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Abstract

In emergency medical service (EMS) the use of optimisation models and Operations Research
techniques is becoming more common. EMS providers incorporate facility location models and
simulation software packages into decision support tools, allowing the extensive evaluation of
‘what-if’ scenarios. We give a literature survey of facility location models applied to EMS and
analyse the properties of one EMS model in particular, namely the Maximal Covering Location
problem (MCLP).

We analyse the sensitivity of the MCLP to changes in the parameters and design approaches to
construct insensitive solutions. Furthermore, we prove performance guarantees for two heuristic
solution methods for the MCLP: the Greedy Search and the Swap Local Search. All solution
methods are numerically evaluated using generated instances and realistic instances based on
The Netherlands.

Our main research contributions are as follows. First, we apply Robust Optimisation to EMS
optimisation models. We derive and analyse a Robust Counterpart formulation for a general
linear constraint under the assumption of a certain polytopal uncertainty structure. Second, we
present a constructive proof of the tight performance guarantee for the Swap Local Search. The
proof explicitly derives the family of worst-case MCLP instances, which have a certain symmetry.
Finally, we perform a thorough computational study for the described methods.

This research is performed to conclude the Master in Applied Mathematics at the Delft University
of Technology in The Netherlands. It is a cooperative project with CWI in Amsterdam, as part of
the REPRO research project on ambulance logistics. CWI is the national research institute for
mathematics and computer science in The Netherlands. For more information on the REPRO
project, see repro.project.cwi.nl.
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1.1 Emergency Medical Service

In case of an out-of-hospital medical emergency it is of vital importance that paramedics arrive
on site swiftly and that the patient(s) can be transported to hospital if needed. This requires
an ambulance and its crew of paramedics to be stationed nearby. It has never been possible to
station ambulances at each road intersection, primarily because this would lead to unacceptably
high costs. Therefore, we have a limited number of ambulances and crews, and should use them
in the most efficient way.

Emergency medical service (EMS) is the organisation and coordination of (out-of-hospital) acute
medical care and transportation in designated regions. EMS typically consists of call centres,
dispatchers, ambulances, and paramedics. For example, the EMS in The Netherlands is divided
into 24 so-called Regional Ambulance Services, each with their own coordination centre and
designated service region (see Figure 1.1.1). To give an indication of the size of the Dutch EMS:
there are in total around 700 ambulances stationed at approximately 200 ambulance bases (see
for example Boers et al. (2010)).

There is a differentiation in the severity, and thus the urgency, of emergency medical calls: A1
calls correspond to life-threatening situations and A2 calls to less severe situations. Furthermore,
ambulances provide planned (non-urgent) transportation of patients between hospitals (or other
locations), which are called B trips. There are approximately 500 000 A1 calls, 250 000 A2 calls,
and 350 000 B trips each year in The Netherlands.

Ambulances aim to arrive on site within certain response time standards: within 15 minutes for
A1 calls and within 30 minutes for A2 calls. Note that the response time includes the time to
handle the call, to dispatch the ambulance, and the travel time. Consequently, an ambulance is
said to ‘cover’ a region if it can reach the area within a certain response time threshold.

Given the available ambulances and the response time standards, emergency medical services
are faced with the challenge to optimise their performance. This often translates to optimisation
problems common in Operations Research, e.g., maximising the number of areas covered by
ambulances.

Figure 1.1.1: The Regional Ambulance Services of The Netherlands distinguished by colour.
(Modified from source: www.zorgatlas.nl.)
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1.2 Mathematical Modelling

Operations Research in the emergency medical service is aimed at finding a balance between
service performance and costs, where the allowed decisions are limited by physical and societal
constraints. Fundamental properties of the EMS are:

• the current state,

• the allowed state changing actions,

• the objective.

In today’s Information Age, the current state of the EMS can be estimated with great accuracy.
Emergency service call centres keep track of incoming calls (location, severity, and call duration),
ambulances have GPS tracking equipment (driving and response times), and hospitals keep
records of the medical outcome (survival rates). The current locations and capacity of ambulance
bases are also known.

The state of the EMS can be altered by actions such as repositioning ambulances, changing
dispatch rules, and reducing ambulance response times by expanding the infrastructure. The
state changing actions can be divided between possible and allowed actions. For instance, it is
(physically) possible to close all ambulance bases. Service performance would decline, resulting
in a life-threatening state. However, such states are not accepted by society, leading to societal
constraints on the performance of the EMS. For example, in The Netherlands a societal constraint
is that the ambulance response time to a call should be less than 15 minutes.

Last but not least, is the objective, a vital component in Operations Research. Given the current
state and allowed actions, what do we want to improve? Common objectives are: reducing costs,
minimising response times, and maximising patient survivability. In practice, the objective is
often a combination of goals, resulting in multi-objective optimisation.

When advising on changes to the emergency medical service, it is important to justify the sug-
gested actions. Mathematical models can contribute to the required justification. In particular,
Mixed Integer Programming optimisation models and simulations are useful for decision support.
The EMS can be abstracted and formulated as an optimisation model: the current state and
allowed actions translate to decision variables and constraints, and the objective is minimised or
maximised. Various changes to the EMS can be quickly evaluated, resulting in suggested actions
to be taken. Simulations can be used as an additional validation of the results.

The formulation of the EMS optimisation model is not a trivial task. It requires abstractions,
assumptions, and simplifications. A complex model is realistic, but often unmanageable. Each
model should be tailored to the desired EMS features and the objective. Consequently, the
results should always be seen in the context of the used model.
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1.3 Research Objectives and Structure

Our research focusses on facility location in the emergency medical service, i.e., the placement of
ambulance bases and the allocation of ambulances to the bases. In particular, we are interested
in Mixed Integer Programming optimisation models. Choosing or formulating a suitable model
is essential for decision support. Therefore, we give a literature survey of EMS facility location
models in Chapter 2, ranging from simplistic to more advanced models.

For any optimisation model it is useful to perform a sensitivity analysis on the parameters. It is
often the case that the required resources rapidly increase near the boundary of the constraints.
For example, increasing coverage from 94% to 95% can significantly and disproportionally in-
crease costs. One can question if such an investment is really necessary. Furthermore, the
parameters are usually estimated from data and can contain small errors. Preferably, the final
solution of the optimisation model should be insensitive to such errors.

Emergency medical service optimisation problems can become impractical if they are difficult
to solve to (near-)optimality. Moreover, commercial software with advanced solution methods is
not always available. Therefore, the performance of solution methods (both exact and heuristic)
should be considered. For example, do simple heuristics have good performance or are advanced
solution methods required? If we use heuristics, can we give performance guarantees?

We will consider a basic model of our survey in detail, called the Maximal Covering Location
problem. In Chapter 3 we perform a sensitivity analysis on the model parameters and design
methods to construct solutions that are insensitive to changes in the parameters. One method
uses a technique called Robust Optimisation, which constructs solutions that remain feasible
under parameter uncertainty.

In Chapter 4 we discuss two heuristic solution methods: the Greedy Search and the Swap Local
Search. We give theoretical performance guarantees for these methods, using the framework of
submodular functions. In particular, we present a tight guarantee for the Swap Local Search. The
corresponding proof is a constructive proof of a family of worst-case instances. Besides worst-case
performance, we also consider the empirical performance for realistic instances. Details on the
implementation are given in Appendix B. Finally, we summarise our findings and suggest topics
for future research in Chapter 5.

We assume that the reader is familiar with the basic concepts of mathematical optimisation,
e.g., Linear Programming, duality, Mixed Integer Programming, and heuristics (see for example
Papadimitriou and Steiglitz (1998)). Other optimisation techniques and terminology are intro-
duced accordingly, with references for further reading. In particular, an informal introduction to
complexity theory is given in Appendix A.
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2.1 Introduction

Facility location has been an active research topic in Operations Research, originally investigated
for military purposes, but has found many purposes in other application areas. One of these
areas is the field of emergency medical service (EMS), where facility location models have been
applied since the 1970’s. The challenge of facility location in EMS is to determine where to place
ambulance bases (facilities) such that a desired service level is attained. For instance, response
times to emergency calls should be minimal.

There are three main types of service goals (objectives) used in EMS:

• maximise the number of regions reachable within predefined maximum response times,

• minimise the average response time to emergency calls,

• minimise the maximum response time to emergency calls.

Service goals are often combined with budget constraints. The three types correspond to coverage
models, p-median models, and p-centre models, respectively. Coverage models are the most
common type in the literature. Furthermore, most models discretise the real world to finite sets
and graphs. Two fundamental sets are the set of all possible locations for ambulance bases and
the set of demand points, i.e., the sources of emergency calls.

We will focus on the (discretised) EMS coverage models, which we classify into deterministic and
probabilistic models. This classification is not binding: when viewed as abstract mathematical
models, some EMS models have a similar structure even though they are classified differently.
The deterministic models are treated in Section 2.2, followed by the probabilistic models in
Section 2.3. Both types of models can be extended to multiple vehicles types (Section 2.4) and
multiple time periods (Section 2.5). This review of EMS models is partially based on the review
papers by Brotcorne et al. (2003), Farahani et al. (2012), Goldberg (2004), Li et al. (2011), and
ReVelle (1989), and the theses by Looije (2013) and Van Buuren (2010).

The models discussed in the next sections will often use the same type of parameters and vari-
ables. We have attempted to unify the notation to make it consistent among all shown models.
The following notation is shared by all models and used in all chapters. All possible ambulance
bases are denoted by the (finite) set I and all demand points by the (finite) set J . Whether we
open a certain base i ∈ I is indicated by the decision variable xi ∈ B. That is, xi = 1 if and
only if base i is opened. Often, at most p ∈ N bases can be opened in total. Each base can cover
(service) a subset of demand points, therefore, we need variables zj ∈ B to keep track of whether
point j ∈ J is serviced: zj = 1 if and only if point j is covered.

Unless stated otherwise, the models assume time independent deterministic demand or stationary
arrivals of calls for each demand point. Coverage properties (parameters) are assumed to be
known and time independent deterministic, and ambulances are identical.
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2.2 Deterministic EMS Models

Two early EMS models are the Location Set Covering model (LSCM) by Toregas et al. (1971)
and the Maximal Covering Location problem (MCLP) by Church and ReVelle (1974). Both
models assume that the requirements for covering a demand point is deterministic and satisfies
an ‘all-or-nothing’ relation. That is, either a point is covered or uncovered, and we know exactly
which one is the case. As a result, we can define coefficients aij ∈ B for i ∈ I and j ∈ J such
that

aij =

{
1 if point j can be covered by base i

0 otherwise
.

The Location Set Covering model (LSCM) is given in Model 2.2.1. As mentioned above, the
decision variable xi denotes whether we open (1) or close (0) base i ∈ I. The objective of the
LSCM is to minimise the number of opened bases whilst covering all demand points. The LSCM
allows us to estimate the maximum number of required bases (subject to the assumptions). Note
that the LSCM is infeasible if any point cannot be covered.

Minimise ∑
i∈I

xi

subject to ∑
i∈I

aijxi ≥ 1 ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I.

Model 2.2.1: Location Set Covering model (LSCM).

The mathematical formulation of the Maximal Covering Location problem (MCLP) has two
equivalent versions, see Model 2.2.2. The parameter p ∈ N is the maximum number of allowed
opened bases and the parameters dj ∈ R≥0 indicate the demand (the weight) of point j ∈ J .
For EMS models it is natural and common to assume that these weights are non-negative. The
MCLP assumes that demand is known and fixed. The decision variable zj indicates whether
demand point j ∈ J is covered (1) or not (0). All other parameters and variables are the same
as in the LSCM.

The objective is to either maximise covered demand or minimise uncovered demand, given that
we can open up to p bases. Both formulations are valid, but we will use the maximisation of
covered demand. The alternative is more similar to the LSCM. As the demand is non-negative,
it is optimal to open exactly p bases. By adding an insignificantly small penalty to opening
a base, we can verify if p bases are indeed necessary. For this reason, we have chosen for the
formulations with inequalities.
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Maximise ∑
j∈J

djzj

subject to∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ zj ∀ j ∈ J , (2.2.2)

xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

Minimise ∑
j∈J

dj(1− zj)

subject to ∑
i∈I

xi ≤ p,∑
i∈I

aijxi + (1− zj) ≥ 1 ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

Model 2.2.2: Maximal Covering Location problem (MCLP).

A model that is strongly connected to the LSCM is the Hierarchical Objective Set Covering model
(HOSC) by Daskin and Stern (1981), see Model 2.2.3. It is similar to the LSCM, but rewards
multiple coverage of demand points (captured by the variables uj). The parameter γ ∈ N is a
positive weight. For instance, if γ is big enough, the objective is to first minimise the number of
opened bases, followed by increasing multiple coverage.

Minimise

γ
∑
i∈I

xi −
∑
j∈J

uj

subject to∑
i∈I

aijxi − uj ≥ 1 ∀ j ∈ J ,

uj ∈ N ∀ j ∈ J ,
xi ∈ B ∀ i ∈ I.

Model 2.2.3: Hierarchical Objective Set Covering model (HOSC).

The Goal-oriented Location Covering model (GLCM) by Storbeck (1982) is related to the three
mentioned EMS models. It approaches facility location from a Goal Programming perspective.
For weight parameter γ ∈ N, the GLCM is shown in Model 2.2.4. The decision variables w+

j and

w−j indicate the overshoot and undershoot in coverage, respectively.

The LSCM, MCLP, HOSC and GLCM show four ways to model the underlying real multi-
criteria objective (minimising costs and maximising coverage). The LSCM enforces coverage
of all demand points and minimises costs, whereas the MCLP maximises coverage for a given
number of bases (a given budget). The HOSC and GLCM models incorporate coverage overshoot
and undershoot in the objective. All four models can be used as a starting point for more complex
models, but mainly the LSCM and MCLP are used as such in the literature. In the next sections
we will discuss several extensions to these models.
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Minimise

−
∑
j∈J

w+
j + γ

∑
j∈J

djw
−
j

subject to∑
i∈I

aijxi − w+
j + w−j = 1 ∀ j ∈ J ,∑
i∈I

xi ≤ p,

w+
j ∈ N ∀ j ∈ J ,

w−j ∈ B ∀ j ∈ J ,
xi ∈ B ∀ i ∈ I.

Model 2.2.4: Goal-oriented Location Covering model (GLCM).

2.2.1 Coverage Neglect

One major shortcoming of the MCLP is that arbitrarily long response times are possible for
uncovered demand points. This is due to the ‘all-or-nothing’ (binary) coverage. As a result,
demand points that are difficult to cover are completely neglected. In the literature there are
several models that try to counteract this negative result by introducing alternative or additional
coverage constraints.

One common approach is to have two types of coverage, for instance, response times within 15
minutes and within 30 minutes. The coverage constraint is that each demand point must be
reached within 30 minutes and the objective is to maximise the (weighted) number of demand
points covered within 15 minutes. The mathematical formulation is as follows. We define

ac15ij =

{
1 if point j can be reached by base i within 15 minutes

0 otherwise
,

ac30ij =

{
1 if point j can be reached by base i within 30 minutes

0 otherwise
.

The more strict coverage constraints can be incorporated in the MCLP by replacing Equa-
tion (2.2.2) with the following constraints:∑

i∈I
ac15ij xi ≥ zj ∀ j ∈ J ,∑

i∈I
ac30ij xi ≥ 1 ∀ j ∈ J .

The resulting model is the Maximal Covering Location problem with Mandatory Closeness Con-
straints by Church and ReVelle (1974). This model can be viewed as a combination of the LSCM
and MCLP. Points that cannot be reached within time (15 minutes) are not completely neglected,
as these must still be reached within 30 minutes.
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Alternatively, we can enforce a minimum average coverage of a certain area. If at least a fraction
of α ∈ [0, 1] of the total demand must be covered, we can add the constraint∑

j∈J
djzj ≥ α

∑
j∈J

dj .

For the MCLP this particular constraint makes little sense, but if we divide all demand points
into regions we can enforce average coverage per region. When such constraints are added to a
model, neglect of a region is prevented.

Finally, there is a whole different class of EMS models that drop the ‘all-or-nothing’ assumption.
These will be treated in Section 2.2.4.

2.2.2 Backup Coverage

In reality, when a region (a demand point) is covered by a base i ∈ I, it does not imply that an
ambulance at base i is available when an emergency accident occurs. All ambulances at the base
could be busy handling other calls. There are probabilistic ways to model these phenomena,
which will be treated in Section 2.3. A deterministic approach is to add backup coverage into
the model.

An early backup coverage model is the Backup Coverage problem (BACOP) by Hogan and
ReVelle (1986). It is the similar to the MCLP, but requires that each point is covered by at least
one base. The objective is to maximise the (weighted) number of points that is covered twice.
This model is referred to as BACOP1. Alternatively, we do not enforce coverage of all points,
but modify the objective. The modified objective is a weighted sum of once and twice covered
demand. This variation is referred to as BACOP2. For weight γ ∈ [0, 1], BACOP2 is shown in
Model 2.2.5.

Maximise

γ
∑
j∈J

djwj + (1− γ)
∑
j∈J

djzj

subject to ∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ wj + zj ∀ j ∈ J ,

zj ≤ wj ∀ j ∈ J ,
xi ∈ B ∀ i ∈ I,

wj , zj ∈ B ∀ j ∈ J .

Model 2.2.5: Backup Coverage problem 2 (BACOP2).

The decision variable wj ∈ B is equal to 1 if point j is covered at least once and zero otherwise.
Note that the constraint zj ≤ wj makes sure that zj is equal to 1 only if point j is covered at
least twice.
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A different backup coverage model is the Backup Double Coverage model of Başar et al. (2009).
In their model a demand point is covered when at least two opened bases are nearby, where the
second base can be further away. A similar but more general approach is the Multiple Coverage
LSCM presented in Batta and Mannur (1990), which will be treated below. Church and Gerrard
(2003) also consider a generalisation of LSCM where multi-level coverage is required.

As the name indicates, the Multiple Coverage LSCM by Batta and Mannur (1990) is based on
the LSCM (see Model 2.2.6). The decision variables yi are the number of (identical) ambulances
to assign at base i ∈ I, implicitly opening base i when yi > 0. The coverage constraints are
as follows. For each demand point j ∈ J we have an upper bound on the number of vehicles
needed to cover this point, denoted by βj ∈ N. Order the required vehicles from 1 to βj , where
vehicle 1 is the nearest and vehicle βj the farthest vehicle from point j. For covering point j,
the first vehicle must be within a certain time limit, e.g., 15 minutes. Similarly, the k-th vehicle
has a certain time limit, where k ∈ {1, . . . , βj}. Which bases satisfy these time limits is encoded
into akij ∈ B for i ∈ I. Note that the coverage constraints assume that the time limits are
non-decreasing in k.

Minimise ∑
i∈I

yi

subject to∑
i∈I

akijyi ≥ k ∀ k ∈ {1, . . . , βj}, j ∈ J ,

yi ∈ N ∀ i ∈ I.

Model 2.2.6: Multiple Coverage LSCM.

Additional constraints on the number of available vehicles are required for models based on
MCLP. Common constraints are:∑

i∈I
yi ≤ q,

yi ≤ qixi ∀ i ∈ I.

The parameter q ∈ N denotes the total number of available ambulances and the parameters
qi ∈ N the allowed maximum number of vehicles assigned to base i ∈ I. Of course, if a base is
closed, no vehicles can be assigned to it.

A model that combines several of the mentioned model extensions is the Double Standard model
(DSM) by Gendreau et al. (1997), see Model 2.2.7. The objective is to maximise demand covered
by two vehicles within 15 minutes, such that a fraction of α ∈ [0, 1] of the total demand is covered
at least by one vehicle within 15 minutes. Furthermore, all demand points must be covered within
30 minutes. At most p ∈ N bases can be opened and each base i ∈ I can accommodate at most
qi ∈ N ambulances. The total number of ambulances is limited to q ∈ N.
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Maximise ∑
j∈J

djzj

subject to ∑
i∈I

xi ≤ p,∑
i∈I

yi ≤ q,

yi ≤ qixi ∀ i ∈ I,∑
i∈I

ac15ij yi ≥ wj + zj ∀ j ∈ J ,∑
i∈I

ac30ij yi ≥ 1 ∀ j ∈ J ,

zj ≤ wj ∀ j ∈ J ,∑
j∈J

djwj ≥ α
∑
j∈J

dj ,

xi ∈ B ∀ i ∈ I,
yi ∈ N ∀ i ∈ I,

wj , zj ∈ B ∀ j ∈ J .

Model 2.2.7: Double Standard model (DSM).

A variation on the DSM is the DSM with Limited Coverage Capacity by Doerner et al. (2005). It
modifies two coverage constraints into soft constraints by penalising the objective for violations
of these constraints (similar to Lagrangian relaxation). Furthermore, the model balances the
assignment of demand to the bases with a balance parameter τ ∈ R≥0:

dj∑
i∈I aijyi

≤ τ ∀ j ∈ J .

In fact, this constraint is also relaxed and deviations are penalised in the objective.

We have discussed several coverage constraint from the literature. Many can be placed within a
general framework for coverage, which we will describe in the next section.

2.2.3 General Coverage Constraints

In order to cover demand point j ∈ J certain conditions have to be satisfied, such as proximity
to opened bases. We assume that these conditions are defined in terms of elementary properties
of the ambulance bases I. In addition, these elementary properties should be independent of the
decisions made in the location problem, hence they can be determined a priori in a preprocessing
phase. With these assumptions we can derive a general formulation for a broad class of coverage
constraints.
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An example of a common elementary property is whether emergency vehicles from base i ∈ I
can reach point j within a certain amount of time, e.g., within 15 minutes. As before, we define
aij ∈ B as follows:

aij =

{
1 if point j can be reached by base i within 15 minutes

0 otherwise
. (2.2.3)

Looije (2013) considers the elementary property whether a demand point can be reached within
time followed by a trip to hospital, where the total time cannot exceed a predefined threshold.
Another common elementary property is whether a base has certain medical facilities. In general,
we have a set R of elementary properties and for each r ∈ R we can define arij ∈ B with i ∈ I
and j ∈ J such that

arij =

{
1 if property r holds for base i and point j

0 otherwise
.

From these elementary properties we can construct a set C of elementary conditions for covering
point j ∈ J , which are of the form ∑

i∈I
a
r(c)
ij xi ≥ bcj , (2.2.4)

where bcj ∈ N≥1 and r(c) ∈ R is the corresponding elementary property of elementary condition
c ∈ C. For example, we may require that at least two opened bases are within 15 minutes of
point j. With aij defined as in Equation (2.2.3), the condition can be formulated as∑

i∈I
aijxi ≥ 2.

For each elementary condition c based on property r(c) we introduce a binary variable wcj ∈ B.
This variable is equal to one if and only if the elementary condition (2.2.4) is satisfied:∑

i∈I
a
r(c)
ij xi ≥ bcjwcj ,∑

i∈I
a
r(c)
ij xi ≤ (bcj − 1) +Mwcj , (2.2.5)

wcj ∈ B.

Equation (2.2.5) is required to force wcj = 1 if Equation (2.2.4) holds. Here, M ∈ R≥0 is a
suitably large constant (the ‘big-M ’). It is often sufficient to take M = p or M = p+ q. Do note
that using (bcj − 1) is valid, since the left-hand side of Equation (2.2.5) is integral.

To handle complements of elementary conditions (i.e., to model ‘smaller than’-inequalities), we in-
troduce the complementary variable wcj ∈ B for each wcj , with the additional condition that

wcj + wcj = 1 ∀ c ∈ C, j ∈ J .

Hence, we can define the set C = {c : c ∈ C} of complementary conditions. For a coherent
notation we need to introduce ċ, which means that it is either a standard condition (ċ = c ∈ C)
or a complementary condition (ċ = c ∈ C).
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More complex conditions for coverage can be constructed using logical formulas with wcj as a
literal, e.g., consider the abstract logical condition based on certain elementary conditions c1, c2,
c3, and c4:

wc1j ∨ (wc2j ∧ (¬wc3j ∨ w
c4
j )). (2.2.6)

As is known, all logical formulas can be translated to equisatisfiable formulas in conjunctive
normal form by introducing dummy literals. For example, by introducing dummy literal ζ we
can rewrite (2.2.6) to

(wc1j ∨ ζ) ∧ (¬ ζ ∨ wc2j ) ∧ (¬ ζ ∨ ¬wc3j ∨ w
c4
j ).

Thus, we can assume that each coverage condition is in conjunctive normal form, taking into
account that the set of elementary conditions also contains dummies. Each dummy condition
c ∈ C is associated with a dummy property r(c) ∈ R. Of course, we also add the complementary
variable as described above. Therefore, each condition is a conjunction of clauses, where each
clause is a finite disjunction of literals.

For demand point j ∈ J we denote the overall coverage condition by the set Fj ⊆ 2C∪C with

clauses as elements, where 2C∪C denotes the power set of C ∪ C. Each clause f ∈ Fj consists of
the disjunction of (complementary) elementary conditions (encoded in wcj and wcj). Recall that

an elementary condition ċ ∈ f can be either standard (ċ = c ∈ C) or complementary (ċ = c ∈ C).
For given xi ∈ B (i ∈ I), the coverage of point j ∈ J can now be determined as follows. First,
check each elementary condition:∑

i∈I
a
r(c)
ij xi ≥ bcjwcj ∀ c ∈ C,∑

i∈I
a
r(c)
ij xi ≤ (bcj − 1) +Mwcj ∀ c ∈ C,

wcj + wcj = 1 ∀ c ∈ C,
wcj , w

c
j ∈ B ∀ c ∈ C.

Notice that we check complementary elementary conditions by evaluating their standard coun-
terpart. Next, determine if all clauses of the coverage condition are satisfied, that is, if point j
is covered: ∑

ċ∈f

wċj ≥ zj ∀ f ∈ Fj ,

zj ∈ B.

These coverage constraints can be generalised further by incorporating the variable yi ∈ N with
i ∈ I, where yi equals the number of emergency vehicles placed at base i (as usual). We can
construct similar coverage conditions as those based on xi and include them into the model. To
differentiate between elementary properties based on the ambulance base and those based on the

number of vehicles, we use a
rx(c)
ij and a

ry(c)
ij , respectively. Thus, the new constraints are of the

form: ∑
i∈I

(
a
rx(c)
ij xi + a

ry(c)
ij yi

)
≥ bcjwcj ∀ c ∈ C, j ∈ J .
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In conclusion, we have the general coverage constraints:∑
i∈I

(
a
rx(c)
ij xi + a

ry(c)
ij yi

)
≥ bcjwcj ∀ c ∈ C, j ∈ J ,

∑
i∈I

(
a
rx(c)
ij xi + a

ry(c)
ij yi

)
≤ (bcj − 1) +Mwcj ∀ c ∈ C, j ∈ J , (2.2.7)

wcj + wcj = 1 ∀ c ∈ C, j ∈ J ,∑
ċ∈f

wċj ≥ zj ∀ f ∈ Fj , j ∈ J ,

wcj , w
c
j ∈ B ∀ c ∈ C, j ∈ J .

These constraints can be used to construct initial models which can be analysed and refor-
mulated, leading to simplifications and more computationally efficient models. For example,
Equation (2.2.7) can often be omitted.

2.2.4 Survival and Decay Models

As mentioned when discussing coverage neglect, the ‘all-or-nothing’ coverage makes no distinction
within each type of coverage (covered or uncovered). In reality, being able to respond within
5 instead of 15 minutes significantly improves the survival rates of the patients. A model that
uses ‘all-or-nothing’ coverage cannot incorporate this distinction. As a result, so-called survival
models have been developed.

Many survival models explicitly assign demand points to bases and can be viewed as modifications
of the p-Median model. An early modification by Toregas et al. (1971) of the p-Median model
for EMS is shown in Model 2.2.8. The decision variables uij denote the fraction of demand of
point j ∈ J assigned to base i ∈ I. Such an assignment has an associated cost γij ∈ R. All
demand of a point must be allocated to opened bases by Equations (2.2.8) and (2.2.9).

Minimise ∑
i∈I

∑
j∈J

γijuij

subject to∑
i∈I

xi ≤ p,∑
i∈I

aijuij = 1 ∀ j ∈ J , (2.2.8)

uij ≤ xi ∀ i ∈ I, j ∈ J , (2.2.9)

uij ∈ [0, 1] ∀ i ∈ I, j ∈ J ,
xi ∈ B ∀ i ∈ I.

Model 2.2.8: Modified p-Median Model.
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An example of a survival model is the Maximum Survival Location problem by Erkut et al. (2008).
It is similar to Model 2.2.8, but formulated as a maximisation problem with objective∑

j∈J
dj
∑
i∈I

φijuij .

The covered demand is weighted by a survival function φ : R → [0, 1], that is, a decay or non-
increasing function. For example, φ can be based on response times, where longer response times
result in lower survival values. Each assignment uij has a corresponding survival weight φij .
Furthermore, Equation (2.2.8) is replaced by∑

i∈I
uij = 1 ∀ j ∈ J ,

as φij = 0 if aij = 0. A similar approach is the Partial Coverage MCLP by O. Karasakal and
E. Karasakal (2004).

The idea of incorporating a decay function in an EMS model also resulted in Cooperative models,
see Berman et al. (2011). Although these models still use ‘all-or-nothing’ coverage, a decay is
embedded in the coverage constraints. In Cooperative models an opened base emits a ‘signal’ φ
with decaying intensity over distance (response time). Each demand point receives signals from
all opened bases and has a certain signal intensity threshold τ : the demand point is covered only
if the total signal intensity exceeds this threshold. See Model 2.2.9 for the Cooperative MCLP.
For similar models, see Berman et al. (2010).

Maximise ∑
j∈J

djzj

subject to ∑
i∈I

xi ≤ p,∑
i∈I

φijxi ≥ τzj ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

Model 2.2.9: Cooperative MCLP.
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2.3 Probabilistic EMS Models

The deterministic models do not take into account the busy times (the limited availability) of
ambulances. This is only valid if there are surplus ambulances available at each base. However, in
reality this would lead to unreasonably high costs and therefore the total number of ambulances
is limited. The class of probabilistic EMS models take into account the limited availability of
ambulances by considering their busy fractions and reliability. These models assume stationary
distributions for the arrival of calls and consider limiting properties of queues.

The busy fraction ρ ∈ [0, 1] of an ambulance is the long-term fraction of time an ambulance
is busy handling emergency calls, i.e., not available to respond to new calls. It is common in
EMS to assume that calls arrive according to independent Poisson processes and service is done
according to a first-come, first-served (FCFS) policy. No calls are lost. For instance, suppose
a base has incoming calls according to a Poisson process with arrival rate λ ∈ R≥0. At the
base k ∈ N ambulances are stationed that need on average µ ∈ R≥0 time to handle a call, with
λµ ≤ k. Results for M/G/k queues imply that the busy fraction of such ambulances is:

ρ =
λµ

k
.

Note that a system is stable only if ρ < 1. There are also EMS models where the FCFS policy is
relaxed. For instance, Silva and Serra (2008) consider priority levels for emergency calls.

The Maximum Expected Covering Location problem (MEXCLP) by Daskin (1983) extends the
MCLP by including the ambulance busy fraction. The model assumes independently operating
ambulances and a fixed busy fraction ρ ∈ (0, 1) for all ambulances, independent of the assigned
base. The MEXCLP tends to overestimate coverage due to the server independence assumption.
See Model 2.3.1 for the mathematical formulation.

Maximise ∑
j∈J

dj

q∑
k=1

(1− ρ)ρk−1zkj

subject to∑
i∈I

xi ≤ p,∑
i∈I

yi ≤ q,

yi ≤ qixi ∀ i ∈ I,∑
i∈I

aijyi ≥
q∑

k=1

zkj ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
yi ∈ N ∀ i ∈ I,
zkj ∈ B ∀ j ∈ J , k ∈ {1, . . . , q}.

Model 2.3.1: Maximum Expected Covering Location problem (MEXCLP).
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The variables xi and yi denote whether base i ∈ I is opened and the number of stationed vehicles
at the base. Both are limited by parameters p, q and qi. As usual, aij ∈ B indicates if base i ∈ I
can cover demand point j ∈ J . Associated to each demand point j ∈ J are variables zkj ∈ B,

where zkj = 1 only if at least k ambulances cover point j. As the total number of ambulances is
limited to q, we have k ∈ {1, . . . , q}.

The probability that all k ambulances near a point j ∈ J are busy is given by ρk. Hence, the
expected demand coverage for point j is dj(1− ρk). Increasing the number of ambulances near
j from k − 1 to k results in a marginal gain of dj(1− ρk)− dj(1− ρk−1) = dj(1− ρ)ρk−1. The
objective is equal to demand multiplied by the sum of these marginal gains.

For any optimal solution it holds that zk+1
j = 1 implies zkj = 1 for k ∈ {1, . . . , q− 1}. Therefore,

we do not have to include the constraints zk+1
j ≤ zkj . Also, for ρ ∈ (0, 1) the optimal solution

satisfies the capacity constraints with equality.

In a similar way, the Maximum Expected Survival Location problem (MEXSLP) in Erkut et al.
(2008) incorporates busy fractions into EMS survival models.

2.3.1 Hypercube Queueing Correction

The Hypercube model is presented by Larson (1974) and gives theoretical performance measures
for a queueing system. The model assumes independent Poisson arrivals of calls and Exponential
service times, independent of base assignment or call origin (demand point). Only one ambulance
is required to handle a call. Furthermore, each demand point has a preferred service order of
bases, e.g., based on distance.

Suppose there are in total q ∈ N ambulances stationed. The Hypercube model uses 2q states
(idle or busy ambulance) for which the steady state probabilities are determined. From these
probabilities various performance measures can be determined. The Hypercube model can be
incorporated into an optimisation procedure, but is limited to small number of q for tractability
reasons.

Larson (1975) provides an approximation for the Hypercube model, called A-Hypercube, which
is based on the fact that the Hypercube states resemble the states of M/M/q/∞ queues. The
steady state distribution is well-known for these queues. Consider the case that a call has to be
assigned to an ambulance. Instead of using the preferred base order, a random order is used. If
the selected ambulance is busy, a new random ambulance is selected without replacement. The
probability that the k-th selected ambulance is the first free (idle) ambulance is given by:

Q(q, ρ, k − 1)(1− ρ)ρk−1.

The factor Q is called the A-Hypercube Queueing correction factor, defined as:

Q(q, ρ, k) =

∑q−1
k′=k q

k′ρk
′−k(q − k − 1)!(q − k′)/q!(k′ − k)!

(1− ρ)
∑q−1
k′=0 ρ

k′(qk′/k′!) + qqρq/q!
∀ k ∈ {0, . . . , q − 1}. (2.3.1)

These factors correct the ambulance busy fractions, which are based on independent service.
Correction factors based on M/M/q/q queues are also given in Larson (1975). Note that these
correction factors are approximations, as the preference order is not random in reality.
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There are several extensions to the Hypercube and A-Hypercube model. Burwell et al. (1993)
consider preference order ties in the Hypercube model. General service times are added to the
A-Hypercube model by Jarvis (1985). Other modifications of the Hypercube model are shown
in Geroliminis, Karlaftis, and Skabardonis (2006), Geroliminis, Karlaftis, Stathopoulos, et al.
(2004), and Iannoni and Morabito (2007).

The Adjusted MEXCLP by Batta, Dolan, et al. (1989) incorporates the A-Hypercube correction
factors into the MEXCLP. The only difference with MEXCLP is the objective. The new objective
is given by

∑
j∈J

dj

q∑
k=1

Q(q, ρ, k − 1)(1− ρ)ρk−1zkj ,

where Q is the A-Hypercube correction factor defined in Equation (2.3.1). McLay (2009) extends
the Adjusted MEXCLP with two types of servers.

2.3.2 Stochastic Response Times and Preferred Bases

Besides server dependence, uncertainty in the response times can be considered. Most of the
preceding models used a binary parameter aij to indicate whether base i ∈ I covers demand
point j ∈ J . Instead of this binary parameter we can use the probability pij ∈ [0, 1] that the
response time is less than a certain threshold. Note that this does require remodelling of the
coverage constraints (where summing over probabilities makes no sense). Using probabilities to
capture uncertain response times is somewhat similar to the EMS survival models.

A non-linear model that uses stochastic response times is the MEXCLP modification by Goldberg,
Dietrich, et al. (1990). This model also includes preferred bases for each demand point. See
Model 2.3.2 for the formulation. For the derivation it is useful to define the bijective mapping
π : {1, . . . , p} × J → I that denotes the preferred bases for each point. That is, π(k, j) is the
k-th preferred base of point j. Suppose the busy fractions ρi of base i ∈ I are given, where a
base is busy if all its ambulances are. The probability that an ambulance from the k-th preferred
base responds to a call from point j is equal to the probability that the k-th preferred base is
available (not busy) and more preferred bases are busy:

(1− ρπ(k,j))

k−1∏
k′=1

ρπ(k′,j).

This term is multiplied by the probability pπ(k,j)j that an available ambulance at base π(k, j)
will reach point j in time. However, the base preferences are decision variables in this model.
Thus, the function π is unknown in advance. The binary decision variable ukij indicates if opened
base i ∈ I is the k-th preferred open base of point j ∈ J . For each k ∈ {1, . . . , p} at most
one base can be the k-th preferred base of point j. Furthermore, each base can have only one
preference number with respect to demand point j.

This leads to the following adjustment of the probability:

∑
i∈I

pij(1− ρi)ukij
k−1∏
k′=1

∑
i′∈I

ρi′u
k′

i′j .
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This formulation is valid, since the constraints on the decision variables ukij imply that any
feasible solution has a corresponding bijection π.

The busy fractions ρi are also variables and determined by non-linear equations. The model
assumes that the busy fractions are independent of the state of the underlying queueing system.
The stochastic response times are also ignored and average service times are used. Let λj be the
arrival rate of calls from point j and µij ∈ R≥0 be the average service time of base i for a call
from point j. Assume that each ambulance base has a fixed total service time τ ∈ R≥0 available.
The busy fractions must satisfy:

ρi =
∑
j∈J

λjµij
τ

p∑
k=1

(1− ρi)ukij
k−1∏
k′=1

∑
i′∈I

ρi′u
k′

i′j ,

which is similar to the terms in the objective.

If a predefined preference order exists (e.g., for point j base i is preferred to base i′), it can be
included by adding the constraint

p∑
k=1

kukij ≤
p∑
k=1

kuki′j + p(1− xi′).

Similar constraints are used in Borrás and Pastor (2002). An extension with allocation of am-
bulances is given in Goldberg and Paz (1991).

Maximise

∑
j∈J

dj

p∑
k=1

∑
i∈I

pij(1− ρi)ukij
k−1∏
k′=1

∑
i′∈I

ρi′u
k′

i′j

subject to∑
i∈I

xi ≤ p,∑
i∈I

ukij ≤ 1 ∀ j ∈ J , k ∈ {1, . . . , p},

p∑
k=1

ukij ≤ 1 ∀ i ∈ I, j ∈ J ,

ukij ≤ xi ∀ i ∈ I, j ∈ J , k ∈ {1, . . . , p},

ρi =
∑
j∈J

λjµij
τ

p∑
k=1

(1− ρi)ukij
k−1∏
k′=1

∑
i′∈I

ρi′u
k′

i′j ∀ i ∈ I,

ρi ∈ [0, 1] ∀ i ∈ I,
ukij ∈ B ∀ i ∈ I, j ∈ J , k ∈ {1, . . . , p},
xi ∈ B ∀ i ∈ I.

Model 2.3.2: Non-linear MEXCLP with Stochastic Response Times.
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A similar non-linear model is described in Ingolfsson et al. (2008). A linear variation is the model
in Kommer, Zuzáková, et al. (2012) where preferred ambulances instead of preferred bases are
considered. The assignment of ambulances to bases is included in the model and the decision
variables ukij ∈ B indicate whether for point j the k-th preferred ambulance is located at base
i. A fixed busy fraction is assumed for all ambulances, independent of the allocation to bases.
Model 2.3.3 shows the mathematical model.

Maximise ∑
j∈J

dj

q∑
k=1

(1− ρ)ρk−1
∑
i∈I

piju
k
ij

subject to ∑
i∈I

xi ≤ p,∑
i∈I

yi ≤ q,

yi ≤ qixi ∀ i ∈ I,∑
i∈I

ukij ≤ 1 ∀ j ∈ J , k ∈ {1, . . . , q},

p∑
k=1

ukij ≤ yi ∀ i ∈ I, j ∈ J ,

ukij ∈ B ∀ i ∈ I, j ∈ J , k ∈ {1, . . . , q},
xi ∈ B ∀ i ∈ I,
yi ∈ N ∀ i ∈ I.

Model 2.3.3: MEXCLP with Stochastic Response Times.

Goal Programming variants with stochastic response times have also been developed. For in-
stance, the model in Alsalloum and Rand (2006) includes constraints such as∑

i∈I

∑
j∈J

djpijuij + w−0 =
∑
j∈J

dj , (2.3.2)

and

q∑
k=1

τkyki −
∑
j∈J

djuij − w+
i = 0 ∀ i ∈ I. (2.3.3)

The decision variable uij ∈ [0, 1] denotes the fraction of demand from point j ∈ J allocated to
base i ∈ I. In Equation (2.3.2), w−0 ∈ R≥0 is equal to the uncovered demand and is penalised in
the objective. Furthermore, yki ∈ B indicates if there are at least k vehicles stationed at base i.
The parameter τk ∈ R≥0 is the additional demand a base can cover when increasing the number
of assigned ambulances at a base from (k − 1) to k. The variable w+

i ∈ R≥0 in Equation (2.3.3)
keeps track of unused capacity at base i and is penalised as well.
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2.3.3 Reliability Constraints

Busy fractions of ambulances can be incorporated implicitly by considering the reliability of
service. Let α ∈ [0, 1] be the desired service reliability, i.e., the probability that an ambulance is
available when an emergency accident occurs. Suppose we are given a fixed busy fraction ρ for
all ambulances. If k vehicles cover point j, the probability that no ambulances are available is ρk.
For the required reliability, we have assign vehicles to bases that cover point j such that

1− ρ
∑

i∈I aijyi ≥ α ⇐⇒
∑
i∈I

aijyi ≥
⌈

log (1− α)

log ρ

⌉
.

Here, the operator d·e returns the smallest integer greater than or equal to the argument. If the
busy fraction is not known, the following regional estimation can be used. Let Jj ⊆ J be the
demand points sufficiently near j ∈ J (including j), depending on some metric. Estimate the
busy fraction for point j ∈ J by

ρj =
µ
∑
j′∈Jj

λj′

τ
∑
i∈I aijyi

.

The numerator is the total amount of work near point j and the denominator the service capacity
near point j. The parameter µ ∈ R≥0 is the average service time for an arbitrary call, λj ∈ R≥0

the arrival rate of calls from point j and τ ∈ R≥0 the service capacity of one ambulance. See
also ReVelle and Hogan (1989b). A combination of this estimate and the reliability constraint
leads to ∑

i∈I
aijyi ≥ βj ,

1−

(
µ
∑
j′∈Jj

λj′

τβj

)βj

≥ α.

These constraints are defined for each demand point j ∈ J . The parameter βj can be determined
numerically a priori by simply increasing its value and checking the reliability constraint.

The Maximum Availability Location problem (MALP) by ReVelle and Hogan (1989a) incorpo-
rates these reliability constraints. See Model 2.3.4, where βj is defined either for a fixed busy
fraction or estimated as shown above.

Another way to determine parameters βj is given in Marianov and ReVelle (1994) and Marianov
and ReVelle (1996). They assume that demand varies little between adjacent base regions and
that travel times are insignificant with respect to service times. Thus, flows between regions
cancel each other and each region is isolated. The system is modelled to have Poisson arrivals,
Exponentially distributed service times, and loss of calls (no queue). Let ρj = λj/µj , where µj is
the average service time for calls from point j. For reliability α the parameter βj is the smallest
integer such that

1
βj !ρ

βj

j∑βj

k=0
1
k!ρ

k
j

≤ 1− α.

The left-hand side of this inequality is the steady-state probability that no ambulances are
available near point j (the Erlang loss formula).
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Maximise ∑
j∈J

djzj

subject to ∑
i∈I

xi ≤ p,∑
i∈I

yi ≤ q,

yi ≤ qixi ∀ i ∈ I,∑
i∈I

aijyi ≥ βjzj ∀ j ∈ J , (2.3.4)

xi ∈ B ∀ i ∈ I,
yi ∈ N ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

Model 2.3.4: Maximum Availability Location problem (MALP).

The Extended Maximum Availability Location problem (EMALP) by Galvão et al. (2005) re-
places the coverage constraint of the MALP model (Equation (2.3.4)) by a non-linear coverage
constraint:1−

∏
{i∈I:aij=1}

ρyii Q

(
q, ρ,

∑
i′∈I

ai′jyi′ − 1

)− α
 zj ≥ 0 ∀ j ∈ J .

This expression evaluates whether the service reliability is at least α. For each base i ∈ I there
is a busy fraction ρi for the assigned ambulances, with average systemwide busy fraction ρ. The
factors Q are the A-Hypercube queueing correction factors defined in Equation (2.3.1), with
Q(q, ρ,−1) defined as zero.

Instead of using busy fractions to define reliability levels, reliability can be expressed in terms of
probabilities of serviced calls. An example is the Reliability Perspective model (Rel-P) by Ball
and Lin (1993), see Model 2.3.5. The model assumes that the number of calls handled by each
base during a certain time period is uncertain. Furthermore, it is independent of the allocation
of ambulances to bases and of calls at other bases. Define the discrete cumulative distribution
function Fi such that Fi(k) is the probability that k ∈ N or less ambulances are sufficient to
handle the calls of base i ∈ I. That is, (1−Fi(k)) is the probability that k+1 or more ambulances
are needed.

The decision variable yki indicates if exactly k vehicles are stationed at base i ∈ I. Assigning k
ambulances to a base has associated cost γki . As reliability constraint we have:

∏
{i∈I:aij=1}

qi∏
k=1

(1− Fi(k))
yki ≤ 1− α ∀ j ∈ J .
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That is, the probability that the arriving calls of all nearby bases exceed the base capacities is
less than (1− α). These constraints can be linearised by taking the logarithm:

∑
i∈I

aij

qi∑
k=1

log (1− Fi(k))yki ≤ log (1− α) ∀ j ∈ J .

Minimise ∑
i∈I

qi∑
k=1

γki y
k
i

subject to ∑
i∈I

xi ≤ p,

yki ≤ xi ∀ k ∈ {1, . . . , qi}, i ∈ I,
qi∑
k=1

yki ≤ 1 ∀ i ∈ I,

∑
i∈I

aij

qi∑
k=1

log (1− Fi(k))yki ≤ log (1− α) ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
yki ∈ B ∀ k ∈ {1, . . . , qi}, j ∈ J .

Model 2.3.5: Reliability Perspective model (Rel-P).

When assuming that the number of calls from a demand point are uncertain with given cu-
mulative distribution function, we can apply the model from Beraldi, Bruni, and D. Conforti
(2004). The demand at a point is assumed to be independent of the other points. The model
allocates ambulances at bases to each demand point in such a way that reliable service is guar-
anteed. Again the required number of ambulances is determined using the cumulative demand
distribution and linearised using logarithms.

Other uses of reliability are the Local Reliability MEXCLP (LR-MEXCLP) by Sorensen and
Church (2010) and the Hierarchical Queueing LSCM (HiQ-LSCM) by Marianov and Serra (2001).
The Local Reliability MEXCLP (LR-MEXCLP) by Sorensen and Church (2010) is similar to
MEXCLP, only the busy fraction coefficients are replaced by service reliability coefficients. This
approach can also be viewed as a survival model.

The Hierarchical Queueing LSCM (HiQ-LSCM) by Marianov and Serra (2001) uses two hierar-
chical levels of bases (low and high level), where a proportion of demand handled by low level
bases is referred to high level bases. The reliability constraints enforce that the probability that
a call enters a queue with a length above a certain threshold is at most α. To determine these
constraints, steady state probabilities of M/M/c queues are used (where c ∈ N is the number of
servers).
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2.3.4 Loss Models

Two recent EMS models by Restrepo (2008) try to minimise the expected number of calls for
which the response time is too long and are lost. In particular, the models use a queueing system
with no queues allowed. The calls occurring when all ambulances are busy are considered to be
lost. For performance measures this is reasonable if short response times are required, which is
the case in EMS.

The first model is the Island model, see Model 2.3.6. The model assumes that portions of
demand are allocated a priori to each base, resulting in call arrival rates λi for base i ∈ I.
Furthermore, average service time for calls handled by base i is set to µi. The non-linear coef-
ficient in the objective is the Erlang loss formula, which we have also encountered in reliability
constraints.

An extension is the Overflow model of Restrepo (2008), where the assignment of demand is a
decision variable. That is, λi are variables and the following constraints are added∑

i∈I
λi = Λ,

λi ∈ R≥0 ∀ i ∈ I,

where Λ ∈ R≥0 is the total demand.

Minimise

∑
i∈I

λi

(
1
yi!

(λiµi)
yi

1
k!

∑yi
k=0(λiµi)k

)

subject to ∑
i∈I

xi ≤ p,∑
i∈I

yi ≤ q,

yi ≤ qixi ∀ i ∈ I,
xi ∈ B ∀ i ∈ I,
yi ∈ N ∀ i ∈ I.

Model 2.3.6: Island model.

2.3.5 Stochastic Programming Models

When facing uncertainty, a valid strategy is to discern several scenarios for which we want to
determine optimal EMS designs. For uncertain demand, the probability distribution can be
approximated by a finite set of scenarios S. The number of scenarios should not be extremely
large, as computational tractability issues arise. Use of decomposition methods is usually bene-
ficial.
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The Two-Stage Stochastic LSCM model by Beraldi and Bruni (2009) applies Stochastic Pro-
gramming with uncertain demand in the field of EMS. The model discerns two stages: in the
first stage the opened bases and the number of stationed ambulances need to be determined, in
the second stage demand points are assigned to bases. See Model 2.3.7 for the mathematical
formulation.

As mentioned, we have a set of scenarios S with associated probability ps ∈ [0, 1] for s ∈ S. The
decision variable usij ∈ B indicates whether demand point j ∈ J is assigned to (opened) base
i ∈ I under scenario s ∈ S. Furthermore, each vehicle can handle τ ∈ R≥0 calls.

The model has two important constraints: all demand must be assigned to bases and all demand
must be serviced. That is, the assigned demand to a base i ∈ I cannot exceed its service capacity
(determined by τyi). These constraints are modelled as probabilistic constraints, i.e., they must
hold with probability α ∈ [0, 1]. Therefore, the variable ws ∈ B is introduced to keep track
of whether the constraints hold (0) or not (1) for scenario s ∈ S. This is done using ‘big-M ’
parameter M ∈ R≥0. The following constraint enforces the required reliability:∑

s∈S
psws ≤ (1− α).

The objective is to minimise expected costs, where each decision has a certain cost γ1
i (xi), γ

2
i

(yi), or γ3
ij (usij) for i ∈ I and j ∈ J . A similar approach is shown in Noyan (2010).

Minimise ∑
i∈I

(γ1
i xi + γ2

i yi) +
∑
s∈S

ps
∑
i∈I

∑
j∈J

γ3
iju

s
ij

subject to

yi ≤ qixi ∀ i ∈ I,∑
j∈J

λsiaiju
s
ij ≤ τyi +Mws ∀ i ∈ I, s ∈ S,

∑
i∈I

aiju
s
ij +Mws ≥ 1 ∀ j ∈ J , s ∈ S,

usij ≤ xi ∀ i ∈ I, s ∈ S,∑
s∈S

psws ≤ (1− α),

usij ∈ B ∀ i ∈ I, j ∈ J , s ∈ S,
ws ∈ B ∀ s ∈ S,
xi ∈ B ∀ i ∈ I,
yi ∈ N ∀ i ∈ I.

Model 2.3.7: Two-Stage Stochastic LSCM model.
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A different approach is the Maximal Expected Coverage Relocation problem (MECRP) discussed
by Gendreau et al. (2006), see Model 2.3.8. In this model the allowed number of opened bases is
uncertain. It evaluates (p+1) scenarios, S = {0, . . . , p}, where each scenario s ∈ S corresponds to
the case that s bases are opened. The probability of the scenarios are based on the availability of
p ∈ N opened bases, where each base has a given busy fraction ρ ∈ [0, 1]. That is, the probability
of scenario s ∈ S is given by the probability that (p− s) bases are busy:

ps =

(
p

s

)
(1− ρ)sρp−s.

The parameter βs ∈ {0, . . . , s} restricts the number of opened bases during scenario s that are
closed during scenario s + 1. That is, changing which base should be opened is restricted by
Equations (2.3.5), (2.3.6), (2.3.7), and (2.3.8).

Maximise

p∑
s=0

(
p

s

)
(1− ρ)sρp−s

∑
j∈J

djz
s
j

subject to ∑
i∈I

xsi = s ∀ s ∈ {0, . . . , p}, (2.3.5)∑
i∈I

aijx
s
i ≥ zsj ∀ j ∈ J , s ∈ {0, . . . , p},

xsi − xs+1
i ≤ usi ∀ i ∈ I, s ∈ {1, . . . , p− 1}, (2.3.6)∑

i∈I
usi ≤ βs ∀ s ∈ {1, . . . , p− 1}, (2.3.7)

usi ∈ B ∀ i ∈ I, s ∈ {1, . . . , p− 1}, (2.3.8)

xsi ∈ B ∀ i ∈ I, s ∈ {0, . . . , p},
zsj ∈ B ∀ j ∈ J , s ∈ {0, . . . , p}.

Model 2.3.8: Maximal Expected Coverage Relocation problem (MECRP).
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2.4 Multiple Vehicle Types

Many of the shown EMS models in Sections 2.2 and 2.3 can be extended to incorporate multiple
vehicle types. Ambulances can be differentiated according to possible medical support: Basic Life
Support (BLS) and Advanced Life Support (ALS). The kind of vehicle can also be distinguished,
such as motorcycles and cars.

In the mathematical formulations it is often sufficient to copy the constraints and variables for
each vehicle type. For example, see the Facility Location and Equipment Emplacement Technique
model (FLEET) by Schilling et al. (1979) in Model 2.4.1. FLEET is a multi-vehicle formulation
for the MCLP. The set of vehicles is denoted by K and the decision variable xki ∈ B denotes
whether a base for vehicles of type k ∈ K is opened at base i ∈ I. At most pk ∈ N of such
bases can be opened. Furthermore, each type k vehicle base has its own coverage characteristics
akij ∈ B. A demand point is considered to be covered if it is covered by at least one vehicle of
each type.

Other modifications are the Tandem Equipment Allocation model (TEAM) and Multi-Objective
Tandem Equipment Allocation model (MOTEAM) by Schilling et al. (1979). These models add
the constraint that there is a certain order in which vehicle bases can be opened:

xki ≤ xk+1
i ∀ i ∈ I, k ∈ K.

Looije (2013) considers the MCLP with two vehicle types. A demand point j ∈ J is covered

when either an ambulance is within 15 minutes (w
c(k1,1)
j = 1) or a rapid responder is nearby

(w
c(k2)
j = 1) followed up by an ambulance further away (w

c(k1,2)
j = 1). This is captured by the

constraints:

w
c(k1,1)
j +

1

2

(
w
c(k1,2)
j + w

c(k2)
j

)
≥ zj ∀ j ∈ J .

Similar coverage constraints are considered in Mandell (1998).

Maximise ∑
j∈J

djzj

subject to ∑
i∈I

xki ≤ pk ∀ k ∈ K,∑
i∈I

akijx
k
i ≥ zj ∀ j ∈ J , k ∈ K,

xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

Model 2.4.1: Facility Location and Equipment Emplacement Technique (FLEET).
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2.5 Multiple Time Periods

Another general extension for EMS models is the inclusion of multiple time periods, which
is similar to Stochastic Programming approaches but has a natural (chronological) order in
the scenarios. Suppose we have a set T of successive time periods. For each time period we
have a classic EMS model, but the allocation of ambulances cannot differ too much from the
previous time period. That is, the number of ambulance relocations is limited or any relocation
is penalised. The opened bases are usually fixed over all periods, however a similar approach as
with ambulances is possible.

Examples of these multiple time periods models are the Time Dependent Travel Times MEXCLP
(TIMEXCLP) by Repede and Bernardo (1994) and the Dynamic Available Coverage Location
model (DACL) by Rajagopalan et al. (2008). The TIMEXCLP is based on the MEXCLP and the
DACL model on the EMALP. The Multi-hour Service System Design problem by Amiri (2001)
considers allocation of demand points to bases per time period and penalises queueing delay. The
Dynamic Double Standard model (DDSM) by Gendreau et al. (2001) is based on the DSM and
considers decisions one time period ahead. It adds the following constraints to the DSM:

q∑
k=1

vki = yi ∀ i ∈ I,∑
i∈I

vki = 1 ∀ k ∈ {1, . . . , q},

vki ∈ B ∀ i ∈ I, k ∈ {1, . . . , q}.

The variable vki ∈ B indicates if ambulance k ∈ {1, . . . , q} is moved to base i ∈ I in the next time
period. The costs for this relocation depend on the situation of the current time period.

Suppose that the time-dependent parameters have a common cycle time of T ∈ N. Let the set
of time periods be given by T = {1, . . . , T}, after which the cycle repeats. The Time-dependent
MEXCLP with Start-up and Relocation Costs by Van den Berg and Aardal (2013) considers
a cyclic time period MEXCLP extension. See Model 2.5.1 for the formulation. Almost all
parameters and variables of the MEXCLP are replaced by their time-dependent version. New
are the flow constraints:

yti +
∑
i′∈I

(
vti′i − vtii′

)
= yt+1

i ∀ i ∈ I, t ∈ T \ {T},

yTi +
∑
i′∈I

(
vTi′i − vTii′

)
= y1

i ∀ i ∈ I.

The variable vtii′ ∈ N is equal to the number of ambulances repositioned from base i to base i′

between time periods t and t+ 1. Note that this does not allow the total number of ambulances
to vary per period (which is why we fix the number of ambulances to q).

To incorporate a varying number of ambulances, an artificial base should be added to the flow
constraints. However, for the shown objective it can also be achieved by aggregating the variables
vtii′ into ingoing (vti+ ∈ N) and outgoing (vti− ∈ N) relocations:

yti + vti+ − vti− = yt+1
i ∀ i ∈ I, t ∈ T \ {T},

yTi + vTi+ − vTi− = y1
i ∀ i ∈ I.
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Maximise

∑
t∈T

∑
j∈J

dtj

q∑
k=1

(1− ρt)(ρt)k−1zk,tj − γ1

∑
i∈I

∑
i′∈I

vtii′

− γ2

∑
i∈I

xi

subject to ∑
i∈I

xi ≤ p,∑
i∈I

yti = q ∀ t ∈ T ,

yti ≤ qtixi ∀ i ∈ I, t ∈ T ,∑
i∈I

atijy
t
i ≥

q∑
k=1

zk,tj ∀ j ∈ J , t ∈ T ,

yti +
∑
i′∈I

(
vti′i − vtii′

)
= yt+1

i ∀ i ∈ I, t ∈ T \ {T},

yTi +
∑
i′∈I

(
vTi′i − vTii′

)
= y1

i ∀ i ∈ I,

vtii′ ∈ N ∀ i, i′ ∈ I, t ∈ T ,
xi ∈ B ∀ i ∈ I,
yti ∈ N ∀ i ∈ I, t ∈ T ,

zk,tj ∈ B ∀ j ∈ J , k ∈ {1, . . . , q}, t ∈ T .

Model 2.5.1: Time-dependent MEXCLP with Start-up and Relocation Costs.

The Time-dependent MEXCLP with Start-up and Relocation Costs is based on the Multi-period
DSM (mDSM) by Schmid and Doerner (2010). They modify the DSM to include time periods
and add explicit assignment of demand to bases. Let utij ∈ N be the demand from point j ∈ J
allocated to base i ∈ I at time period t ∈ T . The parameter λtj ∈ N is the arrival rate of calls
from point j ∈ J at time t ∈ T . Furthermore, each vehicle can handle at most τ ∈ N calls per
time period. The added assignment constraints with vehicle capacity are:∑

i∈I
atiju

t
ij = λtj ∀ j ∈ J , t ∈ T ,∑

j∈J
atiju

t
ij ≤ τyti ∀ i ∈ I, t ∈ T ,

utij ∈ N ∀ i ∈ I, j ∈ J , t ∈ T .

The discussed models have natural variants where certain parameters and constraints are changed
to span either a single time period or multiple periods.
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2.6 Conclusion

Selecting or developing the ‘right’ emergency medical service (EMS) model is not a trivial task.
More complex models are not always superior to simpler variants, even though they are (usually)
more realistic. In general, the added realism requires more parameters to be estimated, which
also makes a parameter sensitivity analysis more difficult. Furthermore, solving complex models
requires new solution methods or significantly increases the required computational time.

The strength of simple EMS models is that they are comprehensible and manageable. However,
simple models can lack key features required to be useful for any decision making process. The
selection of the appropriate model should therefore balance the model complexity and the desired
decision making goals. Preferably, multiple EMS models should be used to see if any significant
discrepancies occur. The analysis can be supported by simulations.

We have discussed a selection of EMS models ranging from simplistic linear models to more com-
plex non-linear models. For example, one of the basic models is the Maximal Covering Location
problem (MCLP). The MCLP assumes that coverage satisfies an ‘all-or-nothing’ relation, it dis-
regards uncovered demand points, and does not consider the unavailability of ambulances.

Many EMS models extend the MCLP by adding features to address these assumptions and limi-
tations. The ‘deterministic’ additions include regional coverage constraints, backup coverage, and
a more general survival objective function. The ‘probabilistic’ extensions include busy fractions
of ambulances, stochastic response times, reliability of service, and Stochastic Programming.
Furthermore, most models can be modified to incorporate multiple vehicle types and multiple
time periods.

The discussed models are not a complete overview of all EMS models, as we have focussed on
coverage models. For example, other types of EMS models are based on the p-median or p-
centre model. Moreover, we have primarily considered medical facility location literature. The
(general or non-medical) Facility Location problem is applied to other research areas as well.
Model extensions or solution methods from these other research areas can be useful for EMS
models.

In the following chapters we focus on the Maximal Covering Location problem as EMS model.
Due to its simplicity we can perform an extensive sensitivity analysis and analyse the performance
of solution methods, both numerically and theoretically.
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3.1 Introduction

When choosing which emergency medical service (EMS) model to use as a decision support
tool, the features, underlying assumptions, and limitations of the model are not the only aspects
to consider. Its complexity (both mathematical and computational) and comprehensibility are
important as well. One aspect that is often disregarded is the robustness of the model with respect
to data uncertainty: do small perturbations in the data impact the quality of solutions?

We will consider the sensitivity of the Maximal Covering Location problem (MCLP) to data
uncertainty. Recall that for the MCLP at most p ∈ N bases can be opened (with no costs
associated) and demand dj ∈ R≥0 is non-negative for all demand points j ∈ J . For easy reference,
we restate the mathematical formulation below. We will analyse the sensitivity with respect to
the demand dj , the allowed number of bases p, and the adjacency parameters aij .

Maximise ∑
j∈J

djzj

subject to ∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ zj ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

In Section 3.2 we consider demand that is unknown, but assumed to lie between a lower and an
upper bound, where the total demand is fixed and known. We apply a worst-case optimisation
technique called Robust Optimisation to construct a reformulated MCLP that is robust to the
predefined demand uncertainty. That is, any solution of the reformulated model is feasible for
any realisation of the demand and the optimal solution has the best worst-case coverage.

Robust Optimisation is a general technique, which also allows for other uncertainty parameters
and structures. Therefore, we will derive a robust formulation for a general constraint, for which
we show additional properties of the optimal solution. In Section 3.2.5 we give examples of other
robust formulations using the general results.

In Section 3.4 the sensitivity to the allowed number of opened bases p is analysed by iterating over
multiple values. A similar approach is used for the coverage parameter aij . Often these param-
eters follow from a response time threshold (e.g., within 15 minutes). By iteratively decreasing
the threshold we can quantify the effect of uncertainty in the coverage parameter.

In addition to the three described types of data sensitivity, we will consider the uniqueness of
solutions. Section 3.3 describes a post-optimisation neighbourhood analysis method to give an
indication of the uniqueness of a solution and whether valid alternative solutions exist. All
discussed methods are numerically evaluated in Sections 3.4 and 3.5.
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3.2 Robust Optimisation

Robust Optimisation is a general approach to construct solutions of optimisation problems that
remain feasible under parameter uncertainty. If the objective coefficients contain uncertainty,
robust solutions are often suboptimal for all possible realisations separately, but optimal when
considering all scenarios simultaneously. For an overview of different Robust Optimisation tech-
niques and recent advances, see Ben-Tal, El Ghaoui, et al. (2009), Bertsimas et al. (2011), and
Gabrel et al. (2013). A related technique is Recoverable Robustness by Liebchen et al. (2009)
that integrates robust planning and recovery after realisation of the scenarios into one frame-
work.

For applications of Robust Optimisation to the Facility Location problem we refer to Baron et
al. (2011), Gülpınar et al. (2013), and Snyder (2006). Remarkably, Robust Optimisation (with
the exception of Stochastic Programming) is seldom mentioned in the context of EMS facility
location. See for example Zhang and Jiang (2013). Related is Ben-Tal, Chung, et al. (2011)
where EMS logistics planning in supply chains is considered.

From the available Robust Optimisation techniques we will consider the Robust Counterpart
approach of Ben-Tal, El Ghaoui, et al. (2009). This approach constructs robust solutions that
are feasible for any realisation of the uncertain parameters (with specified bounds on the possible
parameter values). These solutions are obtained by modifying the original optimisation problem
into its so-called Robust Counterpart. Hence, it can be seen as a worst-case robust solution.
Since the survival of patients is at stake, this strict approach is suitable.

As mentioned above, Robust Optimisation will be applied to uncertain demand. We assume that
this uncertainty is uncorrelated to a certain degree: demand at each point has a known lower and
upper bound, and the total demand is fixed and known. More details are given in Section 3.2.1.
This uncertainty structure can also be applied to other parameters. Therefore, we first derive a
general Robust Counterpart in Section 3.2.2, followed by the Robust Counterpart of the MCLP
in Section 3.2.4.

3.2.1 Uncertainty Structure

Suppose the value of a certain parameter δj for each point j ∈ J is not known exactly, but

can deviate from the estimated value δ̂j . Furthermore, assume that the possible deviation is
symmetric around the estimated value:

δj ∈
[
δ̂j − ηj , δ̂j + ηj

]
,

where δ̂j ∈ R and ηj ∈ R≥0. No particular probability distribution for δj is considered, but
the robust approach can be seen as using a uniform probability distribution. The sum of the
parameters δj is assumed to be known with great accuracy and can be considered as a known
constant ∆:

∆ =
∑
j∈J

δj ∈

∑
j∈J

(
δ̂j − ηj

)
,
∑
j∈J

(
δ̂j + ηj

) .
51



With these assumptions, we can structure the uncertainty into useful formulations. Let us
describe the parameter uncertainty using perturbation variables ζ ∈ R|J |. That is,

δj = δ̂j + ηjζj ∀ j ∈ J ,

where we impose constraints on the perturbation. Clearly, −1 ≤ ζj ≤ 1 must hold, but the total

perturbation is also bounded. Let Ξ = ∆−
∑
j∈J δ̂j . We require that∑

j∈J
δ̂j +

∑
j∈J

ηjζj =
∑
j∈J

(
δ̂j + ηjζj

)
=
∑
j∈J

δj = ∆,

or equivalently, ∑
j∈J

ηjζj = ∆−
∑
j∈J

δ̂j = Ξ.

Define the perturbation set Z ⊆ R|J | as follows:

Z =
{
ζ ∈ R|J | : −1 ≤ ζ ≤ 1,

∑
j∈J

ηjζj = Ξ
}
. (3.2.1)

The parameter uncertainty can now be described using the uncertainty set D, given by

D =
{
δ ∈ R|J | : δj = δ̂j + ηjζj , j ∈ J , ζ ∈ Z

}
. (3.2.2)

This uncertainty set is a natural structure when almost no information is available on the un-
certainty. The values δ̂j are the estimated values that would be used in standard deterministic
optimisation. The parameters ηj can be defined such that the possible deviation matches with,
for instance, a 5% deviation from the estimate. Given this uncertainty set, we can construct
robust versions of common location problems and constraints. Note that we do not assume that
δj ≥ 0 for all j ∈ J , allowing a wider range of applications of this uncertainty structure.

3.2.2 Robust Counterpart

Consider a general worst-case robust constraint of the following form:∑
j∈J

δjφj ≥ θ ∀ δ ∈ D, (3.2.3)

where θ ∈ R and φj ∈ R (j ∈ J ) are given input. The uncertainty set D is given by (3.2.2)
with underlying perturbation set given by (3.2.1). We can rewrite Equation (3.2.3) by using the
definition of δj and collecting all uncertain values:∑

j∈J
δjφj ≥ θ ∀ δ ∈ D

⇐⇒
∑
j∈J

(
δ̂j + ηjζj

)
φj ≥ θ ∀ ζ ∈ Z

⇐⇒
∑
j∈J

ηjφjζj ≥ θ −
∑
j∈J

δ̂jφj ∀ ζ ∈ Z

⇐⇒ min
ζ∈Z

∑
j∈J

ηjφjζj ≥ θ −
∑
j∈J

δ̂jφj .
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Hence, we must consider the optimisation problem θ∗p = min{
∑
j∈J ηjφjζj : ζ ∈ Z} to find

the worst-case realisation of the parameters (and the worst-case constraint). The optimisation
problem and its dual are

Minimise ∑
j∈J

ηjφjζj

subject to∑
j∈J

ηjζj = Ξ,

ζj ≤ 1 ∀ j ∈ J ,
−ζj ≤ 1 ∀ j ∈ J ,
ζj ∈ R ∀ j ∈ J .

Maximise

Ξu−
∑
j∈J

(
v+
j + v−j

)
subject to

ηju− v+
j + v−j = ηjφj ∀ j ∈ J ,

u ∈ R,
v+
j , v

−
j ∈ R≥0 ∀ j ∈ J .

Let θ∗d be the optimal objective value of the dual problem. Notice that both problems are

feasible. If dual feasible variables (u, v+, v−) satisfy Ξu −
∑
j∈J

(
v+
j + v−j

)
≥ θ −

∑
j∈J δ̂jφj ,

then by Strong Duality

θ∗p = θ∗d ≥ Ξu−
∑
j∈J

(
v+
j + v−j

)
≥ θ −

∑
j∈J

δ̂jφj ,

and Equation (3.2.3) holds. Vice versa, if Equation (3.2.3) holds, then again by Strong Duality

there are dual feasible variables (u, v+, v−) such that Ξu −
∑
j∈J

(
v+
j + v−j

)
≥ θ −

∑
j∈J δ̂jφj

(e.g., the optimal dual solution). Therefore, the Robust Counterpart of (3.2.3) is given by

Ξu−
∑
j∈J

(
v+
j + v−j

)
≥ θ −

∑
j∈J

δ̂jφj ,

ηju− v+
j + v−j = ηjφj ∀ j ∈ J ,

u ∈ R,
v+
j , v

−
j ∈ R≥0 ∀ j ∈ J .

However, an equivalent formulation can be constructed that allows a clearer interpretation. Note
that if ηj = 0 for some j ∈ J (no uncertainty), it is optimal to set v+

j = v−j = 0. Thus, we can
ignore the Robust Counterpart constraints for j and treat it separately from the others. We can
now safely rescale v+

j by replacing it by ηjv
+
j (and similarly for v−j ). Using the definition of Ξ

and the Robust Counterpart constraints, we get the following equivalent formulation:

∆u−
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j ≥ θ,

u− v+
j + v−j = φj ∀ j ∈ J ,

u ∈ R,
v+
j , v

−
j ∈ R≥0 ∀ j ∈ J .
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The variables v+
j and v−j can be interpreted as, respectively, the overshoot and undershoot of u

with respect to φj . Recall that ∆ ≥
∑
j∈J (δ̂j−ηj) and ∆ ≤

∑
j∈J (δ̂j +ηj). It is therefore never

optimal to either overshoot for all points or undershoot for all points with variable u. Thus, it
is never optimal to set u < min{φj : j ∈ J } or u > max{φj : j ∈ J }. The constraints

min{φj : j ∈ J } ≤ u ≤ max{φj : j ∈ J }

can be added to the model. Furthermore, it is never optimal to artificially increase both variables
v+
j and v−j , since it trivially holds that (δ̂j + ηj) ≥ (δ̂j − ηj). Therefore, we can also add the

constraints

v+
j ≤ max{φj′ : j′ ∈ J } − φj ∀ j ∈ J ,
v−j ≤ φj −min{φj′ : j′ ∈ J } ∀ j ∈ J ,

and (a linear formulation of)

v+
j v
−
j = 0 ∀ j ∈ J .

We will prove that even stronger constraints hold: u, v+
j and v−j can be restricted to finite

discrete sets without loss of optimality, see Proposition 3.2.1.

Proposition 3.2.1. Consider the constraint∑
j∈J

δjφj ≥ θ ∀ δ ∈ D,

with uncertainty structure D defined by (3.2.1) and (3.2.2), θ ∈ R and φj ∈ R for j ∈ J . Its
Robust Counterpart is given by

∆u−
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j ≥ θ,

u− v+
j + v−j = φj ∀ j ∈ J ,

u ∈ R,
v+
j , v

−
j ∈ R≥0 ∀ j ∈ J .

Furthermore, the following properties hold for the optimal solution:

u ∈ {φj : j ∈ J },
v+
j v
−
j = 0 ∀ j ∈ J ,
v+
j ∈ {φj′ − φj : φj′ ≥ φj , j′ ∈ J } ∀ j ∈ J ,
v−j ∈ {φj − φj′ : φj′ ≤ φj , j′ ∈ J } ∀ j ∈ J .

Proof. The derivation of the Robust Counterpart has been given above. Therefore, we consider
the properties of the optimal solution, i.e., the domains of u, v+

j and v−j can be restricted to
certain finite discrete sets. Let φ(1) ≤ φ(2) ≤ . . . ≤ φ(|J |) be the non-decreasing order of elements
φj . Without loss of generality, we can assume that this order is strictly-increasing (only consider
the unique values of φj , j ∈ J ). We will use that v+

j v
−
j = 0 for all j ∈ J .

54



Consider u when we restrict it to the left-open interval (φ(k), φ(k+1)] for some k ∈ {1, . . . , |J |−1}.
For these values, u overshoots φ(1),. . . ,φ(k) and undershoots φ(k+1),. . . ,φ(|J |). Note that there is
no undershoot for φ(k+1) if u = φ(k+1). Therefore, we can state without loss of optimality that{

v+
(j) = u− φ(j)

v−(j) = 0
∀ j ∈ {1, . . . , k},{

v+
(j) = 0

v−(j) = φ(j) − u
∀ j ∈ {k + 1, . . . , |J |}.

Now consider the following constraint of the Robust Counterpart:

∆u−
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j ≥ θ.

It is optimal to choose u in such a way that the left-hand side is maximised. We can simplify
the left-hand side to

Φ(k, u) = ∆u−
k∑
j=1

(
δ̂(j) + η(j)

) (
u− φ(j)

)
+

|J |∑
j=k+1

(
δ̂(j) − η(j)

) (
φ(j) − u

)
.

Since Φ(k, u) is a linear function in u, we only have to consider the subdomain boundaries for
the extrema. Therefore, note that for ε ∈ (0, φ(k+1) − φ(k)) small enough

Φ(k, φ(k+1))− Φ(k, φ(k) + ε)

= (φ(k+1) − (φ(k) + ε))

∆−
k∑
j=1

(
δ̂(j) + η(j)

)
−

|J |∑
j=k+1

(
δ̂(j) − η(j)

) . (3.2.4)

Furthermore, between two adjacent subdomains we have:

Φ(k, φ(k+1))− Φ(k − 1, φ(k))

= (φ(k+1) − φ(k))

∆−
k∑
j=1

(
δ̂(j) + η(j)

)
−

|J |∑
j=k+1

(
δ̂(j) − η(j)

) . (3.2.5)

For clarity, let Γ(k) = ∆−
∑k
j=1(δ̂(j) +η(j))−

∑|J |
j=k+1(δ̂(j)−η(j)). Note that Γ is non-increasing

in k: Γ(k) ≥ Γ(k + 1). We have to distinguish the three cases of the sign of Γ(k).

• Γ(k) > 0:
In this case is it optimal to set u = φ(k+1) on the domain (φ(k), φ(k+1)], since it holds that
Φ(k, φ(k+1))− Φ(k, φ(k) + ε) > 0.

• Γ(k) = 0:
Since Φ(k, φ(k+1)) − Φ(k, φ(k) + ε) = 0, we have that Φ(k, u) is constant for u in the
entire interval (φ(k), φ(k+1)] (non-unique maxima). We can simply choose u = φ(k+1) to be
optimal on (φ(k), φ(k+1)].

• Γ(k) < 0:
In this case is it optimal to set u = φ(k) + ε, as Φ(k, φ(k+1))−Φ(k, φ(k) + ε) < 0. However,
by combining (3.2.4) and (3.2.5) notice that Φ(k, φ(k) + ε) − Φ(k − 1, φ(k)) < 0 as well.
Therefore, limiting u to (φ(k), φ(k+1)] is not optimal overall and we can ignore the k-th
subdomain.
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With these observations, we can conclude that the optimal u on the entire domain [φ(1), φ(|J |)]
is an element of the finite discrete set {φj : j ∈ J }. We have also shown how to find the optimal
element by considering the sign of Γ(k), k ∈ {1, . . . , |J | − 1}. Consequently, the finite discrete
sets for v+

j and v−j are trivial.

3.2.3 Other Uncertainty Structures

Robust Counterparts can be obtained for more complex uncertainty structures, such as convex
cones, by using the general result stated in Ben-Tal, El Ghaoui, et al. (2009). The underlying
method for the stated general Robust Counterpart is the same as shown in Section 3.2.2, but
Conic Programming duality is used instead of LP duality. For instance, using ellipsoids as
uncertainty structure results in a Quadratic Programming formulation.

We will mention a variation of the uncertainty set given in Section 3.2.1. We have a set of |K|
subsets of J , Jk ⊆ J for k ∈ K, not necessarily disjoint. For each subset Jk the sum of the
parameter δj with j ∈ Jk is set to ∆k:

∆k =
∑
j∈Jk

δj ∈

∑
j∈Jk

(
δ̂j − ηj

)
,
∑
j∈Jk

(
δ̂j + ηj

) .
Care must be taken to ensure feasibility (the values of ∆k cannot contradict each other). Define
the sets Kj = {k ∈ K : j ∈ Jk} for each j ∈ J . For this uncertainty set, the Robust Counterpart
becomes∑

k∈K

∆kuk −
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j ≥ θ,∑

k∈Kj

uk − v+
j + v−j = φj ∀ j ∈ J , (3.2.6)

uk ∈ R ∀ k ∈ K,
v+
j , v

−
j ∈ R≥0 ∀ j ∈ J .

In particular, if the subsets Jk are disjoint, Equation (3.2.6) is disjoint for each j ∈ J . This
allows the use of decompositions methods such as the Dantzig-Wolfe decomposition (see Dantzig
and Wolfe (1960)). Disjoint subsets of demand points, each with a fixed total demand, are useful
when there are regions with independent demand.

3.2.4 Robust MCLP

Recall that the goal of the Maximal Covering Location problem is to open up to p ∈ N sites
such that the covered demand is maximised. The Robust MCLP is similar to the MCLP, but it
maximises the worst-case covered demand. Demand is assumed to be uncertain but bounded by
a known lower and upper bound. We denote the uncertain demand by δj for point j ∈ J . The
uncertainty is uncorrelated to a certain degree as the total demand is assumed to be fixed to ∆.
This leads to the uncertainty structure D defined by (3.2.1) and (3.2.2). See Model 3.2.1 for the
Robust MCLP.
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Maximise

θ

subject to

θ ≤
∑
j∈J

δjzj ∀ δ ∈ D, (3.2.7)

∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ zj ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

Model 3.2.1: Robust Maximal Covering Location problem.

In order to construct the Robust Counterpart of the Robust MCLP, we only have to derive the
Robust Counterpart of Equation (3.2.7). We can apply Proposition 3.2.1 with φj = zj for j ∈ J .
The resulting model is the RC-MCLP, see Model 3.2.2.

Maximise

∆u−
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j

subject to

u− v+
j + v−j = zj ∀ j ∈ J ,∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ zj ∀ j ∈ J ,

u ∈ R,
v+
j , v

−
j ∈ R≥0 ∀ j ∈ J ,
xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

Model 3.2.2: Robust Counterpart of the Maximal Covering Location problem (RC-MCLP).

The variables v+
j and v−j can be interpreted as respectively the overshoot and undershoot of u

with respect to zj . We interpret the terms in the objective for different cases:

• If u = 0, it is optimal to set v+
j = 0 and v−j = zj for all j ∈ J . The resulting objective

value is
∑
j∈J (δ̂j − ηj)zj , equal to the minimum possible (worst-case) demand covered by

this choice of zj .
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• Similarly, if 0 ≤ u ≤ zj for all j ∈ J , v+
j = 0 and v−j = zj −u are optimal. In this case, the

term ∆u can be seen as the fraction of total demand that is covered with certainty. The
term

∑
j∈J (δ̂j − ηj)v−j is the worst-case demand covered with this choice of zj .

• If u > zj for some j, variable u overshoots the actual coverage for point j and it is optimal

to set v+
j = u − zj and v−j = 0 for that point j. The term

∑
j∈J (δ̂j + ηj)v

+
j corrects the

covered demand by subtracting the best-case surplus demand covered by the overshoot.
Hence, the resulting objective value is still a worst-case value.

The optional constraints on the domain of u, v+
j and v−j of Proposition 3.2.1 simplify to binary

constraints. In fact, the binary restriction of u can be derived in a more direct way than shown
in the proof of Proposition 3.2.1. Let J1 = {j ∈ J : zj = 1} contain the covered points and
J0 = J \ J1 the uncovered points. We can rewrite the objective to

∆u−
∑
j∈J0

(
δ̂j + ηj

)
u+

∑
j∈J1

(
δ̂j − ηj

)
(1− u)

=

∆−
∑
j∈J0

(
δ̂j + ηj

)
−
∑
j∈J1

(
δ̂j − ηj

)u+
∑
j∈J1

(
δ̂j − ηj

)

=

∆−
∑
j∈J

(
δ̂j + ηj

)
(1− zj)−

∑
j∈J

(
δ̂j − ηj

)
zj

u+
∑
j∈J

(
δ̂j − ηj

)
zj .

Thus, the optimal value of u is:

u =

1 if ∆−
∑
j∈J

(
δ̂j + ηj

)
(1− zj)−

∑
j∈J

(
δ̂j − ηj

)
zj ≥ 0

0 if ∆−
∑
j∈J

(
δ̂j + ηj

)
(1− zj)−

∑
j∈J

(
δ̂j − ηj

)
zj < 0

.

This corresponds to the cases of Γ(k) in the proof of Proposition 3.2.1.

We show that these results can also be obtained using intuitive reasoning. For given zj (j ∈ J ),
the worst-case realisation of the demand is the realisation where the covered points have the
least possible demand. That is, covered points have minimum demand

∑
j∈J1

(δ̂j − ηj) and

uncovered points maximum demand
∑
j∈J0

(δ̂j + ηj). However, the total demand is fixed to ∆,
so a correction is needed.

The worst-case realisation of covered demand is:

∑
j∈J1

(
δ̂j − ηj

)
+ max

0,

∆−
∑
j∈J1

(
δ̂j − ηj

)−∑
j∈J0

(
δ̂j + ηj

)
=
∑
j∈J

(
δ̂j − ηj

)
zj + max

0,∆−
∑
j∈J

(
δ̂j + ηj

)
(1− zj)−

∑
j∈J

(
δ̂j − ηj

)
zj

 , (3.2.8)

corresponding exactly to our derived results for the RC-MCLP model. Therefore, an alternative
model is:
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Maximise ∑
j∈J

(
δ̂j − ηj

)
zj + u

subject to

u+ ∆v ≤ ∆, (3.2.9)

u−Mv ≤ ∆−
∑
j∈J

(
δ̂j + ηj

)
(1− zj)−

∑
j∈J

(
δ̂j − ηj

)
zj , (3.2.10)

∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ zj ∀ j ∈ J ,

u ∈ R≥0,

v ∈ B,
xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

The variable u corresponds to the worst-case coverage in addition to the minimum coverage (the
maximum in Equation (3.2.8)). The variable v is required to capture the case that the maximum
in Equation (3.2.8) is zero, where we have used a ‘big-M ’ formulation. A valid choice for M
would be

M = 2
∑
j∈J

ηj ,

since by definition of ∆:

−2
∑
j∈J

ηj =
∑
j∈J

(
δ̂j − ηj

)
−
∑
j∈J

(
δ̂j + ηj

)
≤ ∆−

∑
j∈J

(
δ̂j + ηj

)
(1− zj)−

∑
j∈J

(
δ̂j − ηj

)
zj .

Equation (3.2.9) ensures us that uv = 0 (where u ≤ ∆ is a trivial non-tight upper bound).
Consequently, the maximum in Equation (3.2.8) can be captured in constraint (3.2.10) and the
objective function.

Both models are equivalent, as can be seen when conditioning on the optimal value of u (for given
zj) in either models. Substitution of these optimal values in the objective function results in the
same model. The major difference between the two robust models is the number of additional
constraints and variables. The Robust Counterpart model has at least |J | extra constraints
and 2|J | + 1 additional variables, where the extra variables are either all continuous or all
binary. The alternative model has 2 extra constraints and 2 additional variables (one binary
and one continuous). However, note that the constraints for the Robust Counterpart model are
independent of the demand parameters. This can be beneficial for solution methods.
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3.2.4.1 A Common Uncertainty Structure

It can be difficult to obtain (empirical) data to determine the appropriate uncertainty structure.
In that case, a common approach is to consider robust solutions for a constant relative ‘measure
error’ ε ∈ [0, 1] (say 5%). That is, we set ηj = εδ̂j for j ∈ J :

δj ∈ [(1− ε)δ̂j , (1 + ε)δ̂j ].

We will show that the MCLP and its Robust Counterpart are equivalent for these uncertainty
parameters. The objective of the RC-MCLP (recall Model 3.2.2) can be rewritten to:

∆u−
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j = ∆u− (1 + ε)

∑
j∈J

δ̂jv
+
j + (1− ε)

∑
j∈J

δ̂jv
−
j .

As the optimal u is binary, we consider two cases:

• Suppose u = 0, then v+
j = 0 and v−j = zj for all j ∈ J (as derived before). The resulting

objective is

(1− ε)
∑
j∈J

δ̂jzj ,

which has the same optimal solution as the MCLP (with dj = δ̂j).

• Suppose u = 1, then v+
j = (1− zj) and v−j = 0 for all j ∈ J . The objective simplifies to:

∆− (1 + ε)
∑
j∈J

δ̂j(1− zj) = ∆− (1 + ε)
∑
j∈J

δ̂j + (1 + ε)
∑
j∈J

δ̂jzj .

Again, the optimal solution is the same as that of the MCLP (with dj = δ̂j).

Hence, the MCLP is robust for this common uncertainty structure and the Robust Counterpart
has no added value. There are uncertainty structures where the Robust Counterpart leads to
different solutions, as shown by the next example.

3.2.4.2 An Example Where Robustness Matters

We give an example of an MCLP instance where the robust solution is different than the non-
robust solution. This instance consists of three ambulance bases I = {1, 2, 3} of which only one
can be opened. Base coverage is disjoint and each base covers exactly one demand point. That
is, we have J = {1, 2, 3}, where each point corresponds to a base. The estimated demand of the

first two points are equal, δ̂1 = δ̂2, and so are the uncertainty parameters (0 < η1 = η2 ≤ δ̂1).

The third base has the largest estimated demand δ̂3 > δ̂1, but twice the uncertainty of the other
bases, η3 = 2η1. Furthermore, we require that 0 ≤ δ̂3 − η3 = δ̂3 − 2η1 < δ̂1 − η1. The total
demand is fixed to the total estimated demand: ∆ = δ̂1 + δ̂2 + δ̂3.

Opening base 1 results in a non-robust coverage of δ̂1 and a robust coverage of δ̂1 − η1. The
same holds for opening base 2. For base 3 the non-robust coverage is δ̂3 and the robust coverage
is δ̂3 − η3. By construction it is optimal for the MCLP to open base 3, but for the RC-MCLP
opening base 1 (or 2) is optimal. Therefore, the MCLP is not robust for all uncertainty structures.

For explicit example, set δ̂1 = δ̂2 = 3, δ̂3 = 4, and η1 = η2 = 1
2η3 = 2.
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Note that such an instance with two bases is not possible: as δ1 +δ2 = ∆ = δ̂1 + δ̂2 we can assume
without loss of generality that η1 = η2. Hence, if we assume that δ̂2 > δ̂1 it automatically implies
that δ̂2 − η2 > δ̂1 − η1. Opening base 2 would be optimal. Consequently, the above described
instance with three bases is the smallest possible instance where robustness matters.

3.2.5 Other Robust Counterparts

The derived Robust Counterpart in Proposition 3.2.1 can also be applied to other constraints.
For instance, a common constraint on the minimum coverage is to require that the fraction of
covered demand is at least α ∈ [0, 1]: ∑

j∈J
djzj ≥ α

∑
j∈J

dj .

The robust version of this constraint is∑
j∈J

δjzj ≥ α∆ ∀ δ ∈ D.

This is equivalent to Equation (3.2.7) with θ = α∆ or Proposition 3.2.1 with φj = zj and θ = α∆.
Thus, the Robust Counterpart of the constraint is

∆u−
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j ≥ α∆,

u− v+
j + v−j = zj ∀ j ∈ J ,

u ∈ R≥0,

v+
j , v

−
j ∈ R≥0 ∀ j ∈ J .

As mentioned at the derivation of the Robust Counterpart MCLP, the optimal variables u,
v+
j and v−j are binary. Alternatively, we can use the robust model derived through intuitive

reasoning: ∑
j∈J

(
δ̂j − ηj

)
zj + u ≥ α∆,

u+ ∆v ≤ ∆,

u−Mv ≤ ∆−
∑
j∈J

(
δ̂j + ηj

)
(1− zj)−

∑
j∈J

(
δ̂j − ηj

)
zj ,

u ∈ R≥0,

v ∈ B.

Another example is the Robust Counterpart for the Maximum Expected Covering Location
problem (see Model 2.3.1). We can apply Proposition 3.2.1 by taking φj =

∑q
k=1(1− ρ)ρk−1zkj

for j ∈ J . Naturally, the Robust Counterpart is very similar to the RC-MCLP model. The new
objective is to maximise

∆u−
∑
j∈J

(
δ̂j + ηj

)
v+
j +

∑
j∈J

(
δ̂j − ηj

)
v−j .
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Furthermore, the following constraints are added:

u− v+
j + v−j =

q∑
k=1

(1− ρ)ρk−1zkj ∀ j ∈ J ,

zk+1
j ≤ zkj ∀ j ∈ J , k ∈ {1, . . . , q − 1},
u ∈ R,

v+
j , v

−
j ∈ R≥0 ∀ j ∈ J .

Of course, the optional extra constraints stated in Proposition 3.2.1 can be included. Note that
we have added the constraints zk+1

j ≤ zkj , because it is not obvious that this follows automatically
from the formulation.
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3.3 Post-Optimisation Neighbourhood Analysis

Suppose we have obtained a final solution of our optimisation problem using any method. Note
that it is not required that the solution is optimal. It is useful to analyse whether this solution
is unique, i.e., are there (similar) solutions of practically the same quality? For instance, would
changing one base location have a large impact on the objective? Likewise, there could be
completely different solutions with (almost) the same objective value. We have to analyse the
sensitivity of the objective to solution changes.

If valid alternatives exist, it is useful to present these to the decision maker. EMS models cannot
capture the actual decision process (the real objective and feasible region), as they always simplify
reality. By presenting alternatives, the decision maker can counteract some limitations of the
model. However, it is not trivial how to do this. Obviously, a full search of the feasible region is
intractable for the problems considered.

Depending on the solution method, a selection of valid alternatives can be readily available.
For instance, randomised algorithms most likely give a different final solution each time and
are usually performed multiple times. Local Search methods can be executed with different
starting points. Furthermore, the best intermediate solutions can be stored. Branch-and-Bound
procedures can store a list of the best feasible solutions found among the different branches
(although the pruning of branches would need some modifications). The decision maker should
decide which approach is appropriate. In particular, how many alternatives should be given and
should these be similar or dissimilar to the final solution?

We will focus on a method that does not depend on the used solution method and provides
alternatives similar to the final solution. Given a final solution, the method evaluates the neigh-
bourhood of this solution. Which neighbourhood is used must be provided. Regarding the
MCLP, a natural neighbourhood is the set of solutions that differ at ρ ∈ N or less places. That
is, each solution in the neighbourhood can be obtained from the final solution by closing up to ρ
bases and opening the same number of different bases. Opening less bases is not considered, as
this does not improve coverage. Such a neighbourhood is called the ρ-Swap neighbourhood (see
also the Swap Local Search method in Section 4.4).

The evaluation of the neighbourhood is to simply determine the objective values of the corre-
sponding solutions (and possibly store a list of the best solutions). These objective values are
then normalised by the objective value of the final solution and sorted in non-increasing order.
These ordered values can be visualised, which we will call the ordered performance curve (OPC).
Figure 3.3.1 shows five types of OPCs, where we have rescaled the performance such that the
worst solution in the neighbourhood has performance zero. For clarity, the figure assumes that
the final solution is the best solution in the neighbourhood.

The five types of OPCs are:

• Uniform performance (Figure 3.3.1a).
The neighbourhood has an equal distribution of high, average and low performance. This
implies that there are a few valid alternatives in the neighbourhood.

• High performance (Figure 3.3.1b).
The neighbourhood has many solutions with high performance (many valid alternatives).
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• Low performance (Figure 3.3.1c).
The neighbourhood has many solutions with low performance (very few valid alternatives).

• Extreme performance (Figure 3.3.1d).
The neighbourhood has many solutions with high or low performance, but few with average
performance (a decent number of valid alternatives).

• Average performance (Figure 3.3.1e).
The neighbourhood has many solutions with average performance, but few with high or
low performance (very few valid alternatives).

Note that the above interpretation of the performance regarding valid alternatives is relative. A
neighbouring solution with low performance can still be a valid alternative, as the performance
is an ordered measure (its objective value can still be acceptable). Nevertheless, the concept and
the different OPC types remain applicable.

Constructing the neighbourhood OPC for a given final solution serves two purposes: valid alter-
natives are found and a general indication about the uniqueness of the solution is obtained. Of
course, this indication depends on the choice of the neighbourhood and should be interpreted in
this context.

3.3.1 Intractable Neighbourhoods

For ρ ∈ N small enough a complete evaluation of the ρ-Swap neighbourhood is tractable for the
MCLP. Otherwise, additional restrictions on the swaps have to be imposed. One approach is
to partition the bases into subsets and to define the neighbourhood as the combination of the
smaller Swap neighbourhood of each subset. This is particularly useful if these neighbourhood
subsets follow directly from the real world, e.g., cities or provinces.

Another approach is to take (uniformly) random samples from the Swap neighbourhood and
approximate the OPC. This approach is similar to Ordinal Optimisation techniques, see for
instance L. Lee et al. (1999) and Shen et al. (2010). Ordinal Optimisation focusses on qualitative
measures instead of quantitative objectives: the order of solutions plays a central part (i.e.,
one solution is better than the other). By uniformly sampling from the entire feasible region,
probability statements on the order of a heuristic solution can be made. For instance, a sampling
approach can be constructed to substantiate statements as: ‘the given heuristic solution belongs
to the best 5% of all solutions with probability 0.99’.

However, it is often the case with NP -hard problems1 that there is an abundance of bad solutions
and sensible heuristics construct reasonably good solutions. This leads to insignificant statements
on the order of the heuristic solution (i.e., it will belong the best 1% solutions, but still relatively
far away from the optimal solution). The described post-optimisation neighbourhood analysis
tries to avoid these phenomena by only considering the neighbourhood of the final solution.
This eliminates a large proportion of the bad solutions from the sampling, resulting in a more
meaningful OPC. A disadvantage of this approach is that we cannot derive statements on the
overall order of the final solution, as only the neighbourhood is considered. We will apply this
method in Section 3.4.

1See also Appendix A for the definition of NP -hard problems.
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Figure 3.3.1: Types of ordered performance curves (OPCs).
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3.4 Numerical Results

We perform the described sensitivity analysis to a set of MCLP instances, which are based on
realistic data of the 24 Regional Ambulance Services of The Netherlands. For the corresponding
24 MCLP instances the set of possible base locations is equal to the set of demand points (I = J ).
The number of demand points ranges from 40 to 474, but most instances have around 100 to 200
points. All demand points have strictly positive demand weights. On average 9 bases are allowed
to be opened, where the number of bases to open ranges from 3 to 19. A detailed description is
given below in Section 3.4.1.

Sections 3.4.2, 3.4.3, and 3.4.5 discuss the sensitivity analysis approaches, starting with the
sensitivity to the number of available bases. In Section 3.4.4 we apply the post-optimisation
neighbourhood analysis. Common to all analyses are the properties of the MCLP, in particular
the ‘all-or-nothing’ coverage. Since the objective does not distinguish between covered points,
the way a point is covered has no part in the optimisation. For example, covering a demand point
in 5 minutes or 10 minutes is regarded as the same by the MCLP. Furthermore, the availability
of ambulances is not included. Therefore, the MCLP provides optimistic results. The results
should be seen in the context of the limitations of the model.

In Section 3.5 we go into the details of two RAV regions, namely RAV14 (Gooi- en Vechtstreek)
and RAV23 (Limburg-Noord). For example, we will compare which bases are opened. Here, we
restrict the analysis to attainable coverage and do not discuss the actual solutions.

3.4.1 Realistic Instances

The Netherlands is divided into 24 EMS regions, which are called ‘Regionale Ambulancevoorzie-
ningen’ (RAV). These are shown in Figure 3.4.1. We note that there used to be 25 regions:
Amsterdam-Amstelland (Region 11) and Zaanstreek-Waterland (Region 13) have been merged.
Each RAV has a single coordination centre (call centre and dispatcher) and one or multiple
ambulance services. In practice, the RAVs collaborate and sometimes provide service to adjacent
regions. However, for our test purposes, we assume that all regions operate independently. For
an analysis where The Netherlands is regarded as one EMS region, see Looije (2013).

We discretise and aggregate The Netherlands into postal code areas, using only four digits (in-
stead of six characters). For the Maximal Covering Location problem we assume that an ambu-
lance base can be positioned at each of these postal code areas. Based on Kommer and Zwakhals
(2011), we have the following data available:

• the number of inhabitants of each postal code area,

• the number of available ambulance bases for each RAV,

• the postal code areas assigned to each RAV,

• average travel times of ambulances with sirens between postal code areas.

Kommer and Zwakhals (2011) have built a driving time model that incorporates aspects such
as the time of day and road type. Parameters are estimated from historical data. It provides
average travel times of ambulances with sirens between the centres of 4-digit postal code areas.
We will use the estimated travel times for rush hours, as these provide the most conservative
performance measures.
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  1   Groningen 
  2   Friesland
  3   Drenthe
  4   IJsselland
  5   Twente
  6   Noord- en Oost-Gelderland
  7   Gelderland-Midden
  8   Gelderland-Zuid
  9   Utrecht
10   Noord-Holland-Noord
11   Amsterdam/Waterland
12   Kennemerland
14   Gooi- en Vechtstreek
15   Haaglanden
16   Hollands-Midden
17   Rotterdam-Rijnmond
18   Zuid-Holland-Zuid
19   Zeeland
20   Midden- en West-Brabant
21   Brabant-Noord
22   Brabant-Zuidoost
23   Limburg-Noord
24   Limburg-Zuid
25   Flevoland

Figure 3.4.1: The 24 Regional Ambulance Services of The Netherlands.
(Modified from source: www.zorgatlas.nl.)

In The Netherlands, an ambulance is considered to reach an emergency call in time if the response
time is within 15 minutes. The response time includes the time to handle the call, to dispatch
the ambulance, and the travel time. The time up to and including the dispatching requires
about 3 minutes. Therefore, we use a threshold of 12 minutes for the travel times to determine
whether demand points are covered. As a result, we obtain our adjacency parameters for the
EMS models.

The list of provided available ambulance bases contains different types of bases. For instance,
some are not manned 24 hours a day, and others serve only as starting points for shifts. Unfor-
tunately, no common definition is used between the RAVs. Therefore, we do not distinguish the
bases and include all to determine the number of bases to open. For actual decision support, we
recommend to first consult the RAV under consideration to adequately set the parameters.

Historical data to estimate the arrival rates of emergency calls is unavailable. Instead, we will
use the number of inhabitants as an indication of the arrival rates. In fact, we assume that the
arrival rate of calls is proportional to the number of inhabitants in that area, using the same
proportion for all postal code areas. As a result, we can directly use the number of inhabitants
as demand weights, implicitly rescaling the weights by a constant factor.

One could argue that historical data should be preferred. For instance, industrial areas have
few inhabitants, but severe accidents are more likely to occur than in a residential area. Similar
arguments hold for motorways. However, the usefulness of historical data all depends on its
reliability. If the frequency of calls is low or if the time span of the historical data is short, care
has to be taken to prevent extreme biases: too much focus can be placed on what has happened
in the past (by chance) and other scenarios will be neglected. Estimating arrival distributions can
be troublesome if the frequency is low. Ideally, a combination of historical data, the number of
inhabitants, and expert judgement is used to estimate the weights for the demand points.
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In the provided data the postal code areas without any inhabitants have been filtered out (e.g.,
parks, small forests, new residential areas under construction). As all of our models use weighted
constraints or objectives, this should not impact the coverage of a set of bases. However, it does
limit the possible base locations. Therefore, we have to assume that postal code areas without
any inhabitants are unsuitable for an ambulance base. Further research can determine whether
this assumption affects the coverage for the RAVs. The resulting number of 4-digit postal code
areas per RAV are shown in Table 3.4.1, as are the number of available bases and the total
number of inhabitants.

RAV RAV Number of Number of Number of
Name Region Opened Bases Postal Codes Inhabitants

Groningen 1 13 250 576 615
Friesland 2 19 474 646 045
Drenthe 3 13 255 489 910
IJsselland 4 10 170 506 845
Twente 5 9 120 623 050
Noord- en Oost-Gelderland 6 13 201 809 865
Gelderland-Midden 7 7 134 655 725
Gelderland-Zuid 8 11 158 526 835
Utrecht 9 11 217 1 220 125
Noord-Holland-Noord 10 9 167 641 805
Amsterdam/Waterland 11 9 161 1 261 997
Kennemerland 12 7 98 519 757
Gooi- en Vechtstreek 14 3 40 243 540
Haaglanden 15 8 141 1 016 400
Hollands-Midden 16 10 124 760 930
Rotterdam-Rijnmond 17 10 185 1 247 858
Zuid-Holland-Zuid 18 6 98 479 435
Zeeland 19 11 153 381 395
Midden-en West-Brabant 20 13 217 1 070 885
Brabant-Noord 21 7 146 636 870
Brabant-Zuidoost 22 7 137 734 841
Limburg-Noord 23 7 137 513 855
Limburg-Zuid 24 4 141 607 540
Flevoland 25 6 91 386 184

Total 223 4015 16 558 307

Table 3.4.1: Specifications of all Regional Ambulance Services (RAV) regions. Note that the
postal codes are aggregated into 4-digit areas.
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3.4.2 Number of Bases

The RAV data prescribes the number of available bases p ∈ N for each RAV region. We analyse
the sensitivity to the number of available bases by iterating over all possible values (i.e., from 1 to
|I|). Of course, if full coverage is attainable for some number of bases, this is also the case when
allowing more bases. Therefore, the iterative procedure can be terminated prematurely.

A graphical representation of the results is shown in Figures 3.4.2 and 3.4.3. For each RAV region
the maximum attainable coverage is shown for a range of number of bases to open. The coverage
is normalised by the total demand of the region (so full coverage corresponds to 1). When
full coverage is attained the results for additional bases are not shown, as these also have full
coverage. See Table 3.4.2 for the minimum number of bases required for complete coverage. Note
that the RAVs are numbered 1 to 25, where 13 is skipped (as mentioned in Section 3.4.1).

As expected, all RAVs show a decrease in the gain of adding an additional base (which is called
submodularity, as we will show in Chapter 4). Smaller regions (RAV12, RAV14, RAV15, and
RAV24) need only a few bases to attain full coverage, whereas large regions (RAV2, RAV3,
and RAV6) need many. In particular, RAV2 (Friesland) needs 22 bases for complete coverage,
although a coverage of 99% is possible with only 16 bases. One could argue whether such an
investment in additional bases is worth it. Note that for almost all RAV regions it is expensive
to improve a coverage of 99%.

In Table 3.4.3 the detailed results are given, rounded to four decimals. Therefore, a coverage
of 1.0000 implies almost complete coverage (e.g., see RAV12 for 3 bases). Full coverage is not
rounded. Once complete coverage is attained no further results are given, similar to Figures 3.4.2
and 3.4.3. Hence, an empty entry implies that complete coverage is possible.

As we are given the actual number of available bases for each RAV, we have highlighted the
corresponding entry in green. For 12 RAV regions there is a surplus of bases according to
the MCLP, i.e., full coverage can be maintained with fewer bases. The required number of
bases of 9 RAVs matches exactly the available number of bases. Finally, 3 RAV regions have
incomplete coverage: RAV2 (Friesland), RAV7 (Gelderland-Midden), and RAV23 (Limburg-
Noord). However, these regions still have a coverage of more than 99%. The surplus or shortage
of bases for full coverage is summarised in Table 3.4.2.

These positive results are not surprising: historical data shows that the real coverage is about
92% (see Boers et al. (2010)) and the MCLP is optimistic in the resulting coverage. In practice,
we cannot conclude that most RAVs require fewer bases, because of the model limitations of
the MCLP. However, we can conclude that most likely additional bases are required for RAV2,
RAV7, and RAV23, if complete coverage is the objective.
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RAV Number of Number of Bases Surplus
Region Opened Bases for Full Coverage of Bases

1 13 12 +1
2 19 22 −3
3 13 12 +1
4 10 10 0
5 9 6 +3
6 13 13 0
7 7 8 −1
8 11 8 +3
9 11 10 +1

10 9 8 +1
11 9 6 +3
12 7 4 +3
14 3 2 +1
15 8 4 +4
16 10 8 +2
17 10 10 0
18 6 6 0
19 11 11 0
20 13 11 +2
21 7 7 0
22 7 7 0
23 7 8 −1
24 4 4 0
25 6 6 0

Total 223 203 +20

Table 3.4.2: Minimum number of bases to attain full coverage. The surplus of bases is highlighted
in green if it is positive and in red if negative.
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Figure 3.4.2: Maximum coverage attainable with the shown number of bases (1 of 2).
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Figure 3.4.3: Maximum coverage attainable with the shown number of bases (2 of 2).
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RAV Maximum Coverage for Number of Opened Bases

Region 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.4462 0.6077 0.7077 0.7962 0.8566 0.9100 0.9586 0.9872 0.9949 0.9974 0.9995 1
2 0.2433 0.4006 0.5506 0.6627 0.7614 0.8119 0.8519 0.8811 0.9076 0.9302 0.9528 0.9654 0.9747
3 0.2418 0.4761 0.6454 0.7473 0.8211 0.8891 0.9352 0.9623 0.9852 0.9960 0.9995 1
4 0.3526 0.6302 0.7685 0.8521 0.9288 0.9718 0.9891 0.9959 0.9994 1
5 0.4655 0.7803 0.9106 0.9686 0.9998 1
6 0.2521 0.4317 0.5622 0.6907 0.8064 0.8928 0.9314 0.9605 0.9833 0.9956 0.9988 0.9997 1
7 0.4662 0.7307 0.8548 0.9307 0.9702 0.9909 0.9998 1
8 0.4969 0.7320 0.8691 0.9487 0.9863 0.9981 0.9997 1
9 0.4455 0.7027 0.7931 0.8611 0.9208 0.9600 0.9919 0.9958 0.9987 1

10 0.3969 0.6763 0.8315 0.9238 0.9528 0.9774 0.9989 1
11 0.6762 0.8893 0.9564 0.9981 0.9999 1
12 0.6319 0.9544 1.0000 1
14 0.9640 1
15 0.8269 0.9424 0.9925 1
16 0.4424 0.7068 0.8515 0.9345 0.9813 0.9931 0.9999 1
17 0.6180 0.7930 0.8808 0.9209 0.9492 0.9770 0.9892 0.9969 1.0000 1
18 0.6075 0.7993 0.9655 0.9846 0.9958 1
19 0.3045 0.5210 0.6968 0.7757 0.8423 0.9033 0.9445 0.9687 0.9844 0.9979 1
20 0.3170 0.5691 0.7443 0.8516 0.8979 0.9336 0.9609 0.9806 0.9938 0.9994 1
21 0.4594 0.7138 0.8280 0.9414 0.9815 0.9996 1
22 0.5535 0.7878 0.8772 0.9492 0.9753 0.9884 1
23 0.3292 0.5856 0.7255 0.8391 0.9076 0.9635 0.9958 1
24 0.5140 0.7952 0.9792 1
25 0.4854 0.7067 0.8697 0.9439 0.9962 1

RAV Maximum Coverage for Number of Opened Bases

Region 14 15 16 17 18 19 20 21 22

2 0.9821 0.9875 0.9916 0.9952 0.9970 0.9985 0.9991 0.9999 1

Table 3.4.3: Maximum coverage attainable with the shown number of bases. The entries highlighted in green correspond to the actual
number of available bases of the RAV. Duplicate entries of full coverage are not shown, i.e., an empty entry implies full coverage.
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3.4.3 Adjacency Parameters

As described in Section 3.4.1, the adjacency parameters aij ∈ B for the RAV instances are
determined by the travel time between bases and demand points. A point can be covered by
a base if the corresponding travel time is less than or equal to a certain time threshold (12
minutes in practice). We will analyse the effect of the travel time threshold on the resulting
maximum coverage as follows. We iteratively increase the threshold by 10 seconds, determine
the adjacency parameters, and solve the corresponding MCLP. We obtain the maximum coverage
for the travel time thresholds and the minimum threshold to attain full coverage (accurate up to
10 seconds).

We also consider the robustness of a fixed solution with respect to the travel time threshold.
First, we solve the MCLP for the realistic threshold of 12 minutes. The resulting set of opened
bases is the fixed MCLP solution. Next, we iterate over the travel time thresholds as before,
but keep the solution fixed to the original. That is, given the fixed MCLP solution based on a
threshold of 720 seconds, what is the coverage if we modify the travel time threshold?

The results are shown in Figures 3.4.4 and 3.4.5, where the maximum coverage is given in red
and the fixed MCLP solution in blue. For now, please ignore the green and magenta lines. The
coverage is normalised by the total demand in the RAV region. The thresholds ranges up to and
including the time for which the fixed solution attains complete coverage for the first time.

For all RAVs the maximum coverage hardly increases for thresholds ranging from 0 to 100
seconds, with on average a coverage of 20%. Note that the maximum coverage is never equal
to zero, as the travel time from a base to its own postal code area is zero. From a threshold
of around 100 seconds the maximum coverage increases almost linearly to approximately 80%.
From thereon, the gain in coverage slowly decreases as the threshold increases, until full coverage
is attained. The fixed MCLP solution has a lower starting coverage (around 0.5%) and for most
RAVs increases at the same rate as the maximum coverage.

For four thresholds the maximum coverage and the coverage attained by the fixed solution are
shown in Table 3.4.5. The travel time thresholds are 6, 8, 10, and 12 minutes. For a threshold
of 12 minutes both approaches are the same and thus no distinction is made. Please ignore the
2-Stage columns for now.

It is clear that there is a significant difference between the maximum coverage and the coverage
obtained by the fixed solution for the various thresholds. As the MCLP uses ‘all-or-nothing’
coverage, we should not expect it to be robust to changes in the travel time threshold. Indeed,
the results show that the solutions are very sensitive to the threshold (in particular for RAV4,
RAV12, and RAV15).

Table 3.4.4 gives the minimum travel time thresholds to attain complete coverage (again, please
ignore the 2-Stage column). Note that RAV2, RAV7, and RAV23 require a threshold of more
than 720 seconds as these do not have full coverage when using the actual travel time thresholds.
Several RAV regions can be completely covered with relatively low thresholds, namely RAV5,
RAV8, RAV11, RAV12, RAV14, and RAV15. These regions appear to have insensitive solutions,
but are not found (or returned) by the solver2. In practice, the insensitive solutions would be
preferred.

2We use Gurobi as general Mixed Integer Programming solver, see Appendix B for more details.

74



We conclude that primarily regions with a surplus of bases (overcapacity) have solutions that are
relatively insensitive to modifications to the travel time threshold. This does not hold for RAV
regions with a shortage of bases. Remarkably, RAV25 has no surplus or shortage of available
bases, but is also relatively insensitive to the threshold. Full coverage can be attained with
a threshold of 10 minutes. The results do lead to concerns: the MCLP cannot distinguish
which optimal solutions are insensitive. To counteract this limitation, we present a two-stage
optimisation approach.

3.4.3.1 Two-Stage Optimisation

Multi-stage optimisation is to sequentially solve multiple optimisation problems, where each
optimisation problem depends on the previous ones. In our case, we will use two optimisation
stages: the maximum coverage is determined first with the MCLP, followed by an optimisation
model that minimises the required travel time threshold to attain a certain coverage. The
required coverage is set to the maximum coverage, determined in the first stage. Therefore,
the final solution of the two-stage optimisation maximises coverage first and then minimises
the required travel time threshold. These solutions are exactly the optimal solutions that are
relatively insensitive to modifications to the threshold.

Let τij ∈ R≥0 be the travel time from base i ∈ I to point j ∈ J . Model 3.4.1 shows the
optimisation model of the second stage. In the model, demand points are assigned to a base,
where it is optimal to assign it to the nearest base. The decision variables uij captures the
assignment: uij is equal to one if point j ∈ J is assigned to base i ∈ I and zero otherwise. Each
point is assigned to exactly one base. Consequently, the expression∑

i∈I
aijuij

indicates whether a point is covered and is equal to zj of the MCLP model. Therefore, a minimum
fraction α ∈ [0, 1] of covered demand can be achieved by requiring that∑

j∈J
dj
∑
i∈I

aijuij ≥ α
∑
j∈J

dj .

Finally, the objective is to minimise the travel time threshold, captured by the decision variable
v ∈ R≥0. This is equivalent to minimising the maximum travel time between bases and their
assigned points. Here, we can choose to include or exclude uncovered points. As the MCLP
disregards uncovered points, we have chosen to exclude uncovered points. The corresponding
constraint is: ∑

i∈I
aijτijuij ≤ v ∀ j ∈ J .

To include all points we should remove the adjacency parameters aij from the expression. Note
that the shown constraint includes demand points with zero weight (dj = 0). By multiplying
both sides of the inequality with dj , these points can be ignored. As all points of the RAV regions
have strictly positive demand, this issue does not apply in our case.

Notice that the multi-stage optimisation approach can be extended by or modified to other
secondary criteria, always selecting a solution from the set of optimal MCLP solutions. For
example, the average weighted travel time can be minimised.
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Minimise

v

subject to ∑
i∈I

xi ≤ p,

uij ≤ xi ∀ i ∈ I, j ∈ J ,∑
i∈I

uij = 1 ∀ j ∈ J ,∑
j∈J

dj
∑
i∈I

aijuij ≥ α
∑
j∈J

dj ,∑
i∈I

aijτijuij ≤ v ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
uij ∈ B ∀ i ∈ I, j ∈ J ,
v ∈ R≥0.

Model 3.4.1: Minimum Travel Time Threshold model.

There are two main arguments for using the described two-stage approach. When there is a
surplus of available bases, the MCLP generally has solutions that are insensitive to changes to the
travel time threshold, but it cannot make the distinction. In practice, these insensitive solutions
are preferred. Furthermore, in The Netherlands 12 of the 24 RAV regions have a surplus of bases
according to the MCLP. Therefore, this issue also arises in practice. The two-stage approach
allows us to select an insensitive solution from the set of optimal MCLP solutions.

We have applied the two-stage approach to the RAV regions. As mentioned before, the required
covered fraction of demand α is equal to the coverage of the fixed MCLP solution. While the
travel time threshold changes, we keep the two-stage solution fixed. The results are given in the
2-Stage columns of Tables 3.4.4 and 3.4.5, and shown in green in Figures 3.4.4 and 3.4.5.

For most RAV regions the two-stage solution improves the coverage with respect to the fixed
MCLP solution, but there are exceptions (see RAV21). We are only guaranteed a non-strict
improvement when the original coverage (fraction α) is attained. Table 3.4.5 gives the coverage
of the two-stage solution for the four selected thresholds. By construction, for a threshold of 12
minutes the coverage is the same as the fixed MCLP coverage. Therefore, no distinction is shown.
If the two-stage coverage improves the coverage of the fixed MCLP solution, the corresponding
entry is highlighted in green.

In Table 3.4.4 the 2-Stage entries are highlighted in green if the minimum threshold for full
coverage is strictly lower than that of the fixed MCLP solution. Recall that we have chosen
to exclude uncovered points. This choice only affects RAV regions where the fixed solution has
incomplete coverage (RAV2, RAV7, and RAV23). It turns out that including all points improves
the minimum threshold of the two-stage solution for RAV2 to 970 seconds. The thresholds for
RAV7 and RAV23 are unchanged.
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The regions RAV5, RAV8, RAV11, RAV12, RAV14, and RAV15 motivated the use of a two-stage
optimisation. We see that indeed the two-stage solution leads to great improvement for these
RAVs. Similar improvement is also achieved for other regions, see RAV9, RAV16, RAV20, and
RAV25. Note that for RAV14 the two-stage solution achieves a coverage exceptionally close to
the maximum coverage for thresholds greater than 6 minutes.

We conclude that the two-stage approach is a valid strategy for determining solutions that are
less sensitive to changes in the travel time threshold. The greatest improvement is achieved if full
coverage can be attained with lower thresholds than would be used normally. However, notice
that the fixed two-stage solution of RAV4 is superior to the fixed MCLP solution, even though
the minimum travel time threshold of 12 minutes cannot be significantly improved. This implies
that the two-stage approach should always be considered if full coverage can be attained. For
RAV regions with partial (incomplete) coverage the method shows no added benefit.

3.4.3.2 Current Locations

The two-stage optimisation approach is a method to model multi-criteria objective functions. In
reality, the locations of ambulance bases are determined using multiple criteria. In particular,
bases are usually placed closer to large cities, as these are prioritised over rural areas. We can
evaluate if the current base locations are less sensitive to changes in the travel time threshold
compared to the fixed MCLP solution.

Before we discuss the results, we have to note that the current base locations are translated to
4-digit postal code areas. Consequently, the actual travel times can differ from those used by
the model. This holds in particular for large postal code areas. Therefore, we do not state the
attained coverage in tables, as these can easily be misinterpreted.

Figures 3.4.4 and 3.4.5 show the (MCLP) coverage attained by the current locations in magenta.
In general, for thresholds around 720 seconds the current coverage is less than the maximum
attainable coverage. However, for threshold below 600 seconds the current coverage outperforms
that of the fixed MCLP solution. Moreover, for lower thresholds it outperforms the coverage of
the fixed two-stage solution, see for instance RAV5, RAV7, RAV8, RAV11, and RAV18. This is
not always the case, as can be seen for RAV25.

Notice that the current coverage for thresholds below 100 seconds is generally higher than the
coverage of the other fixed solutions. This suggests that current bases are indeed located closer
to postal code areas with many inhabitants, resulting in less sensitive coverage.
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Travel Time Threshold
RAV for Full Coverage

Region Max Fixed 2-Stage

1 670 720 670
2 770 1030 1030
3 680 720 680
4 720 720 720
5 570 710 570
6 690 720 690
7 730 990 950
8 540 720 540
9 650 720 650

10 630 720 630
11 580 720 580
12 520 690 520
14 510 710 510
15 460 720 460
16 600 710 600
17 690 720 690
18 720 720 720
19 710 710 710
20 690 720 690
21 690 720 690
22 710 720 710
23 750 820 820
24 700 720 700
25 600 720 600

Table 3.4.4: Minimum travel time threshold (in seconds) to attain full coverage. Shown are
the maximum attainable coverage solution, the fixed MCLP solution based on a threshold of
720 seconds, and the fixed two-stage solution based on the fixed MCLP solution. If the fixed
two-stage solution improves the fixed MCLP solution, the corresponding entry is highlighted in
green. The results are determined using increments of 10 seconds.
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Figure 3.4.4: Maximum coverage attainable with the shown travel time threshold (1 of 2). The results are determined using increments
of 10 seconds. In red the maximum attainable coverage is shown, in blue the coverage of the fixed MCLP solution based on a threshold of
720 seconds, in green the coverage of the fixed two-stage solution based on the fixed MCLP solution, and in magenta the approximated
coverage of the current base locations.
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Figure 3.4.5: Maximum coverage attainable with the shown travel time threshold (2 of 2). The results are determined using increments
of 10 seconds. In red the maximum attainable coverage is shown, in blue the coverage of the fixed MCLP solution based on a threshold of
720 seconds, in green the coverage of the fixed two-stage solution based on the fixed MCLP solution, and in magenta the approximated
coverage of the current base locations.
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Coverage for Travel Time Threshold

RAV 360 (s) 480 (s) 600 (s) 720 (s)

Region Max Fixed 2-Stage Max Fixed 2-Stage Max Fixed 2-Stage

1 0.7636 0.4874 0.5060 0.9218 0.7451 0.7934 0.9946 0.9208 0.9465 1
2 0.7250 0.2991 0.3103 0.8642 0.5266 0.5357 0.9686 0.8010 0.8346 0.9985
3 0.6886 0.4218 0.3417 0.8805 0.6832 0.6329 0.9883 0.8724 0.8602 1
4 0.8047 0.3861 0.3962 0.9130 0.6057 0.7117 0.9924 0.7701 0.9004 1
5 0.8075 0.3642 0.4944 0.9630 0.7026 0.8421 1 0.9032 1 1
6 0.6509 0.4038 0.3933 0.8418 0.6414 0.5874 0.9706 0.8839 0.9072 1
7 0.7320 0.3279 0.2650 0.8746 0.5507 0.4871 0.9849 0.8119 0.8189 0.9998
8 0.8279 0.2838 0.5233 0.9752 0.5090 0.9216 1 0.8369 1 1
9 0.7201 0.2628 0.4002 0.9110 0.5299 0.7965 0.9981 0.8121 0.9735 1

10 0.7665 0.2930 0.2811 0.9027 0.5177 0.5738 0.9950 0.7902 0.9920 1
11 0.8468 0.3029 0.4895 0.9932 0.5024 0.8344 1 0.7612 1 1
12 0.8951 0.2274 0.6037 0.9990 0.4959 0.8433 1 0.7248 1 1
14 0.8249 0.3183 0.7802 0.9991 0.4785 0.9991 1 0.7193 1 1
15 0.9339 0.2680 0.7674 1 0.4740 1 1 0.7175 1 1
16 0.7879 0.2852 0.4805 0.9411 0.5983 0.8651 1 0.8452 1 1
17 0.8172 0.3743 0.4140 0.9525 0.5763 0.7660 0.9882 0.9041 0.9142 1
18 0.7177 0.3488 0.2977 0.8904 0.5631 0.6088 0.9876 0.8450 0.8584 1
19 0.6978 0.4044 0.4114 0.9102 0.6544 0.6537 0.9767 0.8670 0.8251 1
20 0.7398 0.3378 0.4620 0.9105 0.5597 0.6728 0.9881 0.7993 0.9103 1
21 0.6260 0.3424 0.2518 0.8813 0.5520 0.4741 0.9856 0.8430 0.8310 1
22 0.6462 0.2034 0.3483 0.8378 0.4956 0.6630 0.9628 0.8532 0.8941 1
23 0.5801 0.3642 0.3570 0.7821 0.5585 0.5698 0.9319 0.8251 0.8251 0.9958
24 0.5797 0.2539 0.2944 0.8018 0.5370 0.5738 0.9797 0.8749 0.8711 1
25 0.8869 0.4408 0.7391 0.9551 0.7648 0.9052 1 0.9284 1 1

Table 3.4.5: Maximum coverage attainable with the shown travel time threshold. Shown are the maximum attainable coverage solutions,
the fixed MCLP solution based on a threshold of 720 seconds, and the fixed two-stage solution based on the fixed MCLP solution. If
the fixed two-stage solution improves the fixed MCLP solution, the corresponding entry is highlighted in green.
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3.4.4 Post-Optimisation Analysis

The results of the sensitivity analysis of the travel time threshold show that the RAV regions
have multiple optimal solutions and secondary objectives can be used to select solutions with
preferred properties. These observations further justify the use of post-optimisation analyses,
e.g., the analysis described in Section 3.3. We will construct the ordered performance curve
(OPC) of the neighbourhood of the optimal solution. Since the optimal solutions returned by
the solver are somewhat arbitrary, we have chosen to use the two-stage MCLP solution (see
Section 3.4.3.1). By using two-stage optimisation, we reduce the arbitrariness of the resulting
optimal solution.

We also have to specify which neighbourhood is under consideration. As mentioned in Section 3.3,
the Swap neighbourhood is a natural choice for the MCLP. We use two neighbourhoods: the
set of all solutions that differ exactly one and exactly two bases with the optimal solution,
respectively. Note that these neighbourhoods are disjoint and depend on the chosen optimal
solution. In particular, we are interested in the number of (alternative) optimal solutions in the
neighbourhood.

Alternative optimal solutions can lie outside these two neighbourhoods. To give an indication
how many optimal MCLP solutions a region has, we iteratively determine a new optimal solution
by cutting off the previous ones. Suppose we have an optimal set of opened bases I∗ ⊆ I. This
solution can be cut off by adding the following constraint to the MCLP:∑

i∈I∗
xi ≤ |I∗| − 1 = p− 1.

When the original coverage cannot be attained by the new solution, we know that we have
determined all optimal solutions. However, the number of alternative optimal solutions can be
extremely large. Therefore, we limit the search to 100 alternative solutions. Note that this
search can be seen as an unrestricted neighbourhood search where any number of bases can be
replaced.

Table 3.4.6 shows the number of (alternative) optimal solutions in the discussed neighbourhoods.
As we have mentioned, the search of the complete solution space (shown in the last column) has
been limited to find up to 100 alternative optimal solutions. For most RAVs there are between
20 and 40 optimal alternatives where one base has been replaced. RAV3, RAV5, RAV8, RAV11,
and RAV12 have even more: between 250 and 300. Increasing the neighbourhood to two base
replacements generally leads to a significant number of additional optimal solutions found (easily
up to 10 times as many alternatives).

There are exceptions, such as RAV2: there are at least 100 alternatives in the complete solution
space, but in the two restricted neighbourhoods only 14 and 76 optimal solutions can be found. A
similar statement holds for RAV7, but for RAV7 we have determined that there are 71 alternative
optimal solutions in total. RAV23 is exceptional: only one alternative exists and lies in the 1-
Swap neighbourhood. These three regions have in common that the realistic number of bases is
not sufficient for complete coverage, i.e., there is no surplus in capacity. Completely opposite is
RAV15, which has twice as many bases than needed for full coverage. This region has a huge
number of alternatives: 720 and more than 100 000 in the two restricted neighbourhoods. We
can conclude that excess capacity leads to more optimal solutions, which is expected.
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The ordered performance curves of the two restricted neighbourhoods are shown in Figures 3.4.6
to 3.4.9. Also recall the five types of typical OPCs shown in Figure 3.3.1. The neighbourhood
OPCs are not smooth and do not always have a clear match with one of the five types. However,
we can conclude that there is no OPC of the low performance type. In Figures 3.4.6 and
3.4.7 (one base replaced) we see mostly high performance curves. RAV6, RAV10, and RAV23
have approximately a uniform (linear) performance. Furthermore, RAV12 and RAV18 match
reasonably with the extreme performance curve.

For the neighbourhood with two bases replaced (Figures 3.4.8 and 3.4.9) mostly the high and
average performance types match with the OPCs. For instance, RAV1, RAV14, and RAV15 have
high performance, and RAV2, RAV7, and RAV23 average performance. In general, we see high
performance OPCs for regions with surplus capacity and average performance for regions with
no surplus or a small shortage. The observation that surplus capacity leads to many alternative
optimal solutions and a high performance OPC is not surprising. However, it is reassuring that
when there is no surplus, this does not lead to a low performance OPC.

To confirm that surplus capacity is the main contributor to having multiple optimal solutions,
we perform a search of the complete solution space for a range of allowed number of bases to
open. As before, we limit the search to finding at most 100 alternative optimal solutions. The
results are shown in Table 3.4.7. There are almost no alternatives when only a few bases are
available (incomplete coverage). When a coverage of 98% or more can be attained, there are
generally more alternatives. In particular, opening exactly the minimum number of bases for full
coverage (see also Table 3.4.2) results in at least 100 alternatives, with the exception of RAV14.
To conclude, the existence of multiple optimal solutions occurs primarily when there is at least
98% coverage.
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Number of Optimal
RAV Solutions in Neighbourhood

Region 1 Base 2 Bases Any

1 73 2208 ≥100
2 14 76 ≥100
3 293 12 149 ≥100
4 30 329 ≥100
5 277 13 534 ≥100
6 12 80 ≥100
7 8 24 71
8 259 21 845 ≥100
9 49 1051 ≥100

10 40 669 ≥100
11 270 20 014 ≥100
12 259 15 918 ≥100
14 36 439 ≥100
15 720 104 481 ≥100
16 61 1910 ≥100
17 38 623 ≥100
18 23 151 ≥100
19 32 425 ≥100
20 42 867 ≥100
21 20 165 ≥100
22 9 29 ≥100
23 1 0 1
24 14 44 ≥100
25 31 359 ≥100

Table 3.4.6: Number of optimal solutions in the neighbourhood of the optimal MCLP solution of
the two-stage minimum travel time threshold model. The shown neighbourhoods indicate how
many open bases are replaced in the alternative optimal solution.
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Figure 3.4.6: Ordered performance curves of the neighbourhood of the optimum of the two-stage minimum travel time threshold model
(1 of 2). The neighbourhood consists of all solutions for which one open base has been replaced.
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Figure 3.4.7: Ordered performance curves of the neighbourhood of the optimum of the two-stage minimum travel time threshold model
(2 of 2). The neighbourhood consists of all solutions for which one open base has been replaced.
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Figure 3.4.8: Ordered performance curves of the neighbourhood of the optimum of the two-stage minimum travel time threshold model
(1 of 2). The neighbourhood consists of all solutions for which two open bases have been replaced.
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Figure 3.4.9: Ordered performance curves of the neighbourhood of the optimum of the two-stage minimum travel time threshold model
(2 of 2). The neighbourhood consists of all solutions for which two open bases have been replaced.
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RAV Alternative Optimal Solutions for Number of Opened Bases

Region 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 0 0 0 0 1 3 1 49 ≥100
2 0 0 0 0 0 0 0 0 0 0 0 7 0
3 0 0 0 0 0 0 0 0 6 5 ≥100 ≥100
4 0 0 0 1 1 1 1 62 59 ≥100
5 0 0 0 0 1 ≥100
6 0 0 0 1 1 1 1 0 1 1 7 ≥100 ≥100
7 0 0 0 0 3 19 71 ≥100
8 0 0 0 2 41 ≥100 ≥100 ≥100
9 0 0 0 0 0 0 0 ≥100 ≥100 ≥100

10 0 0 0 0 0 0 2 ≥100
11 0 0 0 0 33 ≥100
12 0 0 1 ≥100
14 0 15 ≥100
15 0 0 8 ≥100
16 0 0 0 1 1 1 85 ≥100
17 0 0 0 6 20 20 ≥100 ≥100 ≥100 ≥100
18 0 0 0 17 17 ≥100
19 0 0 0 1 5 5 11 ≥100 ≥100 ≥100 ≥100
20 0 0 0 0 0 0 1 0 1 11 ≥100
21 0 0 0 0 12 46 ≥100
22 0 0 0 0 2 33 ≥100
23 1 1 0 0 1 1 1 ≥100
24 0 0 0 ≥100
25 0 0 0 ≥100 ≥100 ≥100

RAV Alternative Optimal Solutions for Number of Opened Bases

Region 14 15 16 17 18 19 20 21 22

2 3 7 ≥100 ≥100 ≥100 ≥100 ≥100 ≥100 ≥100

Table 3.4.7: Number of alternative optimal solutions with the shown number of bases. The entries highlighted in green correspond to
the actual number of available bases of the RAV. Duplicate entries of at least 100 optimal solutions with full coverage are not shown.
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3.4.5 Uncertain Demand

Although the number of inhabitants in a postal code area is known to great certainty in The
Netherlands, we can analyse the sensitivity to uncertainty in the demand. Assume that the
weights of the demand points (the number of inhabitants) have the uncertainty structure as
discussed in Section 3.2.1. We apply the Robust-Counterpart MCLP (Model 3.2.2) to construct

a robust solution. This requires us to specify an estimated value δ̂j for the demand weight
and its possible deviation ηj for j ∈ J . Recall that the demand weight δj lies in the interval

[δ̂j − ηj , δ̂j + ηj ]. We have shown in Section 3.2.4.1 that a common relative deviation (e.g., 5%)
would lead to the same solutions as the non-robust MCLP.

We can view the arrival of calls as a Poisson process, where the arrival rate is equal to the number
of inhabitants in the postal code area. The rate of a Poisson process can be more accurately
estimated for higher arrival rates. Therefore, we assume that areas with many inhabitants have a
smaller relative deviation compared to areas with few inhabitants. A natural choice is to use the
expected number of calls as estimated demand weight and a multiple of the standard deviation
as possible perturbation. As the standard deviation of a Poisson distributed random variable is
the square root of its expected value, areas with many inhabitants would have a smaller relative
deviation (exactly as desired).

Thus, the estimated demand δ̂j is set to the number of inhabitants of that postal code area

and the total demand ∆ to the sum of all inhabitants in the RAV, ∆ =
∑
j∈J δ̂j . Finally, the

perturbation ηj is set to a multiple cj ∈ N of the square root of the estimated demand:

δj ∈
[
δ̂j − cj

√
δ̂j , δ̂j + cj

√
δ̂j

]
.

As we do not allow negative weights, we require that cj ≤
√
δ̂j . In fact, we set

cj = min

{
c,

√
δ̂j

}
,

where c ∈ N is a fixed parameter for all points. For example, c = 0 corresponds to the non-
robust MCLP, as there is no perturbation. We have chosen three scenarios: c ∈ {1, 5, 10}, i.e.,
perturbations up to ten times the standard deviation. The reason is as follows. The average
number of inhabitants in all postal code areas is approximately 4500. The three scenarios would
lead to a deviation of 67 (1.5%), 335 (7.5%), and 670 (15%), respectively. Postal code areas with
fewer inhabitants than average will have a higher relative deviation, areas with more inhabitants
a lower relative deviation. Figure 3.4.10 shows the relative perturbation for the three scenarios
of parameter c. Note that the relative perturbation is defined as ηj/δ̂j .

In Section 3.4.2 we have seen that for the realistic number of bases most RAV regions have full
coverage, in which case the MCLP and Robust Counterpart MCLP (RC-MCLP) are equivalent.
Therefore, we iterate over the number of available bases, similar to the analysis of the sensitivity
to the number of bases. Each time we compare the Robust Counterpart MCLP solution with
the MCLP solution. In particular, we determine whether the MCLP solution has maximum
robust coverage and whether the RC-MCLP has maximum non-robust coverage. In the first
case, the MCLP solution is also robust. In the second case, the RC-MCLP solution is also
optimal for the MCLP. If neither case applies, then there is a significant difference between the
two solutions.
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Figure 3.4.10: Relative perturbation in the number of inhabitants for parameter c. Dark blue
corresponds with c = 1, light blue with c = 5, and cyan with c = 10.

Since there usually exist multiple optimal solutions, the considered solutions should maximise
both the robust as well as the non-robust coverage. That is, the MCLP solution should have
the best robust coverage of all optimal MCLP solutions, and similarly for the RC-MCLP. This
is achieved using a two-stage approach (see also Section 3.4.3.1).

In almost all cases the solutions of both models have the same robust coverage, i.e., the MCLP
is robust with respect to the considered uncertainty scenario. When there was a difference in
robust coverage, also the non-robust coverage differed. The results are shown in Tables 3.4.8 and
3.4.9. Only the cases where the MCLP solution is not robust are given, the other entries are
omitted. In particular, completely omitted are RAV4, RAV5, RAV8, RAV10, RAV11, RAV14
to RAV18, RAV20, RAV24, and RAV25. In all other cases the sets of covered points are equal
between the two models. Note that the results are rounded to four decimals, so an absolute gap
of 0.0000 implies there is a very small gap (see RAV1 with 10 bases for scenario c = 10).

We could not discern a pattern or rule for which number of available bases the MCLP is not
robust: it ranges from one base to almost the required number for full coverage. Furthermore,
RAV2 shows that whether the MCLP is robust can alternate with respect to the number of
bases to open. However, the number of cases (where the MCLP is not robust) appears to be
non-decreasing in the uncertainty parameter c.

For each uncertainty scenario we have evaluated 203 cases divided among the 24 RAV regions.
Only in 32 of the 609 cases (5%) do the two models differ. If the MCLP solution is not robust,
the absolute gap in coverage is very small: for robust and non-robust coverage all gaps are below
0.75% and most below 0.05%. Note that this also implies that the Robust Counterpart MCLP
provides very good solutions when considering non-robust coverage. Most likely, these results
heavily depend on the used uncertainty structure. However, we have considered two natural
types of uncertainty structures: a fixed relative perturbation (theoretically analysed), and a
structure based on the standard deviation of Poisson distributed random variables (empirically
analysed). From these results, we have obtained no indications that either model is superior
when considering robust and non-robust coverage.
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Robust Coverage

Scenario c = 1 Scenario c = 5 Scenario c = 10

RAV Opened Absolute Absolute Absolute
Region Bases MCLP RC-MCLP Gap MCLP RC-MCLP Gap MCLP RC-MCLP Gap

1 6 0.8980 0.8981 0.0001 0.8861 0.8878 0.0017
10 0.9959 0.9959 0.0000

2 5 0.7543 0.7543 0.0000 0.7258 0.7261 0.0003 0.6912 0.6921 0.0009
7 0.8284 0.8287 0.0003 0.8056 0.8064 0.0008
9 0.8899 0.8902 0.0003 0.8730 0.8738 0.0008

16 0.9894 0.9894 0.0001 0.9874 0.9875 0.0001
3 5 0.8163 0.8170 0.0006 0.7974 0.8009 0.0035 0.7742 0.7811 0.0069

8 0.9508 0.9509 0.0001
6 9 0.9806 0.9807 0.0001 0.9779 0.9784 0.0006
7 3 0.8416 0.8417 0.0000 0.8285 0.8287 0.0002
9 3 0.7639 0.7639 0.0000

12 1 0.6270 0.6276 0.0007 0.6072 0.6109 0.0036 0.5827 0.5900 0.0073
19 8 0.9608 0.9608 0.0000

9 0.9793 0.9793 0.0000
21 3 0.8128 0.8149 0.0021 0.7976 0.8026 0.0050
22 6 0.9872 0.9873 0.0001 0.9859 0.9863 0.0003
23 3 0.7017 0.7023 0.0006 0.6779 0.6793 0.0013

Table 3.4.8: Robust coverage of the MCLP and Robust Counterpart MCLP (RC-MCLP) for the three uncertainty scenarios and all
possible number of bases to open. RAV regions and corresponding entries are only shown if the robust and non-robust coverage differ
between the two models.
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Non-Robust Coverage

Scenario c = 1 Scenario c = 5 Scenario c = 10

RAV Opened Absolute Absolute Absolute
Region Bases MCLP RC-MCLP Gap MCLP RC-MCLP Gap MCLP RC-MCLP Gap

1 6 0.9100 0.9085 0.0014 0.9100 0.9085 0.0014
10 0.9974 0.9974 0.0001

2 5 0.7614 0.7613 0.0001 0.7614 0.7613 0.0001 0.7614 0.7609 0.0005
7 0.8519 0.8514 0.0004 0.8519 0.8514 0.0004
9 0.9076 0.9072 0.0004 0.9076 0.9072 0.0004

16 0.9916 0.9916 0.0000 0.9916 0.9916 0.0000
3 5 0.8211 0.8210 0.0001 0.8211 0.8210 0.0001 0.8211 0.8210 0.0001

8 0.9623 0.9620 0.0003
6 9 0.9833 0.9829 0.0004 0.9833 0.9829 0.0004
7 3 0.8548 0.8547 0.0001 0.8548 0.8547 0.0001
9 3 0.7931 0.7929 0.0001

12 1 0.6319 0.6318 0.0001 0.6319 0.6318 0.0001 0.6319 0.6318 0.0001
19 8 0.9687 0.9680 0.0007

9 0.9844 0.9838 0.0007
21 3 0.8280 0.8272 0.0008 0.8280 0.8272 0.0008
22 6 0.9884 0.9883 0.0001 0.9884 0.9883 0.0001
23 3 0.7255 0.7253 0.0002 0.7255 0.7253 0.0002

Table 3.4.9: Non-robust coverage of the MCLP and Robust Counterpart MCLP (RC-MCLP) for the three uncertainty scenarios and all
possible number of bases to open. RAV regions and corresponding entries are only shown if the robust and non-robust coverage differ
between the two models.
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3.5 Two Dutch Regional Ambulance Services in Detail

In the previous discussion of the numerical results we have only considered the attained coverage
and not the actual positions of the ambulance bases. For the RAVs of The Netherlands we know
the current positions of the bases. Therefore, we can compare the current base locations with
those suggested by the EMS models. We will only consider two of the 24 RAV regions: RAV14
(Gooi- en Vechtstreek) and RAV23 (Limburg-Noord).

RAV14 is the smallest RAV region (3 bases and 40 demand points), making detailed visualisations
possible. It has surplus capacity: only two bases are required for full coverage according to the
MCLP. Furthermore, in Section 3.4.3 we have seen that the two-stage MCLP solution is extremely
robust to changes in the travel time threshold, more than any other region.

RAV23 is larger than RAV14: it has 7 bases, 137 demand points, and cannot achieve full coverage
(a shortage of one additional base). The fact that RAV23 has only two optimal MCLP solutions
sets it apart from the other regions. Furthermore, when we restrict RAV23 to having three bases,
there is a difference between the MCLP and the Robust Counterpart MCLP. That is, a different
selection of bases is more robust to changes in demand.

In the following sections we discuss both RAVs, giving detailed information on the regions,
their demand distributions, and the various EMS model solutions. We start with RAV14 in
Section 3.5.1, followed by RAV23 in Section 3.5.2.

3.5.1 Gooi- en Vechtstreek

The Regional Ambulance Services ‘Gooi- en Vechtstreek’ (RAV14) is part of the province Noord-
Holland, see the highlighted RAV region in Figure 3.5.1. The region consists of nine municipali-
ties: Blaricum, Bussum, Hilversum, Huizen, Laren, Muiden, Naarden, Weesp, and Wijdemeren.
It has 40 4-digit and approximately 7250 6-digit postal code areas. In Figure 3.5.2 the centres of
the 4- and 6-digit areas are depicted and the corresponding city names are shown. Nederhorst
den Berg, Ankeveen, Kortenhoef, and Breukeleveen are part of the municipality Wijdemeren,
which has several large lakes (hence the name).

Figure 3.5.1: Gooi- en Vechtstreek (RAV14) of The Netherlands.
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Figure 3.5.2: The centres of the 4- and 6-digit postal code areas of Gooi- en Vechtstreek (RAV14). The centres of the 6-digit areas are
shown in green (unlabelled) and the centres of the 4-digit areas in magenta (labelled).
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Figure 3.5.3: The number of inhabitants (in black) of each 4-digit postal code area (in magenta) of Gooi- en Vechtstreek (RAV14). The
area of the green discs is proportional to the number of inhabitants.
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Usually the number of 6-digit postal codes is proportional to the number of inhabitants in the
area. This is indeed the case for RAV14: Figure 3.5.3 gives the number of inhabitants (in black)
for each 4-digit postal code area (in magenta). Furthermore, the area of the green discs is
proportional to the number of inhabitants, so densely populated areas are clearly visible. Most
inhabitants in RAV14 live in the eastern part of the region. In the west the city Weesp has the
most inhabitants.

From the sensitivity analysis we know that RAV14 can attain full coverage with only two of the
three available bases. Figure 3.5.4 shows the optimal base locations when there are one and two
bases available. In fact, the optimum shown for two bases (Figure 3.5.4b) is only one of the
16 optimal solutions (recall Table 3.4.7). All optimal base location pairs for RAV14 with two
bases are given in Figure 3.5.5. Each optimal pair consists of one ‘blue’ base and one ‘magenta’
base. We conclude that with two bases available a centrally located base is required to be able
to cover both the eastern and western demand points, and a southern base is needed to cover
Breukeleveen (3625) and Nieuw Loosdrecht (1231).

(a) Optimum with 1 base. (b) Optimum with 2 bases.

Figure 3.5.4: Optimal MCLP base locations (in blue) and covered (green) or uncovered (red)
demand points for RAV14.

(a) First set of alternative optimal locations. (b) Second set of alternative optimal locations.

Figure 3.5.5: Optimal MCLP base location pairs (the base in blue with one base in magenta) for
RAV14 with 2 bases.
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Adding a third base allows for many more optimal configurations: any optimal solution with two
bases can be arbitrarily expanded. Furthermore, different optimal solutions are possible. For
example, the current base locations of RAV14 lead to full coverage. These are located in the 4-
digit postal code areas 1213 (Hilversum), 1261 (Blaricum), and 1381 (Weesp), see Figure 3.5.6a.
Do note that the shown bases use the 4-digit (aggregated) postal code areas. For large postal
code areas, such as 1261 (Blaricum), the actual base location can differ.

As discussed in Section 3.4.3, a two-stage optimisation approach can be used to select a preferred
optimal MCLP solution. The two-stage MCLP solution obtained with the Minimum Travel Time
Threshold model (Model 3.4.1) is shown in Figure 3.5.6b. The current base locations are similar
to the two-stage MCLP solution. The two-stage MCLP solution cannot disregard Breukeleveen
(3625), even though it has relatively few inhabitants. This explains why the base in Hilversum
is located in the south-western part of the city.

Figure 3.5.7 depicts the optimal MCLP base locations for three travel time thresholds, namely
for 6, 8, and 8.5 minutes. These correspond to the entries in Table 3.4.5. As full coverage can
be attained with a travel time threshold of 506 seconds (almost 8.5 minutes), the solution in
Figure 3.5.7c is also optimal for all larger thresholds. Finally, notice that the two-stage MCLP
base locations closely correspond to the solutions in Figure 3.5.7, which explains its robustness
with respect to the travel time threshold.

(a) Current base locations. (b) Minimum Travel Time Threshold two-stage
MCLP solution.

Figure 3.5.6: Base locations (blue) and covered (green) or uncovered (red) demand points for
RAV14. The current locations and the two-stage MCLP solution are shown.
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(a) Optimum for a travel time threshold of 6 minutes.

(b) Optimum for a travel time threshold of 8 minutes.

(c) Optimum for a travel time threshold of 8.5 minutes.

Figure 3.5.7: Optimal MCLP base locations (in blue) and covered (green) or uncovered (red)
demand points for RAV14 with different travel time thresholds.

99



3.5.2 Limburg-Noord

The northern part of the province Limburg is the Regional Ambulance Services ‘Limburg-Noord’
(RAV23), depicted in Figure 3.5.8. Among its 15 municipalities are Roermond, Venlo, Venray,
and Weert. The river Maas runs through the region, passing the western side of Roermond and
Venlo, all the way north to pass Molenhoek. The region consists of 137 4-digit and approximately
14 000 6-digit postal code areas, see Figure 3.5.9. Unfortunately, we cannot show all cities of
RAV23 due to the size of the region. Similar to RAV14, we have visualised the number of
inhabitants in each 4-digit postal code area in Figure 3.5.10. We do not give the exact number of
inhabitants, as the visualisation of many postal code areas overlap (smaller areas are displayed
on top).

RAV23 can almost be covered completely with the seven available bases: the maximum MCLP
coverage is 99.58%. Full coverage is possible with one additional base. In Figure 3.5.11 we give
the optimal base locations for the shown number of available bases. Do note that with eight
bases there are more than 100 optimal solutions (recall Table 3.4.7). Most base locations are
relatively stable. For example, having a base in Venlo is optimal in all cases. When there are
at least three bases, two should be assigned to Weert and Roermond. Finally, with six or more
bases the northern demand points should be covered by a base in Ottersum.

Consider the configuration in Figure 3.5.11g, where seven bases are opened. The two uncovered
demand points are Wellerlooi in the north and Buggenum in the south. Both bases lie on the
other side of the river Maas with respect to their nearest base. This is most likely the reason
why they cannot be reached in time.

Although the RAV region has many optimal solutions with eight opened bases, there are only
two for the current number of bases (i.e., seven bases). These two optimal solutions are almost
the same, see Figures 3.5.11g and 3.5.12b. Only the most southern base differs, but the two
possible locations are adjacent and overlap partially (see also Figure 3.5.9). The alternative
optimal solution corresponds to the two-stage MCLP solution using the Minimum Travel Time
Threshold model. As discussed in Section 3.4.3.1, the two-stage MCLP solution does not lead
to any improvement for RAV23. Given the similarity between the optimal solutions, this is not
surprising.

Figure 3.5.8: Limburg-Noord (RAV23) of The Netherlands.
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Figure 3.5.9: The centres of the 4- and 6-digit postal code areas of Limburg-Noord (RAV23). The
centres of the 6-digit areas are shown in green and the centres of the 4-digit areas in magenta.
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Figure 3.5.10: The number of inhabitants of each 4-digit postal code area of Limburg-Noord
(RAV23). The area of the green discs is proportional to the number of inhabitants.
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(a) Optimum with 1 base. (b) Optimum with 2 bases. (c) Optimum with 3 bases. (d) Optimum with 4 bases.

(e) Optimum with 5 bases. (f) Optimum with 6 bases. (g) Optimum with 7 bases. (h) Optimum with 8 bases.

Figure 3.5.11: Optimal MCLP base locations (blue) and covered (green) or uncovered (red) demand points for RAV23.
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In Figure 3.5.12a the current base locations are depicted. Again, we remark that these are
aggregated into the 4-digit postal code areas. Nevertheless, it is clear that the northern demand
points are uncovered. In practice, these are most likely partially served by other RAVs (Brabant-
Noord and Gelderland-Zuid). Most current bases have a similar location as the optimal MCLP
solution. For bases in or near the large cities (Roermond, Venlo, Venray, and Weert) this is
expected. The most southern and the central current bases are also near the optimal MCLP
locations.

Finally, we also consider the Robust Counterpart MCLP solutions (recall Table 3.4.8). The
MCLP differs from the Robust Counterpart MCLP only when three bases can be opened, and
only for the two scenarios with the largest uncertainty (c = 5 and c = 10). It turns out that
the Robust Counterpart solution is the same for these two scenarios. The base locations are
shown in Figure 3.5.13. Compared to the MCLP solution, the base north of Venlo is positioned
in between Venlo and Venray. The two southern bases in Roermond and Weert are the same.
The reason to reposition the northern base seems to be to cover both Venlo and Venray. Both
cities have postal code areas with many inhabitants, which have a relatively lower uncertainty
due to the chosen uncertainty structure.

(a) Current base locations. (b) Minimum Travel Time Threshold
two-stage MCLP solution.

Figure 3.5.12: Base locations (blue) and covered (green) or uncovered (red) demand points for
RAV23. The current locations and the two-stage MCLP solution are shown.
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(a) MCLP with 3 bases. (b) Robust Counterpart MCLP with 3
bases under uncertainty scenarios c = 5
and c = 10.

Figure 3.5.13: Base locations (blue) and covered (green) or uncovered (red) demand points for
RAV23. The MCLP and Robust Counterpart MCLP solutions are shown.
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3.6 Conclusion

The simplicity of the Maximal Covering Location problem (MCLP) allowed us to perform an
extensive sensitivity analysis of the model. For complex models the computational time required
to determine the optimal solution can be too long for a complete analysis. If so, partial analyses
can be performed or one can evaluate the sensitivity using smaller (possibly artificial) instances.
In all cases, it is very useful to know the effect or impact a parameter has on the model.

We have analysed the sensitivity of the MCLP for instances based on the 24 Regional Ambu-
lance Services (RAVs) of The Netherlands. If near-complete coverage is attainable with a decent
number of bases, changing the number of bases to open has little impact on the resulting cover-
age. For the RAV ‘Limburg-Noord’ the base locations are relatively stable when the number of
available bases changes. However, the base locations can also be very different, as seen for the
RAV ‘Gooi- en Vechtstreek’.

Alternative optimal solutions are rarely discussed in the emergency medical service literature. For
the RAV regions in The Netherlands alternative optimal MCLP solutions have to be considered,
as there are many due to surplus capacity. In general, alternative optimal solutions seem to exist
if there is near-complete coverage (98% or more).

In particular, the alternative optimal solutions are of importance for the sensitivity to changes in
the travel time threshold. The travel time threshold determines the coverage of each base. Most
regions have relatively insensitive (i.e., robust) optimal MCLP solutions, but the MCLP cannot
make the distinction. This can be counteracted by applying a two-stage optimisation approach,
where the preferred optimal MCLP solution is selected from all optimal MCLP solutions.

The robustness of the MCLP with respect to uncertainty in demand can be determined by
constructing the Robust Counterpart MCLP. The Robust Counterpart constructs a solution
that has maximum worst-case coverage. We have considered a certain polytopal perturbation
structure for the demand. Using the Robust Counterpart MCLP we can conclude that the MCLP
is robust with respect to these fluctuations in demand, as both models generally result in the
same base locations. The Robust Counterpart can be generalised to be applicable for other
optimisation models as well.

The analysis can be extended in the following ways. First, other uncertainty structures can be
considered for the uncertain demand. Second, the effect of aggregating the 6-digit postal codes
into 4-digit areas is relevant. Finally, we have assumed that all considered postal code areas are
suitable for an ambulance base. For 4-digit postal code areas this assumption is realistic, but not
for 6-digit postal code areas. By restricting the set of possible base locations one would expect
that the solutions are more robust to parameter changes due to lack of choice.
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4.1 Introduction

One of the main uses of emergency medical service (EMS) models is to relatively quickly analyse
multiple ‘what-if’ scenarios to assess the consequences of EMS design decisions. The compu-
tational complexity of the EMS model and solution methods are vital for such research: if it
takes an unacceptable amount of time to find an optimal solution for one scenario, a complete
scenario analysis would be infeasible. We will analyse the computational complexity and solution
methods for the Maximal Covering Location problem (MCLP). Recall that the MCLP is given
by the following mathematical model:

Maximise ∑
j∈J

djzj

subject to ∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ zj ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
zj ∈ B ∀ j ∈ J .

The MCLP is NP -hard, i.e., it cannot be solved to optimality efficiently (unless P = NP ).
The NP -hardness can be derived by a straightforward polynomial time reduction from the Set
Covering problem to the MCLP with uniform demand (dj = 1 for all j ∈ J ). The Set Cover-
ing problem is equivalent to the Location Set Covering model (Model 2.2.1) and Karp (1972)
has shown that it is NP -hard. For more details on the proof and NP -hardness, we refer to
Appendix A.

The MCLP can be solved (reasonably) well with Branch-and-Bound procedures using Linear
Programming (LP) relaxations, as the LP relaxation usually results in few fractional values (see
Church and ReVelle (1974)). We will consider two heuristics to construct or improve solutions
for the MCLP: the Greedy Search and the Swap Local Search. The Greedy Search constructs a
feasible solution by iteratively opening an additional subset of bases. Which bases are opened
is determined in a greedy way. The Swap Local Search improves an initial feasible solution by
closing a subset of opened bases and opening a different subset of bases.

When applying heuristics, it is useful to determine whether guarantees can be given on the quality
of the resulting solution. Consider a heuristic H. Let Ω be the set of all MCLP instances. For
each MCLP instance ω ∈ Ω we have the objective value θH(ω) of the heuristic solution and
the global maximum θ∗(ω). In general, the heuristic objective value is smaller than the global
maximum. Hence, there is a gap between the two. For each MCLP instance we can determine
this gap a posteriori (provided that we know the optimum). However, can we also guarantee
a bound on the gap a priori? That is, what is the worst possible gap for the heuristic when
considering all MCLP instances?
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We define the relative optimality gap for instance ω ∈ Ω as

θ∗(ω)− θH(ω)

θ∗(ω)
.

For α ∈ [0, 1], we say that heuristic H has an α-guarantee (a bound) on the relative optimality
gap if

θ∗(ω)− θH(ω)

θ∗(ω)
≤ (1− α) ∀ω ∈ Ω.

An equivalent definition is given by

θH(ω) ≥ αθ∗(ω) ∀ω ∈ Ω.

We call such a bound tight if

sup
ω∈Ω

{
θ∗(ω)− θH(ω)

θ∗(ω)

}
= (1− α).

For instance, an α-guarantee of α = 3/4 implies that the difference between the heuristic objective
value and the global maximum is at most 1/4 of the global maximum. A higher value of α ∈ [0, 1]
implies a better guaranteed performance for the heuristic. Also note that α = 0 is the trivial
lower bound for MCLP (as the objective is always non-negative).

Some NP -hard problems can be solved approximately to any degree of accuracy by so-called
approximation schemes. However, Feige (1998) proved that the best possible polynomial time
guarantee for the MCLP is 1− e−1 (unless P = NP ), see Theorem 4.1.1.

Theorem 4.1.1 (Feige (1998)). For any ε > 0 the MCLP cannot be approximated in polynomial
time with a guarantee of 1− e−1 + ε, unless P = NP .

We will discuss several heuristics for the MCLP and provide guarantees on the quality of the
heuristic solutions. It is useful to introduce submodular functions, as the MCLP corresponds to
maximising a submodular function. Submodularity is discussed in Section 4.2. Using the general
framework of submodular functions we can derive performance guarantees for the Greedy Search
and Swap Local Search for the MCLP (Sections 4.3 and 4.4). The performance of the heuristics
is numerically evaluated in Sections 4.5 and 4.6.
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4.2 Submodular Functions

Submodular functions encompass a variety of discrete functions, similar to concave and convex
functions in continuous optimisation. The key property of a submodular function is the decrease
in marginal gain in function value as the size of the argument increases. To be precise, see
Definition 4.2.1.

Definition 4.2.1. A function φ : 2N → R for some finite discrete set N is called submodular if

φ(U) + φ(V)− φ(U ∩ V) ≥ φ(U ∪ V) ∀U ,V ⊆ N . �

There are several equivalent definitions for submodular functions, see also Nemhauser, Wolsey,
and Fisher (1978) for an overview. We will state two of these additional definitions in Proposi-
tion 4.2.2, albeit slightly modified.

Proposition 4.2.2. The following properties are equivalent and define a submodular function
φ : 2N → R:

(i) φ(U) + φ(V)− φ(U ∩ V) ≥ φ(U ∪ V) for all U ,V ⊆ N .

(ii) φ(U ∪W)− φ(U) ≥ φ(V ∪W)− φ(V) for all U ⊆ V ⊆ N and W ⊆ N \ V.

(iii) φ(V) ≤ φ(U) +
∑a
n=1

(
φ(U ∪ Xn) − φ(U)

)
−
∑b
n=1

(
φ(U ∪ V) − φ((U \ Yn) ∪ V)

)
for all

U ,V ⊆ N and partitions V \ U =
⋃a
n=1 Xn and U \ V =

⋃b
n=1 Yn with a, b ∈ N.

Proof. We will show the equivalence of (i) and (ii), followed by that of (ii) and (iii).

• (i) =⇒ (ii)

Let U ⊆ V ⊆ N and W ⊆ N \ V. It holds that

φ(U ∪W) + φ(V)− φ(U) = φ(U ∪W) + φ(V)− φ((U ∪W) ∩ V)

(i)

≥ φ(U ∪W ∪ V) = φ(V ∪W),

which is equivalent to (ii).

• (ii) =⇒ (i)

Let U ,V ⊆ N , we have:

φ(U)− φ(U ∩ V) = φ((U ∩ V) ∪ (U \ V))− φ(U ∩ V)

(ii)

≥ φ(V ∪ (U \ V))− φ(V) = φ(U ∪ V)− φ(V).

Reordering the terms gives (i).

• (ii) =⇒ (iii)

Let U ,V ⊆ N with any partition V \ U =
⋃a
n=1 Xn and U \ V =

⋃b
n=1 Yn with a, b ∈ N. Notice

that

φ(U ∪ V)− φ(U) =

a∑
n=1

(
φ

(
U ∪

n⋃
n′=1

Xn′
)
− φ

(
U ∪

n−1⋃
n′=1

Xn′
))

(ii)

≤
a∑

n=1

(
φ(U ∪ Xn)− φ(U)

)
. (4.2.1)
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Similarly, we have

φ(U ∪ V)− φ(V) =

b∑
n=1

(
φ

(
V ∪

n⋃
n′=1

Yn′
)
− φ

(
V ∪

n−1⋃
n′=1

Yn′
))

(ii)

≥
b∑

n=1

(
φ(U ∪ V)− φ((U \ Yn) ∪ V)

)
. (4.2.2)

Subtracting Equation (4.2.2) from (4.2.1) results in (iii):

φ(V)− φ(U) ≤
a∑

n=1

(
φ(U ∪ Xn)− φ(U)

)
−

b∑
n=1

(
φ(U ∪ V)− φ((U \ Yn) ∪ V)

)
.

• (iii) =⇒ (ii)

Let U ⊆ V ⊆ N and W ⊆ N \ V. Note that U \ V = ∅, so we can set b = 0 (no subsets Yn).
Consider the partition X1 = V \ U and X2 =W of (V ∪W) \ U . We use (iii) for the following:

φ(V ∪W)
(iii)

≤ φ(U) + φ(U ∪ (V \ U))− φ(U) + φ(U ∪W)− φ(U)

= φ(V) + φ(U ∪W)− φ(U).

Again, reordering the terms results in (ii).

As mentioned before, for submodular functions the marginal function value φ(U ∪ W) − φ(U)
decreases when elements are added to the argument set U . This interpretation follows clearly from
property (ii). From property (iii) we can derive further properties for non-decreasing submodular
functions, see Proposition 4.2.3.

Proposition 4.2.3. Consider a non-decreasing submodular function φ : 2N → R. For all sets
U ,V ⊆ N and partitions V =

⋃a
n=1 Vn with a ∈ N≥1 it holds that:

φ(V) ≤ φ(U) +

a∑
n=1

(φ(U ∪ Vn)− φ(U)) .

Proof. Since φ is non-decreasing, we can bound the right-hand side of (iii) as follows. Partition
V \ U into a ∈ N≥1 disjoint subsets {Xn}an=1 in such a way that Xn ⊆ Vn for all n ∈ {1, . . . , a}
(e.g., Xn = Vn \ U). Note that some of the subsets Xn can be empty. Partition U \V =

⋃b
n=1 Yn

arbitrarily. It holds that:

φ(V)
(iii)

≤ φ(U) +

a∑
n=1

(
φ(U ∪ Xn)− φ(U)

)
−

b∑
n=1

(
φ(U ∪ V)− φ((U \ Yn) ∪ V)

)
≤ φ(U) +

a∑
n=1

(
φ(U ∪ Xn)− φ(U)

)
≤ φ(U) +

a∑
n=1

(
φ(U ∪ Vn)− φ(U)

)
,

where we have used twice that φ is non-decreasing.
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A broad class of optimisation problems can be captured by minimising or maximising a certain
submodular function. In general, minimising a submodular function can be done in strongly
polynomial time, see Grötschel et al. (1981) and Schrijver (2000). However, maximisation is in
general difficult (NP -hard). Therefore, the design of approximations is frequently investigated
in the literature, see for example Feige et al. (2007), Vondrák (2007), and Vondrák (2009).
Approximating submodular functions using polynomial function value queries is discussed in
Goemans et al. (2009). Fast heuristics with performance guarantees for the maximisation of
submodular functions are given by Ashwinkumar and Vondrák (2014).

In particular, the Maximum p-Coverage problem is analysed in the literature. Let φ : 2N → R
be a non-decreasing submodular function and p ∈ N. The Maximum p-Coverage problem for
p ∈ N is given by the optimisation problem

max {φ(U) : |U| ≤ p,U ⊆ N} .

This optimisation problem is NP -hard and Feige (1998) and Nemhauser and Wolsey (1978)
proved that the best possible performance guarantee in polynomial time is 1−e−1 unless P = NP ,
see Theorem 4.2.4. Related results are treated in Vondrák (2009).

Theorem 4.2.4 (Feige (1998) and Nemhauser and Wolsey (1978)). Let φ : 2N → R be a
non-decreasing submodular function and p ∈ N. Consider the optimisation problem

max {φ(U) : |U| ≤ p,U ⊆ N} .

For any ε > 0 this optimisation problem cannot be approximated in polynomial time with a
guarantee of 1 − e−1 + ε, unless P = NP . Furthermore, no algorithm requiring polynomially
many value queries of φ can have a better guarantee.

For approximations and bounds, see Hochbaum and Pathria (1998), Nemhauser and Wolsey
(1978), and Nemhauser, Wolsey, and Fisher (1978). Results for generalisations of the Maximum
p-Coverage problem are discussed in for example M. Conforti and Cornuéjols (1984) and Goun-
dan and Schulz (2007). The Maximum p-Coverage problem can also be seen as maximising a
submodular function under a p-uniform matroid1 constraint.

The MCLP is a special case of the Maximum p-Coverage problem, where φ(U) is defined to
be the demand of covered points by bases in U ⊆ I. To be precise, notice that the MCLP is
equivalent to:

max {φ(U) : |U| ≤ p,U ⊆ I} = max

∑
j∈J

dj max {aij : i ∈ U} : |U| ≤ p,U ⊆ I

 . (4.2.3)

This equivalence does not hold for negative weights dj , unless the MCLP is reformulated. The
standard formulation allows zj to be set to zero (uncovered point) for points j ∈ J with negative
demand, which is not possible in Equation (4.2.3).

1A matroid is a combinatorial structure with a finite ground set N and a family of so-called independent sets
M⊆ N satisfying:

1. if U ⊆ V and V ∈ M then U ∈ M,

2. if U ,V ∈ M and |U| < |V| then there exists a ν ∈ V \ U such that U ∪ {ν} ∈ M.

For the p-uniform matroid the independent sets are defined as M = {U ⊆ N : |U| ≤ p}.
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We show that φ defined as in Equation (4.2.3) is indeed a submodular function. Let U ⊆ V ⊆ I
and W ⊆ I \ V:

φ(V ∪W)− φ(U ∪W) =
∑
j∈J

dj max{aij : i ∈ V \W} −
∑
j∈J

dj max{aij : i ∈ U \W}

=
∑
j∈J

dj max{aij : i ∈ V} −
∑
j∈J

dj max{aij : i ∈ U}

= φ(V)− φ(U).

Therefore, submodular property (ii) holds and φ is a submodular function. It is trivial that φ is
non-decreasing and non-negative for the MCLP. Also note that φ(∅) = 0.

Due to the inherent decrease in marginal gain in EMS models, submodular functions can be used
as a general framework. However, it is important to verify submodularity for each EMS model
and analyse whether the constraints fall into known structures (such as matroids).
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4.3 Greedy Search for the MCLP

A straightforward way to construct reasonably good feasible solution for the Maximal Covering
Location problem is to use Greedy Search. The Greedy Search method starts with all bases
closed and iteratively adds a subset of bases to be opened. The method stops when p bases are
opened or when opening any additional base does not improve coverage. At each iteration at
most ρ ∈ N≥1 additional bases can be opened and the selection of the additional bases is done
in a greedy way: the chosen subset of bases leads to the greatest improvement in objective value
with respect to the previous iteration.

For the MCLP and non-decreasing submodular functions there is an optimal solution that opens
exactly p bases. We can therefore focus on the Greedy Search that opens exactly ρ bases in each
iteration (except possibly the last iteration), see also Algorithm 4.3.1. In Appendix B we give a
detailed Greedy Search algorithm for the MCLP.

Algorithm 4.3.1 Greedy Search for Non-Decreasing Submodular Functions

Input: non-decreasing submodular function φ : 2N → R and parameters p, ρ ∈ N with p ≤ |N |
Output: ρ-Greedy maximum solution NG ⊆ N

1: procedure ρ-Greedy Search(input)
2: set: NG = ∅
3: set: τ = min{ρ, p− |NG|}
4: while τ > 0 do
5: set: NG = NG ∪ argmax{φ(NG ∪N+) : N+ ⊆ N \ NG, |N+| = τ}
6: set: τ = min{ρ, p− |NG|}
7: end while
8: return NG

9: end procedure

For some submodular functions the Greedy Search has a polynomial computational time (i.e., the
heuristic is mathematically efficient). If we can derive an α-guarantee for the Greedy Search and
the search has polynomial computational time, then it is called an α-approximation algorithm,
see Definition 4.3.1.

Definition 4.3.1. Consider a maximisation problem with a heuristic solution procedure H and
let Ω be the set of all instances. Each instance ω ∈ Ω has a heuristic solution with objective value
θH(ω) and global maximum θ∗(ω). The heuristic H is called an α-approximation algorithm with
α ∈ [0, 1] if the computational time of H for every instance in Ω is polynomial and if

θ∗(ω)− θH(ω)

θ∗(ω)
≤ (1− α) ∀ω ∈ Ω. �

The Greedy Search method provides reasonably good solutions for non-decreasing submodular
functions: bounds on the optimality gap are known, see for instance Nemhauser, Wolsey, and
Fisher (1978). We will provide these performance guarantees in Section 4.3.1. Using these
performance guarantees, we show in Section 4.3.2 that the 1-Greedy Search for the MCLP is a
(1− e−1)-approximation algorithm and this guarantee is tight.
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4.3.1 Greedy Guarantees for Submodular Functions

Before we discuss performance guarantees for the Greedy Search, we derive a useful property of
the Greedy Search for submodular functions, see Proposition 4.3.2. It shows that the average
marginal contribution of an element to the function value is the greatest when selecting elements
in a greedy way. This holds in particular when comparing sets of different sizes.

Proposition 4.3.2. Let φ : 2N → R be a non-decreasing submodular function and UG ⊆ N
the subset selected by applying one iteration of the ρ-Greedy Search for some ρ ∈ N≥1. That is,

UG = argmax {φ(U) : U ⊆ N , |U| = ρ} .

Consider an arbitrary subset V ⊆ N . If |V| < |UG| we have φ(UG) ≥ φ(V). If |V| ≥ |UG| the
following holds:

φ(UG) ≥ |U
G|
|V|

φ(V).

Proof. The case |V| < |UG| is trivial by greediness, since φ is non-decreasing. Therefore, suppose
|V| ≥ |UG|. We are going to apply Proposition 4.2.3 to V with a certain partition of V. Let
Mmax ⊆ V with |M| = |UG| be the subset of V with cardinality |UG| that would lead to the
greatest increase in function value. That is,

Mmax = argmax
{
φ(M)− φ(∅) :M⊆ V, |M| = |UG|

}
.

We have by greediness of the search that φ(UG)− φ(∅) ≥ φ(Mmax)− φ(∅). Order and label the
elements of Mmax such that Mmax = {ν1, . . . , ν|UG|} and

ζ1 ≥ . . . ≥ ζ|UG| ≥ 0,

where the marginal increase in function value ζn is defined by:

ζn = φ

(
n⋃

n′=1

{νn′}

)
− φ

(
n−1⋃
n′=1

{νn′}

)
∀n ∈ {1, . . . , |UG|}.

Note that the 1-Greedy Search selection order of elements of Mmax is such an ordering.

Partition and label the elements in V into |V| − |UG|+ 1 subsets: V =Mmax ∪
⋃|V|
k=|UG|+1

{νk}.
By definition of Mmax and submodularity, we have for any k ∈ {|UG|+ 1, . . . , |V|}:

φ (Mmax ∪ {νk})− φ (Mmax) ≤ φ

|UG|−1⋃
n′=1

{νn′} ∪ {νk}

− φ
|UG|−1⋃

n′=1

{νn′}


≤ ζ|UG| ≤

1

|UG|

|UG|∑
n=1

ζn =
1

|UG|
(φ (Mmax)− φ (∅))

≤ 1

|UG|
(φ(UG)− φ(∅)).
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Finally, Proposition 4.2.3 and the above derived results show that

φ(V)− φ(∅) ≤ φ (Mmax)− φ (∅) +

|V|∑
k=|UG|+1

(φ (Mmax ∪ {νk})− φ (Mmax))

≤
(

1 +
|V| − |UG|
|UG|

)
(φ(UG)− φ(∅)) =

|V|
|UG|

(φ(UG)− φ(∅)).

The desired result follows from the fact that |V| ≥ |UG|.

In Nemhauser, Wolsey, and Fisher (1978) performance guarantees are given for the Greedy
Search method for non-decreasing submodular functions. See Theorem 4.3.3 for their result and
proof.

Theorem 4.3.3 (Nemhauser, Wolsey, and Fisher (1978)). Let φ : 2N → R be a non-decreasing
submodular function and p ∈ N. Consider the optimisation problem

max {φ(U) : |U| ≤ p,U ⊆ N} .

The ρ-Greedy Search is applied to this problem, where p = aρ − b with ρ, a ∈ N≥1 and b ∈
{0, . . . , ρ− 1} (see Algorithm 4.3.1). The following bound holds for the ρ-Greedy maximum θG

and the global maximum θ∗:

θ∗ − θG

θ∗ − φ(∅)
≤

(
a− 1

ρ (ρ− b)
a

)(
a− 1

a

)a−1

.

If b = 0, then this bound is tight.

Proof. Let Φ be the set of all non-decreasing submodular functions on N . For φ ∈ Φ we denote
the corresponding ρ-Greedy maximum by θG(φ) and the corresponding global maximum by
θ∗(φ). We want to derive an upper bound on the relative gap between θ∗(φ) and θG(φ). Note
that the upper bound holds for any submodular function φ ∈ Φ. Therefore, we are interested in
an upper bound for the optimisation problem

sup

{
θ∗(φ)− θG(φ)

θ∗(φ)− φ(∅)
: φ ∈ Φ

}
= 1− inf

{
θG(φ)− φ(∅)
θ∗(φ)− φ(∅)

: φ ∈ Φ

}
= 1− inf

{
θG(φ)− φ(∅) : φ ∈ Φ, θ∗(φ)− φ(∅) = 1

}
. (4.3.1)

Suppose we have a value θ′(φ) related to θG(φ) with θG(φ) ≥ θ′(φ) for all φ ∈ Φ. In this case,
any upper bound for

1− inf {θ′(φ)− φ(∅) : φ ∈ Φ, θ∗(φ)− φ(∅) = 1} (4.3.2)

would also be valid2 for the supremum in Equation (4.3.1). We will define θ′(φ) as follows.

Fix φ ∈ Φ and let NG ⊆ N be the ρ-Greedy solution. The Greedy solution has a natural
partition into a disjoint sets,

{
UGn
}a
n=1

, one for each iteration. Note that the first (a − 1) sets
have cardinality ρ and the last set has cardinality (ρ− b).

2For example, setting θ′(φ) = φ(∅) for all φ ∈ Φ leads to the trivial upper bound of 1.
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By greediness of the search it holds that

δ1 ≥ . . . ≥ δa ≥ 0,

where δn is the net increase in objective value at Greedy step n ∈ {1, . . . , a}:

δn = φ

(
n⋃

n′=1

UGn′

)
− φ

(
n−1⋃
n′=1

UGn′

)
∀n ∈ {1, . . . , a}.

Similarly, define ηn as the maximum possible increase at each Greedy step n ∈ {1, . . . , a} if
exactly ρ elements can be selected:

ηn = max

{
φ

(
n−1⋃
n′=1

UGn′ ∪N+

)
− φ

(
n−1⋃
n′=1

UGn′

)
: N+ ⊆ N , |N+| = ρ

}
∀n ∈ {1, . . . , a}.

Notice that N+ is allowed to overlap with elements already selected by the Greedy Search.
Furthermore, we have that δn = ηn for n ∈ {1, . . . , a− 1}, but ηa ≥ δa. In fact, we can use ηa to
give two bounds for δa: (

ρ− b
ρ

)
ηa ≤ δa ≤ ηa.

The first inequality follows from Proposition 4.3.2 with a (ρ−b)-Greedy Search iteration applied.
Hence, a lower bound for θG is

θG = φ(∅) +

a∑
n=1

δn ≥ φ(∅) +

a−1∑
n=1

ηn +

(
ρ− b
ρ

)
ηa ≡ θ′.

This definition of θ′ is strongly related to the Greedy Search solution and θG.

As mentioned before, any upper bound for (4.3.2) is valid for the supremum in Equation (4.3.1).
Therefore, we focus on the infimum

inf {θ′(φ)− φ(∅) : φ ∈ Φ, θ∗(φ)− φ(∅) = 1} . (4.3.3)

We will derive a bound for (4.3.3) by solving a Linear Programming model. The constraints of
this model are derived as follows. Let {U∗n}an=1 be a partition of the optimal solution N ∗, where
|U∗n| ≤ ρ. By definition, we have:

φ

(
n−1⋃
n′=1

UGn′ ∪ U∗k

)
− φ

(
n−1⋃
n′=1

UGn′

)
≤ ηn ∀ k ∈ {1, . . . , a}, n ∈ {1, . . . , a}.

Consequently, by Proposition 4.2.3 a valid inequality for each n ∈ {1, . . . , a} is:

θ∗ ≤ φ

(
n−1⋃
n′=1

UGn′

)
+

a∑
k=1

(
φ

(
n−1⋃
n′=1

UGn′ ∪ U∗k

)
− φ

(
n−1⋃
n′=1

UGn′

))

≤ φ(∅) +

n−1∑
n′=1

ηn′ + aηn. (4.3.4)

117



Thus, the infimum in (4.3.3) can be bounded from below by the optimal objective value of the
following relaxation:

Minimise

a−1∑
n=1

ηn +

(
ρ− b
ρ

)
ηa

subject to

n−1∑
n′=1

ηn′ + aηn ≥ 1 ∀n ∈ {1, . . . , a}.

The objective is equal to θ′ − φ(∅). The constraints are derived from Equation (4.3.4) and the
fact we have used the normalisation θ∗(φ) − φ(∅) = 1. As stated in Nemhauser, Wolsey, and
Fisher (1978), the following solution is primal-dual feasible:

ηn =
1

a

(
a− 1

a

)n−1

∀n ∈ {1, . . . , a},

un =
1

a

(
a− 1

ρ (ρ− b)
a− 1

)(
a− 1

a

)a−n
∀n ∈ {1, . . . , a− 1},

ua =
1

a

(
ρ− b
ρ

)
,

where the dual is given by:

Maximise

a∑
n=1

un

subject to

aun +

a∑
n′=n+1

un′ = 1 ∀n ∈ {1, . . . , a− 1},

aua =
1

ρ
(ρ− b),

un ≥ 0 ∀n ∈ {1, . . . , a}.

The resulting primal and dual objective values are equal to

1−

(
a− 1

ρ (ρ− b)
a

)(
a− 1

a

)a−1

.
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Hence, by Strong Duality we have solved the relaxation and found the bound

θ∗ − θG

θ∗ − φ(∅)
≤

(
a− 1

ρ (ρ− b)
a

)(
a− 1

a

)a−1

.

Nemhauser, Wolsey, and Fisher (1978) provide examples for the Uncapacitated Location prob-
lem3 to show that the bound is tight for b = 0.

Note that if we apply 1-Greedy Search (ρ = 1), Theorem 4.3.3 states that

θ∗ − θG

θ∗ − φ(∅)
≤
(
p− 1

p

)p
=

(
1− 1

p

)p
≤ 1

e
.

Thus, the 1-Greedy Search attains the performance bound stated in Theorem 4.2.4, implying
that the 1-Greedy Search is the best possible heuristic in this sense. Of course, other heuristics
can still outperform the Greedy Search on average, as the guarantee holds for the worst-case
instances.

4.3.2 Greedy Approximation for the MCLP

The family of Uncapacitated Location problems given in Nemhauser, Wolsey, and Fisher (1978)
show that the bound in Theorem 4.3.3 is tight for p = aρ (i.e., b = 0). This family of instances
can be modified into a similar family of MCLP instances. As a result, the tightness of the bound
for this particular case also holds for the MCLP, see Corollary 4.3.4.

Corollary 4.3.4. Consider an arbitrary MCLP instance ω ∈ Ω and suppose that the ρ-Greedy
Search is applied to this problem, where p = aρ with ρ, a ∈ N≥1 (see Algorithm 4.3.1). The
following bound holds and is tight for the ρ-Greedy maximum θG(ω) and the global maximum
θ∗(ω):

θ∗(ω)− θG(ω)

θ∗(ω)
≤
(
a− 1

a

)a
.

Consequently, the 1-Greedy Search is a (1−e−1)-approximation for the MCLP and the guarantee
is tight. For fixed ρ ∈ N≥2 the ρ-Greedy Search is at best a (1− e−1)-approximation.

Proof. We modify the Uncapacitated Location problem4 instances given in Nemhauser, Wolsey,
and Fisher (1978) (or in Cornuéjols et al. (1977)) to MCLP instances in the following way. First,
we consider worst-case instances for the 1-Greedy Search. These instances also form the basis
for worst-case instances for the ρ-Greedy Search.

Let ρ = 1 and p ∈ N≥2 (for p = 1 the 1-Greedy Search is optimal). We construct an MCLP
instance with |I| = 2p − 1 bases and |J | = 2p(p − 1) demand points. Label the bases as
I = {1, . . . , 2p− 1} and the points as J = {1, . . . , 2p(p− 1)}. We choose the MCLP parameters
such that {1, . . . , p} ⊂ I will be the 1-Greedy Search solution and {p, . . . , 2p−1} ⊂ I the optimal
solution.

3See also Section 4.3.2.
4See also Remark 4.3.5.
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Define the adjacency parameters as follows: for i ∈ I and j ∈ J set

a
(p)
ij =


1 if 1 ≤ i ≤ p− 1, j is odd and 2p(i− 1) + 1 ≤ j ≤ 2pi

1 if p ≤ i ≤ 2p− 1 and 2(i− p) ≤ ((j − 1) mod 2p) ≤ 2(i− p) + 1

0 otherwise

.

For ε > 0 insignificantly small, the demand of point j ∈ J is set to:

dj =

(p− 1)pp−2
(
p−1
p

)k−1

+ ε if j is odd

pp−1 − (p− 1)pp−2
(
p−1
p

)k−1

if j is even
,

where k = d j2pe. By definition, the covered demand by base i ∈ I is given by

∑
j∈J

aijdj =

(p− 1)pp−1
(
p−1
p

)i−1

+ pε if 1 ≤ i ≤ p− 1

(p− 1)pp−1 + (p− 1)ε if p ≤ i ≤ 2p− 1
.

For example, see Figure 4.3.1 for two worst-case MCLP instances for the 1-Greedy Search.

2 3

(1+å)(1+å)

(1) (1)

1

a
(2)
ij i dj

j

1 1 0 1 + ε
0 1 0 1
1 0 1 1 + ε
0 0 1 1

(a) Example for p = 2.

1

2

3 4 5

(3)

(5)

(4+å)

(6+å) (6+å) (6+å)

(4+å) (4+å)(5) (5)

(3)

(3)

a
(3)
ij i dj

j

1 0 1 0 0 6 + ε
0 0 1 0 0 3
1 0 0 1 0 6 + ε
0 0 0 1 0 3
1 0 0 0 1 6 + ε
0 0 0 0 1 3

0 1 1 0 0 4 + ε
0 0 1 0 0 5
0 1 0 1 0 4 + ε
0 0 0 1 0 5
0 1 0 0 1 4 + ε
0 0 0 0 1 5

(b) Example for p = 3.

Figure 4.3.1: Worst-case examples for 1-Greedy Search. Bases are depicted as squares, demand
points as circles. Points are connected to adjacent bases and their demand is shown in brackets.
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As bases {p, . . . , 2p− 1} ⊂ I have the largest covered demand and have disjoint coverage, these
bases form the optimal solution. Suppose the 1-Greedy Search opens bases {1, . . . , p} ⊂ I. The
resulting objective values are:

θ∗ = (p− 1)pp + p(p− 1)ε,

θG =

p−1∑
k=1

(p− 1)pp−1

(
p− 1

p

)k−1

+

p−1∑
k=1

(
pp−1 − (p− 1)pp−2

(
p− 1

p

)k−1
)

+ p(p− 1)ε

= (p− 1)pp
(

1−
(
p− 1

p

)p)
+ p(p− 1)ε.

Therefore, the optimality gap is

θ∗ − θG

θ∗
=

(p− 1)pp
(
p−1
p

)p
(p− 1)pp + p(p− 1)ε

≤
(
p− 1

p

)p
.

Note that for small ε > 0 the gap can be arbitrarily close to the bound of Theorem 4.3.3. This
bound is equal to e−1 in the limit as p→∞.

It remains to show that the Greedy Search indeed gives {1, . . . , p} ⊂ I (the first p bases) as
solution. From the covered demand of the bases it is clear that the first base is selected in the
first iteration (at least a difference of ε with other bases). Suppose the first k bases are opened
by the Greedy Search for some k ∈ {1, . . . , p − 2}. The net coverage of bases k + 1, . . . , p − 1
remains the same, as these bases have disjoint coverage. The net coverage of the last p bases
does decrease as the Greedy Search proceeds. At iteration k+ 1 the net coverage of a base i ∈ I
with i ≥ p is:

(p− 1)pp−1 −
k∑

k′=1

(p− 1)pp−2

(
p− 1

p

)k′−1

+ (p− 1− k)ε

= (p− 1)pp−1

(
p− 1

p

)k
+ (p− 1− k)ε,

which is less than the (net) coverage of base k + 1 (a difference of (k + 1)ε). Hence, the Greedy
Search selects base k + 1 at iteration k + 1. Finally, at iteration p only identical bases remain
and we can assume without loss of generality that base p is chosen.

To conclude, for ρ = 1 we have given a family of MCLP instances that has an optimality gap
arbitrarily close to the given bound in Corollary 4.3.4. For ρ ∈ N≥2 we can construct similar
instances with p = aρ for some a ∈ N≥1 as follows. Consider the constructed instances for
1-Greedy with a number of opened bases. Copy the smaller 1-Greedy instance ρ times such
that the resulting MCLP instance has ρ disjoint 1-Greedy regions. It is trivial to see that the
ρ-Greedy Search selects the k-th base of each region at iteration k, resulting in the same relative
optimality gap as before.

It is open for research whether similar worst-case MCLP instances with p = aρ − b for b > 0
(b ∈ {1, . . . , ρ− 1}) can be constructed. However, for a given ρ-Greedy Search, these worst-case
instances with p = aρ for a ∈ N≥1 show that the ρ-Greedy Search has at best a guarantee of
(1− e−1).
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A straightforward implementation requires the evaluation of O(
(|I|
ρ

)
) = O( 1

ρ |I|
ρ) subsets of

bases, each taking at most O(ρ|J |) time. As O(pρ ) iterations are needed, the computational

time of the search is O(pρ |I|
ρ|J |), so polynomial in the input size (since p ≤ |I|). Note that the

submodularity of the objective can be used to implement a lazy evaluation (updating the value of
a subset only when required), thus improving the (average) computational time in practice.

Remark 4.3.5. The transformation of Uncapacitated Location problem instances to MCLP in-
stances implicitly used in the proof of Corollary 4.3.4 can be generalised to any Uncapacitated
Location problem. In the Uncapacitated Location problem p ∈ N bases are opened and each
demand point is assigned to an open base. Such an assignment of point j ∈ J to base i ∈ I
increases the objective value by weight cij ∈ R≥0. The objective is to maximise these gains:

max

∑
j∈J

max {cij : i ∈ U} : U ⊆ I, |U| ≤ p

 .

Clearly, the MCLP is a special case of the Uncapacitated Location problem: take cij = aijdj for
all i ∈ I and j ∈ J . To transform an Uncapacitated Location problem into an MCLP we split
each demand point j ∈ J into |I| new points as follows. Let j ∈ J and temporarily order i ∈ I
such that the weights cij are non-decreasing:

cij ≤ ci′j ∀ i, i′ ∈ I, i ≤ i′.

The demand of the k-th new point (obtained by splitting point j) is set to

dkj = ckj − c(k−1)j ≥ 0,

where we define c0j = 0. Each base i ∈ I covers the first new point up to (and including) the i-th
new point, resulting in a covered demand of cij of these points. See Figure 4.3.2 for an example.
Note that points with zero demand can be removed to gain efficiency. This process is repeated
for all original demand points j ∈ J and an equivalent MCLP instance is obtained.

2 3

(25)

1

(50)

(10)

(a) Uncapacitated Location problem instance.

2

3

(15)

1

(10) (25)

(b) MCLP instance.

Figure 4.3.2: Example of an Uncapacitated Location problem instance transformation to an
MCLP instance. Bases are depicted as squares, demand points as circles. Points are connected
to adjacent bases and their objective coefficients are shown in brackets.
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4.3.3 Reversing the Greedy Search

The Greedy Search builds a feasible solution by iteratively opening bases, such that coverage is
maximised at each iteration. We can reverse this construction by starting with all bases opened
and iteratively closing bases, again such that coverage is maximised at each iteration. That is,
we close the bases that would lead to the least decrease in coverage. We call this method the
Reverse Greedy Search, see Algorithm 4.3.2.

Algorithm 4.3.2 Reverse Greedy Search for Non-Decreasing Submodular Functions

Input: non-decreasing submodular function φ : 2N → R and parameters p, ρ ∈ N with p ≤ |N |
Output: Reverse ρ-Greedy maximum solution NRG ⊆ N

1: procedure Reverse ρ-Greedy Search(input)
2: set: NRG = N
3: set: τ = min{ρ, |NRG| − p}
4: while τ > 0 do
5: set: NRG = NRG \ argmax{φ(NRG \ N+) : N+ ⊆ NRG, |N+| = τ}
6: set: τ = min{ρ, |NRG| − p}
7: end while
8: return NRG

9: end procedure

Note that the Reverse Greedy Search requires many iterations if |N | is large and p is small. In
this case, the Greedy Search would most likely be preferred. One could reason that the Reverse
Greedy Search would be preferred over the Greedy Search if more than half of the bases are to
be opened (p > 1

2 |I|). However, if we consider worst-case performance for general p ∈ N, this is
not true. The worst-case performance of the Reverse Greedy Search is the worst possible: there
exists a family of MCLP instances such that the optimality gap approaches infinity. This result
is formulated in Theorem 4.3.6.

Theorem 4.3.6. Let φ : 2N → R be a non-decreasing submodular function and p ∈ N≥1.
Consider the optimisation problem

max {φ(U) : |U| ≤ p,U ⊆ N} .

The Reverse ρ-Greedy Search with ρ ∈ N≥1 is applied to this problem, see Algorithm 4.3.2. The
following (trivial) bound holds and is tight for the Reverse ρ-Greedy maximum θRG and the
global maximum θ∗:

θ∗ − θRG

θ∗ − φ(∅)
≤ 1.

Therefore, the optimality gap can be arbitrarily large.

Proof. We construct a family of MCLP instances such that the relative optimality gap approaches
one. As the MCLP is a special case of the considered Maximum p-Coverage problem, the result
holds for non-decreasing submodular functions in general.
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First, consider the case that p = ρ = 1 and take c ∈ N≥2 arbitrarily. The set of bases is
I = {0, 1, . . . , c} and there are almost twice as many points, J = {1, . . . , 2c}. The first base,
base 0, covers points {1, . . . , c} ⊆ J . Base i ∈ I \ {0} covers points {i, i + c} ⊆ J . Thus, the
bases I \ {0} cover two points each and their coverage does not overlap with each other.

For ε ∈ (0, 1) the demand of point j ∈ J is defined as

dj =

{
1 if j ∈ {1, . . . , c}
ε otherwise

.

See Figure 4.3.3 for an example with c = 4.

The Reverse Greedy Search will close base 0 in the first iteration, as no coverage is lost. Closing
any other base would lead to a loss of ε. From the second iteration onwards, the instance only
consists of bases and points that are disjoint and equal. Without loss of generality, we can
conclude that the resulting solution is IRG = {1} with a coverage of θRG = 1 + ε. Clearly,
opening base 0 is optimal, I∗ = {0} with θ∗ = c.

The relative optimality gap is:

θ∗ − θRG

θ∗
=
c− (1 + ε)

c
,

which approaches 1 as c→∞.

For arbitrary ρ ∈ N≥1 and p ∈ N≥1 we copy the above MCLP instance pρ times, resulting in
exactly the same relative optimality gap. Therefore, we have constructed a family of worst-case
instances with an arbitrarily large optimality gap.

4

1

0 2

3

(å)

(å)

(å)

(å)

(1)

(1)

(1)

(1)

aij i dj

j

1 1 0 0 0 1
1 0 1 0 0 1
1 0 0 1 0 1
1 0 0 0 1 1

0 1 0 0 0 ε
0 0 1 0 0 ε
0 0 0 1 0 ε
0 0 0 0 1 ε

Figure 4.3.3: Worst-case example for Reverse 1-Greedy Search with p = 1 and c = 4. Bases are
depicted as squares, demand points as circles. Points are connected to adjacent bases and their
demand is shown in brackets.
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4.4 Swap Local Search for the MCLP

Local Search methods try to improve an initial solution by iteratively making adjustments to
the considered solution. At each iteration, a specified ‘neighbourhood’ of the current solution
is evaluated, and a neighbouring solution with an improvement in objective value is selected.
The selected solution becomes the new solution in the next iteration. The Local Search method
terminates if no improvement can be made. Typically, the neighbourhood consists of solutions
very similar to the considered solution.

Since there are no costs associated with the bases in the MCLP, it is optimal to open exactly
p bases. Consequently, the only sensible Local Search method is to swap bases (closing a base
and opening a different base). This method is called Swap Local Search and the corresponding
neighbourhood is the Swap neighbourhood. We assume that we have an arbitrary initial feasible
solution with p opened bases, for instance obtained with the Greedy Search. The Swap Local
Search method terminates if there are no improvements possible in the Swap neighbourhood, that
is, if a Swap local maximum has been found. If we limit the number of allowed simultaneous
swaps to ρ ∈ N≥1, we denote these local maxima by ρ-Swap local maxima.

The Swap Local Search method for non-decreasing submodular functions is shown in Algo-
rithm 4.4.1. Notice that we do not prescribe in what way improvements are found, i.e., how the
neighbourhood is searched. The derived results are valid for any improvement method. Fur-
thermore, the initial solution is arbitrary and all following results hold for any initial feasible
solution. For a detailed example of a Swap Local Search implementation, see Appendix B.

Algorithm 4.4.1 Swap Local Search for Non-Decreasing Submodular Functions

Input: non-decreasing submodular function φ : 2N → R, initial feasible solution N 0 ⊆ N with
|N 0| = p and parameter ρ ∈ N≥1

Output: ρ-Swap local maximum solution

1: procedure ρ-Swap Local Search(input)
2: set: t = 0
3: loop
4: try to find: N t+1 ⊆ N such that |N t+1| = p, |N t+1 \ N t| ≤ ρ and φ(N t+1) > φ(N t)
5: if such N t+1 is found (successful improvement) then
6: set: t = t+ 1
7: else
8: return N t

9: end if
10: end loop
11: end procedure

Let Ω be the set of all MCLP instances. For each MCLP instance ω ∈ Ω we have a set of
ρ-Swap local maximum solutions L(ω) with objective values {θL(ω) : L ∈ L(ω)}, and the global
maximum θ∗(ω). Similar to bounds on optimality gaps, we can analyse the worst possible gap
when considering all MCLP instances and all corresponding local maxima. This (tight) bound
on the gap is called the relative locality gap α ∈ [0, 1] and is defined in Definition 4.4.1.
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Definition 4.4.1. Consider a maximisation problem and let Ω be the set of all instances. Each
instance ω ∈ Ω has a set of ρ-Swap local maxima {θL(ω) : L ∈ L(ω)} and global maximum
θ∗(ω). The relative locality gap α ∈ [0, 1] is defined as:

sup
ω∈Ω,L∈L(ω)

{
θ∗(ω)− θL(ω)

θ∗(ω)

}
= (1− α). �

Consequently, for relative locality gap α ∈ [0, 1] it holds that

θ∗(ω)− θL(ω)

θ∗(ω)
≤ (1− α) ∀L ∈ L(ω), ω ∈ Ω,

or equivalently

θL(ω) ≥ αθ∗(ω) ∀L ∈ L(ω), ω ∈ Ω.

Note that a higher value of α ∈ [0, 1] implies a better guaranteed performance for the Swap Local
Search. In contrast to bounds on optimality gaps, the relative locality gap is tight by definition.
Furthermore, it holds for all local maxima, that is, for all initial solutions of the Swap Local
Search.

Performance guarantees (bounds on the relative locality gap) for the Swap Local Search method
for submodular functions are known. We give these results in Section 4.4.1. As the MCLP is
a special case of the maximisation of a submodular function, it could be that these guarantees
can be improved for the MCLP. We prove in Section 4.4.2 that this is the case: we derive a tight
bound for the MCLP. We note that the results in Section 4.4.2 have been obtained independently
from Nemhauser, Wolsey, and Fisher (1978).

4.4.1 Swap Guarantees for Submodular Functions

In Theorem 4.4.2 we state a general bound for the relative locality gap for the Swap Local Search
method for non-decreasing submodular functions. This is a result by Nemhauser, Wolsey, and
Fisher (1978). The proof is based on Proposition 4.2.3, where the partition is chosen such that
we can use the properties of a Swap local maximum. It will become apparent that its proof is
significantly different from our proof in Section 4.4.2 (which only considers the MCLP).

Theorem 4.4.2 (Nemhauser, Wolsey, and Fisher (1978)). Let φ : 2N → R be a non-decreasing
submodular function and p ∈ N. Consider the optimisation problem

max {φ(U) : |U| ≤ p,U ⊆ N} .

The ρ-Swap Local Search is applied to this problem with an arbitrary initial feasible solution,
where p = aρ − b with ρ, a ∈ N≥1 and b ∈ {0, . . . , ρ − 1} (see Algorithm 4.4.1). The following
bound holds for any ρ-Swap local maximum θL and the global maximum θ∗:

θ∗ − θL

θ∗ − φ(∅)
≤ p− ρ+ b

2p− ρ+ b
.

If b = 0, then this bound is tight.
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Proof. Let NL ⊆ N be the solution of the ρ-Swap Local Search method. Partition5 NL into
disjoint sets,

{
ULn
}a
n=1

, where the first set UL1 has cardinality (ρ− b) and the other (a− 1) sets

have cardinality ρ. The partition is done using appropriate Greedy Search iterations on NL,
starting with a (ρ− b)-Greedy iteration and followed by ρ-Greedy iterations. Hence,

δ2 ≥ . . . ≥ δa ≥ 0,

where δn is the marginal increase in objective defined by:

δn = φ

(
n⋃

n′=1

ULn′

)
− φ

(
n−1⋃
n′=1

ULn′

)
∀n ∈ {1, . . . , a}.

For the first set (n = 1) we can use Proposition 4.3.2 with the submodularity of φ to note that

δ1 ≥
(
ρ− b
ρ

)
δa.

By definition we have θL = φ(∅) +
∑a
n=1 δn and the following bound β ∈ R≥0:

θL − φ(∅) =

a∑
n=1

δn ≥
(
ρ− b
ρ

+ (a− 1)

)
δa =

(
p

ρ

)
δa ≡ βδa. (4.4.1)

Let N ∗ ⊆ N be the optimal solution and partition N ∗ into disjoint sets, {U∗n}
a
n=1, where each

set has cardinality at most |ULa | = ρ. From Proposition 4.2.3 we have:

θ∗ = φ (N ∗) ≤ φ

(
a−1⋃
n′=1

ULn′

)
+

a∑
n=1

(
φ

(
a−1⋃
n′=1

ULn′ ∪ U∗n

)
− φ

(
a−1⋃
n′=1

ULn′

))
. (4.4.2)

However, since NL is a ρ-Swap local optimum, it holds that for all n ∈ {1, . . . , a}

δa = φ

(
a⋃

n′=1

ULn′

)
− φ

(
a−1⋃
n′=1

ULn′

)
= φ

(
a−1⋃
n′=1

ULn′ ∪ ULa

)
− φ

(
a−1⋃
n′=1

ULn′

)

≥ φ

(
a−1⋃
n′=1

ULn′ ∪ U∗n

)
− φ

(
a−1⋃
n′=1

ULn′

)
. (4.4.3)

Thus, combining Equations (4.4.1), (4.4.2), and (4.4.3) yields

θ∗ ≤ φ

(
a−1⋃
n′=1

ULn′

)
+ aδa = θL + (a− 1)δa ≤ θL +

(a− 1)

β

(
θL − φ(∅)

)
,

or equivalently,

(β + (a− 1))
(
θ∗ − θL

)
≤ (a− 1) (θ∗ − φ(∅)) .

We get the desired bound with the substitution a = (p+ b)/ρ and the definition of β:

θ∗ − θL

θ∗ − φ(∅)
≤ (a− 1)

β + (a− 1)
=

p− ρ+ b

2p− ρ+ b
.

In Nemhauser, Wolsey, and Fisher (1978) an Uncapacitated Location problem example is given
to show that the bound is tight for b = 0.

5See also Remark 4.4.3.
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We will show in Theorem 4.4.4 that for the MCLP the bound for b = 0 holds for all ρ ∈ N≥1,
and thus also for b > 0. Furthermore, the bound is always tight. This improves the general
bound given in Theorem 4.4.2. Such an improvement is already noted in Nemhauser, Wolsey,
and Fisher (1978), but mentioned in the context of the Uncapacitated Location problem.

Remark 4.4.3. Notice that if we partition NL and N ∗ into aL, a∗ ∈ N subsets respectively, the
proof still holds under certain conditions. To be able to use the ρ-Swap local maximum conditions
in Equation (4.4.3), it must hold that |ULaL | ≤ ρ and |U∗n| ≤ |ULaL | for all n ∈ {1, . . . , a∗}. Since
|N ∗| = p, we have a∗ ≥ p/|ULaL |. Repeated use of Proposition 4.3.2 as in Equation (4.4.1) gives

θL − φ(∅) =

aL∑
n=1

δn ≥
∑

{n:|UL
n |>|UL

aL |}

δaL +
∑

{n:|UL
n |≤|UL

aL |}

|ULn |
|UL
aL
|
δaL ≡ βδaL .

For fixed |ULaL | ≤ ρ, the partitions of NL and N ∗ that give the best bound are similar to those
used in the proof. This results in β = p/|ULaL | and a∗ = dp/|ULaL |e. Consequently, we have

θ∗ − θL

θ∗ − φ(∅)
≤ a∗ − 1

β + a∗ − 1
=

dp/|ULaL |e − 1

p/|UL
aL
|+ dp/|UL

aL
|e − 1

,

where the bound is not necessarily minimal if |ULaL | = ρ. If b = 0, then |ULaL | = ρ is optimal.

4.4.2 Swap Locality Gap for the MCLP

The above results for submodular functions give bounds on the locality gap for the MCLP. In
Theorem 4.4.4 we show that the ρ-Swap Local Search method for MCLP has a locality gap of
α = 1/2. Its proof is based on constructing a new MCLP instance with at least equally large
relative optimality gap as the original MCLP instance, but with a simplified internal structure.
This process of simplification is repeated until a family of (worst-case) instances remains for
which the locality gap is trivial.

Theorem 4.4.4. Consider an arbitrary MCLP instance ω ∈ Ω with global maximum θ∗(ω)
and optimal solution x∗(ω). For an arbitrary initial feasible solution, let xL(ω) be the solution
found by the ρ-Swap Local Search method (ρ ∈ N≥1) with ρ-Swap local maximum θL(ω), see
Algorithm 4.4.1.

Suppose x∗(ω) and xL(ω) differ in exactly 2k(ω) places for some k(ω) ∈ N>ρ, that is,∑
i∈I

∣∣x∗i (ω)− xLi (ω)
∣∣ = 2k(ω).

Then we can bound the relative optimality gap by

θ∗(ω)− θL(ω)

θ∗(ω)
≤ k(ω)− ρ

2k(ω)− ρ
,

and this bound is tight. In particular, the relative locality gap of ρ-Swap Local Search for the
MCLP is α = 1/2:

sup
ω∈Ω,L∈L(ω)

{
θ∗(ω)− θL(ω)

θ∗(ω)

}
=

1

2
.
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We split the proof of Theorem 4.4.4 over several lemmas. For the proof we fix ρ ∈ N≥1 and
k ∈ N to arbitrary values. Consider an arbitrary MCLP instance ω ∈ Ω where x∗(ω) and xL(ω)
differ in exactly 2k places (k swaps). Note that k = 0 implies that the local and global maxima
are equal. If 1 ≤ k ≤ ρ the global optimum is in the ρ-Swap neighbourhood and we have a
contradiction regarding the ρ-Swap local optimality of xL(ω). Thus, assume k ≥ ρ+ 1.

The proof sequentially transforms ω into new instances ω′ such that the relative optimality gap of
ω′ is as least as large as that of ω. Each transformation preserves the following properties:

• x∗(ω) is an optimal solution for ω′ (albeit projected to a lower dimension),

• xL(ω) is a ρ-Swap local optimum for ω′ (albeit projected to a lower dimension),

• xL(ω) differs from x∗(ω) in exactly 2k places.

The first transformation is a projection to a lower dimension and is captured by φ1 : Ω → Ω.
We transform the instance ω to a new instance where some of the common coverage between
the global and ρ-Swap local maxima is eliminated. We need to introduce some notation to be
precise. Let X (ω) = {i ∈ I(ω) : x∗i (ω) 6= xLi (ω)} be the set of bases where x∗(ω) and xL(ω)
differ, so |X (ω)| = 2k. Also, set I∗(ω) = {i ∈ I(ω) : x∗i (ω) = 1} to be the optimal set of opened
bases and likewise IL(ω) = {i ∈ I(ω) : xLi (ω) = 1}.

Construct a new MCLP instance ω′ = φ1(ω) where:

• the demand points not covered by any base in I∗(ω) ∪ IL(ω) are removed,

• the demand points covered by any base in I∗(ω) ∩ IL(ω) are removed,

• the bases in I(ω) \ X (ω) are removed (i.e., I(ω′) = X (ω)),

• the number of opened bases is reduced to p(ω′) = p(ω)− |I∗(ω) ∩ IL(ω)|.

No other changes are performed. For an example of this transformation, see Figure 4.4.1.

The solution x∗i (ω
′) = x∗i (ω) for i ∈ I(ω′) is optimal for ω′ and xLi (ω′) = xLi (ω) for i ∈ I(ω′)

is a ρ-Swap local optimum. Suppose this is not the case, then the required swaps to obtain
the (local) optimum could also be applied to the corresponding solution of the original instance
ω, with exactly the same difference in objective. This contradicts the (local) optimality of the
original solution. As in the original instance, x∗(ω′) and xL(ω′) differ in exactly 2k places.

For the new instance, it holds that θ∗(ω′) = θ∗(ω) − c(ω) and θL(ω′) = θL(ω) − c(ω), where
c(ω) ∈ R≥0 is the demand covered by bases opened in both solutions of ω:

c(ω) =
∑
j∈J

dj min

{
1,
∑
i∈I

aijx
∗
i (ω)xLi (ω)

}
.

Consequently,

θ∗(ω′)− θL(ω′)

θ∗(ω′)
=
θ∗(ω)− θL(ω)

θ∗(ω′)
≥ θ∗(ω)− θL(ω)

θ∗(ω)
,

that is, the relative optimality gap of ω′ is as least as large as that of ω. Therefore, for worst-case
instances we can focus on the bases in X (ω).
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(a) Original instance ω ∈ Ω.

A

B

C

D

E

F

(b) First intermediate instance: all demand
points not covered by any base in the set
I∗(ω) ∪ IL(ω) have been removed.

A

B

C

D

E

F

(c) Second intermediate instance: all demand
points covered by any base in I∗(ω) ∩ IL(ω)
have been removed.

A

B

C

D

(d) Final instance φ1(ω): all bases in the set
I(ω) \ X (ω) have been removed.

Figure 4.4.1: Example of the first MCLP instance transformation φ1. Bases are depicted as
squares, demand points as black dots. The circles indicate the coverage of the bases. This
example assumes that I(ω) = {A,B,C,D,E, F}, p(ω) = 3, k(ω) = 2, IL(ω) = {A,B, F}, and
I∗(ω) = {C,D, F}. Hence, we have X (ω) = {A,B,C,D}.
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Consider a new arbitrary MCLP instance ω ∈ φ1(Ω) where x∗(ω) and xL(ω) differ in exactly
2k places. Note that |I(ω)| = 2k, so the two solutions have no matching elements. For the
remainder of the proof, we fix the set of bases, I(ω) = I, as well as both solutions, x∗(ω) = x∗

and xL(ω) = xL.

Each demand point can be covered by a certain subset of bases in I. Thus, we can project each
point to the largest subset of bases that can cover it:

π : J (ω)→ 2I .

This projection is not guaranteed an injection nor a surjection (it depends on the instance).
However, we can define an inverse mapping:

π−1 : 2I → 2J (ω),

such that j ∈ π−1(π(j)) for all j ∈ J (ω). Elements in 2I \ π(J (ω)) are mapped to the empty
set. For example, the demand points in π−1({i}) are the points that can only be covered by base
i ∈ I. Demand points in π−1({i1, i2}) can be covered by exactly two bases (i1 and i2), etcetera.
We can divide the demand points into several sets, where two points j1, j2 ∈ J (ω) are in the
same set if and only if both are covered by the same bases: π(j1) = π(j2). Thus, the resulting
sets are exactly the image of π−1.

The second instance transformation will merge certain demand points and add new artificial
demand points. Construct a new MCLP instance by merging the demand points in each set in
the image of π−1. Note that π is injective for this new instance. Next, add artificial demand
points with zero demand to the new instance in such a way that π becomes bijective. Call this
transformation φ2 : φ1(Ω) → Ω, see also Figures 4.4.2 and 4.4.3. It is trivial that φ2 does not
affect feasibility and objective values.

We fix this set of demand points for the remainder of the proof, J (ω′) = J . As a result, the
mapping π for ω′ = φ2(ω) is a bijection with inverse

π−1 : 2I → J ,

see also Lemma 4.4.5.

Lemma 4.4.5. For each MCLP instance ω ∈ Ω there exists an MCLP instance ω′ ∈ Ω with
the bijective mapping π : J (ω′)→ 2I(ω′), that maps each demand point to the largest subset of
bases that can cover it.

For the new MCLP instance ω′, x∗(ω) is still the global optimum and xL(ω) still a ρ-Swap local
optimum, although a projection to a lower dimension can be required. Furthermore, it holds
that

θ∗(ω′)− θL(ω′)

θ∗(ω′)
≥ θ∗(ω)− θL(ω)

θ∗(ω)
.

Therefore, the relative optimality gap of ω′ is as least as large as that of ω.

Proof. The proof has been given above by taking ω′ = φ2(φ1(ω)).
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(a) Original instance ω ∈ φ1(Ω).

A

B

C

D

(b) New instance φ2(ω): specific demand
points are merged. Artificial demand points
are not shown.

Figure 4.4.2: Example of the second MCLP instance transformation φ2. Bases are depicted
as squares, demand points as black dots. The circles indicate the coverage of the bases. This
example assumes that I(ω) = {A,B,C,D}, p(ω) = 2, IL(ω) = {A,B}, and I∗(ω) = {C,D}.

A
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C

D

dB

dA

dAB dABC

dBD

dAC dC

dBCD

dBC

dD

dCD

Figure 4.4.3: Example of an MCLP instance in φ2(φ1(Ω)). Bases are depicted as squares, demand
points as grey dots. The circles indicate the coverage of the bases. This example assumes that
I(ω) = {A,B,C,D}, p(ω) = 2, IL(ω) = {A,B}, and I∗(ω) = {C,D}. For clarity, we abbreviate
the demand dπ−1({A})(ω) to dA and similarly for the other subsets.
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Let ω ∈ φ2(φ1(Ω)) be a new arbitrary MCLP instance, where x∗ and xL differ in exactly 2k
places. Define the sets I∗ = {i ∈ I : x∗i = 1} and IL = {i ∈ I : xLi = 1}. Since the sets I∗ and
IL of bases are disjoint, we can label the bases distinctively as follows:

IL = {iL1 , . . . , iLk } and I∗ = {i∗1, . . . , i∗k}.

We can explicitly express the global and local maxima by

θL(ω) =

k∑
n=1

∑
{YL⊆IL:|YL|=n}

k∑
m=0

∑
{Y∗⊆I∗:|Y∗|=m}

dπ−1(YL∪Y∗)(ω), (4.4.4)

θ∗(ω) =

k∑
m=1

∑
{Y∗⊆I∗:|Y∗|=m}

k∑
n=0

∑
{YL⊆IL:|YL|=n}

dπ−1(YL∪Y∗)(ω).

The local maximum is equal to all demand from the points that can be covered by at least one
base in IL. Likewise, for the global maximum at least one base from I∗ is required. For example,
consider Figure 4.4.3. Omitting demand terms equal to zero, we have the local maximum

θL(ω) =
(
dπ−1({A})(ω) + dπ−1({B})(ω)

)
+
(
dπ−1({AC})(ω) + dπ−1({BC})(ω) + dπ−1({BD})(ω)

)
+
(
dπ−1({BCD})(ω)

)
+
(
dπ−1({AB})(ω)

)
+
(
dπ−1({ABC})(ω)

)
.

Here, we have grouped the terms according to the cardinalities n and m as in Equation (4.4.4).
Similarly, the global maximum is given by:

θ∗(ω) =
(
dπ−1({C})(ω) + dπ−1({D})(ω)

)
+
(
dπ−1({AC})(ω) + dπ−1({BC})(ω) + dπ−1({BD})(ω)

)
+
(
dπ−1({ABC})(ω)

)
+
(
dπ−1({CD})(ω)

)
+
(
dπ−1({BCD})(ω)

)
.

What remains is the expression of the properties of the ρ-Swap local maximum and the global
maximum. Since the global maximum is equivalent to a k-Swap local maximum, we can focus
on expressing Swap local maxima as constraints. Consider the ρ-Swap local optimum (xL) and
the swap where iL ∈ IL is replaced by i∗ ∈ I∗. The following demand is the net loss of this
swap:

k−1∑
m=0

∑
{Y∗⊆I∗\{i∗}:|Y∗|=m}

dπ−1({iL}∪Y∗)(ω).

This expression is equal to the demand of all points covered by base iL and simultaneously
covered by any base or multiple bases in I∗ \ {i∗}. Similarly, the following demand is the net
gain:

k−1∑
m=0

∑
{Y∗⊆I∗\{i∗}:|Y∗|=m}

dπ−1({i∗}∪Y∗)(ω).

The net gain is equal to the demand of all points covered by i∗ and simultaneously covered by
any base or multiple bases in I∗ \ {i∗}. The net effect of each swap must be non-positive, since
xL is in particular a 1-Swap local optimum. Thus, for all i∗ ∈ I∗ and iL ∈ IL:

k−1∑
m=0

∑
{Y∗⊆I∗\{i∗}:|Y∗|=m}

(
dπ−1({i∗}∪Y∗)(ω)− dπ−1({iL}∪Y∗)(ω)

)
≤ 0.
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In general, consider swapping R ∈ {1, . . . , ρ} bases in IL with bases in I∗. Assume we swap
UL ⊆ IL with U∗ ⊆ I∗, both with cardinality R. The net loss is

R∑
r=1

∑
{ZL⊆UL:|ZL|=r}

k−R∑
m=0

∑
{Y∗⊆I∗\U∗:|Y∗|=m}

dπ−1(ZL∪Y∗)(ω),

and the net gain is

R∑
r=1

∑
{Z∗⊆U∗:|Z∗|=r}

k−R∑
m=0

∑
{Y∗⊆I∗\U∗:|Y∗|=m}

dπ−1(Z∗∪Y∗)(ω).

Therefore, the following ρ-Swap optimality constraints must hold for all R ∈ {1, . . . , ρ}, UL ⊆ IL
with |UL| = R, and U∗ ⊆ I∗ with |U∗| = R:

R∑
r=1

∑
{Z∗⊆U∗:|Z∗|=r}

k−R∑
m=0

∑
{Y∗⊆I∗\U∗:|Y∗|=m}

dπ−1(Z∗∪Y∗)(ω)

−
R∑
r=1

∑
{ZL⊆UL:|ZL|=r}

k−R∑
m=0

∑
{Y∗⊆I∗\U∗:|Y∗|=m}

dπ−1(ZL∪Y∗)(ω) ≤ 0. (4.4.5)

The constraints for the global optimum (x∗) are similar, but the roles of UL and U∗ are inter-
changed. Therefore, the following constraints must hold for all R ∈ {1, . . . , k}, UL ⊆ IL with
|UL| = R, and U∗ ⊆ I∗ with |U∗| = R:

R∑
r=1

∑
{ZL⊆UL:|ZL|=r}

k−R∑
m=0

∑
{YL⊆IL\UL:|YL|=m}

dπ−1(ZL∪YL)(ω)

−
R∑
r=1

∑
{Z∗⊆U∗:|Z∗|=r}

k−R∑
m=0

∑
{YL⊆IL\UL:|YL|=m}

dπ−1(Z∗∪YL)(ω) ≤ 0. (4.4.6)

In particular, this constraint must hold for x∗ and xL, i.e., for R = k, UL = IL, and U∗ = I∗.
The corresponding constraint can be rewritten to:

θ∗(ω)− θL(ω) =

k∑
m=1

∑
{Y∗⊆I∗:|Y∗|=m}

dπ−1(Y∗)(ω)−
k∑

n=1

∑
{YL⊆IL:|YL|=n}

dπ−1(YL)(ω) ≥ 0.

For example, for the instance in Figure 4.4.3 we have:

θ∗(ω)− θL(ω) =
(
dπ−1({C})(ω) + dπ−1({D})(ω) + dπ−1({CD})(ω)

)
−
(
dπ−1({A})(ω) + dπ−1({B})(ω) + dπ−1({AB})(ω)

)
,

which must be non-negative.

The third instance transformation constructs a more symmetric instance and will be defined
below. With this transformation we can prove the following lemma.
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Lemma 4.4.6. Consider an MCLP instance ω ∈ φ2(φ1(Ω)) where the global optimum x∗(ω)
and ρ-Swap local optimum xL(ω) differ at 2k places. There exists a modified MCLP instance
ω′ ∈ φ2(φ1(Ω)) with certain symmetric properties, namely that for n,m ∈ {0, . . . , k}

dπ−1(YL∪Y∗)(ω
′) = d(n,m)(ω

′) ∀YL ⊆ IL(ω′), |YL| = n,Y∗ ⊆ I∗(ω′), |Y∗| = m.

For the new MCLP instance ω′, x∗(ω) is still the global optimum and xL(ω) still a ρ-Swap local
optimum. Furthermore, it holds that

θ∗(ω′)− θL(ω′)

θ∗(ω′)
=
θ∗(ω)− θL(ω)

θ∗(ω)
.

Therefore, the relative optimality gap of ω′ is equal to that of ω.

Proof. Let ω ∈ φ2(φ1(Ω)) be an arbitrary instance where the global optimum and ρ-Swap local
optimum differ at 2k places. Let σ∗ : I∗ → I∗ be a permutation of the bases in I∗ and
σL : IL → IL a similarly defined permutation. Note that σ∗ and σL are disjoint. There are
k! different permutations for each set, so if we combine the two permutations there are k!k!
permuted instances σ(ω). We denote these instances by σs(ω) with s ∈ {1, . . . , k!k!}. The
solutions x∗ and xL are global and local optima for all permuted instances σ(ω), as only the
labels of the bases are changed within each set I∗ and IL. See Figure 4.4.4 for an example.

Now construct a new MCLP instance ω′ by altering the demand of each point in the following
way. For YL ⊆ IL and Y∗ ⊆ I∗ define

dπ−1(YL∪Y∗)(ω
′) =

1

k!k!

k!k!∑
s=1

dπ−1(YL∪Y∗)(σs(ω)) =
1

k!k!

k!k!∑
s=1

dπ−1(σs(YL∪Y∗))(ω).

As all constraints (4.4.5) and (4.4.6) are linear in d and valid for each σs(ω), these are also valid
for the new instance ω′. Furthermore, it holds that θ∗(ω′) = θ∗(ω) and θL(ω′) = θL(ω), so the
relative optimality gap is the same.

Notice that for n,m ∈ {0, . . . , k}, YL ⊆ IL with |YL| = n, and Y∗ ⊆ I∗ with |Y∗| = m:

dπ−1(YL∪Y∗)(ω
′)

=
1

k!k!

k!k!∑
s=1

dπ−1(σs(YL∪Y∗))(ω)

=
(k − n)!n!(k −m)!m!

k!k!

∑
{(YL)′⊆IL:|(YL)′|=n}

∑
{(Y∗)′⊆I∗:|(Y∗)′|=m}

dπ−1((YL)′∪(Y∗)′)(ω)

=

(
k

n

)−1(
k

m

)−1 ∑
{(YL)′⊆IL:|(YL)′|=n}

∑
{(Y∗)′⊆I∗:|(Y∗)′|=m}

dπ−1((YL)′∪(Y∗)′)(ω)

≡ d(n,m)(ω
′).

We define d(n,m)(ω
′) as indicated, which completes the proof. We capture this transformation

by φ3 : φ2(φ1(Ω))→ Ω.
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For example, consider applying φ3 to the instance in Figure 4.4.3. The new demand is:

dπ−1({A})(ω
′) = dπ−1({B})(ω

′) = d(1,0)(ω
′) =

1

2

(
dπ−1({A})(ω) + dπ−1({B})(ω)

)
,

dπ−1({AC})(ω
′) = dπ−1({AD})(ω

′) = dπ−1({BC})(ω
′) = dπ−1({BD})(ω

′) = d(1,1)(ω
′)

=
1

4

(
dπ−1({AC})(ω) + dπ−1({AD})(ω) + dπ−1({BC})(ω) + dπ−1({BD})(ω)

)
,

and similarly for the other subsets.

A

B

C

D

(a) First permuted instance σ1(ω) = ω.

A

B

C

D

(b) Second permuted instance σ2(ω).

A

B

C

D

(c) Third permuted instance σ3(ω).

A

B C

D

(d) Fourth permuted instance σ4(ω).

Figure 4.4.4: Example of permuted MCLP instances. Bases are depicted as squares, demand
points as black dots. The circles indicate the coverage of the bases. This example assumes that
I(ω) = {A,B,C,D}, p(ω) = 2, IL(ω) = {A,B}, and I∗(ω) = {C,D}. The demand points are
unaffected by the permutations.
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We can simplify many of the derived expressions and constraints for ω ∈ φ3(φ2(φ1(Ω))). The
maxima are given by:

θL(ω) =

k∑
n=1

k∑
m=0

(
k

n

)(
k

m

)
d(n,m)(ω),

θ∗(ω) =

k∑
m=1

k∑
n=0

(
k

m

)(
k

n

)
d(n,m)(ω).

For all R ∈ {1, . . . , k}, the global maximum constraints are:

R∑
r=1

(
R

r

) k−R∑
n=0

(
k −R
n

)(
d(n+r,0)(ω)− d(n,r)(ω)

)
≤ 0.

In particular, the global and local maxima have the following constraint:

θ∗(ω)− θL(ω) =

k∑
m=1

(
k

m

)
d(0,m)(ω)−

k∑
n=1

(
k

n

)
d(n,0)(ω) ≥ 0.

The ρ-Swap local maximum constraints are as follows. For all R ∈ {1, . . . , ρ} we have

R∑
r=1

(
R

r

) k−R∑
m=0

(
k −R
m

)(
d(0,m+r)(ω)− d(r,m)(ω)

)
≤ 0.

Remark 4.4.7. These new definitions and constraints require (k + 1)2 demand values. The
determination of the worst-case instance can be modelled as a Linear Programming model where
the demand values are the variables. The objective is of course to maximise the relative optimality
gap. By implicitly normalising the demand by θ∗, we can add the constraint that θ∗ = 1 and have
a linear objective function. This allows us to solve the Linear Programming model, determine
the worst-case relative optimality gap, and thus derive the locality gap.

The final transformation φ4 : φ3(φ2(φ1(Ω))) → Ω combines demand in a weighted manner. To
be specific, the demand of the new instance ω′ is set to

d(1,0)(ω
′) =

1

k

k∑
n=1

(
k

n

)
d(n,0)(ω),

d(1,1)(ω
′) =

1

k2

k∑
n=1

k∑
m=1

(
k

n

)(
k

m

)
d(n,m)(ω),

d(0,1)(ω
′) =

1

k

k∑
m=1

(
k

m

)
d(0,m)(ω),

and zero otherwise. No other changes are performed. Figure 4.4.5 illustrates this transformation.
We prove in Lemma 4.4.8 that this transformation preserves global optimality of x∗ and ρ-Swap
local optimality of xL.
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A

B

C D

d(1,0)

d(1,0)

d(2,2)d(2,1)

d(1,1)

d(1,1)

d(0,1)

d(1,2)

d(1,1)

d(0,1)

d(1,1)

d(1,2)

d(2,1)

(a) Original instance ω ∈ φ3(φ2(φ1(Ω))), with demand
weights d(n,m)(ω) abbreviated to d(n,m). Note that two
points, corresponding to d(2,0) and d(0,2), are not displayed.

A

B

C D

d’(1,0)

d’(1,0)

d’(1,1)

d’(1,1)

d’(0,1)

d’(1,1)

d’(0,1)

d’(1,1)

(b) New instance ω′ = φ4(ω), with new demand weights
d(n,m)(ω

′) abbreviated to d′(n,m).

Figure 4.4.5: Example of the fourth MCLP instance transformation φ4. Bases are depicted as
squares, demand points as grey dots. The circles indicate the coverage of the bases. This example
assumes that I(ω) = {A,B,C,D}, p(ω) = 2, IL(ω) = {A,B}, and I∗(ω) = {C,D}.
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Lemma 4.4.8. Consider an MCLP instance ω ∈ φ3(φ2(φ1(Ω))) where the global optimum
x∗(ω) and ρ-Swap local optimum xL(ω) differ at 2k places. There exists an MCLP instance
ω′ ∈ φ3(φ2(φ1(Ω))) such that x∗(ω) is still the global optimum and xL(ω) still a ρ-Swap local
optimum. The maxima satisfy the following relations:

θL(ω′) = kd(1,0)(ω
′) + k2d(1,1)(ω

′),

θ∗(ω′) = kd(0,1)(ω
′) + k2d(1,1)(ω

′),

with the (necessary and sufficient) constraints

d(0,1)(ω
′)− d(1,0)(ω

′) ≥ 0,

d(0,1)(ω
′)− d(1,0)(ω

′)− (k − ρ)d(1,1)(ω
′) ≤ 0.

Furthermore, the relative optimality gap of ω′ is equal to that of ω:

θ∗(ω′)− θL(ω′)

θ∗(ω′)
=
θ∗(ω)− θL(ω)

θ∗(ω)
.

Proof. Let ω ∈ φ3(φ2(φ1(Ω))) be an arbitrary instance where the global optimum and ρ-Swap
local optimum differ at 2k places. Apply the final transformation to ω: ω′ = φ4(ω). As a result,
the objective value of xL remains the same:

θL(ω′) = kd(1,0)(ω
′) + k2d(1,1)(ω

′)

=

k∑
n=1

(
k

n

)
d(n,0)(ω) +

k∑
n=1

k∑
m=1

(
k

n

)(
k

m

)
d(n,m)(ω) = θL(ω).

Similarly, the objective value for x∗ is unaffected:

θ∗(ω′) = kd(0,1)(ω
′) + k2d(1,1)(ω

′)

=

k∑
m=1

(
k

m

)
d(0,m)(ω) +

k∑
n=1

k∑
m=1

(
k

n

)(
k

m

)
d(n,m)(ω) = θ∗(ω).

Recall that the global maximum constraints are given by:

R∑
r=1

(
R

r

) k−R∑
n=0

(
k −R
n

)(
d(n+r,0)(ω

′)− d(n,r)(ω
′)
)

= R
(
d(1,0)(ω

′)− d(0,1)(ω
′)− (k −R)d(1,1)(ω

′)
)
≤ 0,

which must hold for all R ∈ {1, . . . , k}. Notice that the constraint for R = k is the most
restricting, i.e., the global maximum constraints are satisfied if and only if

d(1,0)(ω
′)− d(0,1)(ω

′) ≤ 0.

This constraint is indeed valid for ω′:

d(1,0)(ω
′)− d(0,1)(ω

′) =
1

k

(
θL(ω′)− θ∗(ω′)

)
=

1

k

(
θL(ω)− θ∗(ω)

)
≤ 0.

Here, we have used the optimality of x∗ for ω: θ∗(ω)− θL(ω) ≥ 0. We conclude that x∗ is still a
global optimum for ω′.
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The final step is to check if the ρ-Swap constraints are valid for xL and ω′. Unfortunately, this
part of the proof is somewhat cumbersome. Let R ∈ {1, . . . , ρ} and recall the expression in the
ρ-Swap constraints:

R∑
r=1

(
R

r

) k−R∑
m=0

(
k −R
m

)(
d(0,m+r)(ω

′)− d(r,m)(ω
′)
)

= R
(
d(0,1)(ω

′)− d(1,0)(ω
′)− (k −R)d(1,1)(ω

′)
)

=
R

k

k∑
m=1

(
k

m

)
d(0,m)(ω)− R

k

k∑
n=1

(
k

n

)
d(n,0)(ω)− R(k −R)

k2

k∑
n=1

k∑
m=1

(
k

n

)(
k

m

)
d(n,m)(ω),

which must be non-positive. First, we focus on the two negative terms:

− R

k

k∑
n=1

(
k

n

)
d(n,0)(ω)− R(k −R)

k2

k∑
n=1

k∑
m=1

(
k

n

)(
k

m

)
d(n,m)(ω)

≤ −R
k

R∑
n=1

(
k

n

)
d(n,0)(ω)− R(k −R)

k2

R∑
n=1

k−R∑
m=1

(
k

n

)(
k

m

)
d(n,m)(ω)

≤ −
R∑
n=1

(
R

n

)
d(n,0)(ω)−

R∑
n=1

k−R∑
m=1

(
R

n

)(
k −R
m

)
d(n,m)(ω)

= −
R∑
r=1

(
R

r

) k−R∑
m=0

(
k −R
m

)
d(r,m)(ω). (4.4.7)

For the second inequality we have used that

R

k

(
k

n

)
= R

(k − 1) · · · (k − n+ 1)

n!
≥ R (R− 1) · · · (R− n+ 1)

n!
=

(
R

n

)
,

and

k −R
k

(
k

m

)
= (k −R)

(k − 1) · · · (k −m+ 1)

m!

≥ (k −R)
(k −R− 1) · · · (k −R−m+ 1)

m!
=

(
k −R
m

)
.

Second, suppose we can bound the positive term of the ρ-Swap constraint as follows:

R

k

k∑
m=1

(
k

m

)
d(0,m)(ω) ≤

R∑
r=1

(
R

r

) k−R∑
m=0

(
k −R
m

)
d(0,m+r)(ω). (4.4.8)

By combining Equations (4.4.7) and (4.4.8), we can prove that the ρ-Swap constraints are valid:

R∑
r=1

(
R

r

) k−R∑
m=0

(
k −R
m

)(
d(0,m+r)(ω

′)− d(r,m)(ω
′)
)

≤
R∑
r=1

(
R

r

) k−R∑
m=0

(
k −R
m

)(
d(0,m+r)(ω)− d(r,m)(ω)

)
≤ 0.
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Thus, only the proof of Equation (4.4.8) remains. First apply an identity, also known as the
Chu-Vandermonde identity:

R

k

k∑
m=1

(
k

m

)
d(0,m)(ω) =

R

k

k∑
m=1

m∑
r=0

(
R

r

)(
k −R
m− r

)
d(0,m)(ω). (4.4.9)

We can switch the order of summation and delete terms with binomial coefficients equal zero.
Consequently, Equation (4.4.9) is equal to:

R

k

k∑
m=1

(
k −R
m

)
d(0,m)(ω) +

R

k

k∑
r=1

k∑
m=r

(
R

r

)(
k −R
m− r

)
d(0,m)(ω)

=
R

k

k−R∑
m=1

(
k −R
m

)
d(0,m)(ω) +

R

k

R∑
r=1

k−R+r∑
m=r

(
R

r

)(
k −R
m− r

)
d(0,m)(ω)

=
R

k

k−R∑
m=1

(
k −R
m

)
d(0,m)(ω) +

(
1− k −R

k

) R∑
r=1

k−R∑
m=0

(
R

r

)(
k −R
m

)
d(0,m+r)(ω).

Notice that we have been able to obtain the right-hand side of Equation (4.4.8), but there are
some additional terms. Therefore, consider these additional terms:

R

k

k−R∑
m=1

(
k −R
m

)
d(0,m)(ω)− k −R

k

R∑
r=1

k−R∑
m=0

(
R

r

)(
k −R
m

)
d(0,m+r)(ω)

≤ R

k

k−R∑
m=1

(
k −R
m

)
d(0,m)(ω)− k −R

k

k−R∑
m=1

R

(
k −R
m− 1

)
d(0,m)(ω)

≤ R

k

k−R∑
m=1

((
k −R
m

)
− (k −R)

(
k −R
m− 1

))
d(0,m)(ω) ≤ 0.

The non-positivity follows from the estimation

(k −R)

(
k −R
m− 1

)
= (k −R)

(k −R) · · · (k −R−m+ 2)

(m− 1)!

≥ (k −R) · · · (k −R−m+ 1)

(m− 1)!
≥
(
k −R
m

)
.

As the sum of these extra terms is non-positive, we have shown that Equation (4.4.8) is valid.
Hence, the ρ-Swap optimality conditions hold for xL and ω′.

To conclude, we have a final instance ω′ with

θL(ω′) = kd(1,0)(ω
′) + k2d(1,1)(ω

′),

θ∗(ω′) = kd(0,1)(ω
′) + k2d(1,1)(ω

′),

and the constraints

d(0,1)(ω
′)− d(1,0)(ω

′) ≥ 0,

d(0,1)(ω
′)− d(1,0)(ω

′)− (k − ρ)d(1,1)(ω
′) ≤ 0.

Note that only the most restricting global maximum and ρ-Swap local maximum constraints
need to be included.
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We can now prove Theorem 4.4.4 by using the four instance transformations and the three
lemmas. In the proof we derive the maximum relative optimality gap of a ρ-Swap local maximum
for given parameters k and ρ.

Proof of Theorem 4.4.4. Let ω ∈ Ω be an arbitrary MCLP instance with global maximum θ∗(ω)
and optimal solution x∗(ω). Let xL(ω) be a solution found by the ρ-Swap Local Search method
with ρ-Swap local maximum θL(ω). Suppose xL(ω) differs from x∗(ω) in exactly 2k(ω) places
with k(ω) ∈ N>ρ.

Sequentially apply the above described instance transformations φ1, . . . , φ4 to ω, resulting in a
new instance ω′. We have shown that each transformation preserves the following properties:

• x∗(ω) is an optimal solution for ω′ (albeit projected to a lower dimension by φ1),

• xL(ω) is a ρ-Swap local optimum for ω′ (albeit projected to a lower dimension by φ1),

• xL(ω) differs from x∗(ω) in exactly 2k(ω) places,

and the relative optimality gap of ω′ is as least as large as that of ω.

The transformation resulted in a family of worst-case instances with symmetric properties. Using
Lemma 4.4.8, we can describe this family by the (abstract) relations:

θL(ω′) = k(ω)d(1,0)(ω
′) + (k(ω))2d(1,1)(ω

′),

θ∗(ω′) = k(ω)d(0,1)(ω
′) + (k(ω))2d(1,1)(ω

′),

d(0,1)(ω
′)− d(1,0)(ω

′) ≥ 0,

d(0,1)(ω
′)− d(1,0)(ω

′)− (k(ω)− ρ)d(1,1)(ω
′) ≤ 0.

Since the relative optimality gap is given by

θ∗(ω′)− θL(ω′)

θ∗(ω′)
=

d(0,1)(ω
′)− d(1,0)(ω

′)

d(0,1)(ω′) + k(ω)d(1,1)(ω′)
,

we are interested in the following optimisation model:

Maximise

f(u, v, w) =
u− v

u+ k(ω)w

subject to

u− v ≥ 0,

u− v − (k(ω)− ρ)w ≤ 0,

u, v, w ∈ R≥0.

The decision variable u corresponds to demand d(0,1)(ω
′), v to demand d(1,0)(ω

′), and w to
demand d(1,1)(ω

′). The objective is to maximise the relative optimality gap, whilst satisfying
the global and ρ-Swap local maxima constraints. The resulting optimal objective value is the
maximum relative optimality gap for the parameters k(ω) and ρ.
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Clearly, it is optimal to set w as small as possible:

w =
u− v

k(ω)− ρ
.

The objective simplifies to

f(u, v) =
(k(ω)− ρ)(u− v)

(k(ω)− ρ)u+ k(ω)(u− v)
=

(k(ω)− ρ)(u− v)

(2k(ω)− ρ)u− k(ω)v
,

with

∂f

∂v
(u, v) = − (k(ω)− ρ)2u

((2k(ω)− ρ)u− k(ω)v)2
≤ 0.

Since the partial derivative of f with respect to v is non-positive, it is optimal to set v = 0.
Hence, the new objective is:

f(u) =
(k(ω)− ρ)u

(2k(ω)− ρ)u
=

k(ω)− ρ
2k(ω)− ρ

.

In conclusion, we can bound the relative optimality gap by

θ∗(ω)− θL(ω)

θ∗(ω)
≤ k(ω)− ρ

2k(ω)− ρ
.

Since we do not know the exact value of k(ω) (although k(ω) ∈ {0, . . . , p(ω)}), we have to consider
the worst-case. Note that the family of worst-case instances is given by a fixed d(0,1) ≥ 0 and
d(1,1) = d(0,1)/(k−ρ) with k ∈ N (k ≥ ρ+1). The relative optimality gap of this family converges
in the following sense:

lim
k(ω)→∞

θ∗(ω)− θL(ω)

θ∗(ω)
≤ lim
k(ω)→∞

k(ω)− ρ
2k(ω)− ρ

=
1

2
.

Thus, the relative locality gap of ρ-Swap Local Search for the MCLP is:

sup
ω∈Ω,L∈L(ω)

{
θ∗(ω)− θL(ω)

θ∗(ω)

}
=

1

2
.

We have shown how to construct a family of worst-case instances with a relative optimality gap
converging to the relative locality gap.

Although the proof of Theorem 4.4.4 describes how the worst-case MCLP instances can be
constructed, it is useful to give some explicit examples. For ρ ∈ N≥1 and k ∈ N with k ≥ ρ+ 1,
the worst-case MCLP instance has the following parameters. The number of opened bases p
is equal to k and there are in total |I| = 2p = 2k bases. The first p bases correspond to a
ρ-Swap Local Search optimum (IL = {1, . . . , p}) and the last p bases to the optimal solution
(I∗ = {p+1, . . . , 2p}). There are p(p+1) demand points, where the first p2 points are covered by
exactly one ρ-Swap base and one optimal base. These points have demand (k − ρ)−1. The final
p demand points are covered by exactly one optimal base and have demand 1. This construction
is permutation invariant between the two types of bases.
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In Figure 4.4.6 we give three examples for ρ = 1 and k ∈ {2, 3}, followed by ρ = 2 and k = 3.

The parameter ε > 0 is insignificantly small. We denote the adjacency parameter by a
(k)
ij and the

demand by d
(ρ)
j . It is straightforward to verify that the first p bases form a ρ-Swap Local Search

optimum and the last p bases are the optimal solution. The relative optimality gap matches the
bound in Theorem 4.4.4 (as ε decreases to zero). It is interesting to note that the Greedy Search
would find the optimal solution for these instances.

As mentioned in the proof of Theorem 4.4.2, Nemhauser, Wolsey, and Fisher (1978) provide a
family of worst-case Uncapacitated Location problem instances. Using the transformation shown
in Remark 4.3.5, it turns out that after rescaling this gives the same family of worst-case MCLP
instances as found in the proof of Theorem 4.4.4. Nevertheless, our proof gradually builds a
description of worst-case instances, which has the potential to be used for other optimisation
problems as well. In particular, we note that we reduce the number of demand parameters from
2|I| to (k+ 1)2 by symmetry, followed by another reduction to 3 demand parameters, and finally
only one parameter remains.

The computational time of the ρ-Swap Local Search is not polynomial. Each iteration requires the
evaluation of O(

(|I|
ρ

)
) = O(|I|ρ) subsets of bases, each taking at most O(ρ|J |) time. In practice,

the submodularity of the objective can be used to implement a lazy evaluation (updating the
value of a subset only when required). This would improve the average computational time
of an iteration. However, the main issue is the number of required iterations, which can be
exponentially many (see for example Nemhauser, Wolsey, and Fisher (1978)).

When comparing the performance guarantees of the Greedy Search and the Swap Local Search, it
is remarkable that the Greedy Search outperforms the Swap heuristic with respect to worst-case
performance. In Section 4.5 we compare both heuristics using realistic and randomly generated
instances. These results give an indication on the average performance of both heuristics.
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(a) Example for ρ = 1 and k = 2.
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(b) Example for ρ = 1 and k = 3.
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(c) Example for ρ = 2 and k = 3.

Figure 4.4.6: Worst-case examples for Swap Local Search. Bases are depicted as squares, demand
points as circles. Points are connected to adjacent bases and their demand is shown in brackets.
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4.5 Numerical Results

We have discussed several theoretical results on the worst-case performance of approximation
algorithms for the MCLP. As these worst-case instances rarely appear in real-life decision prob-
lems, it is useful to empirically evaluate the performance for realistic instances. In order to do
so, we have two sets of instances. The first set consists of the realistic instances based on the
24 Regional Ambulance Services (RAVs) of The Netherlands, as described in Section 3.4.1. The
second set consists of randomly generated instances based on Euclidean distances, which will be
described in Section 4.5.3.

At our disposal are four Greedy Search variations (solution construction methods) and the Swap
Local Search (a solution improvement method). The variations of the Greedy Search are:

• the Greedy Search, which opens bases and maximises coverage,

• the Reverse Greedy Search, which closes bases and maximises coverage,

• the Anti Greedy Search, which opens bases and minimises coverage,

• the Revised Anti Greedy Search, which opens non-adjacent bases and minimises coverage.

The Greedy Search and Reverse Greedy Search have been introduced in Section 4.3 and 4.3.3,
respectively. The Anti Greedy Search is similar to the Greedy Search, except it minimises
coverage at each iteration. It will be used to create an initial solution with low coverage for
the Swap Local Search. The Revised Anti Greedy Search is a modification of the Anti Greedy
Search: at each iteration it can only open bases that are non-adjacent. That is, a selected base is
not allowed to be covered by a different opened base. This leads to base locations that are more
spread out. In case of full coverage, arbitrary additional bases are opened if required.

Thus, we have four6 different ways to construct the initial solutions for the Swap Local Search:
two initial solutions will have high coverage and two low coverage. This allows us to determine
how robust the Swap Local Search method is with respect to the initial solution. For the details
on the implementation, see Appendix B.

Both the Greedy Search and the Swap Local Search require the specification of the search pa-
rameter ρ ∈ N. We consider the 1-Greedy Search and the 1-Swap Local Search as the reference
solution methods. Furthermore, we have two additional settings to determine the effect of in-
creasing ρ: 2-Greedy with 1-Swap, and 1-Greedy with 2-Swap. We change only one parameter
with respect to the reference to be able to discern its effect. Therefore, we do not consider ρ = 2
for both methods simultaneously.

We start with the realistic set of RAV instances in Sections 4.5.1 and 4.5.2. In Section 4.5.3 the
random generation of the instances is discussed, followed by the solution method performances.
Similar to the sensitivity analysis in Section 3.4, we restrict the analysis to attainable optimality
gaps and do not discuss the actual solutions. In Section 4.6 we go into the details of the results for
two RAV regions, namely RAV14 (Gooi- en Vechtstreek) and RAV23 (Limburg-Noord). These
two regions have been discussed in detail in the sensitivity analysis.

6We have also evaluated the Reverse variant of the Anti Greedy Search. The results are omitted, as they lead
to similar conclusions.
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4.5.1 Greedy Search Performance for Realistic Instances

As mentioned before, we have four solution construction methods, all based on the Greedy Search.
Furthermore, each construction method is applied in two ways: with search parameter ρ equal
to 1 or 2. This leads to eight different solutions for the RAV regions. In Theorem 4.3.3 we have
determined bounds for the worst-case performance of the Greedy Search. For p = aρ − b with
a ∈ N≥1 and b ∈ {0, . . . , ρ − 1}, the following bound holds for the ρ-Greedy maximum θG and
the global maximum θ∗:

θ∗ − θG

θ∗
≤

(
a− 1

ρ (ρ− b)
a

)(
a− 1

a

)a−1

.

Table 4.5.1 gives the resulting theoretical bounds on the relative optimality gap for each of the
RAV regions, where the average bound for the RAV regions is approximately 35%.

Fortunately, the achieved relative optimality gaps are much smaller, see the performance of the
Greedy Search and the other construction methods in Table 4.5.2. For each RAV and construc-
tion method the relative optimality gap (rounded to four decimals) is given. Furthermore, the
performance of each method is summarised by the average and standard deviation of the relative
optimality gaps. Entries highlighted in green correspond to the best solution.

Consider only the solutions for ρ = 1. The 1-Greedy Search method has the best result of all four
construction methods for all but one RAV region (RAV20). For eight RAV regions the 1-Greedy
solution is optimal and the average relative optimality gap is 0.43%. Naturally, the 1-Greedy
Search outperforms the (Revised) Anti Greedy Search.

Furthermore, we have shown in Section 4.3.3 that the Reverse Greedy Search has a worst-case
relative optimality gap of 1. Therefore, it is not surprising that the Greedy Search outperforms
the Reverse Greedy Search as well. In fact, the average relative optimality gap of the Reverse
1-Greedy Search is 1.62%, four times larger than that of the 1-Greedy Search. Do note that the
relative optimality gaps of the Reverse Greedy Search are nevertheless decent.

When comparing the results for the two search parameters ρ, we notice that the 2-Greedy Search
only outperforms the 1-Greedy Search for 4 RAV regions. For the remaining 20 regions both
methods have the same optimality gap. The average relative optimality gap of the 2-Greedy
Search is 0.39%, approximately a 10% relative improvement of the 1-Greedy Search. Remarkably,
the Reverse 2-Greedy Search finds the optimal solution for RAV20, whereas it does not improve
the Reverse 1-Greedy Search for the other RAVs. Consequently, the average performance of the
Reverse 2-Greedy Search is almost the same as the Reverse 1-Greedy Search.

Since the Anti methods are only used to construct bad initial solutions for the Swap Local Search,
a large relative optimality gap is desired. Overall, the Anti Greedy Search constructs solutions
with a larger gap than the Revised Anti Greedy Search. Increasing search parameter ρ to 2 does
not necessarily lead to a solution with a larger gap. In fact, the average relative gap of the Anti
2-Greedy Search is 87.95%, only slightly larger than that of the Anti 1-Greedy Search (87.01%).
For the Revised Anti Greedy Search the difference between ρ = 1 and ρ = 2 is also small (60.70%
and 61.27%, respectively). Notice that the Revised Anti method has difficulty constructing a
bad solution for RAV14, the smallest region, and finds the optimal solution for RAV15.
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We do note that most RAV regions have a surplus of bases. This implies that the Greedy Search
can use the extra capacity (the surplus bases) to compensate for a suboptimal selection of bases
during the search. Consequently, the low average optimality gap was expected. However, the
relative optimality gaps for regions with a shortage of bases (RAV2, RAV7, and RAV23) are also
small (0.89%, 0.76%, and 2.71%, respectively).

To conclude, the Greedy Search provides the best solutions. Reversing the search is counter-
productive in general. For the Greedy Search it is beneficial to increase the search parameter ρ
to 2, although the improvement is small. Recall that the 1-Greedy Search has a running time
of O(p|I|2), whereas the 2-Greedy requires O(p|I|3) time. With our implementation there is a
significant (but manageable) increase in computational time. Given the small improvement in
the average relative optimality gap, the additional computational time could be better used to
apply a solution improvement method, such as the Swap Local Search.

Worst-Case Relative Optimality Gap
RAV of ρ-Greedy Search

Region ρ = 1 ρ = 2

1 0.3533 0.3682
2 0.3464 0.3686
3 0.3464 0.3686
4 0.3399 0.3691
5 0.2963 0.3750
6 0.3436 0.3164
7 0.3487 0.3277
8 0.3487 0.3277
9 0.3349 0.2963

10 0.3505 0.3684
11 0.3580 0.3680
12 0.3533 0.3682
14 0.3399 0.3691
15 0.3399 0.3691
16 0.3399 0.3691
17 0.3164 0.2500
18 0.3349 0.2963
19 0.3533 0.3682
20 0.3487 0.3277
21 0.3464 0.3686
22 0.3533 0.3682
23 0.3399 0.3691
24 0.3505 0.3684
25 0.3505 0.3684

Table 4.5.1: Theoretical bounds for the relative optimality gap of ρ-Greedy Search for the RAV
regions.
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Relative Optimality Gap of ρ-Greedy Search

RAV Normal Reverse Anti Revised Anti

Region ρ = 1 ρ = 2 ρ = 1 ρ = 2 ρ = 1 ρ = 2 ρ = 1 ρ = 2

1 0.0017 0.0017 0.0020 0.0020 0.9411 0.9411 0.7260 0.7355
2 0.0089 0.0089 0.0240 0.0240 0.9783 0.9783 0.8494 0.8494
3 0.0063 0.0046 0.0187 0.0187 0.9410 0.9410 0.6667 0.6762
4 0.0032 0.0032 0.0099 0.0099 0.9458 0.9458 0.7403 0.7047
5 0 0 0 0 0.8680 0.8899 0.4303 0.4187
6 0.0017 0.0017 0.0203 0.0203 0.8507 0.8803 0.6111 0.6281
7 0.0076 0.0040 0.0114 0.0114 0.9138 0.9138 0.7150 0.7150
8 0 0 0.0001 0.0001 0.8711 0.8450 0.4957 0.5498
9 0.0021 0.0021 0.0044 0.0044 0.9183 0.9438 0.6610 0.6801

10 0 0 0.0143 0.0143 0.9522 0.9522 0.6435 0.6834
11 0 0 0 0 0.8921 0.8921 0.6746 0.6746
12 0 0 0 0 0.7484 0.7519 0.3351 0.3184
14 0 0 0 0 0.4369 0.4369 0.1464 0.1464
15 0 0 0 0 0.6194 0.6621 0 0
16 0 0 0 0 0.8984 0.8984 0.4903 0.5068
17 0.0044 0.0044 0.0067 0.0067 0.9547 0.9547 0.8380 0.8380
18 0.0042 0.0042 0.0164 0.0164 0.8750 0.8750 0.6926 0.7137
19 0.0106 0.0080 0.0262 0.0262 0.8338 0.8759 0.7443 0.7443
20 0.0022 0.0011 0.0013 0 0.8460 0.8946 0.6606 0.6606
21 0.0004 0.0004 0.0262 0.0262 0.9365 0.9365 0.6288 0.6288
22 0.0143 0.0143 0.0638 0.0638 0.9093 0.9093 0.7623 0.7623
23 0.0271 0.0271 0.0672 0.0672 0.9439 0.9439 0.7377 0.7377
24 0.0052 0.0052 0.0498 0.0498 0.9164 0.9164 0.6466 0.6597
25 0.0038 0.0038 0.0265 0.0265 0.8920 0.9295 0.6716 0.6716

Average 0.0043 0.0039 0.0162 0.0162 0.8701 0.8795 0.6070 0.6127
Standard
Deviation

0.0062 0.0061 0.0197 0.0198 0.1195 0.1164 0.2039 0.2048

Table 4.5.2: Relative optimality gap of ρ-Greedy Search for the RAVs. The solutions with the smallest gaps are highlighted in green.
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4.5.2 Swap Local Search Performance for Realistic Instances

For an arbitrary initial solution, the worst-case relative optimality gap of the ρ-Swap Local
Search is at most 50%, as shown in Theorem 4.4.4. In particular, for global maximum θ∗ and
the resulting ρ-Swap coverage θL it holds that

θ∗ − θL

θ∗
≤ p− ρ

2p− ρ
.

The corresponding theoretical bounds on the relative optimality gaps are given in Table 4.5.3.
The average bound is approximately 45%. However, for a given initial solution, we know that
the Swap Local Search can only improve it. To determine how robust the Swap Local Search
is with respect to the initial solution, we evaluate its performance using the eight constructed
solutions of Section 4.5.1 as initial solutions. Recall that we apply the 1-Swap Local Search to
all eight initial solutions, and the 2-Swap Local Search only to the four 1-Greedy variants. Thus,
in total we have 12 different Swap Local Search solutions for each RAV.

The relative optimality gaps for the Swap Local Search solutions are given in Table 4.5.4. As
usual, the results are rounded to four decimals (note that 0 implies optimality and 0.0000 a very
small gap). The solutions are distinguished with respect to the initial Greedy solution and the
search parameters. For example, the column (2, 1) of the Reverse Greedy initial solution corre-
sponds to the Reverse 2-Greedy Search followed by the 1-Swap Local Search. Entries highlighted
in green are the best solutions for the RAV region. The required number of Swap iterations
for convergence to a ρ-Swap local maximum are shown in Table 4.5.5. Therefore, if only one
iteration was used, the initial solution was already a ρ-Swap local maximum.

Let us first only consider the 1-Greedy variants and the 1-Swap (columns (1, 1)). The average
relative optimality gap of 1-Greedy solution is halved by the 1-Swap Local Search and the
improvement is even greater for the other three initial solutions. Notice that the 1-Greedy and
the Anti 1-Greedy result in the same average relative gap of 0.19%. The Reverse 1-Greedy and
the Revised Anti 1-Greedy initial solutions lead to worse averages of 0.29% and 0.23%, although
still very small average gaps. The four initial solutions lead to an optimal solution for almost the
same RAV regions. This indicates that the Swap Local Search is robust with respect to the initial
solution, although the (Revised) Anti Greedy initial solutions need more Swap iterations.

The 1-Swap Local Search solutions differ more for the 2-Greedy variants as initial solutions
(columns (2, 1)). The average relative optimality gaps for the Greedy, Reverse Greedy, Anti
Greedy, and Revised Anti Greedy initial solutions are 0.14%, 0.29%, 0.17%, and 0.31%, respec-
tively. Although the 1-Swap Local Search performs very well for all initial solutions, the relatively
large difference in average gap indicates that the initial solution is an important factor for the
performance. Note that the Anti Greedy initial solutions lead to a smaller 1-Swap average gap
than the Revised Greedy solutions, even though the Revised Greedy initial solutions are much
better than those of the Anti Greedy Search.

The best improvement can be achieved by applying a 2-Swap Local Search: between 18 and 20
RAV regions are solved to optimality, depending on the initial solution. Furthermore, the average
relative optimality gaps are 0.03% (Greedy and Reverse Greedy) and 0.02% (Anti Greedy and
Revised Anti Greedy). The maximum relative gap is 0.44%. We can therefore conclude that the
2-Swap Local Search is robust with respect to the initial solution.
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Of course, the relative optimality gap is not the only performance measure: the computational
time should also be considered. As can be seen in Table 4.5.5, the Greedy Search initial solution
leads to the smallest number of required ρ-Swap iterations on average. For example, using the
Anti Greedy solutions requires at least twice as many iterations. Therefore, the Greedy Search
provides superior initial solutions in general.

The iterations of both the 2-Greedy Search and the 2-Swap Local Search require significantly (but
manageably) more computational time. Thus, considering the evaluated heuristics, we advise to
apply the 1-Greedy Search followed by either the 1- or 2-Swap Local Search (depending on the
available computational time).

Worst-Case Relative Optimality Gap
RAV of ρ-Swap Local Search

Region ρ = 1 ρ = 2

1 0.4800 0.4583
2 0.4706 0.4375
3 0.4706 0.4375
4 0.4615 0.4167
5 0.4000 0.2500
6 0.4667 0.4286
7 0.4737 0.4444
8 0.4737 0.4444
9 0.4545 0.4000

10 0.4762 0.4500
11 0.4865 0.4722
12 0.4800 0.4583
14 0.4615 0.4167
15 0.4615 0.4167
16 0.4615 0.4167
17 0.4286 0.3333
18 0.4545 0.4000
19 0.4800 0.4583
20 0.4737 0.4444
21 0.4706 0.4375
22 0.4800 0.4583
23 0.4615 0.4167
24 0.4762 0.4500
25 0.4762 0.4500

Table 4.5.3: Theoretical bounds for the relative optimality gap of ρ-Swap Local Search for the
RAV regions.
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Relative Optimality Gap of ρS-Swap Local Search after ρG-Greedy Search for (ρG, ρS)

RAV Normal Greedy Reverse Greedy Anti Greedy Revised Anti Greedy

Region (1,1) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) (1,2)

1 0.0005 0.0005 0 0.0020 0.0020 0 0.0007 0.0007 0 0.0008 0.0013 0
2 0.0051 0.0051 0.0011 0.0072 0.0072 0.0004 0.0033 0.0033 0.0011 0.0061 0.0061 0.0022
3 0.0002 0.0028 0 0.0023 0.0023 0 0.0031 0.0031 0 0 0 0
4 0.0012 0.0012 0 0.0026 0.0026 0 0.0012 0.0012 0 0.0012 0.0036 0
5 0 0 0 0 0 0 0 0 0 0 0 0
6 0.0017 0.0017 0.0001 0.0010 0.0010 0.0001 0.0012 0.0011 0.0003 0.0017 0.0014 0.0001
7 0.0003 0.0003 0 0.0090 0.0090 0 0.0039 0.0039 0 0.0023 0.0023 0
8 0 0 0 0 0 0 0 0 0 0 0 0
9 0.0001 0.0001 0 0.0042 0.0042 0.0013 0.0013 0.0001 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0.0001 0.0001 0
12 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0
17 0.0031 0 0 0.0000 0.0000 0.0000 0.0044 0.0044 0 0 0 0.0000
18 0.0042 0.0042 0 0 0 0 0.0042 0.0042 0 0 0.0042 0
19 0.0106 0 0.0021 0.0185 0.0185 0 0.0021 0.0021 0.0021 0.0069 0.0069 0
20 0.0001 0.0001 0 0.0009 0 0 0.0001 0.0001 0 0.0022 0.0022 0
21 0 0 0 0.0021 0.0021 0 0 0 0 0 0 0
22 0.0088 0.0088 0.0028 0.0128 0.0128 0.0044 0.0112 0.0112 0 0.0112 0.0112 0
23 0.0047 0.0047 0 0.0024 0.0024 0.0016 0.0047 0.0047 0.0016 0.0189 0.0189 0.0016
24 0.0052 0.0052 0.0021 0.0052 0.0052 0 0 0 0 0 0.0125 0
25 0 0 0 0 0 0 0.0038 0 0 0.0038 0.0038 0

Average 0.0019 0.0014 0.0003 0.0029 0.0029 0.0003 0.0019 0.0017 0.0002 0.0023 0.0031 0.0002
Standard
Deviation

0.0030 0.0024 0.0008 0.0047 0.0047 0.0010 0.0026 0.0026 0.0006 0.0045 0.0049 0.0005

Table 4.5.4: Relative optimality gap of ρ-Swap Local Search for the RAV regions. The smallest gaps are highlighted in green.
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ρS-Swap Local Search Iterations after ρG-Greedy Search for (ρG, ρS)

RAV Normal Greedy Reverse Greedy Anti Greedy Revised Anti Greedy

Region (1,1) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) (1,2) (1,1) (2,1) (1,2)

1 2 2 3 2 2 3 13 13 8 13 11 7
2 5 5 6 9 9 14 22 22 14 26 26 14
3 6 2 3 5 5 5 15 15 9 16 11 9
4 4 4 3 5 5 4 12 12 7 11 10 7
5 1 1 1 1 1 1 6 6 4 4 4 2
6 1 1 5 4 4 4 12 15 8 11 12 9
7 3 2 3 2 2 3 7 7 5 9 9 7
8 1 1 1 2 2 2 9 8 5 4 4 3
9 3 3 3 2 2 3 13 13 7 11 10 6

10 1 1 1 4 4 3 7 7 5 8 7 5
11 1 1 1 1 1 1 6 6 4 5 5 3
12 1 1 1 1 1 1 4 4 2 2 2 2
14 1 1 1 1 1 1 2 2 2 2 2 2
15 1 1 1 1 1 1 4 4 2 1 1 1
16 1 1 1 1 1 1 7 7 4 5 5 3
17 2 3 2 2 2 2 11 11 7 7 7 5
18 1 1 2 3 3 2 5 5 4 7 6 4
19 1 2 3 3 3 5 10 11 5 11 11 7
20 2 2 2 2 1 2 11 15 6 9 9 6
21 2 2 2 3 3 3 8 8 5 9 9 4
22 2 2 3 6 6 3 7 7 5 8 8 6
23 6 6 5 9 9 5 12 12 7 11 11 8
24 1 1 2 4 4 3 7 7 3 5 5 3
25 2 2 2 3 3 2 6 7 4 4 4 4

Average 2.1250 2.0000 2.3750 3.1667 3.1250 3.0833 9.0000 9.3333 5.5000 8.2917 7.8750 5.2917
Standard
Deviation

1.5965 1.3513 1.4084 2.2968 2.3278 2.6689 4.3539 4.6219 2.6540 5.3445 5.0589 2.9559

Table 4.5.5: Number of ρ-Swap Local Search iterations for the RAV regions.
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4.5.3 Generated Instances

The RAV regions are suitable for an empirical analysis of the solution quality of the heuristics
for realistic instances. However, due to the variations in the size of the RAVs, in the number of
opened bases, and in attainable coverage (surplus capacity), it is difficult to single out the causes
for the difference in performance. Therefore, we randomly generate a set of additional instances
with common properties. The generation is motivated by the work of Vohra and Hall (1993),
although our generation differs.

We denote the generated type of instances as ‘Euclidean’. The Euclidean instances use the
Euclidean distance between bases and points as travel time. The bases and points lie in the unit
square [0, 1]2, where the coordinates are independently sampled from the Uniform distribution
(with range (0, 1)). For all instances we assume that the set of bases is equal to the set of points,
similar to the RAV regions. Furthermore, the demand weights of the points are independently
sampled from the Uniform distribution (with range (0, 1)).

There are two sizes for the instances: 125 and 250 demand points, respectively. We generate 50
instances for each set, for a total of 100 ‘master’ instances. For each of these ‘master’ instances
we analyse the effect of increasing the number of bases to open and increasing the maximum
attainable coverage. We compare opening 5, 10, and 15 bases and attaining 70%, 80%, 90%, and
100% maximum coverage. That is, we derive 12 MCLP instances from each ‘master’ instance
for a total of 1200 MCLP instances. Since most RAV regions have full coverage and surplus
capacity, we mimic this situation by having surplus capacity in the case of 100% coverage.

First, we set the number of bases to open to 5, 10, and 15 bases. Given the number of bases to
open, we determine the minimum travel time threshold such that the desired maximum coverage
is attained. In Appendix B we describe exactly how we determine the thresholds by using a
bisection method. The exception is when the desired coverage is 100%, as these instances should
have surplus capacity. We achieve this by setting the threshold such that full coverage can be
attained with one base less (i.e., 4, 9, and 14 bases, respectively). We have chosen for a fixed
surplus of one base as this is the rounded average surplus of the RAVs. The resulting travel time
thresholds are shown in Table C.1.1.

To conclude, we have 24 classes of MCLP instances which are divided according to: size (125 or
250), number of opened bases (5, 10, or 15), and maximum attainable coverage (70%, 80%, 90%,
or 100%). Each class has 50 instances for a total of 1200 generated MCLP instances.

Since many properties of the instances need to be specified for the generation, we have not
included the generated instances in the sensitivity analysis of Chapter 3, as the results would
be biased. However, with the chosen generation there is also a danger of creating Euclidean
instances with a bias in favour of the Greedy Search. If the desired maximum coverage is low
(e.g., 50%) the resulting travel time threshold can be so small that many points are only covered
by themselves. In the extreme case, this leads to disjoint coverage, for which the Greedy Search
is optimal. It is up to debate how many points can be isolated (covered only by itself) without
an instance being biased. Up to 5% of all points should not cause any problems.

Almost all Euclidean instances have less than 5% isolated points, except for three classes of
instances. These are Euclidean instances with 125 points and 70% coverage with 10 or 15 bases,
or 80% coverage with 15 bases. Table 4.5.6 states the number of instances for which the number
of isolated points lies within the shown ranges.
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For instance, there are two Euclidean instances with 125 points, 10 bases, and 70% coverage
that have between 6 and 10 isolated points. Primarily the set of Euclidean instances with 125
points, 15 bases, and 70% coverage raises concerns. When drawing conclusions, this class should
be omitted in the reasoning to prevent any bias.

We note that the RAV regions have very few isolated points: RAV2 (Friesland) has two, RAV10
(Noord-Holland-Noord) only one, and RAV18 (Zuid-Holland-Zuid) also only one. Therefore, we
have not mentioned the issue of isolated points before.

Number of Instances with
Opened Maximum Number of Isolated Points in Range

Size Bases Coverage [0, 5] (5, 10] (10, 15] (15, 20] (20,∞)

125 10 70% 48 2 0 0 0
125 15 70% 12 30 6 2 0
125 15 80% 45 5 0 0 0

Table 4.5.6: Number of isolated demand points for the generated Euclidean instance classes.
Instance classes where all instances have at most 5 isolated points are omitted.

4.5.4 Performance for Generated Instances

As we have 1200 different MCLP instances, displaying all individual results is impractical. Fur-
thermore, the goal of the generated instances is to discern general properties of the solution
methods, preferably agreeing to the observations for the RAV regions. In Appendix C the aver-
ages and standard deviations of the relative optimality gaps of all solution methods are given for
each Euclidean instance class. The results include those of combined classes, e.g., all instances
with 125 points and 70% coverage. Note that the combined results are not averages of the indi-
vidual classes. For the Swap Local Search also the number of used iterations (until convergence)
are given. Table 4.5.7 summarises the performance of each method.

Similar to the results for the 24 RAV regions, the ρ-Greedy Search outperforms the Reverse
ρ-Greedy Search on average for the generated instances. The average relative optimality gap of
the Reverse Greedy Search (10%) is five times as large as the gap of the Greedy Search (2%).
The Anti Greedy Search outperforms its Revised variant (as these solutions should have a large
optimality gap). This is expected, since the Revised Anti Greedy Search is only allowed to open
non-adjacent bases. The average relative optimality gaps are 87% (Anti) and 68% (Revised
Anti).

The detailed results of the Greedy variants are given in Tables C.2.1 to C.2.8. We will focus
on the Greedy Search results, as it gives the best solutions of the Greedy variants. Table C.2.1
shows that the performance of the Greedy Search decreases as the attainable coverage increases:
the average relative optimality gap for 90% maximum coverage is twice as large as that for 70%.
Thus, it is more difficult to attain high coverage as deviations from the optimal selection of bases
cannot be corrected during the search. However, when there is surplus capacity the performance
of the Greedy Search improves again (deviations can be corrected). This explains the good
results for the RAV regions, as most have surplus capacity.
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The Greedy Search performs worse for larger instances: the average relative optimality gap for
instances with 125 points is 1.89%, whereas for instances with 250 points it is 2.41%. For most
instance classes, having more bases to open also implies a better performance. For instance,
consider the instance classes with 250 points and 80% coverage. The average relative optimality
gaps are: 2.95% (5 bases), 2.81% (10 bases), and 2.56% (15 bases). This corresponds to the
observation that the ability to correct for suboptimal selection of bases during the search is
beneficial for the Greedy Search.

Comparing the 1- and 2-Greedy Search, we see that the 2-Greedy Search primarily improves the
results for instances with 5 bases to open. For 125 demand points with 5 bases, the average
relative gaps are 2.21% (ρ = 1) and 1.94% (ρ = 2). For 250 points with 5 bases the gaps are
2.45% and 2.12%, respectively. On average the 2-Greedy Search leads to gaps that are a 6.5%
relative improvement of the 1-Greedy Search.

The results of the Reverse Greedy Search lead to similar conclusions as the Greedy Search,
but there are two exceptions. First, we cannot discern a general pattern when increasing the
attainable coverage from 70% to 90%. Second, the improvement of the Reverse 2-Greedy Search
is insignificantly small.

For the RAV regions the Swap Local Search is robust with respect to the initial solution. The
results in Table 4.5.7 show that the Swap Local Search is also robust for Euclidean instances.
Consider the 1-Swap Local Search, the average relative optimality gaps are: 1.02% (Greedy),
1.37% (Reverse Greedy), 1.11% (Anti Greedy), and 1.18% (Revised Anti Greedy). For the
2-Swap Local Search the optimality gap are even smaller: all are approximately 0.20%.

Detailed results of the Swap Local Search are given in Tables C.3.1 to C.3.12. For all instance
classes the Swap Local Search leads to a great improvement of the solution. For example, the
average relative gap of the Greedy initial solutions is halved by the 1-Swap Local Search. The
improvement for other initial solutions or for the 2-Swap Local Search is even greater. Extremely
good performance is achieved for instances with 5 opened bases and 100% coverage: all are solved
to optimality with 2-Swap Local Search (for most initial solutions).

In general, the optimality gap increases when the attainable coverage increases to 80% and 90%,
and decreases again when there is surplus capacity. This observation holds for all eight initial
solutions. To be more specific, the corresponding average relative gaps for the 1-Swap Local
Search are approximately: 1.02% (70%), 1.44% (80%), 1.71% (90%), and 0.51% (100%). For the
2-Swap the gaps are: 0.11% (70%), 0.27% (80%), 0.37% (90%), and 0.07% (100%).

Furthermore, the gaps for instances with 250 demand points are generally larger than for in-
stances with 125 points. For 1-Swap Local Search the average relative gaps are approximately
1.07% (125) and 1.27% (250). Similarly, for 2-Swap we have 0.16% (125) and 0.25% (250). When
comparing instances with 5, 10, or 15 bases we could not discern a general pattern. The average
required number of Swap iterations behaves in a similar manner as the average optimality gap.
However, the iterations increase when there are more bases opened.

Taking both the optimality gaps and the required number of iterations into account, we come to
the same conclusion as with the RAV regions with regards to the considered heuristics: we advise
to apply the 1-Greedy Search followed by either the 1- or 2-Swap Local Search, depending on
the available computational time. The resulting solution is expected to be of very high quality:
on average a relative optimality gap of 1% (1-Swap) or 0.2% (2-Swap).
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Relative Optimality Gap Used Iterations

Standard Standard
Method ρ Average Deviation Average Deviation

1 0.0215 0.0171
ρ-Greedy

2 0.0201 0.0163
1 0.1046 0.0508

Reverse ρ-Greedy
2 0.1041 0.0508
1 0.8672 0.0381

Anti ρ-Greedy
2 0.8785 0.0326
1 0.6836 0.1125

Revised Anti ρ-Greedy
2 0.6914 0.1088

ρ-Swap Local Search 1 0.0102 0.0120 2.5017 1.5616
after 1-Greedy 2 0.0018 0.0043 3.0342 1.4691

ρ-Swap Local Search
after 2-Greedy

1 0.0101 0.0118 2.4242 1.5560

ρ-Swap Local Search 1 0.0137 0.0153 7.3233 3.1962
after Reverse 1-Greedy 2 0.0022 0.0050 5.3533 2.1317
ρ-Swap Local Search

after Reverse 2-Greedy
1 0.0137 0.0153 7.3000 3.1791

ρ-Swap Local Search 1 0.0113 0.0134 12.2583 4.4508
after Anti 1-Greedy 2 0.0020 0.0051 7.8025 2.8662
ρ-Swap Local Search
after Anti 2-Greedy

1 0.0108 0.0129 12.2625 4.4681

ρ-Swap Local Search 1 0.0118 0.0129 12.0275 4.4181
after Revised Anti 1-Greedy 2 0.0021 0.0048 7.6225 2.7970

ρ-Swap Local Search
after Revised Anti 2-Greedy

1 0.0119 0.0130 12.0717 4.4224

Table 4.5.7: Performance of the heuristic solution methods.
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4.6 Two Dutch Regional Ambulance Services in Detail

As mentioned previously, we discuss the heuristic solutions in detail for two RAV regions. The
two regions are RAV14 (Gooi- en Vechtstreek) and RAV23 (Limburg-Noord), the same regions as
in the sensitivity analysis in Section 3.5. RAV14 can be solved to optimality with many heuristic
solution methods, as indicated by the results in Section 4.5. In particular, applying 1-Swap Local
Search is sufficient to find an optimal solution for all evaluated initial solutions. This is not the
case for RAV23, which is more difficult to solve to optimality by the heuristics. For example,
the Greedy Search has the worst performance for RAV23, compared to the other RAV regions.
However, applying the 2-Swap Local Search afterwards leads to an optimal solution.

RAV14 and RAV23 are highlighted in Figure 4.6.1. For the detailed information of the two
considered RAVs we refer to Section 3.5. The heuristic solutions of RAV14 are discussed in
Section 4.6.1 and those for RAV23 in Section 4.6.2.

(a) Gooi- en Vechtstreek (RAV14). (b) Limburg-Noord (RAV23).

Figure 4.6.1: RAV14 and RAV23 of The Netherlands.

4.6.1 Gooi- en Vechtstreek

Recall that RAV14 has 16 optimal solutions with full coverage if only two bases are opened.
Consequently, many more optimal solutions exist if three bases are available. As the region does
not contain many isolated demand points, it can be expected that the Greedy Search performs
well. Figure 4.6.2a shows which bases are opened by the Greedy Search and in what order.
Applying 1- or 2-Greedy Search results in the same base locations. The Greedy solution has full
coverage and is therefore optimal. In fact, the first two bases opened by the Greedy Search are
sufficient for complete coverage (recall Figure 3.5.5).

The Reverse Greedy Search solution is given in Figure 4.6.2b. Again, there is no difference
between Reverse 1- and 2-Greedy. Note that the behaviour of the Reverse Greedy Search is
somewhat arbitrary. As Reverse Greedy iteratively closes bases, there is no natural order in the
remaining set of opened bases. Therefore, we do not number the bases. The Reverse Greedy
solution is optimal, but it does require all three bases.
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Similar to the Greedy Search, there is no difference in using search parameter ρ = 1 or ρ = 2
for the Anti ρ-Greedy and the Revised Anti ρ-Greedy Search. By design, these methods try
to construct a solution with minimal coverage. For RAV14 the Anti Greedy Search leads to a
clustered set of opened bases, see Figure 4.6.2c. The Anti Greedy Search opens the first base
in Breukeleveen, the smallest and most isolated demand point. The other bases are clustered
nearby in order to minimise the coverage. The base locations of the Revised Anti Greedy Search
are more spread out, as shown in Figure 4.6.2d.

By repositioning the third base opened by the Anti Greedy Search to the north, an optimal
solution can be constructed. This is exactly the swap performed by the Swap Local Search, see
Figure 4.6.2e. Similarly, an optimal solution can be constructed by repositioning the third base
opened by the Revised Anti Greedy Search. The result of the Swap Local Search is given in
Figure 4.6.2f.

To conclude, RAV14 has a surplus capacity of one base and one centrally located base covers
almost the entire region. Furthermore, there are few isolated demand points (e.g., Breukeleveen
in the south). As a result, the (Reverse) Greedy Search and the Swap Local Search (with any of
the evaluated initial solutions) are optimal for RAV14.
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(a) Greedy Search. (b) Reverse Greedy Search.
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(c) Anti Greedy Search.
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(d) Revised Anti Greedy Search.

(e) Swap Local Search after Anti Greedy. (f) Swap Local Search after Revised Anti Greedy.

Figure 4.6.2: Heuristic base locations (blue) and covered (green) or uncovered (red) demand
points for RAV14.
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4.6.2 Limburg-Noord

None of the Greedy construction methods are able to construct an optimal solution for RAV23.
In fact, the relative optimality gap of the 1- and 2-Greedy Search solution is 2.71%, which is
the largest of all RAV regions. The reason for this relatively bad performance can easily be
determined from Figure 4.6.3a, which shows the order of the opened bases by the Greedy Search.
The second base has become superfluous due to bases 4, 5, and 7. This problem occurs for both
the 1- and 2-Greedy Search, which consequently have the same solution.

To improve the Greedy Search solution the second base should be repositioned more to the north.
This swap is indeed performed by the 1- and 2-Swap Local Search, see Figures 4.6.3b and 4.6.3c.
After applying minor adjustments to the southern bases (4, 5, and 7), the 1-Swap Local Search
converges to a 1-Swap local maximum. Further improvement can be achieved by placing base
3 more to the west and base 1 more north. However, the intermediate solution would have a
lower coverage and such swaps are not allowed7 by the 1-Swap Local Search. The 2-Swap Local
Search is allowed to swap these bases and the resulting solution is optimal.

Even though the behaviour of the Reverse 1- and 2-Greedy Search is somewhat arbitrary, the
solution resembles that of the Greedy Search. Both Reverse Greedy methods give the same
solution, see Figure 4.6.3d. The corresponding 1- and 2-Swap Local Search solutions are given in
Figures 4.6.3e and 4.6.3f, respectively. The performed swaps are similar to those applied to the
Greedy solution, except that two simultaneous swaps are insufficient to construct the optimal
solution.

The Anti 1- and 2-Greedy Search construct the same solution, which is depicted in Figure 4.6.4a.
All bases are clustered in the isolated region in the north. Consequently, the 1-Swap Local Search
starts by spreading the bases, almost in a 1-Greedy Search way. This is followed by the usual
1-Swap neighbourhood search. The required number of iterations in Table 4.5.5 confirm this
statement: the 1-Swap Local Search needs 12 iterations for the Anti Greedy solution and 6 for
the Greedy solution. Do note that base 7 of the Anti Greedy solution is already positioned at the
optimal location. This also explains the similar average performance of the Swap Local Search
with either the Greedy or Anti Greedy Search as initial solution.

The major difference of the Revised Anti Greedy solution is that the bases are not clustered
in an isolated region (Figure 4.6.4d), which alters the performed swaps by the Swap Local
Search. Consequently, using the Revised Anti Greedy Search as initial solution for the 1-Swap
Local Search results in the worst optimality gap of all initial solutions. The Swap Local Search
solutions are given in Figures 4.6.4e and 4.6.4f.

We conclude that the Swap Local Search is robust with respect to the initial solution, in particular
if a 2-Swap neighbourhood is used. Furthermore, the 1- and 2-Swap Local Search solutions have
many base locations in common.

7This is an example where the 1-Swap Local Search can be improved by temporarily allowing swaps that lead
to worse coverage.
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(a) Greedy Search. (b) 1-Swap Local Search after Greedy. (c) 2-Swap Local Search after Greedy.

(d) Reverse Greedy Search. (e) 1-Swap Local Search after Reverse Greedy. (f) 2-Swap Local Search after Reverse Greedy.

Figure 4.6.3: Heuristic base locations (blue) and covered (green) or uncovered (red) demand points for RAV23 (1 of 2).
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(a) Anti Greedy Search. (b) 1-Swap Local Search after Anti Greedy. (c) 2-Swap Local Search after Anti Greedy.
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(d) Revised Anti Greedy Search. (e) 1-Swap Search after Revised Anti Greedy. (f) 2-Swap Search after Revised Anti Greedy.

Figure 4.6.4: Heuristic base locations (blue) and covered (green) or uncovered (red) demand points for RAV23 (2 of 2).
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4.7 Conclusion

From a worst-case point of view, most emergency medical service (EMS) optimisation models
cannot be solved to optimality efficiently. This seems to contradict their use to evaluate multiple
scenarios within reasonable time. However, the required computational time for realistic problem
instances is usually manageable. In particular, the Maximal Covering Location problem (MCLP)
instances based on the 24 Regional Ambulance Services of The Netherlands can be solved to
optimality within seconds (with standard hardware).

We do note that the MCLP is one the most basic EMS facility location models. The compu-
tational time will increase as the model complexity increases. Independent of the EMS model,
solving very large instances to optimality will require an impractical amount of computational
time. One is then forced to use approximation algorithms or heuristic solution methods.

For the MCLP we have considered two heuristic solution methods: the Greedy Search and the
Swap Local Search. By using a framework of submodular functions, we can give performance
guarantees for the two methods. We have constructed families of worst-case instances for both
methods, proving that these bounds are tight: the maximum relative optimality gap is e−1

for 1-Greedy Search and 1/2 for ρ-Swap Local Search. In fact, the guarantee for the Swap
Local Search follows directly from our constructive proof, which explicitly derives the worst-case
MCLP instances. These worst-case instances have a certain symmetry. It is therefore interesting
to investigate the effect to the worst-case performance of applying small perturbations to this
symmetry.

We have numerically evaluated the Greedy Search and the Swap Local Search for the MCLP,
using realistic and randomly generated instances. The empirical performance far exceeds the
guarantees for both methods: the Greedy Search has an average relative optimality gap of
2%, and the Swap Local Search 1% (1-Swap neighbourhood) or 0.2% (2-Swap neighbourhood).
Considering the evaluated methods and parameters (including different initial solutions), we
conclude that the 1-Greedy Search followed by either the 1- or 2-Swap Local Search is preferable,
depending on the available computational time.

Of course, there are many more heuristic solution methods possible for the MCLP, in particular
methods based on the Linear Programming relaxation. A solution method (or framework) that
can be applied to multiple EMS models (e.g., extensions of the MCLP) would be a natural choice,
as one can then easily switch between models.
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5.1 Conclusions

The first facility location optimisation models applied to emergency medical service (EMS) only
incorporate the most basic aspects of EMS: demand points (origins of emergency calls), possible
ambulance base locations, and coverage. The models are static: all parameters are deterministic
and any uncertainty is not (explicitly) included. The coverage parameters satisfy an ‘all-or-
nothing’ relation: a demand point is either covered (reachable in time) or uncovered by a base.
These basic models capture the essence of facility location, but lack more realistic features.

In the past forty years, additional features have been added to existing EMS models in order to
include desired aspects of EMS planning. Examples are the inclusion of: regional coverage con-
straints, backup coverage, survival objective functions, busy fractions of ambulances, reliability
of service, stochastic response times, multiple vehicle types, and multiple time periods.

We have considered the Maximal Covering Location problem (MCLP), one of the basic EMS
models, and applied it to the 24 Regional Ambulance Services of The Netherlands. In 21 regions
full coverage can be attained according to the MCLP. The other three regions have near-complete
coverage (around 99.5% covered). The objective function of the MCLP only considers the covered
demand. Consequently, the regions have many optimal MCLP solutions. Although all these base
locations are ‘optimal’, some are more preferred than others.

For example, the coverage of an optimal solution can be more sensitive to changes in the travel
time threshold (the adjacency parameters). Selecting a more robust optimal solution would be
preferred in practice. This can be achieved by modifying the objective function or by applying a
multi-stage optimisation procedure. We have chosen for a two-stage approach: in the first stage
the MCLP is solved, in the second stage the most robust optimal MCLP solution is selected.
To be more specific, the second stage minimises the maximum travel time between the demand
points and their nearest opened bases.

This example shows but one of many ways to modify the MCLP. Another modification is the
Robust Counterpart MCLP, which determines an MCLP solution that is robust to perturbations
in demand. That is, the Robust Counterpart optimum has the best coverage in case of a worst-
case realisation of demand.

To evaluate the robustness of the MCLP with respect to uncertain demand, we have considered
its Robust Counterpart with two types of perturbations. The first type is a fixed relative per-
turbation, e.g., the demand can deviate 5% from its estimated value. The second type relates to
Poisson arrivals and uses a perturbation equal to a multiple of the standard deviation of the esti-
mated demand. For the first type both MCLP models are equivalent. For the second type both
models give the same solution for almost all evaluated instances. If the robust and non-robust
solutions do differ, the difference in coverage is insignificantly small.

The considered MCLP instances could be solved to optimality within seconds (using standard
hardware and commercial software). Such computational efficiency cannot be guaranteed in
general. It is therefore useful to analyse the performance of heuristic solution methods. We
have focussed on two heuristics: the Greedy Search and the Swap Local Search. Both solution
methods have been analysed theoretically and numerically, where we have used realistic and
randomly generated MCLP instances.
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The Greedy Search constructs a feasible solution by iteratively opening bases in a greedy and
myopic way. A tight performance guarantee can be derived for the 1-Greedy Search, which turns
out to be the best possible guarantee for efficient solution methods: the relative optimality gap
is at most e−1. Furthermore, the method achieves an average relative optimality gap of 2% for
the generated instances.

The Swap Local Search tries to improve an initial solution by iteratively closing and opening
bases. We have proved that any final Swap Local Search solution has a relative optimality gap
of at most 50%. From the numerical analysis we can conclude that the Swap Local Search is
robust with respect to the initial solution. The average relative optimality gap for the generated
instances is 1% (1-Swap neighbourhood) or 0.2% (2-Swap neighbourhood), much smaller than
the theoretical guarantee.

Considering the evaluated parameters of the Greedy Search and the Swap Local Search, we
advise to use 1-Greedy Search followed by either the 1- or 2-Swap Local Search. The 2-Greedy
Search leads to insignificant improvements, while requiring additional computational time. Of
course, any decision support tool is not limited to these two methods: other (more advanced)
heuristic solution methods exist (e.g., based on the Linear Programming relaxation).

To conclude, we have discussed several EMS optimisation models, each incorporating a different
set of features. We have focussed on the MCLP and noticed that care should be taken when
using the MCLP for the Regional Ambulance Services in The Netherlands. For ‘optimal’ base
locations a two-stage optimisation approach should be used, or a more complex model has to
be considered. Nevertheless, the MCLP can be used as a preliminary model to quickly assess
potentially uncovered regions, allowing more advanced models to focus on smaller regions.
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5.2 Future Work

In the previous chapters we have limited the analysis and made certain assumptions. With these
assumptions in mind, we suggest future research in Sections 5.2.1 and 5.2.2. Moreover, there
are other solution approaches that could lead to approximation algorithms for the MCLP. In
Section 5.2.3 we discuss additional heuristics, Linear Programming relaxation approaches, and
Primal-Dual methods.

5.2.1 Numerical Analysis

For the numerical results, we have used MCLP instances based on the 24 Regional Ambulance
Services of The Netherlands. The regions are discretised and aggregated into 4-digit postal code
areas. This aggregation leads to a loss in accuracy in travel times and therefore in attainable
coverage. For The Netherlands, 6-digit postal code areas would provide more than sufficient
accuracy, as these areas are relatively small. However, more detailed regions also require more
(estimated) data. Furthermore, the size of the MCLP instances (and thus the computational
time) increases significantly. In The Netherlands, there are approximately 4000 4-digit postal
codes, whereas there are more than 400 000 6-digit areas. That is, a ‘6-digit’ MCLP instance has
on average 100 times more demand points than a ‘4-digit’ instance.

We have assumed that all considered postal codes are suitable for an ambulance base. How-
ever, recall that the provided data does not contain postal code areas without any inhabitants.
Restrictions on the possible base locations can be researched, in particular in combination with
6-digit postal code areas.

Using the number of inhabitants as objective coefficients for the MCLP is common in EMS
literature. It would be interesting to see if historical data on the emergency calls can provide
additional insights, perhaps leading to modifications to the objective coefficients. This can also
affect the demand uncertainty structure for the Robust Counterpart MCLP.

In general, whether the MCLP is robust to demand perturbations can be determined for other
MCLP instances and other uncertainty structures. Furthermore, we have only considered a
worst-case approach (the Robust Counterpart) of Ben-Tal, El Ghaoui, et al. (2009), but other
robust optimisation approaches exist (see Bertsimas et al. (2011)).

The performance of the Greedy Search and the Swap Local Search can be further evaluated by
using differently generated instances, for example by introducing spatial patterns (e.g., clusters)
or by using non-Euclidean travel times. In particular, very large instances are of interest, as
exact solution methods would require an unreasonable amount of computational time.

5.2.2 Other EMS Models

The overview of EMS models is not complete, as we have focussed on coverage models. Other
types of EMS models include derivatives of the p-median and p-centre models. Furthermore, the
Facility Location problem is applied to other (non-medical) research areas as well. Advancements
in those areas can be useful for EMS models.
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We have primarily discussed static optimisation models for strategic or tactical decision support.
On the operational level dynamic ambulance management is becoming more relevant. Dynamic
ambulance management (DAM) models explicitly include the ability to reposition ambulances
in real time, see for instance Gendreau et al. (2001) and Restrepo (2008). Thus, conditional
ambulance relocation rules can be considered. The models with multiple time periods and
Stochastic Programming can be seen as a step towards dynamic management. Do note that
DAM models (operational level) can be used to support decisions on a strategic or tactical
level.

An extension of the performed analyses is to use a more complex EMS model (if possible). In
particular, the Maximum Expected Covering Location problem (MEXCLP) by Daskin (1983)
is an appropriate extension, as it adds the assignment and unavailability of ambulances to the
MCLP. For easy reference, we have restated the MEXCLP in Model 5.2.1. For example, the
Robust Counterpart of the MEXCLP is already mentioned in Section 3.2.5. Note that properties
such as in Section 3.2.4.1 do not need to hold for the Robust Counterpart of the MEXCLP, since
the new robust decision variables (u, v+

j , and v−j ) are not necessarily binary.

Maximise ∑
j∈J

dj

q∑
k=1

(1− ρ)ρk−1zkj

subject to∑
i∈I

xi ≤ p,∑
i∈I

yi ≤ q,

yi ≤ qixi ∀ i ∈ I,∑
i∈I

aijyi ≥
q∑

k=1

zkj ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
yi ∈ N ∀ i ∈ I,
zkj ∈ B ∀ j ∈ J , k ∈ {1, . . . , q}.

Model 5.2.1: Maximum Expected Covering Location problem (MEXCLP).

If the MEXCLP can be formulated as a Maximum k-Coverage problem with a non-decreasing
submodular function, the performance guarantees of the Greedy Search (Section 4.3.1) and the
Swap Local Search (Section 4.4.1) for general submodular functions can be used. Recall that the
Maximum k-Coverage problem for k ∈ N is given by the optimisation problem

max {φ(U) : |U| ≤ k,U ⊆ N} ,

where φ : 2N → R is a non-decreasing submodular function and N a finite discrete set.
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Consider the following transformation of the MEXCLP to the context of submodular functions.
Set k = q (the number of available ambulances) and define the finite set N as

N = {i1, . . . , iqi : i ∈ I} .

Any subset U ⊆ N corresponds to the MEXCLP solution where at each base i ∈ I exactly
|{i1, . . . , iqi} ∩ U| ambulances are stationed. A base is opened if at least one ambulance is
assigned to it. Define φ : 2N → R≥0 such that it corresponds to the resulting coverage. This is
a non-decreasing submodular function.

The only flaw in this formulation is that more than p bases can be opened (which is relevant if
p < q). A possible solution is to incorporate a Branch-and-Bound procedure or some variant of
Lagrangian relaxation. However, this complicates the analysis for performance guarantees.

Other approaches are also possible: for example, one can set φ(U) = 0 if more than p bases are
opened with U . Unfortunately, φ is non-monotone in this case and we cannot use the discussed
guarantees. An applicable performance guarantee is given in Nemhauser, Wolsey, and Fisher
(1978) for the 1-Greedy Search. Another example is to set φ(U) = 0 if more than p bases are
opened or more than q ambulances are used. In this case we do not need the capacity constraint,
i.e., we are maximising an unconstrained non-monotone submodular function. See Feige et al.
(2007) for a constant factor approximation algorithm (a Local Search algorithm).

Modifying the objective function seems to be a crude way to implement the MEXCLP constraints,
as it leads to non-monotone submodular functions. Perhaps the use of additional knapsack or
matroid constraints (see J. Lee et al. (2009)) or other definitions of N can be successful. Do
note that a modified Maximum k-Coverage problem would most likely require different heuristic
solution methods. That is, the Greedy Search and Swap Local Search frameworks have to be
adjusted. Consequently, the discussed performance guarantees are not applicable.

5.2.3 Other Solution Methods

In Section 4.6 we have seen that bases opened by a Greedy Search iteration can become redundant
in later iterations. To improve the Greedy Search, we can use a hybrid ‘Greedy Swap Search’: if
the coverage of some bases overlap significantly after opening an additional base, apply a certain
number of Swap Local Search iterations to the bases in question. If a base is redundant, the
Swap Local Search iteration will relocate it.

We have also noticed that the 1-Swap Local Search can be improved if it is sometimes allowed
to temporarily perform swaps that result in worse coverage. Such a modification is often used in
Local Search methods to ‘escape’ from local extrema. In particular, the suggested modification
resembles Tabu Search, see also Glover and Laguna (1997).

These modifications lead to the field of meta-heuristics (see Voß (2001) and Voß et al. (1999)):
advanced solution methods that combine and guide several heuristics. Meta-heuristics have been
successfully applied to several research areas (e.g., routing and scheduling). We do not go into
the details on meta-heuristics, instead we will discuss Linear Programming and Primal-Dual
approaches in the next sections. There are strong indications that rounding schemes for Linear
Programming solutions have good performance.
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5.2.3.1 Linear Programming Relaxation and Rounding

The Linear Programming (LP) relaxation of a (Mixed) Integer Programming model relaxes the
integrality constraints on the decision variables, allowing the variables to take on non-integral
values. As the resulting model is an LP model, it can be solved efficiently (in polynomial time).
The LP relaxation of the MCLP is given in Model 5.2.2. Note that requiring xi ∈ R≥0 is
sufficient.

Maximise ∑
j∈J

djzj

subject to ∑
i∈I

xi ≤ p,∑
i∈I

aijxi ≥ zj ∀ j ∈ J ,

xi ∈ [0, 1] ∀ i ∈ I,
zj ∈ [0, 1] ∀ j ∈ J .

Model 5.2.2: Linear Programming relaxation of the MCLP.

Consider an arbitrary MCLP instance, denoted by ω ∈ Ω. Let θLP (ω) be the maximum of the LP
relaxation and θ∗(ω) the maximum for the (integer) MCLP. The LP provides1 an upper bound
for the MCLP: it holds that θLP (ω) ≥ θ∗(ω). Therefore, we can consider the gap θLP (ω)/θ∗(ω)
between the two maxima, called the integrality gap of the instance. Likewise,

sup
ω∈Ω

{
θLP (ω)

θ∗(ω)

}
is the integrality gap for the MCLP (in general). It is similar to the locality gap of the Swap
Local Search.

The optimal LP solution xLP can be used to construct feasible solutions for the MCLP (e.g., see
Williamson and Shmoys (2011)). For example, we can use the Greedy Search in the following way.
If xLP is not integer, then more than p bases are ‘opened’: |{xLPi > 0 : i ∈ I}| > p. We can apply
the ρ-Greedy Search on the set of bases with non-integer xLPi (the set {i ∈ I : xLPi ∈ (0, 1)}) to
construct an integer solution. Let θH be the resulting coverage. Using Proposition 4.3.2 we can
show that

θH ≥ ρ

|{i ∈ I : xLPi ∈ (0, 1)}|
θ∗,

where 1 ≤ ρ ≤ p−|{i ∈ I : xLPi = 1}| < |{i ∈ I : xLPi ∈ (0, 1)}|. The performance guarantee goes
to zero if there are many non-integer xLPi . Note that possibly a better guarantee exists.

1For some optimisation problems there always exists an integer optimal solution for the LP relaxation, e.g., if
the system of constraints is totally dual integral. That is, the LP relaxation directly gives an optimal solution for
the original problem. This is not the case for the MCLP.
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Ageev and Sviridenko (1999) give an approximation algorithm that rounds the LP solution
with the best possible performance guarantee. Their rounding algorithm is as follows. Let
i1, i2 ∈ {i ∈ I : xLPi ∈ (0, 1)} be two arbitrary bases with non-integer LP values. Redistribute
the total value xLPi1 +xLPi2 among xi1 and xi2 such that at least one is integer. As there could be
multiple ways to achieve this, the one leading to the highest coverage is chosen. The resulting
solution is feasible for the LP and has a smaller number of non-integer values. The procedure is
repeated until a feasible MCLP solution has been constructed, which requires polynomial time
in total.

It can be shown that the final coverage θR of the rounding procedure satisfies

θ∗ − θR

θ∗
≤
(
k − 1

k

)k
,

where k ∈ N is the maximum number of adjacent bases:

k = max

{∑
i∈I

aij : j ∈ J

}
.

We refer to Ageev and Sviridenko (1999) for the proof. Recall that Theorem 4.1.1 implies that
this is the best possible performance guarantee in polynomial time, unless P = NP . In fact, the
proof actually shows that

θR ≥

(
1−

(
k − 1

k

)k)
θLP .

Since θ∗ ≥ θR, we have a bound for the integrality gap:

θLP

θ∗
≤

(
1−

(
k − 1

k

)k)−1

≤
(

e

e− 1

)
.

A family of MCLP instances exists for which the integrality gap of the instance is arbitrarily close
this bound (see Ageev and Sviridenko (1999)). Thus, the integrality gap for the MCLP is e/(e−1).
Consequently, the described rounding approximation algorithm is the best possible rounding pro-
cedure (with respect to worst-case performance). Of course, the average performance (including
required computational time) for realistic instances is often more important. Future research
can focus on developing rounding procedures with better average performance.

Vohra and Hall (1993) discuss the expected integrality gap for three types of randomly generated
MCLP instances. One type corresponds to the generated instances in Section 4.5.3. They
show that the expected relative gap between the LP solution and the optimal MCLP solution
approaches zero as the dimension of the instance increases. For our evaluated instances the LP
solution was integer in most cases. If the LP solution was non-integer, the integrality gap was
small. This resulted in few required Branch-and-Bound iterations to solve the MCLP instances to
optimality. Thus, the LP relaxation should be very useful for (heuristic) solution methods.

However, we have noticed that generated instances where the adjacency parameters are sampled
from the Bernoulli distribution require significantly more Branch-and-Bound iterations. Perhaps
this type of instances has more non-integer optimal LP solutions in general.
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Finally, Integer Programming models often have weaker and stronger LP relaxations. That is,
stronger LP formulations have tighter constraints and therefore most likely a smaller integrality
gap. Furthermore, an optimisation problem can be translated to multiple Integer Programming
models. For example, the MCLP can be formulated as a maximisation or minimisation prob-
lem (recall Model 2.2.2). This can affect the quality of the resulting LP relaxations. Any LP
relaxation can be further strengthened by adding valid inequalities (constraints). For example,
cutting planes are used in Branch-and-Cut methods to iteratively make a non-integer optimal
LP solution infeasible.

We have introduced rounding procedures for the LP relaxation for the MCLP and discussed two
examples. For future work we suggest to perform an extensive literature survey and analyse the
performance of various LP based solution methods. From our numerical results we have obtained
strong indications that such methods would have high performance.

5.2.3.2 Primal-Dual Approximations

The Primal-Dual solution method is typically exemplified by an approximation algorithm for the
Minimum Weight Vertex Cover problem (see Williamson and Shmoys (2011)). We will mimic this
typical example for the MCLP by using a modified formulation, see Model 5.2.3. The decision
variable z̄j ∈ B is defined as z̄j = 1 − zj for all j ∈ J , i.e., z̄j = 1 if demand point j ∈ J is
uncovered. Naturally, the restriction on the number of bases (Equation (5.2.1)) makes the model
non-trivial. Suppose we relax this restriction using Lagrangian relaxation. That is, we drop
constraint (5.2.1) and ‘add’ it to the objective function:∑

j∈J
dj −

∑
j∈J

dj z̄j + w

(
p−

∑
i∈I

xi

)
=
∑
j∈J

dj + pw − w
∑
i∈I

xi −
∑
j∈J

dj z̄j ,

for some fixed weight w ∈ R≥0. The parameter w is called the Lagrange multiplier and it can
be seen as the penalty for the violation of (5.2.1). The Lagrangian MCLP relaxation provides
an upper bound on the optimal MCLP coverage for any w ∈ R≥0. This implies that if the
Lagrangian optimum opens exactly p bases, it is also the optimal MCLP solution. Note that in
the extreme case either all bases (w = 0) or no bases (w → ∞) are opened by the Lagrangian
optimum.

Maximise ∑
j∈J

dj −
∑
j∈J

dj z̄j

subject to ∑
i∈I

xi ≤ p, (5.2.1)∑
i∈I

aijxi + z̄j ≥ 1 ∀ j ∈ J ,

xi ∈ B ∀ i ∈ I,
z̄j ∈ B ∀ j ∈ J .

Model 5.2.3: Modified formulation for the Maximal Covering Location problem.
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Model 5.2.4 states the (primal) LP relaxation of the Lagrangian MCLP relaxation and its dual.
Note that we have rescaled the dual variables vj , implicitly assuming that dj > 0 for all j ∈ J .
We will use these two LP models to illustrate Primal-Dual methods.

Maximise∑
j∈J

dj + pw − w
∑
i∈I

xi −
∑
j∈J

dj z̄j

subject to∑
i∈I

aijxi + z̄j ≥ 1 ∀ j ∈ J ,

xi ∈ R≥0 ∀ i ∈ I,
z̄j ∈ R≥0 ∀ j ∈ J .

Minimise ∑
j∈J

dj + pw −
∑
j∈J

djvj

subject to∑
j∈J

aijdjvj ≤ w ∀ i ∈ I,

vj ≤ 1 ∀ j ∈ J ,
vj ∈ R≥0 ∀ j ∈ J .

Model 5.2.4: Primal and dual LP of the Lagrangian MCLP relaxation.

Primal-Dual approximation methods use the complementary slackness conditions of the LP to
construct an integer MCLP solution. The complementary slackness conditions are:(∑

i∈I
aijxi + z̄j − 1

)
vj = 0 ∀ j ∈ J , (5.2.2)∑

j∈J
aijdjvj − w

xi = 0 ∀ i ∈ I, (5.2.3)

(vj − 1) z̄j = 0 ∀ j ∈ J . (5.2.4)

If we have a feasible pair of primal and dual LP solutions that satisfy all complementary slackness
conditions, then these are optimal LP solutions. Primal-Dual methods typically ignore conditions
related to the dual variables, i.e., Equation (5.2.2). For given dual variables vj the method
constructs an integer MCLP solution2 that satisfies Equations (5.2.3) and (5.2.4). That is, for
opened bases (xi = 1) it must hold that∑

j∈J
aijdjvj = w.

Likewise, for uncovered demand points (z̄j = 1) we have vj = 1.

Let θL∗p and θL∗d be the optimal values of primal and dual LP of the Lagrangian relaxation,

respectively. By definition, we have θ∗ ≤ θL∗p ≤ θL∗d , where θ∗ is the maximum of the MCLP.

Suppose a Primal-Dual method constructs a feasible MCLP solution with coverage θPD. If
θPD ≥ αθL∗d for some α ∈ [0, 1], then we have an α-guarantee for the performance of the Primal-
Dual method:

θPD ≥ αθL∗d ≥ αθL∗p ≥ αθ∗.
2Since we have relaxed Equation (5.2.1) the constructed solution can be infeasible for the MCLP. This issue

will be discussed below.
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Consider the following Primal-Dual algorithm. Start with vj = 0 for all j ∈ J , which is a
feasible dual LP solution. Next, uniformly increase all vj , whilst maintaining dual LP feasibility.
If during this procedure

∑
j∈J aijdjvj = w holds for some i ∈ I, we fix all corresponding vj

(j ∈ {j′ ∈ J : aij′ = 1}). This ensures feasibility of vj for the dual LP. Eventually, no vj can be
increased further (note that vj ≤ 1).

Construct the following integer solution: set xi = 1 if
∑
j∈J aijdjvj = w, and xi = 0 otherwise.

Let z̄j ∈ B correspond to the resulting coverage of demand points. Notice that by construction we
have vj = 1 if z̄j = 1 (but not necessarily vice versa). These constructed properties (i.e., some
complementary slackness conditions) are often used to derive performance guarantees for the
considered Primal-Dual method. For example, we have the following (not so useful) bound:

∑
i∈I

wxi +
∑
j∈J

dj z̄j =
∑
i∈I

∑
j∈J

aijdjvj

xi +
∑
j∈J

djvj z̄j

=
∑
j∈J

(∑
i∈I

aijxi + z̄j

)
djvj

≤

(
max

{
1,min

{∑
i∈I

xi,max

{∑
i∈I

aij : j ∈ J

}}})∑
j∈J

djvj .

We cannot directly use this bound for a performance guarantee for our Primal-Dual method: the
bound excludes the constant

∑
j∈J dj+pw of the LP objectives. Furthermore, the procedure can

open more than p bases (an infeasible MCLP solution). By adjusting the Lagrange multiplier
w ∈ R≥0 we could be fortunate to get a feasible MCLP solution with p opened bases. However,
this cannot be guaranteed.

There are Primal-Dual solution methods for similar optimisation problems for which performance
guarantees can be shown. In particular, the Metric p-Median problem has an approximation
algorithm, see Model 5.2.5. Each demand point is assigned to at least one opened base (variables
uij), which costs cij ∈ R≥0.

Minimise ∑
i∈I

∑
j∈J

cijuij

subject to ∑
i∈I

xi ≤ p,∑
i∈I

uij ≥ 1 ∀ j ∈ J ,

uij ≤ xi ∀ i ∈ I, j ∈ J ,
xi ∈ B ∀ i ∈ I,
uij ∈ B ∀ i ∈ I, j ∈ J .

Model 5.2.5: p-Median model.
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An important assumption is that the costs satisfy the triangle inequality:

ci1j1 ≤ ci1j2 + ci2j2 + ci2j1 ∀ i1, i2 ∈ I, j1, j2 ∈ J .

Using a similar Lagrangian relaxation approach as above, Jain and Vazirani (2001) derive a 6-
approximation Primal-Dual algorithm for the Metric p-Median problem. That is, for minimum
θ∗ and Primal-Dual objective value θPD we are guaranteed that θPD ≤ 6θ∗.

The MCLP can be translated to the p-Median problem, but the costs will not satisfy the triangle
inequality. As the p-Median problem is a minimisation problem, we have to define the costs as
follows:

cij =

{
0 if aij = 1

dj otherwise
.

Thus, the objective corresponds to the minimisation of uncovered demand. Unfortunately, this
definition does not satisfy the triangle inequality, see Figure 5.2.1 for an example. Therefore,
we cannot use the performance guarantee of the Primal-Dual algorithm for the Metric p-Median
problem.

To conclude, Primal-Dual approximation methods use the complementary slackness conditions of
the LP relaxation to construct feasible (integer) solutions of the original optimisation problem.
The MCLP is similar to other optimisation problems that have Primal-Dual approximation
algorithms. We have only considered the work of Jain and Vazirani (2001), so a literature survey
would be a good starting point for future research. The research can focus on adapting existing
algorithms and using them for the MCLP.

(1)

(1)1 2

(a) MCLP instance.

(1)

(0) (0)

(0)

1 2

(b) p-Median problem instance.

Figure 5.2.1: Example of an MCLP instance transformation to a p-Median problem instance.
Bases are depicted as squares, demand points as circles. Points are connected to adjacent bases
and their objective coefficients are shown in brackets. Notice that the objective coefficients of
the p-Median problem instance do not satisfy the triangle inequality.
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A.1 Introduction

Complexity theory provides a thorough approach to classify the computational complexity of
optimisation problems, i.e., which problems are ‘easy’ to solve and which are ‘difficult’. This
classification is based on worst-case instances of the optimisation problem and it is therefore
possible that typical real-life instances of ‘difficult’ problems can be solved efficiently. However,
the classification builds on certain (widely accepted) assumptions that the complexity classes
are intrinsically different. Consequently, even though we can solve some instances of ‘difficult’
problems to optimality efficiently, it is not possible to do so in general (regardless of the solution
method).

An example of a ‘difficult’ problem is the Maximal Covering Location problem (MCLP), the
model central to Chapters 3 and 4. We have observed that solving instances based on Euclidean
or real-life distances requires little computational time. However, this is not the case for MCLP
instances in general, especially when the dimension of the instance is large.

We note that solving very large instances of ‘easy’ problems can require an impractical amount
of time (although it is mathematically efficient). This remark should be seen in the context of
‘difficult’ problems, where in general very large instances cannot even be solved to optimality
within any reasonable computational time. Therefore, one is more inclined to use heuristic
solution methods for ‘difficult’ problems.

The most famous assumption in complexity theory is that ‘P 6= NP ’, which is widely accepted
among mathematicians. However, there is no proof (nor disproof) of this statement. To explain
the meaning of this assumption, we have to introduce some terminology.

An optimisation problem consists of a mathematical description of a feasible region and an
objective function. The problem is to find a feasible solution such that the objective function is
maximised or minimised. Complexity theory (for our intended use) considers so-called decision
problems instead of optimisation problems. The required input for a decision problem is a
feasible region, an objective function, and a scalar threshold for the objective. It asks whether
there exists a feasible solution such that its objective value is greater than or equal to the scalar
threshold (for maximisation problems). Therefore, the only possible answer is YES or NO. An
instance where the answer is YES, is called a YES-instance (and likewise for NO).

An instance of a decision problem has a certain input size, which is the length of a ‘reasonable’
encoding to encode the specification of the instance data. For example, consider encodings for
integers. Decimal and binary encodings are reasonable, having length O(log(n)) for n ∈ N.
However, a unary encoding is not reasonable, with a length of O(n).

We measure the computational time of algorithms in terms of the required number of elementary
calculations and express it as a function of the instance input size. The computational time is
polynomial if it can be asymptotically bounded from above by a polynomial function of the input
size. In this case, the algorithm is efficient and usually applicable in practice. Inefficient algo-
rithms typically have an exponential computational time. Additional classifications exist, such
as strongly and pseudo-polynomial, see for instance Papadimitriou and Steiglitz (1998).
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A.2 Complexity Classes P and NP

The complexity class NP consists of all decision problems that are efficiently YES-verifiable,
that is, in polynomial time with respect to the instance input size. For the YES-verification we
are given a YES-certificate (a proof) that the instance is a YES-instance. If a problem is in
NP , this certificate can be verified in polynomial time. Note that the definition of NP does not
involve NO-instances. The name ‘NP ’ stands for non-deterministic polynomial time.

The decision problem variant of the Maximal Covering Location problem is in NP , as a YES-
certificate is the subset of bases to open to achieve the desired coverage. Verifying this certificate
is straightforward: make a list of all covered demand points for each opened base, and compare
the sum of the covered demand with the given scalar threshold. This requires at most O(|I||J |)
time, which is polynomial in the input size.

The complexity class P consists of a subset of decision problems in NP . Decision problems in
P are verifiable and answerable in polynomial time: not only can we verify a YES-certificate
efficiently, we can determine whether an instance is a YES- or NO-instance in polynomial time.
Hence, we can solve problems in P efficiently. This is represented in the name: ‘P ’ stands for
polynomial time.

The widely accepted assumption P 6= NP means that the complexity class P is a strict subset
of NP , i.e., there are decision problems in NP that are not in P . This implies that there are at
least two intrinsically different complexity classes: some problems cannot be solved efficiently.
Most statements on the complexity of a problem therefore include ‘unless P = NP ’.

A.2.1 NP -Hard Problems

There is a subset of problems that is the most difficult of all problems in NP . These decision
problems are called NP -complete. A more formal definition is that a problem is NP -complete
if it is in NP and for each problem in NP there exists a polynomial time reduction to it. A
polynomial time reduction is a translation from one problem to another that requires at most
polynomial time, where the translated instance is a YES-instance if and only if the original
instance is a YES-instance. This implies that if we can solve an NP -complete problem efficiently,
we can solve all NP problems efficiently by using these reductions. The Satisfiability problem is
the most famous (and first) NP -complete problem, see Cook (1971).

Finally, NP -hard problems are not necessarily decision problems, but are as difficult as all NP -
complete problems. These are defined in a similar way as NP -complete problems. If an NP -
complete decision problem has an associated optimisation problem, that optimisation problem
is NP -hard.

We have already mentioned that the decision problem variant of the MCLP is in NP . In
Theorem A.2.1 we prove that it is in fact NP -complete, making the MCLP NP -hard.

Theorem A.2.1 (Folklore). The decision problem variant of the MCLP is NP -complete.
Hence, the MCLP is NP -hard.
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Proof. We construct a straightforward polynomial time reduction from the Set Covering decision
problem to the decision problem variant of the MCLP. Karp (1972) proved that the Set Covering
decision problem is NP -complete. The Set Covering decision problem is as follows. We are given
a universe U , a set S of subsets of the universe, and an integer k ∈ N. Does there exist a selection
of at most k elements in S such that its union is U?

Now consider the following reduction to the decision problem variant of the MCLP. First, label
the elements of U as {1, . . . , |U|} and S as {1, . . . , |S|}. For the MCLP, set the bases equal to
I = {1, . . . , |S|} and the demand points to J = {1, . . . , |U|}. Each point has unit demand, dj = 1
for all j ∈ J , and at most p = k bases can be opened. The adjacency parameters are defined
such that aij = 1 if and only if universe element j ∈ U is in subset i ∈ S. The objective threshold
is equal to |U|, i.e., all points must be covered. This transformation is clearly polynomial in the
input size.

If the Set Covering instance is a YES-instance, we can open the corresponding bases and have
all points covered (a YES-instance for the MCLP). Likewise, if the MCLP is a YES-instance, we
select the corresponding subsets in S. The union is equal to U , so it is also a YES-instance. We
conclude that we have constructed a polynomial time reduction from an NP -complete problem
to the MCLP. Thus, the decision problem variant of the MCLP is NP -complete.
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B.1 Introduction

We have implemented several algorithms to obtain our numerical results. For all calculations
we have used C++ (compiled with Microsoft Visual Studio 2012). The results are visualised
in Matlab R2011b. The computational time required to solve the considered Maximal Covering
Location problem (MCLP) instances ranges from a few seconds to a couple of minutes, depending
on the used solution method. In particular, solving to optimality can be done within a few
seconds. We have used a 64-bit Windows 7 operating system with a 2.5 GHz dual core processor
and 4 GB of RAM.

In C++ we have built several object-oriented classes, which can be divided into four types: instance
class, solution class, Gurobi class, and model class. The instance class type contains all MCLP
data, such as the demand point weights, the maximum number of opened bases, and the adjacency
parameters. A variation of this class contains the travel times between bases and points. The
solution class stores all information of a feasible solution: the set of opened bases, the set of
covered demand points, the coverage, the used solution method, the number of used iterations,
etcetera. A variation is the solution class for the Linear Programming relaxation.

For a general Mixed Integer Programming solver we use Gurobi (see Gurobi Optimization (2014))
in order to solve all models and relaxations to optimality. The Gurobi class is property of
Gurobi and is its C++ interface. The model class combines all three previous classes, connecting
the instance data with the optimisation model. Its methods include the construction of the
optimisation models and the solution algorithms (e.g., Greedy and Swap Local Search).

When appropriate, the methods and models have two variants: one for the non-robust MCLP
and one for the Robust Counterpart MCLP. Furthermore, care has been taken to deal with
precision errors (e.g., translating the Gurobi output to a solution class object).

The following section discusses a selection of the implemented algorithms. No actual code is
provided. Instead, the algorithms are shown on an abstract level for accessibility.
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B.2 A Selection of Algorithms

We go into the details of the following algorithms: the calculation of the coverage of a set of bases,
the Greedy Search, the Swap Local Search, and the determination of the travel time threshold
for the generation of instances. The calculation of the coverage is given for completeness. The
methods for the sensitivity analysis of Chapter 3 are omitted, as they are straightforward it-
erations over the parameters. The Reverse, Revised, and Anti variations of the Greedy Search
are almost exactly the same as the shown Greedy Search. The differences include closing bases
(instead of opening) and minimising coverage (instead of maximising).

B.2.1 Coverage Calculation

Algorithm B.2.1 shows a straightforward calculation of the coverage of a set of opened bases.
It is used to determine the coverage of fixed solutions in the sensitivity analysis and of the
(intermediate) solutions of the approximations.

Algorithm B.2.1 Calculate Coverage for the MCLP

Input: MCLP instance data (set of bases I, set of points J , number of bases to open p ∈ N,
adjacency parameters aij ∈ B for i ∈ I, j ∈ J , demand point weights dj ∈ R≥0 for j ∈ J ),
set of opened bases I∗ ⊆ I with |I∗| ≤ p

Output: coverage of input set of opened bases

1: procedure Calculate Coverage(input)
2: (check input)
3: initialise covered points: J ∗ = {j ∈ J :

∑
i∈I∗ aij ≥ 1}

4: initialise coverage: θ∗ =
∑
j∈J ∗ dj

5: return θ∗

6: end procedure

B.2.2 Greedy Search

The ρ-Greedy Search implementation is split into two algorithms. Algorithm B.2.2 is the iterative
procedure of opening at most ρ additional bases until p bases are opened or until the maximum
number of iterations have been reached. Usually, the maximum number of iterations is set to an
unrestrictive value (e.g., equal to p). Other heuristics can easily be constructed by restricting
the maximum number of iterations. For instance, a ρ-Swap Local Search can be performed after
every two Greedy Search iterations. To allow additional uses of the Greedy Search, it has a set
of candidate bases as input. These candidates are the only bases that can be added to the initial
solution, allowing the exclusion of other bases.

Finally, notice that the initial set of opened bases and initial set of candidates are sorted (in an
arbitrary but fixed way). The order of the bases affects the outcome of the algorithm, as we
will show when discussing the Greedy Search iteration (Algorithm B.2.3). The sorting removes
dependence on the input order, but is not required. In fact, the unsorted order can be used to
indicate a preference of each base, where the more preferred bases are listed first.
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The Greedy Search iteration is shown in Algorithm B.2.3. It is equivalent to a Brute Force
search of all possible subsets of additional bases with cardinality ρ. It is a recursive Depth-First
Search method, where each time a single additional base is opened and the search parameter is
decreased by one. When no additional bases have to be opened, the input set of opened bases
is returned. In the end, the subset of additional bases with the largest increase in coverage is
returned.

As the demand weights are non-negative, coverage cannot decrease by opening additional bases.
However, it is possible that opening additional bases does not increase the coverage. The method
assumes that exactly ρ additional bases must be opened, even if this does not improve coverage.
Therefore, we always accept the first intermediate solution (see the condition t == 1).

Although the search opens bases in a certain order, only the set of opened bases is relevant. To
prevent symmetries, we open bases in the order of the candidates. This is achieved by iterating
only up to and including the candidate on position |C+

0 | − (ρ0 − 1). The remaining candidates
are available in subsequent recursive calls of the method. Furthermore, all candidates preceding
the selected candidate are removed, C+

new = C+
0 \ {i

+
1 , . . . , i

+
t }, see also Example B.2.1.

Example B.2.1. Suppose we have I = {1, . . . , 6}, start without any open bases (IG0 = ∅),
and only base 6 is not a candidate (C+

0 = {1, . . . , 5}). Each base has disjoint coverage and the
coverage is equal to i for base i ∈ I. At most p = 4 bases can be opened. We apply a single
3-Greedy Search iteration (ρ0 = 3 and T = 1), see Algorithm B.2.2.

Table B.2.1 shows the sets IGnew and IGcurrent of Algorithm B.2.3 for the different recursive call
levels (where level 0 is the original). As can be seen, symmetric solutions are prevented by the
search. Finally, the best set of bases to be opened is IGbest = {3, 4, 5}, which is returned. As we
have set the maximum number of iterations T equal to one, the Greedy Search is terminated,
and returns IGT = {3, 4, 5}. One more base can still be opened, since p = 4.

Set IGnew on
Recursive Call Level

0 1 2

{1}

{1, 2}
{1, 2, 3}
{1, 2, 4}
{1, 2, 5}

{1, 3} {1, 3, 4}
{1, 3, 5}

{1, 4} {1, 4, 5}

{2}
{2, 3} {2, 3, 4}

{2, 3, 5}
{2, 4} {2, 4, 5}

{3} {3, 4} {3, 4, 5}

Set IGcurrent on
Recursive Call Level

2 1 0 IGbest

{1, 2, 3}
{1, 2, 5}

{1, 4, 5}

{3, 4, 5}

{1, 2, 4}
{1, 2, 5}
{1, 3, 4} {1, 3, 5}{1, 3, 5}
{1, 4, 5} {1, 4, 5}
{2, 3, 4} {2, 3, 5}

{2, 4, 5}{2, 3, 5}
{2, 4, 5} {2, 4, 5}
{3, 4, 5} {3, 4, 5} {3, 4, 5}

Table B.2.1: Example of a Greedy Search iteration.
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Algorithm B.2.2 Greedy Search for the MCLP

Input: MCLP instance data (set of bases I, set of points J , number of bases to open p ∈ N,
adjacency parameters aij ∈ B for i ∈ I, j ∈ J , demand point weights dj ∈ R≥0 for j ∈ J ),
initial set of opened bases IG0 ⊆ I with |IG0 | ≤ p,
initial set of candidates that can be opened C+

0 ⊆ I \ IG0 ,
search parameter ρ0 ∈ N with ρ0 ≤ |C+

0 |, maximum number of iterations T ∈ N>0

Output: extended set of opened bases

1: procedure ρ-Greedy Search(input)
2: (check input)
3: sort IG0 and C+

0 to prevent dependence on input order
4: for iteration t = 1, . . . , T do
5: adjust search parameter: ρt = min{ρ0, |C+

t−1|, p− |IGt−1|}
6: if ρt == 0 then
7: return IGt−1

8: else
9: get next opened bases: IGt = ρ-Greedy Search Iteration(IGt−1, C+

t−1, ρt)

10: set next candidates: C+
t = C+

t−1 \ IGt
11: end if
12: end for
13: return IGT
14: end procedure
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Algorithm B.2.3 Greedy Search Iteration for the MCLP

Input: MCLP instance data (set of bases I, set of points J , number of bases to open p ∈ N,
adjacency parameters aij ∈ B for i ∈ I, j ∈ J , demand point weights dj ∈ R≥0 for j ∈ J ),
initial set of opened bases IG0 ⊆ I with |IG0 | ≤ p,
initial set of candidates that can be opened C+

0 ⊆ I \ IG0 ,
search parameter ρ0 ∈ N with ρ0 ≤ min{p− |IG0 |, |C+

0 |}
Output: extended set of opened bases

1: procedure ρ-Greedy Search Iteration(input)
2: (check input)
3: sort IG0 and C+

0 to prevent dependence on input order
4: if ρ0 == 0 then
5: return IG0
6: else
7: initialise best opened bases: IGbest = IG0
8: initialise best objective: θGbest = Calculate Coverage(IG0 )
9: for iteration t = 1, . . . , (|C+

0 | − (ρ0 − 1)) do
10: select t-th candidate to open: i+t ∈ C+

0

11: initialise new opened bases: IGnew = IG0 ∪ {i+t }
12: initialise new candidates: C+

new = C+
0 \ {i

+
1 , . . . , i

+
t }

13: initialise new search parameter: ρnew = ρ0 − 1

14: get: IGcurrent = ρ-Greedy Search Iteration(IGnew, C+
new, ρnew)

15: get objective: θGcurrent = Calculate Coverage(IGcurrent)
16: if θGcurrent > θGbest or t == 1 then
17: set best opened bases: IGbest = IGcurrent

18: set best objective: θGbest = θGcurrent

19: end if
20: end for
21: return IGbest

22: end if
23: end procedure

B.2.3 Swap Local Search

The Swap Local Search is similar to the Greedy Search and is also split into two algorithms.
One of the main differences with the Greedy Search is that there are two sets of candidates:
the bases that can be closed and those that can be opened. We assume that the union of both
sets corresponds to the bases that can be modified. Hence, open bases that are closed, can be
reopened and closed bases that are opened, can be closed again. It is therefore useful to combine
both sets into one set of candidates, see Algorithm B.2.4. Modifications to this assumption are
easy to implement.

In each iteration of Algorithm B.2.4 all allowed swaps are performed, starting with 1-Swap and
continuing to ρ-Swap. Therefore, swaps with the least changes are preferred. This can have
an impact on the convergence of the method to local maxima. The search is terminated if no
improvements have been made at the end of a complete iteration.
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Algorithm B.2.5 is equivalent to a Brute Force enumeration of all possible ρ-Swaps. A Depth-
First Search is implemented by using recursive calls, similar to Algorithm B.2.3. However, we
need to select two candidates at each step: one to close and one to open. Symmetric solutions
are prevented using the same approach as the Greedy Search, see also Example B.2.2.

Example B.2.2. Suppose we have I = {1, 2, 3, 4, 5, 6} and p = 3 bases can be opened. The
initial feasible solution is IL0 = {1, 2, 3} and all bases are candidates (C−0 = {1, 2, 3} and C+

0 =
{4, 5, 6}). Each base has disjoint coverage and the coverage is equal to i for base i ∈ I. We
apply 2-Swap Local Search to the initial solution, but allow only one iteration (T = 1), see
Algorithm B.2.4.

Table B.2.2 shows the sets ILnew and ILcurrent of Algorithm B.2.5 for the different recursive call
levels (where level 0 is the original). Furthermore, the sets ILinner and ILbest of Algorithm B.2.4
are given. To conclude, the 2-Swap Local Search returns the set {3, 5, 6} as final solution.

Set ILnew on
Recursive Call Level

ρ-Swap 0 1

1

{2, 3, 4}
{2, 3, 5}
{2, 3, 6}
{1, 3, 4}
{1, 3, 5}
{1, 3, 6}
{1, 2, 4}
{1, 2, 5}
{1, 2, 6}

2

{2, 3, 4}

{3, 4, 5}
{3, 4, 6}
{2, 4, 5}
{2, 4, 6}

{2, 3, 5} {3, 5, 6}
{2, 5, 6}

{1, 3, 4} {1, 4, 5}
{1, 4, 6}

{1, 3, 5} {1, 5, 6}

Set ILcurrent on Sets in
Recursive Call Level Algorithm B.2.4

1 0 ILinner ILbest

{2, 3, 4}

{2, 3, 6}

{3, 5, 6}

{2, 3, 5}
{2, 3, 6}
{1, 3, 4}
{1, 3, 5}
{1, 3, 6}
{1, 2, 4}
{1, 2, 5}
{1, 2, 6}

{3, 4, 5}

{3, 4, 6}

{3, 5, 6}

{3, 4, 6}
{2, 4, 5}
{2, 4, 6}
{3, 5, 6} {3, 5, 6}{2, 5, 6}
{1, 4, 5} {1, 4, 6}{1, 4, 6}
{1, 5, 6} {1, 5, 6}

Table B.2.2: Example of a Swap Local Search iteration.
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Algorithm B.2.4 Swap Local Search for the MCLP

Input: MCLP instance data (set of bases I, set of points J , number of bases to open p ∈ N,
adjacency parameters aij ∈ B for i ∈ I, j ∈ J , demand point weights dj ∈ R≥0 for j ∈ J ),
initial set of opened bases IL0 ⊆ I with |IL0 | = p,
initial set of candidates that can be closed and reopened C−0 ⊆ IL0 ,
initial set of candidates that can be opened and reclosed C+

0 ⊆ I \ IL0 ,
search parameter ρ0 ∈ N with ρ0 ≤ min{|C−0 |, |C

+
0 |}, maximum number of iterations T ∈ N>0

Output: swapped set of opened bases

1: procedure ρ-Swap Local Search(input)
2: (check input)
3: set all candidates: C±0 = C−0 ∪ C

+
0

4: sort IL0 and C±0 to prevent dependence on input order

5: initialise best opened bases: ILbest = IL0
6: initialise best objective: θLbest = Calculate Coverage(IL0 )
7: for iteration touter = 1, . . . , T do
8: initialise outer opened bases: ILouter = ILbest

9: initialise outer candidates to open: C+
outer = C±0 \ ILouter

10: initialise outer candidates to close: C−outer = C±0 \ C
+
outer

11: initialise improvement flag: cimprovement = false
12: for iteration tinner = 1, . . . , ρ0 do
13: get: ILinner = ρ-Swap Local Search Iteration(ILouter, C−outer, C+

outer, tinner)
14: get inner objective: θLinner = Calculate Coverage(ILinner)
15: if θLinner > θLbest then
16: set improvement flag: cimprovement = true
17: set best opened bases: ILbest = ILinner

18: set best objective: θLbest = θLinner

19: end if
20: end for

21: if cimprovement == false then
22: return ILbest

23: end if
24: end for
25: return ILbest

26: end procedure
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Algorithm B.2.5 Swap Local Search Iteration for the MCLP

Input: MCLP instance data (set of bases I, set of points J , number of bases to open p ∈ N,
adjacency parameters aij ∈ B for i ∈ I, j ∈ J , demand point weights dj ∈ R≥0 for j ∈ J ),
initial set of opened bases IL0 ⊆ I with |IL0 | = p,
initial set of candidates that can be closed and reopened C−0 ⊆ IL0 ,
initial set of candidates that can be opened and reclosed C+

0 ⊆ I \ IL0 ,
search parameter ρ0 ∈ N with ρ0 ≤ min{|C−0 |, |C

+
0 |}

Output: swapped set of opened bases

1: procedure ρ-Swap Local Search Iteration(input)
2: (check input)
3: sort IL0 , C−0 and C+

0 to prevent dependence on input order
4: if ρ0 == 0 then
5: return IL0
6: else
7: initialise best opened bases: ILbest = IL0
8: initialise best objective: θLbest = Calculate Coverage(IL0 )
9: for iteration t− = 1, . . . , (|C−0 | − (ρ0 − 1)) do

10: for iteration t+ = 1, . . . , (|C+
0 | − (ρ0 − 1)) do

11: select t−-th candidate to close: i−t− ∈ C
−
0

12: select t+-th candidate to open: i+t+ ∈ C
+
0

13: initialise new opened bases: ILnew = (IL0 \ {i−t−}) ∪ {i
+
t+}

14: initialise new candidates to close: C−new = C−0 \ {i
−
1 , . . . , i

−
t−}

15: initialise new candidates to open: C+
new = C+

0 \ {i
+
1 , . . . , i

+
t+}

16: initialise new search parameter: ρnew = ρ0 − 1

17: get: ILcurrent = ρ-Swap Local Search Iteration(ILnew, C−new, C+
new, ρnew)

18: get objective: θLcurrent = Calculate Coverage(ILcurrent)
19: if θLcurrent > θLbest then
20: set best opened bases: ILbest = ILcurrent

21: set best objective: θLbest = θLcurrent

22: end if
23: end for
24: end for
25: return ILbest

26: end if
27: end procedure

B.2.4 Determining the Travel Time Thresholds

As described in Section 4.5.3, we have generated instances where the maximum coverage of
each instance has been specified. In order to generate such instances, we have to determine a
suitable travel time threshold. That is, given a desired maximum fraction of covered demand
αmax ∈ [0, 1], find the minimum travel time threshold such that the maximum coverage of the
resulting instance is as close as possible to αmax.
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One approach would be to iteratively increase the travel time threshold until the desired coverage
has been attained. Our implementation uses a bisection method to determine the threshold, see
Algorithm B.2.6. The problem does not make sense for p = 0, so let p ∈ N≥1. Notice that we
can limit the possible thresholds to the value zero and the unique travel time values between
bases and points. Hence, the initial lower bound of the bisection approach is set to a travel time
threshold of zero and the corresponding maximum coverage αLB is determined. Note that αLB

is not equal to zero if the travel time τij is zero for some i ∈ I and j ∈ J .

As we do not allow negative thresholds, the maximum coverage fraction cannot be lower than
αLB. Therefore, if the desired maximum coverage is lower, the best possible threshold (zero) has
been found. Otherwise, the initial upper bound of the bisection approach is set: full coverage is
attained if the maximum travel time is used as threshold.

Finally, a standard bisection method determines the desired threshold. Note that we bisect on
the indexes of the sorted thresholds, not on the actual values. Although not explicitly shown,
the number of iterations is bounded by O(log (|I||J |)). The bisection method terminates if the
lower and upper bound are adjacent, and the threshold resulting in a maximum coverage nearest
to αmax is chosen. By design, αLB is always strictly less than αmax. As a result, we obtain the
minimum travel time threshold to attain the desired bound. See also Example B.2.3.

Example B.2.3. Consider the instance where I = J = {1, . . . , 5}, at most p = 1 base can be
opened, and the travel times are

τij =

{
5(j − 1) if i = 1 and j ∈ J
100 otherwise

.

By construction, it is always optimal to open the first base. Suppose we set αmax = 2
3 and apply

Algorithm B.2.6. The possible thresholds are T = {0, 5, 10, 15, 20, 100}. For tLB = 1 (a threshold
of zero) we have αLB = 1

5 < αmax and continue with the bisection method.

The first selected index is tcurrent = 1 +
⌈

6−1
2

⌉
= 4 (a threshold of 15), resulting in a maximum

covered fraction of 4
5 ≥ αmax. Therefore, the upper bound is lowered to tUB = 4 and the process

is repeated. The next iteration selects tcurrent = 3 (a threshold of 10) with coverage fraction
3
5 < αmax. The lower bound is updated to tLB = 3 and the bisection is terminated, since
tUB − tLB = 1. We conclude that the lower bound leads to a coverage closest to the desired
coverage and a travel time threshold of 10 is returned.
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Algorithm B.2.6 Determine Travel Time Thresholds for the MCLP

Input: MCLP instance data (set of bases I, set of points J , number of bases to open p ∈ N≥1,
travel times τij ∈ R≥0 for i ∈ I, j ∈ J , demand point weights dj ∈ R≥0 for j ∈ J ),
desired maximum fraction of covered demand αmax ∈ [0, 1]

Output: minimum travel time threshold to attain the maximum fraction of covered demand
nearest to αmax

1: procedure Determine Travel Time Thresholds(input)
2: (check input)
3: set all unique travel time thresholds: T = {0} ∪ {τij : i ∈ I, j ∈ J }
4: sort T in ascending order

5: initialise lower bound index: tLB = 1
6: select tLB-th travel time as threshold: τtheshold = τtLB

∈ T

7: set adjacency parameters: aij =

{
1 τij ≤ τthreshold

0 otherwise
∀ i ∈ I, j ∈ J

8: solve corresponding MCLP giving maximum coverage fraction αLB ∈ [0, 1]
9: if αLB ≥ αmax then

10: return τthreshold

11: end if

12: initialise upper bound index and coverage fraction: tUB = |T |, αUB = 1

13: loop
14: set current index: tcurrent = tLB +

⌈
1
2 (tUB − tLB)

⌉
15: select tcurrent-th travel time as threshold: τtheshold = τtcurrent ∈ T

16: set adjacency parameters: aij =

{
1 τij ≤ τthreshold

0 otherwise
∀ i ∈ I, j ∈ J

17: solve corresponding MCLP giving maximum coverage fraction αcurrent ∈ [0, 1]

18: if αcurrent < αmax then
19: set lower bound: tLB = tcurrent, αLB = αcurrent

20: else
21: set upper bound: tUB = tcurrent, αUB = αcurrent

22: end if

23: if (tUB − tLB) == 1 then
24: if (αmax − αLB) < (αUB − αmax) then
25: return τtLB

26: else
27: return τtUB

28: end if
29: end if
30: end loop
31: end procedure
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C.1 Travel Time Thresholds

The generation of the Euclidean MCLP instances requires the specification of the travel time
threshold. The used thresholds depend on the desired maximum attainable coverage, as explained
in Section 4.5.3. The resulting average thresholds are shown in Table C.1.1.
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Average (Standard Deviation) of Travel Time Thresholds

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.1886 (0.0079) 0.2141 (0.0079) 0.2444 (0.0083) 0.3339 (0.0081) 0.2452 (0.0556)
125 10 0.1204 (0.0055) 0.1397 (0.0062) 0.1609 (0.0073) 0.2152 (0.0061) 0.1591 (0.0361)
125 15 0.0910 (0.0056) 0.1074 (0.0053) 0.1259 (0.0047) 0.1670 (0.0059) 0.1228 (0.0289)

125 Combined 0.1333 (0.0415) 0.1538 (0.0453) 0.1771 (0.0503) 0.2387 (0.0707) 0.1757 (0.0661)

250 5 0.1954 (0.0052) 0.2196 (0.0051) 0.2482 (0.0061) 0.3337 (0.0096) 0.2492 (0.0528)
250 10 0.1293 (0.0030) 0.1465 (0.0035) 0.1659 (0.0037) 0.2159 (0.0044) 0.1644 (0.0327)
250 15 0.1005 (0.0025) 0.1144 (0.0026) 0.1313 (0.0027) 0.1706 (0.0031) 0.1292 (0.0265)

250 Combined 0.1417 (0.0400) 0.1602 (0.0443) 0.1818 (0.0494) 0.2401 (0.0693) 0.1809 (0.0637)

Table C.1.1: Average travel time thresholds for the generated Euclidean instance classes.
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C.2 Greedy Search Results

The following tables contain the details of the Greedy Search performance (the relative optimality
gaps) for the generated Euclidean instances. We refer to Section 4.5 for the description of the
instances and the Greedy Search variants.
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Average (Standard Deviation) of Relative Optimality Gaps of 1-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0153 (0.0178) 0.0286 (0.0215) 0.0310 (0.0227) 0.0134 (0.0108) 0.0221 (0.0202)
125 10 0.0109 (0.0114) 0.0208 (0.0149) 0.0312 (0.0197) 0.0145 (0.0125) 0.0194 (0.0168)
125 15 0.0110 (0.0109) 0.0172 (0.0112) 0.0223 (0.0120) 0.0106 (0.0083) 0.0153 (0.0117)

125 Combined 0.0124 (0.0138) 0.0222 (0.0170) 0.0282 (0.0190) 0.0128 (0.0107) 0.0189 (0.0168)

250 5 0.0218 (0.0147) 0.0295 (0.0205) 0.0332 (0.0246) 0.0137 (0.0129) 0.0245 (0.0201)
250 10 0.0169 (0.0118) 0.0281 (0.0142) 0.0352 (0.0195) 0.0230 (0.0102) 0.0258 (0.0158)
250 15 0.0139 (0.0101) 0.0256 (0.0158) 0.0351 (0.0123) 0.0135 (0.0062) 0.0220 (0.0146)

250 Combined 0.0175 (0.0127) 0.0277 (0.0170) 0.0345 (0.0193) 0.0167 (0.0110) 0.0241 (0.0170)

Table C.2.1: Average relative optimality gaps of 1-Greedy Search for the generated Euclidean instances.

Average (Standard Deviation) of Relative Optimality Gaps of 2-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0125 (0.0156) 0.0269 (0.0213) 0.0279 (0.0217) 0.0102 (0.0103) 0.0194 (0.0195)
125 10 0.0103 (0.0112) 0.0203 (0.0153) 0.0307 (0.0200) 0.0148 (0.0124) 0.0190 (0.0168)
125 15 0.0111 (0.0109) 0.0168 (0.0110) 0.0222 (0.0113) 0.0103 (0.0086) 0.0151 (0.0115)

125 Combined 0.0113 (0.0127) 0.0213 (0.0168) 0.0269 (0.0185) 0.0118 (0.0107) 0.0178 (0.0163)

250 5 0.0179 (0.0138) 0.0296 (0.0178) 0.0300 (0.0191) 0.0073 (0.0102) 0.0212 (0.0181)
250 10 0.0170 (0.0118) 0.0254 (0.0141) 0.0327 (0.0179) 0.0226 (0.0102) 0.0244 (0.0148)
250 15 0.0138 (0.0097) 0.0248 (0.0161) 0.0348 (0.0123) 0.0133 (0.0058) 0.0217 (0.0146)

250 Combined 0.0162 (0.0119) 0.0266 (0.0161) 0.0325 (0.0167) 0.0144 (0.0109) 0.0224 (0.0160)

Table C.2.2: Average relative optimality gaps of 2-Greedy Search for the generated Euclidean instances.
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Average (Standard Deviation) of Relative Optimality Gaps of Reverse 1-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.1395 (0.0340) 0.1477 (0.0353) 0.1320 (0.0360) 0.0321 (0.0187) 0.1128 (0.0567)
125 10 0.1210 (0.0386) 0.1181 (0.0353) 0.1133 (0.0334) 0.0378 (0.0204) 0.0976 (0.0475)
125 15 0.0888 (0.0290) 0.0983 (0.0313) 0.0948 (0.0284) 0.0342 (0.0193) 0.0790 (0.0377)

125 Combined 0.1164 (0.0399) 0.1214 (0.0395) 0.1134 (0.0359) 0.0347 (0.0195) 0.0965 (0.0498)

250 5 0.1475 (0.0410) 0.1426 (0.0381) 0.1478 (0.0374) 0.0356 (0.0259) 0.1184 (0.0598)
250 10 0.1382 (0.0368) 0.1398 (0.0307) 0.1313 (0.0315) 0.0497 (0.0197) 0.1148 (0.0483)
250 15 0.1257 (0.0231) 0.1272 (0.0271) 0.1195 (0.0225) 0.0466 (0.0175) 0.1047 (0.0407)

250 Combined 0.1371 (0.0354) 0.1365 (0.0328) 0.1329 (0.0330) 0.0440 (0.0220) 0.1126 (0.0505)

Table C.2.3: Average relative optimality gaps of Reverse 1-Greedy Search for the generated Euclidean instances.

Average (Standard Deviation) of Relative Optimality Gaps of Reverse 2-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.1384 (0.0360) 0.1478 (0.0353) 0.1316 (0.0359) 0.0298 (0.0194) 0.1119 (0.0577)
125 10 0.1210 (0.0386) 0.1179 (0.0352) 0.1132 (0.0334) 0.0378 (0.0203) 0.0974 (0.0474)
125 15 0.0888 (0.0290) 0.0983 (0.0313) 0.0948 (0.0284) 0.0342 (0.0193) 0.0790 (0.0377)

125 Combined 0.1161 (0.0402) 0.1213 (0.0394) 0.1132 (0.0358) 0.0339 (0.0198) 0.0961 (0.0501)

250 5 0.1479 (0.0410) 0.1411 (0.0402) 0.1443 (0.0353) 0.0355 (0.0251) 0.1172 (0.0593)
250 10 0.1380 (0.0372) 0.1398 (0.0306) 0.1306 (0.0316) 0.0493 (0.0192) 0.1144 (0.0484)
250 15 0.1251 (0.0229) 0.1273 (0.0272) 0.1202 (0.0232) 0.0462 (0.0175) 0.1047 (0.0409)

250 Combined 0.1370 (0.0356) 0.1361 (0.0335) 0.1317 (0.0318) 0.0437 (0.0215) 0.1121 (0.0503)

Table C.2.4: Average relative optimality gaps of Reverse 2-Greedy Search for the generated Euclidean instances.
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Average (Standard Deviation) of Relative Optimality Gaps of Anti 1-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.8745 (0.0363) 0.8687 (0.0352) 0.8660 (0.0341) 0.8085 (0.0416) 0.8544 (0.0454)
125 10 0.8710 (0.0295) 0.8666 (0.0280) 0.8614 (0.0305) 0.8211 (0.0332) 0.8550 (0.0361)
125 15 0.8716 (0.0344) 0.8558 (0.0298) 0.8406 (0.0279) 0.8084 (0.0381) 0.8441 (0.0401)

125 Combined 0.8723 (0.0333) 0.8637 (0.0315) 0.8560 (0.0327) 0.8127 (0.0380) 0.8512 (0.0409)

250 5 0.8960 (0.0293) 0.8909 (0.0244) 0.8909 (0.0196) 0.8502 (0.0259) 0.8820 (0.0310)
250 10 0.8942 (0.0227) 0.8945 (0.0214) 0.8879 (0.0222) 0.8682 (0.0268) 0.8862 (0.0256)
250 15 0.8919 (0.0200) 0.8877 (0.0199) 0.8820 (0.0237) 0.8646 (0.0201) 0.8816 (0.0233)

250 Combined 0.8940 (0.0242) 0.8910 (0.0220) 0.8869 (0.0221) 0.8610 (0.0255) 0.8832 (0.0268)

Table C.2.5: Average relative optimality gaps of Anti 1-Greedy Search for the generated Euclidean instances.

Average (Standard Deviation) of Relative Optimality Gaps of Anti 2-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.8840 (0.0302) 0.8829 (0.0306) 0.8787 (0.0273) 0.8236 (0.0309) 0.8673 (0.0390)
125 10 0.8911 (0.0244) 0.8763 (0.0234) 0.8729 (0.0254) 0.8402 (0.0268) 0.8701 (0.0311)
125 15 0.8863 (0.0281) 0.8731 (0.0243) 0.8557 (0.0246) 0.8267 (0.0285) 0.8605 (0.0345)

125 Combined 0.8872 (0.0276) 0.8774 (0.0264) 0.8691 (0.0274) 0.8302 (0.0295) 0.8660 (0.0352)

250 5 0.9015 (0.0231) 0.8994 (0.0194) 0.8933 (0.0234) 0.8567 (0.0208) 0.8877 (0.0282)
250 10 0.9048 (0.0194) 0.9019 (0.0177) 0.8995 (0.0188) 0.8804 (0.0246) 0.8967 (0.0223)
250 15 0.8990 (0.0180) 0.8941 (0.0164) 0.8887 (0.0163) 0.8739 (0.0169) 0.8889 (0.0193)

250 Combined 0.9017 (0.0203) 0.8985 (0.0181) 0.8938 (0.0201) 0.8703 (0.0232) 0.8911 (0.0239)

Table C.2.6: Average relative optimality gaps of Anti 2-Greedy Search for the generated Euclidean instances.
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Average (Standard Deviation) of Relative Optimality Gaps of Revised Anti 1-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.7722 (0.0505) 0.7343 (0.0449) 0.6931 (0.0500) 0.4916 (0.0403) 0.6728 (0.1180)
125 10 0.8007 (0.0474) 0.7583 (0.0462) 0.7038 (0.0528) 0.5096 (0.0437) 0.6931 (0.1212)
125 15 0.8169 (0.0526) 0.7606 (0.0505) 0.6972 (0.0450) 0.5120 (0.0389) 0.6967 (0.1241)

125 Combined 0.7966 (0.0532) 0.7511 (0.0484) 0.6980 (0.0492) 0.5044 (0.0417) 0.6875 (0.1214)

250 5 0.7528 (0.0439) 0.7203 (0.0376) 0.6885 (0.0316) 0.4994 (0.0333) 0.6652 (0.1053)
250 10 0.7718 (0.0314) 0.7359 (0.0318) 0.6934 (0.0310) 0.5323 (0.0343) 0.6834 (0.0971)
250 15 0.7877 (0.0289) 0.7504 (0.0298) 0.6974 (0.0290) 0.5263 (0.0293) 0.6904 (0.1044)

250 Combined 0.7708 (0.0379) 0.7355 (0.0352) 0.6931 (0.0306) 0.5193 (0.0352) 0.6797 (0.1027)

Table C.2.7: Average relative optimality gaps of Revised Anti 1-Greedy Search for the generated Euclidean instances.

Average (Standard Deviation) of Relative Optimality Gaps of Revised Anti 2-Greedy Search

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.7753 (0.0481) 0.7405 (0.0429) 0.7021 (0.0461) 0.4978 (0.0386) 0.6789 (0.1165)
125 10 0.8038 (0.0461) 0.7629 (0.0439) 0.7108 (0.0522) 0.5249 (0.0410) 0.7006 (0.1163)
125 15 0.8203 (0.0513) 0.7677 (0.0465) 0.7030 (0.0421) 0.5277 (0.0356) 0.7047 (0.1190)

125 Combined 0.7998 (0.0517) 0.7571 (0.0457) 0.7053 (0.0468) 0.5168 (0.0405) 0.6947 (0.1176)

250 5 0.7586 (0.0390) 0.7299 (0.0360) 0.6921 (0.0328) 0.5159 (0.0390) 0.6741 (0.1014)
250 10 0.7774 (0.0297) 0.7428 (0.0299) 0.7009 (0.0300) 0.5466 (0.0295) 0.6919 (0.0932)
250 15 0.7939 (0.0261) 0.7567 (0.0295) 0.7043 (0.0271) 0.5387 (0.0288) 0.6984 (0.1016)

250 Combined 0.7766 (0.0350) 0.7431 (0.0336) 0.6991 (0.0303) 0.5337 (0.0351) 0.6881 (0.0992)

Table C.2.8: Average relative optimality gaps of Revised Anti 2-Greedy Search for the generated Euclidean instances.
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C.3 Swap Local Search Results

In the following tables the details of the Swap Local Search performance for the generated
Euclidean instances are given. Shown are the relative optimality gaps and the used number of
iterations. We refer to Section 4.5 for the description of the instances, the Greedy Search variants
(the initial solutions), and the Swap Local Search method.
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1-Swap Local Search after 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0084 (0.0137) 0.0118 (0.0155) 0.0107 (0.0148) 0.0017 (0.0041) 0.0081 (0.0134)
125 10 0.0075 (0.0092) 0.0122 (0.0133) 0.0154 (0.0141) 0.0046 (0.0061) 0.0099 (0.0118)
125 15 0.0070 (0.0087) 0.0089 (0.0094) 0.0122 (0.0085) 0.0051 (0.0066) 0.0083 (0.0087)

125 Combined 0.0076 (0.0107) 0.0110 (0.0130) 0.0127 (0.0129) 0.0038 (0.0058) 0.0088 (0.0115)

250 5 0.0120 (0.0132) 0.0162 (0.0149) 0.0136 (0.0169) 0.0008 (0.0032) 0.0107 (0.0143)
250 10 0.0118 (0.0107) 0.0136 (0.0119) 0.0155 (0.0144) 0.0062 (0.0069) 0.0118 (0.0117)
250 15 0.0093 (0.0084) 0.0169 (0.0132) 0.0180 (0.0104) 0.0064 (0.0044) 0.0127 (0.0108)

250 Combined 0.0111 (0.0109) 0.0155 (0.0134) 0.0157 (0.0142) 0.0045 (0.0057) 0.0117 (0.0124)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 1.4600 (0.7616) 2.0800 (1.2262) 2.5400 (1.3881) 1.9800 (0.7420) 2.0150 (1.1274)
125 10 1.4200 (0.8352) 2.0400 (1.2447) 2.7800 (1.6325) 2.7600 (1.6107) 2.2500 (1.4725)
125 15 1.4600 (0.8855) 2.0200 (0.9998) 2.4800 (1.4462) 2.6200 (1.5504) 2.1450 (1.3239)

125 Combined 1.4467 (0.8236) 2.0467 (1.1547) 2.6000 (1.4882) 2.4533 (1.3931) 2.1367 (1.3169)

250 5 1.9000 (0.9530) 2.2800 (1.2296) 2.6800 (1.4061) 2.4000 (0.9258) 2.3150 (1.1716)
250 10 1.9000 (1.1824) 2.7600 (1.5851) 3.6800 (1.8674) 4.4200 (1.8305) 3.1900 (1.8846)
250 15 1.9400 (0.9564) 2.6000 (1.3093) 4.5000 (1.9404) 3.3400 (1.8026) 3.0950 (1.8117)

250 Combined 1.9133 (1.0293) 2.5467 (1.3883) 3.6200 (1.8955) 3.3867 (1.7715) 2.8667 (1.6972)

Table C.3.1: Average relative optimality gaps and iterations of 1-Swap Local Search after 1-Greedy Search for the generated Euclidean
instances.
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1-Swap Local Search after 2-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0073 (0.0136) 0.0097 (0.0131) 0.0104 (0.0152) 0.0024 (0.0048) 0.0075 (0.0126)
125 10 0.0069 (0.0087) 0.0124 (0.0135) 0.0148 (0.0137) 0.0041 (0.0058) 0.0096 (0.0117)
125 15 0.0070 (0.0087) 0.0085 (0.0089) 0.0120 (0.0087) 0.0049 (0.0060) 0.0081 (0.0085)

125 Combined 0.0071 (0.0105) 0.0102 (0.0120) 0.0124 (0.0129) 0.0038 (0.0056) 0.0084 (0.0111)

250 5 0.0097 (0.0117) 0.0184 (0.0150) 0.0145 (0.0173) 0.0003 (0.0011) 0.0107 (0.0144)
250 10 0.0117 (0.0106) 0.0134 (0.0113) 0.0158 (0.0136) 0.0060 (0.0063) 0.0118 (0.0113)
250 15 0.0094 (0.0081) 0.0162 (0.0134) 0.0183 (0.0105) 0.0070 (0.0042) 0.0127 (0.0107)

250 Combined 0.0102 (0.0102) 0.0160 (0.0134) 0.0162 (0.0141) 0.0044 (0.0053) 0.0117 (0.0123)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 1.4200 (0.7025) 2.1400 (1.3704) 2.5000 (1.2817) 1.6400 (0.7494) 1.9250 (1.1428)
125 10 1.4200 (0.8352) 2.0000 (1.2289) 2.8000 (1.5779) 2.9200 (1.7243) 2.2850 (1.5050)
125 15 1.4800 (0.8862) 1.9800 (0.9998) 2.5000 (1.5152) 2.5400 (1.6189) 2.1250 (1.3559)

125 Combined 1.4400 (0.8067) 2.0400 (1.2034) 2.6000 (1.4609) 2.3667 (1.5213) 2.1117 (1.3487)

250 5 1.7600 (0.8704) 2.1200 (1.1183) 2.7400 (1.3372) 1.8200 (0.7475) 2.1100 (1.1064)
250 10 1.9600 (1.1773) 2.5600 (1.5800) 3.4200 (1.8745) 4.2800 (1.7266) 3.0550 (1.8245)
250 15 1.8800 (0.9613) 2.6000 (1.3851) 4.3800 (1.9155) 3.3200 (1.9319) 3.0450 (1.8384)

250 Combined 1.8667 (1.0078) 2.4267 (1.3823) 3.5133 (1.8455) 3.1400 (1.8502) 2.7367 (1.6829)

Table C.3.2: Average relative optimality gaps and iterations of 1-Swap Local Search after 2-Greedy Search for the generated Euclidean
instances.
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2-Swap Local Search after 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0016 (0.0059) 0.0021 (0.0053) 0.0030 (0.0067) 0 (0) 0.0017 (0.0053)
125 10 0.0005 (0.0014) 0.0019 (0.0049) 0.0024 (0.0050) 0.0005 (0.0015) 0.0013 (0.0037)
125 15 0.0002 (0.0009) 0.0009 (0.0027) 0.0019 (0.0036) 0.0010 (0.0023) 0.0010 (0.0026)

125 Combined 0.0008 (0.0036) 0.0016 (0.0044) 0.0024 (0.0053) 0.0005 (0.0016) 0.0013 (0.0040)

250 5 0.0018 (0.0043) 0.0033 (0.0065) 0.0038 (0.0048) 0 (0) 0.0022 (0.0048)
250 10 0.0012 (0.0031) 0.0033 (0.0054) 0.0042 (0.0063) 0.0004 (0.0012) 0.0023 (0.0047)
250 15 0.0010 (0.0024) 0.0027 (0.0043) 0.0049 (0.0046) 0.0015 (0.0020) 0.0025 (0.0038)

250 Combined 0.0013 (0.0034) 0.0031 (0.0055) 0.0043 (0.0053) 0.0006 (0.0015) 0.0023 (0.0044)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 1.7600 (0.7160) 2.2600 (0.8992) 2.5000 (0.9313) 1.9600 (0.5330) 2.1200 (0.8301)
125 10 2.0600 (0.8430) 2.8000 (1.2454) 3.4200 (1.4581) 2.8000 (1.2122) 2.7700 (1.2944)
125 15 2.2400 (1.0012) 2.9800 (1.0784) 3.6000 (1.2289) 3.0800 (1.3223) 2.9750 (1.2539)

125 Combined 2.0200 (0.8783) 2.6800 (1.1192) 3.1733 (1.3095) 2.6133 (1.1746) 2.6217 (1.2004)

250 5 2.3200 (0.7407) 2.8000 (1.2778) 2.8200 (1.2070) 2.0200 (0.5147) 2.4900 (1.0370)
250 10 2.9600 (1.1241) 3.4600 (1.1643) 4.2400 (1.7677) 3.8600 (1.0882) 3.6300 (1.3902)
250 15 3.3200 (1.3468) 4.2200 (1.8103) 5.1400 (1.8737) 4.2000 (1.4846) 4.2200 (1.7541)

250 Combined 2.8667 (1.1682) 3.4933 (1.5490) 4.0667 (1.8919) 3.3600 (1.4576) 3.4467 (1.5931)

Table C.3.3: Average relative optimality gaps and iterations of 2-Swap Local Search after 1-Greedy Search for the generated Euclidean
instances.
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1-Swap Local Search after Reverse 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0100 (0.0191) 0.0156 (0.0209) 0.0115 (0.0160) 0.0020 (0.0068) 0.0098 (0.0172)
125 10 0.0136 (0.0162) 0.0181 (0.0184) 0.0230 (0.0184) 0.0060 (0.0077) 0.0152 (0.0169)
125 15 0.0122 (0.0146) 0.0160 (0.0148) 0.0241 (0.0188) 0.0089 (0.0073) 0.0153 (0.0154)

125 Combined 0.0120 (0.0167) 0.0166 (0.0181) 0.0195 (0.0185) 0.0056 (0.0078) 0.0134 (0.0167)

250 5 0.0134 (0.0178) 0.0160 (0.0154) 0.0166 (0.0172) 0.0012 (0.0028) 0.0118 (0.0158)
250 10 0.0141 (0.0132) 0.0200 (0.0149) 0.0215 (0.0122) 0.0064 (0.0075) 0.0155 (0.0135)
250 15 0.0139 (0.0137) 0.0146 (0.0102) 0.0208 (0.0106) 0.0082 (0.0059) 0.0144 (0.0113)

250 Combined 0.0138 (0.0149) 0.0168 (0.0138) 0.0196 (0.0137) 0.0053 (0.0064) 0.0139 (0.0137)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 5.5200 (1.3130) 5.6200 (1.1045) 5.7000 (1.3740) 2.8800 (0.9613) 4.9300 (1.6820)
125 10 7.6800 (2.0348) 7.4000 (2.0203) 7.1600 (2.1224) 4.1200 (1.3037) 6.5900 (2.3728)
125 15 7.8200 (2.2560) 8.6400 (2.4641) 8.0200 (2.3516) 4.3000 (1.7291) 7.1950 (2.7831)

125 Combined 7.0067 (2.1721) 7.2200 (2.2993) 6.9600 (2.2009) 3.7667 (1.4991) 6.2383 (2.5104)

250 5 6.0800 (1.2095) 6.1800 (1.4525) 6.5200 (1.7640) 3.3000 (1.1650) 5.5200 (1.9126)
250 10 9.5000 (1.5551) 9.4600 (1.9400) 9.5800 (2.2505) 6.1800 (2.0373) 8.6800 (2.4263)
250 15 12.1600 (2.1699) 12.6200 (2.7913) 12.1800 (2.3963) 7.1400 (2.0305) 11.0250 (3.2554)

250 Combined 9.2467 (3.0099) 9.4200 (3.3843) 9.4267 (3.1566) 5.5400 (2.4181) 8.4083 (3.4334)

Table C.3.4: Average relative optimality gaps and iterations of 1-Swap Local Search after Reverse 1-Greedy Search for the generated
Euclidean instances.
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1-Swap Local Search after Reverse 2-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0094 (0.0188) 0.0168 (0.0220) 0.0111 (0.0155) 0.0020 (0.0068) 0.0099 (0.0175)
125 10 0.0136 (0.0162) 0.0173 (0.0178) 0.0230 (0.0184) 0.0061 (0.0077) 0.0150 (0.0167)
125 15 0.0122 (0.0146) 0.0160 (0.0148) 0.0241 (0.0188) 0.0089 (0.0073) 0.0153 (0.0154)

125 Combined 0.0118 (0.0166) 0.0167 (0.0183) 0.0194 (0.0185) 0.0057 (0.0077) 0.0134 (0.0167)

250 5 0.0135 (0.0179) 0.0160 (0.0154) 0.0169 (0.0173) 0.0012 (0.0028) 0.0119 (0.0159)
250 10 0.0143 (0.0131) 0.0195 (0.0141) 0.0221 (0.0120) 0.0061 (0.0071) 0.0155 (0.0133)
250 15 0.0139 (0.0137) 0.0149 (0.0102) 0.0213 (0.0103) 0.0084 (0.0060) 0.0146 (0.0113)

250 Combined 0.0139 (0.0149) 0.0168 (0.0135) 0.0201 (0.0136) 0.0052 (0.0063) 0.0140 (0.0137)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 5.5200 (1.3130) 5.6000 (1.1249) 5.7000 (1.5152) 2.9000 (1.0926) 4.9300 (1.7263)
125 10 7.6800 (2.0348) 7.4400 (1.9914) 7.1600 (2.1224) 4.1000 (1.2976) 6.5950 (2.3747)
125 15 7.8200 (2.2560) 8.6400 (2.4641) 8.0200 (2.3516) 4.3000 (1.7291) 7.1950 (2.7831)

125 Combined 7.0067 (2.1721) 7.2267 (2.3001) 6.9600 (2.2312) 3.7667 (1.5213) 6.2400 (2.5212)

250 5 6.1000 (1.2330) 6.1800 (1.4525) 6.4000 (1.6660) 3.2800 (1.1436) 5.4900 (1.8835)
250 10 9.4800 (1.5418) 9.5200 (1.9403) 9.5000 (2.1500) 6.0600 (2.0042) 8.6400 (2.4228)
250 15 12.1400 (2.1760) 12.4800 (2.6668) 12.1400 (2.3300) 7.0400 (2.0894) 10.9500 (3.2357)

250 Combined 9.2400 (2.9982) 9.3933 (3.3073) 9.3467 (3.1238) 5.4600 (2.3958) 8.3600 (3.4093)

Table C.3.5: Average relative optimality gaps and iterations of 1-Swap Local Search after Reverse 2-Greedy Search for the generated
Euclidean instances.
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2-Swap Local Search after Reverse 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0013 (0.0048) 0.0044 (0.0091) 0.0017 (0.0041) 0 (0) 0.0019 (0.0057)
125 10 0.0002 (0.0009) 0.0024 (0.0061) 0.0033 (0.0068) 0.0008 (0.0026) 0.0017 (0.0049)
125 15 0.0001 (0.0005) 0.0012 (0.0028) 0.0035 (0.0054) 0.0013 (0.0025) 0.0015 (0.0035)

125 Combined 0.0005 (0.0029) 0.0027 (0.0066) 0.0028 (0.0056) 0.0007 (0.0021) 0.0017 (0.0048)

250 5 0.0021 (0.0045) 0.0039 (0.0065) 0.0034 (0.0054) 0.0001 (0.0006) 0.0024 (0.0050)
250 10 0.0021 (0.0036) 0.0032 (0.0048) 0.0069 (0.0089) 0.0009 (0.0021) 0.0033 (0.0059)
250 15 0.0013 (0.0034) 0.0018 (0.0027) 0.0056 (0.0058) 0.0014 (0.0022) 0.0025 (0.0042)

250 Combined 0.0018 (0.0039) 0.0029 (0.0049) 0.0053 (0.0070) 0.0008 (0.0019) 0.0027 (0.0051)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 3.7800 (0.8401) 3.9600 (0.8797) 3.9000 (0.8864) 2.2600 (0.4870) 3.4750 (1.0559)
125 10 5.4000 (1.0498) 5.5800 (1.2631) 5.7600 (1.4923) 3.5000 (1.0152) 5.0600 (1.5159)
125 15 5.7600 (1.3180) 6.4000 (1.4142) 6.6600 (1.7798) 4.1200 (1.2229) 5.7350 (1.7464)

125 Combined 4.9800 (1.3829) 5.3133 (1.5721) 5.4400 (1.8336) 3.2933 (1.2291) 4.7567 (1.7452)

250 5 4.2800 (1.0309) 4.3800 (0.9452) 4.7000 (0.9530) 2.3600 (0.5980) 3.9300 (1.2819)
250 10 6.4000 (1.1606) 6.7000 (1.1995) 6.6600 (1.4086) 4.6200 (1.2599) 6.0950 (1.5190)
250 15 8.0800 (1.5097) 8.6200 (1.9886) 8.8400 (1.7066) 5.7600 (1.6850) 7.8250 (2.1111)

250 Combined 6.2533 (1.9939) 6.5667 (2.2567) 6.7333 (2.1880) 4.2467 (1.8929) 5.9500 (2.3101)

Table C.3.6: Average relative optimality gaps and iterations of 2-Swap Local Search after Reverse 1-Greedy Search for the generated
Euclidean instances.
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1-Swap Local Search after Anti 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0103 (0.0174) 0.0149 (0.0181) 0.0139 (0.0174) 0.0008 (0.0029) 0.0100 (0.0162)
125 10 0.0073 (0.0092) 0.0121 (0.0130) 0.0194 (0.0184) 0.0061 (0.0071) 0.0112 (0.0137)
125 15 0.0073 (0.0093) 0.0086 (0.0085) 0.0149 (0.0114) 0.0073 (0.0062) 0.0095 (0.0095)

125 Combined 0.0083 (0.0126) 0.0119 (0.0139) 0.0161 (0.0161) 0.0047 (0.0063) 0.0102 (0.0134)

250 5 0.0123 (0.0131) 0.0171 (0.0205) 0.0155 (0.0167) 0.0007 (0.0016) 0.0114 (0.0160)
250 10 0.0129 (0.0124) 0.0145 (0.0120) 0.0182 (0.0142) 0.0058 (0.0052) 0.0128 (0.0123)
250 15 0.0090 (0.0078) 0.0163 (0.0131) 0.0190 (0.0111) 0.0075 (0.0054) 0.0130 (0.0109)

250 Combined 0.0114 (0.0114) 0.0159 (0.0156) 0.0176 (0.0142) 0.0047 (0.0053) 0.0124 (0.0132)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 7.0000 (1.1429) 7.3400 (1.3032) 7.6800 (1.4630) 5.9200 (0.8999) 6.9850 (1.3800)
125 10 11.8000 (1.0880) 12.2600 (1.6264) 12.6200 (1.4412) 10.8200 (1.5211) 11.8750 (1.5754)
125 15 16.5200 (1.0150) 17.0200 (1.2856) 17.1800 (1.6499) 14.1600 (1.9311) 16.2200 (1.9314)

125 Combined 11.7733 (4.0453) 12.2067 (4.2066) 12.4933 (4.1753) 10.3000 (3.7124) 11.6933 (4.1171)

250 5 7.1800 (1.4665) 7.9000 (1.7291) 8.0800 (1.5628) 6.4600 (0.9733) 7.4050 (1.5854)
250 10 12.4400 (1.5274) 13.3000 (1.8654) 13.7800 (2.1313) 13.0200 (1.6841) 13.1350 (1.8666)
250 15 17.8400 (1.6081) 18.2000 (1.7261) 19.4000 (2.3123) 16.2800 (1.6418) 17.9300 (2.1443)

250 Combined 12.4867 (4.6252) 13.1333 (4.5740) 13.7533 (5.0553) 11.9200 (4.3497) 12.8233 (4.6970)

Table C.3.7: Average relative optimality gaps and iterations of 1-Swap Local Search after Anti 1-Greedy Search for the generated
Euclidean instances.
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1-Swap Local Search after Anti 2-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0093 (0.0152) 0.0139 (0.0161) 0.0133 (0.0174) 0.0011 (0.0030) 0.0094 (0.0149)
125 10 0.0070 (0.0089) 0.0110 (0.0123) 0.0172 (0.0168) 0.0062 (0.0066) 0.0104 (0.0125)
125 15 0.0069 (0.0087) 0.0089 (0.0093) 0.0130 (0.0109) 0.0062 (0.0066) 0.0087 (0.0093)

125 Combined 0.0077 (0.0113) 0.0113 (0.0130) 0.0145 (0.0153) 0.0045 (0.0061) 0.0095 (0.0125)

250 5 0.0124 (0.0130) 0.0163 (0.0199) 0.0171 (0.0180) 0.0006 (0.0016) 0.0116 (0.0162)
250 10 0.0119 (0.0112) 0.0151 (0.0118) 0.0167 (0.0148) 0.0054 (0.0057) 0.0123 (0.0121)
250 15 0.0089 (0.0075) 0.0163 (0.0127) 0.0186 (0.0119) 0.0069 (0.0046) 0.0127 (0.0109)

250 Combined 0.0110 (0.0109) 0.0159 (0.0151) 0.0175 (0.0150) 0.0043 (0.0051) 0.0122 (0.0132)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 6.6800 (0.9134) 7.3600 (1.3962) 7.5600 (1.4591) 6.0200 (1.0200) 6.9050 (1.3547)
125 10 11.6600 (1.0422) 12.3200 (1.4348) 13.0400 (2.0199) 10.9400 (1.5039) 11.9900 (1.7160)
125 15 16.6400 (1.1021) 17.0200 (1.1156) 16.9200 (1.6015) 14.3800 (1.9784) 16.2400 (1.8383)

125 Combined 11.6600 (4.2042) 12.2333 (4.1699) 12.5067 (4.2105) 10.4467 (3.7712) 11.7117 (4.1590)

250 5 7.4000 (1.4708) 7.5000 (1.4743) 8.1000 (1.6444) 6.5400 (0.9304) 7.3850 (1.5027)
250 10 12.4200 (1.5265) 13.1400 (1.6289) 13.6800 (2.3250) 13.1600 (1.6458) 13.1000 (1.8513)
250 15 17.7000 (1.5152) 18.2000 (1.7143) 19.4200 (2.3043) 16.5000 (1.7291) 17.9550 (2.1060)

250 Combined 12.5067 (4.4763) 12.9467 (4.6672) 13.7333 (5.0907) 12.0667 (4.4051) 12.8133 (4.6963)

Table C.3.8: Average relative optimality gaps and iterations of 1-Swap Local Search after Anti 2-Greedy Search for the generated
Euclidean instances.
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2-Swap Local Search after Anti 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0011 (0.0050) 0.0052 (0.0128) 0.0023 (0.0069) 0 (0) 0.0022 (0.0079)
125 10 0.0005 (0.0014) 0.0016 (0.0044) 0.0025 (0.0053) 0.0006 (0.0020) 0.0013 (0.0037)
125 15 0.0002 (0.0009) 0.0007 (0.0015) 0.0032 (0.0054) 0.0008 (0.0017) 0.0012 (0.0032)

125 Combined 0.0006 (0.0031) 0.0025 (0.0080) 0.0027 (0.0059) 0.0005 (0.0015) 0.0016 (0.0054)

250 5 0.0015 (0.0040) 0.0021 (0.0049) 0.0043 (0.0065) 0 (0) 0.0020 (0.0048)
250 10 0.0016 (0.0040) 0.0034 (0.0057) 0.0044 (0.0067) 0.0010 (0.0025) 0.0026 (0.0052)
250 15 0.0010 (0.0023) 0.0037 (0.0062) 0.0049 (0.0053) 0.0016 (0.0022) 0.0028 (0.0046)

250 Combined 0.0014 (0.0035) 0.0031 (0.0057) 0.0045 (0.0062) 0.0008 (0.0020) 0.0025 (0.0049)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 4.4200 (0.7309) 4.7400 (0.8033) 4.8600 (0.9260) 3.7400 (0.5997) 4.4400 (0.8833)
125 10 7.2600 (0.8992) 7.7200 (1.1787) 8.5200 (1.6811) 6.9000 (0.9530) 7.6000 (1.3525)
125 15 9.8000 (0.9035) 10.2400 (1.0606) 10.8400 (1.2993) 8.8800 (1.3649) 9.9400 (1.3659)

125 Combined 7.1600 (2.3604) 7.5667 (2.4752) 8.0733 (2.8048) 6.5067 (2.3538) 7.3267 (2.5640)

250 5 4.7800 (0.7637) 5.3000 (1.3286) 5.2800 (0.9697) 4.0800 (0.4882) 4.8600 (1.0564)
250 10 8.2600 (1.1920) 8.4400 (1.1634) 8.9200 (1.6517) 8.2600 (1.2423) 8.4700 (1.3447)
250 15 10.9800 (1.2204) 11.7600 (1.8905) 12.6400 (1.8709) 10.6400 (1.3815) 11.5050 (1.7821)

250 Combined 8.0067 (2.7624) 8.5000 (3.0339) 8.9467 (3.3833) 7.6600 (2.9352) 8.2783 (3.0686)

Table C.3.9: Average relative optimality gaps and iterations of 2-Swap Local Search after Anti 1-Greedy Search for the generated
Euclidean instances.
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1-Swap Local Search after Revised Anti 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0097 (0.0180) 0.0144 (0.0178) 0.0191 (0.0210) 0.0027 (0.0046) 0.0115 (0.0176)
125 10 0.0074 (0.0091) 0.0128 (0.0125) 0.0192 (0.0147) 0.0082 (0.0071) 0.0119 (0.0121)
125 15 0.0064 (0.0081) 0.0095 (0.0095) 0.0123 (0.0095) 0.0086 (0.0084) 0.0092 (0.0091)

125 Combined 0.0078 (0.0126) 0.0123 (0.0138) 0.0168 (0.0160) 0.0065 (0.0074) 0.0109 (0.0134)

250 5 0.0112 (0.0130) 0.0138 (0.0133) 0.0143 (0.0151) 0.0021 (0.0046) 0.0104 (0.0131)
250 10 0.0129 (0.0118) 0.0150 (0.0128) 0.0202 (0.0129) 0.0063 (0.0063) 0.0136 (0.0123)
250 15 0.0094 (0.0083) 0.0163 (0.0130) 0.0228 (0.0113) 0.0080 (0.0059) 0.0141 (0.0115)

250 Combined 0.0112 (0.0112) 0.0150 (0.0130) 0.0191 (0.0136) 0.0055 (0.0061) 0.0127 (0.0124)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 7.1200 (1.2061) 7.1400 (1.1430) 7.5600 (1.7398) 5.8600 (1.0882) 6.9200 (1.4575)
125 10 11.7600 (0.9806) 12.3600 (1.4535) 12.6400 (1.5877) 9.5600 (1.6056) 11.5800 (1.8657)
125 15 16.5600 (0.9071) 17.0000 (0.9897) 16.8000 (1.6288) 12.4600 (1.9609) 15.7050 (2.3656)

125 Combined 11.8133 (4.0023) 12.1667 (4.2163) 12.3333 (4.1315) 9.2933 (3.1379) 11.4017 (4.0769)

250 5 7.4200 (1.4010) 7.5600 (1.4450) 8.4400 (1.5407) 6.4600 (0.9941) 7.4700 (1.5234)
250 10 12.3800 (1.1933) 13.0800 (1.5497) 14.0200 (1.9430) 11.7000 (1.5419) 12.7950 (1.7886)
250 15 17.9200 (1.6142) 18.4600 (1.7752) 19.4200 (2.8578) 14.9800 (1.9534) 17.6950 (2.6698)

250 Combined 12.5733 (4.5264) 13.0333 (4.7380) 13.9600 (4.9938) 11.0467 (3.8414) 12.6533 (4.6547)

Table C.3.10: Average relative optimality gaps and iterations of 1-Swap Local Search after Revised Anti 1-Greedy Search for the
generated Euclidean instances.
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1-Swap Local Search after Revised Anti 2-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0088 (0.0178) 0.0139 (0.0181) 0.0173 (0.0192) 0.0026 (0.0049) 0.0107 (0.0169)
125 10 0.0074 (0.0092) 0.0131 (0.0130) 0.0194 (0.0144) 0.0077 (0.0083) 0.0119 (0.0124)
125 15 0.0065 (0.0081) 0.0083 (0.0084) 0.0139 (0.0094) 0.0093 (0.0074) 0.0095 (0.0087)

125 Combined 0.0076 (0.0124) 0.0118 (0.0139) 0.0169 (0.0150) 0.0065 (0.0075) 0.0107 (0.0131)

250 5 0.0108 (0.0126) 0.0146 (0.0151) 0.0163 (0.0181) 0.0028 (0.0056) 0.0111 (0.0145)
250 10 0.0119 (0.0104) 0.0161 (0.0121) 0.0172 (0.0124) 0.0072 (0.0063) 0.0131 (0.0112)
250 15 0.0096 (0.0081) 0.0180 (0.0135) 0.0232 (0.0135) 0.0091 (0.0062) 0.0150 (0.0123)

250 Combined 0.0108 (0.0105) 0.0162 (0.0136) 0.0189 (0.0151) 0.0064 (0.0066) 0.0131 (0.0128)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 7.1000 (1.1650) 7.2400 (1.2382) 7.6800 (1.6714) 5.8600 (1.1430) 6.9700 (1.4765)
125 10 11.6800 (0.9570) 12.4000 (1.4142) 12.4400 (1.5274) 9.8400 (1.3149) 11.5900 (1.6841)
125 15 16.6000 (0.9258) 17.1200 (0.9823) 17.2200 (1.7177) 12.5200 (1.6811) 15.8650 (2.3823)

125 Combined 11.7933 (4.0222) 12.2533 (4.2271) 12.4467 (4.2340) 9.4067 (3.0764) 11.4750 (4.0948)

250 5 7.3400 (1.4086) 7.6000 (1.7023) 8.4200 (1.7154) 6.6400 (1.2081) 7.5000 (1.6412)
250 10 12.5000 (1.3439) 13.1400 (1.5254) 14.1600 (2.4105) 11.5800 (1.5791) 12.8450 (1.9876)
250 15 17.8800 (1.2558) 18.4800 (1.8210) 19.2000 (2.9898) 15.0800 (1.8052) 17.6600 (2.5802)

250 Combined 12.5733 (4.5174) 13.0733 (4.7616) 13.9267 (5.0342) 11.1000 (3.7999) 12.6683 (4.6549)

Table C.3.11: Average relative optimality gaps and iterations of 1-Swap Local Search after Revised Anti 2-Greedy Search for the
generated Euclidean instances.
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2-Swap Local Search after Revised Anti 1-Greedy Search

Average (Standard Deviation) of Relative Optimality Gaps

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 0.0011 (0.0043) 0.0043 (0.0077) 0.0042 (0.0078) 0 (0) 0.0024 (0.0062)
125 10 0.0004 (0.0014) 0.0017 (0.0039) 0.0032 (0.0062) 0.0007 (0.0018) 0.0015 (0.0040)
125 15 0.0002 (0.0009) 0.0007 (0.0019) 0.0015 (0.0032) 0.0009 (0.0022) 0.0008 (0.0022)

125 Combined 0.0006 (0.0027) 0.0022 (0.0053) 0.0030 (0.0061) 0.0005 (0.0017) 0.0016 (0.0045)

250 5 0.0020 (0.0045) 0.0034 (0.0066) 0.0039 (0.0065) 0 (0) 0.0023 (0.0053)
250 10 0.0013 (0.0036) 0.0034 (0.0065) 0.0059 (0.0072) 0.0013 (0.0024) 0.0030 (0.0056)
250 15 0.0010 (0.0022) 0.0031 (0.0054) 0.0047 (0.0055) 0.0017 (0.0016) 0.0026 (0.0043)

250 Combined 0.0014 (0.0036) 0.0033 (0.0061) 0.0048 (0.0065) 0.0010 (0.0018) 0.0026 (0.0051)

Average (Standard Deviation) of Used Iterations

Opened Maximum Coverage

Size Bases 70% 80% 90% 100% Combined

125 5 4.3400 (0.5928) 4.6200 (0.7530) 5.0200 (1.0200) 3.6200 (0.5675) 4.4000 (0.9078)
125 10 7.2200 (0.9100) 7.8400 (1.4337) 7.9000 (1.3740) 6.4000 (0.9897) 7.3400 (1.3354)
125 15 9.7400 (0.7775) 10.3600 (1.1563) 10.3600 (1.2415) 8.1600 (1.3456) 9.6550 (1.4548)

125 Combined 7.1000 (2.3423) 7.6067 (2.6187) 7.7600 (2.5028) 6.0600 (2.1307) 7.1317 (2.4902)

250 5 4.8600 (0.8084) 5.0800 (1.3377) 5.6200 (1.1586) 4.0200 (0.5529) 4.8950 (1.1579)
250 10 8.2800 (1.2129) 8.2800 (1.1613) 9.0200 (1.5318) 7.2200 (1.0746) 8.2000 (1.4035)
250 15 10.9800 (1.3013) 11.6200 (1.6149) 12.7600 (1.6358) 9.6200 (1.3076) 11.2450 (1.8526)

250 Combined 8.0400 (2.7512) 8.3267 (3.0112) 9.1333 (3.2639) 6.9533 (2.5180) 8.1133 (2.9959)

Table C.3.12: Average relative optimality gaps and iterations of 2-Swap Local Search after Revised Anti 1-Greedy Search for the
generated Euclidean instances.
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