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Abstract

Interplanetary Laser Ranging (ILR) is an experimental satellite navigation technique with the potential to
produce cm- to mm-level accurate and precise range observations over interplanetary distances. This is an
improvement over current radio ranging techniques, which can achieve m-level performance. One com-
mon application of navigation data is the estimation of physical and astronomical parameters. To utilize the
improved observation quality of ILR, it is necessary to use sufficiently detailed observation- and dynamical
models during parameter estimation. We investigate the influence of relativistic modelling on parameter
estimation quality using ILR data.

Simulated parameter estimation experiments involving a Juno-like Jovian orbiter were used to gauge the
impact of 22 different relativistic effects. The spacecraft’s initial state, the mass of Jupiter and two post-
Newtonian parameters were estimated in each experiment. Parameter estimation error, observation errors
and estimation residuals were used as metrics to quantify the influence of each effect. Rough preliminary
estimates of an effect’s magnitude were found to be a good predictor of the actual impact on estimation error,
with some exceptions. Excluding the gravitational influence of Jupiter’s velocity and the Jupiter-Sun coupled
gravity resulted in almost no change in estimation error, likely due to compensation by the Newtonian grav-
ity term. Similar compensatory relationships can be identified by comparing mean observation errors with
mean estimation residuals. Including empirical accelerations in the list of estimated parameters was found
to be a good way of reducing parameter estimation error.
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Symbol Description

a Acceleration vector
Aµ

NC Non-conservative acceleration tensor
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v (vb) Velocity vector (of b)
w , w i Scalar- and vector relativistic potential
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β PPN nonlinearity parameter
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δi j Kronecker delta tensor
∆b Scalar potential correction term
εF Formal error
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αβ
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ρ (ρ) Residual (vector)
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ρ̇ Range rate

σ (σi ) mass (current) density
σ Standard deviation
τ Proper time

Acronym Meaning

AU Astronomical Unit
BCRS Barycentric Celestial Reference System
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1
Introduction

Accurate and precise satellite navigation is a key requirement of almost all space missions. Observations of
the spacecraft’s position and velocity allow us to estimate not only its state, but also other parameters that
affect its motion [21]. The quality of these parameter estimates is partially dependent on the accuracy of the
dynamical- and observation models used during the estimation process. In this thesis, we investigate how in-
dividual relativistic modelling effects impact the quality of parameter estimates obtained from interplanetary
laser ranging (ILR) data.

This thesis is presented in the form of a research paper (Chapter 2) followed by a series of appendices with
supplementary information (Appendix A - C). Because it is presented as a stand-alone document, section
numbers in the paper omit the chapter number 2 (for example, "Section 2.3" refers to "3. Relativistic Ef-
fects"). In the paper, we discuss the simulated experiments that were carried out to assess the impact of
relativistic modelling on ILR-based parameter estimates. A brief conclusion of the thesis is given in Chap-
ter 3. Appendix A gives the full derivation of the acceleration effects listed in Section 2.3.2. In Appendix B
we present the methods used to verify our acceleration- and observation model software implementations.
Finally, our choice of numerical integrator is justified in Appendix C.

Common spacecraft navigation techniques include radio ranging, Doppler tracking, VLBI and laser ranging
[33] [25]. VLBI (Very Long Baseline Interferometry) measures the angular position of a radio-emitting space-
craft, while Doppler tracking determines its radial speed (range rate). Radio- and laser-ranging measure the
distance (range) to the spacecraft. Laser ranging has historically been more accurate and precise than radio
(cm- to mm-level for laser [22] vs. m-level for radio [13]). The limiting factor of retroreflector laser ranging
is target distance. Signal attenuation scales with the fourth power of range [7] [22], making laser ranging
unfeasible over interplanetary distances. A proposed solution to this problem is given in [7], where a two-
way transponder architecture is used to mitigate the attenuation problem. This technique is now known as
interplanetary laser ranging (ILR), and is currently undergoing development and testing.

ILR differs conceptually from satellite- and Lunar laser ranging (SLR and LLR) in that the spacecraft is equipped
with an active laser emitter instead of retroreflectors. Most ILR mission proposals favour a two-way asyn-
chronous transponder architecture [10, §2.2]. In such a setup, the ground station and spacecraft fire laser
pulses independently, and a set of up- and downlink measurements are paired together to mimic a reflected
signal pulse. This has the advantage of making the timing stability requirements of the space segment less
strict [10, §3.2]. ILR is discussed further in Section 2.2.

A prototype asynchronous laser transponder link with the MESSENGER spacecraft at 24 Gm distance demon-
strated that precision of around 20 cm is achievable in practice [29]. Estimates of future ILR performance
suggest that cm- to mm-level results could be possible [10] [34]. This increased level of measurement pre-
cision (compared to radio ranging) also increases the necessity for accurate modelling. General Relativity
(GR), which serves as the modern theory of gravity, introduces various accelerations and light-time effects
that need to be accounted for. In this thesis we investigate the impact of each relativistic effect individually,
when applied to a parameter estimation using ILR data as its input. The following research question was
formulated to describe this goal:
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2 1. Introduction

How do individual relativistic modelling effects impact the estimates of spacecraft ephemerides
and environmental parameters obtained using ILR observation data?

To fulfil this goal, we ran a series of simulated parameter estimation experiments involving a Jovian orbiter.
First, a set of two-way range observations is generated with a noise level of 1 mm. The model used to generate
these observations includes all of the identified relativistic effects, and is considered to represent reality in the
context of the experiment. These "real" observations are used as an input to a parameter estimation process
that uses a separate model, which excludes one relativistic effect. By comparing the outcome of parameter
estimation runs where different effects were excluded, we are able to effectively compare the impact of each
individual effect. The full experiment method is described in Section 2.4.

We can identify two categories of relativistic modelling effects applicable to our investigation: acceleration-
and light time corrections. In addition to relatively large, named effects such as the Shapiro time delay [28]
[27] and Schwarzschild acceleration [26, p.156], smaller effects can be derived using generalized methods.
With the estimated precision of ILR as a reference, we can identify a collection of relativistic effects that could
significantly impact the quality of results derived from ILR observations. Light time correction effects do not
need to be considered if their order is significantly lower than the typical observation noise level, which is
around 1 cm to 1 mm for ILR. The same condition can be applied to acceleration effects by considering the
spacecraft’s positional error after one contiguous measurement arc. In Section 2.3 we list the effects that
were selected for our investigation, along with preliminary estimates of the observation error caused by each
effect.
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Ranging Parameter Estimation Results
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Abstract

Interplanetary Laser Ranging (ILR) is an experimental spacecraft navigation technique with the
potential to produce cm- to mm-level range observations over interplanetary distances, a significant
improvement over the m-level performance of radio ranging. A common application of navigation
data is the estimation of physical and astronomical parameters. To maximize the quality of such
parameter estimates, observation- and dynamical models need to be sufficiently detailed. General
Relativity introduces several gravitational effects of varying magnitudes that affect both laser pulse
propagation and spacecraft dynamics. We investigate the relationship between individual relativistic
effects and the resulting parameter estimation quality. This was done through simulated experiments
involving a Jovian orbiter. The spacecraft state, mass of Jupiter and two post-Newtonian parameters
were estimated using different models, each excluding one relativistic effect to gauge its impact. The
parameter error, observation modelling error and estimation residuals were used as figures of merit to
quantify the influence of each effect. Rough preliminary estimates of a relativistic effect’s magnitude
were found to be a good predictor of its relative impact on parameter estimation error, with some
exceptions. Exclusion of the gravitational influence of Jupiter’s kinetic energy and the Sun-Jupiter
coupling from the model only affects the estimate of Jupiter’s mass, likely due to compensation by
the Newtonian gravity term. Similar compensatory relationships can be identified by comparing pre-
estimation observation error to post-estimation residuals. Including empirical accelerations in the
list of estimated parameters was found to be a preferable method of compensating for the omitted
modelling terms. Overall it is recommended that any ILR parameter estimation effort include all
relativistic effects with a magnitude of 0.1 mm or greater, and that empirical accelerations are
estimated to compensate for potential modelling errors.

1 Introduction

Accurate and precise satellite navigation is an important part of many space missions. In addition
to the direct need for determining a spacecraft’s dynamical state, many other parameters such as
gravitational fields and physical constants can be estimated from navigation data. Interplanetary
Laser Ranging (ILR) as presented in [Degnan, 2002] is an experimental satellite navigation technol-
ogy with predicted cm- to mm-level precision over interplanetary distances [Turyshev et al., 2010]
[Smith et al., 2006]. Its successful implementation could facilitate significant improvements in the
estimation of astronomical parameters and physical constants. [Dirkx et al., 2018] identified a num-
ber of these parameters, including the Solar oblateness factor J2 and the relativistic post-Newtonian
parameter β. However, this improvement in measurement precision makes the resulting data more
susceptible to small modelling errors, such as the exclusion of relativistic effects on spacecraft dynam-
ics and light propagation. In this paper we investigate the impact that a number of such relativistic
modelling effects have on the quality of parameter estimation results.
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The use of retroreflectors and laser pulses to measure spacecraft- and Lunar range has historically
yielded cm- to mm-level accurate ranging results [Murphy, 2013] [Pearlman et al., 2002]. Signal
attenuation is the limiting factor preventing laser ranging from being utilize over interplanetary
distances. [Degnan, 2002] proposes a solution to this problem by combining concepts from laser
ranging and radio transponder setups. An ILR link consists of the ground- and space segments
both firing laser pulses at one another asynchronously, with pairs of successful detections being
reconstructed into a two-way range measurement [Dirkx et al., 2018]. ILR is discussed in more
detail in Section 2.

The theory of General Relativity shows that light does not necessarily move in straight Euclidean
paths [Hartle, 2003, p.178, 179]. The largest relativistic effect on light time is that presented in
[Shapiro, 1964]. Additional analytical terms and general expressions for this light time delay are
derived in e.g. [Teyssandier and le Poncin-Lafitte, 2008] and [Hees et al., 2014]. General relativity
also affects the orbit of the spacecraft or celestial body being tracked [Kopeikin et al., 2011] [Dirkx
et al., 2015]. We investigate the influence of individual relativistic effects, both as they affects laser
pulse propagation and spacecraft dynamics, on orbit determination results using ILR observations.
The full list of effects we study is given in Section 3.

The central feature of ILR is the prospect of high-precision range observations over large distances.
Whereas traditional retroreflector ranging becomes unfeasible beyond the Moon, ILR remains a
viable alternative for ranging to the outer planets. A theoretical study on the scientific utility of
ILR was conducted in [Dirkx et al., 2018]. This investigation concluded that Solar system parameters
with a long-periodic influence on spacecraft motion could be estimated more accurately with the
high precision range data offered by ILR. In our investigation, we simulate the parameter estimation
process for a Jovian orbiter in a highly elliptical orbit (See Section 4).

In order to gauge the impact of relativistic modelling effects on parameter estimation results, a series
of simulated esperiments were carried out. In each experiment, the parameter estimation process
is run using a model that excludes a single relativistic effect. The resulting parameter estimation
errors are then compared. The methodology for the experiment is discussed further in Section 4.
The outcome of these experiments is presented Section 5.

With this research we aim to establish the relationship between relativistic modelling error and
parameter estimation quality. Determining the connection between these two factors should aid
making the construction of relativistic models for real ILR studies more efficient. Using preliminary
estimates and the results of our simulated experiments, it is possible to formulate a straightforward
criterion to determine whether a relativistic effect is worth including in the estimation model. If the
estimated magnitude of an effect, determined before parameter estimation, is lower than the observa-
tion noise level, it can be safely excluded from the estimation model without significantly impacting
parameter error. We also investigated the ways in which different modelling effects compensate for
one another, and how this effect can be achieved more consistently using empirical accelerations.
These topics are discussed in detail in Section 6. Finally, Section 7 provides a summary of our
conclusions and makes recommendations for further research on this topic.

2 Interplanetary Laser Ranging

Interplanetary Laser Ranging (ILR) was first proposed by [Degnan, 2002] as a way to extend the
functionality of current laser ranging methods to interplanetary missions. It combines the two-
way transponder architecture typical to radio-based systems with the use of laser pulse emitters
and receivers. ILR is expected to provide range measurements with cm- to mm-level precision and
accuracy over interplanetary distances [Turyshev et al., 2010] [Dirkx et al., 2018]. The technology has
been successfully demonstrated with the MESSENGER spacecraft at 24 Mm distance [Smith et al.,
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2006]. In this section we cover the details of the ILR architecture, its current state of development
and its role in our experiment.

2.1 Laser Transponder Architecture

Most modern laser raging setups use corner-cube retroreflectors (CCRs) to efficiently reflect sig-
nals off the target spacecraft back to the original transmission source. Given a time ∆t between
sending and receiving a laser pulse, the range R from the ground station to spacecraft is roughly
c∆t/2. Laser ranging is typically divided into the categories of satellite laser ranging (SLR) for
Earth orbiting spacecraft, and Lunar laser ranging (LLR) for tracking the Moon’s surface. These
techniques have historically yielded very accurate (cm- to mm-level) tracking results of near-Earth
spacecraft [Pearlman et al., 2002] and similar performance for tracking the Lunar surface [Murphy,
2013].

In CCR-based laser ranging, the attenuation of the original signal is proportional to R4 [Degnan,
2002]. This makes the use of CCRs feasible at near-Earth and Lunar distances [Murphy, 2013],
but becomes impractical for interplanetary targets due to the rarity of successfully detected return
signals. The laser transponder architecture aims to remedy this limitation.

An active two-way laser transponder system requires both observers to have laser emission and
detection hardware installed. Such equipment is available on Earth in the form dozens of laser
ranging stations [Pearlman et al., 2002]. Recent developments in laser time transfer (LTT) and laser
communication could serve as incentives to develop sufficiently powerful laser hardware for spacecraft
to facilitate effective ILR implementations [Dirkx et al., 2018]. Current ILR demonstrators such
as that in [Smith et al., 2006] make use of a spacecraft’s laser altimeter, which is not designed
specifically for ILR applications. The use of purpose-built hardware could improve the achievable
ILR performance over the current demonstrators.

There are two main transponder types, namely echo and asynchronous [Degnan, 2002]. In the case
of an echo transponder, the space segment waits for pulses to arrive from the ground station and
sends a response back after some delay δt. An asynchronous transponder setup has both observers
firing pulses constantly, with little or no explicit coordination. A pair of successful detections is then
selected such that they emulate an echo transponder observation. The delay δt can have different
values, including being negative. It is also generally much larger than for an echo transponder.
Figure 1 shows how the delay times differ between echo- and asynchronous transponders.

Figure 1: Example observations for the echo- (Left) and asynchronous (Right) transponder setups.
Black lines indicate successful detentions while gray lines represent pulse transmissions. Notice the
larger number of successful two-way observations in the asynchronous case (3 vs 1). An example of
negative δt is highlighted.

The main advantage of asynchronous transponders over the echo architecture is the amount of data
that can be produced. Assuming operation in the single-photon domain, each emitted pulse has
a probability p � 1 of being detectable at the other end of the link. For an echo transponder,
each pulse that is successfully detected in the uplink has to go through the same process in the
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downlink. This effectively reduces the probability of a given pulse producing a successful reading to
p2. Downlink emissions will also be triggered upon noise detections matching the calibrated laser
wavelength. The asynchronous transponder setup differs only in the fact that downlink pulses are
sent continuously, instead of in response to successful uplink detections. This increases the volume of
successful uplink- and downlink observations to p instead of p2. For low-power and/or long-distance
links where p is low, this difference can become very significant.

For a given two-way observation between two observers a and b there are four relevant moments in
time: The initial transmission time tt,a, reception tr,b, retransmission time tt,b = tr,b+δt and the final

reception time tr,a. The two-way range observable R
(2)
ab then becomes: [Dirkx et al., 2018]

R
(2)
ab = R

(1)
ab (tt,a, tr,b) + cδt+R

(1)
ba (tt,b, tr,a) (1)

where R
(1)
ab is a one-way range observation between observers p and q given by:

R(1)
pq (tt,p, tr,q) = |rq(tr,q)− rp(tt,p)|+ ∆Rpq(tt,p, tr,q) (2)

Here rx(t) is the position of observer x at time t, and ∆R(ta, tb) encompasses all higher-order effects,
errors and noise terms. Investigating the impact of these higher-order observation effects (specifically
those caused by relativity) is one of the goals of our experiment (see Section 3).

2.2 Current State of ILR

Several experiments have been carried out to demonstrate the feasibility of non-CCR ranging to
spacecraft. One-way laser links have been used to conduct laser ranging to the Hayabusa2 spacecraft
[Noda et al., 2017] and the Lunar Reconnaissance Orbiter [Bauer et al., 2017] [Bauer, 2017]. Two-
way asynchronous laser transponder links have been established with the MESSENGER spacecraft
on two different days during calibration of its laser altimeter. These experiments demonstrated a
range agreement with radio measurements within 52 m, an estimated precision of ±20 cm [Smith
et al., 2006]. As the technology matures, this performance could likely be improved to the predicted
cm- to mm level. [Turyshev et al., 2010]

The overall expected performance of ILR is similar to current SLR and LLR results. A comprehen-
sive list of error sources was made in [Dirkx et al., 2018, §3]. The main identified sources of error
were detector- and pulse width uncertainty, systematic errors from hardware imperfections, and in-
stabilities (i.e. random walk behaviour) from tropospheric influences and ground station positioning.
Based on random uncertainties from the detectors and laser pulse width, precision between 1 and
4 mm was estimated to be achievable by averaging over 10 measurements. Increasing the number
of measurements could reduce this to less than 0.1 mm. Hardware imperfections create systematic
errors on the order of several mm, based on figures from SLR. Random-walk error sources limit the
achievable accuracy of ILR to just below the cm level. Modelling of these unstable error sources are
fields of active research, and may improve achievable ILR performance in the future. In our study,
we use a simple Gaussian noise model with a standard deviation of 1 mm.

3 Relativistic Effects

The relativistic effects we study fall into two categories: acceleration- and light time effects. The
former influences the spacecraft motion, while the latter affects the observed propagation time of
laser pulses between targets. In this section we provide some background on the how these relativistic
effects can be derived (Section 3.1), as well as a list of effects that we will study (Sections 3.2 and
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3.3). We also provide some preliminary estimates of the magnitude of each effect in 3.4. These
estimates are later discussed in Section 6.1 as a potential metric for filtering out negligible effects
during the construction of a relativistic model.

3.1 Background

The General Theory of Relativity (GR) describes how the curvature of four-dimensional spacetime
affects the behaviour of matter and light within it. The relationship between spacetime curvature
Rµν and energy-, mass- and momentum density Tµν is summarized by the Einstein equation: [Hartle,
2003, p.483]

Rµν −
1

2
Rgµν = 8πGTµν (3)

where Rµν is the Ricci curvature tensor, R is its trace, Tµν is the stress-energy tensor, gµν is the
spacetime metric tensor and G is the gravitational constant. Out of these, the metric tensor is
relevant for deriving the relativistic effects used in our simulations. We express the metric as a
linear combination gµν = ηµν + hµν , where ηµν = diag(−1, 1, 1, 1). This is a common simplification
called linearized gravity, which simpliefies the analysis of the highly non-linear Einstein equation
given above [Hartle, 2003, p.459]. ηµν is called the Minkowski metric, and corresponds to a flat
spacetime model. hµν is called the metric perturbation, and can is the non-flat component of the
metric. In our analysis, we use a formulation of hµν based on the IAU recommendations [Soffel
et al., 2003]: [Dirkx et al., 2015] [Will, 1971] [Ni, 1972]

h00 =
2w

c2
− 2βw2

c4
+O(c−5)

h0i = −(γ + 1)
2wi

c3
+O(c−5)

hij = δij
2γw

c2
+O(c−4)

(4)

where w and wi are the scalar- and vector potentials, respectively, c is the speed of light and
δµν = diag(1, 1, 1, 1) is the Kronecker delta tensor. This metric is a parameterized post-Newtonian
(PPN) variant of the IAU 2000 recommendation [Soffel et al., 2003]. It includes two post-Newtonian
parameters, namely the rest mass curvature parameter γ and the superposition non-linearity pa-
rameter β [Misner et al., 1973, p.1072]. Both have a value of 1 in GR, and have been experimentally
confirmed to be within 10−5 of this value [Bertotti et al., 2003]. [Dirkx et al., 2018] identifies these
parameters as having potential to get improved estimates as a result of ILR. For this reason, we
include these as two of the estimated parameters in our simulations.

For the potentials w and wi we use the expressions given by [Soffel et al., 2003], namely:

wb = w0,b −
∆wb
c2

where ∆wb =
µb
rb

−2v2
b +

∑
a6=b

w0,a +
(vb · rb)2

2r2
b

+
ab · rb

2

 (5)

wib = −G(Sb × rb)
i

2r3
b

+ w0,bv
i
b (6)

where b is some body with mass Mb = µb/G, angular momentum Sb, speed vb etc. Here w0,b is
the point-mass potential µb/rb (we ignore spherical harmonics in our analysis, except in the J2 light
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time effect, see Equation 22). The external potential term
∑
a6=b w0,a includes all bodies in the

environment other than b, but in practice will typically only consider the Sun. Furthermore, note
that rb is the position of the observer w.r.t. b, not of b w.r.t. the Solar system barycenter.

With this expression for the metric gµν , the acceleration effects can be derived using the geodesic
equation. This expression describes the world line of an object as a function of the metric hµν
through the Christoffel symbols Γµαβ : [Hartle, 2003] [Dirkx et al., 2015]

d2xµ

dτ2
= −Γµαβ

dxα

dτ

dxβ

dτ
where Γµαβ =

1

2
gµν

(
∂hνα
∂xβ

+
∂hνβ
∂xα

− ∂hαβ
∂xν

)
(7)

It is more convenient for us to express the above dynamical equation in terms of the coordinate
time t instead of proper time τ . For this we can use the following expression: [Kopeikin et al.,
2011]

d2xi

dt2
= −c2Γi00 − 2cΓi0j

dxj

dt
− Γijk

dxj

dt

dxk

dt
+
dxi

dt

(
cΓ0

00 + 2Γ0
0j

dxj

dt
+

1

c
Γ0
jk

dxj

dt

dxk

dt

)
(8)

Here xi is the tensor equivalent of the spacecraft’s position vector rb. x
i represents three coordinates,

x1, x2 and x3, which are equivalent to the x-, y- and z-components of rb. Finally, by expanding
the Christoffel symbols Γi00, Γioj etc. explicitly using the metric in Equation 4 [Kopeikin et al.,
2011] [Dirkx et al., 2015], we get the following equations of motion in terms of the potentials w and
wi:

ẍi = w,i +
1

c2
[
ẋj ẋkγ(δjkw,i − δijw,k − δikw,j)− 2(γ + β)w · w,i − . . .

· · · − 2ẋiẋjw,j + 2(γ + 1)ẋj(wi,j − w
j
,i)
]

+O(c−3)
(9)

Here the , i subscript is shorthand for ∂/∂xi. Our formulation of the relativistic potential assumes
that factors such as planetary mass and angular momentum remain constant over time. Because our
potential does not explicitly depend on time, all time-derivative terms that would otherwise appear
have been omitted.

In the following section presents the acceleration effects that were derived using this dynamical
framework. Each effect is obtained by substituting a single term from the potential (Equations 5 and
6) into Equation 9. We also split the equations of motion into three distinct parts as follows:

ẍifirst order = w,i

ẍiSchwarzschild =
1

c2
[
ẋj ẋkγ(δjkw,i − δijw,k − δikw,j)− 2(γ + β)w · w,i − 2ẋiẋjw,j

]
ẍivector =

2(γ + 1)

c2
ẋj
(
wi,j − w

j
,i

) (10)

The above discussion applies to the derivation of acceleration effects. In addition to this, we also
consider relativistic light time effect that influence our observations. The largest relativistic light
time effect was first shown in [Shapiro, 1964]. Various methods have been developed to compute
light time delay more generally, either numerically or analytically. One such method is the direct
numerical integration of the geodesic equation, which governs relativistic light propagation (See
Equation 7) [Blanchet et al., 2001]. This method becomes very computationally intensive when
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dealing with higher-order relativistic effects, even in a static, spherically symmetric spacetime for-
mulations [Teyssandier and le Poncin-Lafitte, 2008, §1]. It is also difficult to distinguish individual
relativistic effects using this approach, making it non-ideal for our application.

Two alternative methods for computing relativistic light time effects analytically are the world
function and the time transfer function (TTF). The Synge world function was first given in [Synge,
1931] and is defined as half of the squared geodesic distance between two points. A general expansion
of the world function to arbitrary order was presented in [le Poncin-Lafitte et al., 2004]. The TTF
simply measures the difference in coordinate time between two events. A third-order approximation
was given in [le Poncin-Lafitte et al., 2004, §5], and an expansion up to arbitrary order in [Teyssandier
and le Poncin-Lafitte, 2008]. Analytical formulae for several relativistic light time effects were derived
in [Hees et al., 2014], three of which are used in this experiment (See Section 3.3).

To give an idea of how these light time effects were derived, the following formulation is given in
[Teyssandier and le Poncin-Lafitte, 2008] for the first-order one-way light time correction term:

∆R =
1

2
R

∫ 1

0

[
g00

(1) −N
ig0i

(1) +N iN jgij(1)

]
z(µ)

dµ (11)

Here ∆R is the light time correction with respect to a nominal range estimate R. Nk is a normalized
(length 1) oriented parallel to propagation path of the light signal. gµν(1) is the first-order terms of

the spacetime metric. z(µ) is a linear parametrisation of the space between the emitter xe and
receiver xr. That is, z(0) = xe and z(1) = xe, with all the values in between lying on the light travel
path.

At a high level, we can interpret Equation 11 as a summation of the influence that spacetime
curvature has on light time over the entire travel path of the signal. An integration is carried out
starting at the emitter (e.g. ground station) and ending at the receiver (e.g. spacecraft), with each
point on the intermediate path providing a contribution dependent on the local spacetime curvature
gµν(1). A crucial distinction between light time effects and accelerations is that the former is dependent

on the value of the spacetime metric at all points along the light propagation path, while the latter
is only influenced by gµν ’s value at the affected body’s position (i.e. at the spacecraft).

[Teyssandier and le Poncin-Lafitte, 2008] gives a detailed framework for deriving light time correc-
tions up to an any degree. While we have chosen to derive most of the acceleration effects given
below ourselves, the light time effects are taken from literature. Specifically, we have selected four
light time delay contributions from [Teyssandier and le Poncin-Lafitte, 2008] and [Hees et al., 2014],
based on their approximate magnitude compared to the our observation noise level of 1 mm.

3.2 Acceleration Effects

Using the method described above, seven relativistic acceleration effects were derived. These are in
addition to the classical point-mass gravity term:

apmg = −µb
r3
b

rb (12)

This term is obtained by substituting w0 into ẍfirst order in Equation 10. Because this term is large
and cannot be excluded from any experiments, we do not study this acceleration component as a
relativistic effect.

The Schwarzschild acceleration is obtained by substituting w0 = µb/rb into ẍiSchwarzschild:
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asch =
µb
r3
bc

2

[(
2(γ + β)

µb
rb
− γv2

)
rb + 2(1 + γ)(rb · v)v

]
(13)

For the next four effects, we take the terms in ∆wb/c
2 and substitute them into ẍifirst order. We do not

derive their Schwarzschild-equivalents (∆wb/c
2 → ẍiSchwarzschild) as these are of order O(c−4).

The first of these potential terms is wkin = 2µbv
2
b/rbc

2. We call this the kinetic potential as it is
proportional to the kinetic energy of the central body b. Substituting this into ẍifirst order produces
the following acceleration:

akin = −2µbv
2
b

r3c2
rb (14)

Notice that this term is proportional to the point-mass gravity (akin = 2(vb/c)
2apmg).

Next, we use the potential due to external bodies, wext = −
∑
a 6=b µbµa/rbrabc

2. Here rab is the
position of b with respect to a, where a is called the primary body. The external potential acceleration
due to a single primary body a is given by:

aext =
µbµa
r3
bc

2rab
rb (15)

Again, notice that aext ∝ apmg. The next effect is dependent on the velocity of b, and we call
it the central body velocity term. The potential wcbv = µb(vb · rb)2/2r3

bc
2 results in the following

acceleration:

acbv =
µb
r3
bc

2
· vb · rb

2

[
3
vb · rb
r2
b

rb − 2vb

]
(16)

Similarly, the central body acceleration term is dependent on the acceleration of b. The potential
wcba = µb(ab · rb)/2rbc2 produces the following acceleration:

acba =
µb

2rbc2

[
ab · rb
r2
b

rb − ab

]
(17)

The final two acceleration terms come from the vector potential wi (Equation 6). These are called
gravitomagnetic effects by e.g. [Kopeikin, 2010]. The angular momentum term is also commonly
known as the Lense-Thirring effect. It is based on the potential term wiang = G(Sb × rb)

i/2r3
b ,

which we substitute into ẍivector (See Equation 10). The resulting expression is: [Petit and Luzum,
2010]

aang =
µb
r3
bc

2
· (γ + 1)

[
3(rb · Jb)

r2
b

(rb × v) + v × Jb

]
(18)

where Jb = Sb/Mb is the specific angular momentum. Note that v is the velocity of the spacecraft,
not the central body.

The final effect is the extrinsic gravitomagnetic acceleration, obtained from the potential wixgm =

µbv
i
b/rb. Its expression is:

axgm =
µb
r3
bc

2
· 2(γ + 1) ((vb · v)rb − (rb · v)vb) (19)
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3.3 Light Time Effects

Light time effects are the second class of relativistic corrections we consider. These are part of the
ILR observation model. As described in Section 2, ILR observations are made by recording four
points in time when laser pulses are emitted and received. Spacetime curvature causes photons
to (appear to) travel along curved trajectories, making the first-order approximation R = c∆t
inaccurate. These inaccuracies can be compensated for by including the appropriate relativistic
light time corrections in our model. Below is a description of the four light time effects used in our
simulated experiments.

[Shapiro, 1964] presented the first-order contribution of a single static mass monopole to light time
delay. This effect is now called Shapiro time delay after the author and is the largest contribution
to the relativistic light time correction. Each body that gravitationally influences the light pulse
contributes to the total light time correction. The formulation below, as given in e.g. [Teyssandier
and le Poncin-Lafitte, 2008, p.11] is expressed in terms of the distances R, rbt and rbr, where b is
the central body and t, r are the transmitter and receiver, respectively.

∆Rshp =
(1 + γ)µb

c2
ln

(
rbt + rbr +R

rbt + rbr −R

)
(20)

Here γ is the post-Newtonian parameter introduced in Section 3.1. Shapiro time delay can be
around O(10 km) due to the Sun and O(10 m) from to Jupiter [Hees et al., 2014]. The Earth also
contributes around O(10 cm) (See e.g. Figure 6).

The second-order light time correction due to a static mass monopole is given by: [Teyssandier and
le Poncin-Lafitte, 2008, p.11]

∆R2nd =
µ2
b

c4
· R

rbtrbr

[
(8− 4β + 8γ + 3δ) arccos(D)

4
√

1−D2
− (1 + γ)2

1 +D

]
(21)

whereD = r̂bt·r̂br and δ is an additional PPN parameter. In our analysis we will assume δ = 1.

General expressions for the contribution of the zero-order spherical harmonic terms Jn are derived in
[Hees et al., 2014]. For our experiment we will only consider the contribution of equatorial oblateness,
J2. The light time correction due to J2 is given by: [Hees et al., 2014, p.10]

∆RJ2 =
µb
c2
·
J2,bR

2
eq,b

rbtrbr
· R

1 +D
×

[
1−K2

t

rbt
+

1−K2
r

rbe
−
(

1

rbt
+

1

rbe

)
(Kt +Kr)

2

1 +D

]
(22)

where Kt = k̂ · r̂bt and Kr = k̂ · r̂br, with k̂ being the central body’s axis of symmetry. Here Req is

the reference equatorial radius of the body producing the effect, and k̂ is a unit vector indicating the
orientation of the body’s axis of symmetry. This light time delay contribution is heavily dependent
on the observers’ positions with respect to the perturbing body. The effect is largest when D ≈ −1,
i.e. when rbt and rbr are close to antiparallel. This occurs when the observers are on opposite sides
of the perturbing body and the ray of light passes close to its surface. This property is also true for
the second-order static mass monopole contribution given in Equation 21.

The final light time effect we consider is that caused by the motion of a central body with velocity
vb: [Hees et al., 2014]
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∆Rvlt =
(1 + γ)µb

c3

[
vb · R̂ ln

(
rbt + rbr +R

rbt + rbr −R

)
+ . . .

· · ·+ 2R

(rbt + rbr)2 −R2

(
c(tr − t0)vb · (r̂bt + r̂br)− . . .

· · · −(rbt + rbr)R̂ · vb −Rr̂bt · vb
)]

(23)

Here time t0 is some reference time at which the perturbing body’s state is known. The light time
correction given above assumes the perturbing body’s motion to be uniform, in which case the
choice of t0 is arbitrary. However, because real Solar system bodies move with non-uniform velocity,
it becomes necessary to select t0 such that the error caused by this approximation is as small as
possible. The following formula can be used to select the optimal t0: [Hees et al., 2014, p.8]

t0 = max

(
tt, tr −max

(
0,

g · (rbr(tr))
c|g|2

))
(24)

where g = R̂ − vb(tr)/c. The value of t0 is guaranteed to lie between the reception- and emission
times tt and tr. Finally, note that the observer positions rbt and rbr in Equation 23 are defined with
respect to the perturbing body’s position at time t0.

3.4 Preliminary Estimates

Tables 2 and 3 provide a summary of the relativistic effects discussed above. The given abbreviations
(”sch”, ”kin”, ”shp” etc.) are used in the following sections. We use the shorthand [B,abr] to denote
the effect with abbreviation ”abr” caused by body B, where we use S, J and E the Sun, Jupiter
and Earth, respectively. For example, [S,xgm] represents the extrinsic gravitomagnetic acceleration
effect caused by the Sun.

Preliminary estimates for the effects are also given. The approximation formulae for the accelerations
are based on Equations 13 to 19. All vetor quantities were replaced with their scalar equivalents, and
all signs made positive. For example, in Equation 17 we convert (ab ·rb)rb/rb−ab into abr

2
b/r

2
b +ab =

2ab. This yields conservative (i.e. large) estimates.

The acceleration magnitudes are expressed as a multiple of apmg ≈ 20 m/s2. Assuming constant
linear acceleration over an entire 12-hour integration arc (See Section 4.1) the total displacement
error ∆s can be conservatively estimated by ∆s = ∆at2/2. Using t = 12 hrs = 43, 200 s and
setting ∆s = 10−3 m based on the ILR noise level, we can conclude that accelerations below
a = 2∆s/t2 ≈ 10−12 m/s2 are extremely unlikely to influence the results at all. Based on this,
[S,cba] and [J,cba] are not modelled in our simulation. Some of the remaining effects ended up
having little to no influence on our results, and these are discussed further in Section 5.

Name Value Formula Name Value Formula
µJ 1.3× 1017 m3/s2 GMJ µS 1.3× 1020 m3/s2 GMS

JJ 3.6× 1011 m2/s SJ/MJ c 3× 108 m/s -
rJ 7.6× 107 m rJ,p rSJ 7.8× 1011 m -

vJ 1.2× 104 m/s
√
µS/rSJ v 7.1× 104 m/s vJ +

√
µJ(2/rJ,p − 1/a)

aJ 2.1× 10−4 m/s2 µS/r
2
SJ

Table 1: Values used for the approximations given in Table 2. Values of G, c,MJ ,MS , rSJ are from
[Lissauer and de Pater, 2017], and SJ taken from [Soffel et al., 2003, p.2704].
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Name Approximation Magnitude (J) Modelled Studied
Point Mass Gravity pmg - 1 S, J -

Schwarzschild sch (2µJ/rJ + 5v2)/c2 10−5 S, J S, J
Kinetic kin 2v2

J/c
2 10−9 S, J S, J

External Potential ext µS/rSJc
2 10−9 J J

Central Body Velocity cbv 5v2
J/2c

2 10−9 S, J S, J
Central Body Acceleration cba aJrJ/c

2 10−13 - -
Angular Momentum ang 8vJJ/rJc

2 10−8 S, J S, J
Extrinsic Gravitomagnetic xgm 4vJv/c

2 10−8 S, J S, J

Table 2: Summary of relativistic acceleration effects considered in the experiment. Approximations are
given relative to the point-mass gravity (pmg) term, and only computed for Jupiter. Effects in the
”Modelled” column are included in the truth model (See Section 4.2).

Name Magnitude (S, J, E) Modelled Studied
Shapiro shp 10 km 10 m 10 cm S, J, E J, E

Second Order 2nd 1 mm 10−8 m 10−12 m S, J, E S, J, E
J2 J2 0.1 mm 1 cm 10−7 m S, J, E S, J, E

Velocity Light Time vlt 1 mm 1 cm 1 cm S, J, E S, J, E

Table 3: Summary of relativistic light time effects considered in the experiment. Rough approximations
for each effect are given for the Sun, Jupiter and Earth (S, J, E). When applicable, these values were
checked against those given in [Hees et al., 2014, pp. 12,13]. ”Modelled” effects are included in the
truth model. Solar Shapiro is not studied, as the light-time calculator fails to converge when it is
excluded from the estimation model (See Section 4.2).

4 Methodology

The impact on parameter estimates of each effect given in Section 3 was assessed using simulated
experiments. The TU Delft Astrodynamics Toolbox (Tudat) software tool was used for these simu-
lations. In this section we give a description of the experiment setup. The motivation for choosing
Juno as our reference mission, as well as the exact orbit definition are covered in 4.1. An outline of
the experiment setup is given in 4.2. Finally, the metrics used to express the experiment results are
defined in Section 4.3.

4.1 Environment Definition

In our simulated experiments, we target a spacecraft in a Juno-like orbit around Jupiter. This
choice is based on [Dirkx et al., 2018], which showed that ILR can potentially improve estimates of
parameters whose influence on the observation signal had a long period (> 2 hours). Solar orbiters
and spacecraft orbiting high above planets have especially long characteristic periods (days - years).
Juno had a planned orbital period of 14 days, but ended up in a 54-day orbit due to a failed burn
[Brown and Cantillo, 2017]. In addition to its long orbital period, Juno was used as a reference to
verify our light time correction implementation against that of [Hees et al., 2014].

Our simulation environment includes the Sun, Earth and Jupiter, as well as our Juno-like spacecraft.
Additionally, we place six laser ranging ground stations on Earth’s surface. Two are placed on the
poles, and four on the equator at longitudes of 0◦, 90◦,−90◦ and 180◦. This is done to ensure that
the Earth does not occlude all ground stations from the spacecraft.

The Naif SPICE toolkit included in Tudat is used to approximate the state functions of the three
celestial bodies [Acton, 2019]. An interpolated ephemeris based on tabulated planetary positions
was used to define the orbits of the relevant celestial bodies. The spacecraft’s state is propagated
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numerically over a twelve-hour period around the periapsis. This part of the orbit is chosen because
the proximity to Jupiter maximizes many of the light-time and acceleration effects being studied,
meaning this interval has the largest potential to influence parameter estimates. The rest of the orbit
is assumed to be roughly Keplerian. Propagation around the periapsis is repeated twelve times, with
Jupiter having progressed in its orbit by 54 days each time. The first arc starts at midnight, 10
October 2016. Figure 2 shows a rough illustration of how the arcs are structured.

Figure 2: An illustration of the first two out of twelve propagation arcs (not to scale). The orientation
of Juno’s orbit w.r.t. the inertial reference frame does not change between arcs, and the trajectory
outside of the arcs is not propagated.

Quantity Value
Periapsis radius 7.56× 107 m
Apoapsis radius 8.10× 109 m

Inclination 89◦

Longitude of asc. node 30◦

Argument of periapsis 10◦

µ of Jupiter 1.26687× 1017 m3/s2

Quantity Value
Observation interval 60 s

Observation noise (σ) 1 mm
Number of arcs 12

Arc duration 12 hrs

Table 4: Definition of the spacecraft’s orbit at the beginning of an arc (left), and other values (right).

4.2 Experiment Overview

Our experiment is designed to study the impact of each relativistic effect in isolation. To achieve this,
we run the parameter estimation process several times using different acceleration- and observation
models. A nominal model (called the truth model) is defined, which includes all of the effects we are
studying (See Section 3). For each run, a model used during parameter estimation (the estimation
model) is defined which differs w.r.t. the truth model by exclusion of one relativistic effect.

The truth model is used to generate observations as an input to the parameter estimation process.
These serve as a substitute for real ILR observations. After this, the estimation model is used in
conjunction with this observation set to generate estimates for a given set of parameters. Specifically,
we estimate the gravitational parameter µ of Jupiter, the post-Newtonian parameters γ and β, as
well as the spacecraft’s state at the beginning of each arc. In addition to the parameter estimates
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themselves, several other figures such as residuals and estimation errors are produced as outputs
(See Section 4.3) Figure 3 illustrates how the truth- and estimation models are used during a given
run of the experiment.

Figure 3: An illustration of the difference between the truth- and estimation models (left) and a top-
level information flow diagram for a parameter estimation run (right). Here independent variables
are intentionally varied between experiment runs to observe their effect on the dependent variables.
controlled variables are kept the same between esperiment runs.

The purpose of setting up the experiment in terms of a truth- and estimation model is to isolate
modelling error as an independent variable. By making the exclusion of one relativistic modelling
term the only explicit change between simulation runs, we can determine the relationship between
individual effects and the resulting quality of parameter estimates. One basic hypothesis we can
test is that the magnitude of parameter estimation error is proportional to that of the excluded
effect. This requires the quantification of a modelling effect’s magnitude, which we can do through
the preliminary estimates given in Section 3.4 and using the impact metrics described in Section
4.3.

In addition to the hypothesis described above, we will be able to determine the extent to which
different model terms can compensate for one another. We can hypothesize that large effects such
as the Newtonian point-mass gravity term, Schwarzschild acceleration and Shapiro light time effects
of Jupiter could compensate for smaller accelerations and light time corrections that are excluded
from the model. A similar approach (with a truth- and estimation model) was used in [Dirkx et al.,
2016] to investigate the relationship between dynamical modelling and the properties of Jupiter’s
moons.

Another approach to compensate for the absence of modelling terms is the estimation of empirical
accelerations (”empiricals”). To investigate the influence of these, we run the entire experiment (one
estimation run for each relativistic effect) twice. In one of these instances we include the estimation
of empirical accelerations in the parameter vector, in addition to the spacecraft initial state, mass
of Jupiter, γ and β. Specifically, we estimate a constant 3D acceleration vector in the spacecraft’s
radial-, cross-track- and along-track directions. We estimate a separate empirical acceleration vector
for each arc, resulting in a total of 12 × 3 = 36 additional parameters. Adding these parameters
should be able to compensate for the exclusion of effects that are largely independent of orbit
geometry (i.e. effects that are largely constant throughout an arc).

For each parameter estimation run, the following steps are carried out:

1. Define the environment (Sun, Jupiter, Earth, Juno, ground stations)

2. Create acceleration models (truth- and estimation)

3. Compute starting time and initial spacecraft state for each arc

4. Create observation models (truth- and estimation)

5. Specify parameters to be estimated

6. Generate a set of noisy observations using the truth model
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7. Estimate the specified parameters using the generated observations

The spacecraft is influenced gravitationally by Jupiter and the Sun. For simplicity, we neglect other
perturbing sources of gravity (e.g. Jupiter’s moons, Saturn, Earth) in our model. Additionally,
all classical perturbing accelerations (e.g. spherical harmonic gravity, atmospheric drag, radiation
pressure) are neglected. The only accelerations included in our model are Newtonian point-mass
gravity and the relativistic terms given in 3.2. This minimal approach is used to ensure that only
the effects under study influence the results.

The parameter estimation process is carried out using the iterative least squares gradient descent
method. In short, a vector of parameters x is estimated by starting with an initial guess that is
updated over a number of iterations to obtain an least-squares parameter vector xlsq. The estima-
tion process takes an observation vector z and corresponding observation model h(x) (which is also
dependent on the spacecraft dynamical model) as its inputs. In our case z is a vector of range mea-
surements. On each iteration, the parameter vector is updated according to the following mapping:
[Montenbruck and Gill, 2005, p.262]

xlsq → xlsq + ∆xlsq where ∆xlsq =
(
HTWH

)−1 (
HTW (z− h(xlsq))

)
(25)

Here H is the normal matrix, defined as H = ∂h/∂xlsq and obtained by numerically integrating the
variational equations (See e.g. [Montenbruck and Gill, 2005, ch.7.2]). W is the weight matrix given
by W = diag(σ−2

1 , σ−2
2 , . . . , σ−2

n ), where σk is the expected error of the kth observation. In our case
we simply have σk = 1 mm for all observations. A full description of the weighted least-squares
parameter estimation process can be found in [Montenbruck and Gill, 2005, ch.8].

The spacecraft state and variational equations were computed numerically using a Cowell propa-
gation scheme (i.e. using Cartesian state coordinates) and a Runge-Kutta seventh-order integrator
with a constant 10 s step size. By testing different step sizes and integrator types, this setup was
found to be a good compromise between computation speed and results quality, with the total
positional error at the end of an arc not exceeding 0.1 mm.

4.3 Impact Metrics

To quantify the relationship between relativistic modelling and parameter estimation error we use
three different metrics: true-to-formal error ratio, observation errors and estimation residuals. In
this section we define each metric and discuss how they are related to the experimental variables.
In Section 5 the results are presented, which are given in terms of these metrics.

4.3.1 True-to-Formal Error Ratio

The first metric, true-to-formal error ratio, is used as a way to numerically quantify modelling error.
As discussed above and shown in Figure 3, the main independent variable of the experiment is the
list of terms included in the estimation model. While the magnitude of each term can be roughly
estimated (as we have done in Section 3.4), a more rigorous estimate can be obtained by looking
directly at the influence on parameter estimates. Because we have full access to the underlying
parameters used in the truth model, we can compare these to the corresponding estimated values
to obtain a true error figure εT . For example, given a true value of the PPN parameter γT = 1 and
an estimated value γE , the true error is given by εγ,T = |γT − γE |.

In a perfect estimation process (using an error-free model, noise-free observations and perfect nu-
merical integration) εT should be zero. Conversely, any deviation of εT from zero can be interpreted
as a measure of the listed error factors. The noise of our generated observations is Gaussian with a
standard deviation of 1 mm, and our integrator has an estimated maximum error less than 0.1 mm.
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Given this, any true error value greater than that of the control experiment (where the true- and
estimation models are equal) should serve as a quantitative measure of the impact a given modelling
term has on parameter estimates.

To make the comparison of error terms w.r.t. different parameters easier, we normalize the true
error with respect to formal error εF . As mentioned above, the parameter estimates are obtained
through an iterative least-squares gradient descent process. On any given iteration, the parameter
covariance matrix C can be computed through C = (HTWH)−1, where H and W are the normal-
and weight matrices of that iteration, respectively (See Equation 25). The diagonal entries of C are
the estimated variances σ2

p of parameters p, and the formal errors of are in turn defined as their
square roots: εF,p = σp. As such, formal error serves as an estimate of the standard deviation of
parameter estimation error, assuming said error is a random variable. [Montenbruck and Gill, 2005,
p.264]

The ratio of these two error figures is simply called the true-to-formal error ratio or TF-ratio,
εTF = εT /εF . While the true error εT is directly related to the modelling error, εF can (and does,
in our case) have a relatively small value even when modelling error is large. This is because εF
is closely related to random errors, whereas the removal of a modelling term results in systematic
observation errors. The result of this is that εF remains largely constant across our experiments
(< 1% difference between control and the largest effect, Jupiter Schwarzschild light time). As such,
the TF-ratio serves as a good numerical measure of the impact that removing a given relativistic
modelling effect has on the resulting parameter estimates.

It is important to note that the TF-ratio can only be computed in theoretical studies such as this one,
where the underlying parameters of the truth model are known. In any real-life effort to estimate
astronomical parameters, their true values are not known at any point. The two remaining metrics
described below can be computed in real experiments.

4.3.2 Observation Error

The second metric we use to gauge the relativistic effects is observation error ∆R. The range
observations RT used as inputs to the parameter estimation process are generated using the truth
model (See Figure 3). Using the same settings, we can generate another set of observations RE

using the estimation model. We can eliminate the influence of noise either by generating noise-free
RT and RE separately, or by generating both with the same noise values and subtracting them from
one another. Either way, we define the vector of noise-free observation errors as ∆R = |RT −RE |.
We can condense this into a single figure by taking the average of ∆R, yielding the mean absolute
noise-free observation error ∆R̄. Unless otherwise specified, shorthand terms like ”mean observation
error” are used to refer to ∆R̄.

The mean observation error serves as a straightforward indicator of a modelling effect’s magnitude.
In the case of light time effects, ∆R̄ simply gives the mean value of the expressions given in Section
3.3, computed at the specified observation times. For acceleration effects, ∆R̄ gives an aggregated
measure of how far the satellite deviates from its nominal orbit (i.e. the trajectory given by the
truth model). Note that ∆R̄ is independent of the estimation process, as all the data is generated
before any parameter estimation is carried out. As such, ∆R̄ can be regarded as pre-estimation
observation error, in contrast to the residuals which can be seen as post-estimation observation
errors (See following section).

In contrast to the TF-ratio, mean observation error is computable in a real experiment setting
given that the formulation of a given effect is known. For light time effects, the entries in ∆R can
be computed directly using the expressions given in Equations 20 to 23 (and any additional light
time correction expressions, depending on the experiment). The observation error due to acceler-
ation modelling error can also be computed, but requires the spacecraft’s orbit to be numerically
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propagated.

4.3.3 Estimation Residuals

Finally, we use the vector of residuals ρ as an impact metric. For a given iteration of the least-
squares estimation process, the residuals are defined as ρ = z − h(xlsq). Here z is the vector of
observations (in our case the ranges R) and h(xlsq) is the modelled set of observations based on the
current parameter estimates xlsq. Similarly to the mean observation error ∆R̄, we can condense the
residual vector into a single value by taking the mean of the absolute residuals ρ̄. Note that in this
study we use the noise-free residuals, which we simply compute by subtracting the generated noise
from the computed residuals. Because noise values cannot be reliably obtained from real observation
data, any real experiment aiming to replicate our method will have to use noisy residuals.

As mentioned above, residuals ρ can be interpreted as the post-estimation equivalent of the observa-
tion error ∆R. Both can be computed in a real experimental setting, and as such the relationships
and conclusions presented in the following sections could be applicable to such studies.

5 Results

In this section we present the results generated using the method described above. The three met-
rics introduced in Section 4.3 are used to gauge the impact of each relativistic effect on parameter
estimates. Furthermore, two separate experiments were run where the estimation of empirical accel-
erations was included and excluded. In both cases we only look at the impact this on the four main
parameters (state, µJ , γ, β) and not the acceleration estimates themselves. We use the shorthand
described in Section 3.4 to refer to relativistic effects. That is, [B,abr] refers to the effect pertaining
to body B with the corresponding abbreviation ”abr”. Table 5 gives all of the abbreviations and
body names used.

Effect Name Abbreviation
Point Mass Gravity pmg

Schwarzschild sch
Kinetic kin

External Potential ext
Central Body Velocity cbv
Angular Momentum ang

Extrinsic Gravitomagnetic xgm

Effect Name Abbreviation
Shapiro shp

Second Order 2nd
J2 J2

Velocity Light Time vlt
Body Name Abbreviation

Sun S
Jupiter J
Earth E

Table 5: Summary of abbreviations used. Acceleration effects (Left), Light time effects (Right top) and
celestial bodies (Right bottom).

We first give the true-to-formal error ratio values in Section 5.1 and compare these to our preliminary
estimates. In Section 5.2 we compare the TF ratio values to the mean observation error, a more
robust version of our preliminary estimates. Finally, in Section 5.3 we look at the influence that the
estimation process has by comparing the pre- and post-estimation observation errors in the form
of residuals. While there is some discussion in this section, the implications of the results will be
discussed further in Section 6.

5.1 True-to-Formal Error Ratios

As discussed in Section 4.3.1, the true-to-formal error ratio (”TF ratio”) is a dimensionless figure
that is directly indicative of the impact modelling error has on the resulting parameter estimates.
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In Figures 4 and 5 the TF ratios obtained from our simulations are presented directly. The two
figures differ in whether empirical accelerations were estimated or not. For Figure 4 empiricals were
not estimated, and for Figure 5 they were. Each experiment also includes a control run where the
truth- and estimation models are the same (i.e. no effects are excluded).

Out of the 22 studied effects listed in Tables 2 and 3, 14 are displayed here. The eight remaining
effects (namely [S,kin], [S,cbv], [S,ang], [S,xgm], [S,J2], [J,2nd], [E,2nd] and [E,J2]) were filtered out
based on their negligible impact on observation error. Specifically, their mean absolute observation
error ∆R̄ (See Section 4.3.2) was below a threshold of 10−5 m. In addition, their TF error ratios
were close (within 1%) of TF ratio obtained from the control experiment.

There are some things we can note based on this initial set of filtered effects. For the Sun, only the
largest dynamical effect, the Schwarzschild acceleration, has a significant impact on estimation error.
Overall, the spacecraft’s distance from the Sun is too large for the remaining dynamical effects to be
significant. Additionally, [S,kin], [S,cbv] and [S,xgm] depend on the Sun’s barycentric velocity, which
is quite slow (around 20 m/s). Conversely, the Sun is the only body for which the second-order light
time effect [S,2nd] is significant. The same is true for Jupiter and the J2 light time effect. Looking
at the preliminary estimates given in Table 3 we see a good agreement with the experimental results.
All of the effects with an estimated magnitude of 0.1 mm or lower were found to have a negligible
impact on estimation results, and vice versa.

We can compare the preliminary effect magnitude estimates made in Section 3.4 with the resulting
parameter error. To recap, Table 2 gives conservative (i.e. large) estimates for the relative magni-
tudes of Jupiter’s acceleration effects. The Schwarzschild term is largest, at around 10−5 times the
point mass gravity term. This is followed by [J,ang] and [J,xgm] at around 10−8 times the point
mass term, and [J,kin], [J,ext] and [J,cbv] at 10−9 times. Comparing these values to the TF ratios,
the order of the terms matches for the most part. Excluding [J,shp] from the dynamical has the
greatest influence on TF ratio of the Jupiter acceleration terms, in all cases. This is followed by
[J,ang] and [J,xgm], which again matches the preliminary estimates. While the remaining three
effects also match the relative order of the estimates, [J,kin] and [J,ext] notably have much lower
TF ratios than [J,cbv] for the state, γ and β parameters when no empiricals are estimated. This
discrepancy is discussed further below, and in Section 6.

We can make similar comparisons between the preliminary estimates and TF ratios for the light
time effects. With reference to Table 3, the largest effect is Jupiter’s Shapiro light time correction
[J,shp] at around 10 m. This is followed by [E,shp] at around 10 cm. [J,J2], [J,vlt] and [E,vlt] all
have magnitudes around 1 cm, and [S,2nd] and [S,vlt] both around 1 mm. Comparing these with
Figures 4 and 5, we see that the order of the TF ratios generally matches the predictions. The main
exception is [J,vlt], which has a slightly larger TF ratio than [E,shp]. This could be attributed to
a poor initial estimate or something else. To determine the cause, we should look at more precise
estimates of the

5.2 Comparison with Mean Observation Error

To make the comparison between true-to-formal error ratio and the magnitude of each effect more
concrete, we can directly compute the average observation error ∆R̄ caused by removing each rel-
ativistic effect (See Section 4.3.2). For each experiment, two sets of noise-free observations were
generated using the truth- and estimation models, respectively. By computing the absolute differ-
ence of these two observation sets and then taking the mean, we get a single figure called the mean
absolute observation error ∆R̄. This metric is a more robust variant of the estimates computed in
Section 3.4.

Figures 6 and 7 show plots of the TF ratio against ∆R̄ for the experiments excluding and including
empirical acceleration estimates, respectively. We can see that the two metrics are correlated to
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Figure 4: True-to-formal error ratio obtained when excluding the given effect from the estimation
model. Red, yellow and blue bars represent Jupiter, the Sun and Earth, respectively. ”Ctl” is the
control experiment where the estimation- and truth models were the same.

some degree, with a large ∆R̄ being indicative of a large TF error ratio. This is to be expected, as
both metrics are directly dependent on modelling error.

Performing an exponential fit (that is, a linear fit on the logarithmic data in given Figures 6 and 7)
allows us to quantify the degree of correlation between ∆R̄ and εTF through the resulting R-value.
Using all of the available data points, the correlation without empirical accelerations is fairly weak
(between 0.4 and 0.8). However, if we ignore the two outliers [J,kin] and [J,ext], the correlation of
the remaining points is fairly good (0.87 to 0.95).

Carrying out a similar process for the empirical acceleration experiment, the improvement is less
pronounced. The degree of correlation improves somewhat from R ≈ 7.5 to R ≈ 0.85. Looking at
the distribution of the data points, we see that there are many more but less extreme deviations
from the best-fit line.

Overall, we observe that ∆R̄ and εTF become slightly less correlated when the estimation of empirical
accelerations is introduced. However, the influence of the extreme outliers [J,kin] and [J,ext] is also
reduced significantly. Looking the set of outliers that appear when estimating empiricals, we can
see that they are largely acceleration effects, all having significantly lower TF ratios than should be
expected based solely on the mean observation error. This result is to be expected, as the addition of
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Figure 5: True-to-formal error ratio obtained when estimating empirical accelerations. Red, yellow and
blue bars represent Jupiter, the Sun and Earth, respectively. ”Ctl” is the control experiment where the
estimation- and truth models were the same.

a constant empirical acceleration during each arc should be able to compensate for the exclusion of
a relativistic acceleration modelling effect. While none of the dynamical effects studied are strictly
constant throughout any given arc, empirical accelerations should still be able to compensate for
some of the error, which is indeed what we observe.

5.3 Observation Errors and Residuals

The final impact metric we consider is the estimation residuals ρ. As mentioned in Section 4.3.3,
residuals are defined as the difference between real observations z and modelled observations h(xlsq)
based on the current parameter estimates. Just like with the observation error ∆R, we can condense
the residuals into a single figure by taking the mean of the absolute residuals, yielding the mean
absolute residual ρ̄. Note that we use the noise-free residuals, which is not possible in a real-life
situation.

Because ∆R̄ and ρ̄ can both be interpreted as an ”observation error” measure, it makes sense to
directly compare the two. Figure 8 plots ρ̄ and ∆R̄ against one another, both with and without
estimating empirical accelerations.

A notable feature of Figure 8 is that the mean residuals are always lower than the mean observation
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Figure 6: Comparison between the mean absolute observation error and true-to-formal error ratio when
empirical accelerations were not estimated. Red, yellow and blue data points represent Jupiter, the
Sun and Earth, respectively. The ”Filtered” best fit line excludes the outliers [J,kin] and [J,ext].

errors. This is to be expected, as the estimation process aims to minimize the least-squares magni-
tude of the residual vector. As such it makes sense that ρ̄ ≤ ∆R̄ in all of our experiments.

Comparing the two graphs, we can see that the residuals and observation errors are much closer to
being equal when empirical accelerations are included in the estimation process. While one might
conclude that lower residuals imply a more successful estimation process (i.e. more accurate param-
eter estimates), it is more likely that these small residual values are achieved by introducing error
somewhere else. We have already seen in the previous section that including empirical accelerations
generally results in better parameter estimates (i.e. lower TF ratios). In other words, the relatively
low mean residual figures obtained come at the cost of poor parameter estimates.

Finally, looking at the graph where empirical accelerations are estimated (i.e. Figure 8 (Right)),
we can easily identify a set of five outliers. These are [J,kin] and [J,ext], which we have identified
previously, in addition to [J,xgm], [J,cbv] and [S,sch]. These are distinguished from the remaining
effects in that they show a visible deviation from the nominal ∆R̄ = ρ̄ line. While it is not as clearly
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Figure 7: Comparison between the mean absolute observation error and true-to-formal error ratio when
empirical accelerations were estimated. Red, yellow and blue data points represent Jupiter, the Sun
and Earth, respectively. The ”Filtered” best fit line excludes the outliers [J,kin] and [J,ext].

distinguishable in the empirical-free experiment, we can still see that the same five effects have very
low mean residual figures compared to mean observation error. The mechanism by which these
outliers manifest is likely through compensation in the model by a larger effect. For example, the
kinetic acceleration term [J,kin] is proportional to the point-mass gravity term [J,pmg], assuming
that the orbital speed of Jupiter is constant (See Equation 14). Because of this, excluding [J,kin]
from the model results in the parameter estimates (likely µJ in this case) being updated so that the
the point-mass gravity term in the model effectively includes the contribution of [J,kin]. We discuss
this mechanism in more detail in Section 6.2.

6 Discussion

Having presented the results of our simulations above, we now look at some of the key observations
and their implications to potential real-life ILR campaigns. We first go over the usefulness of rough
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Figure 8: Comparison between mean absolute observation error and residuals, without (Left) and with
(Right) the estimation of empirical accelerations. The diagonal line represents ρ̄ = ∆R̄.

preliminary estimates in Section 6.1. Then, in Section 6.2 we go over possible mechanisms by which
different modelling effects can compensate for one another. Section 6.3 covers a similar discussion as
it relates to empirical accelerations. Finally, in Section 6.4 we discuss what our observations mean
from a broader perspective and look at possible ways by which the methods used here can be carried
over and applied to real-life experiments involving ILR.

6.1 Utility of Preliminary Estimates

As was discussed briefly in Section 5.1, the preliminary estimates computed in Section 3.4 show
some agreement with the numerical true-to-formal error ratio figures obtained through simulation.
We can make the following observations about these preliminary estimates as they relate to the
results:

• Effects with a negligible mean observation error ∆R̄ also showed a negligible deviation in
true-to-formal error ratio with respect to the control experiment

• Light time effects that had a negligible influence on the results all had a preliminary estimated
magnitude below the our observation noise level (i.e. 1 mm).

• Acceleration effects pertaining to Jupiter showed a general agreement in the relative magni-
tudes (i.e. their order from large to small) of the preliminary estimates and the TF error ratios.
There are some exceptions, which are discussed in Sections 6.2 and 6.3.

While these rough preliminary estimates are not ideal data points and certainly should not be used
as a substitute for simulation data, they do have the potential for some utility in a real parameter
estimation effort. The main advantage is the ease with which these estimates can be computed
from a given mathematical model. Because we observe at least some correspondence between the
estimates and the final numerical results, they can be used as an initial step in filtering out negligible
modelling terms. In our study, we retroactively filtered out eight relativistic effects based on the
detailed simulation results. In a study where running a single parameter estimation run is more
computationally expensive, this filtering step can be carried out in advance.

In addition to the above considerations, it should be noted that the mean observation error ∆R̄ is
a potentially useful tool for filtering out negligible model terms as well. The preliminary estimates
discussed so far are essentially a rough estimation of ∆R̄. Also, as mentioned in Section 4.3.2, mean
observation error can be computed independent of the parameter estimation process. While it does

25



require fully setting up a numerical simulation, this can still be a desirable option is said simulation
is significantly less computationally expensive than the estimation process. Based on Figures 6 and
7 we can observe that ∆R̄ and the TF ratio are fairly well correlated, with [J,kin] and [J,ext] being
the main exceptions. As such, mean observation error could be used in place of (or in addition to)
rough estimates as a tool to filter out negligible modelling effects.

In summary, the results obtained in this study serve as numerical verification that rough preliminary
estimates of an effect’s magnitude can be used with to narrow down the list of modelling terms that
need to be taken into account during parameter estimation. These estimates can either be computed
using the methods described in Section 3.4 or by running a preliminary simulation to obtain the mean
absolute observation error ∆R̄. Other methods with a level of detail between these two approaches
can of course also be devised.

6.2 Compensation by Larger Effects

Throughout Section 5 we made note of some outliers to the observed relationships and patterns.
Specifically, exclusion of the kinetic gravity term of Jupiter [J,kin] and its external potential gravity
[J,ext] from the dynamical model produced unexpected results. The true-to-formal error ratios and
mean residual figures obtained from these two experiments were much lower than would be expected
based on the pre-estimation observation error ∆R̄. Note that the former two metrics (TF ratio
and ρ̄) are both dependent on the parameter estimation process, while the mean observation error
is not (See Section 4.3). This implies that these abnormal results are produced by the estimation
process. Also, because the only variable that changes between experiment runs is the content of
the estimation model, we can assume that the observed discrepancy are related to some form of
modelling error. In this section we discuss a possible explanation for this phenomenon.

Let us first consider the parameter estimation run in which the kinetic acceleration due to Jupiter
[J,kin] is excluded from the dynamical model. We end up with two models for the spacecraft’s
acceleration, atruth and aest. The latter is missing one acceleration term with respect to the former,
namely aJ,kin. Recall that this term is given by 2(vJ/c)

2aJ,pmg, where vJ is the orbital speed of
Jupter and aJ,pmg = −(µJ/r

3
J)rJ . We can then express the two acceleration models explicitly

as:

atruth = aJ,pmg+aJ,kin+ arest =−
(

1 + 2
v2
J

c2

)
µJ
r3
J

rJ + arest

aest = aJ,pmg+ arest =− µJ
r3
J

rJ + arest

(26)

Here arest represents the remaining 11 relativistic acceleration effects in the model (See Table 2
under the ”Modelled” column). All of these are included in both models, as the exclusion of aJ,kin

is the only difference between them.

Based on this representation of the two models, we can see how the estimation process could compen-
sate for the absence of the kinetic gravity term in estimation model aest. Over successive iterations,
the values of the four parameters being estimated (µJ , γ, β and spacecraft initial state) get updated
in order to minimize the least-squares value of the residual vector (See Section 4.2). Consider the
case where Jupiter’s gravitational parameter is estimated to have a value of µ′J = µJ + ∆µJ . Here
µJ is the true value of the parameter and ∆µJ is the true estimation error. The model then gets
updated to the following:

a′est = a′pmg + a′rest = −µJ + ∆µJ
r3
J

rJ + a′rest = −
(

1 +
∆µJ
µJ

)
µJ
r3
J

rJ + a′rest (27)
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Here a′ denotes the acceleration model yielded by using the estimated value µ′J rather than the true
value µJ . Note that all of the terms in arest are proportional to c−2, i.e. significantly smaller than
apmg. For this reason, we can say that the change in arest due to ∆µJ is much smaller than the
corresponding change in apmg. For the remaining discussion, we will assume that a′rest = arest.

Notice that the updated estimation model a′est looks similar to the truth model given in Equation
26. The only differences are between arest and a′rest (which we have neglected), and that ∆µJ/µJ
is in the place of 2v2

J/c
2. Given an appropriate value of ∆µJ , the point-mass gravity term in the

estimation model can fully compensate for the absence of the kinetic gravity term. This value can
be computed directly by:

∆µJ
µJ

= 2
v2
J

c2
→ ∆µJ = 2

v2
J

c2
µJ ≈ 4.16× 108m3/s2 (28)

Here we have used the values from Table 1, namely vJ = 12 km/s, c = 300 Mm/s and µJ =
1.3×1017 m3/s2. We can compare this to the true parameter error of µJ produced in our numerical
simulation pertaining to [J,kin], namely ∆µJ = 4.28×108m3/s2. This matches the above prediction
to within a 3% margin, suggesting that the hypothesized mechanism is correct. Possible sources for
the 3% error include the low-precision values for vJ , c and µJ used, errors in our assumption that
a′rest = arest, and in the assumption that vJ remains constant throughout the Jovian year.

We can carry out a similar process for the external potential gravity term [J,ext]. Recall that
aJ,ext = −(µS/rSJc

2)apmg, where µS ≈ 1.3× 1020 m3/s2 is the gravitational parameter of the Sun
and rSJ = 7.8×1011 m is the orbital radius of Jupiter (See Equation 15). Repeating the same steps
as for [J,kin], we can estimate the error term ∆µJ as:

∆µJ
µJ

= − µS
rSJc2

→ ∆µJ = −µSµJ
rSJc2

≈ −2.41× 108 m3/s2 (29)

The error value obtained from our simulations is ∆µJ = −2.37 × 108 m3/s2, which matches the
above prediction to within 2%. Again, this suggests that our proposed mechanism is indeed what is
happening during the estimation process.

In addition to the accurate predictions provided above, we can observe the compensation through
µJ directly from our results. Looking back at Figure 4, specifically at the data for [J,kin] and [J,ext],
we see that the true-to-formal error ratios are close to the control values for the initial state, γ and
β. For µJ the TF ratio is much larger, indicating that it is the only parameter that is used to
compensate for the exclusion of the given modelling terms.

In summary, we have shown that in the experiments where the kinetic- and external potential gravity
terms were excluded from the estimation model, the unexpectedly small values of TF ratio and mean
residuals can be explained as compensation from the Newtonian point-mass gravity term. Looking
at Figure 8 (Left), there are a number of other effects for which the mean residual is smaller than
the mean observation error. However, if we look at the true-to-formal error ratios in Figure 4, we see
no other examples of effects that are compensated for by the adjustment of a single parameter, as
we showed above with µJ . This could imply that the other effects are compensated for by another
effect through the combined change of multiple parameters.

Let us investigate the extrinsic gravitomagnetic acceleration term of Jupiter, [J,xgm], as an example.
From Equation 19 we obtain the expression for this acceleration term:

aJ,xgm =
2µJ(γ + 1)

r3
Jc

2
((vJ · v)rJ − (rJ · v)vJ) (30)
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Because we perform our parameter estimation close to periapsis, the trajectory v of the spacecraft
and the radial vector rJ are roughly perpendicular. That is to say r · v ≈ 0, meaning we can
simplify the above expression by looking at only the first term. This acceleration component points
in the direction rJ , i.e. from the spacecraft toward Jupiter. Recall that in our discussion above,
the missing acceleration effects were compensated for by the point-mass gravity term, which is the
largest acceleration contribution. We should expect a similar relationship for [J,xgm], as it would not
make sense for a very small gravitational effect to be able to compensate for a larger one. Intuitively,
a large acceleration term should only require a small parameter estimation change to have a large
compensatory influence on the missing gravity term.

Keeping this in mind, there are two main candidates for acceleration effects that can compensate
for the absence of aJ,xgm. These are the point-mass gravity and Schwarzschild acceleration terms
of Jupiter. Both of these gravitational effects have contributions pointing in the radial direction
toward Jupiter, which is what we are looking for. The point-mass gravity term is given by apmg =
−(µJ/r

3
J)rJ . The radial term in the Schwarzschild acceleration is given by (See Equation 13):

aJ,sch,rad =
µJ
r3
Jc

2

(
2(γ + β)

µJ
rJ
− γv2

)
rJ (31)

With these candidate compensatory effects, we can make a few observations. First, aJ,pmg maintains
largely the same magnitude throughout the Jovian year, which is not the case for the factor vJ · v
that appears in aJ,xgm. We can say the same for the different terms in aJ,sch,rad, with none of the
terms explicitly varying over the course of a Jovian year. Considering this, it is likely that primarily
the point-mass gravity term compensates for the absence of aJ,xgm when it is excluded from the
model. This is because, as discussed above, the fact that aJ,pmg is the largest acceleration effect
means that a small adjustment in parameter estimates can compensate for the missing effect to a
large degree without affecting the remaining acceleration terms too much.

From the above discussion, we can conclude that different relativistic modelling terms are not gener-
ally able to compensate for one another when an effect is omitted. While there were some coincidental
cases in which a large effect was able to compensate for another (specifically the point mass gravity
for the kinetic- and external potential terms) this is not generally the case. This problem could come
up in a real parameter estimation study where not all of the relevant modelling terms are known.
Another possible approach to dealing with potentially unknown modelling effects is through the use
of empirical accelerations. This topic will be discussed in the following section.

6.3 Empirical Accelerations

In addition to investigating how different modelling effects compensate for one another when they are
removed, we can introduce empirical accelerations into our parameter vector to actively compensate
for certain effects. In this section we look at how our results were affected by introducing empiricals
and we discuss possible alternatives and/or extensions to our approach.

As was mentioned earlier, two separate instances of the simulated experiments were run. In the first
of these, no empirical accelerations were estimated. Only the arc-wise initial states, gravitational
parameter of Jupiter and PPN parameters γ and β were included in the parameter vector. In the
second instance, a constant empirical acceleration vector was estimated for each simulation arc.
These vectors have components in the spacecraft’s along-track, cross-track and radial directions.
The results of these simulations have been presented in Section 5.

Overall, the addition of empirical accelerations resulted in better parameter estimation quality when
excluding relativistic acceleration effects. This is clearly illustrated in Figure 7, where mean observa-
tion error is compared with true-to-formal error ratio. For the simulations pertaining to most of the
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relativistic acceleration effects (specifically [J,ext], [J,kin], [J,xgm], [J,cbv] and [S,sch]) the TF ratios
lie significantly below the best-fit lines. TF ratio measures the impact that modelling error has on
parameter estimation quality. This means that, for the specified relativistic effects, the inclusion of
empirical accelerations has successfully compensated for the exclusion of the given modelling term.
The same five effects were identified in Section 5.3, based on the data points in Figure 8 (Right)
with a significantly lower mean residual value than mean observation error.

The reason why empirical accelerations can compensate for the exclusion of these dynamical terms
is fairly straightforward. Let us look at the central body velocity term of Jupiter, [J,cbv], as an
example. Referring to Equation 16, the central body velocity acceleration is given by:

aJ,cbv =
µJ
r3
Jc

2
· vJ · rJ

2

(
3
vJ · rJ
r2
J

rJ − 2vJ

)
(32)

Recall that vJ is Jupiter’s orbital velocity vector, and rJ is spacecraft’s position w.r.t. Jupiter.
The acceleration effect given here can be separated into two terms, one aligned with the radial
vector rJ and the other with the along-track direction vJ . Note that the dot product vJ · rJ is not
constant throughout an arc, which means the empiricals cannot perfectly compensate for the missing
dynamical term. During the estimation process, the relevant empirical acceleration estimates are
updated to roughly compensate for the excluded dynamical effect. Compared to the situation where
no empiricals are estimated, we should expect the residuals to be slightly smaller, as the accelerations
during each arc are closer to those in the truth model.

Considering the discussion in Section 6.2, it is natural to ask why the TF ratio- and residual re-
sults for [J,kin] and [J,ext] are not as good as in the case where empiricals were not included. To
explain this, consider the estimation model given in Equation 26, but with an extra term for the
empirical acceleration aemp. This is the estimation model used for the experiment where [J,kin] is
excluded:

aest = aJ,pmg + aemp + arest = −µJ
r3
J

rJ + aemp + arest (33)

We can assume that aemp will get a significant nonzero value during the first few iterations in order
to try to compensate for the missing term aJ,kin. If we now try to carry out the same process as in
Section 6.2 by perturbing µJ , we now get the following estimation model (cf. Equation 27):

a′est = a′pmg + aemp + a′rest = −
(

1 +
∆µJ
µJ

)
µJ
r3
J

rJ + aemp + a′rest (34)

Using the assumption that a′rest = arest, we can solve for the appropriate value of the perturbation
∆µJ by equating our estimation model to the truth model given in Equation 26:

a′est = atruth

−
(

1 +
∆µJ
µJ

)
µJ
r3
J

rJ + aemp + a′rest = −
(

1 + 2
v2
J

c2

)
µJ
r3
J

rJ + arest

−∆µJ
µJ
· µJ
r3
J

rJ + aemp = −2
v2
J

c2
· µJ
r3
J

rJ

aemp =

(
∆µJ
µJ
− 2

v2
J

c2

)
µJ
r3
J

rJ

(35)
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The above equation is only solvable when aemp is a scalar multiple of rJ . Because the orientation
of rJ changes throughout a given arc while aemp remains constant, we cannot solve the system in
general. The only case where the equation is always solvable is if aemp = 0, which is only generally
the case when empiricals are not estimated. This is why we see worse estimation results for [J,kin]
and [J,ext] when empirical accelerations are included.

Having said this, it is important to remember that ideal inter-effect compensation relationships like
those seen with [J,kin], [J,ext] and [J,pmg] are not generally present for all effects (See Section 6.2
concluding remarks). Additionally, there are many ways in which the experiment setup could be
changed to potentially improve estimation quality. If more than one set of empirical accelerations
is estimated for each arc, they will be able to compensate for missing effects in a more versatile
way. Another approach is to parametrically vary the empirical acceleration estimates over an arc
according to e.g. a sinusoidal curve. Both of these options are available in Tudat, the software
library used to design our simulations.

6.4 Extensions and Generalizations

In this final section we will take a broader look at the topics covered above, and discuss how our
observations can be applied to potential real-life ILR campaigns and/or further research.

First, let us consider the purpose of the discussion on effect compensation introduced in Sections
6.2 and 6.3. We were able to identify several cases where another relativistic effect or the estimation
of empiricals was able to compensate for the excluded model term. However, while the purpose of
our study is to gauge the impact of relativistic modelling by systematically excluding terms, in any
real parameter estimation effort, sufficiently large model terms would never be excluded on purpose
(here ”sufficiently large” mean large enough to impact estimation results).

There are still some cases in which significant model terms might end up getting excluded. First,
there is the case where not all of the relevant model terms are known for whatever reason (e.g.
they have not yet been derived, do not have a practical mathematical representation etc.). It is
also possible for effects to be incorrectly filtered out because they were deemed negligible based
on preliminary estimates (See Section 6.1). In both of these cases, the compensatory behaviour
discussed above could serve to increase parameter estimation quality. Out of the two phenomena
we covered, estimating empirical accelerations will likely be more effective in most situations. While
there are some cases where effects with similar mathematical representations can compensate for
one another extremely well (see the example involving [J,kin] covered in Section 6.2), the use of
empiricals is more likely to work in a diverse set of cases.

One of the features that is common to both of the compensation types discussed so far is that they
are facilitated by the estimated parameters. In the example where point-mass gravity compensates
for the kinetic gravitational term, the substituted term was generated by a change in the estimate of
µJ . Similarly, when empirical accelerations compensate for an omitted term, they do so by changing
the estimated value(s) of the empiricals. Considering this, one potential avenue for further research
is to determine how the set of estimated parameter choices affects the quality of estimation results.
For instance, the example involving the gravitational influence of central body gravity discussed
above (See Equation 32), the set of results may change if the velocity of Jupiter vJ were included
as an estimated parameter. Similar studies could be carried out specifically to quantify the impact
that changing the parameter set has on estimation results.

In our preliminary investigation of the available modelling terms (See Section 3.4), 22 relativistic
effects pertaining to different bodies were identified for study. There are two potentially interesting
approaches that could be taken with this list of effects. First, one could extend our analysis to an
experiment where two or more effects are omitted from the model at a time. This may help in
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identify which model terms compensate for one another, as the compensation would fail when both
effects are omitted simultaneously.

The opposite approach would be to break the currently identified effects down further into individual
terms. For example, the central body velocity gravitational term could be broken into two separate
effects as follows:

acbv =
µb
r3
bc

2
· vb · rb

2

(
3
vb · rb
r2
b

rb − 2vb

)
→

acbv,1 =
3µb(vb · rb)2

2r5
bc

2
rb

acbv,2 =− µb(vb · rb)
r3
bc

2
vb

(36)

This would allow for more granular control over which modelling terms are excluded. This could in
turn be combined with the above suggestion of excluding multiple terms at once, to determine how
different relativistic terms are related. Doing the same for the light time effects might also make it
possible to draw more conclusions about them, as the specific discussion so far largely pertains to
acceleration terms.

The simulation scenario can be changed in order to determine whether the observations we have
discussed so far hold in a more general sense. For example, the methodology used in this study
could be modified to investigate a Martian or Saturnian orbiter. This could give insight as to the
role that the central body properties play in influencing parameter estimates. In the case of a Mars
probe, the central body is much smaller (compared to Jupiter, in our case) and closer to the ground
station. All of the light time effects we have studied are directly dependent on the distance R to the
target.

Finally, our base model could be extended to include most of the non-relativistic terms that are
usually considered. This might include e.g. aerodynamic drag, radiation pressure, spherical harmonic
gravity etc. These modelling terms would appear as part of the geodesic equation (See Equation 7)
as an additional term. [Dirkx et al., 2015]

7 Conclusions & Recommendations

In summary, our objective was to investigate the relationship between relativistic modelling and the
quality of parameter estimates obtained from ILR observation data. To fulfil this goal, we ran a
series of simulated parameter estimation experiments using dynamical- and observation models of
various fidelity levels. The reference spacecraft was chosen to be a Jovian orbiter similar to Juno. In
an environment containing the Sun, Earth and Jupiter, we identified a list of 22 relativistic light-time
(observation) and acceleration (dynamics) effects to investigate. For each simulation there were two
models: the truth- and estimation model. The truth model always included all 22 relativistic effects,
while the estimation model excluded a single effect. The truth model was used to generate a set of
ILR observations, characterized as such by being two-way range measurements with a Gaussian noise
level of 1 mm. These observations were used as inputs to a parameter estimation process.

In order to quantify the desired variables (relativistic modelling error and parameter estimation
quality) we used three metrics. The mean absolute observation error served as a pre-estimation
measure of the magnitude of a given effect. Estimation residuals represent the difference between
actual observations and those produced by the estimation model. Finally, the true-to-formal (TF)
error ratio served as a direct measure of the influence that modelling error had on parameter estima-
tion quality. These three figures of merit were computed for each relativistic effect, and compared
in order to determine the relative impact of each modelling term.
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By comparing the resulting TF error ratio figures to our preliminary estimates of the magnitude of
each effect, a correspondence could clearly be seen. The effects with the largest predicted magnitude
had the greatest impact on estimation results, and vice versa. The TF ratio and mean pre-estimation
observation error were positively correlated with a confidence degree of around R = 0.8 after filtering
out the largest outliers. In addition, we were able to confirm that the effects with a predicted influence
on observation error of less than 0.1 mm only had a negligible impact on parameter estimation
quality. Considering this, we can conclude that preliminary estimates of an effect’s magnitude
and/or simulated average observation errors generated before estimation, can be used as an effective
tool for filtering out which relativistic effects are too small to necessitate inclusion in the estimation
model.

While the mean observation error metric was largely indicative of parameter estimation error, there
were a few cases in which the estimation error was significantly smaller than predicted. In particular,
the gravitational influence of Jupiter’s speed and the Jupiter-Sun coupled gravity effect were found
to be fully compensated for by other terms when left out of the model. Similar phenomena, to a
lesser degree, could be observed with some of the other modelling effects. By analysing the two
most significant cases, it was found that this compensation behaviour is facilitated by the larger
effects in the model. By changing the estimated parameter values included in these large terms, the
resulting change in acceleration behaves as a substitute for the missing effect. Overall, this type of
compensation has an adverse impact on parameter estimation error.

Another method that can be used to compensate for missing modelling effects is the estimation of
empirical accelerations. By adding a constant empirical acceleration vector for each arc to the list
of estimated parameters, we saw a general decrease in the resulting estimation error in experiments
where small acceleration terms where omitted from the model. This approach to compensating
for missing modelling effects is preferable to relying on different terms to compensate for one an-
other. Because the empirical accelerations are separate from the other parameters being estimated,
changing them does not increase the estimation error of the important parameters. Furthermore,
the number and type of empirical accelerations estimated can be freely adjusted depending on the
need. As such, the use of empirical accelerations to compensate for missing relativistic effects is
recommended for use over the reliance on compensation between existing effects.

There are a number of extensions and generalizations that can be explored in order to verify the
conclusions made by this research. A more detailed study could be carried out where non-relativistic
modelling terms such as drag, radiation pressure and spherical harmonic gravity are included. An-
other possible generalization is the investigations of different spacecraft orbits around different plan-
ets, such as Mars or Saturn.

Finally, in order to make the connections between this research and ILR more concrete, we rec-
ommend an extension to our method that looks specifically at the influence of noise modelling on
the results. In our experiment, observation noise was modelled as a Gaussian variable with 1 mm
standard deviation. This model could be extended to include systematic errors and instabilities
with random-walk type behaviour (See [Dirkx et al., 2018, §3.4]). Such a study could be useful in
characterizing the potential issues inherent to ILR.
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3
Conclusions & Recommendations

In this thesis we aimed to answer the following research question:

How do individual relativistic modelling effects impact the estimates of spacecraft ephemerides
and environmental parameters obtained using ILR observation data?

To achieve this goal, we used a series of simulated parameter estimation experiments in which individual
relativistic terms were selectively excluded from the estimation model. To incorporate ILR observations were
modelled through a two-way range measurements with a noise level of 1 mm, based on estimates from [10].
We investigated 22 relativistic effects and gauged their impact using the metrics of true-to-formal (TF) error
ratio, mean observation errors and mean residuals. Out of these, mean observation error is most directly
indicative of modelling error. The other two figures, TF ratio and residuals, are indicative of paramter estima-
tion quality. This allowed us to use these metrics as quantitative measures of the two factors mentioned in
the research question: relativistic modelling error and ephemeride/parameter estimates.

Comparing mean observation error with our TF ratio results, we were able to establish that these two factors
are correlated. It was also found that relativistic effects with negligible mean observation error (<0.01 mm)
corresponded to a negligible deviation in TF ratio from the control experiment. The same relationship was
observed with the preliminary estimates computed in Section 2.3.4. For real ILR studies, this relationship can
be used as a relatively low-effort way of filtering out negligible modelling effects without extensive software
implementation.

In addition to establishing the basic correlation between relativistic modelling error and parameter estima-
tion quality, we looked at the major exceptions to the observed pattern. In particular, the exclusion of the
kinetic- and external potential gravity terms of Jupiter from the estimation model was almost entirely com-
pensated for by the much larger Newtonian point-mass gravity term. to summarize the discussion in Section
2.6.2, a small change in the estimated gravitational parameter of Jupiter changed the point-mass acceleration
sufficiently to completely substitute the absent relativistic effect. This phenomenon is dependent on the fact
that these relativistic accelerations and the point mass gravity term are proportional to one another. More
generally, these compensatory relationships are dependent on the mathematical formulation of the under-
lying model term. Additionally, the fact that this compensation process is facilitated by modifying one of
the parameter estimates makes it difficult and non-ideal to utilize this type of compensation in any real ILR
study.

The inclusion of empirical accelerations in the estimation model is a much more practical way of compensat-
ing for missing relativistic effects. We re-ran our simulated experiments while estimating a constant empirical
acceleration vector for each arc. In the corresponding results we saw a significant improvement in the TF ra-
tio figures and mean residuals of most relativistic acceleration effects. Because empirical accelerations are a
separate parameter that is independent of the physical and astronomical parameters like µJ , this compensa-
tion process does not have as significant of an effect on parameter estimation error. We are also free to change
the frequency and nature (e.g. constant vs. sinusoidal) by which empiricals are estimated, allowing a large
amount of control over the degree to which they compensate for missing acceleration terms. We recommend
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36 3. Conclusions & Recommendations

a further investigation of the relationship between different empirical acceleration setups and the resulting
parameter estimation quality. Such an investigation could serve to provide real ILR studies with guidelines
as to how frequently empirical accelerations should be estimated, and what the risks are of introducing too
many acceleration estimates.

Furthermore, we recommend an extension to our research that explores different mission types in order to
either support or contrast the results we obtained in our study of a highly elliptical Jovian orbiter. ILR missions
targetting spacecraft in circular orbits, around other planets or in heliocentric orbit are possible mission types
that could be investigated. This type of study could help inform various ILR studies about whether the results
obtained here are more widely applicable or not.

Finally, we recommend that a more detailed study is carried out on the effects of observation noise modelling
on e.g. parameter estimation quality. A comprehensive list of ILR noise sources and estimates was given
in [10]. In our experiment we simplified these estimates down into a single Gaussian noise variable with
a magnitude of 1 mm. A more detailed look at the influence of noise modelling on our results, including
the systematic errors and "random walk"-type instabilities could help tie this research more closely to the
inherent characteristics of ILR.



A
Acceleration Model Derivation

Out of the relativistic acceleration effects we studied, only the expressions for Schwarzschild- and Lense-
Thirring acceleration were obtained from literature. The remaining effects were derived from the relativistic
equations of motion and a post-Newtonian variant of the IAU 2000 spacetime metric [30]. In this appendix
we present these derivations. We also re-derive the Schwarzschild metric to verify that our formulation of the
equations of motion is accurate.

A.1. Relativistic Equations of Motion
By associating a body of interest with a set of events that coincide with e.g. its centre of mass, we can assign
it with a four-dimensional position tensor xµ(τ) that describes its world line. This tensor and its derivatives
are called its four-position, four-velocity and four-acceleration [11]. The relativistic motion of a body through
spacetime can be fully described by the evolution of its four-position and four-velocity with respect to time.
Just like in classical mechanics, position and velocity describe the state of a body. The derivative of these
indicate how the state evolves over time. The only information that is required in addition to the state is
the body’s acceleration, i.e. the second derivative of xµ w.r.t. proper time τ. This is given by the geodesic
equation: [8] [16]

d 2xµ

dτ2 =−Γµ
αβ

d xα

dτ

d xβ

dτ
+ Aµ

NC where Γ
µ

αβ
= 1

2
gµν

(
∂hνα
∂xβ

+ ∂hνβ
∂xα

− ∂hαβ
∂xν

)
(A.1)

Here Γµ
αβ

are the Christoffel symbols, which depend on the spacetime metric gµν. hµν = gµν − ηµν is the

non-constant part of the metric. Aµ

NC non-conservative accelerations such as drag, radiation pressure and
magnetic forces. In our analysis this term is neglected as we only model gravitational acceleration.

While Equation A.1 can be used to represent the dynamics of a relativistic object, it is more convenient to use
an equivalent formulation in terms of the coordinate time t . Such a formulation is given by [16]. Because
d 2x0/d t 2 = dc/d t = 0, we only consider the spatial coordinates xi :

d 2xi

d t 2 =−c2Γi
00 −2cΓi

0 j
d x j

d t
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j k

d x j

d t
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00 +2Γ0
0 j
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j k

d x j

d t
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)
(A.2)

For the spacetime metric, we use the one given by the IAU 2000 relativistic framework resolutions [30], with
the inclusion of post-Newtonian parameters γ and β: [8] [23] [35]
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h00 = 2w

c2 − 2βw2

c4 +O (c−5)

h0i =−(γ+1)
2w i

c3 +O (c−5)

hi j = δi j
2γw

c2 +O (c−4)

(A.3)

Here w and w i are called the relativistic scalar- and vector potentials, respectively. The Kronecker delta δi j

has a value of 1 when i = j , and 0 otherwise.

In the same way that classical gravitational potential U (t ,r) relates the distribution of mass to the value of a
gravitational field, the relativistic potentials w and w i relate mass-, energy- and momentum distribution to
spacetime curvature. The relationship between the stress-energy tensor Tµν (See Equation 2.3) and relativis-
tic potential is given by [30, p.2693].

The scalar potential can be expressed as the superposition of potentials caused by a set of bodies B , i.e. w =∑
b∈B wb . Each such potential can in turn be decomposed into the classical/Newtonian component w0 and a

relativistic correction term ∆: [8] [30, p.2698]

wb = w0,b −∆wb/c2 where ∆wb = GMb

rb

(
−2v2

b +
∑

a 6=b
w0,a + (vb · rb)2

2r 2
b

+ ab · rb

2

)
(A.4)

The vector potential can be split into an intrinsic term caused by the central body’s rotation and an extrinsic
part related to its linear motion [15]. These can be expressed as follows:

w i
b = G(Sb × rb)i

2r 3
b

+w0,b v i
b (A.5)

Here rb = |rb | is the position where the potential is calculated (e.g. the spacecraft position) measured with
respect to b’s centre. vb = |vb | and ab are the velocity and acceleration of b in some inertial reference frame
[8]. We later use v and a to denote the velocity and acceleration of the spacecraft (that is, ṙb = v, v̇ = a). The
external potentials w0,a are the potential experienced at b’s centroid due to another body a ∈ B . Sb is the
central body’s angular momentum vector.

The classical potential w0 can be modelled in different ways, with the spherical harmonic expansion being a
common approach: [14, p.406]

w0,b = GMb

rb

[
1+

∞∑
n=2

n∑
m=0

(
Req,b

rb

)n

(Cnm cos(mλb)+Snm sin(mλb))Pnm(sin(φb))

]
(A.6)

In our case, we ignore all higher-order spherical harmonic terms for acceleration modelling. That is, we
assume that w0,b = GMb/rb . The justification for this is similar to our neglect of the non-conservative ac-
celerations Aµ

NC . Because we are studying the effects of relativistic modelling, it is unnecessary to include
accelerations in our model that we are not explicitly interested in. The contribution of C20 = J2 is included in
our model for the light time delay (See Section 2.3.3), as its magnitude is large enough (O (1 cm) for Jupiter)
to be potentially significant.

Given our metric, we can further expand our equations of motion (Equation A.2) by evaluating the Christoffel
symbols Γµ

αβ
. Using the metric in Equation 2.4, the expansions are given by [8] (which were based on [16,

p.382]) in terms of partial derivatives of the relativistic potentials:
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(A.7)

Here the subscript , i represent partial differentiation w.r.t. the spatial coordinate xi . Because the potentials
in Equations A.4 and A.5 do not depend explicitly on time, all time-derivative terms w,t have been omitted
from the above expansions. Substituting these expanded Christoffel symbols into Equation A.2 yields the
following:

ẍi = w,i + 1

c2

[
ẋ j ẋkγ(δ j k w,i −δi j w,k −δi k w, j )−2(γ+β)w ·w,i − . . .

· · ·−2ẋi ẋ j w, j +2(γ+1)ẋ j
(
w i

, j −w j
,i

)]+O (c−3)
(A.8)

Here we have used the shorthand ẋa = d xa/d t . We have also omitted terms proportional to c−4, as these
effects are too small to have a measurable impact on our results.

In the coming sections, we use the framework outlined above to derive various relativistic acceleration terms.
For each effect, we take a term from the relativistic potentials (Equations A.4 and A.5) and substitute them
into the equation of motion (Equation A.8). This results in a collection of relativistic effects that we can study
individually, as presented in Section 2.4.

A.2. Schwarzschild Term
The Schwarzschild term can be derived using the Newtonian scalar potential w0 = µ/r and computing its
second-order contribution to the acceleration. Since the potential is not a function of t , the w0,t term can be
ignored. That is:

ẍi
sch = 1

c2

[
ẋ j ẋkγ(δ j k w0,i −δi j w0,k −δi k w0, j )−2(γ+β)w0 ·w0,i −2ẋi ẋ j w0, j

]
(A.9)

Taking the spatial derivative of w0 yields w0,i =−xiµb/r 3
b . Substituting this into Equation A.9 yields:

ẍi
sch = 1

c2

[
γ

(
ẋ j

)2
w0,i −2γẋi ẋ j w0, j −2(γ+β)w0 ·w0,i −2ẋi ẋ j w0, j

]
= 1

c2

[
−γ

(
ẋ j

)2
xi µb

r 3
b

+2(γ+β)xi µb

r 3
b

· µb

rb
+2(1+γ)ẋi ẋ j x j µb

r 3
b

]

= µb

r 3
b c2

[(
2(γ+β)

µb

rb
−

(
x j

)2
)

xi +2(1+γ)(x j ẋ j )ẋi
] (A.10)

Finally, we switch from tensor- to vector notation. First, all occurrences of xi and its derivatives can be re-
placed with rb , v and a. Note that vb and ab are used to represent the barycentric motion of the central body

(See Sections A.3, A.5, A.6 and A.8). We can also iterate over the index j and make the substitutions
(
x j

)2 = v2

and x j ẋ j = rb ·v. This produces the following expression for the Schwarzschild acceleration:

asch = µb

r 3
b c2

[(
2(γ+β)

µb

rb
−γv2

)
rb +2(1+γ)(rb ·v)v

]
(A.11)

This matches the expression for the Schwarzschild term given in [26, p.155].
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A.3. Kinetic Term
The kinetic acceleration term produced by the squared speed of the central body v2

b , hence the name. We can
isolate this part of the scalar potential, referring to Equation 2.5:

wkin = 2µb

rb
· v2

b

c2 (A.12)

We then compute the first-order term of Equation A.8 using this part of the potential. That is:

ẍi
kin = wkin,i =

2µ

c2 v2
b ·

∂

∂xi

1

rb
=−2µv2

b

r 3
b c2

xi (A.13)

And finally, converting to vector form:

akin =−2µb v2
b

r 3
b c2

rb (A.14)

A.4. External Potential Term
Just like the kinetic term, the acceleration due to external potentials is computed by isolating the second term
in ∆wb . For simplicity, we consider the influence of a single body a:

wext =− µb

rbc2 w0,a =− µbµa

rbc2rab
(A.15)

Here rab is the distance between a and b, which is independent of xi and hence a constant under partial
differentiation. Substituting wext into the first-order acceleration term:

ẍi
ext =−µbµa

c2rab
· ∂

∂xi

1

r
= µbµa

r 3
b c2rab

xi (A.16)

Converting this to vector form, we get:

aext = µbµa

r 3
b c2rab

rb (A.17)

A.5. Central Body Velocity Term
The next term is derived from the third term in ∆wb , namely:

wcbv =− µb

2c2 · (vb · rb)2

r 3
b

(A.18)

Here both the numerator and denominator are dependent on xi , yielding the following partial differentiation
result:

ẍi
cbv =− µb

2c2 ·
[(

∂

∂xi
(vb · rb)2

)
· 1

r 3
b

+
(
∂

∂xi

1

r 3
b

)
· (vb · rb)2

]

=− µb

2c2

[(
2v i

b · (vb · rb)
)
· 1

r 3
b

+
(
−3xi · 1

r 5
b

)
· (vb · rb)2

]

= µb

r 3
b c2

· vb · rb

2

[
3

vb · rb

r 2
b

xi −2v i
b

] (A.19)
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Finally, switching to vector notation we get:

acbv =
µb

r 3
b c2

· vb · rb

2

[
3

vb · rb

r 2
b

rb −2vb

]
(A.20)

A.6. Central Body Acceleration Term
The final term from the scalar potential is dependent on the acceleration ab of the central body:

wcba =− µb

2c2 · ab · rb

rb
(A.21)

Like before, we obtain the spacecraft’s acceleration by taking the spatial derivative of wcba:

ẍi
cba =− µb

2c2

[(
∂

∂xi
(ab · rb)

)
· 1

rb
+

(
∂

∂xi

1

rb

)
· (ab · rb)

]
=− µb

2c2

[
ai

b

rb
− (ab · rb)xi

r 3
b

] (A.22)

Converting this to vector form yields:

acba =
µb

2rbc2

[
ab · rb

r 2
b

rb −ab

]
(A.23)

A.7. Angular Momentum Term
The last two terms are derived from the vector potential w i . First, we look at the term in Equation A.5 that
includes the angular momentum Sb of the central body:

w i
ang =

G(Sb × rb)i

2r 3
b

(A.24)

The acceleration caused by the central body’s angular momentum is known as the Lense-Thirring effect. In
our analysis, we make use of the Lense-Thirring acceleration term given by [26, p.155] (using the notation
Jb = 1

Mb
Sb):

aang = µb

r 3
b c2

· (γ+1)

[
3(rb · Jb)

r 2
b

(rb ×v)+v× Jb

]
(A.25)

A.8. Extrinsic Gravitomagnetic Term
We call the second and final term in the vector potential the extrinsic gravitomagnetic term based on the com-
mon analogy between electromagnetism and relativistic gravity. Under this analogy, the angular momentum
term derived above may also be called the intrinsic gravitomagnetic term (See e.g. [17]). The relevant poten-
tial term is:

w i
xgm = w0v i

b where w0 = µb

rb
(A.26)

Taking the spatial derivative of this potential we get:

w i
xgm, j =µb v i

b

∂

∂x j

(
1

rb

)
=−µb

r 3
b

x j v i
b (A.27)

This derivative can then be used in the part of Equation A.8 pertaining to the vector potential:
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ẍi
xgm = 2(γ+1)

c2 ẋ j
(
w i

xgm, j −w j
xgm,i

)
= 2(γ+1)

c2

(
µb

r 3
b

xi v j
b ẋ j − µb

r 3
b

x j v i
b ẋ j

)

= 2(γ+1)µb

r 3
b c2

(
v j

b ẋ j xi −x j ẋ j v i
b

) (A.28)

And finally, converting from tensor- to vector form, we get our expression for the extrinsic gravitomagnetic
acceleration:

axgm = µb

r 3
b c2

·2(γ+1)((vb ·v)rb − (rb ·v)vb) (A.29)



B
Model Verification

Carrying out our experimental simulations requires a functional software implementation of all the effects
described in Section 2.3. Out of four light-time and six acceleration effects given, one of each (the Shapiro-
and Schwarzchild terms) are fully implemented in Tudat. The remaining eight effects were added as part of
this project, facilitated by Tudat’s extensible design. Here we look at the methods used to validate our imple-
mentations. The dynamical- and observation effects are covered in Sections B.1 and B.2, respectively.

B.1. Acceleration Models
In total, six relativistic acceleration effects have been presented in Section 2.3.2. To verify that our soft-
ware implementation of these models does what we expect it to, a simulation was carried out to observe
the long-term behaviour of a Juno-like orbiter. The spacecraft was placed in an orbit similar to Juno’s origi-
nally planned 14-day science orbit. The only difference between this orbit and that used in our experiment
(See Table 2.4) is the apoapsis radius, which is lowered to 1.68×109 m. Additionally, the orbit is propagated
for 12 years, between 10 November 2004 and the same date in 2016. The magnitudes of the six relativistic
acceleration components were recorded, and can be found in Figure B.1.

There are a few notable features we can note in these plots that indicate that our software implementation was
successful. First, the overall magnitudes of each effect is in agreement with the rough estimates made in Table
2.2. Because these estimates were conservative (i.e. large) we should expect the actual simulated values to be
similar to or smaller than the estimates. This is indeed what we see in these results. Some effects, such as the
Schwarzschild acceleration, are much smaller than their estimates due to their dependence on the geometry
of the system. Additionally, we can see a frequent per-orbit oscillation in the acceleration magnitude, which
we should expect from an elliptic orbit.

We can also identify some qualitative features that indicate the acceleration effects were implemented cor-
rectly. First, the kinetic- and external potential curves increase in magnitude slightly towards the middle of
the year. We know that these two effects are proportional to one another with a factor of v2

brS J /c2µS . The two
effects increase in magnitude as a result of Jupiter being closer to the Sun during a certain part of the year.
Both Jupiter’s speed and its gravitational potential w.r.t. the Sun increase during this period.

Similar annual and semi-annual signatures can be seen in the central body velocity- and extrinsic gravito-
magnetic acceleration graphs. These are a result of the system’s geometry, which periodically change to make
certain terms small. Because our spacecraft is in a polar orbit, the velocity vector of Jupiter becomes perpen-
dicular to Juno’s orbital plane twice per Jovian year. This forces the factor vb · rb/2 in acbv to zero, causing the
two distinct minima. A similar phenomenon occurs with axgm, where the spacecraft’s and Jupiter’s velocity
vectors become perpendicular, i.e. vb ·v = 0. Two less intense minima appear when vb becomes embedded
within the spacecraft’s orbital plane. During this period, rb and vb become aligned in opposing directions
once per orbit, cancelling the two terms in axgm.
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Figure B.1: Relativistic accelerations experienced by a Juno-like orbiter over the course of one Jovian year (≈ 12
years). Time is expressed in seconds after J2000.

B.2. Light Time Models
To verify our relativistic light time correction implementations, we use the data given by [12] as a reference
and try to replicate it. A simulation similar to the one described above (Juno-like, 14-day polar orbit around
Jupiter) was run for a period of 365 days. Light time observations and relativistic corrections were generated
throughout this simulation period. While the initial conditions of the original paper were not replicated ex-
actly, the results have sufficiently many qualitative and quantitative similarities to demonstrate that the two
implementations are similar.

First, we can compare the relative magnitudes of the light time corrections between the two implementa-
tions. All four effects show agreement with respect to this criterion. The shapes of the curves for each effect
also show clear similarities between the implementations, both with respect to per-orbit effects and the an-
nual signal caused by Earth’s orbit. For the velocity light time correction, a distinct long-term qualitative
change in the shape of the per-orbit curve shape can be identified in both cases. Overall, interpret these sim-
ilarities as an indication that our light time correction implementation is in agreement with that presented in
[12].
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Figure B.2: Simulated relativistic light time corrections given in [12] (Top) and an approximate recreation using our
software implementation (Bottom).





C
Integrator Benchmarking

As was mentioned in Section 2.4.2, the state and variational equations in our experiment were propagated
using a Runge-Kutta seventh order integrator with a 10 s step size. In this appendix we describe the method
used to make this choice, as well as evidence that the integrator’s performance is sufficient.

C.1. Integrator Selection
The chosen integration scheme was selected based on the criterion that the total positional error at the end
of an arc should not be large enough to significantly influence our results. Runge-Kutta integrators of fourth
order (RK4) and seventh order (RK7) were considered initially, with the option left open to use more advanced
integrator types if none of those tested fulfilled the criterion. An orbit integration was set up that is similar
to that used in the final experiment (See Table 2.4). A simple environment with a spacecraft and Jupiter
was created, with only point-mass gravity (a = −µr/r 3) being modelled. By using this simplified model, the
numerically propagated spacecraft trajectory can be compared with an idealized Kepler orbit. Additionally,
the integration period was doubled from 12 hours to 24 hours to allow for a margin of error.

The orbit of the spacecraft was propagated over a symmetric 24-hour period about the periapsis using RK4
and RK7 integrators with different step sizes between 0.5 and 50 seconds. The initial state was also propagated
analytically according to an elliptical Kepler orbit to get a final reference state. The final distance between the
analytically and numerically propagated states was recorded for each integrator type. Figure C.1 shows the
results of the se simulations.

As we would expect, the RK7 integrators outperform RK4 for larger step sizes. The RK4 fall just within the
desired error tolerance for step sizes of 0.5, 1 and 2 s. The final error of both RK4- and RK7 integrators for
step sizes between 0.6 and 0.9 s is much larger than expected, on the order of 10 to 100 m. The cause of
this discrepancy is unknown, though it may be caused by the rounding behaviour of the Tudat’s Kepler orbit
propagation method. Similar error can be seen for step sizes between 2 and 9 s. It appears that step sizes that
are round numbers (0.5, 1, 10 s) result in lower final error figures. Out of the tested options, the RK7 integrator
with 10 s step size was chosen for the experiment. Its final error falls within the prescribed criterion with an
order of magnitude of margin. Its speed was also reasonable, making it feasible to run our simulations within
a fairly short time (around 1 hour to run all 22 experiments).

C.2. Verification
To check that integrator error is not impacting our final results, we can look at the observation residuals (See
Section 2.5.3) of the control experiment. For this parameter estimation run, where the truth- and estimation
models are identical, we should expect the residuals to be normally distributed about zero. In fact, they
should have the same distribution as the observation noise. If there are anomalies in this data, integration
error could be a possible source.

Figure C.2 Shows the residual data of the final experiment’s control run. There are around 6,000 samples, and
they are indeed similarly distributed to the observation noise. The mean residual value of −8×10−6 indicates
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Figure C.1: Comparison of final error for Runge-Kutta integrators with different step sizes.

that the residuals are centered around zero, and the standard deviation of 1.004×10−3 m is close to the actual
noise level of 1 mm.

Figure C.2: Distribution of the control observation residuals.



Bibliography

[1] Charles Acton. SPICE - an observation geometry system for space science missions. Web, May 2019.
https://naif.jpl.nasa.gov/naif/index.html.

[2] S. Bauer, H. Hussmann, J. Oberst, D. Dirkx, D. Mao, G.A. Neumann, E. Mazarico, M. H. Torrence, J. F.
McGarry, D. E. Smith, and M. T. Zuber. Analysis of one-way laser ranging data to LRO, time transfer and
clock characterization. Icarus, 283, February 2017.

[3] Sven Bauer. Application of one-way laser ranging data to the lunar reconnaissance orbiter (LRO) for time
transfer, clock characterization and orbit determination. PhD Thesis, Technische Universität Berlin,
2017.

[4] B. Bertotti, L. Iess, and P. Tortora. A test of general relativity using radio links with the cassini spacecraft.
Nature, 425, September 2003.

[5] Luc Blanchet, Christophe Salomon, Pierre Teyssandier, and Peter Wolf. Relativistic theory for time and
frequency transfer to order c−3. Astronomy and Astrophysics, 370, April 2001.

[6] Dwayne Brown and Laurie Cantillo. Nasa’s juno mission to remain in current or-
bit at jupiter. Press release, August 2017. https://www.nasa.gov/press-release/
nasa-s-juno-mission-to-remain-in-current-orbit-at-jupiter/.

[7] John J. Degnan. Asynchronous laser transponders for precise interplanetary ranging and time transfer.
Journal of Geodynamics, 34, 2002.

[8] D. Dirkx, R. Noomen, P. N. A. M. Visser, L. Gurvits, and L. L. A. Vermeersen. Simultaneous spacetime
dynamics estimation from space mission tracking data. Astronomy and Astrophysics, 587, December
2015.

[9] D. Dirkx, V. Lainey, L. I. Gurvits, and P. N. A. M. Visser. Dynamical modelling of the galilean moons for
the JUICE mission. Planetary and Space Science, 134, December 2016.

[10] Dominic Dirkx, Ivan Prochazka, Sven Bauer, Pieter Visser, Ron Noomen, Leonid I. Gurvits, and Bert
Vermeersen. Laser and radio tracking for planetary science missions - a comparison. Journal of Geodesy,
July 2018.

[11] James B. Hartle. Gravity - An Introduction to Einstein’s General Relativity. Addison-Wesley, 2003.

[12] A. Hees, S. Bertone, and C. Le Poncin-Lafitte. Light propagation in the field of a moving axisymmetric
body: theory and application to juno. Physical Review D, 90, October 2014.

[13] Luciano Iess, Mauro Di Benedetto, Nick James, Mattia Mercolino, Lorenzo Simone, and Paolo Tortora.
Astra: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking tech-
niques. Acta Astronautica, 94, February 2014.

[14] Alex S. Konopliv, Sami W. Asmar, William M. Folkner, Özgür Karatekin, Danciel C. Nunes, Suzanne E. Sm-
rekar, Charles F. Yoder, and Maria T. Zuber. Mars high resolution gravity fields from mro, mars seasonal
gravity, and other dynamical parameters. Icarus, 211, 2011.

[15] S. M. Kopeikin. The gravitomagnetic influence on earth-orbiting spacecrafts on the lunar orbit. Astro-
physics and Space Science Library, 367, 2010.

[16] Sergei Kopeikin, Michael Efroimsky, and George Kaplan. Relativistic Celestial Mechanics of the Solar
System. Wiley-VCH, 2011.

49

https://naif.jpl.nasa.gov/naif/index.html
https://www.nasa.gov/press-release/nasa-s-juno-mission-to-remain-in-current-orbit-at-jupiter/
https://www.nasa.gov/press-release/nasa-s-juno-mission-to-remain-in-current-orbit-at-jupiter/


50 Bibliography

[17] Sergei M. Kopeikin. Gravitomagnetism and the speed of gravity. Internanional Journal of Modern Physics
D, 15, March 2006.

[18] Christophe le Poncin-Lafitte, Bernard Linet, and Pierre Teyssandier. World function and time transfer:
general post-minkowskian expansions. Classical and Quantum Gravity, 21, 2004.

[19] Jack J. Lissauer and Imke de Pater. Fundamental Planetary Science - Physics, Chemistry and Habitability.
Cambridge University Press, 4 edition, 2017.

[20] Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Gravitation. W. H. Freeman and Com-
pany, 1973.

[21] Oliver Montenbruck and Eberhard Gill. Satellite Orbits - Models, Methods and Applications. Springer,
2005.

[22] T. W. Murphy. Lunar laser ranging: the millimeter challenge. Reports on Progress in Physics, 76, 2013.

[23] Wei-Tou Ni. Theoretical framework for testing relativistic gravity. iv. a compendium of metric theories of
gravity and their post-newtonian limits. The Astrophysical Journal, 176, September 1972.

[24] Hirotomo Noda, Hiroo Kunimori, Takahide Mizuno, Hiroki Senshu, Naoko Ogawa, Hiroshi Takeuchi,
Chris Moore, Alex Pollard, Tomohiro Yamaguchi, Noriyuki Namiki, Teiji Kase, Takano Saki, and Yuichi
Tsuda. Laser link experiment with the hayabusa2 laser altimeter for in-flight alignment and measure-
ment. Earth, Planets and Space, 69, 2017.

[25] M. R. Pearlman, J. J. Degnan, and J. M. Bosworth. The international laser ranging service. Advances in
Space Research, 30, 2002.

[26] Gérard Petit and Brian Luzum. IERS conventions (2010). International Earth Rotation and Reference
System Service, 2010.

[27] I. I. Shapiro, R. D. Reasenberg, P. E. MacNeil, R. B. Goldstein, J. P. Brenkle, D. L. Cain, T. Komarek, A. AI.
Zygielbaum, W. F. Cuddihy, and W. H. Michael Jr. The viking relativity experiment. Journal of Geophysical
Research, 82, September 1977.

[28] Irwin I. Shapiro. Fourth test of general relativity. Physical Review Letters, 13, December 1964.

[29] David E. Smith, Maria T. Zuber, Xiaoli Sun, Gregory A. Neumann, John F. Cavanaugh, Jan F. McGarry, and
Thomas W. Zagwodzki. Two-way laser link over interplanetary distance. Science, 311, January 2006.

[30] M. Soffel et al. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics and Metrology in the Rel-
ativistic Framework: Explanatory Supplement. The Astronomical Journal, 126, December 2003.

[31] J. L. Synge. A characteristic function in riemannian space and its application to the solution of geodesic
triangles. Proceedings of the London Mathematical Society, 32, 1931.

[32] Pierre Teyssandier and Christophe le Poncin-Lafitte. General post-Minkowskian expansion of time
transfer functions. Classical and Quantum Gravity, 25, July 2008.

[33] Catherine L. Thornton and James S. Border. Radiometric Tracking Techniques for Deep-Space Navigation.
Deep-Space Communications and Navigation Series. Jet Propulsion Laboratory, California Institute of
Technology, October 2000.

[34] Slava G. Turyshev, William Farr, William M. Folkner, André R. Girerd, Hamid Hemmati, Thomas W. Mur-
phy Jr., James G. Williams, and John J. Degnan. Advancing tests of relativistic gravity via laser ranging to
phobos. Experimental Astronomy, 28, March 2010.

[35] Clifford M. Will. Theoretical frameworks for testing relativistic gravity. ii. parametrized post-newtonian
hydrodynamics, and the nordtvedt effect. The Astrophysical Journal, 163, February 1971.


	Acknowledgements
	Abstract
	Introduction
	Research Paper
	Conclusions & Recommendations
	Acceleration Model Derivation
	Relativistic Equations of Motion
	Schwarzschild Term
	Kinetic Term
	External Potential Term
	Central Body Velocity Term
	Central Body Acceleration Term
	Angular Momentum Term
	Extrinsic Gravitomagnetic Term

	Model Verification
	Acceleration Models
	Light Time Models

	Integrator Benchmarking
	Integrator Selection
	Verification

	Bibliography

