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Abstract

A black hole is an object in space where the pull of its gravity is so strong
that no light can escape. This notion gives rise to the phenomenon called
gravitational lensing which is the effect where light is being bent by a massive
object, in our case a black hole. With these two concepts in mind we are
able to formulate the goal of this thesis: we aim to simulate and visualize the
distortion of a projected image caused by the gravitational field of a black
hole.

First of all we need to cover the relevant Physics to form some sort of under-
standing of the bigger picture and have an idea of all the factors involved in
reaching that goal. We are then able to create a concrete plan to reach our
goal in manageable consecutive steps.
We find that determining geodesics in a specified metric is one of the most
important factors of this plan. In order to do so we derive the geodesic equa-
tion which enables us to calculate these geodesics.

We continue by first applying the geodesic equation in two-dimensional Eu-
clidean space. This provides us with a system of differential equation which
we solve by means of numerical methods. These results are visualised and
proved to be correct.

We then move over to four-dimensional Minkowski space where we calcu-
lated and visualised the geodesics for this specific metric. In the Minkowski
space we make a start with actually visualizing the paths of light rays.

We continue to our final metric, the Schwarzschild metric. The Schwarzschild
geometry essentially describes the spacetime geometry of empty space sur-
rounding any spherical mass which in our case will be a black hole. We
calculate and visualize the geodesics thoroughly and created the image con-
structor for the Schwarzschild metric. This image constructor visualises how
an image will be altered by being projected in a Schwarzschild metric with
respect to that image in the Minkowski metric. Once the image constructor
is up and running a significant amount of time is specifically dedicated to
showcasing the constructed images.

We conclude that we have reached our defined goal since we are able to
simulate and construct the projected images. We look back at all the steps
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that played a key role in this process.

Besides the goal, we spent some time reflecting at all the unfamiliar Physics
and Mathematical theory that had to be understood and applied in order to
create the entire thesis.
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1 Introduction

A black hole is essentially a huge amount of matter squeezed into an extremely tiny
space - think of a star ten times more massive than the Sun squeezed into a sphere
approximately the diameter of New York City. This creates an object in the universe
where the pull of its gravity is so strong that no matter or radiation can escape, includ-
ing light. There are various astronomical events that can cause the formation of black
holes, and we actually know for certain that black holes exist in our universe. It may
seem like black holes are eternal doom objects that will suck in and destroy anything
in the universe, but that Is not the case. In fact if we were to replace our sun with a
black hole of the same mass the orbit of the earth would be the same and we would not
be sucked in, but remain where we are. You can however imagine that the closer you
get to a black hole, the greater your required velocity should be to escape It is massive
gravitational pull. This minimum velocity required to escape an object’s gravitational
pull is whats known as the escape velocity. The event horizon is the threshold around
the black hole where the escape velocity surpasses the speed of light. Since nothing can
travel faster than the speed of light, the event horizon forms an invisible sphere around
a black hole where there is no point of return. Every piece of matter and energy will
inevitably be sucked into the singularity - a place at the center of the black hole where
matter is compressed down to an infinitely tiny point, and all conceptions of time and
space completely break down. Nobody knows what happens inside of a singularity and
we will most likely never find out.

Since light cannot escape from within a black hole’s event horizon, It is clear that a
black hole itself can not be seen. What can be seen however is how the black hole’s
gravitational pull affects matter and radiation around it. In order to visualise this, we
take the perspective of an observer who is located in front of the black hole at a specified
distance and place an image behind the black hole at equal distance. This image is being
projected to the observer. As the light rays of the image move towards the observer they
have to pass around (or even through) the black hole. Light rays that pass close to the
black hole (within the event horizon) get caught and cannot escape. Light rays that
pass a little further away do notget caught but do get bent by the black hole’s gravity.
This bending of light is known as gravitational lensing. This gravitational lensing makes
the image behind the black hole appear distorted to the observer in front of the black
hole. This distortion of the image caused by the gravitational field of a black hole is
exactly what we aim to simulate and visualise and therefore forms the ultimate goal of
this thesis: black hole imaging.

Before we continue, I would like to thank Dr. P.M. Visser personally. Specifically
for guiding me through the entire process and helping me with each and every problem
I was struggling with. His help contributed to all the achieved results.
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2 Crash course necessary physics

While researching for and working on my thesis, I had to deal with an overwhelming
amount of new material. That is because the foundation of my topic is based almost
solely on pure Physics. Since I have elementary knowledge of Physics, none of these
concepts that formed this foundation appeared familiar to me in any way whatsoever. I
found that in order to make sense of it all, it was most useful to have a more applied,
theoretical, perhaps intuitive understanding of the required physics involved rather than
trying to fully grasp the exact definitions, formulas, theorems and their corresponding
derivations. Therefore I dedicated this section to clarify some crucial concepts on a
general level, which will prove to be very important throughout the thesis.

We start all the way back in 1687, in this year Newton published his theory of gravity
[8]. Newton’s laws of physics described the motion of massive objects, like planets and
stars. His theory stated that the three-dimensional geometry of the universe was inde-
pendent of one-dimensional time. In Newton’s universe, space was flat. Space was a
stationary entity, which can be seen as a Cartesian grid: a three dimensional structure
with an x, y and z axis. In this Euclidean space, distance is defined by means of the
three-dimensional Pythagoras theorem. This definition of distance within a specified
space is what’s called a metric. Formally a metric is a function that provides a distance
value between each pair of point elements of a set.

Newtons theory proposed that time passed at the same rate no matter your frame of
reference. This means that any observer should experience space and time exactly the
same as one another. It took till the end of the 19th century to prove that Newton’s
conception was flawed. It turned out that particles that moved close to the speed of
light, actually had a different experience of time (it dilates) and space (it contracts)
with respect to a particle that was either slow-moving or at rest. A particle’s energy or
momentum was frame-dependent, which means that space and time were not absolute
quantities like Newton predicted. The way anyone experienced the universe was depen-
dent on their own motion through it. This renewed interpretation of the laws that govern
the universe all derived from Albert Einstein’s work. Einsteins theory that overthrew
Newton’s theory is what is known as special relativity and It is based on two postulates
[9]:

• The laws of physics are invariant (i.e., identical) in all inertial systems (i.e., non-
accelerating frames of reference).

• The speed of light in a vacuum is the same for all observers, regardless of the
motion of the light source.

Many counter-intuitive consequences emerge when these two postulates are taken into
account. For instance, the distances of pairs of events change when measured in different
inertial frames of reference, and the linear additivity of velocities, as we are used to here
on earth, no longer holds.
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In 1908, Hermann Minkowski—once one of the math professors of a young Einstein—
published a geometric interpretation of special relativity which fused time and the three
dimensions of space into a single four-dimensional space now known as Minkowski space.
Minkowski had developed the formalism of spacetime. Spacetime is any mathematical
model which combines the three dimensions of space and the one dimension of time into
a single four-dimensional manifold - a continuous geometrical structure having finite di-
mension: a line, a curve, a plane, a surface, a sphere, a ball, a cylinder, etc. Minkwoski
spacetime provided a space for objects to move through the universe and interact with
one another. The only problem was that this space did not include gravity. If there
were no such thing as the gravitational force, Minkowski spacetime would do everything
we need. Spacetime would be simple and uncurved. In our universe we clearly do have
the gravitational force, so Minkowski space doesn’t suffice. Nonetheless, Minkowski’s
geometric space was to prove crucial to Einstein’s development of his general theory of
relativity. The general theory of relativity is a major building block of modern physics.
It explains gravity based on the way space can ’curve’, or, to put it more accurately,
it associates the force of gravity with the changing geometry of spacetime. As you can
imagine a black hole is a prime example of an object that performs massive space cur-
vature. The major difference between special relativity’s Minkowski space and general
relativity’s curved space is the mathematical formalism known as the metric tensor.
Conceptually, the metric tensor mathematically defines how spacetime itself is curved in
a given space. The matter and energy contents of that space determines the degree of
spacetime curvature. As space is being curved it becomes rather difficult to define what
a ’straight’ path is. It may seems obvious that like in non-curved space, an object in
motion will continue in this motion: Newton’s first law. We visualise this as a straight
line, but what curved space tells us is that an object in motion continuing in motion
follows a geodesic and not a straight line. As a matter of fact it can be possible that
a straight line as we know it Is not defined in curved space at all. A geodesic can be
interpreted as the shortest or straightest possible path that connects two specified points
on a certain manifold. It may seem weird at first that the shortest path on particular
manifolds can actually be visually apparent curved lines, but remember that since we
are dealing with curved space our intuition Is not that reliable anymore.

We know that the gravitational force causes spacetime curvature and that the Minkowski
metric did not include this gravitational force. This means that we have no metric that
implements curved spacetime. This was a problem and Physicists were looking for a
metric that did. Not long after Einstein published his work on general relativity, Karl
Schwarzschild found that suitable metric which is known as the Schwarzschild metric
[10]. The Schwarzschild geometry essentially describes the spacetime geometry of empty
space surrounding any spherical mass which in our case will be a black hole.
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3 Approach to reach our goal

In the previous section (2) we briefly stated the notion of a geodesic. It will become ap-
parent that the importance of the geodesics can’t be understated throughout this thesis.
That is because light is one of these entities that doesn’t travel in straight lines like we
are used to, but instead gets bend around massive objects like stars or black holes and
thus follows a geodesic. This means that light travelling in curved space is being bent
itself. Remember that our end-goal is the visualisation of an image (with respect to the
observer) which is located behind the black hole which is projected to an observer in
front of the black hole. If we know the exact trajectory of each light ray, starting from
the original image and ending when the observer is reached, we know exactly what the
image the observer perceives will look like. Simulating light rays, using an algorithm
to trace the path that a ray of light would take in that specified space is known as ray
tracing, and That is exactly what we want to do. Now, we know that a black hole curves
spacetime and that light follows a geodesic in curved spacetime, so if we know how to
find the specified geodesic for each light ray in this curved space, we can trace the light
rays and therefore construct the image the observer perceives.

Ideally we start with the Schwarzschild metric (which describes the metric around a
black hole), determine the geodesics and construct the image the observer perceives.
Unfortunately this is way too much at once. Instead we start off where Physics started
off as well: Newton’s gravitational theory. This means we will operate in Euclidean space
and determine its geodesics first: we are ray tracing in Euclidean space. This shouldn’t
be too much of a hassle since Euclidean space is the standard space we know all too
well from Calculus and other mathematical courses. In determining the geodesics for
Euclidean space we get some familiarity with all the required mathematics which will be
needed for the Schwarzschild metric as well. Besides we program everything necessary
to visualise the geodesics which all can be carried over to the program to visualise the
Schwarzschild metric geodesics. We start of in two-dimensional Euclidean space so we
can’t work on the image projection yet.

We extend our Euclidean ray tracing to that of the Minkowski metric before we move on
to the Schwarzschild metric. As we know Minkowski space blends the three-dimensional
space and time dimension, and is basically a simplified Schwarzschild metric. we are
going to determine the geodesics in Minkowski space and visualise them in a similar way
as we did for the Euclidean space. In Minkowski space we can actually already start
with the image projection to the observer. We trace how the light rays will move in the
Minkowski space starting from the image and ending at the observer. This will lay the
foundation for the Schwarzschild transformed image constructor.

Finally we move on to the Schwarzschild metric. We specify the Schwarzschild ra-
dius and determine the geodesics which allows us to reach our end-goal: visualizing the
distortion of the image behind the black hole caused by the gravitational field of the
black hole from the perspective of an observer in front of the black hole.
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4 Mathematical derivation of the geodesic equation

The previous section made clear that in order to visualise the gravitational lensing of
a black hole by means of ray tracing we have to be able to find the geodesics on the
specified surface or manifold. It turns out there is a way to do that, by means of the
geodesic equation. Since this equation is perhaps the most important one in this thesis,
I thought it was important to determine its complete mathematical derivation so we
have a good sense of what we are actually doing. This section will be dedicated to that
derivation. This means however that this section is by far the most mathematical and
’abstract’ section of the thesis. Nonetheless its importance can’t be stated enough.

To find geodesic curves we have to define more precisely what we mean by the straightest
path. A way to do this is by visualizing the geodesic curves with respect to non-geodesic
curves and analyze what defines the difference between them.
In a two dimensional surface the straightest path, is the path where the acceleration
vector equals zero which means the velocity is constant along the path. In a three
dimensional surface or a multidimensional manifold, It is impossible to travel in a com-
pletely straight line if the embedding of the curved space in a higher-dimension Euclidean
space is curved. This means that the acceleration will not be zero as is the case in the
two dimensional surface. For the geodesic curve, the acceleration vectors are all present
in the same plane that slices vertically through the trajectory of the path. Moreover all
the acceleration vectors are normal to the surface.

It is important for our mathematical derivation that we understand the difference be-
tween tangential and normal vectors. The normal vectors of a surface are always pointing
straight outwards or inwards of the surface whereas tangential vectors all lie in the plane
tangent to the surface which is perpendicular to the normal vector. We are now able to
formulate our specified definition of a geodesic curve. In curved space, a straight path
has zero tangential acceleration when we travel along it at constant speed. We call this
specific path a geodesic.

Now we are going to derive the geodesic equation by means of extrinsic geometry. This
means that the curved space is embedded. Before we start looking for geodesic curves
on surfaces It is important to note our use of space transformations. Commonly we start
with the well known two dimensional x, y-plane. We put this plane through some sort
of function R which stretches and bends our original space such that it becomes a two
dimensional surface living in three dimensional space.

R(x, y) = (X(x, y), Y (x, y), Z(x, y))

We will use a parameterization with parameter λ to describe a curve in the original x, y
plane. Then we put this curve through the function R to bring it into three-dimensional
space onto the surface. See the tree graph below as a clarification to all the involved
variables.
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Figure 1: This tree shows how the various variables relate to each other. Each vertex
connects the higher edge variable with its corresponding sub-variables in the
lower connected edges.

In our search for the mathematical derivation of the geodesic equation, the length of a
vector plays a crucial role. We can define the basis vectors with respect to x and y in
the tangent space with dR

dx and dR
dy respectively. In order to know anything about the

lengths of vectors, we need to know the basis vector dot-products of these derivatives.
If we store these dot-products in a matrix we have what is known as the metric tensor.
Any entry of the metric tensor of a three-dimensional space R with components x, y is
given by

g00 =
∂R

∂x
· ∂R
∂x

, g01 =
∂R

∂x
· ∂R
∂y

, g10 =
∂R

∂y
· ∂R
∂x

, g11 =
∂R

∂y
· ∂R
∂y

We briefly discussed the meaning and importance of the metric tensor in section (2) and
now we are describing it mathematically. As can be seen in the expressions, above we
take x to be the ’first’ variable and therefore pass it index 0 denoted as x0 = x. y is
in this case the second variable and therefore has index 1 denoted as x1 = y. This is a
convention we will use throughout the thesis. This may seem unnecessary now, but in
the upcoming sections we will use more variables than just x, y which means there will
be more metric tensor entries, so using this convention will simplify notation. Now we
are able to formulate a more general expression of our metric tensor components where i
and j take on all the possible indices of the variable, and we operate in a specified space
R.

gij =
∂R

∂xi
· ∂R
∂xj

(1)

As the previous section pointed out, in order to compute geodesic curves we need to find
curves where the acceleration vector is normal to the surface. The acceleration vector
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will have a normal and a tangential component which can be expressed in the following
way

d2R

dλ2
=

(
d2R

dλ2

)normal

+

(
d2R

dλ2

)tangential

(2)

We need to find curves where the tangential component is zero so we only have a normal
component. This will give us the straightest possible path between two points i.e. the
geodesic. In order to do so we have to rewrite our second derivative into a pure tangential
component and a pure normal component.
The tangent velocity vector along a curve can be written in terms of x and y by,

dR

dλ
=
dx

dλ

∂R

∂x
+
dy

dλ

∂R

∂y

To get the acceleration vector we take the derivative of this velocity vector.

d

dλ

(
dR

dλ

)
=
d

dλ

(
dx

dλ

∂R

∂x
+
dy

dλ

∂R

∂y

)
=
d

dλ

(
dx

dλ

∂R

∂x

)
+

d

dλ

(
dy

dλ

∂R

∂y

)
=
d2x

dλ2
∂R

∂x
+
dx

dλ

(
d

dλ

∂R

∂x

)
+
d2y

dλ2
∂R

∂y
+
dy

dλ

(
d

dλ

∂R

∂y

)
In order to further derive the expression we take a look at the expressions in parentheses.
We notice that X,Y and Z are functions of x, y which at their turn are functions of λ.
By the multi-variable chain rule we know that the λ derivative operator can be expended
out in a linear combination of the x and y derivative operators

d

dλ
=
dx

dλ

∂

∂x
+
dy

dλ

∂

∂y

So we find that,

d

dλ

∂R

∂x
=

(
dx

dλ

∂

∂x
+
dy

dλ

∂

∂y

)
∂R

∂x

=
dx

dλ

∂2R

∂x2
+
dy

dλ

∂2R

∂x∂y

And similarly,

d

dλ

∂R

∂y
=

(
dx

dλ

∂

∂x
+
dy

dλ

∂

∂y

)
∂R

∂y

=
dx

dλ

∂2R

∂x∂y
+
dy

dλ

∂2R

∂y2
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Substituting this result in the expression for the acceleration vector gives

d

dλ

(
dR

dλ

)
=
d2x

dλ2
∂R

∂x
+
dx

dλ

(
d

dλ

∂R

∂x

)
+
d2y

dλ2
∂R

∂y
+
dy

dλ

(
d

dλ

∂R

∂y

)
=
d2x

dλ2
∂R

∂x
+
dx

dλ

(
dx

dλ

∂2R

∂x2
+
dy

dλ

∂2R

∂x∂y

)
+
d2y

dλ2
∂R

∂y
+
dy

dλ

(
dx

dλ

∂2R

∂x∂y
+
dy

dλ

∂2R

∂y2

)
We analyse the different types of terms we have now. We start by looking at the terms
which only involve the first order derivative of R

d2x

dλ2
∂R

∂x
,

d2y

dλ2
∂R

∂y

We now know that these vectors lie in the tangent plane, That is because first order
derivative velocity vectors are always tangent vectors. The other four different terms do
not involve first order derivatives of position vector R, but second order derivatives of
position vector R. For now we do not know yet if these vectors lie tangent to the surface
or not. We rearrange the found expression a bit so we have a clear distinction between
the different types of vectors. We now have that the first two terms lie in the tangent
plane and as previously mentioned, for the other vectors we do not know yet where they
lie exactly. These ’leftover’ terms might be tangential or normal to the surface, or even
a mix of both. We are going to expand these terms in order to extract the tangential
and normal components.

d2R

dλ2
=
d2x

dλ2
∂R

∂x
+
d2y

dλ2
∂R

∂y
+

(
dx

dλ

)2 ∂2R

∂x2
+
dx

dλ

dy

dλ

∂2R

∂x∂y
+
dy

dλ

dx

dλ

∂2R

∂y∂x
+

(
dy

dλ

)2 ∂2R

∂y2

Our expression is starting to get a bit messy so we are going to apply a new form of
notation. We will use what is known as Einstein’s summation convention to simplify our
expression. There are essentially three rules of Einstein’s summation notation, namely:

1. Repeated indices are implicitly summed over.

2. Each index can appear at most twice in any term.

3. Each term must contain identical non-repeated indices.

• There are two types of indices, the upper index and the lower index corre-
sponding to two types of vectors. The upper index corresponds to the the
covariant and the lower index corresponds to the contravariant.

These rules may seem a bit unclear, and the application of these rules may look a bit
counter-intuitive. However after gaining some experience, the notation proves quite use-
ful.

We set x0 = x and x1 = y, as we did before and apply Einstein’s summation convention
to arrive at the following expression

d2R

dλ2
=
d2xi

dλ2
∂R

∂xi
+
dxi

dλ

dxj

dλ

∂2R

∂xi∂xj
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Now as we mentioned before, the first term is in the tangent plane, but we are not sure
about the second term yet. In order to find the geodesics we need to know exactly which
terms are tangent, normal or a mix of both. We therefore need to thoroughly expand
the term,

∂2R

∂xi∂xj

to have a better understanding of what its roll in the plane is. These second order
derivatives are three dimensional vectors in in three dimensional space. This means we
can expand them out as a linear combination of three dimensional basis vectors. we
are choosing a different more suited basis instead of the usual X,Y, Z basis. What’s
different is that we are going to use the two tangent vectors ∂R

∂x0
and ∂R

∂x1
which forms

our basis for the two dimensional tangent plane. Lastly for the third basis vector we are
going to use a vector normal to the surface. So we rewrite our vectors in terms of our
just declared three dimensional basis vectors.
We need to determine what the components of the vectors in these basis are. Since we
have no further information about these components, we create new variables for these
components. We are using the following notation,

∂2R

∂xi∂xj
= Γ1

ij

∂R

∂x1
+ Γ2

ij

∂R

∂x2
+ Lijn̂

Here we have a division between the tangential and the normal components. The Lij
term is known as the second fundamental form and this represents the normal com-
ponents of the second order derivative with respect to xi and xj . The capital gamma
symbols are called the Christoffel symbols and these provide the tangential components
of the second order derivative vector. Christoffel symbols will be one of the most im-
portant concepts in this thesis. We can group our formula more closely by applying
Einstein’s summation convention to the Christoffel symbols,

∂2R

∂xi∂xj
= Γkij

∂R

∂xk
+ Lijn̂

Now We are looking for a formula to determine our just declared Christoffel symbols.
We have that n̂ is by definition normal to the tangent plane. That means that the dot
product of n̂ with any of the tangent vectors is always going to be zero. We will be using
this property to solve for the Christoffel symbols.

∂2R

∂xi∂xj
· ∂R
∂xl

=

(
Γkij

∂R

∂xk
+ Lijn̂

)
· ∂R
∂xl

= Γkij
∂R

∂xk
· ∂R
∂xl

= Γkijgkl (3)

We see that the dot-product of these tangent vectors is precisely the metric tensor we
defined earlier on. To isolate the Christoffel symbols we need to lose the metric tensor
components. This can be done by multiply both sides of equation (3) with its inverse
metric tensor.
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Recall that by definition the multiplication of the metric tensor gkl with its inverse
glm gives us the Kronecker delta i.e

gklg
lm = δmk

where

δmk =

{
1, if m = k,

0, if m 6= k.

By the Kronecker delta cancellation rule we can cancel the k indices and just write the
m index.

∂2R

∂xi∂xj
· ∂R
∂xl

glm = Γkijgklg
lm = Γkijδ

m
k = Γmij (4)

Finally we have found a formula to determine the Christoffel symbols. We can solve for
the second fundamental form in a similar way, but we are not interested in these results.

We now have an equation for the acceleration vector along a curve

d2R

dλ2
=
d2xi

dλ2
∂R

∂xj
+
dxi

dλ

dxj

dλ

∂2R

∂xi∂xj
(5)

where the second order derivatives are given by,

∂2R

∂xi∂xj
= Γkij

∂R

∂xk
+ Lijn̂ (6)

Substituting (6) into (5) yields,

d2R

dλ2
=
d2xi

dλ2
∂R

∂xj
+
dxi

dλ

dxj

dλ

(
Γkij

∂R

∂xk
+ Lijn̂

)
(7)

It is important to note that all the given terms in expression (7) are either given using
the tangent vectors or the normal vectors. We can regroup the terms to put the normal
and tangential terms separate.

d2R

dλ2
=

(
d2xk

dλ2
+ Γkij

dxi

dλ

dxj

dλ

)
∂R

∂xk
+ Lij

dxi

dλ

dxj

dλ
n̂ (8)

=

(
d2R

dλ2

)tangential

+

(
d2R

dλ2

)normal

(9)

Now that we have performed all the required steps, we return to our initial definition of a
geodesic curve. We determined that we needed to find the curves where the acceleration
vector is normal to the surface. We saw in expression (2) that we could break up the
acceleration vector in a tangent and normal part which is exactly what we have done in
expression (8). Since we are only interested in finding the curves which are normal to the
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surface we must have that the tangential part is zero and vanishes from the equation.
This means that by setting the tangential part in expression (8) to zero we have an
equation for finding the geodesics i.e. the geodesic equation,

d2xk

dλ2
+ Γkij

dxi

dλ

dxj

dλ
= 0 (10)

We have found that any curve parameterized by λ which satisfies this geodesic equation
given by formula (10) is a geodesic curve.

5 Euclidean metric

In order to have a practical understanding of the geodesic equation, It is best to start
with a ’simple’ or straightforward application instead of diving into the deep directly. As
discussed in section (2), the common belief used to be that our universe can be seen as a
three-dimensional Euclidean space, so It is sensible to start here. Actually we are taking
things more slowly and start with a two-dimensional Euclidean space. This way we have
a better understanding of the steps needed to be taken to solve the geodesic equation.
This whole section is therefore dedicated to working with metric tensors, Christoffel sym-
bols, coupled differential equations, etc. to prepare ourselves for the black hole metric
which is to come. In addition all results are programmed in Python to form the starting
blocks of the final code.

5.1 Defining the metric

As we know the metric associated with the two-dimensional Euclidean space is simply
the Pythagoras theorem,

ds2 = (dx0)2 + (dx1)2

Notice that we reused the upper-index notation x0 = x, x1 = y. We are going to
transform our Cartesian plane to the sphere. In the Schwarzschild metric we deal with
a spherical mass so using spherical coordinates makes everything a lot easier. We are
renaming our variables x0, x1 to compel more to the spherical notation, i.e. x0 = θ, x1 =
φ. This transformation to spherical coordinates means our two-dimensional plane will
be embedded in three-dimensional space given by (θ, φ) 7→ (X(θ, φ), Y (θ, φ), Z(θ, φ)),

X = r cos(θ) sin(φ)

Y = r sin(θ) sin(φ)

Z = r cos(θ)

Now our metric is redefined as the three-dimensional Pythagoras theorem.

ds2 = dX2 + dY 2 + dZ2
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By means of trigonometric identities the metric can be rewritten in spherical coordinates
only,

ds2 = dr2 + r2dθ2 + r2 sin(θ)2dφ2 (11)

This version of the three-dimensional metric will not be used in this section, but will be
of great importance in the following-up sections.

5.2 Determining the metric tensor

Since we are using the three-dimensional space to solve the geodesic equation living in
a two-dimensional space, this is a clear example of an extrinsic approach. Essential to
solving the geodesic equation is solving the corresponding Christoffel symbols. Once we
know all the Christoffel symbols, the geodesic equation can be directly derived. In order
to do so we first need to compute the metric tensor by means of first derivatives and
their dot products as formula (1) dictates . We use the multi-variable chain rule to find
expressions of these dot-products.

∂R

dθ
=
∂R

∂X

∂X

dθ
+
∂R

∂Y

∂Y

dθ
+
∂R

∂Z

∂Z

dθ
∂R

dφ
=
∂R

∂X

∂X

dφ
+
∂R

∂Y

∂Y

dφ
+
∂R

∂Z

∂Z

dφ

Substitution of the derivatives of the spherical coordinates gives

∂R

dθ
=
∂R

∂X
cos(θ) cos(φ) +

∂R

∂Y
sin(φ) cos(θ) +

∂R

∂Z
sin(θ)

∂R

dφ
=
∂R

∂X
sin(φ) sin(θ) +

∂R

∂Y
cos(φ) sin(θ)

We will use the fact that the basis vectors are orthonormal meaning that any dot product
with different basis vectors equals zero and any dot product with the same basis vectors
equals one. Now we determine expressions for the dot products of the first derivatives
(we omit the extensive calculations by means of trigonometric identities).

∂R

dθ
· ∂R
dθ

= r2,
∂R

dθ
· ∂R
dφ

= 0

∂R

dφ
· ∂R
dθ

= 0,
∂R

dφ
· ∂R
dφ

= r2 sin(θ)2

We are able to construct the metric tensor from these dot products.

gij =

[dR
dθ ·

dR
dθ

dR
dθ ·

dR
dφ

dR
dφ ·

dR
dθ

dR
dφ ·

dR
dφ

]
=

(
r2 0
0 r2 sin(θ)2

)
(12)

Since we are dealing with a symmetric matrix, taking the inverse of the metric tensor is
simply taking the reciprocal of the expression on the diagonal.
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gij =

(
1
r2

0
0 1

r2 sin(θ)2

)
(13)

If we compare these results to equation (11) we see that the following holds,

ds2 = gijdx
idxj (14)

5.3 Determining the Christoffel symbols (extrinsic approach)

In the previous section we derived the metric tensor and its inverse given the spherical
coordinate system. Now we only need to compute the second order derivatives and their
dot-products to determine the Christoffel symbols as is given by formula (4).

∂2R

∂θ2
= − cos(φ) sin(θ)

∂R

∂X
− sin(φ) sin(θ)

∂R

∂Y
− cos(θ)

∂R

∂Z
∂2R

∂φ2
= − cos(φ) sin(θ)

∂R

∂X
− sin(φ) sin(θ)

∂R

∂Y

∂2R

∂φ∂θ
= − sin(φ) cos(θ)

∂R

∂X
+ cos(φ) cos(θ)

∂R

∂Y

The Christoffel symbols have indices i, j and k. Each of these go from 1 to 2. Therefore
there are 23 = 8 Christoffel symbols in total. By Einstein summation’s convention we
have to sum over the index variable l.

Γ0
ij =

∂2R

∂xi∂xj
· ∂R
∂xl

gl0 =
∂2R

∂xi∂xj
· ∂R
∂x0

g00 +
∂2R

∂xi∂xj
· ∂R
∂x2

g01

Γ1
ij =

∂2R

∂xi∂xj
· ∂R
∂xl

gl1 =
∂2R

∂xi∂xj
· ∂R
∂x1

g01 +
∂2R

∂xi∂xj
· ∂R
∂x2

g11

Now we have g01 = g10 = 0 as can be seen from the metric inverse matrix given by (13).
Therefore one end of the summation in the Christoffel symbols disappears. Substituting
g00 and g11 gives.

Γ0
ij =

∂2R

∂ui∂xj
· ∂R
∂u1

Γ1
ij =

(
∂2R

∂xi∂xj
· ∂R
∂xl

)
1

sin(θ)2

We already computed the first order derivatives and the second order derivatives. Now
we need to determine the required dot products. Since we have 2 first derivatives and 4
second derivatives we get a total of 8 dot products. (We omit the extensive calculations.
We use the well known trigonometric identities to find the final expressions.)
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∂R

∂θ
· ∂

2R

∂θ2
= 0,

∂R

∂θ
· ∂

2R

∂φ2
= − cos(θ) sin(θ),

∂R

∂θ
· ∂

2R

∂v∂θ
=
∂R

∂θ
· ∂

2R

∂θ∂φ
= 0,

∂R

∂v
· ∂

2R

∂θ2
= 0,

∂R

∂φ
· ∂

2R

∂φ2
= 0,

∂R

∂φ
· ∂

2R

∂φ∂θ
=
∂R

∂φ
· ∂

2R

∂θ∂φ
= cos(θ) sin(θ)

There are only 2 non-zero dot products. We rewrite them to conform to the Einstein’s
summation convention. We use the commutative property of the dot product.

∂2R

∂φ2
· ∂R
∂θ

= − cos(θ) sin(θ) =
∂2R

∂θ2∂θ2
· ∂R
∂u1

∂2R

∂θ∂φ
· ∂R
∂φ

= cos(θ) sin(θ) =
∂2R

∂x1∂x2
· ∂R
∂u2

We substitute the non-zero dot products into the Christoffel symbol formulas to find
expressions for the non-zero Christoffel symbols.

Γ0
11 =

∂2R

∂x1∂x1
· ∂R
∂x0

= − cos(θ) sin(θ)

Γ1
01 =

∂2R

∂x0∂x1
· ∂R
∂θ2

1

sin(θ)2
=

cos(θ) sin(θ)

sin(θ)2
=

cos(θ)

sin(θ)

The order of differentiation of second order derivatives doesn’t matter. Therefore,

∂2R

∂xi∂xj
=

∂2R

∂xj∂xi

which implies that,
Γkij = Γkji

We use this to show there is another non-zero Christoffel symbol.

Γ1
01 = Γ1

10 =
cos(θ)

sin(θ)

5.4 Metric tensor entry only Christoffel symbol formula

You might wonder why this section is dedicated to determining the Christoffel symbols
of our defined space if That is exactly what we already just did. In subsection (5.3)
we noticed that our approach was extrinsic: our two-dimensional space is embedded in
a three-dimensional space, where we use this three-dimensional space to determine our
results. This method works quite well in this case but as we deal with higher dimensional
spaces, we like to omit this approach. We previously determined the Christoffel symbols
by means of an extrinsic approach, i.e. by the dot-products of the basis vectors. For an
intrinsic approach we no longer deal with the X,Y, Z basis and therefore we can’t com-
pute the required dot-products. We therefore need a new strategy to find the Christoffel
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symbols. We start by noticing that the metric tensor components are symmetric. By
formula (1) and the fact that the dot-product is symmetric, we have,

gij =
∂

∂xi
· ∂

∂xj
=

∂

∂xj
· ∂
∂xi

= gji

The metric tensor is so crucial that we require the dot-products above to be defined. In
our case we declare the metric tensor to be (12). Next we notice that since the order of
differentiation doesn’t matter, we have

∂

∂xi

(
∂

∂xj

)
=

∂

∂xj

(
∂

∂ui

)
(15)

Now we express the expression above to one that includes Christoffel symbols

∂

∂xi

(
∂

∂xj

)
= Γkij

∂

∂uk

∂

∂xj

(
∂

∂xi

)
= Γkji

∂

∂xk

And by (15) we have that,

Γkij = Γkji (16)

We use this to find an alternative expression for the Christoffel symbols.

∂

∂xk
gij =

∂

∂xk

(
∂

∂xj
· ∂
∂xi

)
=

∂

∂xk

(
∂

∂xi

)
· ∂

∂xj
+

∂

∂xi
· ∂

∂xk

(
∂

∂xj

)
=

(
Γlik

∂

∂xl

)
· ∂

∂xj
+

∂

∂xi
·
(

Γljk
∂

∂xl

)
= Γlik

(
∂

∂xl
· ∂

∂xj

)
+ Γljk

(
∂

∂xi
· ∂
∂xl

)
= Γlikglj + Γljkgil = Γlikgjl + Γljkgil

The second equality follows from what’s known as metric compatibility and the last from
the fact that the Christoffel symbols are scalars and therefore can be placed out of the
dot-product. We rewrite the expression twice more but now with different indices. We
find,

∂gij
∂xk

= Γlikgjl + Γljkgil,
∂gki
∂xj

= Γlkjgil + Γlijgkl,
∂gjk
∂xi

= Γljigkl + Γlkigjl

Now combining these expressions,

∂gij
∂xk

+
∂gki
∂xj

−
∂gjk
∂xi

= Γlikgjl + Γljkgil + Γlkjgil + Γlijgkl − Γljigkl − Γlkigjl

= Γljkgil + Γlkjgil

= 2Γlkjgil
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We multiply both with the inverse metric tensor,

2Γlkjgilg
im = gim

(
∂gij
∂xk

+
∂gki
∂uj

−
∂gjk
∂xi

)
Notice that that a metric tensor entry multiplied with a metric tensor inverse entry will
result into the Kronicker delta, i.e.

Γlkjδ
m
l =

1

2
gim

(
∂gij
∂xk

+
∂gki
∂xj

−
∂gjk
∂xi

)
By the Kronicker delta cancellation rule we have,

Γmkj =
1

2
gim

(
∂gij
∂xk

+
∂gki
∂xj

−
∂gjk
∂xi

)
(17)

To simplify the upcoming expressions we define,

gαµ,ν =
∂gαµ
∂xν

(18)

This new formula for the Christoffel symbols is extremely powerful. Instead of using
dot-products of the embedded space we only use the metric tensor entries, which we
need to determine anyway. For the remainder of the thesis we will only use formula (17)
to determine the Christoffel symbols. This is done by means of the intrinsic approach.

5.5 Determining the Christoffel symbols (by intrinsic approach)

As we saw with the extrinsic approach, we know that we have to find the eight following
symbols,

Γ0
ij =

(
Γ0
00 Γ0

01

Γ0
10 Γ0

11

)
Γ1
ij =

(
Γ1
00 Γ1

01

Γ1
10 Γ1

11

)
Let’s start by calculating the four symbols with θ as upper index. We can write,

Γ0
ij =

1

2
g0α(gαi,j + gαj,i − gij,α)

In g0α, α can take the values of 0 and 1. Since g01 = 0 we replace α directly by 0.

Γ0
ij =

1

2
g00(g0i,j + g0j,i − gij,0) =

1

2r2
(g0i,j + g0j,i − gij,0)

This gives us the following Christoffel symbols.

Γ0
00 =

1

2r2
(g00,0 + g00,0 − g00,0) = 0

Γ0
01 =

1

2r2
(g00,1 + g01,0 − g01,0) = 0

Γ0
10 =

1

2r2
(g01,0 + g00,1 − g10,0) = 0

Γ0
11 =

1

2r2
(g01,1 + g01,1 − g11,0) = − sin(u) cos(u)
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These results are presented in the following matrix.

Γ0
ij =

(
0 0
0 − sin(u) cos(u)

)
Now we calculate the four symbols with φ as upper index. We can write,

Γ1
ij =

1

2
g1α(gαi,j + gαj,i − gij,0)

In g1α, α can take the values of 0 and 1. Since g11 = 0 we replace α directly by 1.

Γ1
ij =

1

2
g11(g1i,j + g1j,i − gij,1) =

1

2r2 sin(u)2
(g1i,j + g0j,i − gij,1)

This gives us the following Christoffel symbols.

Γ1
11 =

1

2r2 sin(u)2
(g11,1 + g11,1 − g11,1) = 0

Γ1
01 = Γ1

10 =
1

2r2 sin(u)2
(g00,1 + g01,0 − g01,0) =

cos(u)

sin(u)

Γ1
00 =

1

2r2 sin(u)2
(g10,0 + g10,0 − g00,1) = 0

These results are presented in the following matrix

Γ1
ij =

[
0 cos(u)

sin(u)
cos(u)
sin(u) 0

]
We now have determined all Christoffel symbols by an intrinsic approach.

5.6 Deriving the system of differential equations

This is the first time we’ll be actually using the geodesic equation itself. It seemed kind
of confusion to me the first time I used it, but when you remember Einstein’s summation
convention it does make sense. First of all we leave out all the zero Christoffel symbols,
which results in,

d2x0

dλ2
+ Γ0

11

dx2

dλ

dx1

dλ
= 0

d2x1

dλ2
+ Γ2

12

dx0

dλ

dx1

dλ
+ Γ2

21

dx1

dλ

dx0

dλ
=
d2x1

dλ2
+ 2Γ2

12

dx0

dλ

dx1

dλ
= 0

Substitution of the values of the non-zero Christoffel symbols gives,

d2θ

dλ2
− cos(θ) sin(θ)

dφ2

dλ

dφ2

dλ
= 0

d2φ

dλ2
+ 2

cos(θ)

sin(θ)

dθ

dλ

dφ

dλ
= 0
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We see that we are dealing with two non-linear coupled second order differential equa-
tions. This is rather difficult to solve, so we rewrite this system to a system of four first
order differential equations. We introduce 2 new variables v0 and v1 and set these equal
to the first order derivatives. This produces the following system.

dv1

dλ
= cos(θ) sin(θ)(v2)2

dv2

dλ
= −2

cos(θ)

sin(θ)
v1v2

dθ

dλ
= v0

dφ

dλ
= v1

Remember that we are using spherical coordinates which means the plane we are oper-
ating in is a sphere itself. In order to put some sort of bound on our plane we set the
radius to one (r = 1), i.e the unit sphere.

5.7 Solving the system of differential equations

Solving the system of differential equations allows us to determine the geodesics on the
unit sphere. After struggling some time with finding an analytic solution, I tried a
numerical approach instead. I quickly came across Euler’s-method. Euler’s-method is
perhaps the most simple numerical method of the Runge–Kutta numerical methods - a
family of iterative methods. The method requires three inputs: an initial condition for
each variable in the system of differential equations, a time-step dt which determines the
accuracy and finally a value tend which tells the method when to stop.

I started of by programming the Euler-method myself. In order to start the iterative
process, I had to define an initial condition. I decided to start at θ = φ = 1 to keep
things simple. I set the values of v0 and v1 to 1 as well, which means the velocities have
a positive direction. For dt I tried various time steps. The lower the value of dt, the
more accurate the solver, the longer the computation time however. I eventually found
dt = 0.005 to be a suitable value. Lastly I had to pick tend in such a way that there is
at least one full rotation on the sphere. Only then we know the exact trajectory of the
geodesic, from start to end. Since we are on a sphere the geodesic is periodic, so after
one full rotation all higher t values will produce ’the same’ result (perhaps some slight
mismatches due to the limit in accuracy).

The Python program will return a list of θ, φ, v0 and v1 values which allows us to visually
construct the geodesics. For starters, we are interested in how φ relates to θ as time
progresses.
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Figure 2: The trajectory of phi with respect to theta of the geodesic on the sphere (with
initial condition set to (1,1,1,1)), using Euler’s-method.

We have limited φ only to the interval [0, 2π], since the geodesic is periodic. We see that
both φ and θ start at 1 as prescribed, and that after a full rotation φ and θ return to 1
to start over again. There is a slight mismatch between the initial rotation and start of
the second rotation due to the limited accuracy of Euler’s-method. Decreasing dt will
smooth out this gap, but will also increase computation time as previously mentioned.
Notice that φ and θ have no linear relation so our geodesic will not be a ’straight line’.
I implemented the conversion formulas from Cartesian to spherical so we are able to
substitute the values for φ and θ into the spherical coordinates. This allows us to
visualise the trajectories of X,Y and Z of the geodesic.

Figure 3: Geodesic trajectories in spherical coordinates (with initial condition set to
(1,1,1,1)), using Euler’s-method.

We see that each trajectory is a periodic function which we expect given that we are
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dealing with the unit sphere. Notice that the trajectories stop at tend = 6 and that the
function ranges between −1 and 1 since the radius is 1.

Now that we have inspected and confirmed the Cartesian as well as the spherical trajec-
tories we are finally able to plot the geodesic itself on the unit sphere. We use a Python
three-dimensional plotter and use the lists of numerical values from the implemented
Euler-method. This results into the following three dimensional plot.

Figure 4: The three-dimensional sphere (blue) with the corresponding geodesic (red)
(with initial condition set to (1,1,1,1)), using Euler’s-method

We can see that the geodesic on the sphere given our initial values, translates to a circle.
The center of the geodesic is the center of the sphere itself. For other initial conditions,
this holds as well. Therefore the geodesics are in fact all great circles. We see that there
is a slight mitmatch between consecutive rotations which is again due to inaccuracy of
Euler’s-method.

Due to the inaccuracy and relatively long computation time of the self-made Euler-
method, I searched for pre-made optimized Python solvers. I found a module odeint
which proved better than my own method in every way and was quite easy to use.
For the remainder of the thesis we will use this solver instead of the self programmed
Euler-method. For the upcoming metrics I did however always porgrammed and ran
the self-made Euler-method as well as the Ptyhon solver. That is because if the out-
puts were similar I knew the implementation was most likely correct which was a good
check. I reran the plots from this section using the Python solver to have some sort of
comparison to Euler’s-method.
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Figure 5: Generated images by means of the Python solver instead of the implemented
Euler-method. Visually It is evident that the left image is more accurate in
comparison to image 2 and right image is more accurate in comparison to 4.

Notice that the plots are almost identical, except for the fact that the solver plots are
super smooth. Also the computation time was a lot shorter which is perhaps most im-
portant.

We are now able to construct a metric, translate a metric to the metric tensor, deter-
mine the Christoffel symbols, construct the system of first order differential equations,
solve those equations and visualise the results. This approach will be applied for the
upcoming metrics as well.
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6 Minkowski metric

As mentioned in section (2) we continue with the Minkowski metric instead of going to
the Schwarzschild metric directly. Even though the Euclidean metric brought us a long
way, the step to the Schwarzschild metric is still too big. Therefore we prefer to delve
into the Minkowski metric first since this is a sort of intermediate metric. Nonetheless
the Minkowski metric actually has a lot in common with the Schwarzschild metric which
proves to be very useful. We are even able to already start with image transformations
at the end of this section.

6.1 Defining the metric

The Minkowski metric in spherical coordinates is given as,

ds2 = dt2 − dr2 − r2dθ2 − r2(sin θ)2φ2

Notice that the metric is similar to the Euclidean three-dimensional metric given by (11)
we saw in the previous section. The only difference is that we have an extra component,
the t variable. It is clear that we are now dealing with a four-dimensional space where
time is implemented as well. Note that we will switch between x upper-index notation
and spherical notation, i.e. x0 = t, x1 = r, x2 = θ and x3 = φ.

6.2 Determining the metric tensor

Unlike in subsection (5.2) where we computed the metric tensor by means of the inner
dot product, we now use a different approach. We derive the metric tensor directly
from the metric itself as is expressed by formula (14). The only thing we have to
do is determine with which expression each variable in the metric is multiplied and
substitute this expression into a diagonal matrix with each expression at its variable
indexed position. We see that the indexed metric expression components are,

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2(sin θ)2

Which gives us the Minkowski metric tensor matrix.

gij =


1 0 0 0
0 −1 0 0
0 0 −r2 0
0 0 0 −r2(sin θ)2

 (19)

And its inverse, which will be needed to determine the Christoffel symbols.

gij =


1 0 0 0
0 −1 0 0
0 0 − 1

r2
0

0 0 0 − 1
r2(sin θ)2

 (20)
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6.3 Determining the Christoffel symbols

Determining the Christoffel symbols for the Minkowski space is very similar to deter-
mining the Christoffel symbols for the Schwarzschild metric. That is why this section
contains quite extensive calculations, so all steps are really clear. We omit the simplified
notation described in (18) to make sure all intermediate steps are understood. We use
formula (17) to calculate the Christoffel symbols by means of the metric tensor only. We
start by calculating the Christoffel symbols with regards to x0 = t. Which gives,

Γ0
kj =

1

2
gim

(
∂gij
∂xk

+
∂gki
∂xj

−
∂gjk
∂xi

)
(21)

Since our metric tensor matrix is a 4 by four 4 we have to calculate a total of 16 Christoffel
symbols for upper index 0 which can be represented in the following way

Γ0
kj =


Γ0
00 Γ0

01 Γ0
02 Γ0

03

Γ0
10 Γ0

11 Γ0
12 Γ0

13

Γ0
20 Γ0

21 Γ0
22 Γ0

23

Γ0
30 Γ0

31 Γ0
32 Γ0

33


We notice that in equation (21) i takes the values of 0, 1, 2, 3. Since g0i = 0 if i 6= 0 we
can replace i directly by 0.

Γ0
kj =

1

2
g00
(
∂g0j
∂xk

+
∂g0k
∂xj

−
∂gjk
∂x0

)
=

1

2

(
∂g0j
∂xk

+
∂g0k
∂xj

−
∂gjk
∂x0

)
Since the variable x0 = t does not appear in the metric tensor matrix, we have

∂gjk
∂x0

= 0
for all j, k ∈ {0, 1, 2, 3}. Which gives us,

Γ1
jk =

1

2

(
∂g1j
∂xk

+
∂g1k
∂xj

)
= 0 (22)

Expression (22) implies that every element in the expression originates from the first
row of the metric matrix, since we are left with row index i in gij equal to 1. In the
metric matrix we see that the first row only has zero entries except on the diagonal,
there we have a one. This means that in fact all partial derivatives of the first row with
respect to any of the variables is zero so all the Christoffel symbols are zero, i.e. for all
j, k ∈ {0, 1, 2, 3}

Γ0
jk = 0

Now for the second variable x1 = r we use again formula (17) to find

Γ1
jk =

1

2
g1i
(
∂gij
∂xk

+
∂gik
∂xj

−
∂gjk
∂xi

)
Here i takes the values of 0, 1, 2, 3. Since g1i = 0 if i 6= 1 we can replace i directly by 1

Γ1
jk =

1

2
g11
(
∂g1j
∂xk

+
∂g1k
∂xj

−
∂gjk
∂x1

)
= −1

2

(
∂g1b
∂xk

+
∂g1k
∂xj

−
∂gjk
∂x1

)
(23)
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Now for all j, k ∈ {0, 1, 2, 3} we have
∂g1j
∂xk

= 0. Since the second row consists of all zeros
except for a -1 on the diagonal, we find that all partial derivatives of this form are zero.
So we rewrite expression (23) to,

Γ1
jk =

1

2

(
∂gjk
∂x1

)
These entries are all zero again, except for the lower two diagonal entries We find,

Γ1
22 = −1

2

(
∂g22
∂x1

)
=

1

2
(−2r) = −r

Γ1
33 =

1

2

(
∂g33
∂x1

)
=

1

2

(
−2r(sin(θ))2

)
= −r sin(θ)2

Now we move on to the third variable x2 = θ we use again formula (17) to find

Γ2
jk =

1

2
g2i
(
∂gij
∂xk

+
∂gik
∂xj

−
∂gjk
∂xi

)
Again i takes the values of {0, 1, 2, 3}. Since g2i = 0 if i 6= 2 we can replace i directly by
2.

Γ2
jk =

1

2
g22
(
∂g2j
∂xk

+
∂g2k
∂xj

−
∂gjk
∂2

)
= − 1

2r2

(
∂g2j
∂xk

+
∂g2k
∂xj

−
∂gjk
∂x2

)
(24)

We notice that
∂gjk
∂x2

= 0 for all possible entries of j, k except for j = k = 3 since there is
a θ term in g33. So we start with this term.

Γ2
33 = − 1

2r2

(
∂g23
∂x3

+
∂g23
∂x3

− ∂g33
∂x2

)
=
−1

2r2
· 2r2 sin θ cos θ = − sin θ cos θ

Since we’ve calculated Γ2
33 we know that the last term vanishes for all other Christoffel

symbols with 2 as upper-index so we are left with,

Γ2
jk = − 1

2r2

(
∂g2j
∂xk

+
∂g2k
∂xj

)
We can take j = 2, k = 1 to find

Γ2
21 = − 1

2r2

(
∂g22
∂x1

+
∂g21
∂2

)
= − 1

2r2
(−2r + 0) =

1

r

We move on to the last variable: x3 = φ. We use again formula (17) to find,

Γ3
jk =

1

2
g3i
(
∂gij
∂xk

+
∂gik
∂xj

−
∂gjk
∂xi

)
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Again i takes any of the values of {0, 1, 2, 3}. Since g3i = 0 if i 6= 3 we can replace i
directly by 3.

Γ3
jk =

1

2
g33
(
∂g3j
∂xk

+
∂g3k
∂xj

−
∂gjk
∂x3

)
= − 1

2r2(sin θ)2

(
∂g3j
∂xk

+
∂g3k
∂xj

−
∂gjk
∂x3

)
(25)

Since there are no φ entries in the metric matrix we have that
∂gjk
∂x3

= 0 for all j, k so we
leave out the last term.

Γ3
jk = − 1

2r2(sin θ)2

(
∂g3j
∂xk

+
∂g3k
∂xj

)
(26)

Take j = 3 and k = 1 to find a non-zero Christoffel symbol.

Γ3
31 = − 1

2r2(sin θ)2

(
∂g33
∂x1

+
∂g31
∂x4

)
= − 1

2r2(sin θ)2
· −2r sin(θ)2 =

1

r

Take j = 2 and k = 3 to find the remaining non-zero Christoffel symbol.

Γ3
23 = − 1

2r2(sin θ)2

(
∂g31
∂x3

+
∂g33
∂x1

)
= − 1

2r2(sin θ)2
· −2r2 sin(θ) cos(θ) =

cos(θ)

sin(θ)

By using the symmetry of the Christoffel symbols form (16) we find we find the following
non-zero Christoffel symbols.

Γ1
22 = −r, Γ1

33 = −r sin(θ)2, Γ2
21 = Γ2

12 =
1

r

Γθ33 = − sin(θ) cos(θ), Γ3
31 = Γ3

13 =
1

r
, Γ3

23 = Γ3
32 =

cos(θ)

sin(θ)

6.4 Deriving the system of differential equations

We use the formula for the geodesic equation as well as the expression for the non-zero
Christoffel symbols from the previous subsection to establish the following system of
differential equations (this approach is analogous to how we determined the system of
differential equations in the previous section).

d2u1

dλ2
+ Γ1

22

du2

dλ

du2

dλ
+ Γ1

33

du3

dλ

du3

dλ
=
d2r

dλ2
− r dθ

dλ

dθ

dλ
− r sin(θ)2

dφ

dλ

dφ

dλ
= 0

d2u2

dλ2
+ (Γ2

21 + Γ2
12)

du2

dλ

du1

dλ
+ Γ2

33

du3

dλ

du3

dλ
=
d2θ

dλ2
+

2

r

dθ

dλ

dr

dλ
− sin(θ) cos(θ)

dφ

dλ

dφ

dλ
= 0

d2u3

dλ2
+ (Γ3

31 + Γ3
13)

du3

dλ

du1

dλ
+ (Γ3

23 + Γ3
32)

du2

dλ

du3

dλ
=
d2φ

dλ2
+

2

r

dφ

dλ

dr

dλ
+ 2

cos(θ)

sin(θ)

dθ

dλ

dφ

dλ
= 0

Notice that the differential equation for the first variable t, completely disappears. This
is due to the fact that all the Christoffel symbols for time are zero so this equation
vanishes. We want to rewrite the resulting system of second order differential equations
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to system of first order differential equations. In order to do so we introduce three new
variables this time: v1, v2 and v3 which will represent the first-order derivatives. Notice
how we skip upper index 0 since the t velocity vanishes. This gives us the following
first-order system of ordinary differential equations.

dv1

dλ
= r(v2)2 + r sin(θ)2(v3)2

dv2

dλ
= −2

v2v1

r
+ sin(θ) cos(θ)(v3)2

dv3

dλ
= −2

v3v1

r
− 2

cos(θ)

sin(θ)
v2v3

dr

dλ
= v1

dθ

dλ
= v2

dφ

dλ
= v3

6.5 Solving the system of differential equations

We want to solve the defined system of differential equations to determine the geodesics
in Minkowski space and visualise them. Since Minkowski space is basically three-
dimensional Euclidean space with an extra dimension of time, we expect geodesics to
be straight lines. This makes sense since the force of gravity Is not present so there’s
no curvature of spacetime. I use the same Python solver as in subsection (5.6) but with
adjusted differential equations and adjusted initial conditions of course. Next to the
solver I also implemented the Euler-method by hand to have some sort of check on the
results of the Python solver. I set all variables that require an initial value (six in total)
equal to 1 to get an impression of what the geodesics will look like. The repeated value
of 1 is basically randomly determined, however it made sense to keep on using 1 like we
did in the previous section. When our solver and Euler-method are up and running we
can start plotting to visualise the geodesics. We start by plotting the trajectories of r, θ
and φ of the specific geodesic in Minkowski space given our initial conditions.
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Figure 6: The trajectories of the variables r, θ and φ of the geodesic expressed in spherical
coordinates (with initial conditions set to (1,1,1,1,1,1)) for Minkowski space.

We can clearly see that the trajectory of the geodesic in X, Y and Z direction all consists
out of straight lines. Notice that our initial condition was basically arbitrary chosen and
resulted into straight trajectories. This shows that most likely all geodesics given various
initial conditions will turn out to be straight lines. In order to confirm this, I plotted
the trajectories given different initial conditions. Though the trajectories can differ very
much in between each other they were all straight trajectories, as can be seen in the
figures below.

Figure 7: The trajectories of the variables r, θ and φ of the geodesic expressed in spherical
coordinates (with initial conditions set to (2,2,2,2,2,2)) for Minkowski space.
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Figure 8: The trajectories of the variables r, θ and φ of the geodesic expressed in spherical
coordinates (with initial conditions set to (3,3,3,3,3,3)) for Minkowski space.

Figure 9: The trajectories of the variables r, θ and φ of the geodesic expressed in spherical
coordinates (with initial conditions set to (4,4,4,4,4,4)) for Minkowski space.

Now that we know we are dealing with straight lines and have an idea of what the
trajectories look like, we can plot the Minkowski geodesics in three-dimensional space.
We would actually like to plot in four-dimensional space since Minkowski space is four-
dimensional, but doing so in an image is physically impossible. Besides we know that the
time variable Is not apparent in the system of differential equations, so this can be left
out. Therefore a three-dimensional space is sufficient for the visual plot of all variables
involved.
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Figure 10: The three-dimensional plot of the Minkowski geodesic given the initial con-
ditions (1,1,1,1,1,).

And yet again we see that we are dealing with a straight line.

It may seem a bit unnecessary to go through all this trouble if we already knew we
would plot straight lines, which Is not that interesting at all. Implementing the system
of differential equations as well us the plotters actually really helps us in setting up the
required tools for the Schwarzschild metric. That is why it was so important.

6.6 Setting the initial condition of light rays

In this section we make a start with the implementation of the image transformation i.e.
simulate the light ray trajectories. More specifically this section focuses on the initial
requirements needed to properly simulate the trajectories of the light rays in our metric.
With initial conditions we mean a starting point and a velocity in each spatial direction
for each individual light ray. In this section we’ll be mathematically deriving how to
properly set these initial conditions to meet our requirements.

We’ll start by covering the requirements we want to set for our light rays.

• All light rays start from the same plane.

• The light ray field is constructed in such a way that X = Y = 0 is located in the
center.

• All light rays have the same initial velocity.

• All light rays travel perpendicular to the plane they start from in positive direction.

The first requirement is set so that all light rays start aligned. We have chosen to posi-
tion all light rays at Z = −10, spread out in the x, y-plane.
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The second requirement is set because in the Schwarzschild metric the black hole will
be located in the origin so we want our light rays to surround the X = Y = 0 center
symmetrically.

To place the starting positions of the light rays in the x, y-plane at Z = −10 means
we are defining these particular starting point in terms of the x, y, z-plane by its Carte-
sian coordinate. However our X,Y, Z values are expressed by the spherical coordinate
system. This means we need to be able to switch from the Cartesian to the spherical co-
ordinate system. In order to perform this transformations we use the following formulas,
given a specified X,Y, Z-coordinate.

r =
√
X2 + Y 2 + Z2

θ = arccos

(
Z

r

)
φ = arctan 2 (Y X)

Where we define arctan 2 in such a way that,

arctan 2(y, x) =



arctan( yx) if x > 0,

arctan( yx) + π if x < 0 and y ≥ 0,

arctan( yx)− π if x < 0 and y < 0,

+π
2 if x = 0 and y > 0,

−π
2 if x = 0 and y < 0,

undefined if x = 0 and y = 0.

Note that the initial condition exists out of an initial coordinate and initial velocities.
Therefore we still have to define these initial velocities which are specified by the third
and fourth requirement. Our third requirement is set so that way all light rays travel
the same distance within a specified time frame. We choose to set all velocities equal to 1.

Finally the last requirement is set so that all light rays travel straight towards the
z = 0-plane. Perpendicular to the z-plane means there won’t be any velocity in the
z-direction so the z velocity is set to 0.

The velocities are described by means of spherical coordinates as well, so not Carte-
sian. Again we have to transition from Cartesian to spherical. This time It is a little bit
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more tricky so we use the multi-variable chain rule as we did in section (5).

v1 =
dr

dλ
=

∂r

∂X

dX

dλ
+
∂r

∂Y

dY

dλ
=

∂r

∂Z

dZ

dλ

=
X√

X2 + Y 2 + Z2
vX +

Y√
X2 + Y 2 + Z2

vY +
Z√

X2 + Y 2 + Z2
vZ

v2 =
dθ

dλ
=

dθ

∂X

∂X

dλ
+
∂θ

∂Y

∂Y

λ
=

dθ

∂Z

∂Z

dλ

=
XZ√

X2 + Y 2(X2 + Y 2 + Z2)
vX +

Y Z√
X2 + Y 2(X2 + Y 2 + Z2)

vY +

−X2 − Y 2

√
X2 + Y 2(X2 + Y 2 + Z2)

vZ

v3 =
dφ

dλ
=
∂φ

dX

dX

dλ
+
∂φ

∂Y

∂Y

dλ
+
∂φ

∂Z

dZ

dλ
= − Y

X2 + Y 2
vX +

X

X2 + Y 2
vY

For each light ray we can specify its initial position in Cartesian coordinates: (X,Y,−10)
as well as its initial Cartesian velocities (1, 1, 0). Both will be transformed to the spherical
plane which is used throughout this thesis. This means we have constructed the initial
condition for each light ray that matches our requirements which is a big step towards
completely simulating the light rays.

6.7 Plotting light rays

In this section we’ll actually be plotting light rays in a three dimensional space. A
disclaimer however, this all won’t be too excited since Minkowski space Is not curved.
Nonetheless implementing this three-dimensional visualisation will lay the foundation
for visualizing light rays in the Schwarzschild metric.

In the previous subsection (6.6) we determined how to set up the initial conditions
for the light rays. However a number of aspects are still missing in order to properly
visualise the light rays. First of all we need to define a field size. This determines the
size of the X and Y interval at Z = −10 from where the light rays will start. Note that
as previously mentioned, the X,Y interval is transposed in such a way that X = Y = 0
in the center. We’ll start off with a really small field size: 6x6. This assures that the
light rays will be clearly visible instead of seeing one big chunk of indistinguishable rays.
Second of all we need to determine which X,Y values in the Z = −10 plane we pick to
start of. Again we want to avoid creating a concentrated mass of light rays so we require
them to have proper distance between each other. We find that if we take only integer
values within the XxY interval the geodesics will meet this requirement. For each light
ray starting in the XxY interval with integer values, the trajectory is computed through
the geodesic constructor function. This function takes the X and Y starting coordinates,
the time step and end time as inputs. The time step still remains 0.005 and the end
time is set to 20. This end time is chosen in such a way that the geodesics end is located
at Z = 10, in this way the light rays travel as much below the origin as above it with
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respect to the z-axis.

The initial Cartesian condition is constructed: (Xstart, Ystart,−10, 0, 0, 1) and is con-
verted to spherical by the formulas of the previous subsection (6.6). This converted
initial condition is fed into the Python Minkowski solver which will constructs a list of
r, θ and φ values throughout the time interval. These lists are converted back to Carte-
sian X,Y, Z - coordinate lists so we know the relative end coordinates. The complete
trajectories of the light rays are plotted according to these three lists by means of a
plotter.

There remains one issue, the geodesic through the origin Is not defined. That is due to
the fact that the origin Is not defined in spherical coordinates. We solve this issue by
simply leaving this specific geodesic out completely. We are now fully equipped to plot
the geodesics in Minkowski space.

Figure 11: The three-dimensional plot of the Minkowski geodesics given field size of 6, a
dt of 0.005 and a tend of 20.

Notice that indeed there’s no geodesic in the origin. Furthermore all geodesics are per-
pendicular to the Z = −10-plane, all geodesics start in the same plane Z = −10, all
geodesics have equal positive velocity, the field size is 6 and all geodesics start at integer
X,Y -values i.e. all our requirements are met. As briefly mentioned before the fact that
Minkowsi space Is not curved means the light rays will just be straight lines. Not too
exciting but the entire simulating procedure can be carried over to the Schwarzschild
metric.

We mentioned that (Xstart, Ystart) and the total trajectories of the geodesics in terms
of the Cartesian coordinates of each geodesic is determined. Notice that if we take the
lest element of the list of X and Y values of the geodesic trajectory we have (Xend, Yend).
We are interested in these coordinates since this allows us to construct a before and after
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image by means of a scatter plot. This gives a clear visualisation of where the geodesics
start and where they will end without plotting the entire trajectory.

Figure 12: Left: the starting positions of all the geodesics in the 6x6 field, right: the end
positions of all the geodesics in the 6x6 field (the origin is missing).

Again not very special since we are dealing with a set of parallel straight lines. We see
that every geodesics starting point is mapped to itself except for the origin, since the
origin Is not defined in spherical coordinates. Once we are dealing with the Schwarzschild
metric this form of mapping visualisation will prove to be very interesting.

6.8 Transforming images

In the previous subsection (6.7) we were able to determine the trajectories of our speci-
fied geodesics (containing initial conditions which met all the requirements) and visualise
them. We are going to use this knowledge to derive the way an image will be trans-
formed in Minkowski space, where the image is projected from Z = −10 to the observer
at Z = 10. We will start by explaining our approach for this projection. The approach
which we’ll be using for this visualisation will be the exact same for the Schwarzschild
metric so the work we are doing here is very useful.

We start by placing an input image in the x, y-plane at Z = −10. Each pixel of the
input image, identified by its row index and column index is mapped to an X,Y value.
In order to continue It is important to know how pixels ’work’. In Python a pixel is
represented by an RGB (red, green, blue) value list. Basically any color can be created
by a combination of a specific shade of red, green and blue. This shade of each color is
represented by a value anywhere between 0 and 255, where 0 corresponds to black and
255 to white. The RGB value list for each pixel therefore consists out of three integers
all varying between 0 and 255.

Second of all It is important to note how we loop over the pixels of our image. We
start at pixel[0,0] which corresponds to the pixel on the top left corner, we then continue
to the pixel to the right i.e. pixel[0,1] up until we reach the last pixel of that row in the
top right corner. We then move over to the second row, pixel[1,0], until eventually we
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reach the last pixel i.e. pixel[number of width pixels, number of height pixels].

Remember that the entire plane occupied by the input image will be transposed in
the X,Y -plane such that X = Y = 0 lies in the center of the image. Therefore these
pixel row and column index need to be transposed as well. In order to conform to this
transposition, we map (pixel column index, pixel row index) to (Xstart = − number of
width pixels / 2 + pixel column index, Y start = number of height pixels / 2 - pixel row
index).

For each individual pixel, a geodesic will be computed which in Minkowski space means
a system of 6 coupled differential equations needs to be solved given the prescribed initial
conditions (with X = Xstart, Y = Y start). Once the geodesic is computed, the Xend

and Yend coordinate can be determined by converting the r, θ and φ solution lists to X,Y,
solution lists and taking the last value of both. Now this Xend and Yend values need to
be converted back to a pixel index and pixel row. This is done by taking the inverse
of the original transformation: pixel column index = Xend+ number of width pixels /
2, pixel row index = Y end - number of height pixels / 2 and rounding these to integer
values. Now we know exactly where each pixel from the input image is being mapped to.

We then create an output image with the exact same size as the input image and set
every pixel to black to start off. For each pixel in the input image (starting from top
left) the RGB value list of this ’start’ pixel is determined. We calculate to what ’end’
pixel this ’start’ pixel is being mapped to by solving the geodesic equation by means of
the just described method. The RGB value list of the ’start’ pixel position of the output
image is set to RGB value of the ’end pixel’ position of the input image. Notice that in
this way every pixel in the output image will have an RGB value originated from the
input image, which means we have a surjective mapping. Furthermore no pixel values
will be stacked, i.e. every pixel’s RGB value list in the output image has a unique origin
pixel RGB list value from the input image. The approach can perhaps best be described
by the following image.
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Figure 13: The input image is displayed at Z = −10 in the X,Y - field, such that the
center of the image is at X = Y = 0. The image is projected through the
plane Z = 0 until it reaches the plane where Z = 10. The output/projected
image is yet unknown and therefore carries the question mark.

I implemented this described method in Pyhton. If you run the program, the output
image gets constructed real time meaning that you can see that every black pixel is
changed to the corresponding correct pixel RGB value list. Unfortunately I cannot show
this feature in the thesis, but the code can be ran by yourself of course. Remember that
we are dealing with the Minkowski space, i.e. the geodesics are straight lines. This means
that for every pixel at position (X,Y ) we have that Xstart = Xend and Ystart = Yend,
except for the origin. The origin pixel in the output image will remain black since this
geodesic is left out. This means the output image is identical to the input image except
for 1 black pixel in the center. This notion becomes very visible if we compare the input
image with the output image in the following figure. We use a 100x100 pixel image so
the computation time will be manageable (unfortunately the resolution will be lower).
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Figure 14: Left: the 100x100 input image in Minkowski space, right: the 100x100 output
image in Minkowski space.

We see that indeed the images are the same except for the center pixel of the output
image. I managed to improve the program in such a way that it ran a lot faster. This
means I could compute the output image for input images with a lot higher resolution
as well. However, the input and output image will still remain the same except for the
center pixel which will become less visible by increasing the resolution. Therefore It is
not really interesting to show these images.

We return to figure 13 and are now able to replace the question mark by the actual
transformed image.

Figure 15: The input image is displayed at Z = −10 in the X,Y - field, such that the
center of the image is at X = Y = 0. The image is projected through the
plane Z = 0 until it reaches the plane where Z = 10. The output/projected
image displayed at Z = 10.
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We made some major steps with respect to setting the initial conditions, finding the
geodesics and transforming the image. This allows us to finally take the big step to start
working on the Schwarzschild metric.
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7 Schwarzschild metric

In this section we will be simulating the presence of a black hole and see how this alters
things with respect to all our previous results. In the end we will be able to construct the
image from the perspective of the observer in front of the black hole which was exactly
our original goal.

7.1 Defining the metric

The Schwarzschild metric in spherical coordinates is given as:

ds2 =
(

1− rs
r

)
dt2 − dr2

1− rs
r

− r2dθ2 − r2 sin(θ)dφ2 (27)

Before we start It is perhaps a good idea to clarify some aspects of the metric. First of
all notice that all the the variables are familiar to us from the Minkowski metric. Besides
the variables, the appearance of rs is very prominent in the metric. This rs represents
the Schwarzschild radius of the black hole. Notice that Minkowski space is completely
recovered when rs

r goes to zero. We will show that this is the case by taking rs = 0 and
visualising the curvature of the light rays (they should be straight lines).

7.2 Determining the metric tensor

The corresponding metric tensor is given by,

gij =


1− rs

r 0 0 0
0 − 1

1− rs
r

0 0

0 0 −r2 0
0 0 0 −r2 sin(θ)2

 (28)

while the inverse metric tensor is given by,

gij =


1

1− rs
r

0 0 0

0 −1 + rs
r 0 0

0 0 − 1
r2

0
0 0 0 − 1

r2 sin(θ)2

 (29)

7.3 Determining the Christoffel symbols

We use formula (17) to determine all Christoffel symbols. Since we have some experience
with calculating the Christoffel symbols from the Minkowski space, we are going to omit
the excessive steps. We use the notation described by (18). We start by substituting
our first entry t where we use the fact that g0α = 0 for all α 6= 0, so we can substitute
α = 0: g00 right away.

Γ0
ij =

1

2
g00(g0i,j + g0j,i − gij,0)
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Not a singly entry in the metric tensor metric is dependent of t so gij,0 = 0 for all i, j so
all partial derivatives to t vanish, which gives,

Γ0
ij =

1

2
g00(g0i,j + g0j,i)

Now g0k is only non-zero when k = 0, however g00,0 = 0 so we must have j 6= 0 and
i = 0, g00,j is then only non-zero when j = 1 so we have,

Γ0
01 =

1

2

1

(1− rs
r )

∂

∂r

(
1− rs

r

)
=

1

2

−1

(1− rs
r )

rs
r2

=
−rs

2r(r − rs)

By (16) we have,

Γ0
10 = Γ0

01 =
−rs

2r(r − rs)
We now substitute our next entry r into (17) where we use again the fact that the inverse
metric tensor is only non-zero for α = 1. We have that,

Γ1
ij =

1

2
g11(g1i,j + g1j,i − gij,1)

If we take i = 0, j = 0 we have,

Γ1
00 =

1

2
g11(g10,0 + g10,0 − g00,1) = −1

2
g11g00,1 =

1

2
· −
(
−1 +

rs
r

)
· rs
r2

=
rs(r − rs)

2r3

If we take i = 1, j = 1 we have,

Γ1
11 =

1

2
g11(g11,1 + g11,1 − g11,1) =

1

2
g11g11,1 =

1

2
·
(
−1 +

rs
r

)
· rs

(r − rs)2
= − rs

2r(r − rs)

If we take i = 2, j = 2 we have,

Γ1
22 =

1

2
g11(g12,2 + g12,2 − g22,1) = −1

2
g11g22,1 = −1

2
·
(
−1 +

rs
r

)
· −2r = −(r − rs)

If we take i = 3, j = 3 we have,

Γ1
33 =

1

2
g11(g13,3+g13,3−g33,1) = −1

2
g11g33,1 = −1

2
·
(
−1 +

rs
r

)
·−2r sin(θ)2 = −(r−rs) sin(θ)2

Now we move on to the third variable θ which we substitute into (17). Again we have
that only for α 6= 0 we have that α = 2 so we get,

Γ2
ij =

1

2
g22(g2i,j + g2j,i − gij,2)

A non-zero Christoffel symbol given upper index θ is achieved when we take i = 1 and
j = 2 since we have,

Γ2
12 =

1

2
g22(g21,2 + g22,1 − g12,2) =

1

2
· − 1

r2
· −2r =

1

r
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And by symmetry of the lower index of Christoffel symbols we have that ,

Γ2
12 = Γ2

21 =
1

r

By taking i = 3 and j = 3 we have that,

Γ2
33 =

1

2
g22(g23,3 + g23,3 − g33,2) =

1

2
· − 1

r2
· 2r2 sin(θ) cos(θ) = − sin(θ) cos(θ)

All other Christoffel symbols for upper index 3 are zero. Now we move on to the fourth
and final variable φ which carries index 3. We substitute this value into the formula
(17). Again we have that only for α 6= 0 we have that α = 3 so we get,

Γ3
ij =

1

2
g33(g3i,j + g3j,i − gij,3) = −g3i,j + g3j,i − gij,3

2r2 sin(θ)

By taking i = 1 and j = 3 we have that,

Γ3
13 =

1

2
g33(g31,3 + g33,1 − g13,3) = −−2r sin(θ)2

2r2 sin(θ)
=

1

r

By the symmetry of lower indices of Christoffel symbols we have by (16),

Γ3
13 = Γ3

31 =
1

r

Finally if we take i = 2, j = 3 we have that,

Γ3
23 =

1

2
g33(g32,3 + g33,2 − g23,3) = −−2r2 sin(θ) cos(θ)

2r2 sin(θ)
=

cos(θ)

sin(θ)

By the symmetry of lower indices of Christoffel symbols we have by (16),

Γ3
32 = Γ3

32 =
cos(θ)

sin(θ)

7.4 Deriving the system of differential equations

We clearly have a lot more non-zero Christoffel symbols than we did in Minkowski space.
This means that we have more expressions in the coupled differential equations. Most
notably there are Christoffel symbols with upper index 0 which are non-zero, meaning we
have an extra equation in the system. We determine the system of differential equations
analogous to the Minkowski and Euclidean metric.
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d2u0

dλ2
+ (Γ0

01 + Γ0
10)

du0

dλ

du1

dλ
=
d2t

dλ2
− rs
r(r − rs)

dt

dλ

dr

dλ
= 0

d2u1

dλ2
+ Γ1

00

(
du0

dλ

)2

+ Γ1
11

(
du1

dλ

)2

+ Γ1
22

(
du2

dλ

)2

+ Γ1
33

(
du3

dλ

)2

=

d2r

dλ2
+
rs(r − rs)

2r3

(
dt

dλ

)2

− rs
2r(r − rs)

(
dr

dλ

)2

− (r − rs)

((
dθ

dλ

)2

+ sin(θ)2
(
dφ

dλ

)2
)

= 0

d2u2

dλ2
+ (Γ2

12 + Γ2
21)

du2

dλ

du1

dλ
+ Γ2

33

(
du3

dλ

)2

=
d2θ

dλ2
+

2

r

dθ

dλ

dr

dλ
− sin(θ) cos(θ)

(
dφ

dλ

)2

= 0

d2u3

dλ2
+
(
Γ3
13 + Γ3

31

) du1
dλ

du3

dλ
+
(
Γ3
23 + Γ3

32

) du2
dλ

du3

dλ
=
d2φ

dλ2
+

2

r

dr

dλ

dφ

dλ
+ 2

cos(θ)

sin(θ)

dθ

dλ

dφ

dλ
= 0

We rewrite this system of 4 second order differential equations to a system of 8 first
order differential equations as we have done before.

dv0

dλ
=

rs
r(r − rs)

v0v1

dv1

dλ
= −rs(r − rs)

2r3
(v0)2 +

rs
2r(r − rs)

(v1)2 + (r − rs)
(
(v2)2 + sin(θ)2(v3)2

)
dv2

dλ
= −2

r
v2v1 + sin(θ) cos(θ)(v3)2

dv3

dλ
= −2

r
v1v3 − 2

cos(θ)

sin(θ)
v2v3

v0 =
dt

dλ

v1 =
dr

dλ

v2 =
dθ

dλ

v3 =
dφ

dλ

7.5 Solving the system of differential equations

I implemented solvers for the system of differential equations by using Euler’s-method
as well as by the pre-built solver we are familiar with. We can start off by defining some
random initial condition and see what the geodesic will look like. To continue in a similar
fashion we take (1,1,1,1,1,1,1,1) as the initial condition. Notice that the initial condition
has moved up from 6 values in Minkowski space to 8 values in the Schwarzschild metric.
Besides the initial condition we also have to specify the value of rs (the Schwarzschild
radius). A large value of rs corresponds to a large field of curvature and a small value to
a small field of curvature. In fact setting rs to 0 should result in the Minkowski space.
We’ll show that this holds given our initial condition first.
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Figure 16: The trajectories of the variables r, θ and φ of the geodesic expressed in
spherical coordinate (with initial condition set to (1,1,1,1,1,1,1,1)) for the
Schwarzschild metric with rs set to 0.

If we compare this image to the Minkowski trajectory visualised in image 9, we see that
we are dealing with the exact same trajectories. Indeed rs = 0 gives us the Minkowski
space in this case.

Changing our value of rs however significantly alters the trajectories. If we pick rs
to be 0.8 for instance the output is the following.

Figure 17: The trajectories of the variables r, θ and φ of the geodesic expressed in
spherical coordinate (with initial condition set to (1,1,1,1,1,1,1,1)) for the
Schwarzschild metric with rs set to 0.8.

Clearly these trajectories differ from the Minkowski trajectories so the rs value most
definitely influences the geodesic trajectory.
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7.6 Defining the t velocity

Everything we covered in subsection (6.6) can be carried over to the Schwarzschild met-
ric, which saves us a lot of work . We have one remaining issue however. In the Minkowski
space the first equation, involving the t variable vanished since all the Christoffel sym-
bols with upper index 0 were zero. In the Schwarzschild metric, this is not the case
anymore. This means we have an extra equation in the system of differential equations
and therefore require an extra initial value: the t velocity. This velocity can be deter-
mined by what’s known as a null-geodesic. Massless particles like photons follow these
null-geodesics which are described by.

gij
dxi

ds

dxj

ds
= 0 (30)

We have that gij 6= 0 only if i = j which gives,

(v0)2 =
−dx1

ds
dx1

ds g11 −
dx2

ds
dx2

ds 2g22 − dx3

ds
dx3

ds g33

g00
=
−(v1)2g11 − (v2)2g22 − (v3)2g33

g00

=
−(v1)2(− 1

1− rs
r

)− (v2)2(−r2)− (v3)2(−r2 sin(θ))

(1− rs
r )

So we have that,

v0 =

√√√√(v1)2( 1
1− rs

r
) + (v2)2r2 + (v3)2r2 sin(θ)

(1− rs
r )

This formula is programmed in Python which enables us to determine the v0 initial
velocity given the other initial velocities. Remember that these other initial velocities
(v1, v2, v3) are all calculated by means of the spherical transformation formulas which
transforms the Cartesian initial velocities vx, vy, vz = (1, 1, 0) to their relative spherical
expression as described in subsection (6.6). Since all the light rays have equal initial
velocities all the initial velocities: v0, v1, v2, v3 are the same for each geodesic and can
be predetermined.

7.7 Plotting light rays

In this subsection we’ll actually be plotting light rays in a three dimensional space
just like we did for the Minkowski space. In fact everything covered in section (6.7)
can be carried over to the Schwarzschild metric. The only difference is that we have
a more advanced system of differential equations and an expanded initial condition.
Unlike the previous section, the light rays of the Schwarzschild metric will prove to be
very interesting. We’ll show this by plotting the light rays given various values of t.
Throughout this subsection we use a the same 6x6 field and take rs = 1 which means
we are dealing with some serious curvature.
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Figure 18: Several plots visualizing the trajectory of light rays at different t values in
the Schwarzschild metric with rs = 1.

We are going to walk through each plot starting from top left, to observe how the
geodesics progress over time.

For our first plot we picked t = 5. We see that all geodesics start off as straight lines which
look familiar to us from the Minkowski space. Notice that the geodesic in the origin is
missing since the spherical coordinate system Is not defined there. The geodesics are still
quite far from the black hole in the origin, meaning that the light rays are barely effected
by its gravitational pull. Therefore it makes sense that we are dealing with straight lines.

When we double t to 10 we start to notice the occurrence of some curvature already.
The light rays barely passed the X = Y = 0 -plane, meaning the origin geodesic (if it
was still there) would be located within the Schwarzschild radius.
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Only 1 time step further, at t = 11 we see that there is a lot more curvature and
light rays are actually intersecting above the black hole.

When we move on to t = 17 the image gets very messy because of all the different
trajectories so I changed the point of view to one where we do notsee any depth in the
y-direction. Here we notice that the end positions of the light rays are located in com-
pletely different Z positions. Unlike the Minkowski space, the light rays aren’t aligned
at all. Some geodesics undergo such extreme curvature that they are actually pulled
back towards Z = −10 where they started.

At t = 20 we see that some light rays even interchanged position compared to their
starting point. This means this section will be upside down for the observer!

Lastly at t = 40 It is evident that there is a huge difference between the light ray’s
X,Y -end positions and X,Y starting position.

Remember that our aim is to construct the image from the point of view of the ob-
server located at the plane Z = 10. In our new metric this means we have to apply some
conditions to our geodesics.

First of all, we leave out all the geodesics that never reach Z = 10, since they will
never reach the observer. We remove these geodesics by setting tend to 40 and we check
whether each geodesic has reached Z = 10 within this time frame. If they haven’t yet
they most likely never will and can therefore be left out.

Second of all if r ≤ rs in any part of the geodesic, the geodesic will be removed. That
is because the geodesic falls within the Schwarzschild radius if this condition is met,
meaning It is sucked into the black hole and disappears completely.

Finally if a geodesic is mapped outside of the X,Y interval it originated from, it should
be removed as well. That is because the light ray would be mapped outside of the output
image X,Y interval meaning it wouldn’t be visible in the transformed image.

Implementing these conditions in Python was one of the most time-consuming processes
of the entire thesis. The problem was the fact that the pre-built Python solver returned
a list of each involved variable after it was done solving the system of differential equa-
tions. There was no possibility of checking whether specific variables met the prescribed
conditions during the computing process. I saw no other options than to use an entirely
different pre-built Python solver which did allow intermediate checking. I eventually
found the solver ivp, which did meet this requirement. Still it was difficult to check for
these events but eventually I was able to implement the 3 described conditions to this
new solver. If we now look at the geodesics left at t = 40 given the required conditions,
we find the following plot.
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Figure 19: We set rs = 1 and tend = 40. We see the (only) 4 geodesics left after reaching
tend given the required geodesic conditions.

Now compare this plot to the same scenario without restricted conditions.

Figure 20: We set rs = 1 and tend = 40. We see the geodesics left after reaching tend
without any required geodesic conditions.

The vast majority of the light rays vanished when we implemented the conditions. In
fact only 4 geodesics of the 36 remain. This may seem very drastic but note that an
rs value of 1 is really high. This means a lot of geodesics fall within the Schwarzschild
radius, get mapped outside the projected starting plane or are bent back to the starting
plane and therefore are left out. I explicitly choose this higer rs value to emphasize
the differences between no geodesic restrictions and hard geodesic restrictions. Usually
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we’ll be dealing with smaller rs values and the differences are therefore less significant.
Besides we’ll increase the field size we are working in meaning there are a lot more light
rays that aren’t bent as much since they are further away from the origin.

The scatter plot proved very uninteresting for the Minkowski metric but not for the
Schwarzschild metric. This gives a very clear visualization of how the field is manipu-
lated.

Figure 21: Left: the starting positions of all the geodesics in the 6x6 field, middle: the
end positions of all the geodesics in the 6x6 field without geodesic restrictions
(rs = 1), right: the end positions of all the geodesics in the 6x6 field with
geodesic restrictions (rs = 1).

Clearly there’s a massive manipulation of the original starting points in the middle plot,
which corresponds to figure 20. The right plot corresponds to figure 19 where there’s
only 4 geodesics left. The scatter plot does lack information about which starting points
are mapped to the specific end positions. In the right image for instance, we know that
the geodesic rays actually intersect each other and change position completely as we can
see in figure 19, which is not visible in the scatter plot however. Nonetheless the scatter
plot does prove to be quite useful. In the middle image it may appear like there’s an
ending point precisely at X = Y = 0, but that is not the case. This becomes clear if we
zoom in a bit.
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Figure 22: Zoomed in scatter plot of the end positions of all the geodesics in the 6x6
field.

7.8 Transforming images

This section is basically what the entire thesis has been building up to: the visualisation
of the output image from the perspective of the observer. We are using all the knowledge
we have gained in all the previous sections combined.

We’ll start with the differences between the Schwarzschild image constructor and the
Minkowski image constructor. First of all the Minkowski image constructor also worked
with non-square images where the x-interval and y-interval were not equal. In the
Schwarzschild metric each image has to be a perfect square, or else the black hole will be
stretched out in the longer width or height. We want to crop each image in such a way
that we have the biggest possible square in the middle of the original image. In order
to do so we first of all determine the height and width of the original image in pixels.
Then we take the smaller of the two and set the cropped width and cropped height equal
to that value. We check the difference between the cropped width and original width,
divide this by 2 and denote this value as start width. We do the same for the height,
i.e. we determine the difference between the cropped height and original height, divide
this by 2 and denote this value as start height. We then crop the image such that the
height runs from start height to start height + cropped height and the width runs from
start width to start width + new width. With this method we always have a square in
the middle of the image.

The second difference between Schwarzschild imaging and Minkowski imaging is the
size of the plane where the original image is located. In the Minkowski space the width
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of the image in pixels corresponded to the x-interval and the height of the image cor-
responded to the y-interval translated such that the origin is placed in the middle. For
example, if we had an input image of 100x100 the interval occupied by the image would
be [−50, 50]x[−50, 50]. And if we had an image of 200x200 the interval occupied by the
image would be [−100, 100]x−[100, 100], etc. Since Minkowski space consisted of straight
lines, it did not matter where the geodesic would begin with regards to the origin. When
we are dealing with the Schwarzschild metric this is no longer the case. Geodesics close
to the origin will be extremely bent whereas geodesics far removed from the origin will be
close to straight lines. Applying the Minkowski approach would mean that if we would
double the number of pixels, the ratio: surface contained within the Schwarzschild radius
to total image surface, would halve. This is clearly not what we want. Just because
the resolution increases shouldn’t mean that the schwarzschild radius contained surface
should decrease. We want this ratio to remain the same no matter the resolution of the
original image. A suitable way to solve this issue is to map every image, no matter the
resolution, to a specified interval. We choose this interval to be [-10,10]x[10,10]. We
iterate over each column from left to right and then continue to the next row. Each
pixel’s position will be expressed by its column index: x and row index: y. This row and
column index will be transposed in the following way to make sure they are mapped to
[-10,10]x[10,10]: xstart = −10+20 ·(x/xsize), ystart = 10−20·(y/ysize). This transposition
implies we start at the top left: (-10,10), and end at bottom right: (10,-10). The xstart
and ystart will be fed into geodesic constructor. After the geodesic constructor deter-
mined the xend and yend positions, they are transposed back to the original pixel row and
column by the inverse formula: xend = (xend+10) ·xsize/20, yend = (yend−10) ·ysize/−20.
The events in the solver make sure that all conditions are met.

We are now able to transform an image in the Schwarzschild metric, similarly to how
we this was done in the Minkowski metric. This results in the following image.
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Figure 23: Left: the 100x100 input image in Schwarzschild metric, right: the 100x100
output image in the Schwarzschild metric.

Finally we are able to visualise the output with respect to the perspective of the observer!

Notice how we have a black circle in the middle of the image. This circle is caused by all
the geodesics which enter within the Schwarzschild radius and therefore vanish. Since
the output image is firstly completely blacked-out, the area within the schwarzschild
radius is completely black. The fact that It is black makes sense since no light rays can
escape and there’s therefore an absence of light: darkness.

We also notice that there’s a ring surrounding the black hole where massive image distor-
tion takes place. As a matter of fact part of the image is actually turned upside-down in
this ring. This may seem very strange, but if we take a look at the light trajectories from
figure 20, we see that close to the Schwarzschild radius the curvature is so extreme that
light rays actually intersect and cross and therefore turn parts of the image upside down.

Just outside the ring we see a lot of curvature as well, but the original image is still
recognizable. The more we move to the edges, the more the curvature decreases. The
most outward pixels experience almost no curvature whatsoever. This makes sense since
the gravitational pull decreases as we move further away from the black hole.

We can visualise the transformation in a three-dimensional plot similar to figure 15.
We plot the black hole with its corresponding Schwarzschild radius on scale in the the
origin of the image as a black sphere. This results in the following plot.
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Figure 24: A three dimensional plot containing the original image at Z = −10, the black
hole identified by its Schwarzschild radius in the origin and the distorted
image at Z = 10

The amount of distortion depends on the size of the Schwarzschild radius: the rs value,
and the distance of the observer relative to the black hole. We want to have an idea of
how both factors influence the transformation of the original image.
To start off we determine how the image distortion relates to the rs value. Clearly a
higher rs value will mean a higher amount of distortion, but just how much is unclear.
I plotted the same image with 3 different rs values to visualise the distortion. The Zend

is set to 10 as usual for all images.

Figure 25: Left: the output image given rs = 0.2, middle: the output image given
rs = 0.4, right: the output image given rs = 0.8.

Wee see that the surface within the black middle circle is directly proportional to the rs
value, meaning that if rs doubles this surface doubles as well. This makes sense since

55



the Schwarzschild radius is doubled. More importantly as the rs value increases the
distortion around the outside of the ring increases as well. This amount of increased
distortion outside of the ring seems directly proportional to the rs value as well. Notice
that the width of the ring remains the same for all rs values.

To visualise the influence of the second distortion factor: the distance of the observer to
the black hole, we will plot the same image with 3 different observer distances.

Figure 26: Left: the output image given Zend = 5, middle: the output image given
Zend = 10 right: the output image given Zend = 20.

Note that when the observer is further away from the black hole, the curved light rays
will diverge further meaning that the original image will be more distorted. For me this
seemed counter-intuitive since I expected there to be more curvature when the observer
is closer to the black hole than when the observer is further, but this Is not the case.
The plots clearly visualise this notion. We see that the black circle increases as the
observer distance increases, but in no way directly proportional to each other. That is
because the differences in the size of the surface of the black-circle doesn’t change that
much at all between the images. The curvature outside of the ring does seem to be
directly proportional to the distance to the origin. Actually the curvature outside the
ring is almost indistinguishable from the curvature seen in figure 25, which to me is very
peculiar but interesting. Notice that the width of the ring seems directly proportional
to rs as well which is the main difference with respect to image 25.

Now that we are able to construct the image the observer sees as well as manipulate the
parameters to create a black hole to our liking, we can basically construct any image
transformation we want. I updated the code so that higher resolution images work as
well. The next section of the thesis will be solely dedicated to the constructing of the
transformed images.
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8 Created images

Figure 27: This image filled with distant stars, consists of 600 pixels in width and 600
pixels in height.

Figure 28: The rs value is set to 0.5 and the Zend distance the observer has to the black
hole is 20.
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Figure 29: This image of a nebula and some distant stars, consists of 479 pixels in width
and 479 pixels in height.

Figure 30: The rs value is set to 0.4 and the Zend distance the observer has to the black
hole is 10.
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Figure 31: This image containing a nebula and some distant stars, consists of 747 pixels
in width and 747 pixels in height.

Figure 32: The rs value is set to 0.65 and the Zend distance the observer has to the black
hole is 20.
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Figure 33: This image containing a nebula and some distant stars, consists of 884 pixels
in width and 884 pixels in height.

Figure 34: The rs value is set to 0.4 and the Zend distance the observer has to the black
hole is 10.

61



Figure 35: This image containing a nebula and some distant stars, consists of 340 pixels
in width and 340 pixels in height.

Figure 36: The rs value is set to 0.3 and the Zend distance the observer has to the black
hole is 30.
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Figure 37: This image taken by the Hubble telescope, consists of 1438 pixels in width
and 1438 pixels in height.

Figure 38: The rs value is set to 0.4 and the Zend distance the observer has to the black
hole is 10.
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Figure 39: This image taken of a nebula, consists of 413 pixels in width and 413 pixels
in height.

Figure 40: The rs value is set to 0.8 and the Zend distance the observer has to the black
hole is 20.
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Figure 41: This image taken of a nebula, consists of 898 pixels in width and 898 pixels
in height.

Figure 42: The rs value is set to 0.3 and the Zend distance the observer has to the black
hole is 20.
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9 Conclusion

Let’s go all the way back to the Introduction where we constructed the end goal of our
thesis: simulating and visualising the distortion of the image caused by the gravitational
field of a black hole. As can be seen the goal actually consists of two individual though
overlapping parts, namely the simulation and visualisation. We proceed by reflecting
on the first part, the simulation. Though the simulation foundation is already laid in
section (5), it Is not until section (7) that we actually started simulation in the black hole
metric. In this section we simulated light ray paths by means of a few consecutive steps.
First of we all we applied the geodesic equation to this metric and solved the resulting
system of differential equations. Secondly we defined suitable initial positions and initial
velocities. Finally we applied further conditions to remove those light rays that play no
role in the projected image. Once we took these steps and thus have the trajectories
of the light rays we constructed the projected image, the image which was altered by
the gravitational field of the black hole. By validating our results we concluded that we
have indeed successfully completed the first part of our goal, the simulation.

We then continue by reflecting on the second part of our goal (and with that the entire
goal), the visualisation. The visualisation is actually only a small extension of the sim-
ulation and is discussed in the last part of section (7). Here we had translated all the
results from the simulation in such a way that the projected image was actually visible
to us. This allowed us to compare the projected image to the original and with that
determine their similarities and differences. Section (8) is specifically dedicated to show-
casing the projected image in comparison to the original image of several space images.
This meant we had completed the second part of our goal as well, the visualisation.
With that we have successfully completed our (total) goal.

Besides the goal It is worth reflecting on all the acquired knowledge we have gained
throughout this thesis. In the Introduction we briefly discussed the notions of a back
hole and of gravitational lensing which form the absolute main concepts of the thesis.
In section (2) we extend our view and discussed the relevant Physics theory that forms
the framework of the thesis. All of this was new to me as a mathematics student, but
therefore all the more interesting. After forming a step by step plan of approach in
section (3), we start with the Mathematics of the thesis in the following sections. In
section (4) we are introduced to new mathematical concepts such as extrinsic geometry,
the Christoffel symbols, the second fundamental form, the metric tensor, etc. and to new
forms of notation such as the Einstein’s summation convention. Here we form a general
understanding of these mathematical concepts but in the following section, section (5)
we are immediately applying all of them. Though I had some familiarity with spherical
coordinates, dot products and calculating derivatives most of the mathematics in this
section was new to me. In this section we apply the geodesic equation for the first time
by substituting the calculated Christoffel symbols. In section (6) and even more so in
section (7), the metric tensor significantly increased in size and therefore there are a
lot more Christoffel symbols to deal with which created a greater challenge. All the
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mathematics involved falls within the category of differential geometry with which I had
no previous experience with whatsoever.
Especially at the start of my thesis I was struggling a lot with the notation and mathe-
matical concepts of differential geometry. By being thrown in the deep, meaning applying
these concepts to actual metric spaces meant I made a lot of mistakes however therefore
learned a whole lot.
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Python code: https://github.com/WouterKleynen/BEP_software
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