝜌(𝑥, 𝑦, 𝜏), which serves as the immediate reward. In this formu-
lations, future rewards are diminished using an exponential discount
factor 𝛾𝜏, where 𝛾 ∈ [0, 1]. The idea is that paths that compel the
agent to visit more high-priority cells sooner are prioritised.
Thirdly, paths are graded based on the energy the agent has to expend
to travel along it, as excessive energy expenditure reduces mission
endurance. In this research, a simplified energy model is designed to
reflect the unique operational constraints of both UAVs and UGVs.
For UAVs, energy consumption is heavily influenced by flight alti-
tude, which is dictated by observability conditions along the path. In
low-observability regions, UAVs must fly at lower altitudes to miti-
gate environmental occlusion effects (e.g., due to smoke, debris) on
sensing, thereby improving scan accuracy. This is based on a general
understanding that the impact of occlusion effects on the accuracy of
sensors like cameras and LIDARs increases with distance. However,
flying at lower altitudes incurs higher energy costs due to increased
computational demand for onboard processing of dense visual data.
This may be due to the increase in the density of features of interest in
a narrower field of view. In addition to this, the density of obstacles
to be avoided while flying is likely to be higher at a lower altitude,
which would translate into more energy being expended for avoid-
ance maneuvers. The following relation is inspired from [46] and
shows a simplified, artificial model for the energy cost of the path for
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a UAV:

𝐸𝑝
𝑖,1 = 𝐸base

𝑖,1 +
𝑁𝑐𝑒𝑙𝑙𝑠∑

𝑖=1

𝐸add
𝑖,1

ℎpred𝑖,1 (𝑥, 𝑦)
(11)

where 𝐸base
𝑖,1 is the baseline power consumed by the UAV to sustain

flight. Moreover, 𝐸add
𝑖,1 represents additional power demands for scan-

ning, obstacle avoidance, and onboard processing. This is modulated
according to the UAV’s predicted flight altitude, ℎpred𝑖,1 (𝑥, 𝑦). The sum-
mation of this modulated 𝐸add

𝑖,1 is taken for all cells (𝑖 = 1, … ,𝑁cells)
belonging to the path and further summed with the fixed baseline
power. Similarly, for the UGV energy consumption is determined by
terrain difficulty, as navigating through rough terrain requires addi-
tional mechanical effort. The following simplified relation, inspired
from formulations in [47] and [48], is used to model the energy cost:

𝐸𝑝
𝑖,0 = 𝐸base

𝑖,0 + 𝐸add
𝑖,0 (12)

where:

𝐸add
𝑖,0 =

𝑁𝑐𝑒𝑙𝑙𝑠∑

𝑖=1

1
1 − 𝑡(𝑥, 𝑦)

(13)

As in equation (11), 𝐸base
𝑖,0 represents the baseline power for the UGV

to remain in operation. The second term represents the additional
variable energy required to traverse the terrain. For cells with
highly difficult terrain, i.e, high 𝑡(𝑥, 𝑦) value, the additional energy
requirement is higher. The overall objective of this factor is to
prioritise paths which are energy efficient.

With all inputs defined, the final path grade 𝐺p
𝑖,𝑗 of each agent is

computed as:

𝐺p
𝑖,𝑗 = −Γ ⋅ 𝑇p𝑖,𝑗 + ∆ ⋅ 𝑅p𝑖,𝑗 − Θ ⋅ 𝐸𝑝

𝑖,𝑗 (14)

Here, Γ, ∆ and Θ are weight coefficients that balance the influence
of time, exploration, and energy cost, respectively. It should be
noted that visiting high-priority cells leads to a higher overall path
return, 𝑅p𝑖,𝑗 and subsequently, a higher grade is assigned to the path.
At the same time, 𝑇p𝑖,𝑗 and 𝐸

𝑝
𝑖,𝑗 , have an inverse effect on the grade

since longer travel times and higher energy costs make a path less
favourable path. Thus, the path grade combines these 3 factors.

4.2. Supervisory MPC-based Controller
Within the cooperative SaR architecture, an assumption is made
that the supervisory control is centrally hosted on an external server
that continuously gathers agent state and environment information.
Based on this, it gives control commands to the agents. As stated
before, the supervisory controller is meant to resolve what can
be termed as an ‘agent-environment’ conflict, i.e, re-allocating
SaR agents to regions of the environment that are suited to be
searched by the specific agent. In this research, by definition an
‘agent-environment’ conflict occurs under two conditions: when for
a UAV the mean value of 𝑜(𝑥, 𝑦) for all cells in its perception field is
less than a certain threshold 𝐼1 and when for a UGV the mean value
of 𝑡(𝑥, 𝑦) for all cells in its perception field is greater than a certain
threshold 𝐼2. If either of the two conditions is true, the supervisory
controller takes over and assigns globally optimal tasks to the SaR
agents.

In this research, a model-predictive control (MPC) approach,
is applied to the supervisory control role. This is motivated by the
ability of MPC to provide optimal solutions for global objectives like
total area coverage and victim detection over a certain prediction
horizon while systematically incorporating constraints. A process
model of the SaR environment is employed to predict the outcomes
of candidate action sequences, over a prediction horizon 𝐻𝑝

𝑖,𝑗 . The
supervisory controller finds an optimal control sequence for all
SaR agents, by solving an optimisation problem for a given cost

function. The first step of this sequence is implemented, after
which the horizon is shifted. The resulting optimal sequence
comprises the set of optimal paths for all SaR agents to track. The
controller subsequently executes the first action from this sequence,
representing the immediate optimal step for all agents. In this
way, the supervisory layer is optimization-based, and thus, distinct
from the onboard heuristic FLC controllers of each agent. Under
normal conditions, local heuristics adequately steer individual
agents. However, when an agent–environment conflict emerges, the
supervisory controller guides the agents to specific regions of the
environment (with global optimality in consideration) and once all
agents are in regions which are suited for their operational capacities,
the control is handed over to the local controller.

The trade-off is the increased computational cost of solving
an optimisation problem. However, according to the previous
assumption of the supervisory layer being hosted on an external
server, the increased computational burden can be afforded.
Furthermore, faster convergence to an optimal solution can reduce
the computation time and hence the associated cost. This can be
achieved by providing the supervisory controller with the set of paths
determined by each SaR agent’s local controller as an initial ‘warm
start’ solution [38].

4.2.1. MPC Objective Function

The supervisory controller maximises the following objective func-
tion:

𝐽(𝒫) = 𝑤1

𝑁∑

𝑖=1,𝑗=0|1

𝐺𝑝
𝑖,𝑗 + 𝑤2

∑

(𝑥,𝑦)∈𝐸

𝑐(𝑥, 𝑦,𝐻𝑝
𝑖,𝑗)

− 𝑤3

𝑁∑

𝑖=1,𝑗=0|1

∑

(𝑥,𝑦)∈𝑝𝑖

|𝐴𝑖,𝑗 − 𝑜(𝑥, 𝑦)| + |𝐴𝑖,𝑗 − 𝑡(𝑥, 𝑦)| (15)

where 𝒫 represents the set of paths of all 𝑁 SaR agents and is the
variable which is optimised in this MPC problem. The first term
in the formulation represents the overall grade of all individual
paths (refer to equation (14)). The second term represents the total
predicted environmental scan certainty at the end of the prediction
horizon 𝐻𝑝

𝑖,𝑗 . Finally, the third term represents a factor which can
be termed as a ‘suitability sum’. This is based on the concept of
’task-resource’ matching concept proposed by Fazal et al. [49], where
a robot is dynamically assigned tasks based on the disparity between
the quantity and types of resources it has and the specific resource
requirements of the task. In the proposed formulation, 𝐴𝑖,𝑗 is a
constant which represents the agent (receives a value of 𝐴𝑖,1 = 1 for
UAVs and𝐴𝑖,0 = 0 for UGVs). The agent can be considered analogous
to a ‘resource’. While 𝑜(𝑥, 𝑦) and 𝑡(𝑥, 𝑦), can be considered analogous
to a ‘task’, which requires a certain resource to be accomplished. The
idea is to minimise the disparity between the resource requirement
for a certain task and the available resources. This term models
this disparity as the sum of difference between 𝐴𝑖,𝑗 and 𝑜(𝑥, 𝑦) and
𝐴𝑖,𝑗 and 𝑡(𝑥, 𝑦), for all cells (𝑥, 𝑦) in the agent’s path. For instance,
consider a case where the agent is a UAV and there are two paths
being compared: one which is high observability and high terrain
index, while the other is the opposite with low observability and low
terrain index. Here, the difference of 𝐴𝑖,1 with 𝑜(𝑥, 𝑦) and 𝑡(𝑥, 𝑦)
will be higher in the second case, as the resource, i.e the ‘UAV’ is
suited to the first task, i.e, ‘scanning high observability, high terrain
index cells’. Similarly, for the UGV the difference would be low
for cells with low observability and low terrain index, indicating a
low task-resource disparity. It will be high for high-observability,
high terrain index cells. Overall, the system tries to minimise
this term. In order to promote the agents to spread out over the
environment, the objective function integrates both scan certainty
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and suitability sum terms. This is intended to yield a higher total
scan certainty and optimised allocation of regions of interest to agents.

In contrast to the decentralised local controllers, the supervi-
sory controller utilises the collective information from all agents,
and communicates optimised paths to each SaR agent (illustrated
in Figure 3). Through such bi-directional communication, the
supervisory controller can continuously update and utilise a global
representation of scan certainty 𝒞(𝜏), terrain-index 𝒯(𝜏) and
observability 𝒪(𝜏) maps of the environment. Further, it possesses
a combined view of victims detected by merging individual victim
maps 𝒱𝑖 , in the form of a global victim map 𝒱(𝜏), which contains
information of victims that have already been detected.

4.2.2. Optimisation Problem Formulation

The optimal control problem for the MPC is defined as follows:

max
𝒫

𝐽(𝒫)

subject to: 𝒫 = {𝑝𝑖 , … ; 𝑖 = 1, …𝑁| 𝑝 ∈ ℙf} (14a)

𝑝𝑖 = {(𝑥𝑎1,𝑖 , 𝑦
𝑎
1,𝑖), (𝑥

𝑎
2,𝑖 , 𝑦

𝑎
2,𝑖), … , (𝑥

𝑎
𝑛,𝑖 , 𝑦

𝑎
𝑛,𝑖) ∣

(𝑥, 𝑦) ∈ 𝐸, (𝑥, 𝑦) ∉ 𝒲(𝜏)}
(14b)

(𝑥vic𝑣 , 𝑦vic𝑣 ) ∉ {𝑝𝑄 ∩ 𝑝𝑅 ∣ 𝑄, 𝑅 ∈ {1, … ,𝑁} ∧ 𝑄 ≠ 𝑅}
∀𝑣 = 1,… , 𝑉

(14c)

(𝑥𝑎1,𝑖 , 𝑦
𝑎
1,𝑖) = 𝑠𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜏) ∀ 𝑖 = 1, … ,𝑁 (14d)

where constraint (14a) ensures that the paths of all 𝑁 SaR agents
belong to the set of feasible paths ℙf, meaning that each path 𝑝𝑖
consists of 𝑛 adjacent and consecutive cells. Constraint (14b) further
limits paths to stay within the environment 𝐸 and avoid cells by
an obstacle (contained in 𝒲(𝜏)). The constraint (14c) prevents
multiple agents from prioritising the same victim by ensuring that
each victim’s location (denoted with superscript vic) appears in at
most one agent’s path. This improves both search efficiency and area
coverage. Lastly, constraint (14d) sets each agent’s starting position
at its current location 𝑠𝑖(𝑥𝑖 , 𝑦𝑖 , 𝜏), ensuring that path planning begins
from the agent’s actual position at the time of optimisation.

Figure 6 shows an overview of the process flow for the proposed
control approach.

5. Case Study

In this section, the numerical simulations conducted to evaluate the
performance of the proposed controller are detailed.

5.1. Compared Search Approaches
The hierarchical control structure proposed in this study is referred
to as the ‘cooperative’ search approach, as the supervisory controller
facilitates coordination among SaR agents. To evaluate its effective-
ness, four alternative search strategies are considered for comparison.

In this study, the performance of these approaches is evaluated based
on four key criteria: victim detection, area coverage, energy consump-
tion, and an efficiency ratio that integrates these three factors. By
analysing each criterion separately and in combination through the ef-
ficiency ratio, the effectiveness of all approaches in balancing mission
objectives, which are often conflicting, is assessed. It is hypothesised
that combining the local FLC controller, with the MPC controller in
a supervisory role, will help achieve superior performance in victim
detection and area coverage while maintaining reasonable energy
efficiency.
Firstly, we consider a selfish search approach, where agents operate
solely based on their local controllers, without coordination from a
supervisory controller. This method serves to help study the impact of

adding a supervisory control layer on the SaR system’s performance.
The other 3 approaches studied are a purely optimisation-based MPC
controller, a heuristic controller and a random/exhaustive search
approach. The pure-MPC controller has a similar structure as the
supervisory MPC controller in the cooperative approach (described
in Section 4.2.1) but without warm-start initialisation from local con-
trollers. Instead, it solves the optimisation problem at each time step
using a random initialisation, 𝑃0. The heuristic method considered
here is the Ant Colony System (ACS) approach. In this application of
the ACS approach, the pheromone map is constructed in a manner
inspired by de Koning’s implementation in [38], using a weighted
combination of scan certainty and environmental constraints, ensur-
ing that agents prioritise both exploration and environmental feasi-
bility in their movement decisions. For each agent, the pheromone
value of a cell is determined differently. On one hand, UGVs prioritise
cells with low scan certainty while favouring areas with low terrain
difficulty. This is achieved by inverse scaling of the scan certainty
map 𝒞(𝜏) by the terrain index map 𝒯(𝜏), encouraging movement
through less obstructed regions. On the other hand, UAVs prioritise
cells with low scan certainty while favouring regions with high ob-
servability. The pheromone strength here is adjusted by proportional
scaling of the scan certainty by the observability map 𝒪(𝜏). Finally,
we also consider a random or exhaustive search approach. This serves
as a baseline benchmark for comparison. Such an approach may
be beneficial in cases where there is no initial information available
about the environment. While such an approach may be useful in
cases where no prior information about the environment is available,
it lacks the ability to execute a structured search strategy, limiting its
overall effectiveness.

5.2. Randomised Environment Simulations

The cooperative search approach and comparative methods were
evaluated across 20 simulation scenarios, each running for a du-
ration of 𝜏max time steps. To control variability, terrain conditions,
observability levels, victim locations, initial agent positions, and ob-
stacle placements were generated using a seed value. A summary
of key environmental characteristics is presented in Table 3. The
physical environmental conditions of the environment were varied
by dividing it into eight equally sized regions, with each region as-
signed to one of four possible conditions: high observability–high
terrain difficulty, high observability–low terrain difficulty, low ob-
servability–low terrain difficulty, and low observability–high terrain
difficulty. These regions were randomly placed in each simulation
instance to ensure varied test conditions. Table 3 provides a compre-
hensive overview of several parameters used in the control framework.
The experiments were conducted with 𝑁 = 2 SaR agents, compris-
ing of one UAV (Agent 1) and one UGV (Agent 2). As discussed in
Section 3.2, the agents exhibit heterogeneous sensory capabilities,
differing in sensory perception radii 𝑟p𝑖,𝑗 , perceptual uncertainty re-
duction rates 𝜂𝑖,𝑗 , and occlusion sensitivity factor, 𝛼𝑖,𝑗 . Both agents
begin each simulation without prior knowledge of the environment,
meaning the scan certainty map is initialised as completely uncertain,
i.e. 𝑐(𝑥, 𝑦, 𝜏0) = 0 ∀(𝑥, 𝑦) ∈ 𝐸.
As discussed in Section 4, the controller aims to optimise for area
coverage, victimdetection, and energy consumption. These objectives
are often conflicting. To compare the performance of different search
strategies, multiple performance indicators are analysed. For area
coverage, twometrics are taken into account. First, the total achieved
scan certainty of the environment over time is considered. We define
it as:

𝑆(𝜏) =
∑

(𝑥,𝑦)∈𝐸

𝑐(𝑥, 𝑦, 𝜏) (16)

This can be seen in Figure 7. Secondly, the rise time of the total scan
certainty, measuring the number of time steps required to reach
15%, 25%, 30% and 35% of the total achievable environmental scan
certainty, is considered. The rise times are obtained from the plot
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Figure 6. Process flow overview for proposed control approach; here 𝜌 → 𝜌(𝑥, 𝑦, 𝜏), ℎpred𝑖,1 → ℎpred𝑖,1 (𝑥, 𝑦), 𝑣pred𝑖,1 → 𝑣pred𝑖,1 (𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ 𝐸𝑖(𝑥𝑖 , 𝑦𝑖 , 𝑟
p
𝑖 ); 𝒫

local and
𝒫optimised represent the set of paths chosen by the local and supervisory controller, respectively
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Parameter Value
(𝐿𝑦 ,𝐿𝑥) (24,24)
V 20
𝑝𝑠 0.6 or 60%
𝐾 3
𝛾 0.6
Γ 0.5
∆ 5
Θ 3
𝐼1 0.6
𝐼2 0.5
𝑤1 2
𝑤2 1
𝑤3 1.5
𝜏max 150

Table 3. Simulation Modelling parameters

in Figure 7 and are presented in Table 4. Together, these indicators
evaluate both the absolute area coverage and its time evolution for
each search approach.

𝜏𝑠 → 15% 𝜏𝑠 → 25% 𝜏𝑠 → 30% 𝜏𝑠 → 35%
Cooperative 43 82 117 -
Selfish 52 146 - -
Pure-MPC 47 - - -
ACS 39 76 97 121
Exhaustive 91 - - -

Table 4. Rise time for achieving different levels of total scan certainty in a
randomised environment

The victim detection efficiency is evaluated by analysing the (i) total
number of victims found at the end of the simulation and (ii) the time
taken to find each victim. These parameters are shown in Figure 8
using box-plots. Further, the energy efficiency is assessed using a
cumulative plot of energy consumption over time, as shown in Figure
9. Finally, the approaches are compared on the basis of an Efficiency
ratio, which integrates all three objectives—victim detection, area
coverage, and energy consumption—into a single metric. This ratio
evaluates how effectively each approach balances these competing
factors to maximise overall performance. It is computed as:

𝜁(𝜏) =
∆ ⋅ 𝑣(𝜏) + ∆ ⋅ 𝑠(𝜏)

Θ ⋅ 𝑒(𝜏)
(17)

where 𝑣(𝜏) represents the number of victims found at time step 𝜏.
Similarly, 𝑠(𝜏) and 𝑒(𝜏) represent the improvement in scan certainty
and the energy consumed at time step 𝜏 relative to the previous state
at time step 𝜏−1. Thismetric, thus, quantifies the energy cost per unit
improvement in area coverage and victim detection. Figure 10 shows
the efficiency ratio over time for the different search approaches.

5.3. Special Simulation Cases
In addition to simulations in randomised environments, the
cooperative search approach and the selfish search approach are
evaluated in specially designed, small-scale environments. These
targeted scenarios demonstrate the advantages of coordination
over purely local decision-making. Unless specified otherwise, the
modelling parameters remain consistent with Table 3. Also, Table 5
provides the specific agent parameters for each test case.

5.3.1. Case 1

The first simulation case features an environment with moderate
observability and terrain difficulty. Within this space, two distinct sub-
regions are defined: Region A, characterised by higher observability,

Figure 7. Total scan certainty achieved by each search strategy in a
randomized environment, expressed as a percentage of the maximum

possible scan certainty across the entire environment

(𝑥0, 𝑦0) 𝑟p𝑖,𝑗 𝜂𝑖,𝑗 𝛼𝑖,𝑗
Case 1 Agent 1 (9,8) 6 0.15 0.8

Agent 2 (9,10) 3 0.15 0.2
Case 2 Agent 1 (15,8) 6 0.15 0.8

Agent 2 (15.10) 3 0.15 0.2
Case 3 Agent 1 (9,2) 6 0.15 0.8

Agent 2 (9,3) 2 0.15 0.2

Table 5. Agent parameters for special simulation cases

and Region B, which has lower observability than the rest of the
environment. Both regions exhibit lower scan certainty compared
to the surrounding area. At the initial time step 𝜏0, scan certainty is
distributed as:

𝑐(𝑥, 𝑦, 𝜏0) = {
0 ∀(𝑥, 𝑦) ∈ (𝐸𝐴 ∪ 𝐸𝐵)
0.95 otherwise

and victims are distributed as shown in the Table 6.

Victim Position
𝑣1 (2, 3)
𝑣2 (5, 5)
𝑣3 (6, 5)
𝑣4 (6, 6)
𝑣5 (11, 1)
𝑣6 (13, 2)
𝑣7 (13, 3)
𝑣8 (12, 4)

Table 6. Victim locations in simulation Case 1

This simulation case is illustrated in Figure 12. The path executed by
the agents over 𝜏max = 25 time-steps can be seen in Figures 15 and 16.
Additionally, key performance metrics, including scan certainty pro-
gression (∆𝑆 vs 𝜏), victim detection efficiency, energy consumption
(∆𝐸 vs 𝜏) and efficiency ratio (𝜁 vs 𝜏) are presented in Figures 21 - 23.

5.3.2. Case 2

In the second case, we consider an environment with low observabil-
ity and high terrain difficulty. Within this setting, two sub-regions
are defined: Region A, which has high observability and low terrain
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(a) Number of victims found (b) Time taken to find victims

Figure 8. Victim Detection Efficiency for search approaches in randomised simulation environment

Figure 9. The total energy consumption for each search approach in the
randomised simulation environment

difficulty, and Region B, characterised by low observability and high
terrain difficulty. Both regions exhibit lower scan certainty than the
surrounding environment. However, Region A has the lowest scan
certainty, meaning it is almost entirely unexplored, while Region B
has partial scan certainty, indicating that some prior knowledge of
the region is available. This scenario does not contain any victims.
At the initial time step 𝜏0, scan certainty is distributed as:

𝑐(𝑥, 𝑦, 𝜏0) =
⎧

⎨
⎩

0.2 ∀(𝑥, 𝑦) ∈ 𝐸𝐴
0.7 ∀(𝑥, 𝑦) ∈ 𝐸𝐵
0.95 otherwise

Figure 10. The efficiency ratio for each search approach in the randomised
simulation environment

A visual representation of this scenario is provided in Figure 13. The
path executed by the agents over 𝜏max = 25 time-steps can be seen
in Figures 17 and 19. Additionally, the key performance metrics,
including scan certainty progression (∆𝑆 vs 𝜏), victim detection effi-
ciency, energy consumption (∆𝐸 vs 𝜏) and efficiency ratio (𝜁 vs 𝜏) are
presented in Figures 25 - 27.

5.3.3. Case 3

In the third case, we consider an environment with moderate ob-
servability and low terrain difficulty. Within this space, Region A is
defined by lower observability and higher terrain difficulty. Nested
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Figure 11. Average number of victims detected at each time-step

within Region A, Region B presents a more challenging task for both
SaR agents, with very low observability and difficult terrain. This
region is surrounded by dense obstacles (e.g., walls), making it in-
accessible except through a single opening. Both regions contain
victims, but Region B has a higher victim density. Additionally, scan
certainty is significantly lower in Region B, while partial scan cer-
tainty exists for Region A. At the initial time step 𝜏0, scan certainty is
distributed as:

𝑐(𝑥, 𝑦, 𝜏0) =
⎧

⎨
⎩

0.7 ∀(𝑥, 𝑦) ∈ 𝐸𝐴
0.2 ∀(𝑥, 𝑦) ∈ 𝐸𝐵
0.95 otherwise

The victim locations in the environment can be seen in Table 7.

Victim Position
𝑣1 (10, 8)
𝑣2 (11, 7)
𝑣3 (12, 5)
𝑣4 (11, 5)
𝑣5 (10, 5)
𝑣6 (13, 2)
𝑣7 (10, 11)
𝑣8 (11, 6)

Table 7. Victim locations in simulation Case 3

This simulation case is illustrated in Figure 14. The path executed by
the agents over 𝜏max = 25 time-steps can be seen in Figures 19 and 20.
Additionally, key performance metrics, including scan certainty pro-
gression (∆𝑆 vs 𝜏), victim detection efficiency, energy consumption
(∆𝐸 vs 𝜏) and efficiency ratio (𝜁 vs 𝜏) are presented in Figures 28 - 31.

6. Results and Discussion

6.1. Randomised Environment Simulations
First, we will discuss the performance in terms of area coverage. In
Figure 7, it can be seen that the cooperative approach achieves a
higher scan certainty than the cooperative approach achieves higher
scan certainty compared to the selfish, pure-MPC, and exhaustive
search approaches. The final scan certainty in the cooperative case
is 29% higher than the selfish approach and 33% higher than the
pure-MPC method. Additionally, the cooperative approach demon-
strates lower rise times, as detailed in Table 4. The ACS approach,

however, outperforms all methods in scan certainty, achieving 20.8%
higher coverage than the cooperative approach. It also exhibits the
fastest rise times, reaching 15%, 25%, 30%, and 35% scan certainty
quicker than the other strategies. This is likely due to the fact that
its objective function is directly designed to maximise exploration
by prioritising cells with low scan certainty while incorporating
environmental feasibility, but as a scaling factor and not a primary
objective. Unlike the cooperative, selfish, and pure-MPC approaches,
which balance multiple objectives such as victim detection and
energy efficiency, ACS focuses primarily on increasing scan coverage,
leading to a more aggressive exploration strategy. The cooperative
approach, for instance, distributes effort between finding victims,
optimising coverage, and energy consumption, leading to more
balanced movement but slightly lower scan certainty gains compared
to ACS.

The victim detection performance of each method is evaluated using
two key indicators: central tendency and variability in detection
outcomes. The median number of victims detected represents the
general performance, while the interquartile range (IQR) quantifies
the variability in detection results. As mentioned in Table 3, the total
number of victims in the random simulation is 20. The cooperative
approach achieves the highest median victim detection, with 15
victims found, meaning that in at least half of the simulations, it
successfully detects more than 75% of the victims. The pure-MPC
approach achieves the same median, but its IQR is 7, compared to
5 for the cooperative approach, indicating greater variability in its
performance. While both methods detect the same median number
of victims, the cooperative approach is more consistent. The selfish
approach detects a median of 11 victims, which is 36% lower than
both the cooperative and pure-MPC methods. The ACS approach
fell further behind, detecting a median of only 10 victims. This is
expected, as the ACS method does not explicitly search for victims.
Thus, any victims found are merely a by-product of its exploration
strategy rather than a direct search effort. The median detection
time for the cooperative approach is 31 time steps, which is higher
than the selfish (22 time steps) and pure-MPC (25.5 time steps)
approaches. However, this is because the cooperative method finds
more victims overall, many of which are detected later in the process.
The supervisory controller ensures agents are strategically dispersed
across the environment, leading to more thorough coverage over
time. The selfish approach, on the other hand, detects fewer victims
overall but finds half of them within the first 22 time steps. Beyond
this point, it struggles to reach victims in distant areas, leading to
both a lower overall victim count and a wider spread of detection
times. This is reflected in its IQR of 60, compared to 41 for the
cooperative approach. To further understand this, the cumulative
victim detection plot (which shows the addition to victim count at
each time-step) can be seen in Figure 11.

It can be seen that the cooperative approach continues to detect
more victims in the latter time steps, in comparison to the selfish
approach, which adds fewer victims to its count after the initial time
steps. The exhaustive method, as expected, performs the worst both
in terms of victim count and time of detection.

Further, the energy consumption of each approach is com-
pared using the energy plot in Figure 9, which shows that the
exhaustive approach is the least energy-efficient, followed by
ACS. The cooperative approach consumes 3% less energy than the
selfish approach and 7% more energy than the pure-MPC approach.
While the difference in energy consumption is relatively small, it
is important to note that the cooperative method outperforms the
other approaches in both area coverage (except the ACS approach)
and victim detection, achieving these results without a significant
increase in energy usage. To further understand this, we consider
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(a) Terrain Map (b) Observability Map

Figure 12. Simulation environment for Case 1

(a) Terrain Map (b) Observability Map

Figure 13. Simulation environment for Case 2

(a) Terrain Map (b) Observability Map

Figure 14. Simulation environment for Case 3
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(a) Terrain Map (b) Observability Map

Figure 15. Paths executed by the agents in the cooperative approach for Case 1

(a) Terrain Map (b) Observability Map

Figure 16. Paths executed by the agents in the selfish approach for Case 1

the Efficiency ratio plots for each method. Figure 10 shows that
the cooperative approach maintains a higher efficiency ratio for
approximately 76% of the simulation time, meaning it achieves better
mission outcomes per unit of energy expended for the majority of
time steps.

6.2. Special Simulation Cases
In this section, the performance of the search approaches in the
special simulation cases is evaluated. First, we consider Case 1. As
described in Section 5.3.1, the environment in Case 1 consists of
two key regions of interest (Region A and Region B), both of which
have low scan certainty and contain victims to be detected. The
entire environment, including these regions, is characterised by high
terrain difficulty, making it sub-optimal for the UGV. Region A has
high observability, making it ideal for UAV scanning, while Region B
has low observability, making it less suited for UAV operations. The
optimal strategy is for the UAV to prioritise Region A, where it can
scan effectively, while the UGV takes responsibility for scanning
Region B, even though it remains a challenging task. This is a
globally efficient strategy, which maximises coverage by distributing
the workload between agents.

In the selfish scenario, it is observed that both the UGV and UAV
approach and scan the same region (Region A). Here, the UAV
naturally decides to scan the high-priority, high-observability region.
For the UGV, both Regions A and B have similar visitation priority
and terrain difficulty, making its choice ambiguous. In Figure 16, it
can be observed that the UGV follows a selfish strategy, choosing
to scan Region A, leading to both agents operating in the same
area. This results in inefficient resource allocation, as Region B
remains unscanned. In contrast, the cooperative approach, as shown
in Figure 15, demonstrates improved task distribution. Here, the
UAV is assigned to Region A, while the UGV simultaneously scans
Region B, ensuring more effective coverage and better utilisation of
agent capabilities. The impact of search behaviour differences on
performance can be evaluated by analysing the previously mentioned
performance criteria. In terms of area coverage, the cooperative
approach manages to achieve a final scan certainty which is 18%
higher than the selfish approach. This can be seeing in Figure
21. Figure 24 illustrates victim detection performance across both
approaches. The cooperative method detects more victims overall,
with a median of 8, meaning that in 50% of the simulation runs, all
victims are successfully found. In contrast, the selfish approach
has a median of 4.5 victims detected, indicating that in half of the
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(a) Terrain Map (b) Observability Map

Figure 17. Paths executed by the agents in the cooperative approach for Case 2

(a) Terrain Map (b) Observability Map

Figure 18. Paths executed by the agents in the selfish approach for Case 2

(a) Terrain Map (b) Observability Map

Figure 19. Paths executed by the agents in the cooperative approach for Case 3
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(a) Terrain Map (b) Observability Map

Figure 20. Paths executed by the agents in the selfish approach for Case 3

Figure 21. The total scan certainty for Cooperative and Selfish approaches
in Case 1

cases, agents fail to locate victims outside of Region A. The median
detection time is slightly lower for the selfish approach (9 time steps)
compared to 10 for the cooperative method. This is likely because, in
the selfish case, both agents focus on the same region (Region A),
leading to faster victim detection within that area. However, this
approach neglects Region B, reducing the total number of victims
found. On the other hand, the cooperative method distributes
agents across the environment, which results in higher overall
victim detection at the cost of a slightly longer detection time due to
independent scanning efforts.

In terms of energy consumption, both methods show comparable
performance, with the cooperative approach resulting in a final
energy consumption that is only 3% less than in the selfish case.
This is expected as terrain conditions remain constant across
both cases, and the UGV traverses a comparable number of steps
regardless of the specific path taken. Likewise, in both approaches,
the UAV eventually moves into the high-observability region (Region
A)—either independently in the selfish approach or guided by the
supervisory controller in the cooperative approach. Consequently, en-

Figure 22. Comparison of Energy Consumption for Cooperative and
Selfish approaches in Case 1

ergy consumption remains largely unchanged, as shown in Figure 22.

Finally, the efficiency ratio plot in Figure 23 indicates that
the efficiency ratio for the cooperative approach maintains a higher
efficiency ratio at all times. This shows that while both approaches
consume nearly the same amount of energy, the cooperative method
achieves significantly better area coverage and detects more victims
overall.

Next, we consider Case 2. As mentioned in section 5.3.2, there exist
two regions of interest: Region A, which is suited for exploration
by the UAV, and Region B, which is optimal for exploration by the
UGV. In the selfish approach, both agents initially prioritise Region
A because it has lower scan certainty compared to Region B. The
local controller prioritises scan certainty improvement over energy
efficiency, though energy cost is still considered with a lower weight
in the optimisation function. Consequently, the UGV selects Region
A to maximise its immediate payoff. As the scan certainty in Region
A improves over time, Region B becomes a higher-priority target,
eventually prompting the UGV to shift its focus toward it. However,
this delayed decision results in Region B being scanned at later time
steps, reducing the overall efficiency of the search. This behaviour
is illustrated in Figure 18. In contrast to this, in the cooperative
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Figure 23. Comparison of Efficiency Ratio for Cooperative and Selfish
approaches in Case 1

Figure 24. Comparison of Victim Detection Efficiency for Cooperative and
Selfish approaches in Case 1

approach, the supervisory controller distributes the agents, assigning
the UAV to Region A, where high observability conditions make it
more effective, while the UGV is directed to Region B, which has
lower observability but is easier to traverse. This allocation ensures
that both regions are scanned efficiently from the beginning. This
behaviour can be seen in Figure 17. In terms of area coverage, it
outperforms the selfish approach, achieving a final scan certainty
that is 24% higher, as shown in Figure 25.

The energy consumption for both search approaches can be seen
in Figure 26. The cooperative approach consumes about 13.5% less
energy in comparison to the selfish approach. This is expected since
the supervisory controller directs the UGV to Region B, which has
a lower terrain index, and operating here is less energy-intensive
for the UGV. Further, Figure 27 shows that the efficiency ratio for
the cooperative approach remains higher than the selfish approach
throughout most time-steps (about 88% of the time steps). This
shows that the cooperative approach consumes less energy while
achieving significantly better area coverage.

Finally, we have a look at Case 3. As discussed in section 5.3.3, the
entire environment presents sub-optimal conditions for both agents.

Figure 25. The total scan certainty for Cooperative and Selfish approaches
in Case 2

There exist 2 regions of interest. Region B has high victim density
and low scan certainty, making it a priority for exploration. However,
extremely low observability makes it challenging for the UAV, while
the UGV is better suited despite the high terrain difficulty, which,
while significant, is not prohibitive. Region A, on the other hand,
offers better observability and lower terrain difficulty than Region B,
making it favourable for both agents in terms of ease of movement
and scanning effectiveness. In the selfish approach, where there
is no global coordination, both the UAV and UGV initially focus
on scanning Region A, as it appears favourable to both based on
local decision-making. This can be seen in Figure 20. However, as
the search progresses, both agents eventually move into the walled
region B. This is problematic because the UAV is not well-suited for
searching in an area with extremely low observability, making this
decision not only energy-inefficient for the UAV but also suboptimal
for the overall mission. Alternatively, in the cooperative approach,
the supervisory controller assigns regions to each agent to optimise
exploration. The UGV is directed toward the enclosed area, or Region
B. While the outer Region A has a lower terrain index compared
to Region B, making it slightly more favourable in terms of energy
consumption for the UGV, the controller prioritises a balanced search
strategy to also maximise overall area coverage. Meanwhile, the UAV
scans the surrounding Region A, which has better observability and
is better suited to its capabilities. Figure 19 shows this behaviour.
This allocation ensures that both agents operate in relatively optimal
regions.

The impact of this differing search behaviour can be seen in
terms of the area coverage, as shown in Figure 28. The cooperative
approach manages to achieve a final scan certainty that is 32% higher
than the selfish approach.

Further, the victim detection efficiency can be seen in Figure 29. The
cooperative approach finds all the victims (i.e, 8 victims) in almost
all simulation iterations for the case. The median detection time is
13 time steps. The selfish approach performs worse, with a median
of 7 victims detected and taking a median of 14 time steps.
Next, we observe the energy consumption plot in Figure 30. Here,
the cooperative approach consumes about 12.8% more energy than
the selfish approach. This can be attributed to the fact that the
supervisory controller forces the UGV to visit a more sub-optimal
region (region B) to maximise victim detection and area coverage.
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Figure 26. Comparison of Energy Consumption for Cooperative and
Selfish approaches in Case 2

Figure 27. Comparison of Efficiency Ratio for Cooperative and Selfish
approaches in Case 2

However, in the selfish case, both agents try to avoid sub-optimal
regions to conserve energy for most of the time-steps, but at the cost
of the other objectives.

Finally, we compare the Efficiency ratio. Figure 31 suggests that
for most time steps (about 60%), the cooperative approach is more
efficient than the selfish case, i.e, it balances exploration and energy
consumption better.

7. Conclusions

In time-critical disaster scenarios, heterogeneous multi-agent robotic
teams integrating the complementary capabilities of aerial and
ground vehicles offer significant advantages by enhancing situational
awareness and improving navigation within complex indoor
environments. This paper presents a hierarchical control framework
designed to coordinate multi-agent SaRS. The proposed control
strategy effectively integrates the distinct sensory and physical capa-
bilities of individual SaR agents into the mission planning process,
aiming to maximise victim detection efficiency, area coverage, and
energy utilisation. At the lower level of the control hierarchy, each
SaR agent is governed by an autonomous heuristic controller that

Figure 28. The total scan certainty for Cooperative and Selfish approaches
in Case 3

Figure 29. Comparison of Victim Detection Efficiency for Cooperative and
Selfish approaches in Case 3

integrates FLC with a k-shortest path algorithm to independently
select targets of interest and corresponding trajectories to those
targets. A centralised MPC-based controller at the higher level
supervises the overall mission, activating selectively when an agent
encounters environmental conditions that render its operational
capabilities suboptimal. This hierarchical approach allows the local
heuristic controllers to efficiently identify suitable paths and targets
under typical conditions. In situations involving agent-environment
conflict, the supervisory MPC controller strategically directs agents
toward regions optimal for their specific capabilities, thus ensuring
global mission effectiveness. Once agents reach suitable operational
zones, control is returned to their local heuristic controllers. This
method is termed the cooperative search approach. Conversely,
a strategy relying exclusively on local heuristic control without
centralised intervention is referred to as the selfish search approach.

In randomised indoor SaR simulations with varying victim
distributions, obstacle placements, and environmental conditions
(including terrain difficulty and observability), the proposed
cooperative mission planning approach consistently demonstrated
superior overall performance. Although the ACS method achieved
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Figure 30. Comparison of Energy Consumption for Cooperative and
Selfish approaches in Case 3

Figure 31. Comparison of Efficiency Ratio for Cooperative and Selfish
approaches in Case 3

the highest scan certainty due to its explicit exploration-oriented
design, the cooperative approach provided competitive coverage
levels while simultaneously balancing additional critical objectives,
such as victim detection and energy efficiency. Specifically, in
victim detection tasks, the cooperative strategy exhibited the highest
median detection count with the lowest variability, outperforming
both the selfish and ACS strategies. Despite requiring slightly more
energy compared to the pure-MPCmethod, the cooperative approach
achieved significantly better performance across other critical
indicators and maintained a consistently higher efficiency ratio
throughout most of the simulation period. Furthermore, simulations
conducted under specialised SaR scenarios demonstrated that the
cooperative approach resulted in enhanced search behaviour, leading
to superior area coverage, victim detection, and overall operational
efficiency compared to the selfish approach. These findings highlight
that the hierarchical integration of model predictive and supervisory
controls, combined with the synergistic leveraging of UAV-UGV
capabilities, effectively balances exploration with targeted victim
search, offering robust, scalable performance advantages in complex
and uncertain indoor SaR environments.

8. Recommendations for Future Research

Future research should aim to incorporate improved models of dy-
namic environmental elements, including fire propagation, smoke
dispersion, explosive hazards, and falling debris. Such enhancements
would significantly increase simulation realism, enabling planning
algorithms to better address the dynamic and unpredictable condi-
tions frequently encountered in real-world SaR operations. Addi-
tionally, addressing the perception component, which is currently
assumed rather than explicitly modelled in this research, is critical.
Developing and integrating robust perception algorithms capable of
accurately sensing and interpreting dynamic indoor environments,
including victim detection and hazard identification, will greatly in-
crease the autonomy and applicability of multi-robot SaR systems.
Furthermore, developing high-fidelity simulations that closely repli-
cate real-world physics and intricate environmental interactions is
essential for validating algorithms under realistic conditions, thus
ensuring their reliability prior to deployment. Exploring the scala-
bility of larger multi-robot teams can also provide valuable insights
into enhancing cooperative search efficiency. Future work should
address associated challenges such as communication constraints,
coordination complexity, and computational overhead inherent in
large-scale deployments. Additionally, expanding team heterogene-
ity through the integration of diverse robotic platforms and applying
novel task allocation methods could more effectively leverage their
distinct capabilities. This would result in enhanced operational flex-
ibility, enabling specialised robots to execute tasks most suited to
their strengths. Research can also go into search by larger teams of
robots. It is expected that the methodology proposed in this research
would scale well with more agents. However, this must be evalu-
ated. Lastly, introducing additional layers of hierarchy or abstraction
in control architectures can further optimise the balance between
global coordination and local autonomy in complex and uncertain
SaR environments.
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2
Introduction

Human lives and societies are profoundly impacted by disastrous natural events like earthquakes, floods,

and hurricanes, as well as human-induced incidents such as industrial accidents and urban fires. From

2000 to 2019, a total of 7,348 major disaster events were recorded globally, resulting in approximately

1.23 million deaths, impacting 4.2 billion individuals, and causing an estimated $2.97 trillion in economic

losses. On average, disasters claim between 40,000 to 50,000 lives annually [1]. Beyond the immediate

devastation, these events contribute to long-term consequences such as population displacement, public

health emergencies, and sustained economic disruption. According to the UNDRR a disaster is defined as

[2]:

A serious disruption of the functioning of a community or a society at any scale due to haz-
ardous events interacting with conditions of exposure, vulnerability and capacity, leading to
one or more of the following: human, material, economic and environmental losses and im-
pacts.

Khorram-Manesh et al. offer an extensive analysis of disaster management, consistent with the framework

outlined by the United Nations Office for Disaster Risk Reduction (UNDRR) [3]. They underscore that

although events such as floods, wildfires, and pandemics are frequently unavoidable, their impact can be

significantly reduced through preparedness and effective response mechanisms. This underscores the

importance of well-coordinated response and recovery strategies to mitigate the aftermath of such events.

Central to this is the provision of victim assistance and relief, which necessitates the rapid deployment of

specialised rescue teams to affected regions.

28



3
Search and Rescue Robotics

Search and Rescue (SaR) scenarios can broadly be categorised into outdoor and indoor (or urban) disaster

environments. Outdoor SaR typically involves wide-area search operations in open or semi-structured

settings such as forests, mountains, or regions impacted by disasters. In contrast, Indoor SaR involves

navigating confined or structurally compromised spaces, such as collapsed buildings, underground tunnels,

mines, or industrial facilities. Historically, SaR missions have relied heavily on human responders and

trained rescue dogs, who, despite their effectiveness, encounter considerable limitations when facing

hazardous environments or expansive search areas [4]. Human teams often face risks from dangerous

conditions like toxic environments and unstable debris, alongside limitations due to physical fatigue and

restricted access. Rescue animals, although highly capable of locating victims, can only operate for limited

periods and require direct handler supervision. Such constraints underscore the need for robotic systems,

which can mitigate human risks and extend the reach and duration of SaR operations.

The use of robotic platforms in SaR has rapidly expanded over recent years. For example, following the

2010 Haiti earthquake, ground robots were effectively utilised within collapsed structures to locate survivors

[5]. Unmanned Aerial Vehicles (UAVs) have increasingly been deployed for tasks such as mapping disaster

sites, locating survivors, and delivering supplies, offering significant advantages in speed and coverage

compared to ground-based teams [6]. A notable instance includes UAVs being employed to locate missing

individuals in the Himalayan region, effectively surveying vast terrains at high altitudes [7].

Indoor or urban SaR operations present particularly challenging environments for robotic systems. These

settings typically lack GPS signals, are dark, confined, and extensively unstructured due to structural

damage. Robots operating indoors must navigate obstacles like debris piles, narrow passages, and

unstable floors, with a substantial risk of entrapment. Communication technologies, including GPS and radio

signals, are typically weak or unavailable deep within collapsed structures or underground spaces. Thus,

indoor SaR robots rely primarily on onboard systems for navigation and localisation. Additionally, indoor

scenarios often include multi-level structures and unstable elements . Small UAVs, such as quadrotors,

have shown potential in these environments, providing access to spaces unreachable by ground robots,

though they face significant challenges, including GPS-denied navigation, collision risks in confined areas,

and disturbances from airflow interactions with structural elements [8]. Conversely, Unmanned Ground

Vehicles (UGVs) are particularly beneficial in indoor scenarios, where they can safely explore deeper into

hazardous locations, such as collapsed basements or industrial accident sites, inaccessible to human

rescuers.

Recently, multi-robot systems that integrate different robotic platforms have emerged as a powerful strategy

in SaR operations. The use of multiple robots enhances the coverage, speed, and robustness of SaR

missions, enabling more thorough and efficient search efforts [9]. These multi-robot systems can either be

homogeneous or heterogeneous. In homogeneous systems, robots share similar capabilities, sensors, and

performance attributes. Conversely, heterogeneous systems consist of robots with diverse functionalities,

allowing specialisation and improved efficiency for various tasks within a SaR operation. UAVs and UGVs,

when collaboratively deployed, can significantly outperform single-platform approaches. For instance,

UAVs can quickly perform aerial reconnaissance, map terrain and identify obstacles, providing vital

information that helps UGVs optimise their ground navigation and search paths. Santamaria-Navarro et al.

demonstrated such a cooperative exploration system, where UAVs provided real-time aerial perspectives,
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enhancing the situational awareness and operational efficiency of UGVs navigating on the ground [10].

Additionally, UAV-UGV collaborations can yield comprehensive multi-scale mapping. UAVs excel at rapidly

generating broad-scale maps of areas, albeit at lower resolution, while UGVs capture detailed local maps

with ground-level sensors, such as LiDAR. Recent research has shown that aligning aerial maps from

UAVs with ground maps from UGVs can significantly enhance traversability mapping, improving ground

robot navigation [11]. Field trials, such as the deployment described by Kruijff-Korbayová et al., where

ground and aerial robots collaborated in assessing earthquake-damaged buildings in Italy, confirm the

practical benefits and enhanced operational capabilities of combined UAV-UGV systems [12].

Effective multi-robot coordination involves complex mission planning, which can be decomposed into two

core problems: task allocation and trajectory planning. Task allocation is particularly crucial in scenarios

with more tasks than available robots, requiring prioritisation based on the relative capabilities of each

robot. The heterogeneity of robotic systems adds complexity to task allocation, as different robots may

be better suited for distinct tasks. The second aspect, trajectory planning, involves determining optimal

routes for robots to reach their designated tasks, which is particularly challenging in dynamic, unpredictable

environments like disaster zones, where conditions constantly evolve. The need for continuous real-

time planning to adapt to environmental changes highlights the necessity for advanced mission planning

methods capable of addressing the dynamics and uncertainties inherent in SaR scenarios.

3.1. Project Scope
The literature survey presented in this thesis supports research aimed at developing a mission planning

control approach designed to reduce the time required to locate victims and enhance environmental

understanding in urban, indoor disaster scenarios. The central focus of this thesis is the design of an

adaptive control strategy specifically tailored for a heterogeneous collaborative system comprising UAVs

and UGVs. Given the inherent uncertainty in disaster environments, such as unpredictable victim dispersion

and hazardous conditions like structural damage, fires, and smoke, this problem is particularly challenging.

The proposed approach will aim to leverage the distinct capabilities of each robotic agent to allocate search

tasks efficiently and adaptively, using real-time data gathered from the environment during operations.

The mission planning controller will be designed to progressively learn about its environment and optimise

its search strategy as new environmental information is obtained. The thesis is structured into two primary

stages: firstly, the development of the mission planning control approach, followed by its implementation

and evaluation within a realistic simulation environment. This simulation will demonstrate and assess the

effectiveness and adaptability of the developed mission planning module in realistic SaR operations.



4
Control Approaches

Prior to conducting a comparative review of various SaRS, it is essential to establish an understanding of

the common control approaches. This chapter presents a review of selected heuristic and model-based

control approaches, outlining their fundamental principles, characteristics, and practical applications.

4.1. Heuristic Methods
In the context of search and optimisation problems, a heuristic method employs rules of thumb, educated

guesses, or approximations to guide the search process toward a satisfactory solution. These heuristics

are often based on knowledge about the specific problem domain, such as typical layouts of indoor

environments, general problem-solving strategies that have been observed to be effective in similar

situations or simplified models/approximations of the problem. These search methods do not guarantee

finding the absolute best solution but aim to find good solutions within a reasonable time frame. In large and

cluttered environments, exploring every possible path is computationally infeasible. Heuristics help narrow

down the search space, by focusing only on promising paths. In this study we mainly evaluate two classes

of heuristic approaches: (1) Learning-based and bio-inspired methods including reinforcement learning

and swarm intelligence algorithms (Ant Colony, PSO, GA) that adapt or evolve solutions for multi-robot

coordination, and (2) Fuzzy logic controllers (FLC), which encode human-like rules for decision-making

under uncertainty. We also study a few other approaches like A* and Djikstra’s algorithm.

4.1.1. Fuzzy Logic
The earliest work in terms of establishing a formal mathematical framework for Fuzzy logic can be attributed

to Zadeh [13]. Furthermore, Dubois offers a comprehensive and in-depth examination of fuzzy logic and

fuzzy systems in [14]

Fuzzy logic controllers use fuzzy set theory to manage uncertainty and imprecision inherent in sensor

data. In classical set theory, sets are defined in binary terms, i.e. an element x either belongs to a set A or

does not, with no intermediate degrees of membership. Mathematically, this translates to a membership

function of the form:

µA =

{
1 x ∈ A

0 x /∈ A
(4.1)

For vaguely defined concepts such as the ’set of damaged buildings’ or the ’set of fast cars’, it is often

unclear which elements definitively belong to the set. This ambiguity arises because such sets are

described using linguistic, human-centric terms rather than precise, quantitative definitions. Despite their

imprecision, these types of concepts are fundamental to the way humans reason, take decisions and act.

To mathematically represent this inherent uncertainty, fuzzy set theory was introduced. Unlike classical

sets, fuzzy sets allow elements to possess varying degrees of membership, as can be seen below:

µA =


1 x is a member of A with complete confidence

0 < x < 1 x is a member of A with partial confidence

0 x is not a member of A with full confidence

(4.2)
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Figure 4.1: Membership Function for set of ’very fast cars’

We can consider the “set of fast cars” as an example. The term ’fast’ is inherently subjective and context-

dependent, reflecting personal perceptions rather than precise measurements. For instance, someone

who regularly drives high-performance sports cars might have a very different perception of what qualifies

as fast compared to someone who drives a compact city car. To model this variability, a membership

function can be defined to assign degrees of membership based on perceived speed. For example, one

might argue that any car with a top speed below 160 km/h is definitely not fast, while anything exceeding

250 km/h definitely is. The speeds in between (160 km/h to 250 km/h) represent a fuzzy zone, where cars

have partial membership to the “fast-cars-set”, depending on individual interpretation. The membership

function for this could look like Figure (4.1).

Thus, instead of crisp thresholds, FLCs use continuous membership functions to represent vague concepts

like “near an obstacle” or “high battery level” with degrees of truth between 0 and 1. The controller encodes

expert knowledge as if-then rules (e.g., “IF obstacle is very close in front AND speed is high THEN turn

sharply”). These rules are evaluated using a fuzzy inference engine and then defuzzified to produce a

concrete control output (such as a steering angle or throttle command) [15]. The controller comprises of

the following components:

1. Rule base: A set of fuzzy IF-THEN rules capturing the expert knowledge on how to control the

system. For example, a rule might state IF distance_to_obstacle is Small AND heading_error is

Small THEN turn Slightly Left.

2. Inference Mechanism: The logic that evaluates which rules are triggered by the current fuzzy inputs

and how to aggregate their recommendation. Often, Mamdani or Takagi-Sugeno inference is used

to combine rule effects.

3. Fuzzification: A pre-processing step that converts crisp sensor readings into fuzzy values (member-

ship grades in fuzzy sets) so they can be used in the rule conditions. For instance, a distance of 1.5

m might correspond to a fuzzy value of 0.8, which in turn corresponds to “Small”.

4. Defuzzification: A post-processing step that converts the fuzzy control conclusions back into a crisp

output command (e.g., control actions suggested by rules).
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As mentioned earlier, Mamdani and Takagi-Sueno are commonly used inference methods and will be

discussed below.

Mamdani Inference

It is a type of linguistic fuzzy model, which has a rule base of the form:

Ri : if x is Ai then yi is Bi i = 1, . . . ,K

This system was introduced by Ebrahim Mamdani in 1975 [16]. Here both input and output variables are

represented by fuzzy sets. The algorithm first begins with converting crisp input values into degrees of

membership across relevant fuzzy sets using membership functions. For an input variable, x and a fuzzy
set A, the membership function µA(x) determines the degree to which x belongs to A. This fuzzification is
done in the following manner:

A′ =

{
µA(x)

x

}
where x belongs to set of inputs

Next, the degree of fulfilment or firing strength β or each rule is calculated by evaluating the maximum

value of the intersection between the input membership function µ′
A(x) and the membership function of

each rule in the rule base µAi(x).

βi = max [µ′
A(x) ∩ µAi

(x)] ∀i ∈ [1,K]

Following this step, individual fuzzy output sets are generated by computing the intersection of the

corresponding firing strength with the output membership function associated with that rule.

Bi : µ
′
Bi
(y) = βi ∩ µBi ∀i ∈ [1,K]

This is followed by aggregation of all individual output sets into a single fuzzy set B′:

B′ : µ′
B(y) = max µB′

i
(y) ∀i ∈ [1,K]

Finally, the aggregated fuzzy output is converted into a crisp value. A common method to do so is the

centroid (center of gravity) approach:

y′crisp =

∑K
i=1 µB′(yi)yi∑K
i=1 µB′(yi)

Takagi-Sugeno Inference

It is an inference system whose rule structure is represented as follows:

Ri : if x is Ai then yi is fi(x) ∀i = 1, . . . ,K

This system was developed by Takagi and Sugeno in 1985 [17]. This approach is distinct from the Mamdani

method in the sense that here the output is a function of the input variables, rather than fuzzy propositions.

Similar to the Mamdani approach, the crisp inputs are fuzzified and the degree of fulfilment or firing strength

βi is computed for all the rules. The output function values are computed and their weighted average (with

the degree of fulfilment value βi as weights), gives the crisp output values:

y′crisp =

∑K
i=1 βif(xi)∑K

i=1 βi

Overall, in the Mamdani FIS outputs are fuzzy sets requiring defuzzification to obtain crisp values. In

the Takagi-Sugeno FIS outputs are typically linear or constant functions of input variables, resulting in

crisp outputs without the need for defuzzification. This makes it computationally more efficient. However,

Mamdani FIS is more intuitive and better suited for systems requiring human interpretability and expert

knowledge integration. On the other hand, TS is better suited for mathematical analysis and optimisation.
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Figure 4.2: Direct FLC Architecture [19]

4.1.2. Fuzzy Logic Controller
As mentioned previously, FLC controllers have gained prominence in control systems for their ability to

handle uncertainty and incorporate heuristic expert knowledge. Unlike crisp logic, fuzzy logic allows partial

truth values, enabling smooth control actions even with imprecise sensor data or nonlinear system dynamics

[18]. In robotics, particularly in SaR scenarios, environments are often unstructured and information is

noisy or incomplete. FLCs are well-suited to such conditions, providing robust decision-making where

traditional linear controllers struggle. In addition to its capability for handling non-linear control problems,

FLC offers a highly interpretable rule structure. This transparency is beneficial during design and tuning,

as it allows the developer to clearly trace and understand the sources of knowledge and decision logic

embedded within the rule base. In contrast, black-box methods like artificial neural networks (ANNs)

often lack this clarity, making it more difficult to interpret the internal decision-making processes. In this

report, we examine three categories of fuzzy control strategies: Direct Fuzzy Logic Control (DFLC),

Supervisory Fuzzy Logic Control (SFLC), and Model-Based Fuzzy Logic Control (MBFLC).

First, we consider Direct Fuzzy Logic Controllers. Here, the controller directly maps sensor inputs to control

outputs via linguistic rules. The block diagram in Figure (4.2) shows this control architecture.

This structure involves fuzzification or converting crisp inputs (e.g. distances, angles, velocities) into fuzzy

variables using membership functions. This is followed by applying an FIS (often Mamdani inference)

to determine the fuzzy control action (based on set of defined if-then rules). Finally, the inferred fuzzy

output is converted back to a crisp actuator command (e.g. wheel speed or steering angle). Such DFLCs

have been applied in numerous works including swarm control in an unknown SaR environment [20],

and process control in industries [21]. Next, we consider Supervisory Fuzzy Logic Controllers (SFLCs),

which involves a two-layer control architecture: a high-level fuzzy supervisor adjusts or coordinates one or

more low-level controllers. The typical structure, as shown in Figure (4.3) of SFLC consists of a primary

controller (or multiple controllers) handling the basic control loops and a fuzzy supervisory layer monitoring

system performance and context. The supervisor takes as inputs high-level variables (e.g. tracking error,

oscillation level, environment state, inter-robot distances) and outputs adjustments like “increase PID

gains,” “switch leader robot,” or “trigger emergency stop.” It is important to note that the structure of the

fuzzy controller itself remains the same. However, it no longer directly gives the control command. A

common application is fuzzy gain scheduling or tuning of conventional controller parameters [22]. In the
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domain of multi-robot SaR missions, one implementation used a central fuzzy supervisor to allocate search

areas to different robots by evaluating each robot’s capability and workload [23].

Figure 4.3: Supervisory FLC Architecture

Finally, we studied Model-Based Fuzzy Logic Controllers. MBFLCs integrates fuzzy logic systems with

mathematical models of the plant or robot being controlled. Unlike traditional fuzzy controllers that

rely purely on rule-based heuristics, MBFLC enhances control performance by incorporating system

dynamics—typically through Takagi–Sugeno (T–S) fuzzy models or predictive modelling techniques.

These models represent nonlinear systems as interpolations of multiple linear sub-models, enabling the

controller to apply a tailored response based on the current operating region. A typical MBFLC system

operates by determining the degree to which current system conditions match each local model (via fuzzy

membership functions), and then blending corresponding control laws accordingly. This method enables

smooth, adaptive control across varying conditions [24].

4.1.3. Learning-based and Adaptive Methods
Researchers have explored learning-based controllers that can improve over time or adapt to the envi-

ronment. Two major categories here are: Reinforcement Learning (RL) (including deep reinforcement

learning, DRL) and bio-inspired optimisation algorithms (such as Ant Colony Systems, Particle Swarm

Optimisation, and Genetic Algorithms). These methods often serve as heuristics when an exact solution is

unattainable, and many can be integrated into hierarchical frameworks.

RL allows robots to learn decision-making policies by interacting with the environment and receiving

feedback in the form of rewards. In an SaR context, an RL agent could receive a positive reward for finding

a victim or covering a new area, and a negative reward for time elapsed or getting stuck. Over many

trials (simulations or real runs), the agent tunes its policy to maximise the expected cumulative reward.

This framework is appealing for SaR because it does not require an explicit model of the environment

– the robot learns what to do from experience. Modern DRL uses deep neural networks as function

approximators, which enable learning of complex policies from high-dimensional inputs (e.g., LiDAR scans,

camera images). One early example applied to multi-robot SaR is a hierarchical reinforcement learning

(HRL) architecture proposed by Liu et al. [25]. In their approach, a centralised higher-level agent learned

to allocate tasks to each robot (e.g., “Robot A search room 1, Robot B go to room 2”) while lower-level

controllers executed those tasks. The HRL framework allowed the multi-robot team to collectively decide

which rescue tasks to do at a given time and which robot should do them, with the objective of optimising

overall exploration efficiency and victim identification. Notably, this learning-based approach led to

cooperative behaviour: the robots learned policies for task allocation that improved coverage and avoided

duplication of effort. In recent years, deep RL has been applied to SAR problems with increasing success.

For instance, Niroui et al. used a deep Q-network to train a rescue robot for autonomous exploration

in unknown, cluttered environments [26]. The robot’s LiDAR and pose were inputs to a neural network

that output motion commands, with the goal of maximising area explored under time constraints. The

trained policy learned intelligent exploration strategies (like following walls and systematically turning at

intersections), similar to human strategies, but emerged from the RL process. Another example is the
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use of a decentralised multi-agent RL framework for coordinated exploration [27]. In their setup, each

robot runs an RL policy that decides its next move based on its local map (as an occupancy grid) and

additional features like frontier distances. Training RL controllers, especially in multi-robot scenarios,

is computationally intensive and data-hungry. The state-space grows exponentially with the number of

robots (each robot’s pose and sensor readings), making convergence difficult. Techniques like centralised

training with decentralised execution (CTDE) are often used, where a centralised trainer has access to all

robots’ states during training to ease learning, but the execution policy is distributed across robots [28].

Also, safety is a major concern – an RL agent might need to explore potentially dangerous actions to learn,

which is unacceptable in physical SaR robots. Parallely, there is sufficient interest in applying bio-inspired

algorithms to coordinate multi-robot teams. These methods are typically optimisation techniques that

iteratively improve a population of candidate solutions, loosely inspired by natural processes like ant

foraging, bird flocking, or evolution. They do not “learn” a policy per se (as in RL), but rather search for

good solutions. PSO is inspired by the social behaviour of birds flocking. It searches for the optimal path

by iteratively improving candidate solutions (particles) based on their own experience and the experience

of the swarm. For instance, each robot could be a particle proposing a path or next waypoint, and they

iteratively adjust plans to improve a global objective like the total area covered [9]. However, a common

challenge with PSO is that it is effective for global optimisation but may converge prematurely to local

optima. Further, GAs optimise by simulating evolution where candidate solutions (or chromosomes)

undergo selection, crossover, and mutation to produce new offspring solutions, iteratively improving the

population. In multi-robot missions, a chromosome might encode a set of routes for all robots or an

assignment of tasks to robots. GAs have been used for problems like multi-robot task allocation and path

planning, which are often combinatorial. For example, in one research, the multi-robot routing problem was

formulated as a variation of the multiple travelling salesman problem and applied GA to evolve good route

assignments [29]. Another work by Hayat et al. used a GA to coordinate multiple UAVs in a large-scale

outdoor SaR scenario [30]. They encoded different mission tasks and evolved assignments so that the

team of drones could cover multiple objectives efficiently. While GAs can handle complex search spaces,

they can be computationally expensive [31]. ACO, on the other hand, is inspired by how real ants find

shortest paths using pheromone trails. In a robotics context, virtual pheromones can be laid on a grid

or graph representation of the search area. Multiple agents (artificial ants) construct paths from a start

state to a goal state based on pheromone intensity (probability) and heuristic preferences (like favouring

unexplored areas). Through many iterations, pheromone updates guide the algorithm toward high-quality

paths or search schedules. In SaR, ACO has been used for multi-robot path planning and area coverage.

It is robust and can handle dynamic environments but can be slow to converge, especially for large search

spaces. The above heuristic methods are often applied to NP-hard problems. For instance, optimal

multi-robot search or routing can be NP-hard, which justifies using metaheuristics like ACO, PSO, or GA

to find good feasible solutions in reasonable timeframes. These algorithms do not guarantee a global

optimum and have tuning parameters (e.g., number of ants/particles, number of generations) that affect

computational load. Another challenge is scaling to many robots or large areas as heuristics may struggle

as state space grows.

One of the most commonly used graph-based heuristic search methods is Dijkstra’s Algorithm. It works by

iteratively exploring nodes starting from the source, always selecting the node with the lowest cumulative

cost. While DA is simple and effective for smaller problems, it becomes computationally expensive for

larger graphs. A* Algorithm is an informed search algorithm that improves upon DA by incorporating a

heuristic function to estimate the cost from the current node to the goal. This guides the search towards

promising nodes, enhancing efficiency. While A* is generally more efficient than DA, its performance is

highly dependent on the accuracy of the heuristic function [32].

4.2. Optimisation-based Methods
Optimisation-based control treats decision-making as a mathematical optimisation problem, explicitly

maximising or minimising objective functions subject to constraints. They rely on models of robot dynamics

and the environment, using solvers to compute control actions. One such approach is Model Predictive

Control or MPC.
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4.2.1. Model Predictive Control
MPC is an advanced control technique that solves a constrained optimal control problem on a rolling

horizon. Figure (4.4) shows the architecture for a simple MPC.

Figure 4.4: MPC architecture [33]

At each time step, an MPC planner optimises a sequence of control inputs over a future horizon (e.g.

next N seconds) to minimise a cost function (e.g. time to find victims, deviation from desired path) while

respecting system dynamics and constraints. Only the first control input from this optimised sequence

is executed, and the optimisation is repeated at the next time step using updated state information.

Mathematically, for a discrete-time linear system represented by:

xk+1 = Axk
+Buk

and having the output equation as:

yk = Cxk
+Duk

,

The MPC controller tries to minimise an objective function of the form:

J =

Np∑
j=1

δj [ŷk+j − wk+j ]
2 +

Nc∑
j=1

λj [4uk+j−1]
2

subject to:

xk+1 = f(xk, uk)

yk = h(xk, uk)

πk ∈ U

Here, the goal is that the future process output tracks a reference signalw along the horizon while penalising

the control effort ∆u for doing so. Both δj and λj are weights for the error and control effort along the

horizon. Np and Nc represent the prediction and control horizon, respectively [33]. These constraints

ensure that both the state and output vectors comply with the inherent dynamics of the system, and that

the control sequence, π lies within the admissible control space. Essentially, MPC reformulates the control

task into a finite-horizon optimisation problem, which can be addressed using various techniques. One

such approach is dynamic programming (DP). It solves complex problems by breaking them down into
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simpler subproblems, solving each of them once, and then storing their solutions. It is ideally suited

for sequential decision-making processes. However, as the number of dimensions or state variables

increases, the state space grows exponentially, making DP computationally infeasible for high-dimensional

problems. Derivative-Free Optimisation methods like pattern-search, find use in problems where gradient

information is unavailable or impractical to obtain. DFO methods have been applied in MPC to handle

systems with non-differentiable dynamics or cost functions [34][35]. However, they require a substantial

number of function evaluations to explore the search space adequately and, hence, can sometimes be

computationally expensive. In fact, MPC in itself is a computationally demanding approach. This limitation

becomes prohibitive for large-scale systems. Thus, adapted versions like distributed and decentralised

control architectures have been explored.

Decentralised MPC operates without strict communication between individual subsystems, making it

suitable for decoupled or loosely coupled systems. In this approach, each local controller optimises its

own variables independently, without considering the control inputs of other controllers. This leads to

simpler implementation but may reduce system performance if the subsystems are more tightly coupled

than assumed [36]. In contrast, Distributed MPC involves some level of information exchange between

local controllers, allowing each to be aware of others’ behaviours. This structure is beneficial for strongly

coupled systems, where optimisation by one controller influences others. Systems can be fully connected,

with all controllers communicating with each other, or partially connected, where communication occurs

only among certain subsets. Additionally, distributed MPC can be categorised based on the optimisation

behaviour of local controllers. In a Cooperative Control framework, multiple local controllers work together

to optimise a common, global cost function. Alternatively, if the local controllers optimise their own cost

functions, the approach can be said to be Non-cooperative [37].

4.3. Hierarchical Controllers
Integrating multiple control strategies can significantly improve system performance, especially in scenarios

involving complex, nonlinear, or uncertain dynamics. This section explores several hierarchical controllers

that merge various previously discussed control approaches.

4.3.1. Fuzzy Logic Controller with Model Predictive Control
Fuzzy Model Predictive Control (FMPC) integrates fuzzy logic with MPC to manage complex, nonlinear

systems effectively. This hybrid approach leverages the strengths of both methodologies: the capacity of

fuzzy logic to handle uncertainties and approximate reasoning and the predictive optimisation of MPC.

Here, the system’s nonlinear dynamics are represented using fuzzy modelling techniques, particularly the

Takagi–Sugeno (T-S) fuzzy model. This model approximates a nonlinear system by blending multiple linear

models, each of which is associated with specific operating conditions defined by fuzzy sets. The overall

system behaviour is obtained by aggregating the contributions from all rules, weighted by their respective

membership functions [38]. MPC utilises this fuzzy model to predict future system behaviour over a finite

horizon. Another interesting application of FMPC was seen in [39], where it is applied in the context of

multi-UAV cooperative target search. In their framework, each UAV maintains and updates a probability

map of the target’s location, which serves as a fuzzy representation of environmental uncertainty. This

map is used to compute a ”future gain” term—representing expected information value—which is added to

the MPC cost function. The MPC then optimises this cost function and plans a suitable control strategy.

Thus, here instead of determining the system model/behaviour, the fuzzy model modifies the cost function

of the MPC.

4.3.2. Fuzzy Model Reference Learning Controller
Fuzzy Model Reference Learning Control (FMRLC) is an adaptive control architecture that combines

the intuitive decision-making capability of fuzzy logic with the self-tuning capabilities of Model Reference

Adaptive Control (MRAC). This approach was first introduced by Layne and Passino [40]. FMRLC utilises

FLC as the primary control component, in combination with a learning mechanism, as shown in Figure

(4.5). A reference model generates the desired output trajectory, ym, based on pre-defined performance
objectives. The actual system output, y is then compared against this reference output, and any deviation
is interpreted as a control error e(kt) that must be corrected. The fuzzy controller receives this error and
its derivative as input. The objective if the FLC is to reduce this error. For this it possesses a learning

mechanism composed of a fuzzy inverse model and a knowledge-base modifier. The fuzzy inverse model
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Figure 4.5: FMRLC architecture [40]

estimates the necessary adjustments in control input needed to reduce the output error to zero, while the

knowledge-base modifier translates these adjustments into updates to the rule base or output membership

functions of the FLC. Over time, this process allows the controller to refine its behaviour iteratively and

autonomously to effectively adapt to changes in system dynamics. This learning ability addresses one

of the main limitations of conventional FLCs, where rule bases and membership functions are typically

designed heuristically and remain fixed. By contrast, FMRLC offers a structured way to continuously tune

these parameters during operation, thus enhancing performance and robustness. However, while FMRLC

improves adaptability, it still relies on user-defined learning parameters, which are often chosen empirically

and may lack strong theoretical guarantees. Moreover, its ability to achieve truly optimal control for general

nonlinear systems remains a topic of ongoing research.

4.3.3. Feedback Linearisation with MPC
Feedback Linearisation (FBL) is a nonlinear control strategy that algebraically transforms a nonlinear

system into an equivalent linear system through a specific state transformation and feedback control

law [41]. This transformation enables the application of linear control techniques to nonlinear systems,

simplifying controller design and analysis. However, traditional FBL methods often face challenges in

handling input and output constraints. Combining FBL with MPC enables the use of linear MPC strategies.

This integration not only allows the handling of constraints but also reduces the computational burden

compared to implementing a full nonlinear MPC. A simple representation of this architecture can be seen

in Figure (4.6). In [42], a demonstration of this approach can be seen for a flight path following application.

It outperforms traditional FBL combined with proportional-PID controllers, which tend to exhibit stronger

oscillations in control inputs. However, a significant challenge in this combined approach is the dependency

on the accuracy of the feedback linearisation. Any model inaccuracies in the FBL stage can propagate

through the system and affect overall performance. Traditionally, precise knowledge of the system model

is assumed, which makes the controller susceptible to performance degradation when faced with modelling

inaccuracies or disturbances. Recent studies like the one performed by Dutta et al. in [43] have tried to

improve on this by making the control strategy adaptive by incorporating mechanisms that dynamically

adjust the control strategy in response to real-time discrepancies between the predicted and actual system

behaviour.

4.3.4. Reinforcement Learning with MPC
Another hybrid approach is combining reinforcement learning (RL) with model predictive control (MPC).

This can take different forms one of which is an RL algorithm operating at a high level and calling an

MPC for low-level control. For example, a recent framework integrates Deep RL, MPC, and Graph Neural

Networks (GNN) for multi-robot path planning and task allocation [44]. In this DRL-MPC-GNN model, deep
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Figure 4.6: FBL-MPC Architecture

RL agents learn a policy for high-level decisions (like which region to search or which task to do next)

while a local MPC algorithm computes feasible paths to implement those decisions. The advantage of this

integration is that the MPC can correct short-term mistakes of the RL (like if the RL chose a goal slightly too

close to another robot, the MPC might still avoid a collision by adjusting the path). Meanwhile, the RL can

compensate for the limitations of greedy MPC (which might get stuck in local optima) by occasionally taking

exploratory action like sending one robot far out to a new area even if local gain is small, in anticipation of

future rewards. Another application involves the use of RL to adjust the horizon and cost weights of an

MPC for a multi-robot system in real time to improve energy usage [45]. Figure 4.7 provides a schematic of

such an architecture. Thus, the combination of RL with MPC can bring the advantage of adaptability with

model-based control. However, such an approach is not trivial, with reward attribution and computation

challenges.

Figure 4.7: RL-MPC Architecture from [46]



5
Search and Rescue Systems

This chapter reviews existing research on Search and Rescue Systems (SaRS). By assessing and

comparing the current body of work, it identifies both the latest advancements and ongoing challenges

within the field. This is meant to establish the motivation behind the proposed thesis and provides a

theoretical foundation for various design decisions made throughout this research.

5.1. Operational Environment
Robotic SaRS must operate effectively across diverse environments, broadly categorised into indoor (built

or enclosed spaces) and outdoor (open or natural terrains). Each environment presents distinct challenges,

significantly influencing robot design, navigation strategies, and overall effectiveness.

Indoor environments, such as collapsed buildings, typically feature complex and cluttered layouts, com-

prising intricate arrangements of rooms, interconnected corridors, multiple levels, and substantial debris.

These conditions pose practical difficulties for robotic exploration and search operations [47], as movement

becomes severely restricted. Ground robots frequently encounter obstacles like debris piles, damaged

furniture, and staircases, necessitating robust locomotion capabilities to navigate such challenging terrain

effectively. Small UAVs offer agility and can bypass ground obstacles; however, they risk collisions with

walls, hanging cables, or other indoor hazards. Flying in confined indoor spaces introduces additional

aerodynamic challenges, such as turbulence and limited airflow, demanding sophisticated stabilisation

and precise control strategies [48]. Furthermore, limited indoor space restricts battery size, significantly

shortening flight endurance and the amount of computational resources robots can carry, directly impacting

their capabilities [49]. Another critical challenge is the inherent unpredictability of indoor disaster scenes,

which reduces the effectiveness of pre-existing maps or planning strategies based on prior information.

This issue is exacerbated by unreliable or absent GPS signals within enclosed spaces, forcing robotic

systems to employ intelligent real-time decision-making to safely navigate unknown environments and

achieve effective area coverage without collisions [50]. UAVs, particularly rotorcraft, rely heavily on ac-

curate attitude estimation to maintain stability, where even minor positional drifts could lead to collisions

with environmental objects [8]. Perception in cluttered and degraded indoor conditions also presents a

major challenge. Robotic perception capabilities are significantly impacted by various factors, including

lighting variability, visual clutter, occlusions, and inherent sensor limitations in confined spaces. Lighting

conditions in indoor disaster scenarios can vary dramatically, ranging from near total darkness to intense

glare, with sudden and unpredictable illumination shifts, severely affecting visual sensing performance

[51]. To mitigate these perception challenges, integrating multi-modal sensing methods, such as thermal

imaging, acoustic sensors, or LiDAR, is beneficial, providing complementary data to purely vision based

systems. However, environmental contaminants commonly present during disaster scenarios, such as

dust, smoke, and other airborne particles, can considerably degrade sensor performance. Visual sensors

may become obscured by smoke and dust, while other sensors may experience interference or reduced

accuracy due to such contaminants [52]. Notable applications exploring robotic systems in indoor SaR

contexts, though limited, can be found in the works by Sampedro et al. [49], Mano et al. [53], Murphy [54],

and Kohlbrecher et al. [55].

Outdoor SaR missions typically take place in expansive environments, which permits the deployment

of larger and faster robotic platforms equipped with extended operational range, greater computational

capacity, and advanced sensing systems. Unlike cluttered indoor environments, outdoor obstacles and

41
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dynamic elements tend to be more sparsely distributed. A significant challenge the outdoor environment

poses is maintaining reliable communication over large distances, often in remote regions without es-

tablished communication infrastructure [56]. Additionally, robotic SaR systems operating outdoors are

exposed to varying and sometimes extreme weather conditions, significantly impacting their performance,

particularly in perception and localisation tasks [57] [58]. Outdoor SaR operations can occur in urban

(USaR), wilderness (WiSaR), and marine (ASR) environments. Each environment presents unique techni-

cal challenges and shapes the mission profile distinctly. In USaR scenarios, the primary objective typically

involves locating multiple stationary victims within a defined area, though the exact number of victims

may not be predetermined. Conversely, WiSaR and ASR scenarios often involve searching for a fixed

number of non-stationary or semi stationary targets distributed across considerably larger regions [59].

Moreover, marine environments generally lack structures or obstacles such as buildings, debris, and trees,

significantly influencing mission planning strategies. Relevant studies exploring robotic applications in

USaR include works by [60], [61], and [62]. WiSaR applications have been examined in [63], [64], and [65].

5.2. Fleet Profile
Having reviewed the different operational environments and their impact on SaR missions, it is clear that

there is a need to study different kinds of robotic systems that are available. We mainly discuss land based

search and rescue scenarios and hence our focus will be on UAVs and UGVs.

UAVs, with their inherent aerial mobility, provide a unique vantage point for rapid deployment and wide-

area surveillance. Their ability to access difficult terrains from an aerial perspective allows for the swift

assessment of disaster zones and the identification of potential areas of interest that might be inaccessible

to ground-based teams. Largely, UAVs can be of three different classes: Fixed-wing, Rotary and Hybrid.

Fixed-wing UAVs are capable of achieving long flight times and demonstrate high energy efficiency,

enabling them to cover extensive areas rapidly. They often possess the capacity to carry heavier payloads,

allowing for the deployment of more sophisticated sensors or larger batteries for extended missions. This

makes them well-suited for initial large-scale search efforts, mapping disaster zones, and conducting

environmental monitoring over vast and potentially inaccessible terrains. However, they typically require a

runway or a launching mechanism for takeoff and a designated area for landing, restricting their deployment

in environments lacking such infrastructure. Additionally, their inability to hover limits their maneuverability

in confined spaces and makes close-up inspection of specific points of interest more challenging [66].

Rotary-wing UAVs, encompassing both multirotor and helicopter configurations, are able to tackle some

of the limitations of fixed-wing UAVs, due to their ability to take off vertically and hover [67]. Their high

maneuverability and agility allow them to navigate through cluttered areas and even operate effectively

in both outdoor and indoor settings [66]. Rotary-wing UAVs are commonly used for on-site monitoring,

target localisation, indoor exploration of damaged buildings, and even for the delivery of small but critical

supplies to stranded individuals. Despite these benefits, rotary-wing UAVs typically exhibit shorter flight

times compared to fixed-wing UAVs due to their higher energy consumption required for continuous rotor

operation. They also generally have a lower payload capacity, creating a trade-off between the weight

of essential sensors and the duration of the mission. In recent times there has been sufficient interest in

the use of Hybrid UAVs which combine the strengths of both fixed-wing and rotary-wing platforms. They

can take off and land in confined spaces without the need for runways and then transition to efficient

horizontal flight for longer-range travel. This makes them highly adaptable to diverse SaR mission phases,

potentially enabling rapid initial assessment followed by localised operations. Hybrid UAVs often offer

longer endurance than pure rotary-wing models while retaining the flexibility of VTOL. Their applications

in SaR include infrastructure inspection, which can be crucial for assessing damage after a disaster,

and disaster response scenarios that demand wide area coverage and the ability to carry out detailed

operations in specific locations [68]. Current research extensively focuses on utilising UAVs for victim

detection, employing multi-sensor payloads like visual and thermal cameras for better perception in various

environmental conditions [69] [70]. Beyond victim detection, research also investigates the role of UAVs

in supporting broader SaR activities. Studies have explored their utility in WiSaR operations for tasks

such as assessing environmental risks, transporting essential equipment to remote locations, and even

establishing temporary communication networks in areas where infrastructure has been damaged [6].

There has also been recent research in the application of UGVs in SaR operations. As UGVs offer the

capability for ground-level interaction, providing the means to navigate complex and cluttered environments,

manipulate objects, and often carry heavier payloads and specialised sensors for detailed investigation
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and victim assistance [67]. These robots come in various forms, primarily categorised by their mode

of locomotion: tracked, wheeled, and legged. Tracked UGVs, also known as crawler robots, utilise

continuous tracks for movement, offering traction and stability on uneven and rough terrain, including

the rubble and debris commonly encountered in disaster zones [71]. Tracked UGVs are often employed

for tasks such as the inspection of collapsed structures, searching for victims within rubble piles, and

performing manipulation tasks like the removal of debris to clear pathways or access trapped individuals

[72]. However, on flat surfaces, tracked robots can be slower than their wheeled counterparts, and they

may experience difficulties with very tight turns in confined spaces. Legged UGVs, which include bipedal,

quadrupedal, and other multi-legged configurations offer adaptability to highly complex and unstructured

environments, including the ability to navigate stairs and obstacles more effectively than wheeled or tracked

robots [73]. Current research and development efforts in SaR are focused on leveraging their unique

mobility for tasks requiring navigation through highly unstructured environments and potential interaction

with victims [74]. However, the design and control systems for legged robots are typically complex, leading

to higher power consumption compared to wheeled robots and potentially lower speed.

Further, in terms of multi-agent SaRS, a differentiation can be made in terms of the homogeneity of

agents. Employing homogeneous teams of robots, where all agents possess identical performance

capabilities, functionalities, and equipped sensors, offers several potential advantages for Search and

Rescue operations. One key benefit is the inherent redundancy such a fleet provides. In the event of a

robot failure, any other agent within the team is equally capable of stepping in to perform the required

tasks. Homogeneous teams also facilitate task parallelism, where multiple identical robots can be assigned

to perform the same type of task concurrently, leading to a faster completion of the overall mission

[67]. For instance, a team of UGVs can automate the movement of goods within warehouses or across

manufacturing facilities efficiently [75]. On the other hand, the benefit of heterogeneous teams is leveraging

of the diverse and complementary capabilities of each robot type. By strategically combining robots

with different strengths, a heterogeneous team can address a wider range of challenges encountered in

complex disaster scenarios more effectively than a homogeneous team. For example, fast-flying fixed-wing

UAVs can quickly survey large areas to identify potential victim locations, while more maneuverable

rotary-wing UAVs can conduct closer inspections and access confined spaces. A significant portion of

current research on non-homogenous robot teams in SaR focuses on the collaboration between UAVs

and UGVs. This synergistic approach recognises the complementary strengths of aerial mobility and

ground-based interaction. For example, UAVs can rapidly survey large areas, identify points of interest,

and provide real-time imagery, which can then guide UGVs equipped with specialised tools to navigate to

those locations on the ground to perform rescue operations or conduct detailed inspections [67]. Studies

like [76] have demonstrated that such multimodal robotic search teams, when coordinated effectively,

can achieve significantly higher search success rates compared to teams composed of only unimodal or

homogeneous robots.

5.3. Perception modes
Situational and perceptual awareness of SaRS agents is essential both for purposes of locomotion and victim

search in a disaster scenario [77]. Most research emphasises visual perception methods utilising optical

cameras, infrared (heat) sensors, or Light Detection and Ranging (LiDAR) systems. Visual information

acquired by robotic agents is especially critical when inconsistencies arise between real-time sensor

observations and the environment model maintained by the mission planning system. Furthermore, the

integration of acoustic sensors can significantly enhance situational awareness by facilitating the detection

and localisation of victims through auditory cues such as vocalisations or distress calls. A practical SaR

system incorporating acoustic sensors alongside optical cameras and heat sensors has been explored in

[78]. Further studies have examined combining biosensors with optical imaging technologies to identify

victims by detecting vital signs, as demonstrated by Cao et al. [79]. An important aspect in relation to

perception is sensor noise which leads to perceptual uncertainty. In [63], during field evaluations of their

SaRS, the authors reported perceptual noise in the optical camera feeds of the UAVs, which introduced

uncertainty in victim identification from captured images. To address this issue, they recommended the

deployment of higher-resolution imaging sensors. Further, Koning et al. provided a way to account for

the uncertainties in perception due to distance from targets and inherent sensor imperfections in their

mathematical formulations, in [80].
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5.4. Mission Planning
Mission planning in robotic SaR generally involves two primary tasks: assigning search regions or tasks

to robots and determining the best paths for them to follow. Task assignment, known as Multi-Robot

Task Allocation (MRTA), becomes especially important when there are more tasks than available robots.

Efficient MRTA is crucial for coordinating robots effectively, helping them work towards common goals and

optimising overall mission performance.

MRTA must consider numerous factors, such as the complexity and nature of tasks, robot capabilities,

environmental conditions, and communication limitations. For example, tasks like aerial surveys are suited

to drones (UAVs), whereas tasks involving carrying heavy objects or navigating tight spaces may require

ground robots (UGVs) with robotic arms or special mobility features. Leveraging the diverse capabilities

of different robot types is essential. Drones offer quick deployment and excellent mobility, while ground

robots can carry heavier payloads and perform reliably on uneven terrain.

Environmental constraints—such as obstacles, changing conditions, or areas without GPS—also signifi-

cantly influence task allocation. Robots operating in GPS-denied environments, for instance, might need

advanced localisation technologies like SLAM. MRTA objectives can vary, aiming to minimise completion

time, maximise coverage, reduce energy consumption, or achieve a combination of these goals. Allo-

cation strategies can be centralised, decentralised, or hybrid. Centralised approaches involve a central

controller that allocates tasks using comprehensive knowledge of the system but can be vulnerable to

single points of failure [80]. Decentralised approaches allow robots to independently make decisions,

increasing robustness but potentially compromising optimality [81]. Market-based mechanisms are another

popular strategy, where robots bid for tasks based on estimated costs and capabilities [82]. Additionally,

bio-inspired methods such as ant colony optimisation or particle swarm optimisation have been applied for

distributed task allocation in communication-constrained and dynamic environments [83].

Path planning, the second major component, involves finding optimal routes for robots from their current

positions to their target destinations. Effective path planning must address obstacle avoidance, dynamic

environmental changes, and robot-specific constraints. Classic algorithms like A* and Dijkstra remain

popular because they reliably provide optimal solutions in static environments [84].

However, modern SaR scenarios frequently involve dynamic and partially unknown environments, with

unpredictable obstacles and hazards. In these cases, MPC has become increasingly useful. MPC predicts

future states over a short horizon, allowing robots to adjust their paths in real time. It can optimise for

various goals, including energy efficiency, urgency, or safety [85].MPC has also been used in online

planning where the environment evolves during the mission. Yao et al. proposed an MPC framework that

incorporates collision costs with dynamic and static obstacles into the objective function, along with a

control effort term reflecting the energy cost of trajectory changes [86]. This approach, however, relies

on deterministic models of obstacle motion, which may not be realistic in unstructured settings. Despite

its strengths, MPC has limitations. Its local optimisation horizon can result in suboptimal global paths,

particularly in complex or maze-like environments where it may lead the robot into dead ends. To address

this, hybrid approaches have been proposed, where global path planning is handled by algorithms like

A*, and MPC is used to track the generated path while adjusting for real-time disturbances. For instance,

Ishihara et al. introduced a penalty function into the MPC cost formulation to prevent deadlocks by

penalising low-speed or idle states, thereby maintaining continuous forward motion [87]. Additionally, in

multi-robot scenarios, the local focus of MPC might cause coordination problems or conflicts. Furthermore,

solving MPC problems can become computationally intensive in complex environments. To overcome

these challenges, MPC is increasingly being used in supervisory or event-triggered roles rather than direct

path planning. For instance, Wu et al. developed an event-triggered coordination framework for UAV-UGV

teams, where the UAV supervises the UGV’s progress and intervenes only under certain conditions [88].

MPC is used not for path generation but to determine when intervention will yield significant improvements,

thus optimising mission efficiency while minimising computational and communication overhead.

Recent trends increasingly favour hybrid planning architectures, which combine fast, reactive methods

with globally informed decision-making. For example, Koning and Jamshidnejad proposed a hierarchical

framework using Fuzzy Logic Controllers (FLCs) at the local level for real-time decision-making and path

prioritisation. FLCs use heuristic IF-THEN rules to assign urgency scores to areas within the robot’s

perception field, which are then evaluated using A* for shortest paths. These candidate paths are graded
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and selected based on their strategic value for the search mission. At the global level, MPC ensures

coordination between robots, avoiding redundant effort by assigning unique search regions to each

unit [80]. This hybrid strategy balances real-time adaptability with coordinated global performance and

reduces computational load by limiting MPC to supervisory roles while using lightweight heuristics locally.

Another application was seen in [89], where a 3-layer hierarchical controller is implemented to coordinate

a multi-robot system for search tasks.

5.5. Simulation Design
Ultimately, to evaluate the performance of developed SaRS, it is essential to construct a SaR simulation.

Ideally, such testing would involve creating a realistic, life-sized disaster environment paired with physical

robotic systems. However, developing this type of high-fidelity physical setup is typically prohibitively

expensive and time-consuming. Additionally, when a new system is in its initial stages, virtual simulation is

preferable as it allows the concept to be tested safely, ensuring that any system failures remain contained

within the virtual domain. Therefore, this research will employ a virtual simulation environment as a test

bed, enabling simulated agents to operate within a controlled disaster scenario and execute victim search

tasks. A widely recognised platform for such simulations is RoboCup Rescue, which offers a standardised

benchmark for evaluating developments in SaRS research. Key simulation components of the RoboCup

Rescue framework are detailed in [90]. These include a structural damage model, wherein each building is

assigned a collapse degree to represent its level of structural compromise. Additionally, buildings possess

a fieryness attribute, which quantifies fire intensity and associated damage. Victim behaviour is simulated

through two primary parameters: buriedness level, indicating the victim’s mobility, and damage level,

representing their health status. The simulator also incorporates environmental dynamics by applying

a uniform, time-invariant wind vector across the entire environment. Seraji in [91] designed a simulated

environment with varying terrain features (like slopes, steps, and roughness). The environment was

represented in the form of a grid, with each cell containing sensor-derived features. These features

include slope angle, step height (maximum elevation difference) and terrain roughness, based on which a

traversability index value is assigned to the cell. This value is considered to be a quantification of how

easily a robot can traverse a given terrain region.

In terms of simulation tools, the Robocop Rescue simulator is a common choice for SaRS applications

[92]. It is designed to model earthquake-like scenarios and provide flexible 2D map generation at the scale

of city blocks. The platform supports the creation of dynamic, multi-agent scenarios, offers standardised

performance evaluation frameworks, and is open-source. However, its environmental modelling tools are

largely tailored to earthquake disasters, with limited native support for other disaster types such as floods or

hurricanes. In contrast, Gazebo is a general-purpose 3D robotic simulation environment with a high-fidelity

physics engine, realistic sensor emulation, and seamless integration with ROS [93]. While not originally

developed for SaR, its versatility allows researchers to model both indoor and outdoor environments with

considerable physical realism, including complex terrains, dynamic obstacles, and multiple heterogeneous

agents. Gazebo supports the simulation of wheeled and aerial robots (UGVs and UAVs), making it suitable

for evaluating locomotion, perception, and navigation algorithms under realistic conditions. However,

it lacks standardised SaR-specific toolboxes, such as victim models or domain-specific performance

metrics, which limits its ability to serve as a comprehensive SaR benchmarking platform. Additionally,

MATLAB-Gazebo simulators allow verification of robotic behaviours and complex algorithms under dynamic,

realistic conditions within Gazebo’s realistic physics environment [94]. Similarly, MATLAB’s integration

with Unity is useful for 3D visualisation and interaction-intensive applications. This includes human–robot

interactions, advanced visual feedback, and detailed manipulation scenarios. Both MATLAB–Gazebo and

MATLAB–Unity integrations support real-time, bidirectional data exchange.

5.6. Summary of Gaps
Search and rescue robotics is a rapidly evolving field, but it remains a novel area of research with significant

opportunities for further exploration. This is particularly true for indoor search and rescue operations,

where the body of research is even more limited compared to outdoor environments. Indoor SaR presents

unique challenges, such as navigating confined spaces, dealing with poor visibility, and managing complex

structures. These challenges differ significantly from those encountered in outdoor environments.

Navigation within complex and confined structures, requires robots to maneuver through intricate lay-

outs having interconnected corridors, multiple levels, narrow passages, and substantial debris. A critical
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challenge in indoor environments is the absence or severe limitation of Global Positioning System (GPS)

signals, which are fundamental to navigation in outdoor settings but largely inaccessible indoors. The

absence of reliable GPS compels reliance on alternative methods like IMUs, odometry, LiDAR, and Si-

multaneous Localisation and Mapping algorithms. However, these alternative methods are prone to drift

and inaccuracies, particularly in dynamic or heavily obstructed environments. Additionally, cooperative

localisation strategies, which involve multiple robotic agents sharing positional information, remain chal-

lenging to implement effectively due to coordination difficulties and communication constraints. Dynamic

environmental conditions in the aftermath of disasters involves shifting debris, unstable structures, and

frequent environmental changes. Robots must therefore incorporate real-time adaptive capabilities and

advanced obstacle avoidance algorithms that allow for effective navigation and operational adjustments

to rapidly changing scenarios. Further, robots must differentiate between stable surfaces suitable for

traversal and unstable debris. Another unique challenge is visual clutter and occlusions, common in indoor

disaster scenes, where scattered debris or structural collapses obstruct clear views. Unlike humans, robots

currently struggle to infer complete objects from partially visible data, highlighting gaps in current perception

algorithms.

In addressing these challenges, multi-robot systems offer considerable advantages. Such systems can

cover more ground, provide redundancy, and perform tasks in parallel, making them well-suited for the

demanding conditions of time-sensitive indoor SaR. Moreover, heterogenous systems combined with

efficient task allocation algorithms, provide an opportunity to leverage their complementary capabilities,

significantly improving mission efficiency and effectiveness. Specifically,systems that combine Unmanned

Aerial Vehicles (UAVs) and Unmanned Ground Vehicles (UGVs) offer distinct advantages. The UAV-UGV

collaboration enables task sharing, where UAVs can perform rapid aerial reconnaissance while UGVs

conduct detailed ground-level searches. Evidence of this can be seen in research by Asadi et al. and Sask

et al., where they design and implement a UAV-UGV collaborative system for monitoring and surveillance of

indoor spaces [95][96]. In their implementations, the UAV provided rapid aerial survey capability, and aided

the UGV in performing detailed, ground level search. However, such system require reliable algorithms

and frameworks that dynamically adapt task assignments in response to real-time environmental feedback

and maintain effective coordination and communication among multiple robots under constrained condi-

tions. Hierarchical control frameworks are particularly advantageous in such applications because they

effectively address the inherent complexity and coordination challenges. A hierarchical structure, like the

one proposed by Koning and Jamshidnejad [80], combines the strengths of centralised and decentralised

control methods, allowing for both global optimisation and local adaptability. This paper uses the MPC

layer in a conflict resolution role, to ensure that the same region is not being explored by multiple robots.

Global MPC can also be applied in a task reallocation role. This enables efficient division of labour and

resource utilisation, optimising search coverage. For instance, in a UAV-UGV system, the UAV, with its

broader aerial perspective and faster movement, could be dynamically re-assigned to quickly survey larger

areas or regions with higher target probabilities. Meanwhile, the UGV could focus on thoroughly inspecting

areas identified by the UAV, leveraging its ability to navigate complex terrain and carry specialised sensors.

This dynamic task allocation helps maximise both area coverage and victim detection efficiency, ultimately

leading to faster and more successful search operations. It also allows the system to compensate for

individual robot limitations and capitalise on their strengths. For instance, if a UAV detects a potential target,

the system can immediately re-task a nearby UGV to confirm the target’s identity [65]. By employing a

global MPC for high-level task allocation, the system can optimise overall performance, taking into account

global objectives and constraints, while delegating low-level control to computationally efficient, heuristic

FLC controllers. This combination is beneficial as FLC, with its ability to mimic human-like reasoning, can

effectively handle local uncertainties and dynamic obstacles in real time, while the MPC ensures global

coordination and efficient task distribution. Despite the evident advantages, there is insufficient research

exploring a similar hierarchical architecture in SaR operations. The Koning paper provides a promising

proof of concept for a hierarchical decision-making architecture in heterogeneous multi-robot systems

for environmental coverage and target identification. However, there remains room to explore alternate

frameworks and also to extend the environment model to better reflect the complexities and challenges of

real-world scenarios. Hence, for the above-mentioned reasons, there is sufficient motivation to design a

hierarchical MPC-FLC decision-making framework for a UAV-UGV system, to maximise coverage of an

unknown environment and rapid victim identification, during a SaR situation.



6
Thesis Framework

The objective of the literature review was to review state-of-the-art research in SaRS, identify a research

gap, and to propose a solution to address the gap. In this section, a formal thesis plan is described.

6.1. Problem Definition
This thesis aims to design and implement a decision-making architecture for a collaborative, multi-agent

UAV-UGV system. The aim is to optimise coverage and exploration of an unknown environment while

maximising the time efficiency of detecting victims.

6.2. Proposed Methodology
To achieve this, a hierarchical control system will be implemented. Both the UAV and UGV have a

decentralised, local fuzzy logic controller, which is used to handle sensor data, characterise cells, search

for shortest paths passing through high-priority regions, and execute these paths. The FLC controller will

use a Mamdani structure. The UAV adopts a rapid search behaviour (faster coverage speed and wider

perception field) and carries out a broad sweep. It identifies victims and regions requiring UGV intervention.

Simultaneously, the UGV carries out its search behaviour, identifying victims and regions requiring UAV

intervention. The centralised global MPC controller continuously monitors the evolving environmental

map and intervenes only to reallocate tasks among the two agents based on the latest information. This

intervention would be based on the limitation the environment condition imposes on the agents and the

relative advantage an agent has in executing the search task in a certain set of conditions. A custom

simulation environment will be used to simulate the approach, using MATLAB to implement the decision

making algorithm and combining it with a 3D environment simulator.

6.3. Research Questions
The main research question for this thesis can be formulated as:

Can an adaptive, hierarchicalMPC-FLC control framework for a collaborativeUAV-UGVmulti-
agent team improve the efficiency of an environment constrained and dynamic SaR mission,
in terms of area coverage and victim search detection?

The main research question will be addressed by evaluating the following sub-questions.

1. How should the environment be designed to simulate real-world operational challenges in an indoor

SaR scenario?

(a) Which primary static and dynamic elements must be modelled?

(b) How do the individual elements impact the operations (perception and movement) of UAVs and

UGVs?

(c) How should the agents be modelled?

(d) How should experiments and specific scenarios be designed for fair benchmarking with state-

of-the-art methods?

2. How can the MPC-FLC framework be applied to the mission planning problem?

47
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(a) How can the environment be characterised for the purpose of priority assignment and evaluation

of multiple tasks?

(b) How are the specific capabilities of UAV and UGV agents incorporated in the FLC controller?

(c) How should the fuzzy rules be defined?

(d) What should be the motivation or trigger for MPC to intervene and reallocate tasks?

(e) How should the optimisation problem to achieve efficient task allocation?

(f) What should the information exchange framework be between the agents and the supervisory

controller?

3. What are the performance criteria for fare comparison to state-of-the-art approaches in the same

problem scenario?

(a) Which criteria should be used to evaluate performance in terms of victim detection and area

coverage? (Victim detection time, Number of victims detected, Rise term of the certainty of

knowledge about the environment or certainty evolution)

(b) How should the task allocation efficiency and impact be evaluated?
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A
Appendix

The MATLAB program used to carry out the simulations detailed in this research has been uploaded to a

public GitHub repository (https://github.com/Shubham2001-33/UAV-UGV-Cooperative-Decision-Making-

in-SaR). This section contains an overview of the code, how to run it and finally a set of flowcharts for

visualising the process flow.

A.1. Requirements
The implementation of this research was carried out in MATLAB R2023a on a PC with AMD Ryzen 7

Processor with 3.2GHz frequency. The simulation makes use of the Global Optimisation Toolbox, and the

Parallel Computing Toolbox.

A.2. Code Overview
The main execution file is main.m. Upon execution, the user is presented with two dialog boxes to determine
the search approach and the simulation scenario. The choice of simulation scenario leads to the calling of

the relevant simulation environment function (randomenv.m,case1env.m,case2env.m,case3env.m), via the
function handle, init_simenv.m.
The environment initialisation function randomly constructs the environment map with the relevant environ-

mental parameters via global maps for victim distribution (M_VIC), obstacle distribution (M_OCC), observability
(M_OBS), and terrain index(M_TERR). It also generates empty containers for performance indicators like the
scan certainty map (M_SCAN). Further, SaR agents are generated with a set of fixed characteristics, as well

as variable parameters, by calling the function gen_agent.m. These parameters include the agent type
(UAV or UGV), perception radius rpi,j , occlusion sensitivity factor αi,j , perception field Ep

i,j and a list of

identified victims.

Following this, the simulate_step.m function is executed, which carries out the system evolution over one

time step. In each execution cycle, the victim positions are updated (since the victim position is assumed

to be dynamic in the problem formulation) via the vicpos_update.m function. The perception_update.m
function identifies all the cells in the agent’s perception field, updates the agent’s maps with information

about the cells and updates their scan certainty values. Further, the localprio_update.m function com-
putes the priority of visitation (ρ), for all cells in (Ep

i,j). For all these cells, a total of K shortest paths are

identified using plan_kshortest.m. Next, these paths are graded based on the criteria defined in this
thesis in path_grading.m and the path with the highest grade is added to a container, P0, as the local

solution.

This is followed by a check to see if there is an ‘agent-environment’ conflict, i.e, the mean of observability

values for all cells in the perception field of UAVs is less than (o_thresh) or the mean of terrain index
values for all cells in the perception field of UGVs is greater than (t_thresh). If either of the conditions is
met, the supervisory controller defined in MPC_optimise.m takes over and generates an optimised path, P .
This path is generated using a patternsearch optimisation function.

The functions Ant_search.m and exhaustive_search.m execute the ACS and random search approaches.

While the pure-MPC approach is executed using the same program as the proposed cooperative method

(discussed above), without the warm-start with the set of local paths. Instead, the function init_path.m
generates a random initial solution for the optimisation function, MPC_optimise.m.
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A.3. Flowcharts
This section provides flowcharts visualising the process flow of the simulation for the proposed method.

Figure A.1: Flowchart for run file main.m
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Figure A.2: Flowchart for control execution function simulate_step.m
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Figure A.3: Flowchart for local controller
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Figure A.4: Flowchart for supervisory controller
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