The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep — 03 Oct 2015, La Grande Motte, France

A SEMI-AUTOMATIC PROCEDURE FOR TEXTURING OF LASER SCANNING POINT
CLOUDS WITH GOOGLE STREETVIEW IMAGES

J. E. Lichtenauer®; B. Sirmacek”

*Laan der Vrijheid 92, 266 1HM Bergschenhoek, The Netherlands - jeroenlichtenauer @ gmail.com
® Department of Geoscience and Remote Sensing, Delft University of Technology,
Stevinweg 1, 2628CN Delft, The Netherlands - www.berilsirmacek.com

Commission VI, WG VI/4

KEY WORDS: Point Clouds, Terrestrial Laser Scanning, Structure from Motion (SfM), Texturing, Google Streetview

ABSTRACT:

We introduce a method to texture 3D urban models with photographs that even works for Google Streetview images and can be done
with currently available free software. This allows realistic texturing, even when it is not possible or cost-effective to (re)visit a scanned
site to take textured scans or photographs. Mapping a photograph onto a 3D model requires knowledge of the intrinsic and extrinsic
camera parameters. The common way to obtain intrinsic parameters of a camera is by taking several photographs of a calibration
object with a priori known structure. The extra challenge of using images from a database such as Google Streetview, rather than
your own photographs, is that it does not allow for any controlled calibration. To overcome this limitation, we propose to calibrate
the panoramic viewer of Google Streetview using Structure from Motion (SfM) on any structure of which Google Streetview offers
views from multiple angles. After this, the extrinsic parameters for any other view can be calculated from 3 or more tie points between
the image from Google Streetview and a 3D model of the scene. These point correspondences can either be obtained automatically or
selected by manual annotation. We demonstrate how this procedure provides realistic 3D urban models in an easy and effective way,
by using it to texture a publicly available point cloud from a terrestrial laser scan made in Bremen, Germany, with a screenshot from

Google Streetview, after estimating the focal length from views from Paris, France.

1. INTRODUCTION

In recent years, a lot of progress has been made with the devel-
opment of three dimensional (3D) sensors, 3D visualisation tech-
nologies and data storage-, processing- and distributions possi-
bilities. This seems good news for one of its most useful ap-
plications: 3D mapping of our urban environments. However,
the main limitation still left for large-scale realistic digitization
of urban environments is the collection of data itself. Although
flying- and Earth-orbiting cameras and 3D sensors allow cover-
age of the entire globe at relatively low cost, a view from above
is severely restricted by occlusions. Unfortunately, the most rel-
evant urban areas for daily use are mostly at ground level, rather
than on rooftops or above tree canopies.

This means that terrestrial short-range measurements still need to
be made to map urban environments realistically in 3D. While
state-of-the-art mobile laser scanners can capture high quality 3D
data together with coloured texture, their prices are high and the
acquisition of texture data often requires significant extra scan-
ning time over the capture of 3D data alone. It is mainly because
of the cost of these sensors and the time it takes to use them to ac-
quire measurements from all the required locations, that realistic
3D urban maps are still not widely available today.

Therefore, in order to make full use of the available 3D data tech-
nologies for realistic urban mapping, we also need to be able
to include data from fast, low-cost scanning methods, as well
as from previously recorded data, which do not always include
colour texture information together with the 3D measurements.
And even with 3D scans that include colour texture, unsatisfac-
tory lighting conditions during a scan might still require new tex-
ture to be added afterwards.

*Corresponding author

To overcome this limitation, we propose a simple semi-automatic
method to accurately texture 3D data with photographs, which
consists of a novel combination of currently available free soft-
ware implementations of pre-existing algorithms for Structure
from Motion (SfM), camera pose estimation and texture map-
ping. Only three or more tie points per photo are needed to ac-
curately align it to the corresponding 3D data. These tie points
can either be obtained from a simple manual procedure that can
be done by anyone without special training, or from an automatic
2D to 3D feature matching algorithm. To solve the problem of
calibrating a panoramic viewer without being able to use an a
priori known calibration pattern, we propose to obtain intrinsic
camera parameters from a Structure from Motion algorithm ap-
plied to any suitable data that is already available from the viewer.

To demonstrate that our methods works effectively, we applied it
to texture a laser scan of building faades at the Bremer Market
Square in Germany with a screenshot from Google Streetview,
using a focal length estimation made from views of the ’Arc de
Triomphe’ in Paris, France. The results indicate that our method
allows to easily make realistic-looking digital urban 3D mod-
els by combining pre-recorded data from completely unrelated
sources.

2. PREVIOUS WORK

A promising way to easily generate photo-realistic urban 3D mod-
els is the use of Structure from Motion (SfM). Snavely et al.
(2008) have shown that photos from the internet can be used
with SfM to automatically reconstruct buildings and small parts
of cities. This produces fully textured 3D models without even
having to visit a site. Unfortunately, it requires having at least
3 good quality photos available on the internet of every build-
ing that needs to be reconstructed. This limits the application of

This contribution has been peer-reviewed.
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 109
doi:10.5194/isprsarchives-XL-3-W3-109-2015

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep — 03 Oct 2015, La Grande Motte, France

©

(d

Figure 1: 3D Surface reconstruction from point clouds. (a) Point cloud extracted from a laser scan data set taken in Bremen, Germany.
(b) Mesh surface obtained using Poisson surface reconstruction on the individual building faades. (c) Close-up view of the point cloud
for the selected area in subfigure (a). (d) Close-up view of the triangulation.

this method to the reconstruction of popular tourist attractions.
Furthermore, the 3D data from such reconstructions usually con-
tain many missing parts and inaccuracies. Combining SfM re-
sults with more accurate 3D data from other sensors, such as laser
scanners, still requires additional data alignment solutions.

Several methods have been suggested to automatically align a
2D image to a 3D model, by computing some sort of similar-
ity measure between 2D image contents and structure of the 3D
model. Lensch et al. (2000) proposed a silhouette-based align-
ment method that includes an automatic initialisation. However,
the procedure requires an isolated object that is entirely visible in
the photo, which is often not the case in 3D scans of urban en-
vironments. Viola and Wells III (1997) proposed to use surface
normals to compute mutual information between an image and a
3D model. Corsini et al. (2009) improved on this by including
more kinds of data to calculate mutual information. Although the
mutual information registration methods can be applied to urban
models, a sufficiently close pose and focal length initialisation
has to be supplied manually for each photo, which comprises of
the simultaneous adjustment of 7 parameters (3D location + 3D
orientation + focal length). This might easily require more time
and skill than annotating 3 or more tie points.

Morago et al. (2014) have chosen to automate the alignment of
new photos with LIDAR scans by 2D feature point matching with
photos that were taken together with the LIDAR scans, making
use of their available 3D registration. However, this approach
does not solve the problem of how to align photos with 3D scans
for which no photos have been registered yet.

Using tie points to align 2D images to 3D models is a well-studied
problem, for which many effective solutions already have been
found such as by Hesch and Roumeliotis (2011) and Zheng et al.
(2013). Accurate 2D-3D alignment can already be achieved re-
liably with only three or more well-spread tie-points (or at least
four to prevent multiple ambiguous solutions). These methods

make use of the perspective projection (pinhole camera) model
and therefore require calibration of a camera’s intrinsic parame-
ters. A requirement which also holds for projecting a photo onto
a 3D model once its correct pose is estimated. For self-made
photographs, intrinsic camera calibration may be done by taking
several photographs of a calibration pattern with known structure.
However, this cannot be done for photos from an image database
such as Google Streetview.

3. MAIN CONTRIBUTIONS

The main contributions of our proposed procedure that set it apart
from previously proposed methods are as follows: - Our method
does not only work with self-made photographs, but also with
screen shots from panoramic viewers such as Google Streetview,
which already contain a large coverage of terrestrial urban pho-
tographs. - Since it doesn’t depend on a 3D reconstruction from
photogrammetry other than for camera calibration, it works with
any source of 3D data and requires only one photo to texture any
surface area visible in that photo. - Three or more tie points per
camera are sufficient, without the need for a manual initialisation
of camera pose. - Since the method is fully tie-point-based, as
long as 3 or more tie points can be provided accurately, it works
on any type of scene, any photo quality and doesn’t require seg-
mentation of individual buildings or objects. - Free software im-
plementations are currently available for all of the steps that our
procedure requires to convert a 3D point cloud into a textured 3D
mesh. To our knowledge, we are the first to propose a procedure
that covers a complete work flow with all of these advantages that
are crucial for obtaining large-scale urban 3D maps.

4. TEXTURING A 3D MESH SURFACE WITH A
PHOTO

In principle, texturing a 3D model from a photo is the inverse
of how the light from the scene was projected onto the photo.

This contribution has been peer-reviewed.
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 110
doi:10.5194/isprsarchives-XL-3-W3-109-2015

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015

ISPRS Geospatial Week 2015, 28 Sep —

03 Oct 2015, La Grande Motte, France

= | /- VisuatsPM - (sperse Reconstruction] - (011
Fle M View Tooks Help

Work thread teriminated!

B B ooma LB X swmnn &A%

(= | @ @) | | I/ VisualsFM - [Dense Reconstruction] - 0] - [1 (£=8 EoE |
File SM View ook Help

B @Bh 00Ga LE #¥un(ody

Work thresd terminsted!

(b) ()

Figure 2: Structure from Motion for calibrating the focal length of Google Streetview. (a) Google Streetview screen shots with the
on-screen information covered with white rectangles. (b) Reconstruction of the 6 camera poses and 3D feature point locations using
VisualSFM. (d) Denser surface reconstruction using the CMVS plugin of VisualSFM.

By projecting the image points back into the 3D scene from the
same relative position and orientation, the visible surface of the
3D model can be coloured correctly from the photo. This can be
done using the freely available Meshlab software by Cignoni et
al. (2008). The procedures described below are demonstrated in
more detail in our three video tutorials: Lichtenauer and Sirma-
cek (2015a,b,c).

4.1 Generating a Surface Model

Texturing requires a surface, so a point cloud must be converted
into a 3D mesh first, as shown in figure 1. This can be done with
the Poisson surface reconstruction method in Meshlab. We as-
sume that the point cloud is clean and only includes points which
are representing the faade surface samples (fig. 1(a)). If the
point cloud is too noisy to represent the faade surface correctly,
or else if there are occluding objects, the point cloud must be pre-
processed before mesh generation. This pre-process must remove
the points coming from noise and occlusion effects. The best re-
sults are achieved by reconstructing relatively straight parts indi-
vidually. Therefore, it will help to segment building point clouds
into their separate sides, reconstruct their surfaces separately and
then combine the surface meshes of all the sides again afterwards
(fig. 1(b)). Note that the Poisson reconstruction method in Mesh-
lab requires surface normals of the point cloud to be estimated
first.

4.2 Obtaining intrinsic camera parameters from SFM

To correctly estimate camera pose and to project an image accu-
rately onto a 3D surface, we need to know the intrinsic parameters
of the camera that was used to generate the photo. The intrinsic
camera parameters are coefficients of a mathematical approxi-
mation that relates the pinhole camera model to the actual pixel
locations in a photograph. In a pinhole camera model, a point in a
3D scene is represented by the 2D location of the intersection of
the straight line between the scene point and the camera’s focal
point (the pin hole) with a flat surface at focal distance f from the
focal point.

The most common way to obtain intrinsic camera parameters is
by performing a separate calibration procedure in which addi-
tional photographs are taken from a known calibration pattern or
-structure. However, such procedures require extra time, equip-
ment and skills. Furthermore, in some cases a separate calibration

might not even be possible at all. For instance, when the camera
that has been used for the texture photographs cannot be accessed,
or when a camera is used that has a variable focal length (zoom
function). An example of such a situation might be when some-
one wants to texture a 3D mesh with a photograph from a public
database such as Google Streetview Google Streetview - Google
Maps (n.d.), which doesn’t include details about the viewer’s in-
trinsics.

A panoramic viewer such as the one for Google Streetview uses a
single 360-degree spherical per location. Since all source photos
have already been converted to the same spherical camera model
that the panoramic viewer requires, it doesn’t matter where the
photos have been taken and what equipment has been used. All
we need to do is to calibrate the viewer’s own intrinsic parame-
ters. Note that the view that is being shown to the user is only a
part of the whole spherical image, converted to a perspective view
centred around the viewing direction chosen by the user. Since
Google Streetview currently has no radial distortion added, The
only intrinsic parameter we need to estimate is the focal length.
Because focal length is measured in screen pixels, it depends on
the user’s screen resolution. This means that the focal length has
to be estimated separately for each screen resolution at which
screen shots are taken from Google Streetview for texturing.

To estimate the intrinsic parameters for a public database such
as Google Streetview, without being able to perform a regular
camera calibration procedure, we propose to use Structure from
Motion (SfM). Besides generating a 3D structure of the pho-
tographed scene, SfM software also provides the estimates of the
intrinsic and extrinsic camera parameters for each of the source
photographs. And since the focal length of Google Streetview
does not depend on the location, we can choose a suitable scene
anywhere in the world. For our example, we have chosen the Arc
de Triomphe in Paris, France. This structure has views available
from all around at small steps, which is exactly what is required
for SfM.

Figure 2(a) shows the 6 screen shots we have taken from Google
Streetview, with the on-screen information boxes removed to pre-
vent false feature point matches between the images. Figure 2(b)
shows the result of estimating structure (3D feature point loca-
tions) from motion from these images with the free VisualSFM
software created by Wu (2011); Wu et al. (2011). We have dis-
abled radial distortion in this VisualSFM, since the images were
already distortion-free. By forcing the different camera views to

This contribution has been peer-reviewed.

Editors: U. Stilla, F. Rottensteiner, and S. Hinz

111

doi:10.5194/isprsarchives-XL-3-W3-109-2015

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep — 03 Oct 2015, La Grande Motte, France

have the same intrinsic parameters estimated, accuracy can be
increased (since all images of come from the same panoramic
viewer). However, performing the initial sparse StM reconstruc-
tion in Visual SFM with ’shared calibration’ enabled prevents the
StfM algorithm from converging to the right solution. Instead, the
initial SfM result without shared calibration can be refined after-
wards using the Bundle Adjustment (BA) step with the ’shared-
calibration’ option enabled.

After the sparse SfM reconstruction, VisualSFM can also make a
denser reconstruction, by using the CMVS option. For the pur-
pose of texturing a 3D mesh with a photograph, we don’t need a
3D reconstruction from SfM for any other purpose than to esti-
mate the intrinsic camera parameters. However, the dense recon-
struction is useful to visually inspect whether SfM has succeed. If
some angles that should be straight have not been reconstructed
perfectly straight, it means that the intrinsic camera parameters
also have not been estimated correctly. Figure 2(c) shows the
dense reconstruction for our example of the Arc de Triomphe.
Furthermore, executing the CMVS procedure in VisualSFM also
generates some output files that are useful for loading aligned
texture photos into Meshlab.

The file "bundle.rd.out’ can be opened with Meshlab to load aligned
rasters for texturing. For a description of the Bundler file format,
see Snavely (2008-2009). It contains a list of intrinsic parame-
ters for each camera view used in SfM, followed by a list of all
structure points. When loading a Bundler file into Meshlab, it
also asked for a text file containing a list of images correspond-
ing to the cameras defined in the ’rd.out’ file. The focal length
of Google can also be found in the *bundle.rd.out’ file as the first
value for each camera. The focal lengths for all views should be
almost the same after having used Bundle Adjustment with the
’shared-calibration’ option.

When using self-made photos for texturing which might include
radial distortion, another possibility is to use VisualSFM on sev-
eral photos taken from the scene that needs to be textured. Vi-
sualSFM will then not only calculate the intrinsic parameters for
your camera automatically, but also rectify any radial distortion
that might be present. After performing the CMVS procedure in
VisualSFM, the rectified versions of your photos can be found
in the ’visualise’ directory of the output from VisualSFM, which
correspond to the camera parameters in the *bundle.rd.out’ file in
the order specified in the list.txt file. These rectified photos are
suitable for texturing 3D lasers scans.

VisualSFM uses the following camera model that relates pinhole
model coordinates (n;,n,)' to image coordinates (mg,m,)"
(which are relative to the image center):

HEEEA o

my

.] RENC)
where (X, Ye,Zc)" are the 3D coordinates of the visible point
with respect to the camera frame. The above camera model has
only two intrinsic camera parameters: the focal length f and a
radial distortion coefficient 7. This model assumes that the image
center coincides with the optical center, that the camera pixels are
perfectly square and that the lens distortion is quadratic, without
higher order components.

(1 + r(mi + mi)) [

By using the f and r estimated by the SfM software, equations 1
and 2 can also be used to obtain the texture colour of a 3D point
that is visible in the image at pixel coordinates (m,,m,)". For

05

1. 151055 [-0.503311
T 550 [0 0128754
A 7233502020 [035459

(©)

Figure 3: Pose estimation from tie point annotation. (a) Mesh
vertex selected to see 3D point location and surface normal infor-
mation. (b) Retrieving corresponding image coordinates of the
same point. (c) Camera pose estimated from multiple tie points.

faster texturing of many 3D points, a rectified image can be gen-
erated using equation 2. When the SfM procedure includes the
image that is to be used for texturing, a rectified image is already
generated by VisualSFM itself. In the rectified image, the pixel
coordinates are corresponding to the pinhole model coordinates
(ng,n,)". Therefore, texturing of 3D points can be done with
a rectified image by only applying equation 1. Furthermore, this
also allows to use third-party software, such as the texture func-
tion of Meshlab, which we use for our example.

4.3 Obtaining extrinsic camera parameters

Equation 1 requires the 3D coordinates of points to be defined
in the reference frame of the camera. The coordinates of a point
in the scanned 3D structure (X, Y, Zs)T are converted to the
reference frame of the texture camera by:

XC X—S
Ye| = R| Y, |+, 3)
ZC ZS
Rii Riz2 Ras T
where R = | Rai Raz Roz |, T=| T2
R31 Rs2 Ras T3

The rotation matrix R and the translation vector T are the extrin-
sic camera parameters (or ‘camera pose’) of the texturing camera
with respect to the 3D mesh that has to be textured.

The StM procedure described above also computes extrinsic cam-
era parameters R and T. However, these are only suitable for
alignment with the 3D reconstruction made by SfM. They can-
not be used for texturing another 3D model, such as a laser scan,
which will have an entirely different scale and alignment. Fortu-
nately, the camera pose with respect to any 3D structure can be
accurately estimated from as little as three point correspondences
between the photo and the surface of the 3D structure. To prevent
multiple solutions from which the correct one has to be validated
by visual verification, at least four tie points are needed. Hesch

This contribution has been peer-reviewed.

Editors: U. Stilla, F. Rottensteiner, and S. Hinz

112

doi:10.5194/isprsarchives-XL-3-W3-109-2015

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep — 03 Oct 2015, La Grande Motte, France

(d)

Figure 4: Texturing a laser scan with a Google Streetview screen shot (a) The screen shot from Google Streetview. (b) The textured 3D
mesh seen from the view of the Google Streetview screen shot. (c) The textured 3D mesh from a different angle, with parts occluded
from the camera view coloured in gray. (d) Close up of the textured 3D mesh from a different angle.

and Roumeliotis (2011) presented a Direct Least-Squares (DLS)
method for computing camera pose which, unlike some other
methods, doesn’t require any initial (rough) pose estimate. The
Matlab code can be downloaded from their website. Although
the authors propose to refine the result of their DLS method with
an additional Bundle Adjustment (BA) step, the accuracy of the
DLS method is already very accurate by itself. For the purpose
of texturing a 3D surface, the improvement of the additional BA
refinement will likely be unnoticeable.

The tie points can either be determined by manual annotation,
or by an automatic procedure that matches corner points in the
image with corner points of the 3D structure. Figure 3(a) and (b)
show how a tie point can be found through manual annotation.
The 3D location of a vertex on a 3D mesh surface can be found
using the point picker option of the free software CloudCompare
EDF R&D Telecom ParisTech, CloudCompare (version 2.6.1).

To obtain the most accurate texture mapping, it is best to choose
the points as far apart as possible, unless a significant lens dis-
tortion is present, in which case points close to the photo bor-
der might not be accurately approximated by the radial distor-
tion model. For ease of computation, use the rectified version
of the texture photograph to determine the image coordinates of
the points (so that the radial distortion represented by equation 2
can be ignored). Note that the DLS method requires normalised
image coordinates with unit focal length: %(nz, ny) "

The Matlab code from Hesch and Roumeliotis (2011) to estimate
camera pose from tie points can be used with the free software
Octave Eaton et al. (2015). To convert the estimated pose to the
format of Bundler, it has to be flipped over, using:

R, = FR 4
T, = FT ()
1 0 0
F = 0 -1 0 6)
0 0 -1

4.4 Projecting a 2D Image on a 3D Mesh Surface

Texturing from a photo can be done with the Meshlab software,
using the option ’parameterization + texturing from registered
rasters’. To load the (rectified) texture photos and their corre-
sponding focal length and extrinsic calibration into Meshlab, the
Bundler file format can be used, as mentioned above. This allows
to load multiple photos at once, for combined texturing. The tex-
turing procedure of Meshlab has several options of how to com-
bine overlapping photos with possibly different illumination con-
ditions. Figure 4(a) shows the screenshot from Google Streetview
that we used for our example. Figure 4(b) shows the result from
texturing from the same viewing angle as the Google Streetview
screen shot. Figure 4(c) shows the texture result under a different
angle, which includes parts that were occluded from the view and
thus have no texture information. These occluded parts have been
coloured gray. Figure 4(d) shows a close up of the texture result.

5. SHOWCASE EXAMPLE AND DISCUSSION

Our 3D texturing procedure consists of a novel combination of
free software implementations of pre-existing algorithms for Struc-
ture from Motion, pose estimation and texture mapping. For an
evaluation of the performances of each of the selected methods,
please refer to our references to their respective literature in the
previous sections.

To show the effectiveness of our complete procedure and give an
impression of the quality that can be obtained, we have demon-
strated the required steps above using a challenging example that
we find representative of a common practical situation for which
our procedure is intended to work. The 3D point cloud in our
example was derived from terrestrial laser scans made with the
Riegl VZ-400 scanner of a row of buildings at the Market Square
in Bremen, Germany. It was part of a larger dataset collected by
Borrmann and Niichter (n.d.) and available for download. The

This contribution has been peer-reviewed.
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 113
doi:10.5194/isprsarchives-XL-3-W3-109-2015

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-3/W3, 2015
ISPRS Geospatial Week 2015, 28 Sep — 03 Oct 2015, La Grande Motte, France

show case example shows that the method is easy to use and that
the accuracy of the method can be very high depending on the tie
point selection.

The accuracy of the final texture alignment depends on several
factors. First of all, the accuracy of the 3D model. When the
photo for texturing is not made from the same location as the 3D
scan, an error in the estimated distance from the 3D scanner will
result in a shift in the projection from the photo.

Secondly, the tie points must be selected accurately at the same
location in the photo that corresponds to the location selected on
the 3D model. A tie point misalignment results in an inaccuracy
of the camera pose estimation. Random errors in tie point align-
ment can be compensated by taking a larger number of tie points.

Thirdly, the intrinsic camera parameters must be estimated accu-
rately. Lens distortion must be removed completely. This is not
possible if the lens that was used has a more complex distortion
than what is modelled by the (radial) lens distortion model. Un-
fortunately, Google Streetview contains a lot of misalignments
in the multiple views that have been combined to generate the
spherical images. This will cause inaccuracies in the tie point
alignment (leading to inaccurate pose estimation), as well as mis-
alignment of the mapped texture. The effects of this can be mit-
igated by carefully selecting the tie points at places that seem
undistorted and by combining multiple views from different po-
sitions, to not use the edges of the photos, which will be effected
the worst. An error in the focal length estimation from Structure
from Motion will also cause texture misalignment, but by using
the same inaccurate focal length for pose estimation as for textur-
ing, the effect of an error in focal length is relatively small and
distributed over the middle and outer parts of the photo.

Lastly, high quality texturing obviously depends on the quality of
the photos that are used. A complete texturing of all parts of a 3D
model requires well-placed views that do not leave any parts of
the 3D surface unseen. Furthermore, differences between lighting
conditions and exposures of the different photos can cause edges
to be visible where the texture from one photo transitions into that
of another.

6. CONCLUSION

Generation of realistic 3D urban structure models is valuable for
urban monitoring, planning, safety, entertainment, commercial
and many other application fields. After having the 3D model of
the structure by laser scanning, photogrammetry or using CAD
design software tools, the most realistic views are obtained after
texturing the 3D model with real photos. Google streetview pro-
vides opportunity to access photos of urban structures almost all
around the world. In this study, we introduce a semi-automatic
method for obtaining realistic 3D building models by texturing
them with Google streetview images. We discuss advantages and
also the limitations of the proposed texturing method.

ACKNOWLEDGEMENTS

This research is funded by the FP7 project IQmulus (FP7-ICT-
2011-318787) a high volume fusion and analysis platform for
geospatial point clouds, coverages and volumetric data set.

References

Borrmann, D. and Niichter, A., n.d. 3d scan data set recorded in city
center of bremen, germany as part of the thermalmapper project.
http://kos.informatik.uni-osnabrueck.de/3Dscans/.

Cignoni, P, Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. and
Ranzuglia, G., 2008. Meshlab: an open-source mesh processing tool.
In: Sixth Eurographics Italian Chapter Conference, pp. 129-136.

Corsini, M., Dellepiane, M., Ponchio, F. and Scopigno, R., 2009. Image-
to-geometry registration: a mutual information method exploiting
illumination-related geometric properties. Computer Graphics Forum
28(7), pp. 1755-1764.

Eaton, J. W., Bateman, D., Hauberg, S. and Wehbring, R., 2015. Gnu
octave version 4.0.0 manual: a high-level interactive language for nu-
merical computations. http://www.gnu.org/software/octave/
doc/interpreter.

EDF R&D Telecom ParisTech, CloudCompare (version 2.6.1), n.d.
http://wuw.cloudcompare.org/.

Google Streetview - Google Maps, n.d. https://wuw.google.com/
maps/views/streetview.

Hesch, J. and Roumeliotis, S., 2011. A direct least-squares (dls) method
for pnp. In: Computer Vision (ICCV), 2011 IEEE International Con-
ference on, pp. 383-390.

Lensch, H. P. A., Heidrich, W. and peter Seidel, H., 2000. Automated
texture registration and stitching for real world models. In: in Pacific
Graphics, pp. 317-326.

Lichtenauer, Jeroen, F. and Sirmacek, B., 2015a. Texturing a 3d mesh
with google streetview 1 of 3: Manual alignment. http://youtu.
be/Nu3VaeBxGHc.

Lichtenauer, Jeroen, F. and Sirmacek, B., 2015b. Texturing a 3d mesh
with google streetview 2 of 3: Estimate focal length with visualsfm.
http://youtu.be/OHZDuI48IHc.

Lichtenauer, Jeroen, F. and Sirmacek, B., 2015c. Texturing a 3d mesh
with google streetview 3 of 3: Calculate pose from tie points. http:
//youtu.be/8i86ys9Boqc.

Morago, B., Bui, G. and Duan, Y., 2014. Integrating lidar range scans
and photographs with temporal changes. In: Computer Vision and
Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on,
pp. 732-737.

Snavely, N., 2008-2009. Bundler v0.4 user’s manual. http://www.cs.
cornell.edu/~snavely/bundler/.

Snavely, N., Seitz, S. and Szeliski, R., 2008. Modeling the world from
internet photo collections. International Journal of Computer Vision
80 (2), pp. 189-210.

Viola, P. and Wells III, W. M., 1997. Alignment by maximization of
mutual information. Int. J. Comput. Vision 24(2), pp. 137-154.

Wu, C., 2011. Visualsfm: A visual structure from motion system. http:
//ccwu.me/vsfm/.

Wu, C., Agarwal, S., Curless, B. and Seitz, S. M., 2011. Multicore bundle
adjustment. IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR).

Zheng, Y., Kuang, Y., Sugimoto, S., Astrom, K. and Okutomi, M., 2013.
Revisiting the pnp problem: A fast, general and optimal solution. In:
Computer Vision (ICCV), 2013 IEEE International Conference on,
pp. 2344-2351.

This contribution has been peer-reviewed.
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 114
doi:10.5194/isprsarchives-XL-3-W3-109-2015

