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The Set-Invariance Paradigm in Fuzzy Adaptive
DSC Design of Large-Scale Nonlinear

Input-Constrained Systems
Maolong Lv , Wenwu Yu , Senior Member, IEEE, and Simone Baldi , Member, IEEE

Abstract—This paper proposes a novel set-invariance adap-
tive dynamic surface control (DSC) design for a larger class
of uncertain large-scale nonlinear input-saturated systems. The
peculiarity of this class is that no a priori bound on the continuous
control gain functions is assumed (i.e., their boundedness can-
not be assumed before obtaining system stability). This requires a
new design. Differently from the available methods, the proposed
design involves the construction of appropriate invariant sets for
the closed-loop trajectories, which allows to remove the restric-
tive assumption of a priori bounds of the control gain functions.
Furthermore, we show that such set-invariance design can handle
input constraints in the form of input saturation. In line with the
DSC methodology, semi-globally uniformly ultimate boundedness
is proven: however, differently from the standard methodol-
ogy, stability analysis requires the combination of Lyapunov and
invariant set theories.

Index Terms—Adaptive fuzzy control, dynamic surface con-
trol (DSC), input constraints, invariant set theory.

I. INTRODUCTION

IN RECENT decades, much attention has been devoted
to the area of neural networks-based and fuzzy logic-

based adaptive control, which makes it possible to approx-
imate unknown continuous nonlinear functions with little
a priori knowledge about the controlled system [1]–[12].
Moreover, global stability for various kinds of uncertain non-
linear dynamic systems has been proven via the adaptive
backstepping method [13]–[18]. However, repeated differen-
tiations of the intermediate control laws during backstep-
ping generates the problem of “explosion of complexity.”
The dynamic surface control (DSC) technique was proposed
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to tackle this difficulty. This technique has been success-
fully applied to several classes of (strict-feedback) nonlinear
systems, e.g., large-scale, multi-input/multi-output (MIMO)
and input-constrained systems. To list a few, a robust adaptive
fuzzy control design based on RBF-NN is presented in [19]
for a class of MIMO nonlinear systems. In [20], a fuzzy DSC
method was proposed for large-scale interconnected strict-
feedback nonlinear systems. An approximation-based adaptive
control method was proposed in [21] for a class of large-
scale nonlinear systems in the presence of input saturation. A
neural networks-based adaptive control design was proposed
in [22] for large-scale strict-feedback nonlinear systems with
unknown time delays. Further works involving strict-feedback
nonlinear systems can be found in [23]–[30] and in the
references therein.

However, two problems are worth mentioning: the first
is that, for all aforementioned designs [19]–[30] to work,
lower and upper bounds of the control gain functions must
be assumed to exist a priori (i.e., before obtaining system
stability) [31]. Even though some efforts have been made
to get rid of this restrictive assumption, such as [32], it is
still required the control gain functions to be bounded by a
positive term, which is expressed as an unknown positive con-
stant multiplying a known positive function. Clearly, in many
practical control systems, a priori bounds of the control gain
functions are difficult to be known, or such bounds may be
nonexistent [33].

The second problem is that, since the approximation of the
nonlinear functions is valid as long as the states are inside a
compact set, adaptive control laws should not push the states
outside this set. This consideration, often ignored in most
works [19]–[30], requires to combine the DSC technique with
invariant set theory, as recently done by some of the authors
in [33]. The open problem in this paper is how to adopt
the set-invariance paradigm in such a way to handle large-
scale nonlinear systems and input constraints whose effects are
known to severely degrade the control performance [34]–[36].
Therefore, the open questions answered by this paper are:
how to relax the assumption on the control gain functions for
large-scale strict-feedback nonlinear systems in the presence of
interconnection and saturation effects? And, most importantly,
how to extend the set-invariance design in such a setting?
These questions motivate this paper.

In view of the aforementioned discussion, the main innova-
tions of this paper are given below.
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1) In contrast with all existing works [19]–[30], the bound-
edness assumption for control gain functions is no longer
required, on the contrary, the control gain functions
of large-scale nonlinear systems are only required to
be positive instead of bounded by positive terms. The
main challenge arising from this setting is that the func-
tions cannot be assumed to be bounded a priori before
obtaining the system stability.

2) A novel set-invariance fuzzy adaptive design is carried
out for input-saturated large-scale nonlinear systems.
The challenge of this design is to construct appropriate
compact sets via invariant set theory, which guarantee
that the states of the closed-loop system will stay in
those sets all the time, even in the presence of input
saturation.

3) It is worth mentioning that, consistently with DSC the-
ory, the resulting stability is semi-globally uniformly
ultimate boundedness (SGUUB). This means that the
design parameters depend on the initial conditions.
However, different from the standard method, Lyapunov
stability is enhanced via invariant set theory to prove
convergence of the tracking errors to an arbitrarily small
neighborhood of the origin after choosing appropriate
design parameters.

The rest of this paper is structured as follows. The considered
class of systems is presented in Section II. The proposed DSC
design procedure, and system stability analysis are presented
in Section III. In Section IV, simulation results are given. The
conclusions are given in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following large-scale nonlinear system with
input saturation [19]–[21]:

⎧
⎪⎪⎨

⎪⎪⎩

ẋj,ij = fj,ij
(
x̄j,ij

) + gj,ij

(
x̄j,ij

)
xj,ij+1 + �j,ij(x, t)

1 ≤ ij ≤ ρj − 1
ẋj,ρj = fj,ρj

(
x̄j,ρj

) + gj,ρj uj
(
vj(t)

) + �j,ρj(x, t)
yj = xj,1 j = 1, . . . , m

(1)

where xj,ij ∈ R is the state of the jth subsystem, x =
[x̄T

1,ρ1
, . . . , x̄T

j,ρj
, . . . , x̄T

m,ρm
]T ∈ R

N represents the state vec-
tor of the whole system (N = ρ1 + · · · + ρm), where
x̄j,ρj

= [xj,1, . . . , xj,ρj
]T ∈ R

ρj and ρj is the order of the jth
subsystem. x̄j,ij = [xj,1, . . . , xj,ij ]

T ∈ R
ij , yj ∈ R is the output

of the jth subsystem. fj,ij(·) and gj,ij(·) are unknown contin-
uous functions, �j,ij(x, t), ij = 1, . . . , ρj, and j = 1, . . . , m
are uncertain terms, comprising external disturbances and
dynamical coupling terms, which might depend on the full-
system state x, and uj(vj(t)) is the saturated input of the jth
system, which is expressed as follows:

uj(vj(t)) = sat(vj(t)) =
{

sign
(
vj(t)

)
uj,M, |vj(t)| ≥ uj,M

vj(t), |vj(t)| < uj,M
(2)

where uj,M is the bound of uj(vj(t)). To handle the saturation
uj(vj(t)) in the control design, it follows from [15] that (2) can
be approximated by the smooth function:

hj(vj) = uj,M tanh

(
vj

uj,M

)

= uj,M
evj/uj,M − e−vj/uj,M

evj/uj,M + e−vj/uj,M
. (3)

In particular, sat(vj(t)) in (2) can be rewritten as

sat
(
vj
) = hj

(
vj
) + dj

(
vj
)

(4)

where |dj(vj)| ≤ uj,M(1 − tanh(1)) = Dj, with Dj > 0 being
an unknown constant.

Invoking the mean value theorem, hj(vj) can be given as

hj
(
vj
) = hj

(
v∗

j

)
+ ∂hj(·)/∂vj

∣
∣
∣
vj=v

θj0
j

(
vj − v∗

j

)
(5)

where v
θj0
j = θj0 + (1 − θj0)v∗

j with 0 < θj0 < 1. Let v∗
j = 0:

then we have

hj
(
vj
) = ∂hj(·)/∂vj

∣
∣
vj=v

θj0
j

(
vj − v∗

j

)
= gj0

(
v
θj0
j

)
vj. (6)

Remark 1: The mean value theorem is commonly adopted in
the literature to handle input saturation (see [14], [15], [21]).
According to the definition of hj(vj) in (3), it holds that 0 <

g
j0

< gj0(v
θj0
j ) ≤ 1 for every vj ∈ R with g

j0
a constant.

Then, system (1) can be rewritten as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋj,ij = fj,ij
(
x̄j,ij

) + gj,ij

(
x̄j,ij

)
xj,ij+1 + �j,ij(x, t)

1 ≤ ij ≤ ρj − 1

ẋj,ρj = fj,ρj

(
x̄j,ρj

) + gj,ρj

(
x̄j,ρj

)
gj0

(
v
θj0
j

)
vj

+ gj,ρj

(
x̄j,ρj

)
dj

(
vj
) + �j,ρj(x, t)

yj = xj,1 j = 1, . . . , m.

(7)

The following assumption on the control-gain functions
sensibly relaxes the assumptions in the existing literature.

Assumption 1: The control gain functions satisfy
gj,ij(x̄j,ij) > 0 for ij = 1, 2, . . . , ρj and j = 1, . . . , m.

Remark 2: In all existing methods, such as [19]–[30],
the control gain functions gj,ij(x̄j,ij) are assumed to satisfy
g

j,ij
≤ gj,ij(x̄j,ij) ≤ gj,ij , with g

j,ij
and gj,ij being positive con-

stants. In fact, this assumption guarantees controllability of
system (1). However, this assumption g

j,ij
≤ gj,ij(x̄j,ij) ≤ gj,ij

is too restrictive since the lower bound g
j,ij

and upper bound

gj,ij of gj,ij(x̄j,ij) may be nonexistent. Take gj,ij(x̄j,ij) = exj,ij

as an example, then, the condition g
j,ij

≤ gj,ij(x̄j,ij) ≤ gj,ij
is not satisfied because g

j,ij
and gj,ij do not exist for all

states: however, Assumption 1 holds since exj,ij > 0 for all
states x̄j,ij .

Remark 3: Obviously, the states x̄j,ij cannot be assumed
to be bounded a priori before obtaining the system stability.
Therefore, in view of Assumption 1, the control gains can-
not be taken bounded a priori before obtaining the system
stability. In the existing methods, the system stability is
achieved under the a priori bounded condition for the con-
trol gain functions. Therefore, the absence of a priori bounds
requires a new control design going beyond the existing
literature [19]–[30].

The following two assumptions are standard in [20] and [22]
among others.

Assumption 2: The desired trajectory yj,d(t) is a suffi-
ciently smooth function, and yj,d, ẏj,d and ÿj,d are bounded,
there exists a constant Dj0 > 0 satisfying �j0 :=
{[yj,d, ẏj,d, ÿj,d]T |(yj,d)

2 + (ẏj,d)
2 + (ÿj,d)

2 ≤ Dj0}.
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Assumption 3: For ∀t > 0, there exist positive constants
�∗

j,ij
such that |�j,ij(x, t)| ≤ �∗

j,ij
, for ij = 1, . . . , ρj and j =

1, . . . , m.
The aim of this paper is to design a decentralized

robust fuzzy adaptive DSC vj such that all signals of the
interconnected large-scale nonlinear system (7) are SGUUB,
and the whole system output y = [y1, . . . , ym]T follows
the desired trajectory yd = [y1,d, . . . , ym,d]T with a tunable
bounded tracking error.

The following three lemmas are instrumental to stability
analysis.

Lemma 1 [24]: The hyperbolic tangent function fulfills the
following inequality for ∀ς > 0 and any q ∈ R:

0 ≤ |q| − q tanh(q/ς) ≤ 0.2785ς. (8)

Lemma 2 [33]: For ∀(x, y) ∈ R
2, the following inequality

holds:

xy ≤ ε2

α
‖x‖2 + 1

βε2
‖y‖2 (9)

where ε > 0, α > 1, β > 1, and (α − 1)(β − 1) = 1.
Lemma 3 [2]: Consider a continuous function f (x) which is

defined in a compact set �x, for any given positive constant
ε∗, there exists a fuzzy logic systems y(x) = WT ϕ̄(x) such
that

sup
x∈�x

|f (x) − y(x)| ≤ ε∗

where ϕ̄(x) is a vector of appropriately defined basis functions.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

A. Adaptive Fuzzy DSC Design

In this section, approximator-based adaptive backstepping
control method shall be designed for system (7) with the aid
of invariant set theory. The recursive design includes ρj steps.
At the ijth step (1 ≤ ij ≤ ρj−1), the intermediate controller sj,ij
will be designed, while the actual control law vj is constructed
at the final step.

First of all, consider the following change of coordinates:
{

ej,1 = xj,1 − yj,d

ej,ij = xj,ij − ζj,ij
(10)

with ζj,ij being obtained from the following first-order filters:

τj,ij+1ζ̇j,ij+1 + ζj,ij+1 = sj,ij

ζj,ij+1(0) = sj,ij(0) (11)

where τj,ij+1 > 0 is a design time constant.
Since fj,ij(x̄j,ij), ij = 1, . . . , ρj, are unknown continuous

functions. Therefore, throughout this note, we use fuzzy logic
systems to approximate functions fj,ij(x̄j,ij) as shown in

fj,ij
(
x̄j,ij

) = WT
j,ij ϕ̄j,ij

(
x̄j,ij

) + εj,ij , x̄j,ij ∈ �x̄j,ij
(12)

where ϕ̄j,ij(x̄j,ij) = [ϕj,ij,1(x̄j,ij), . . . , ϕj,ij,lij
(x̄j,ij)]

T with
ϕj,ij,n(x̄j,ij), for n = 1, . . . , lj,ij , being Gaussian functions, and
εj,ij are the approximation errors, satisfying |εj,ij | ≤ ε∗

j,ij
with

ε∗
j,ij

unknown positive constants. Let ε, �j,ρj , gj0, and dj denote

ε(Z), �j,ρj(x, t), gj0(v
θj0
j ), and dj(vj), respectively.

Step j, 1 (j = 1, . . . ,m): Using (7), (10), and (12), we obtain
the dynamics of ej,1 as

ėj,1 = WT
j,1ϕ̄j,1

(
xj,1

) + εj,1 + gj,1
(
xj,1

)
xj,2 + �j,1 − ẏj,d (13)

where εj,1 is such that |εj,1| ≤ ε∗
j,1 with ε∗

j,1 a positive constant.
Consider the quadratic function as follows:

Vej,1 = 1

2
e2

j,1. (14)

Noting (13), one has

V̇ej,1 = ej,1

(
WT

j,1ϕ̄j,1
(
xj,1

) + εj,1 + gj,1
(
xj,1

)
xj,2 + �j,1 − ẏj,d

)
.

(15)

Defining compact set �j,1 := {ej,1|Vej,1 ≤ p} with p > 0 is
a constant. Then, the following Lemma 4 holds.

Lemma 4: The continuous function gj,1(xj,1) has maximum
and minimum in �j,1×�j0, that is, there exist constants g

j,1
>

0 and ḡj,1 > 0 such that g
j,1

= min�j,1×�j0 gj,1(xj,1) and ḡj,1 =
max�j,1×�j0 gj,1(xj,1).

Proof: From ej,1 = xj,1 − yj,d, we have xj,1 = yj,d + ej,1.
Thus, one arrives

gj,1
(
xj,1

) = κj,1
(
ej,1, yj,d

)
(16)

with κj,1(·) being a continuous function. Note that �j,1 × �j0
is compact because �j,1 and �j0 are compact. As from (19)
we have that all the variables of κj,1(·) belong to �j,1 × �j0,
κj,1(·) has maximum ḡj,1 and minimum g

j,1
in �j,1 × �j0.

Therefore, it holds that

0 < g
j,1

≤ gj,1
(
xj,1

) ≤ ḡj,1, xj,1 ∈ �j,1 × �j0. (17)

Design the following intermediate controller and adaptation
laws:

sj,1 = −kj,1ej,1 − θ̂j,1ej,1

2a2
j,1

− δ̂j,1 tanh

(
ej,1

ςj,1

)

− φj,1ẏj,d tanh

(
ej,1ẏj,d

ςj,1

)

(18)

˙̂
θj,1 = ηj,1e2

j,1

2a2
j,1

− σj,1ηj,1θ̂j,1 (19)

˙̂
δj,1 = γj,1ej,1 tanh

(
ej,1

ςj,1

)

− σj,1γj,1δ̂j,1 (20)

where kj,1 > 0, aj,1 > 0, ςj,1 > 0, ηj,1 > 0, σj,1 > 0,

γj,1 > 0, and φj,1 ≥ g−1
j,1

are design constants. θ̂j,1 and

δ̂j,1 are the estimation values of θj,1 = g−1
j,1

∥
∥Wj,1

∥
∥2

lj,1 and

δj,1 = g−1
j,1

(
ε∗

j,1 + �∗
j,1

)
, respectively, where lj,1 is the dimen-

sion of ϕ̄j,1(x̄j,1). Because (19) and (20) are first-order systems
with non-negative input, one has θ̂j,1(t) ≥ 0 and δ̂j,1(t) ≥ 0
for ∀t ≥ 0 by selecting θ̂j,1(0) = 0 and δ̂j,1(0) = 0.

Define the filter error βj,2 = ζj,2 − sj,1, which yields ζ̇j,2 =
−βj,2/τj,2 and

β̇j,2 = −βj,2

τj,2
+ χj,2

(
ej,1, ej,2, βj,2, θ̂j,1, δ̂j,1, yj,d, ẏj,d, ÿj,d

)

(21)
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where χj,2(·) is a continuous function to be utilized later in
the stability analysis.

According to Lemma 2, one has

ej,1WT
j,1ϕ̄j,1

(
xj,1

) ≤ e2
j,1

∥
∥Wj,1

∥
∥2

2a2
j,1

ϕ̄T
j,1

(
xj,1

)
ϕ̄j,1

(
xj,1

) + a2
j,1

2

(22)

with aj,1 > 0 being a design constant. It holds
that ϕ̄T

j,1(xj,1)ϕ̄j,1(xj,1) ≤ lj,1 since ϕ̄j,1(xj,1) =
[ϕj,1,1(xj,1), . . . , ϕj,1,lj,1(xj,1)]T and |ϕj,1,n(xj,1)| ≤ 1, for
n = 1, . . . , lj,1. Then, we have

ej,1WT
j,1ϕ̄j,1

(
xj,1

) ≤ e2
j,1

∥
∥Wj,1

∥
∥2

2a2
j,1

lj,1 + a2
j,1

2
. (23)

Noting that xj,2 = ej,2 + βj,2 + sj,1, φj,1g
j,1

≥ 1 and (15),
one reaches

V̇ej,1 ≤ −kj,1g
j,1

e2
j,1 −

g
j,1

θ̂j,1e2
j,1

2a2
j,1

+ e2
j,1

∥
∥Wj,1

∥
∥2

2a2
j,1

lj,1

− g
j,1

ej,1δ̂j,1 tanh

(
ej,1

ςj,1

)

+ ej,1ej,2gj,1
(
xj,1

)

− ej,1ẏj,d tanh

(
ej,1ẏj,d

ςj,1

)

+ ej,1gj,1
(
xj,1

)
βj,2

+ a2
j,1

2
+ ∣
∣ej,1

∣
∣
(
ε∗

j,1 + �∗
j,1

)
− ej,1ẏj,d. (24)

Take the Lyapunov function as

Vj,1 = Vej,1 +
g

j,1
δ̃2

j,1

2γj,1
+

g
j,1

θ̃2
j,1

2ηj,1
+ 1

2
β2

j,2 (25)

where δ̃j,1 = δj,1 − δ̂j,1 and θ̃j,1 = θj,1 − θ̂j,1.
Using the adaptation laws (19) and (20), and Lemma 1

yields

V̇j,1 ≤ −kj,1g
j,1

e2
j,1 + ej,1ej,2gj,1

(
xj,1

)

+ σj,1g
j,1

(
θ̃j,1θ̂j,1 + δ̃j,1δ̂j,1

)
− β2

j,2

τj,2

+ 0.2785ςj,1

(
ε∗

j,1 + �∗
j,1 + 1

)
+ ej,1gj,1

(
xj,1

)
βj,2

+
∣
∣
∣βj,2χj,2(·)

∣
∣
∣ +

a2
j,1

2
. (26)

Step j, ij (2 ≤ ij ≤ ρj − 1, j = 1, . . . ,m): The design process
for step ij follows recursively from step 1. From ej,ij = xj,ij −
ζj,ij and (12), the dynamics of ej,ij can be written as

ėj,ij = WT
j,ij ϕ̄j,ij

(
x̄j,ij

) + εj,ij + gj,ij

(
x̄j,ij

)
xj,ij+1 + �j,ij − ζ̇j,ij

(27)

where εj,ij is such that |εj,ij | ≤ ε∗
j,ij

with ε∗
j,ij

a positive constant.
Choose the quadratic function as follows:

Vej,ij
= 1

2
e2

j,ij . (28)

Using (27), the time derivative of Vej,ij
is

V̇ej,ij
= ej,ij

(
WT

j,ij ϕ̄j,ij

(
x̄j,ij

) + gj,ij

(
x̄j,ij

)
xj,ij+1

+ �j,ij + εj,ij − ζ̇j,ij

)
. (29)

We can now design the intermediate controller and adapta-
tion laws as

sj,ij = −kj,ij ej,ij − θ̂j,ij ej,ij

2a2
j,ij

− δ̂j,ij tanh

(
ej,ij

ςj,ij

)

− φj,ij

βj,ij

τj,ij
tanh

(
ej,ijβj,ij

τj,ijςj,ij

)

(30)

˙̂
θj,ij =

ηj,ij e
2
j,ij

2a2
j,ij

− σj,ijηj,ij θ̂j,ij (31)

˙̂
δj,ij = γj,ij ej,ij tanh

(
ej,ij

ςj,ij

)

− σj,ijγj,ij δ̂j,ij (32)

where kj,ij
> 0, aj,ij

> 0, ςj,ij > 0, ηj,ij > 0, σj,ij > 0, γj,ij > 0,

and φj,ij ≥ g−1
j,ij

are design parameters. θ̂j,ij and δ̂j,ij are the

estimates of θj,ij = g−1
j,ij

‖Wj,ij‖2lj,ij and δj,ij = g−1
j,ij

(ε∗
j,ij

+�∗
j,ij

),

respectively, where lj,ij is the dimension of ϕ̄j,ij(x̄j,ij).
Define the filter errors βj,ij+1 = ζj,ij+1 − sj,ij . Invoking (11),

we have ζ̇j,ij+1 = −βj,ij+1/τj,ij+1 and

β̇j,ij+1 = −βj,ij+1

τj,ij+1
+ χj,ij+1

×
(

ēj,ij+1, β̄j,ij+1,
¯̂
θj,ij ,

¯̂
δj,ij , yj,d, ẏj,d, ÿj,d

)
(33)

where χj,ij+1(·) is a continuous function whose arguments are
defined later.

Along similar lines as Lemma 4, from ej,ij = xj,ij − ζj,ij
and βj,ij = ζj,ij − sj,ij−1, we have xj,ij = ej,ij + βj,ij + sj,ij−1.
Observing (30), it can be seen that sj,ij−1 is a continuous func-
tion with respect to ej,ij−1, θ̂j,ij−1, δ̂j,ij−1, and βj,ij−1. Therefore,
the continuous function gj,ij(x̄j,ij) can be expressed as

gj,ij

(
x̄j,ij

) = κj,ij

(
ēj,ij , β̄j,ij ,

¯̂
θj,ij−1,

¯̂
δj,ij−1, yj,d

)
(34)

where κj,ij(·) is a continuous function and ēj,ij =
[ej,1, ej,2, . . . , ej,ij ]

T , β̄j,ij+1 = [βj,2, . . . , βj,ij+1]T , ¯̂
θj,ij−1 =

[θ̂j,1, . . . , θ̂j,ij−1]T , and ¯̂
δj,ij−1 = [δ̂j,1, . . . , δ̂j,ij−1]T .

Define the compact sets �j,ij as follows:

�j,ij :=
⎧
⎨

⎩

[
ēT

j,ij , β̄
T
j,ij ,

¯̂
θT

j,ij−1,
¯̂
δT

j,ij−1

]T |e2
j,ij

+
ij−1∑

k=1

⎛

⎝e2
j,k + β2

j,k+1 +
g

j,ij
δ̃2

j,ij

γj,ij
+

g
j,ij

θ̃2
j,ij

ηj,ij

⎞

⎠ ≤ 2p

⎫
⎬

⎭

where p > 0 is the same design constant after (15). The
following Lemma 5 holds for �j,ij and gj,ij(x̄j,ij).

Lemma 5: The continuous function gj,ij(x̄j,ij) has maximum
and minimum in �j,ij ×�j0, that is, there exist constants g

j,ij
>

0 and ḡj,ij > 0 such that g
j,ij

= min�j,ij×�j0 gj,ij(x̄j,ij) and

ḡj,ij = max�j,ij×�j0 gj,ij(x̄j,ij).
Proof: �j,ij ×�j0 is compact because �j,ij and �j0 are com-

pact. From (34), it can be known that all the variables of κj,ij(·)
belong to �j,ij ×�j0. Therefore, the continuous function κj,ij(·)
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has maximum ḡj,ij > 0 and minimum g
j,ij

> 0 in �j,ij × �j0

and the following inequality holds:

g
j,ij

≤ gj,ij

(
x̄j,ij

) ≤ ḡj,ij , x̄j,ij ∈ �j,ij × �j0. (35)

Take the Lyapunov function as

Vj,ij = Vej,ij
+

g
j,ij

δ̃2
j,ij

2γj,ij
+

g
j,ij

θ̃2
j,ij

2ηj,ij
+ 1

2
β2

j,ij+1 (36)

where δ̃j,ij = δj,ij − δ̂j,ij and θ̃j,ij = θj,ij − θ̂j,ij .
Using Lemma 2 and similarly to step 1, one gets

ej,ij W
T
j,ij ϕ̄j,ij

(
x̄j,ij

) ≤
e2

j,ij

∥
∥Wj,ij

∥
∥2

2a2
j,ij

lj,ij +
a2

j,ij

2
(37)

where aj,ij
> 0 is a design constant and lj,ij is the dimen-

sion of ϕ̄j,ij(x̄j,ij) = [ϕj,ij,1(x̄j,ij), . . . , ϕj,ij,lj,ij
(x̄j,ij)]

T with
|ϕj,ij,n(x̄j,ij)| ≤ 1, for n = 1, . . . , lj,ij .

From (29), (33), (37), and φj,ijgj,ij
≥ 1, we can further have

V̇j,ij ≤ −kj,ij gj,ij
e2

j,ij + ej,ij gj,ij

(
x̄j,ij

)
βj,ij+1

+ ej,ij ej,ij+1gj,ij

(
x̄j,ij

) + ∣
∣βj,ij+1χj,ij+1(·)

∣
∣

+
[∣
∣
∣
∣
∣

ej,ijβj,ij

τj,ij

∣
∣
∣
∣
∣
− ej,ijβj,ij

τj,ij
tanh

(
ej,ijβj,ij

ςj,ijτj,ij

)]

+
(
ε∗

j,ij + �∗
j,ij

)
[
∣
∣ej,ij

∣
∣ − ej,ij tanh

(
ej,ij

ςj,ij

)]

−
g

j,ij

γj,ij
δ̃j,ij

[

˙̂
δj,ij − γj,ij ej,ij tanh

(
ej,ij

ςj,ij

)]

−
g

j,ij

ηj,ij
θ̃j,ij

[

˙̂
θj,ij −

ηj,ij e
2
j,ij

2a2
j,ij

]

−
β2

j,ij+1

τj,ij+1
+

a2
j,ij

2
. (38)

Substituting the adaptation laws (31) and (32) into (38) and
invoking Lemma 1 yields

V̇j,ij ≤ −kj,ij gj,ij
e2

j,ij + ej,ij gj,ij

(
x̄j,ij

)
βj,ij+1 −

β2
j,ij+1

τj,ij+1

+ σj,ij gj,ij

(
θ̃j,ij θ̂j,ij + δ̃j,ij δ̂j,ij

)
+

a2
j,ij

2

+
∣
∣
∣βj,ij+1χj,ij+1(·)

∣
∣
∣ + ej,ij ej,ij+1gj,ij

(
x̄j,ij

)

+ 0.2785ςj,ij

(
ε∗

j,ij + �∗
j,ij + 1

)
. (39)

Step j, ρj (j = 1, . . . ,m): Using (7), (12), and ej,ρj = xj,ρj −
ζj,ρj , the dynamics of ej,ρj are given by

ėj,ρj = WT
j,ρj

ϕ̄j,ρj

(
x̄j,ρj

) + εj,ρj + gj,ρj

(
x̄j,ρj

)
gj0vj

+ gj,ρj

(
x̄j,ρj

)
dj + �j,ρj − ζ̇j,ρj . (40)

Consider the quadratic function as

Vej,ρj
= 1

2
e2

j,ρj
. (41)

Using (40), it yields that

V̇ej,ρj
= ej,ρj

(
WT

j,ρj
ϕ̄j,ρj

(
x̄j,ρj

) + gj,ρj

(
x̄j,ρj

)
gj0vj

+ gj,ρj

(
x̄j,ρj

)
dj + �j,ρj − ζ̇j,ρj + εj,ρj

)
. (42)

Similarly to step ij, it follows from (30) and xj,ρj = ej,ρj +
βj,ρj + sj,ρj−1 that the continuous function gj,ρj(x̄j,ρj) can be
rewritten as

gj,ρj

(
x̄j,ρj

) = κj,ρj

(
ēj,ρj , β̄j,ρj ,

¯̂
θj,ρj−1,

¯̂
δj,ρj−1, yj,d

)
(43)

where κj,ρj(·) is a continuous function.
Similar to the reasoning in Lemma 5, we know that, for the

compact set �j,ρj × �j0, there exist constants g
j,ρj

> 0 and
ḡj,ρj > 0 such that

g
j,ρj

≤ gj,ρj

(
x̄j,ρj

) ≤ ḡj,ρj , x̄j,ρj ∈ �j,ρj × �j0. (44)

Let us now design the actual control law vj and adaptation
laws as

vj = −φj,0

[

cj,ρj ej,ρj + θ̂j,ρj ej,ρj

2a2
j,ρj

+ δ̂j,ρj tanh

(
ej,ρj

ςj,ρj

)]

− φj,0φj,ρj

βj,ρj

τj,ρj

tanh

(
ej,ρjβj,ρj

τj,ρjςj,ρj

)

(45)

˙̂
θj,ρj =

ηj,ρj e
2
j,ρj

2a2
j,ρj

− σj,ρjηj,ρj θ̂j,ρj (46)

˙̂
δj,ρj = γj,ρj ej,ρj tanh

(
ej,ρj

ςj,ρj

)

− σj,ρjγj,ρj δ̂j,ρj (47)

where kj,ρj
> 0, aj,ρj

> 0, ςj,ρj > 0, ηj,ρj > 0, σj,ρj > 0,

γj,ρj > 0, and φj,ρj ≥ g−1
j,ρj

are design constants. θ̂j,ρj and δ̂j,ρj

are the estimation values of θj,ρj = g−1
j,ρj

‖Wj,ρj‖2lj,ρj and δj,ρj =
g−1

j,ρj
(ε∗

j,ρj
+�∗

j,ρj
), respectively, where lj,ρj is the dimension of

ϕ̄j,ρj(x̄j,ρj).
Take the following Lyapunov function candidate:

Vj,ρj = Vej,ρj
+

g
j,ρj

δ̃2
j,ρj

2γj,ρj

+
g

j,ρj
θ̃2

j,ρj

2ηj,ρj

(48)

where δ̃j,ρj = δj,ρj − δ̂j,ρj and θ̃j,ρj = θj,ρj − θ̂j,ρj .
From (42), (48), and Assumption 3, it holds that

V̇j,ρj ≤ ej,ρj W
T
j,ρj

ϕ̄j,ρj

(
x̄j,ρj

) + ej,ρjgj,ρj

(
x̄j,ρj

)
gj0vj

+ ej,ρj gj,ρj

(
x̄j,ρj

)
dj − ej,ρj ζ̇j,ρj

+ ∣
∣ej,ρj

∣
∣
(
ε∗

j,ρj
+ �∗

j,ρj

)
−

g
j,ρj

γj,ρj

˙̂
δj,ρj δ̃j,ρj −

g
j,ρj

ηj,ρj

˙̂
θj,ρj θ̃j,ρj .

(49)

Following the similar steps as in (22) and (37), one arrives:

ej,ρj Wj,ρj ϕ̄j,ρj

(
x̄j,ρj

) ≤
e2

j,ρj

∥
∥Wj,ρj

∥
∥2

2a2
j,ρj

lj,ρj +
a2

j,ρj

2
(50)

where aj,ρj
> 0 is design constant and lj,ρj is the dimen-

sion of ϕ̄j,ρj(x̄j,ρj) = [ϕj,ρj,1(x̄j,ρj), . . . , ϕj,ρj,lj,ρj
(x̄j,ρj)]

Twith
|ϕj,ρj,n(x̄j,ρj)| ≤ 1, for n = 1, . . . , lj,ρj .
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Using (44) and substituting the actual control law (45) into
(49) yields

V̇j,ρj ≤ −cj,ρj gj,ρj
e2

j,ρj
+ ∣
∣ej,ρj

∣
∣ḡj,ρjDj +

a2
j,ρj

2

+
[∣
∣
∣
∣
∣

ej,ρjβj,ρj

τj,ρj

∣
∣
∣
∣
∣
− ej,ρjβj,ρj

τj,ρj

tanh

(
ej,ρjβj,ρj

τj,ρjςj,ρj

)]

+
(
ε∗

j,ρj
+ �∗

j,ρj

)
[
∣
∣ej,ρj

∣
∣ − ej,ρj tanh

(
ej,ρj

ςj,ρj

)]

−
g

j,ρj

γj,ρj

δ̃j,ρj

[

˙̂
δj,ρj − γj,ρj ej,ρj tanh

(
ej,ρj

ςj,ρj

)]

−
g

j,ρj

ηj,ρj

θ̃j,ρj

[

˙̂
θj,ρj −

ηj,ρj e
2
j,ρj

2a2
j,ρj

]

. (51)

From Lemma 2, it follows that |ej,ρj |ḡj,ρjDj ≤ (cj,0/2) +
[(e2

j,ρj
ḡ2

j,ρj
D2

j )/2cj,0], with cj,0 being a positive constant.
Substituting the adaptation laws (46) and (47) into (51), we
can get

V̇j,ρj ≤ −
(

cj,ρj gj,ρj
−

ḡ2
j,ρj

D2
j

2cj,0

)

e2
j,ρj

+
a2

j,ρj

2

+ g
j,ρj

σj,ρj

(
δ̂j,ρj δ̃j,ρj + θ̂j,ρj θ̃j,ρj

)
+ cj,0

2

+ 0.2785ςj,ρj

(
ε∗

j,ρj
+ �∗

j,ρj
+ 1

)
. (52)

Let cj,ρj ≥ g−1
j,ρj

[(ḡ2
j,ρj

D2
j )/2cj,0] + kj,ρj with kj,ρj being

positive design constant. We finally have

V̇j,ρj ≤ −kj,ρj gj,ρj
e2

j,ρj
+ 0.2785ςj,ρj

(
ε∗

j,ρj
+ �∗

j,ρj
+ 1

)

+ g
j,ρj

σj,ρj

(
δ̂j,ρj δ̃j,ρj + θ̂j,ρj θ̃j,ρj

)
+

a2
j,ρj

2
+ cj,0

2
. (53)

B. Closed-Loop Stability Analysis

Theorem 1: Consider the closed-loop systems composed by
the intermediate controllers (18) and (30), the actual control
law (45), the parameter adaptation laws (19), (20), (31), (32),
(46), and (47), and the filters (11). Let Assumptions 1–3 hold.
For any given p > 0, θ̂j,ij(0) ≥ 0, δ̂j,ij(0) ≥ 0, and Vj(0) ≤ p,
with Vj defined in (54), there exist adjustable parameters kj,ij ,
aj,ij , ςj,ij , ηj,ij , σj,ij , γj,ij , φj,ij , τj,ij , and φj,0 (1 ≤ ij ≤ ρj, j =
1, . . . , m) such that: 1) �j,ρj ×�j0 is an invariant compact set,
that is, Vj(t) ≤ p holds for ∀t > 0, and all signals of system
(7) are SGUUB and 2) system output tracking error ej,1 is
such that limt→∞ |ej,1(t)| ≤ μj,1 with μj,1 > 0 a constant.
Furthermore, the whole system output tracking errors e1 =
[e1,1, . . . , em,1]T are such that limt→∞ ‖e1(t)‖ ≤ μ1, where
μ1 is a positive constant.

Proof: First, consider the following Lyapunov function
candidate:

Vj = 1

2

ρj∑

ij=1

(

e2
j,ij +

g
j,ij

γj,ij
δ̃2

j,ij +
g

j,ij

ηj,ij
θ̃2

j,ij

)

+ 1

2

ρj−1∑

ij=1

β2
j,ij+1. (54)

After summing (26), (39), and (53), we can obtain

V̇j ≤
ρj∑

ij=1

[
−kj,ij gj,ij

e2
j,ij

]
+

ρj−1∑

ij=1

[∣
∣βj,ij+1χj,ij+1(·)

∣
∣
]

+
ρj−1∑

ij=1

[

−
β2

j,ij+1

τj,ij+1
+ ḡj,ij

(∣
∣ej,ij+1

∣
∣ + ∣

∣βj,ij+1
∣
∣
)∣
∣ej,ij

∣
∣

]

+
ρj∑

ij=1

[
σj,ij gj,ij

(
θ̃j,ij θ̂j,ij + δ̃j,ij δ̂j,ij

)
+ bj,ij

]
+ cj,0

2
(55)

where bj,ij = 0.2785ςj,ij(ε
∗
j,ij

+ �∗
j,ij

+ 1) + (a2
j,ij

/2).
By Lemma 2, it has

∣
∣
∣βj,ij+1χj,ij+1(·)

∣
∣
∣ ≤

β2
j,ij+1χ

2
j,ij+1(·)

2cj,1
+ cj,1

2

ḡj,ij

∣
∣ej,ij+1

∣
∣
∣
∣ej,ij

∣
∣ ≤

ḡj,ij e
2
j,ij+1

2
+

ḡj,ij e
2
j,ij

2

ḡj,ij

∣
∣ej,ij

∣
∣
∣
∣βj,ij+1

∣
∣ ≤

cj,2ḡ2
j,ij

β2
j,ij+1

2
+

e2
j,ij

2cj,2
(56)

where cj,1 and cj,2 are positive constants.
Substituting inequalities (56) into (55) yields

V̇j ≤
ρj∑

ij=1

[

−kj,ij gj,ij
e2

j,ij − 1

2
σj,ij gj,ij

(
θ̃2

j,ij + δ̃2
j,ij

)]

+
ρj−1∑

ij=1

[

− 1

τj,ij+1
+

χ2
j,ij+1(·)
2cj,1

+
cj,2ḡ2

j,ij

2

]

β2
j,ij+1

+
ρj−1∑

ij=1

e2
j,ij

2cj,2
+

ρj−1∑

ij=1

[
ḡj,ij

2

(
e2

j,ij+1 + e2
j,ij

)]

+ Cj (57)

where Cj = (1/2)
∑ρj

ij=1 σj,ijgj,ij
(θ2

j,ij
+ δ2

j,ij
) + (cj,0/2) +

∑ρj
ij=1 bj,ij + ([(ρj − 1)cj,1]/2).
Following the same reasoning as DSC design. we have that

|χj,ij+1(·)| has maximum Mj,ij+1 > 0 in �j,ij+1 × �j0.
Let kj,ij ≥ g−1

j,ij
(Ḡj + (1/2cj,2) + αj) and

[1/(τj,ij+1)] ≥ ([M2
j,ij+1(·)]/2cj,1) + [(cj,2ḡ2

j,ij
)/2] + αj with

Ḡj = max{ḡj,1, . . . , ḡj,ρj} and αj being positive constants.
Hence, the time derivative of Vj can be given by

V̇j ≤ −
ρj∑

ij=1

(
αje

2
j,ij

)
− 1

2
σj,ij gj,ij

ρj∑

ij=1

(
θ̃2

j,ij + δ̃2
j,ij

)

−
ρj−1∑

ij=1

(
αjβ

2
j,ij+1

)
+ Cj. (58)

We further have

V̇j ≤ −ϑjVj + Cj (59)

where ϑj = min{2αj, σj,ijγj,ij , σj,ijηj,ij} > 0, for ij = 1, . . . , ρj

and j = 1, . . . , m.
Remark 5 after this proof explains that we can obtain

Cj/ϑj ≤ p. It follows from Cj/ϑj ≤ p and (59) that V̇j ≤ 0
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on the level set Vj = p: As a consequence, the compact set
�j,ρj × �j0 is an invariant set and all signals are SGUUB.

Multiply (59) by eϑjt results in

Vj(t) ≤ [
Vj(0) − �

]
e−ϑjt + � (60)

where � = Cj/ϑj is a positive constant.
From (60), we know that limt→∞ Vj(t) ≤

limt→∞ Vj(0)e−ϑjt + � ≤ �, which leads to

lim
t→∞

∣
∣ej,1

∣
∣ ≤ lim

t→∞
√

2Vj(t) ≤ √
2� = μj,1. (61)

Now we can extend the stability properties from the jth sub-
system to the whole system (7). Take the Lyapunov function
candidate V = ∑m

j=1 Vj. It follows from (59) that:

V̇ =
m∑

j=1

V̇j ≤
m∑

j=1

[−ϑjVj + Cj
] ≤ −λV + � (62)

with λ = min{ϑ1, . . . , ϑm} and � = ∑m
j=1 Cj. Then, we have

V(t) ≤ [V(0) − �]e−λt + � (63)

where � = �/λ is a positive constant.
Similarly, we obtain limt→∞ V(t) ≤ limt→∞ V(0)e−λt +

� ≤ �, which gives rise to

lim
t→∞‖e1(t)‖ ≤ lim

t→∞
√

2V(t) ≤ √
2� = μ1. (64)

Following a similar analysis way as in [19], we conclude
from (63) that the signals ej,ij

, δ̃j,ij
, θ̃j,ij

, and βj,ij+1, along
with vj, sj,ij , and ζj,ij in the closed-loop control system, ij =
1, . . . , ρj, j = 1, . . . , m, are also SGUUB.

This completes the proof of Theorem 1.
Remark 4: It is worth remarking that the system stability

analysis has been acquired with the help of (17), (35), and (44).
Differently from the control gain function of [19]–[30], such
inequalities are defined a posteriori on appropriately designed
compact sets. Specifically, (17) only holds on �j,1 × �j0,
(35) only holds on �j,ij × �j0, and (44) only holds on
�j,ρj × �j0. In other words, we have removed the assumption
on a priori boundedness of gj,ij(x̄j,ij) after making the most of
the fact that gj,ij(x̄j,ij) are bounded in �j,ij ×�j0. Furthermore,
it is also worth mentioning that �j,ρj ⊂ �j,ρj−1 × R

4 ⊂
· · · ⊂ �j,3 × R

4(ρj−3) ⊂ �j,2 × R
4(ρj−2) ⊂ �j,1 × R

4(ρj−1).
Consequently, (17), (35), and (44) also hold in �j,ρj × �j0
for all the time. This is because �j,ρj × �j0 is an invariant
compact set.

Remark 5: It should be noticed that Cj/ϑj can be made
arbitrarily small by decreasing σj,ij , aj,ij

, and ςj,ij , and mean-
while increasing αj, γj,ij , and ηj,ij . Therefore, the tracking error
can be made arbitrarily small by appropriate choice of the
design parameters. This will be further shown in the following
numerical example.

IV. SIMULATION EXAMPLES

A. Numerical Example

Consider the following large-scale input-saturated nonlinear
systems [19]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = x1,1e−0.5x1,1 +
(

1 + ex2
1,1

)
x1,2 + �1,1(t, x)

ẋ1,2 = ∣
∣cos

(
x1,1

)∣
∣x2

1,2 + (3 + ex1,1x1,2)u1(v1(t))
+ �1,2(t, x)

ẋ2,1 =
(

2 + sin
(
x1,2x2,1

)3
)

+ ex1,1 x2,2 + �2,1(t, x)

ẋ2,2 = x2,1x2,2 + x1,1x1,2 + (2 + ex1,1x2,1)u2(v2(t))
+ �2,2(t, x)

y1 = x1,1, y2 = x2,1

(65)

where �1,1 = 0.5 cos(x2
1,1x2,1x2,2) sin(t), �1,2 =

0.2 cos(x2
2,1 + x2

1,2) cos(t), �2,1 = 0.6 sin(x1,1x2,1x1,2) sin(t),
and �2,2 = 0.5 sin(x2

2,1 + x2
2,2)(sin(t))2. The desired tracking

trajectories are y1,d = 0.5(sin(t)+ sin(0.5t)) and y2,d = sin(t).
Note that f1,2 = | cos(x1,1)|x2

1,2 is nondifferentiable at

x1,1 = (π/2) and the control gain functions g1,1 = (1 + ex2
1,1),

g1,2 = (3 + ex1,1x1,2), g2,1 = ex1,1 , and g2,2 = (2 + ex1,1x2,1)

cannot be bounded a priori, but they obviously satisfy
Assumption 1. Therefore, where existing approaches cannot
be used, our approach can be applied to the nonlinear
system (65). The inputs u1(v1(t)) and u2(v2(t)) are defined
as in (2) with u1,M = u2,M = 2.

In accordance with Theorem 1, the intermediate controllers
and actual controller are designed as

s1,1 = −8e1,1 − θ̂1,1e1,1

2 × 0.252
− δ̂1,1 tanh

( e1,1

0.25

)

− 5ẏ1,d tanh

(
e1,1ẏ1,d

0.25

)

s2,1 = −3e2,1 − θ̂2,1e2,1

2 × 0.252
− δ̂2,1 tanh

( e2,1

0.25

)

− 3ẏ2,d tanh

(
e2,1ẏ2,d

0.25

)

v1 = −3

(

5e1,2 + θ̂1,2e1,2

2 × 0.252
+ δ̂1,2 tanh

(e1,2

0.5

)
)

− 3

(

2ζ̇1,2 tanh

(
e1,2ζ̇1,2

0.5

))

v2 = −5

(

3e2,2 + θ̂2,2e2,2

2 × 0.252
+ δ̂2,2 tanh

(e2,2

0.5

)
)

− 5

(

2ζ̇2,2 tanh

(
e2,2ζ̇2,2

0.5

))

where e1,1 = x1,1 − y1,d, e1,2 = x1,2 − ζ1,2, e2,1 = x2,1 −
y2,d, and e2,2 = x2,2 − ζ2,2, and the adaptation laws are
provided by (31), (32), (46), and (47) with design param-
eters η1,1 = η1,2 = 2, η2,1 = η2,2 = 1.5, σ1,1 =
σ1,2 = 0.1, σ2,1 = σ2,2 = 0.1, γ1,1 = 2, γ1,2 =
γ2,2 = 1.5, and γ2,1 = 2.5. Let the initial conditions
be [x1,1(0), x1,2(0), x2,1(0), x2,2(0)]T = [−0.1, 0,−0.1, 0]T ,
θ̂1,1(0) = θ̂1,2(0) = θ̂2,1(0) = θ̂2,2(0) = 0, and δ̂1,1(0) =
δ̂1,2(0) = δ̂2,1(0) = δ̂2,2(0) = 0. The resulting simulation
results are presented in Figs. 1–5.
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Fig. 1. Outputs y1(x1,1) and y2(x2,1) (dashed), and desired trajectories y1,d
and y2,d (solid).

Fig. 2. System inputs u1 and u2.

Fig. 3. Adaptation parameters δ̂1,1, δ̂1,2, δ̂2,1, and δ̂2,2.

It can be seen from Fig. 1 that the outputs y1 and y2 can
follow the desired trajectories y1,d and y2,d with good tracking
performance. Fig. 2 shows that the proposed controller works

Fig. 4. Output y1 under three cases.

Fig. 5. Output y2 under three cases.

well. Moreover, the adaptation parameters δ̂j,ij and θ̂j,ij(j =
1, 2, ij = 1, 2) are presented in Fig. 3.

In order to further verify the effectiveness of the developed
scheme with different design parameters, three different sets
of parameters are taken into account.

Case 1: σ1,1 = σ1,2 = σ2,1 = σ2,2 = 0.1, a1,1 = a1,2 =
0.25, a2,1 = a2,2 = 0.2, ς1,1 = ς1,2 = 0.35; ς2,1 = ς2,2 =
0.5; k1,1 = k2,1 = 8, k1,2 = k2,2 = 3, γ1,1 = γ1,2 = γ2,1 =
γ2,2 = 2.5, η1,1 = η1,2 = 3, η2,1 = η2,2 = 2.5, φ1,1 = φ1,2 =
φ2,1 = φ2,2 = 2, and τ1,2 = τ2,2 = 0.05.

Case 2: σ1,1 = σ1,2 = σ2,1 = σ2,2 = 0.25, a1,1 = a1,2 =
0.4, a2,1 = a2,2 = 0.5, ς1,1 = ς1,2 = 0.5, ς2,1 = ς2,2 = 0.75,
k1,1 = k2,1 = 6, k1,2 = k2,2 = 2, γ1,1 = γ1,2 = γ2,1 = γ2,2 =
1.5, η1,1 = η1,2 = 2, η2,1 = η2,2 = 1.5, φ1,1 = φ1,2 = φ2,1 =
φ2,2 = 2, and τ1,2 = τ2,2 = 0.05.

Case 3: σ1,1 = σ1,2 = σ2,1 = σ2,2 = 0.5, a1,1 = a1,2 =
0.5,a2,1 = a2,2 = 0.75, ς1,1 = ς1,2 = 0.7, ς2,1 = ς2,2 = 0.75,
k1,1 = k2,1 = 4, k1,2 = k2,2 = 1.5, γ1,1 = γ1,2 = γ2,1 =
γ2,2 = 1, η1,1 = η1,2 = 1, η2,1 = η2,2 = 0.5, φ1,1 = φ1,2 =
φ2,1 = φ2,2 = 2, and τ1,2 = τ2,2 = 0.05.

The system output responses are given in Figs. 4 and 5,
which demonstrate the considerations in Remark 5 (tracking
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Fig. 6. Outputs y1 and y2 (dashed), and desired trajectories y1,d and y2,d
(solid).

errors is smaller after decreasing σj,ij , aj,ij , and ςj,ij , and
meanwhile increasing kj,ij , ηj,ij , and γj,ij).

B. Practical Example

To further validate the applicability of the proposed
approach, we take the two inverted pendulums as a prac-
tical example as described in [11] and [12]. The input to
each pendulum is the torque ui (i = 1, 2) with input sat-
uration value u1,M = u2,M = 5. Define the state vectors
as [x1,1, x1,2]T = [θ1, θ̇1]T (rad, rad/s) and [x2,1, x2,2]T =
[θ2, θ̇2]T (rad, rad/s). The dynamic equations of the two
inverted pendulums are [11], [12]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = x1,2, ẋ2,1 = x2,2

ẋ1,2 =
(

m1gr

J1
− kr2

4J1

)

× sin
(
x1,1

)

+ kr

2J1
(l − b) + u1(v1(t))

J1
+

√∣
∣x1,1

∣
∣

4 + x2
1,1

ẋ2,2 =
(

m2gr

J2
− kr2

4J2

)

× sin
(
x2,1

) + kr

2J2
(l − b)

+ u2(v2(t))

J2
+

√

3x2,1 sin
(
x2,1

)

1 + x2
2,1

y1 = x1,1, y2 = x2,1

where m1 = 2 kg and m2 = 2 kg denote the inverted pendu-
lums end masses, k = 10 N/m represents the spring constant.
J1 = 1 kg and J2 = 1 kg are the moments of inertia, r = 0.1 m
is the pendulum height, the natural length of the spring is
l = 0.5 m, g = 9.81 m/s2, and b = 0.4 m. The desired
trajectories are y1,d = sin(t) and y2,d = cos(t).

According to Theorem 1, we design the intermediate con-
troller as s1,1 = −2e1,1 + ẏ1,d and s2,1 = −2e2,1 + ẏ2,d. The
actual control laws are

v1 = −1.5

(

2e1,1 + θ̂1,1e1,1

2 × 0.252
+ δ̂1,1 tanh

(e1,1

0.5

)
)

− 1.5

(

2ζ̇1,2 tanh

(
e1,1ζ̇1,2

0.5

))

Fig. 7. System inputs u1 and u2.

Fig. 8. Adaptation parameters δ̂1,2, δ̂2,2, θ̂1,2, and θ̂2,2.

v2 = −3

(

3e2,1 + θ̂2,1e2,1

2 × 0.22
+ δ̂2,1 tanh

(e2,1

0.5

)
)

− 3

(

2ζ̇2,2 tanh

(
e2,1ζ̇2,2

0.5

))

where e1,1 = x1,1 − y1,d and e2,1 = x2,1 − y2,d, and the adap-
tation laws are provided by (31), (32), (46), and (47), with
design parameters η1,2 = 1.5, η2,2 = 4, σ1,2 = σ2,2 =
0.1, γ1,2 = 1.5, and γ2,2 = 4. Let the initial conditions
be [x1,1(0), x1,2(0), x2,1(0), x2,2(0)]T = [0.5, 0.2, 0.1, 0.2]T ,
θ̂1,2(0) = θ̂2,2(0) = 0, and δ̂1,2(0) = δ̂2,2(0) = 0. Because
the control gain functions are a priori bounded, this system
is amenable for some comparisons with existing approaches.
For comparison purposes, two approaches are considered: the
method proposed here (scheme 1) and the hybrid output feed-
back controller of [11] (scheme 2). The simulation results
are shown as Figs. 6–8 for the proposed approach, while the
comparison on the tracking error is provided in Fig. 9. For
scheme 2, the same design parameters provided in [11] have
been adopted.

For scheme 1, the system output tracking responses are
depicted in Fig. 6. Moreover, the evolution of the system inputs
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Fig. 9. Tracking errors of two schemes.

u1 and u2 and of the adaptation parameters δ̂1,2, δ̂2,2, θ̂1,2, and
θ̂2,2 are presented in Figs. 7 and 8, respectively. Output track-
ing errors under two schemes are presented in Fig. 9. From
Fig. 6, we know that good tracking performances have been
achieved and the outputs y1 and y2 converge rapidly to the
desired trajectories y1,d and y2,d. From Fig. 9, we see that the
proposed scheme 1 can achieve smaller tracking errors than
scheme 2, which confirms good tracking performance of our
approach.

V. CONCLUSION

An extended adaptive fuzzy DSC method has been designed
for a less restrictive class of large-scale nonlinear systems
with possibly unbounded control gain functions and input
saturation. As compared with existing approaches in the lit-
erature, the restrictive assumption on a priori boundedness
of the control gain functions has been removed by construc-
tively introducing appropriate compact invariant sets. In other
words, boundedness of the control gain function is derived
a posteriori from the boundedness of the closed-loop state
obtained in the control design. We believe that the follow-
ing points are worth investigating in future research: 1) it is
still unclear if set-invariance mechanisms can be adopted in
prescribed performance control: studying this point would be
relevant to address more general constraints and 2) it is still
unclear if set-invariance mechanisms can be adopted in a dis-
tributed control setting, when the systems have to minimize
a consensus error, in place of a tracking error: studying this
point would be relevant to address more general large-scale
systems.
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