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H∞ Phase Locking Control for Wave Induced Wake Mixing*

Daniel van den Berg1, Delphine De Tavernier2 and Jan-Willem van Wingerden1

Abstract— The dynamic induction control wake mixing strat-
egy has the potential to increase the energy yield of floating
wind farms. These floating turbines will be subjected to surface
waves, caused by the wind, and swell. When dynamic induction
control is applied in open-loop, the effect of second-order wave
forces and dynamic induction control on the thrust force can
be out-of-phase and have destructive interference. In this work,
we propose a method to synchronize the dynamic induction
control input to the effect of the second-order wave forces. This
is achieved by formulating the synchronization problem within
an H∞ optimization framework and designing a controller that
minimizes the difference between the effect of wave-induced
thrust variation and thrust variation. Time domain simulations
show that synchronization at a desired frequency can be
achieved and that the overall performance of the dynamic
induction control method can be enhanced.

I. INTRODUCTION

Europe targets 480 GW of installed wind capacity (on-
and offshore combined) by 2030 [1]. To achieve this wind
energy companies need to find access to deeper waters,
where 80% of the total European wind energy resources are
located [2]. To access these energy resources, turbines will
need to be placed in cost-effective large, floating, wind farms.
However, when placed in large wind farms, wind turbines
interact with the wakes of surrounding turbines resulting
in an extensive reduction of the power production of the
individual turbines [3], [4].

This interaction can be negated using wake mixing tech-
niques such as dynamic induction control [5] (DIC) or
dynamic individual pitch control [6]. Both methods use blade
pitching to vary the thrust force of the turbine which results
in a time-varying wind field behind the turbine. This time-
varying wind field disturbs the wake such that it breaks down
earlier increasing wind speeds in the wake and thus the power
generation of downstream turbines in case of partial or full
wake overlap.

When these techniques are applied to a floating wind
turbine (FWT), it will cause the FWT to displace. For
dynamic induction control, the frequency and amplitude at
which the blades are pitched impacts the effectiveness of
the wake mixing technique [7]. The work in Ref. [7] does
not consider the existence of waves, which may affect wake-
mixing as well.
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When subjected to waves, an FWT will also exhibit
additional movement. Typically, wave-induced movement is
excited at frequencies in the order of 0.1 Hz [8], whereas
typical excitation frequencies for wake mixing techniques are
located around 0.01 Hz, depending on turbine size and am-
bient wind speed. However, when subjected to a wave field,
large floating vessels undergo a low-frequency displacement
due to second-order wave forces [9]. For the FWT considered
in the work, the NREL 5 MW reference turbine [10] mounted
on the OC4 semisubmersible platform [11], has this second-
order motion around 0.01 Hz [12]. When the waves are
aligned with the wind direction, the resulting second-order
motion causes a varying relative wind speed for the wind
turbine, resulting in a varying thrust force and thus a similar
wake mixing effect as DIC.

This paper demonstrates that this phenomenon can be
leveraged using closed-loop control to benefit wake mixing
for FWTs. Specifically, the thrust force variation desired for
wake mixing may be initiated and amplified by synchroniz-
ing the response caused by pitch actuation and wave motion
in a closed-loop setting. Recently, similar synchronization
work with the goal of reducing actuator loads has been
carried out for the Helix wake mixing technique [13]. Phase
synchronization, or phase locking, is not an uncommon
problem within control, receiving attention in mainly the
electrical engineering field [14], [15]. In that work, phase-
locked loops are feedback loops that aim to track the phase
of an input signal. However, control of phase-locked loops is
based on reference tracking a phase target. In the case of an
FWT, control needs to phase-lock with a disturbance effect:
the thrust variation due to waves. To that end, the following
contributions are presented in this work:

1) We propose a novel phase-locking controller based on
a linear H∞ framework.

2) We show how low-order linear models can be obtained
using the predictor-based subspace identification (or
PBSIDopt) method.

3) We demonstrate that we can derive a simple fixed order
controller using the same framework.

4) We provide a first proof-of-concept of the proposed
controller within a challenging novel application.

The remainder of this paper is organized as follows: Sec-
tion II introduces a more detailed description of the problem,
including the models which will be used for control design.
The setup for control design is covered in Section III and
includes a description of the generalized plant, the weights
used and the final optimized closed-loop transfer functions.
The synthesized controller is implemented in Section IV on a
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Fig. 1. Block diagram of a floating wind turbine with the relevant blocks
and signals depicted.

linearized model of the FWT. Finally, Section V will contain
the conclusion.

II. FLOATING WIND TURBINE MODEL

This section will give a description of the FWT model
and describe the experiments for linear model identification.
It will also give a brief summary of the PBSIDopt method.

Figure 1 shows a block diagram of the floating wind
turbine model and control signals. Each block represents a
linear transfer function. The wave forces are represented by
Fw. The translation of a wave force to the motion of the
tower top, xtt, is described by the model Gx,Fw , the effect
of wave force on the turbine thrust, T , by GT,Fw .

When closed-loop control is used, controller K will actu-
ate blade pitching, β, to achieve synchronization. The input
to the controller is the tower top motion since the thrust force
of a (floating) wind turbine is difficult to measure, unlike the
tower top displacement. Similar to the wave force, the effect
of blade pitch on thrust and tower top motion is described
by the models GT,β and Gx,β respectively. The goal of the
controller is to synchronize the outputs of GT,Fw

and GT,β

such that they amplify each other. Since a linear control
design technique will be used, linear models are required
for the optimization. However, second-order wave forces are
computed by solving quadratic transfer functions (QTFs) and
are not easily translated to linear dynamics [9].

A. Identification Experiments

The non-linear dynamics are identified using excitation
experiments. From the input-output relations linear models
are identified. These experiments are conducted with a wind
inflow speed of 9 m/s. Wake mixing is beneficial when tur-
bines are operating in below-rated conditions [6]. Excitation
frequencies which induce wake mixing are also wind speed
dependent and can be characterized by the Strouhal number,

St =
feD

V
, (1)

where fe is the excitation frequency in Hertz, D the rotor
diameter in meters and V the free stream wind speed in

Fig. 2. Time domain data for chirp identification experiments.

m/s. Numerical experiments indicate that a Strouhal between
0.15 and 0.50 results in wake mixing, where St = 0.25
is typically considered optimal for a two-turbine wind farm
spaced at 5 rotor diameters [5]. For the NREL 5MW turbine,
used in this work, with a rotor diameter of D = 126 m and
wind inflow speed of 9 m/s, this Strouhal range translates
to a frequency range of 0.011 to 0.036 Hz. It is therefore
important that within this frequency range the linear models
show good agreement with the non-linear dynamics. The
excitation experiments are performed using QBlade [16],
a simulation tool capable of simulating coupled aero- and
hydrodynamics for floating wind turbines. For identification
of GT,β and Gx,β a chirp excitation signal is applied
to the collective blade pitch input β. The chirp input is
logarithmically distributed over the full duration, in total 8
hours of data, of the experiment and covers the frequency
range from 1 mHz to 1 Hz. This frequency range is chosen
such that it excites the dynamics of interest. The input and
output data that will be used for identification are shown in
Figure 2. From the time-domain data two resonance, and
one anti-resonance can be seen in the tower top motion.
Similar results are seen for the thrust data. For identification
of GT,Fw and Gx,Fw , an actual wave field is used as input.
This wave field is defined using a Jonswap spectrum with a
significant wave height Hs = 1.5, peak period Ts = 8 and
gamma shape factor γ = 1. These values represent a wind-
swept wave field for wind speeds around 9 m/s [17]. The
second-order forces excite the system equally over a similar
frequency range as that of the chirp input.

This can be seen in Figure 3, where the top graph shows
the power spectral density of the wave input forces and the
bottom graph shows the power spectra of the output signals.
The power spectra of tower top motion as well as the turbine
thrust two resonances can be identified. Furthermore, even
though the input power of the waves is highest at 0.1 Hz,
for this particular floating turbine equally dominant motions
exist around 0.01 Hz, an order of magnitude lower.
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B. System Identification Using the PBSIDopt Method

For identification, the PBSIDopt method is used [18]. This
method constructs a predictor for a given state sequence. The
system representation that forms the basis for the PBSIDopt

method is given by:

xk+1 = Ãxk + B̃uk +Kkyk, (2a)

yk = Cxk +Duk + ek. (2b)

In (2a) and (2b) Ã = A −KkC and B̃ = B −KkD with,
A ∈ Rn×n, B ∈ Rn×nu , Kk ∈ Rn×ny , C ∈ Rny×n and
D ∈ Rny×n. The state, input, output and innovation signals
are defined by the vectors xk ∈ Rn, uk ∈ Rnu , yk ∈ Rny

and ek ∈ Rny respectively. The Kalman gain is given by
Kk. The system matrices can be retrieved by solving two
least-squares problems:

Xp+1,Np−1 =
[
A B Kk

] Xp,Np−1

Up,Np−1

Ep,Np−1

 , (3a)

Yp,Np =
[
C D

] [Xp,Np

Up,Np

]
+ Ep,Np . (3b)

In (3a) and (3b) Xp+1,Np−1, Up+1,Np−1 and Ep+1,Np−1

represent block-row matrices, e.g.,

Xp+1,Np−1 =
[
xp+1 xp+2 . . . xp+Np

]
. (4)

In (4) p is the past window, i.e., the number of data points
on which the system will be identified and Np is the number
of data points in the data set. Solving (3a) and (3b) would
require information on the full state sequence xk, which
is typically unavailable. It can, however, be reconstructed
using an approach similar to the Observer/Kalman Filter
Identification (OKID) method. This requires defining a new

Fig. 3. Power spectra of input and output data for wave identification.
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Fig. 4. Bode plots of the identified models with their respective identifi-
cation spectra.

variable which is a column vector containing input and
output data:

zk =

[
uk

yk

]
,

and stacked vector over window p,

zpk =
[
z⊤k−p, z⊤k−p+1, . . . , z⊤k−1

]⊤
.

State information can be reconstructed using a stacked data
matrix Z0,p,Np , consisting of entries of zpk:

Z0,p,Np =

[
zp zp+1 . . . zp+Np−1

zp−1 zp . . . zp+Np−2

]
,

the extended observability matrix

Γ̃f =


C

CÃ
...

CÃf−1

 , (5)

in which f > n is the future window, and the extended
controllability matrix K̃p:

K̃p =
[
Ãp−1B̄, Ãp−2B̄, . . . , B̄

]
, (6)

with B̄ =
[
B̃, Kk

]
. An estimate of Xp,Np

can then be
found by solving a singular value decomposition

Γ̃fXp,Np = Γ̃f K̃pZ0,p,Np = UnΣnV⊤
n , (7)

The stacked state sequence, Xp,Np , is retrieved as

Xp,Np
= ΣnV⊤

n . (8)

Having reconstructed Xp,Np
, the original least-squares prob-

lems of (3a) and (3b) can be solved to find the system
matrices.

The operating point chosen for identification is for a wind
speed of 9 m/s. The working point blade pitch angle is
such that the floating wind turbine extracts the maximum
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Fig. 5. Generalized plant with weights used in optimization.

energy from the flow. The resulting thrust, at this operating
point, causes a surge and pitch displacement of the floater.
These transients from the initialization of the simulation last
around 500 seconds and are removed from the data set. The
Bode plots of the identified models are shown in Figure
4. The settings for identification were chosen such that the
linear models showed good agreement with their respective
spectra in the frequency range of 0.010 to 0.035 Hz. These
frequencies cover the range typically used for wake-mixing,
and where second-order wave forces contain the most energy.

III. H∞ CONTROL DESIGN

In this section, the H∞ control design method is intro-
duced. This control design method is chosen since closed-
loop performance can easily be shaped by the design of
performance weights. First, the FWT model given in Fig-
ure 1 will be expanded to a generalized plant for the
synthesis problem. Second, the weights will be introduced
and explained and finally, the results of the H∞ synthesis
will be shown and discussed. Based on this synthesis a
low order fixed-structure controller is derived. This fixed-
structure controller will be used for the simulations.

A. Generalized Plant

Figure 5 shows the FWT model of Figure 1 expanded
to the generalized plant P required for the synthesis prob-
lem [19]. The disturbance caused by the wave force Fw is
the only exogenous input signal to the system.

In this work, two performance signals are specified. The
signal z1 is defined as a weighted difference between the
outputs of GT,Fw

and GT,β . This performance signal is
weighted by Wp aiming to minimize the difference between
these two signals at a desired frequency. If this difference is
driven to zero, the signal coming from the controlled block
GT,β will have to be the same amplitude and exactly in phase
with the disturbance signal, i.e., synchronization between
the two signals. Performance signal z2 is weighted by Wu,
and is used to limit control action. The closed-loop transfer
functions for which the controller will be optimized are:

N1 =
z1
Fw

= Wp

(
−GT,Fw +

GT,βKGx,Fw

1−Gx,βK

)
, (9)

TABLE I
PARAMETERS USED FOR Wp AND Wu

Parameter Value
Kw 20 [-]
ζ 0.01 [-]
ωt 0.016 [Hz]
ωb 0.064 [Hz]
Ku 1 · 106 [-]

and
N2 =

z2
Fw

= Wu

(
KGx,Fw

1−Gx,βK

)
. (10)

Transfer function (9) represents the closed-loop transfer
function from wave forces to performance channel z1, which
is the weighted channel used for synchronisation. Transfer
function (10) is the weighted transfer function weighing the
controller action.

B. Weight Design and Synthesis Results

The weight Wp is designed as an inverted damped notch.
A damped notch filter is ideal for the suppression of a desired
frequency. The general formula for Wp is

Wp = Kw

(
s2 + 2ζs+ ω2

t

s2 + ωbs+ ω2
t

)−1

. (11)

In (11) Kw is a constant that can be used to scale the
weight, ζ is the damping factor, ωt is the target frequency
at which synchronization is desired and ωb is the width of
the notch. Weight Wu is designed as a second-order low-
pass filter, aimed at suppressing control action at frequencies
larger than the synchronization frequency. The weight Wu is
given by:

Wu = Ku
(s+ ωt)

2

(s+ ωb)2
. (12)

The values given in Table I were used for the optimisation.
The scaling factor Ku is large, primarily due to the difference
in magnitude between second-order wave forces and blade
pitch angle. The Robust Control Toolbox will be used in
Matlab to solve the following H∞ minimization problem:

min
K

||N ||∞, N =

[
N1

N2

]
. (13)

Figure 6 shows the results of the H∞ synthesis for the
closed-loop control problem. The inverse of weight Wp is
also included in the figure. At the desired frequency, ωt,
the closed-loop transfer function follows the weight. This
implies that the controller will bring any difference between
the signals from the outputs of GT,Fw

and GT,β to zero. The
roll-off that starts at 0.1 Hz is due to the design of weight
Wu, limiting control action beyond that frequency.

C. Low Order Fixed-Structure Controller

The synthesized H∞ controller is of high order and
typically unsuited to being deployed in an uncertain or non-
linear system. The order can be reduced by designing a
lower-order fixed-structure controller that has a gain only
at the synchronization frequency and achieves the required
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Fig. 6. Optimized closed-loop transfer function compared to weight W−1
p .

phase delay. This lower-order controller is designed to be an
inverted notch filter:

Kf = Ks
s2

s2 + βfωfs+ ω2
f

ωlp

(s+ ωlp)
2 , (14)

in which Ks is constant gain, βf the damping factor, ωf the
frequency of the inverted notch and ωlp is the filter frequency
for the low pass filter.

The low pass filter is added to reduce sensitivity to first-
order wave movements. An inverted notch is chosen because
of its predictable and tunable phase behaviour as well as
having high gain at its phase drop. The notch frequency,
ωf , is based on the phase of the H∞ controller at the
synchronization frequency. The damping factor, βf , can be
used to change the frequency sensitivity of the fixed-structure
controller; the smaller the damping factor the narrower the
peak of the notch and vice versa. The Bode plots of both
controllers are given in Figure 7.

IV. EVALUATION ON LINEAR FWT MODEL

This section will evaluate the controller in time-domain
simulations. The simulations are carried out in Simulink,
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Fig. 7. Comparison of the full H∞ controller with the fixed structure
controller Kf .

using the linear models developed in Section II.

The fixed-structure controller is implemented in the
closed-loop model from Figure 1. The performance of the
closed-loop system is compared to the open-loop implemen-
tation of dynamic induction control. The open-loop data is
generated by setting a sinusoidal input directly on the blade
pitch input of GT,β and Gx,β . Both the open- and the closed-
loop systems will be excited with the same disturbance input.
In this work, the second-order wave forces are represented
using a cosine wave of appropriate amplitude on which a
sine wave with a smaller amplitude and higher frequency is
superimposed. This higher frequency sine wave represents
the system being excited by the first-order waves. The
frequency for both the open-loop implementation and the
disturbance forces are set at ωt. This simplified input is
chosen to focus on the performance of the synchronization
controller.

The blade pitch amplitude in the open-loop simulation is
chosen to be in line with the control action of the closed-loop
controller. The chosen phase difference between the open-
loop input and second-order wave forces represents a worst-
case scenario, i.e., the influence of the waves is almost en-
tirely out of phase with the thrust variation due to blade pitch.
The time domain results, during steady-state operation, are
shown in Figure 8. The controller achieves synchronisation
with the low-frequency thrust variations, using the tower top
displacement as input. The synchronization of the outputs of
GT,β and GT,Fw

results in an increase in the thrust variation.
This contrasts with the open-loop results, which show what
can happen when the effect of these particular waves is
left unaccounted for. With the signals almost completely out
of phase with each other, the resulting thrust variation is
reduced.
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V. CONCLUSION

This work proposes a novel method using the H∞
optimization framework to design controllers that achieve
synchronization between two signals. Linear models were
developed of a floating wind turbine using the PBSIDopt

method. These linear models were implemented within a
generalized plant and used in H∞ synthesis. By changing the
disturbance input contribution from additive to subtractive
within the generalized plant the synthesized controller is
designed for synchronization with the disturbance effect.
Time domain simulations show that synchronization can be
achieved by the optimized controller with an increase in
thrust force variation as a result.

This work is a proof-of-concept of how H∞ synthesis
can be used to achieve synchronization. The controller is
implemented within a linear representation of the FWT
and the simulation is an idealized scenario with a single
sinusoidal wave input signal and is very much a showcase
of the synchronization methodology.
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