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DELFT UNIVERSITY OF TECHNOLOGY

Abstract
On Covariant Emergent Gravity

by Arthur C. Platschorre

This report focuses on covariant emergent gravity (CEG), a coordinate-free formulation by
SabineHossenfelder of ErikVerlinde’s emergent gravity (EG). In (C)EG, gravity is considered
an emergent, entropic force arising from shifts in the entropy content of the universe due to
matter.

The main goal of this report is to identify experimentally verifiable results for CEG through
a theoretical analysis of the covariant field equations. The initial goal of this report was
to understand both EG and CEG. We have expanded upon this goal both theoretically and
numerically.

Our theoretical expansion consists of two parts: a gravitational lensing formalism for CEG
and an attempt at a cosmological model. The lensing formalism includes a lensing potential
that can be applied to general lensing systems. We show that current assumptions in CEG on
the imposter field result in a lensing equation that predicts that the amount of baryonic matter
in a galaxy as measured by strong lensing should differ from the amount of baryonic matter
as measured from the rotation curves. We have also included an attempt at a cosmological
model in which we solve for a vacuum dominated and a matter dominated universe in CEG.

Our numerical expansion also consists of two parts. In our first numerical expansion, we
propose and test an iterative algorithm to solve for CEG and MOND in cases of cylindrical
symmetric baryonic densities. This is done using an iterative algorithm based on Fourier-
Bessel transforms. The algorithm can also be applied to arbitrary baryonic densities using
just Fourier methods.

In our second numerical expansion, we fitted both CEG and MOND to 131 galaxies from
the SPARC database. The fittings were done by employing a Markov Chain Monte Carlo
(MCMC) fitting algorithm using three fit parameters. Both MOND and CEG provide good
fits to the rotation curves. Out of the 131 fits, 9 fits (7%) were poor fits (R2 < 0) and 62
galaxies (47%) were excellent fits (R2 > 0.9) and 94 gaxlies (72%) good fits (R2 > 0.7).
We also provide fits to galaxies that are traditionally considered hard to fit with dark matter
maximum-disk models. Such goods fit for CEG are in contrast to EG, which was found to be
a bad fit to the rotation curves by the SPARC team.

However, scatter plots show a clear correlation between the MOND and CEG fit parameters,
making it hard to distinguish between the two experimentally on the basis of rotation curves
or other Newtonian features. Another experimentally verifiable result is the proposed lensing
formalism, which could be tested by comparing rotation curves of galaxies to strong lensing.
We recommend further research into covariant features of both theories in order to arrive at
experimentally verifiable differences. Other interesting topics of follow-up research include
using the numerical method to solve for the evolution of the galactic disk or in cases that
the magnetic term in CEG or MOND becomes non-negligible. The connection to both dark
matter and dark energy also make CEG an interesting theory to further research in cosmology.
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Chapter 1

Introduction

top left

1.1 Introduction

In 1933, Swiss astronomer Fritz Zwicky noticed that the visible mass in galaxies was in-
sufficient to explain the dynamics of these galaxies (the observed velocities). He calculated
that there had to be at least 400 times the amount of matter present in those galaxies as was
predicted from their luminosity. He called this unseen matter ’dunkle materie’, which we now
refer to as dark matter. Next to explaining the dynamics of galaxies, dark matter has also
proven rather successful in explaining a wide-range of other phenomena from the evolution
of the universe to the gravitational lensing of galaxies. Nowadays, dark matter has become
the dominant theory for explaining the dynamics of the universe.

Instead of proposing extra matter (dark matter), one could of course also alter the gravitational
force matter exerts. Such a gravitational theory, in which the gravitational force is altered
to fit the measured dynamics of galaxies, is called a modified gravity theory. In this report,
we will consider such an alternative to dark matter called covariant emergent gravity (CEG).
This theory is a coordinate-free formulation by Sabine Hossenfelder of Erik Verlinde’s theory
of emergent gravity (EG). Another modified gravity theory that we will focus on is MOND
(modified Newtonian dynamics). This theory makes very similar predictions to CEG and we
will consider both the similarities and differences of MOND and CEG.

The main goal of this report is to identify experimentally verifiable results for CEG through
a theoretical analysis of the covariant field equations. The initial goal of this report was
to understand both EG and CEG. We have expanded upon this goal both theoretically and
numerically. Our theoretical expansion consists of a gravitational lensing formalism for CEG
and an attempt at a cosmological model. Our numerical expansion consists of an algorithm to
solve for CEG in cylindrical symmetric densities. We have also tested the prediction of CEG
and MOND by fitting fitted CEG and MOND to 131 galaxies using the SPARC database.
This was done by employing a Markov Chain Monte Carlo (MCMC) fitting algorithm using
three fit parameters.

1.2 Structure of the report

This report can be divided in three parts: introductory chapters, theoretical chapters and
numerical chapters. The introductory chapters have been included to introduce readers who
are unfamiliar with topics such as galaxies and general relativity to these concepts in a
concise and self-contained manner. These chapters are Astrophysics and galaxies and From
Newtonian to Einsteinian gravity.
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The theoretical chapters introduce EG and CEG alongside the field equations of CEG and
its Newtonian approximation that we will use in the numerical sections. These chapters also
include our theoretical contributions, which are a lensing equation for CEG valid for the
current assumptions in CEG and an attempt at a cosmological model for a vacuum/matter-
dominated universe. These chapters include Emergent Gravity, Covariant Emergent Gravity
and Theoretical applications of CEG.

The final part of this report consists of the numerical chapters. In these chapters we provide
the numerical algorithm we have developed for solving for CEG and MOND for cylindrical
symmetric matter densities. We test this method by applying it to both a spherical symmetric
density and SPARC galaxy NGC6503 using assumed density profiles. In order to also test
MOND and CEG, we have also fitted MOND and CEG velocity predictions in galaxies to the
observed velocities in these galaxies using the SPARC data set. This is done using a Markov
Chain Monte Carlo (MCMC) fitting algorithm using three fit parameters. The numerical
chapters include Fourier-Bessel method & results and Testing MOND and CEG to observed
rotation curves.

The report concludes with a chapter discussion & conclusions which summarizes the entire
report and lists our theoretical and numerical results and discussion on these results. We
purposefully chose to separate the theoretical and numerical part of this report to accommodate
readers unfamiliar with general relativity. The numerical sections are written in such a way
to be readable by an audience familiar with Newtonian gravity.

1.3 Reading routes

In order to accommodate readers of different disciplines and level of expertise, we have
included different routes to navigate this report based on the time available, the level of
expertise and the primary interest of the reader. These routes also attempt to make the size of
this report manageable. There are three distinct routes, the bachelor route, the astrophysical
route and the theoretical route. Each route has a distinct symbol. The bachelor route is
indicate by a green circle , the astrophysical route by a blue square and the theoretical
route by a red triangle . At the beginning of each chapter, we indicate whether the chapter
is included in the route by a coloured symbol (included) or grayed-out symbol (not
included). Each route is self-contained. Additionally the routes are marked by thumb marks,
such as the magenta ’1st’ thumb mark on the top of this page. The white text indicates the
chapter number, whilst a blue thumb marker indicates it as part of the astrophysical route, a
red marker as part of the theoretical route and a magenta marker (red + blue) as part of both
routes. This is done in order to make the various routes easier to identify whilst reading.

1.3.1 Bachelor route

The bachelor route consists of the introductory chapters, theoretical chapters and the
numerical chapters. This is a time consuming route and only applicable to bachelor students
that are also prepared to learn the basics of general relativity and field theory. A less time
consuming route at third year bachelor level is the astrophysical route, which does not require
the reader to learn general relativity or know astrophysics.

1.3.2 Astrophysical route

The astrophysical route focuses on the dynamics of galaxies and the predictions MOND and
CEG make for these dynamics. This route includes the introductory chapter on astrophysics
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and galaxies and the numerical chapters and is meant to be at third year bachelor level. The
reader is not required to know astrophysics nor general relativity. The route is designed for
readers that are interested in the testable predictionsMONDandCEGmakewithout going over
the relativistic aspects of both theories. Readers already familiar with the dynamics of galaxies
and the SPARC data set can skip directly to the numerical chapters. A reader interested in
cosmology can also read the relevant section in the chapter on theoretical applications of
CEG. This route covers the chapters: Astrophysics and galaxies, Fourier-Bessel methods &
results, Testing MOND and CEG to observed rotation curves and Discussion & Conclusion.

1.3.3 Theoretical route

The theoretical route consists of the introductory chapters and the theoretical chapters.
This route is intended for readers that are primarily interested in general relativity, the
covariant version CEG of emergent gravity and theoretical applications. Readers already
familiar with general relativity can skip the chapter on from Newtonian to Einsteinian gravity.
This route covers the chapters Astrophysics and galaxies, From Newtonian to Einsteinian
gravity, Emergent Gravity, Covariant Emergent Gravity, Theoretical applications CEG and
Discussion & Conclusion.

Amends to all routes can of course be made based on the preference of the reader. Whichever
route the reader embarks on, have fun!
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Chapter 2

Astrophysics and galaxies

top left

“Far out in the uncharted backwaters of the unfashionable end of the western spiral arm of the
Galaxy lies a small unregarded yellow sun. Orbiting this at a distance of roughly ninety-two
million miles is an utterly insignificant little blue green planet whose ape-descended life forms
are so amazingly primitive that they still think digital watches are a pretty neat idea.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In order to make the reader familiar with the various physical objects we will study, we
have included this chapter on astrophysics of galaxies. This chapter introduces the following
relevant subjects:

1. Galaxies, their compositions and defining parameters

2. Rotation Curves and the SPARC data

We introduce these subjects here to make the subsequent chapters more accessible to the
reader. The section on galaxies also introduces the data set and the various parameters we
will use throughout the report. Thus readers already familiar with the mentioned subjects can
skip this chapter except for the section on the SPARC database.

2.1 Rotation curves

The main subject of this report is the rotational velocity of galaxies. In fact, the greater part
of this report concentrates on just one question: How fast do galaxies rotate? For planets
like the earth orbiting a star like the sun in a circular orbit such a question is rather trivial.
Calculate the gravitational force the sun exerts on the earth using Newton’s laws and you will
find that the earth should rotate at nearly 30 kilometers per second.

What makes the fact that we are dealing with a galaxy so hard to justify the length of
this report? A galaxy is not fundamentally different from the solar system. We calculate
the gravitational force in the galaxy based on the matter we observe and from that we are
perfectly able to calculate how hard it should rotate. Yes, it is admittedly harder because a
galaxy is made up of various components from which we only receive a shimmer of light here
on earth. But still, it is doable and will be done in this report. No, it is not the computational
complexity that hinders us. It is the simple fact that we would get the wrong answer for the
velocities inside the galaxies. Even invoking the advanced machinery of general relativity
would not get us much further.

In figure 2.1, we have plotted the baryonic velocity versus the observed velocity for the spiral
galaxy aptly named NGC6503. For now, baryonic velocity simply means the velocity as you
would calculate with (Newtonian) physics based on the matter you directly observe in the
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galaxy. On the horizontal axis is the radius with respect to the center of the galaxy and on
the vertical axis the velocity measured at that radius. A plot of the rotation speed of a galaxy
versus radial distance is called a rotation curve. This is a word to remember, as we will keep
returning to these plots throughout the report. Moreover, spiral galaxy NGC6503 is also on
the cover of this report, as it will serve as a testing ground for all our ideas and theories.

It is clear that we are not even off by a simple scaling factor, the two curves look differently.
We will fix this problem in due time, but let it be clear that we need a whole new theory
beyond Newton to explain these results. Or not? An observant reader might note that we
calculated the velocity based on the visible matter. What if there is matter that we cannot see?

Figure 2.1: The observed velocity (blue) and the Newtonian/baryonic velocity (red) versus radial distance for NGC6503 from the
SPARC [15] database. The baryonic velocity was plotted for a mass-to-light ratio of 0.5 M�

L� .

In 1933, Swiss astronomer Fritz Zwicky noticed that the visible mass in galaxies was insuffi-
cient to explain the dynamics of these galaxies (the observed velocities). He calculated that
there had to be at least 400 times the amount of matter present as was predicted from their
luminosity. He called this unseen matter ’dunkle materie’, which we know refer to as dark
matter.

Subsequently, Vera Rubin, an American astronomer, found that stars at the edges of galaxies
had a much larger speeds than predicted by either Einstein or Newton. This is called the
galaxy rotation problem and one way to reconcile these results with the theory is to propose
the existence of extra mass (dark matter) in the galaxy. She calculated that there had to be at
least 5 to 10 times as much dark matter as ordinary matter. Images of gravitational lensing
around these galaxies also seemed to require this much dark matter.

Furthermore, she recorded the rotation curves of galaxies: the rotation speeds of its stars and
the gas. She found that the rotation curves tended to flatten at large radial distances as shown
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in figure 2.1. This implies that after a certain distance from the galaxies center, stars have a
uniform rotational velocity, independent of the distance from the center.

2.2 Observed velocities and dark matter

It appears that in order to save Newtonian/Einsteinian gravity, we will have to introduce a form
of invisible matter aptly named dark matter. There are several reasons why one would want
to save at least general relativity. For one, the small number of assumptions that are needed to
arrive at the theory of general relativity make it a compelling and powerful theory. Secondly,
general relativity has made a number of successful predictions beyond Newtonian physics.
These were the bending of light in gravitational fields, which was measured by Sir Arthur
Eddington, the redshift of light, which was confirmed by the Pound–Rebka experiment and the
deviation of Mercury’s orbit from a perfect stationary ellipse by 43 arc-seconds per century,
which was a known effect since the 18th century. Its prediction of black holes, which were
finally captured on photo in 2019, were disputed until the 70’s. Other phenomena, such as
the predicted expansion of the universe have made it an exciting field to study and experiment
in. Recently, Kip Thorne and his team at LIGO have confirmed another prediction made by
general relativity: gravitational waves. Nonetheless, we have seen that the recent observations
of galaxies and also the Cosmic Microwave Background suggest that modifications to either
the theory or our understanding of the universe have to be made.

We appear to have no choice but to introduce extra mass in order tomake our rotation curves fit
the observed rotation curves. However, as we will see later on, on cosmological scales, there
is also a need for an additional force, called dark energy to explain the measured acceleration
of the expansion of the universe. Dark energy is different from dark matter in that it is not
just present in galaxies, but fills the entirety of space as a vacuum energy. We thus see that in
order to save Einsteinian gravity, we need to introduce both dark matter and dark energy.

The current measurements indicate that 68% of our universe consists of dark energy, 27% of
dark matter and 5% of ordinary matter, called baryonic matter. We would like to add that dark
energy has much stronger theoretical grounds than dark matter. Introducing dark energy to
general relativity is mathematically similar to adding a constant to the energy in Newtonian
physics. The new energy remains conserved, but as adding energy in general relativity is
the same as adding mass (E = mc2), introducing dark energy does impact the curvature of
space-time. In fact, Einstein introduced it in order to try to make the universe static/non-
changing. When observations later indicated that the universe was in fact expanding, the term
was reintroduced to explain the acceleration of the expansion.

2.3 Modified gravity

In order to save Einsteinian gravity, we thus need to introduce both dark matter and dark
energy. But there is also another option. We can also modify the laws of gravity. We know
that gravity works extremely well for problems concerning our solar system, but it is also clear
from figure 2.1 that it does not work at all on much larger scales, such as our own Milky Way
galaxy. A theory in which we alter the laws of gravity is called a modified gravity theory. We
will concern us with two of them: covariant emergent gravity (CEG) and modified Newtonian
gravity (MOND).

Modified gravity theories have existed for a long time. It is clear from our rotation curve
(2.1), that the first few data points could be made to fit the observed velocity by scaling them
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slightly. However, in order to explain the velocity after the initial peak in the velocity, we
need to modify our theory. This is because the peak in the baryonic velocity is not present
in the observed velocity. Such a modification would need to explain why the rotation curves
flatten. Early attempts at fixing the rotation curve problem focused mainly on altering gravity
after a certain radius in order to explain the behaviour of the rotation curves.

However, as the location of the baryonic peak depends on the size of the galaxy (mainly
the distribution of the stars), such attempts proved futile. More successful was MOND as
invented byMordehai Milgrom [2]. Instead of considering a certain important radius, his idea
was to change gravity after a certain threshold acceleration was reached. Milgrom noticed
that the the rotational curves flattened when the stars experience an acceleration of less than
am ≈ 1.2 · 10−10 m

s2 . In fact, the peak in figure 2.1 occurs at an acceleration of 1.3am, with
the next data point feeling an acceleration of 0.89am.

His modification of Newton’s theory was that when the acceleration a is larger than am that the
gravitational force behaved similar to the Newtonian gravitational force: g ∼ 1

r2 . However,
when a ≤ am he proposed a modification to gravity. So what forces yield flat velocities?
Well the centripetal law states that in nearly circular orbits, the force on a star of mass m with
velocity v in a circular orbit of radius r is given by:

Fcent = m
v2

r
(2.1)

For stars in the flat part of the rotation curve (a ≤ am), we see that when we have a force that
also goes as 1

r the radius in the formulae of the centripetal force cancel and we are left with a
constant velocity. It is also clear that a force that goes as 1

r2 will always result in a declining
velocity profile. The only way to overcome this problem without modifying gravity is to have
a lot of mass at larger radii such that the gravitational force does not decrease: dark matter.

Instead of adding more matter at larger radii (dark matter), Milgrom altered the force to be
of the form 1

r when the acceleration drops below am. This would make the velocity of stars
that feel an acceleration less than am flat. Instead of using a discrete transition a ≥ am and
a ≤ am, one usually uses a interpolation function µ(x) with x = a

a0
. The acceleration a on a

mass m in MOND is then given by the Newtonian force FN via the relation:

FN = mµ
(

a
a0

)
a (2.2)

When x � 1, we want Newtonian behaviour, thus µ(x) ≈ 1. When x � 1, we want to alter
the force to be of the form 1

r . As FN ∼
1
r , this requires µ(x) ≈ x, such that a2 ∼ FN . The

standard choice for the interpolating function is the standard interpolating function:

µ(x) =
x

√
1 + x2

(2.3)

Using this interpolation function, the velocity of the flat part of the rotation curves can be
calculated in the DeepMOND regime a

a0
� 1. For a spherical mass distribution in the galaxy

of total mass M , we know that FN =
GM
r2 . Using equation 2.2, the centripetal law 2.1 and

our interpolation function, the flat velocity becomes:

vflat = (GMam)
1
4 (2.4)

In fact, it is known from observations that there exists a direct relation between the galaxies
total mass and the rotational velocity of its stars, which is known as the Tully-Fisher (v4 ∼ M)
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relation and conforms with experiments closely, such as a recent study of 175 galaxies by
Lelli et al [13].

The predictions of MOND are best summarized in the form of a gravitational potential as in
the Newtonian case. We will call the Newtonian gravitational potential φB from baryonic
matter. The baryonic potential satisfies Poisson’s equation:

∇2φB = 4πGρ (2.5)

In MOND there is also just one potential, which we will call φm. This potential satisfies the
equation:

∇ ·

(
µ

(
|∇φm |

am

)
∇φm

)
= 4πGρ (2.6)

For accelerations much larger than am, µ(x) → 1, such that φm ≈ φB to recover Newtonian
behaviour at high accelerations. At accelerations much smaller than am, the function is
chosen such that µ(x) → x, to arrive at the flat velocity profile. In figure 2.2, we have again
plotted the observed velocity, this time against the velocity as predicted by MOND using the
standard interpolation function. We see that MOND provides a much better description of
the rotational velocities of galaxies than our earlier Newtonian attempts.

Figure 2.2: The observed velocity (blue) and the MOND velocity (magenta) versus the radial distance for NGC6503 from the
SPARC [15] database. The disk velocity was plotted for a mass-to-light ratio of 0.5 M�

L� . The MOND velocity was calculated as
indicated in the chapter on Testing MOND and CEG to observed rotation curves.

2.4 The structure of galaxies

It is now time to explore the stars and beyond. A picture of our favorite galaxy NGC6503 is
included in figure 2.3. Of course, this is not what we see through our telescopes, but rather
the result of many fine-tunings and coloring schemes. A galaxy, such as our own Milky
Way, consists of two main components: stars and gasses. Both components produce light at
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Figure 2.3: Hubble Space Telescope image of galaxy NGC6503. Copyright © ESA/Hubble.

(a) photo-
metric profile
NGC6503 at 24
µm from the
Spitzer archive

[30].

(b) The Hα pho-
tometric profiles
of NGC6503
from the Spitzer
archive [30].

Figure 2.4: Images of NGC6503 from the Spitzer mission [30].

different wavelengths. In figure 2.4a we have shown the photometric profile of NGC6503 at
24 µm as obtained by the Spitzer telescope missions [30]. These infra-red wavelengths are
mainly produced by the stars of the galaxy. The right image (2.4b) shows the Hα hydrogen
lines, one of the major gasses of the galaxy. The left profile thus shows the distributions of
stars in NGC6503, whilst the right profile shows the distribution of gas.

Galaxies are characterized by their Hubble type. This scheme divides galaxies into three
major classes. Elliptical galaxies, lenticular galaxies and spiral galaxies. Both lenticular and
spiral galaxies are disk galaxies, but lenticular galaxies are disk galaxies that do not appear
to have spiral arms. Most of the galaxies we are interested in will be disk spiral galaxies. For
instance, NGC6503 has Hubble type Scd (or 7) indicating that it is a spiral galaxy (S) with
diffuse arms (d). Some galaxies also contain a third component: bright spherical centers,
called bulges. However, we will ignore these throughout the report.

Two other important parameters of a galaxy include the galactic distance D from us to the
galaxy and the inclination i of the normal of the disk with respect to us. The distance of
the galaxy is usually based on the intensity of the light we receive on earth from objects



2nd

2.5. Galactic velocities 11

such as supernovae near the galaxy. As we know very well what the initial intensity of such
supernovae is, we can estimate the distance the light traveled from the received intensity.

The disk inclination i is based on numerically fitting an inclined disk on the observed photo-
metric profiles. As the galaxy is a flat circular disk, it is always observed under an angle such
that its circular shape appears as an ellipse to us. We can thus fit such an elliptical shape to a
galaxy to recover its inclination i with respect to us.

2.5 Galactic velocities

Both the stellar disk and the gas add to the total gravitational pull of the galaxy on its disk. Let
us indicate the baryonic gravitational pull of the stellar disk at a radius R from the galaxies
center by gdisk and of the gas ggas. The total baryonic gravitational pull is then gtot = gdisk+ggas.
According to the centripetal law, this yields a total baryonic velocity of Vbar:

V2
bar = R · gtot = R · gdisk + R · ggas (2.7)

Thus, when we keep the velocities squared, we can linearly add the contributions of the disk
and the gas. We therefore decompose the velocity into two components, namely:

V2
disk
R
= gdisk ,

Vgas

R
|Vgas | = ggas (2.8)

We thus decompose the velocity into a velocityVdisk as caused by the stellar disk and a velocity
Vgas as caused by the gas. The absolute value in Vgas is needed to account for the fact that
the gas is sometimes more widespread than the disk, making it possible that the disk and gas
contributions are in different directions.

The database we will use later on does not list the acceleration of the individual components.
It lists the velocities such as we have defined them above together with the radius R. Whilst
Vdisk will always be positive, Vgas might be negative, indicating that the gas pulls outward at
that radius, instead of towards the galactic center. We will discuss the data set next.

2.6 The SPARC database

We will use the SPARC database [15]: a set of observations of 175 nearby galaxies. The
SPARC data set encompass a large variety of galaxies with both high surface brightness
(HSB) spirals and low surface brightness disks (LSB). The LSB galaxies often show slowly
rising rotation curves, whilst the HSB galaxies have fast rising rotations curves that flatten at
small radii. The SPARC sample of 175 nearby galaxies consists of both surface photometric
profiles at 3.6 µm (the stars) and high quality HI/Hα (the gas) rotation curves. The 3.6 µm
profile is similar to figure 2.4a, whilst the HI/Hα are similar to figure 2.4b.

Don’t worry. We don’t actually have to calculate Vdisk and Vgas based on the photometric
profiles. This was already done by the SPARC team. They also calculated the galactic
distance D and inclination of the disk i and provided errors for these parameters. Since HI

gas is dynamically cold (low thermal motion), it directly traces the gravitational potential.
Since we know the emission lines of Hα exactly, we can calculate the observed velocities in
the galaxy by studying the Doppler shifts of these lines. Thus the data also contains Vobs, the
observed velocity in the galaxy. The HI gas is also diffuse and extends further than the stellar
mass as can also be seen in our favorite galaxy NGC6503 from figure 2.4a and 2.4b. This
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means that the rotation curves of the gas probe the gravitational potential out to large radii,
making it an excellent data set to test the predictions of MOND and CEG.

We will make a couple of assumptions about the SPARC galaxies. For instance, we ignore
pressures in the gas as they only becomes significant in very low mass galaxies with velocities
of ≈ 20 km s−1[14]. We also ignore the hot gas component, as it only has a significant impact
for radii larger than 1000 kpc [4]. Thirdly, we also neglect the contribution of the molecular
gas as this does not provides a major contribution to the total baryonic mass of nearby galaxies
[21].

A quick summary of this database is thus that we have both the observed velocities Vobs and
the velocities Vgas and Vdisk that the gas and disk respectively contribute based on Newtonian
gravity. For most of the report Vdisk and Vgas will be sufficient in order to test the predictions
of MOND and CEG. However, there will be times in which we also need to know the matter
density profiles of the stellar disk and gas components. These can be extracted from the
photometric profiles such as figure 2.4a and 2.4b. From these photometric profiles one can
estimate the surface brightness at each radius R. A profile with the surface brightness at
each radius R is called a luminosity profile. We will use these profiles to solve for the matter
densities ρ of the stellar disk. This will be necessary to solve differential equations such as
2.6 in the remainder of the report. We will now discuss how one would estimate the density
profiles from the luminosity profiles.

2.6.1 Gas profile

The decomposition of galaxies into mass profiles for the various components is not an easy
task. We will start with the diffuse cold gas. At the time of writing this report, no luminosity
profiles for the gas components were available in the SPARC data set. This is becauseVgas was
easier to collect/extract from the literature by the SPARC team than the original HI surface
photometric profiles.

This implies that we need to estimate the gas profile from the available data. For the gas
components, the available data in the SPARC database is the contribution of the gas to
the rotation curve called Vgas. But we also have access to defining parameters of the gas
in the galaxy such as the total measured gas mass in the galaxy MHI and the radius RHI

where the HI surface density reaches a value of 1 solar mass per pc2. The last radius is
simply a characteristic radius of the gas profile. Both these quantities were extracted from
the photometric profiles of the galaxies by the SPARC team. The gas mass can be exactly
calculated from the photometric profile, as the conversion from light to mass is exactly known
for gas from the spin-flip transition [15].

A Gaussian profile surface density for the HI gas components of late type spiral galaxies was
found to be a good fit by a recent paper by Thomas P. K. Martinsson [19], but the fit may
break down for low-mass dwarf galaxies. Such a fit is described by a surface density of the
form:

Σ(R) = Σmax e−
(R−Rmax)2

2σ2 (2.9)

They found that Rmax = 0.40RHI and σ = 0.36RHI . The prefactor Σmax will be fixed such
that the total gas mass is Mgas = 1.33MHI when we integrate over the entire galaxy. The
factor of 1.33 accounts for the Helium contribution to the total gas in the disk [15] that is not
visible in the photometric profiles.
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2.6.2 Stellar disk

The next component of a galaxy are the stars confined to the stellar disk. The stellar disk
follows a well established exponential density profile of the form Σ ∝ e−

R
Rd in which Rd is

the disk scale length. For the stellar disk, the 3.6 µm photometric profiles are available in
contrast to the gas. Thus for the gas, we need to estimate the density profile, but for the stars,
we can simply use the luminosity profiles.

A major assumption we now make is that we assume that the matter density at radius R is
proportional to the amount of light we observe at radius R. This is similar to assuming that
the entire stellar disk is made up of the same material. We can thus use the luminosity profiles
(the light surface density at each point) as calculated by SPARC and scale them appropriately
such that the total mass of the disk will be the total stellar mass.

2.6.3 Mass-to-light ratio

Thus we see that we need a scaling factor γdisk called the mass-to-light ratio to convert the
amount of light we observe from the stars in a galaxy into their mass. If L∗ is the total
luminosity in units of solar luminosity of the disk and M∗ the total mass in units of solar
mass, then we thus assume the relation M∗ = γdiskL∗. The value of γdisk can be estimated
from population synthesis models and is found to be γdisk = 0.5 M�

L� [20] in which M� is one
solar mass and L� one solar luminosity.

You might now wonder how we knew the velocity contribution of the disk Vdisk, when we
did not know the matter density, just the luminosity density. Well, take a second look at the
caption of figure 2.1 and figure 2.2. The baryonic velocity and disk velocity in the SPARC
data are in units of luminosity, thus based on the luminosity profiles, such that we can use our
own mass-to-light ratio if necessary. This implies that for the SPARC data, we have:

V2
bar = γdiskV2

disk + Vgas |Vgas | (2.10)

In fact, we plotted figure 2.1 for a mass-to-light ratio of γdisk = 0.5 M�
L� . Note that Vgas does

not need a conversion factor, as this factor is exactly known from spin-flip transitions, as said
before.

We would also like to add that estimates for γdisk do not necessarily work for MOND/CEG
models. Another reason to not use this γdisk = 0.5 M�

L� is because the values of γdisk as
calculated by Nathaniel Starkman [25] using a maximum-disk model (dark matter) for the
SPARC galaxies sometimes differ significantly from the population synthesis model. The
way we do calculate this mass-to-light ratio will be discussed later.

In order to also be able to describe the density profiles at radii further than measured by
SPARC, we also fit an exponential density distribution to the tail of the luminosity profile to
describe the density profile beyond measured radii. This does not affect our results as the
observed velocities were measured at the same radii as the luminosity profiles. However, this
allows us to determine the rotation curves further out.

In summary, throughout most of the report we will only use the contribution the disk provides
to the rotation curves called Vdisk and the contribution the cold gas provides called Vgas as in
equation 2.8. If we want to estimate the true contribution of the stars in the disk, we have
to provide a mass-to-light ratio γdisk. Sometimes, we will need to refer back to the actual
density profiles of the components of the galaxy. For the gas component, we use an assumed
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Gaussian density profile based on defining parameters from SPARC. For the stellar disk, we
use the luminosity profiles and a conversion ratio γdisk to convert these to matter profiles.

2.7 Dark matter in galaxies

If we were not to modify Newton’s law of gravity, we could also ask how much dark matter
there should be in our galaxyNGC6503. Such a procedure is similar to our previous procedure.
In such a procedure, one usually uses estimated density profiles for the different components
of the galaxies. The amount of dark matter is usually fitted such that the observed velocity
coincides with the calculated velocity from the baryonic profiles plus the dark matter density.

The dark matter density profile is usually taken to be a Navarro–Frenk–White profile of the
form:

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 (2.11)

The density ρ0 and the scale radius Rs are fitted as is the mass to light ratio for the disk γdisk.
Such a fitting procedure is called a maximum-disk model. Note that the dark matter profile
does not have a maximum at the center of the disk, but rather forms a sort of halo with radius
Rs.

We have now said all that we need to know about galaxies. It is clear from our discussion that
we need to alter Newtonian/Einsteinian gravity. Three possible candidates are dark matter,
MOND and the theory we will introduce next: (covariant) emergent gravity.

2.8 Covariant Emergent Gravity

2.8.1 Quantum gravity

Recently, physicists have been trying to reconcile general relativity with quantum mechanics.
Many physicist believe that quantum mechanics is the true representation of the world and
that general relativity thus has to be described in a quantum mechanical framework and be
’quantized’. The general rules for quantizing a theory have successfully quantized the theory
of electromagnetism and the strong and weak nuclear force, but have failed at quantizing
general relativity. It is thus believed that general relativity is more deeply connected with
quantum mechanics than is now known. One reason for this are the infamous black holes.
Black holes have been shown to carry a finite entropy by Jacob Bekenstein. This is odd for a
classic field theory. Classical theories often lead to an infinite amount of entropy, as is known
from the ultra-violet catastrophe. These infinities are resolved by quantizing phase-space,
like in the case of the ideal gas.

Recent progress by Susskind and other in the field shows that the finite entropy derived by
Jacob Bekenstein comes from the entanglement present between the inside of the black holes
and the outside of the black hole horizon. Thus it seems that black holes are the key to
combining concepts of gravity and quantum mechanics.

2.8.2 Covariant Emergent Gravity

Amodified theory of gravity that incorporates the ideas of entanglement in a black hole is the
theory of Erik Verlinde. He claims that the laws of gravitation can be derived from applying
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the same principles that Bekenstein applied to black holes to derive the entropy of the black
hole.

However, such a procedure could only recover the usual law of gravity. But we have seen that
these are simply not enough to explain the observations. Therefore, Erik Verlinde proposed
in 2016 that there is another source of entropy associated with the dark energy content of the
universe. This paper will explore the effects of the model of Verlinde on the rotation speeds
of stars in galaxies and the bending of light in these galaxies. However, we are not at that
point yet, as we still want to cover the basics of field theory and general relativity.
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Chapter 3

From Newtonian to Einsteinian
gravity

top left

“When I was in high school, my physics teacher—whose name was Mr. Bader—called me
down one day after physics class and said, "You look bored; I want to tell you something
interesting." Then he told me something which I found absolutely fascinating, and have, since
then, always found fascinating. . . . the principle of least action.”

Richard P. Feynman

This chapter is a concise introduction to general relativity (GR) and classic field theory for
readers that are already familiar with Newtonian gravity and Lagrangian mechanics. If you
are already familiar with general relativity, you may skip this chapter.

The aim of this chapter is to introduce all the concepts of general relativity and classic field
theory that are used in the subsequent chapters on emergent gravity (EG) and covariant emer-
gent gravity (CEG). We introduce the concepts: Lagrangians, metrics, geodesics, covariant
derivatives and the Einstein equations. The last section is also an introduction to the physics
of the expanding universe.

3.1 Classical Gravity

Our story starts where most modern physical theories begin: with a loud bang. Not the
sound of an universe forming, but of an apple falling on Newton’s head, and the subsequent
explosion of scientific discoveries that followed. The age of a non-violent revolution had
began, when Newton formulated his laws for fruits and non-fruits alike that would determine
physics forever.

According to Newton’s theory of Gravity, a particle with mass m obtains an acceleration a in
a gravitational field φB as:

F = ma = −m∇φB (3.1)

However, these vector equations can prove to be rather pesky to solve. This is why physicist
have invented conservation laws, such as the conservation of energy, momentum and angular
momentum. In fact, in his book Mechaniques Analytiqués, Joseph Lagrange found that
these vector equations could equivalently be derived from a single scalar formalism, called
Lagrangian mechanics. The Lagrangian L and action S of a particle in a gravitational field is:

L =
1
2
v2 − φB with S =

∫ T

0
L dt (3.2)



3rd

18 Chapter 3. From Newtonian to Einsteinian gravity

Note that I have conveniently left out the mass m of the body. The crux here is that a particle’s
acceleration in a gravitational field does not depend on its mass m. According to Einstein, this
is because the gravitational force is not a force between two particles as Newton formulated
it, it is a property of space-time.

Joseph Lagrange showed that solving Newton’s equations was similar to choosing the path
through space between two fixed endpoints that minimized/maximized the action S. This is
equivalent to finding a path x(t) that satisfies the Euler-Lagrange equations:

d
dt
∂L
∂v
= ∇L (3.3)

Plugging in our Lagrangian 3.2 indeed yields Newton’s equation 3.1. The Euler-Lagrange
equations also be derived from Hamilton’s principle, stating that the particles path x(t) that
maximizes/minimizes the action S, is the physical taken path. This is equivalent to making
the variation in the action δS vanish up to first order in δx(t).

You might now wonder: Did you not just write Newton’s equations differently? and you
would be correct. No information is contained in Lagrange formalism for gravity that cannot
be obtained from Newton’s formulation. However, it is much easier to recover conserved
quantities fromLagrangian’s usingNoether’s theorem than it is to recover them fromNewton’s
equations. In Newton’s equations conservation of angular momentum is something you
stumble upon, whilst in Lagrange’s theorem it is a matter of choosing the right coordinates.
Secondly, Lagrangians will also prove to be useful not only in solving for the motion of
particles, but also for solving for the dynamics of a field φB as we will see next.

3.2 Particles and Field, What’s the difference?

A valid concern you might have at this point is how do we know what φB is in Lagrange’s
formalism. Well, let’s touch upon that next. In order to prevent using the same example over
and over again, let us use the Lagrangian from the prototypical field of electromagnetism
instead.

For a system of particles xi with charge qi and velocity vi, the Lagrangian in a EM field given
by a magnetic vector potential A and electric scalar potential φ is:

L =
∑
i

1
2

mv2
i + qiA · vi − qiφ (3.4)

From this Lagrangian it is easy to make the translation to the Lagrangian of a continuous
body. For a continuous body with charge density ρ and a current J, the Lagrangian becomes:

L =
∭

{A · J − φρc } dV (3.5)

How can we distill from this Lagrangian how the fields A and φ behave? This is in fact
quite simple and the keyword here is to insert the word field everywhere in our single particle
formalism.

Like in the single particle case, the ideas are similar. In the single particle case, one can derive
the Euler-Lagrange equations from varying the particles path x(t) → x(t) + δx. Similarly,
we can derive the Euler-Lagrange field equations by varying the field φ(x, t) → φ(x, t) + δφ.
Note that in the single particle case, the particle position only depends on the time t. The field
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however, is a three dimensional quantity that also depends on the space point x you evaluate
the field at.

Now, we assume our fields do not depend on time t. The translation from particle to field
equations then become:

x→ φ (3.6)
v→ ∇φ (3.7)
d
dt
→ ∇ (3.8)

The Euler-Lagrange equations for a field φ, then become:

d
dt
∂L
∂v
= ∇L → ∇ ·

∂L
∂∇φ

=
∂L
∂φ

(3.9)

As in the single particle case, we could have derived these field equations from varying the
field and searching for a maximum/minimum of the corresponding action, but this is not a
report on deriving the Lagrange equations. For a more in-depth treatment of Lagrangians and
field, see Goldstein’s classic [7].

Applying our Euler-Lagrange field equations 3.9 to the electromagnetic Lagrangian, the
equations for the electric scalar potential φ become:

0 = ρc (3.10)

This not quite yet the first of Maxwell’s equations, but we are close nonetheless. What we
need is a source term for the field φ, such that the left hand side of the Euler-Lagrange
field equations 3.9 becomes non-zero. From Maxwell’s equations, we know that the correct
alteration is:

L =
∭ {

A · J − φρc +
1
2
ε0∇φ · ∇φ

}
dV (3.11)

The additional term 1
2ε0∇φ · ∇φ is called the source term of the field φ. Note that the

source term is similar to the kinetic energy term in our single particle Lagrangian. Using the
Euler-Lagrange field equations 3.9 on this new Lagrange would yield the correct result for
the scalar potential φ. The term φρc is called the interaction term between the field and the
particles. Can you see how to make the action S correct for the remaining vector potential
A by including a similar source term such that we recover the other Maxwell equations for a
static current and charge density?

3.3 Particles and Fields: The field equations

We will now combine our Lagrangian formalism for particles with our formalism for fields.
In both instances, one want to maximize/minimize an action S. This is done by varying
either the particles position x(t) or the fields value φ. As we assume that these variations are
independent, our total action will simply be the sum of the single particle formalism and the
field formalism. If one wants to obtain the equation of motion for the single particle, this total
action is varied with respect to the particles position x(t). For the field one varies the total
action with respect to the field.
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The total action S for the electromagnetic field (equation 3.11) plus the action of a single
particle becomes:

S =
⨌ {

1
2
ε0∇φ · ∇φ − φρc

}
dVdt +

∫ {
1
2

mv2 − qφ
}

dt (3.12)

Here we set the magnetic vector potential A = 0 for educational purposes. q is the charge
of the single particle. Before we move on to derive the field equations for the field φ and
particles position x(t), let us first make comparisons between the field and particle parts of
the action. We see that the kinetic part of the field Lagrangian 1

2ε0∇φ · ∇φ is very similar to
the kinetic part of the particle Lagrangian 1

2 mv2 with the substitutions m→ ε0 and v→ ∇φ.
The term 1

2ε0∇φ · ∇φ is often called the kinetic or source part of the Lagrangian.

Another prominent term in the Lagrangian is the interaction term φρc, which is similar to
the interaction term for one particle (qφ). The interaction term determines the interaction
between the field and the particles, whilst the source term determines how the field responds
to these interactions. Viewed in this way, Mawell’s equation ε0∇

2φ = ρc are very similar to
Newton’s equations in one-dimension m d2x

dt2 = F with m→ ε0, d2x(t)
dt2 → ∇

2φ and F → ρc.

From the action 3.12 we can determine both the equations of motion for a single particle in
a field φ and the value of the electric field for a charge density of ρc. In fact, we already
know how to do this. Apply the Euler-Lagrange equations 3.3 to all the terms involving to the
particle part yields the single particles motion and applying to Euler-Lagrange field equations
(3.9) yields the fields dependence on the charge ρc.

This procedure is however not satisfactory for two reasons. Firstly, if we were to give the
reader a general action, how would he be able to tell which part belongs to the single particle’s
motion and which part to the field’s. Secondly, how would one approach an action involving
higher derivatives in φ, which our Euler Lagrange field equations 3.9 do not account for.

A more general approach is already known from classical mechanics. Instead of applying it
to the single particle case, we will apply the procedure to the field φ. For our field φ to be
a maximum/minimum of the action S, it has to be a stationary point, thus δS = 0 up to first
order in δφ. Thus let us calculate δS when we vary the field from φ→ φ + δφ:

δS =
⨌

{−δφρc + ε0∇δφ · ∇φ} dVdt −
∫

qδφ dt + O(δφ2) (3.13)

In which we make use of the variational rules:

δ (AB) = BδA + AδB + O(δAB2) and δ∇A = ∇δA (3.14)

We will make use of integration by parts to get rid of the term ∇φ as is done in classical
mechanics. As in classical mechanics, the variation δφ on the boundary vanishes or put more
simply:∭

∇δφ · ∇φ dV =
∬
∂Ω
δφ∇φ · dS −

∭
δφ · ∇2φ dV = 0 −

∭
δφ · ∇2φ dV (3.15)

In which δΩ indicates the boundary of our space. We thus see that the variation in our action
is simply:

δS =
⨌ [

− (ρc + qδ(r − r′)) + ε0∇
2φ

]
δφ dVdt + O(δφ2) (3.16)
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Here δ(r − r′) is a Dirac delta function at the particles current position for the sake of
completeness. We thus see that if we want the action δS to be stationary (first order in δφ),
we need that:

ε0∇
2φ = (ρc + qδ(r − r′)) (3.17)

Thus we recover the same equation as we recovered from the field Euler-Lagrange equations
3.9 applied to the electromagnetic field Lagrangian 3.11. The approach we followed is of
course more general and will be usedmany times throughout this report. As a way of checking
your understanding, see if you can derive the Euler-Lagrange field equations from the general
action:

S =
⨌

L(φ,∇φ) dVdt (3.18)

3.4 Curved space-time

Now that we have all the required equations from classical field theory, let’s translate them
into general relativity and curved space-times. It is actually not that hard to figure out how
particles will move in curved space-time as we will see next. The real problem is finding out
how particles curve space-time, which took Einstein more than 5 years.

Like in classical physics, at every point in space-time, we can define a vector space. This
vector space has as origin the specific point in question and vectors pointing from this
specific point. However, this time the point in question is indicated with four coordinates
(t, x, y, z) in which the time coordinate is called the zeroth coordinate. The vectors therefore
necessarily also carry four components. The phrase this space is curved, simply means that
the distances between two points in this vector space are no longer given by the Euclidean
distance ∆x2 + ∆y2 + ∆z2. This is no problem however, as we know we can simply calculate
distances in vector spaces by using the inner product or metric on the vector space.

Let us denote the inner product, henceforth called metric, on our vector space by g such
that the length of a four-dimensional vector v is given by g(v, v). A common example
of an inner product is the inner product on Minkowski space in special relativity: ds2 =

−∆t2 + ∆x2 + ∆y2 + ∆z2. For a four-vector with components v =
(
v0, v1, v2, v3) this implies

g(v, v) ==
(
v0)2
+

(
v1)2
+

(
v2)2
+

(
v3)2. This metric deserves a special name and is called

the Minkowskian metric ηµν.

Before we start confusion four-vector with three-dimensional vectors, let us introduce some
shorthand notation. Let the variable µ range from 0, 1, 2, 3 such that the µth-component of a
vector is given by vµ. We will no longer refer to vectors by v but rather by their components
vµ for simplicity.

Let us also choose basis vectors eµ on our vector space. Note that we write basis vectors
with downstairs indices and components of vectors with upstairs indices. This has a true
mathematical meaning, but for our purposes, it is simply such that we can use Einstein
notation. In Einstein notation, indices that appear both upstairs and downstairs are summed
over, such that:

v =
∑
µ

vµeµ → vµeµ (3.19)

This will save us a lot of writing pesky sums.
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The inner product on our space is then completely determined by the way it acts on our basis
vectors eµ and eν. By linearity of the inner product, we find that:

v2 = g(v, v) = g(vµeµ, vνeν) = vµvνg(eµ, eν) := vµvνgµν (3.20)

In which we have defined the shorthand notation g(eµ, eν) = gµν. An important point to keep
in mind is that the inner product will generally depend on the position in space-time.

Thus far, all we have done is applied the formalism of vector spaces equipped with inner
products to our space-time and introduced some short-hand notation. So where is the physics?
Well, remember Einstein’s idea. According to Einstein, particles do not move due to forces
but due to the curvature of space-time. His formalism is in principle much simpler than
Newtons. We have no need for the a force, as there are no forces. It is all in the inner product
gµν. The Lagrangian of single particle thus simply becomes:

L = v2 = vµvνgµν (3.21)

Thus we have replaced the potential φ (the force) by the dependence of gµν of the position of
the particle in space-time.

This is actually all there is to it. In terms of physics we are done now. There is however still
a mathematical trick we can pull in order to make our lives simpler. Let our particle follow
a path xµ(τ) in space-time parametrized by some parameter τ. From Analysis, we know that
there is one special parameter τ, namely the arc length parametrization such that v2 = 1. Let
us therefore choose this parameter throughout this report.

Applying the Euler-Lagrange equations to the Lagrangian 3.21 to the particles position xµ(τ)
and velocity vµ(τ) yields the equation of motion:

Üxµgµα − Ûxµ Ûxλ∂λgµα = −
1
2
(− Ûxµ Ûxν∂αgµν) (3.22)

In which the dots indicate derivatives with respect to τ and Einstein summation is assumed.
We also introduce the shorthand notation ∂

∂xµ = ∂µ.

These equations completely determine the motion of a particle in GR. Nonetheless, they are
not very pretty. Let us change this by introducing the inverse metric gµν. This is simply the
inverse of the matrix with components gµν. Thus gµαgαν = δµν in which δµν is the Kronecker
delta.

Multiplying equation 3.22 by the inverse metric gαβ , using properties of the inverse metric
and rearranging terms, we arrive at the geodesic equations or acceleration equation of the
particle:

Üxµ = − Ûxα ÛxβΓµαβ (3.23)

In which we defined Christoffel symbols to be:

Γ
µ
αβ =

1
2
gµδ

(
∂αgδβ + ∂βgδβ − ∂δgαβ

)
(3.24)

3.5 Covariant Derivatives

We thus see from equation 3.23 that the equations in general relativity are very similar to
the Newtonian equations. The left hand side contains the acceleration Üxµ and the right hand
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side contains the "force" Ûxα ÛxβΓµαβ . Note that the equations do not depend on the mass of the
particle and that the force is due to the difference between inner products at different points
(curvature) in space-time.

However, the whole point of general relativity was that particles do not accelerate in space-
time as they feel no force. This might feel like a weird notion. Didn’t we just show that
particles do experience an acceleration? Yes, they do in our coordinate systems in which
straight lines are straight lines by Euclidean standards. The geodesic equation 3.23 tells us
that particles deviate from these straight lines. But they do not accelerate in the sense that they
follow straight lines through space-time. Stated differently, we observe particles following
non-straight lines as space is curved.

To make this argument more qualitative. Consider an ant walking on a globe with the globe
being our curved space. As the ant walks from the North Pole to the South Pole it will follow
a straight line on the globe. But this is not a straight line for someone that observes the ant
from a three-dimensional world. He will see that the ant followed a curved path. So who is
right?

Well, they are both correct. Even in Newtonian physics, the acceleration you ascribe to an
object depends on your coordinate system. But the whole point of relativity is that physics
should not depend on your coordinate system but only one the geometry of space-time itself.
So is there a way to mathematically capture the idea that particles that obey the geodesic
equation 3.23 travel in straight lines on the curved space-time?

Well, one interpretation of non-accelerated particles are the fact that they follow straight lines.
For an observer on such a straight line, this statement is equivalent to the fact that the velocity
vector vµ of the line does not change as he moves along the line. Mathematically, this implies
∂αv

µ = 0.

This is however not true for true for vectors obeying the geodesic equation 3.23. This can
easily be seen. Suppose we would formulate the geodesic equation 3.23 in terms of velocities
vµ:

Ûvµ + vαvβΓ
µ
αβ = 0 (3.25)

These equations can be written more cleanly be removing the need for a derivative with
respect to the parameter τ by:

d
dτ
=

dxα

dτ
∂

∂xα
= vα∂α (3.26)

Inserting this expression into our velocity geodesic equation 3.25 and cancelling the vα, we
obtain:

∂αv
µ + vβΓ

µ
αβ = 0 (3.27)

This is the equation we were after. We see that ∂αvµ , 0 except for spaces in which Γµαβ = 0
or equivalently, flat spaces. Thus our Euclidean notion of non-accelerated (∂αvµ = 0) does
not carry over.

Yet, all is not lost. Let us thus introduce an extension of the known derivative ∂α, called the
covariant derivative ∇α. The definition is:

∇αv
µ = ∂αv

µ + vβΓ
µ
αβ (3.28)
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By the geodesic equation 3.27, particles that obey the geodesic equation obey:

∇αv
µ = 0 (3.29)

We thus see that the notion that particles follow straight lines on space-time is equivalent to
∇αv

µ = 0. This is different from particles following straight lines in Euclidean coordinate
systems, which was ∂αvµ = 0.

And with a single sweep (equation 3.29), we have united all. Particles follow straight lines on
the curved space-time. If you want to calculate what lines this would be in your coordinate
system, you use equation 3.29 to solve for the velocity vµ of the particle. But always remember,
the particles actually follow (unaccelerated) straight lines. There is no physics in the choice
of your coordinate system.

This covariant derivative will be our replacement of the normal derivative in general relativity.
If you will, the covariant derivative is a sort of derivative that also account for the flaws in
your coordinate system. Of course, there are a lot of mathematical reasons to choose the
covariant derivative, such as the fact that it transforms correctly from one coordinate system
into the next etc, but that will be our little secret.

The Euler-Lagrange field equations for a field φ for a Lagrangian density L in our new
formalism become:

∇α

(
∂L

∂ (∇αφ)

)
=
∂L

∂φ
(3.30)

3.6 Other uses of the metric

Apart from its role in the geodesic equations, the metric can also be used to raise and lower
components. For instance, we can lower the components of a vector vµ as vµ := gµνv

ν,
in which we assume Einstein summation. Vectors with lower components are called dual
vectors. We will not need them in this report, but they are of paramount importance in general
relativity and differential geometry.

In order to also make sure that integrals are independent of the coordinates used, we also need
to slightly alter volume integrals by the following replacement:⨌

f (x, t) dVdt →
⨌

f (xα)
√
−g dxγ (3.31)

The √−g is the Jacobian for a general coordinate system. The coordinates xα and dxβ are
just dummy coordinates. The indices do not indicate vectors but rather volume elements with
dVdt → dxγ.

3.7 General relativity

As stated earlier, the hard part is not to solve for the motion of particles, but to solve for the
curvature of space-time, a.k.a. the metric gµν. In GR, the metric gµν is the solution to the
Einstein equations:

Rµν −
1
2
gµνR + Λgµν =

8πG
c4 Tµν (3.32)

The left hand side contains Rµν and R (which are both function of gµν and its 1st and 2nd
order partial derivatives) are the mathematical expressions for the curvature of space-time.
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The right hand side is the energy-momentum tensor Tµν, a indication of the amount of energy
and mass in the space-time. The definition of this tensor is such that the component Tµν is
the flow of energy/momentum density pµ in the direction xν. The constant Λ is simply a
constant. We thus see that the left hand side describe the curvature and the right hand side
the energy in space-time. Thus energy is a source of curvature and curvature implies energy.
Not just matter curves space-time, all sorts of energies such as electrical energy etc. In these
equations the metric is dynamic variable and represents the field associated with gravity and
space-time curvature.

What form can the energy-momentum tensor Tµν take? From fluid dynamics, the flow of
momentum density ρv in the x-direction is ρvvx . Thus a general relativistic formulation for
a fluid with density ρ and four-velocity vµ would be Tµν = ρvµvν. Note that we have lowered
the components of the velocity in order to make sure that the indices match.

The left hand side of these equations have to do with the curvature of space-time, whilst the
right hand side have to do with the density and flow of mass and energy. Thus mass curves
space-time and a curved space-time implies movement of masses/energies. For a derivation
of the Einstein equations and a discussion on their consequences, see Sean Carroll’s excellent
book [5].

For our purposes, the reader will not need to know how to solve these equations. It is however
handy to know that these equations can be derived from varying an action of the following
form with respect to the metric gµν:

S = SH + Sm =
1

16πG

∫
R
√
−g dxγ + Sm with

δSm
δgµν

= −
1
2

Tµν (3.33)

3.8 Cosmology

For a model of the universe, we will only need one simple solution to the Einstein equations.
This is the solution of an expanding universe. In this section, we will only be concerned with
a spatially flat universe (κ = 0), to make the equations more feasible.

Suppose that in our universe, the distance between two objects ` grows by a scaling factor
f (t) such that after a time t, the distance goes from ` → f (t)`. A metric that incorporates
this idea is easy to come up with and is the Friedman-Robertson-Walker metric:

ds2 = gµνdxµdxν = −dt2 + f (t)2
[
dx2 + dy2 + dz2] (3.34)

This is just shorthand notation in which the components gµν are indicated in front of the terms
dxµdxν. For instance, the g00 component of the metric is g00 = −1.

Note that the fact that this is the correct metric actually depends on several assumptions about
space, such as homogeneity (space is the same in all locations) and isotropy (space looks the
same in every direction). However, we skip these assumptions in order to provide a feasible
discussion of an actual solution to Einstein’s equations. For convenience, we also use units
such that c = 1 .

We can solve for the scalar factor f (t) by plugging the metric (equation 3.34) into the Einstein
equations 3.32. But in order to solve the resulting equations, we also need to evaluate the
right hand side of Einstein’s equations. We suppose that the entire universe is filled with
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matter with density ρ and pressure p. We then obtain the Friedman equations:

H2 =

(
Ûf
f

)2

=
8πGρ

3
+
Λ

3
(3.35)

ÛH + H2 =
Üf
f
= −

4πG
3
(ρ + 3p) +

Λ

3
(3.36)

Here we have defined the Hubble parameter as H =
Ûf
f .

The easiest non-trivial solution to these equations is of course provided by ρ = p = 0. We
then find that the Hubble parameter H becomes the Hubble constant H0 =

√
Λ
3 . This is the

famous dark energy solution hinted at earlier. Note that it is on a completely different footing
than dark matter, as it is simply a solution to the Einstein equations.

Another solution we will need is the solution for a pressure-less fluid p = 0 and zero dark
energy Λ = 0. Without plugging this into the Friedman-equations, we can already guess
what the effect of the scale factor on the density ρ(t) will be. As the lengths scale by f (t), the
density decreases as ρ(t) = ρ0 f (t)−3. Plugging this into the Friedman-equations, we find that
f (t) ∼

√
t and H = 1

t . Thus if we know the current value of the Hubble parameter and the
universe were solely made up of this pressure-less fluid, we find that the age of the universe
T = 1

H0
with H0 the current Hubble constant. From our table of constants, we find that the

age of the universe is T = 13 · 109 years old. Isn’t that amazing? Just 21 pages ago you
might not have known anything about galaxies and now you are able to calculate the age of
the universe.

One more question we should address is: How do you find the current value of the Hubble
parameter? This is not done by studying the matter density in the universe, but rather by
studying photons. The energy density of photons also decays due to the expanding universe.
From our matter density, we know that it should at least decrease as f (t)−3. For photons,
there is however the added effect that their wavelengths also get stretched, further reducing
their energy by a factor of f (t)−1. Thus the photon energy decreases because the photons
drift apart ( f (t)−3) and because their wavelengths increase ( f (t)−1) both due to the expansion
of the universe. Thus the photon density ρ(t) = ρ0 f (t)−4 is also a way to recover the scale
factor. Luckily for us, there are a lot of sources for which we exactly know the initial photon
density, such as supernovae (exploding stars) or Cepheid (stars that pulsate radiation radially
with well-defined period and amplitude). In fact, the value of H that we used is based on
photon measurements from the Cepheids in the Large Magellanic Cloud (LMC), a satellite
galaxy of the Milky Way.
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Chapter 4

Emergent Gravity

top left

This theoretical chapter will mainly be concerned with the theory proposed by Erik Verlinde
in an attempt to explain gravity and dark matter. The papers by Erik Verlinde include the
paper from 2010 [27], in which gravity is explained as an emergent force. The main focus
will however be on the paper from 2016[26] in which the force normally attributed to dark
matter is explained by Erik Verlinde by associating an entropy to the dark energy content of
our universe. As these papers both contain highly abstract results, we will first explain his
ideas in a condensed form starting with the paper from 2010. We will then explain the ideas
of the paper from 2016.

It is assumed throughout this chapter that the reader is familiar with the laws of GR as
formulated in the chapter on From Newtonian to Einsteinian gravity. The sections on the first
paper by Erik Verlinde are primarily focused on explaining the concept of emergent forces and
gravity. The sections on the second paper in contrast focus on explaining the extra force Erik
Verlinde associates with the entropy of the dark energy content of our universe. In the next
chapter, we will convert these ideas into a general relativistic formulation of Erik Verlinde’s
formulation of emergent gravity as was done by Sabine Hossenfelder [11].

4.1 Entropic Gravity

4.1.1 Emergent properties

In 2010, Erik Verlinde released a paper titled: On the Origin of Gravity and the Laws of
Newton [27], in which he argued that gravity has an entropic origin. In order to understand
these ideas, we will first have to understand several key concepts, namely the concept of
emergence and the concept of entropic forces.

We will first focus on the meaning of emergent properties and entropy. Consider a box filled
with a certain gas. The molecules jiggle about due to their interactions with one another.
From the perspective of a single molecule these motions appear quite random, but when one
considers a large number of these molecules one finds that the average of their energies e.g.
the square of their velocities are related to the quantity we call temperature. Temperature is an
example of an emergent property. It has no meaning when one considers but one molecule,
only when one considers a large number of molecules, can one ascribe a temperature to the
gas. This is of course because temperature is related to the average energy, thus by definition
a large number of molecules is needed to define the concept of temperature.

The beauty of the concept of temperature is that it is not concerned with the motion of
individual molecules. All one needs to know to define the temperature is the average motion
of these molecules. We do not need to know the underlying theory that causes these random
motions of the molecules, but only its average effect on a molecule. This idea, that we do
not need to know the underlying forces but simply its average effects, is the driving principle
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Figure 4.1: A polymer suspended in a heat bath with temperature T . A force
of size F is applied on the polymer. Credits to Erik Verlinde [27].

behind what is called the entropy of the gas. The entropy S is a number that indicates the total
number of possible configurations the molecules of the gas can have that are compatible with
the total energy of the gas. Namely, let Ω be the total number of possible configurations, then
S := lnΩ. The ln (·) is chosen such that the entropy of different gasses are additive. A more
in depth discussion of entropy can be found in any book on statistical mechanics, for instance
Thermal Physics by Daniel Schroeder [24].

Let us calculate the entropy associated with a number of coins. Each coin can either be
heads or tales. The total number of states is then Ω = 2N , thus S = N ln 2. In more modern
language, the entropy S is proportional to the number of bits N . Entropy is therefore the
natural quantity associated with information.

4.1.2 Entropy and emergent forces

Aswe have now covered the concept of entropy, let us look at the meaning of an entropic force.
Consider a gas with a fixed temperature T . Let us change the energy E of this gas slightly
be an amount dE . This extra average energy allows the molecules to follow a larger amount
of random motions, thus increasing the entropy S by dS. In fact, for a reversible process, a
standard relation from thermodynamics is dE = TdS. This change in energy could have been
caused by a certain force F working over a distance dx, such that we obtain Fdx = TdS or in
higher dimensions, this is written as:

F = T∇S (4.1)

This is the defining formula for an entropic force. As this remains a rather vague concept, let
us consider an example. Suppose we model a chain of polymers by a chain of rods connected
at the ends that can all move freely with respect to one-another. A pictorial interpretation can
be found in figure 4.1. Since all chains can move independently, we never expect the chain to
be fully stretched, but rather in a randommessy configuration. When we stretch the chain and
let it rest, it will return to such a random messy configuration over time. Thus, on average,
there seems to be an overall force keeping it from being stretched. In fact, calculating the
entropy of this system and the entropic force, it is found that the force is similar to that of a
spring. Thus an entropic force can be viewed as a force that tries to restore the system to a
state with maximum entropy (randomness). Alternatively, the formula suggests that a system
always behaves in such a way as to maximize its entropy. Erik Verlinde claims that gravity is
such an entropic force. He claims that gravitational forces arise when a particle tries to lower
the total entropy of the system, n exactly the same vein as above. The gravitational forces
then attempt to restore the system to a state with maximum entropy. As we have now covered
entropic forces and emergent properties, let us calculate the entropy associated with a certain
matter distribution.
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4.1.3 Bekenstein’s entropy

In order to arrive at the entropy of a matter distribution, let us consider a totally different
object: a black hole. Every black hole has an event horizon at a distance Rs from the center.
This distance is determined by the mass M of the black hole given by:

Rs =
2GM

c2 =⇒ M =
Rsc2

2G
(4.2)

From the relation E = Mc2, we find that the energy of a black hole can be written as:

E =
Rsc4

2G
(4.3)

The fact that a black hole has a certain energy is of course not new, but the fact that it has an
entropy might be. Objects in classical theories often have an infinite amount of entropy, as
they can take any position and momentum between some predetermined bounds. Boltzmann
solved this problem by quantizing phase-space, which was later also done by Planck in order to
solve the Ultra-Violet catastrophe. The reason why a black hole should have a certain entropy
is straightforward. When a gas with a certain entropy passes the horizon, all information
about the gas is gone except for its mass, charge and angular momentum. The black hole
does not allow for information to be transmitted from inside its horizon to the outside world.
But this would violate the second law of thermodynamics that says that entropy has to always
increase. Therefore, a black hole should have a certain amount of entropy that is bounded
below by the entropy of the substances it was made of. This was first proposed by Jacob
Bekenstein and is still a topic of heated debate.

We will now derive the main result of Bekenstein for the entropy of a black hole through a
non-rigorous method. Let us build the black hole bit by bit by dropping in bits of entropy in
order to recover its total entropy. What could function as a physical bit? It must be something
that is either in the black hole or not. But it cannot be something that is either in one half of the
black hole or outside the black hole, as this would contain more information than just being
in the black hole. Therefore let us consider a photon with the smallest possible wavelength
to fit in the black hole of length 2Rs thus λ = 4Rs. We will build our black hole photon by
photon, bit by bit, unitll we have reached the required entropy.

The energy associated with one such photon is ∆E = h c
λ = h c

4Rs
with h Planck’s constant.

If our black hole consist of N bits with a total energy of E , then the total number of bits
N = E

∆E . We know from our example with coins that the entropy S is related to the number
of bits as S = N = E

∆E . Inserting our expression for the energy associated with one bit ∆E
and the total energy E of a black hole (equation 4.3) yields:

S =
4R2

s c3

4πG~
=

1
π2

A(Rs) c3

4G~
(4.4)

In formula 4.4, A(Rs) is the area of the horizon and ~ the reduced Planck’s constant. Note
that we have used formulae from both quantum mechanics and general relativity to arrive at
this result. The true Bekenstein entropy coming from a more delicate quantum theoretical
derivation is:

SBH =
A(Rs)c3

4G~
(4.5)

The original derivation by Stephen Hawking is not suited for such a small section, but this
non-rigorous method yields the same results up to a factor of 1

π2 . The main take-away is that
the entropy of a black hole is proportional to the area of the horizon instead of the volume of
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the black hole. We will generalize this result as the entropy across any surface with area A.
This is an important formula and it will return many times throughout this report.

4.1.4 Entropic gravity: Verlinde’s first paper

Now that we know what emergent properties and forces are, we can add gravity. In his first
paper, Erik Verlinde proposed that gravity is such an emergent force. If gravity is emergent
and gravity is simply the curvature space-time, then space-time must also be emergent. The
idea that gravitational forces are emergent and that what we perceive as space and time is
simply a result of averaging over microscopic processes that we do not yet understand is called
coarse-graining.

The content of the next section is not in Erik Verlinde’s paper, but uses several of the concepts
introduced in the paper to show how gravity could arise as an entropic force. It also serves to
lay down several key ideas we will use later in Erik Verlinde’s explanation of gravity.

In this section we will try to reformulate gravity as an entropic force. We will show that we
can arrive at the laws of gravity using only thermodynamic principles. In order to find the
gravitational or entropic force F on one particle, we need to know the change of entropy S the
particle causes by formula 4.1 and the temperature T . Let us first calculate this temperature
at the horizon of the black hole. In thermodynamic equilibrium, the energy associated with
N bits or N degrees of freedom is E = 1

2 NT . Since we already have an expression for the
number of bits N from formula 4.4, we find that:

T =
E

1
2 N
=

E8π2~G
Ac3 =

2πMG~
R2
s c

(4.6)

In formula 4.6 we have again used that E = Mc2. The temperature of a black hole is thus
inversely proportional to the total mass of the black hole (using equation 4.2).

Now that we have the temperature, we need the change in entropy due to one particle to
calculate the entropic force. This entropic force will be exerted on the particle because it
changes the entropy of the black hole. We will now calculate the difference in entropy caused
by adding one particle ofmassm to the event horizon of a black hole. A pictorial interpretation
of this can be found in figure 4.2. If our particle would arrive at the horizon, the entropy
would increase by the amount of bits contained in the particle. Thus adding a particle to the
black hole is equivalent to adding an equivalent number of photons in terms of energy. If we
consider a particle of mass m, this implies we need to adding an equivalent number of bits
N = mc2

∆E from the photons to our black hole. Using that our photons have wavelength λ, we
find that N = mcλ

h . Thus the total entropy associated with this mass m is:

Sm = N =
mc2

∆E
=

mcλ
h
=

mc4Rs

2π~
(4.7)

Thus when the particle reaches the horizon, it will increase the entropy by Sm. We will now
make an assumption on how much entropy the particle adds to the black hole when it is a
distance x away from the black hole horizon. Since we are talking about small changes, we
can assume the change of entropy is approximately linear in x. We will also assume that
the particle adds zero entropy when its 4Rs away from the horizon of the black hole, as this
implies it is exactly one wavelength away. This assumption is made in order to arrive at the
correct constants in the laws of gravitation.
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Figure 4.2: A particle of mass m approaching the boundary of a black hole.
At a distance ∆x , the particle changes the entropy of the black hole by an

amount ∆S. Credits to Erik Verlinde [27].

Thus when x = 4Rs the mass contributes no entropy to the horizon. The contribution to the
entropy of the black hole by the particle is a distance x away is then::

δS = Sm

(
4Rs − x

4Rs

)
(4.8)

Now that we have the change in entropy from equation 4.8 and the temperature from equation
4.6, we can finally calculate the entropic force by equation 4.1 as:

F = T
∂S
∂x
= −

2πMG~
R2
s c

mc
2π~
= −

GmM
R2
s

(4.9)

Thus we recover Newton’s law of gravitation. This derivation was not meant to be a rigorous
one, but merely to show how gravity can arise as an entropic force. We would like to remark
that it is not at all odd that we arrive at a theory of gravity as we used formula from general
relativity. We will now look at Erik Verlinde’s interpretation of this phenomenon.

4.2 Emergent Gravity; Verlinde’s first paper

We have just witnessed that we can obtain Newton’s laws of gravity from a thermodynamic
model. This suggest that gravity has a thermodynamic origin, emerging from the microscopic
laws that govern our universe. Erik Verlinde uses these same principles but in a slightly
different manner.

One key point is that the entropy of our black hole is proportional to the area of the black hole
and not its volume, as is the case for ideal gases and a whole other range of systems. This
has led Gerard van ’t Hooft and later Susskind to the idea that the information of a black hole
is stored on its horizon. This is called the holographic principle. The basic idea is that the
information of the interior of the black hole can be mapped onto the horizon like a projection.
This, together with the temperature and entropy law, leads to the new theory of Erik Verlinde.

Erik Verlinde splits our universe in a part that is accessible and thus exists and a part that
has not yet emerged. One can think of the emerged part as a sphere surrounded by nothing.
The boundary of this sphere is called the holographic screen. As with the black hole, he
identifies this holographic screen with a horizon. He proposes that all the information of the
emerged space is located on the boundary or horizon just as in the holographic principle. This
boundary carries the Bekenstein entropy(equation 4.5) that we associated with a black hole,
but now distributed over to a holographic screen (the boundary of space-time).
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When a particle approaches this boundary from the emergent side of space, it then slowly
changes the information stored on the boundary. This is the same picture as in figure 4.2, but
with the boundary being the holographic screen, the boundary of the emerged space. The
particle again changes the entropy of the space by approaching the boundary and this causes
a force on the particle. Bekenstein showed that when the particle is a Compton wavelength
away from the boundary, thus x = ~

mc , the entropy changes by one bit. Erik Verlinde therefore
proposes that the change in entropy when the particle is a certain displacement ∆x away from
the horizon is:

∆S = 2π
mc
~
∆x (4.10)

Thus he also proposes that the entropy changes linearly, as we have done (compare with
equation 4.8), and ensures that the entropy changes by exactly 2π when ∆x = ~

mc . This was
chosen such that we arrive at the right value of the gravitational force later. The fact that
the entropy grows linear with mass is not surprising, as the number of bits associated with a
particle is proportional to its energy.

The temperature associated with the horizon is the same as the one we derived, which is
called the Hawking temperature. A different interpretation of this temperature was given by
Unruh. He calculated that an observer in an accelerated frame with acceleration a experiences
a temperature:

T =
1

2π
~a
c

(4.11)

This is, up to a factor of 1
4π2 , exactly the temperature we calculated with a = GM

R2
s
in equation

4.6. If we now insert the expression for the change in entropy (equation 4.10) and the Unruh
temperature (equation 4.11) into formula 4.1 for the entropic force, we obtain Newton’s second
law of motion:

F = T∇S = ma (4.12)

Thus when the particle approaches the holographic screen, the force it feels is proportional to
its acceleration. We thus recover Newton’s second law from thermodynamic considerations.

4.2.1 Newton’s law of gravity

We have seen that Newton’s second law is actually an entropic principle. Let us now derive
gravity from the same principles. We already know the value of the change in entropy, but we
would also like the temperature in terms of properties of the horizon such as mass and area.
From the equipartition theorem, we know that the total energy associated with N number of
bits is:

E =
1
2

NT (4.13)

Since we suppose the the information is stored on the boundary, let us assume that we are

again dealing with an entropy/number of bits of the form 4.5. We then propose that the
number of bits N in terms of the size of the area of the boundary is given up to a constant of
4 by formula 4.5 :

N =
Ac3

G~
(4.14)

This is up to a constant multiplication by 4 also the number of bits associated with the horizon
that we recovered earlier. Using that the total energy in our emerged space is E = Mc2 and
combining this with the formula for the total number of bits on the boundary 4.14 and the
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temperature formula 4.13, we arrive at a formula for the temperature at the horizon:

T =
2Mc2G~

Ac3 (4.15)

Now that we have the temperature in terms of properties of the horizon, wemay ask what force
the horizon exerts on the particle. Using the change in entropy proposed by Erik Verlinde
4.10 and this temperature and plugging it into formula the formula for the entropic force 4.1,
we arrive at:

F = T∇S = −G
Mm
R2 (4.16)

Thus we arrive at Newton’s law of universal gravitation from purely thermodynamical argu-
ments and the holographic principle. In the next section we will repeat this calculation for
general matter distributions.

4.2.2 General matter distributions

For non-spherical distributions of matter, it is postulated by Erik Verlinde that the holographic
screens (the boundary of the emergent space) corresponds to the level surfaces of the gravi-
tational potential Φ. Particles at such a horizon feel an acceleration of a = ∇Φ. This results
in a local Unruh temperature of:

T =
1

2π
~|∇Φ|

c
(4.17)

The number of bits associated with an area on the horizon of size dA is again:

dN =
c3

G~
dA (4.18)

The energy is again given by the equipartition theory as:

E =
1
2

∫
∂Ω

TdN (4.19)

In which ∂Ω indicates the surface area of the boundary. Using that E = Mc2, we arrive at:

M =
1

4πG

∫
∂Ω
∇Φ · d ®A (4.20)

We thus find that the total mass in our space M is related to the gravitational potential. We
would like to invert this relationship. When we write M as an integration of the mass density
ρ over the volume in the emerged space, we find that:∫

Ω

ρdV =
1

4πG

∫
∂Ω
∇Φ · d ®A =⇒ ∇2

Φ = 4πGρ (4.21)

The last implication can be seen by requiring that this holds for all level surfaces. Thus
we have arrived at the general law of gravitation. This concludes our section on Erik
Verlinde’s first paper. He has shown that one can arrive at the laws of gravitation purely from
thermodynamical principles.

4.2.3 Critique

There are theoretical difficulties with making gravity an entropic force. As was shown
by Tower Wang [29], models of entropic gravity are severely restricted by the requirement
that the energy-momentum tensor be conserved and the universe should be isotropic and
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homogeneous. It was also shown by Matt Visser [28], that entropic forces that are used
to explain conservative forces place significant constraints on the form of the entropy and
temperature functions.

4.3 Apparant dark matter; Erik Verlinde’s second paper

We now move from the known gravitational forces, to the effects attributed to dark matter.
We will lay down the main ideas of Erik Verlinde in his second paper in a more condensed
form. It will be clearly stated when we deviate from the methods used by Erik Verlinde. Later
on, we will cast this theory on dark matter into a Lagrange formalism and derive the exact
field equation following Hossenfelder’s paper [11].

Recent progress in the field has shown that the quantum information associated with the
Bekenstein-Hawking entropy is not just stored on the horizon of the black hole, but can also
be associated with information carriers inside the black hole, called tensor networks. These
tensor networks are similar to the bits of information we had on the boundary earlier, but this
time inside the volume of our space. These tensor networks can describe several quantum
states, in particular states near the ground state. In condensed matter physics, the entropy of
an ensemble of quantum states often scales with the area of the boundary if all the quantum
states are near the ground state. A tensor network with all tensors near the ground state could
account for the area law (equation 4.5) for the entropy we found earlier. Erik Verlinde argues
that the excited state of these tensors yield an additional entropy effect. He argues that the
dark energy present in our universe could excite these tensors to excited states. Systems with
particles in excited states often result in an entropy that scales with the volume, like an ideal
gas. These extra contributions to the entropy due to the excitations of these tensors due to
dark energy would then account for dark matter.

The tensor network states yield both an area law for the entropy when the states are near
the ground state, but also a volume law due to the excitations by dark energy. Erik Verlinde
therefore argues that the area law yields exactly the Einstein equations (as we saw in the
previous section) and the volume law becomes apparent precisely when we observe effects
commonly attributed to dark matter. However, entropy itself does not give rise to a force, that
is done by changes in entropy. The change in the area law entropy due to the addition of matter
gives rise to gravity as we saw before when matter changed the information on the boundary.
Similarly, the addition of mass causes a disruption in the volume law entropy, which gives
rise to the forces commonly attributed to dark matter. We will now derive the effect of these
extra forces by borrowing ideas from both Verlinde and Hossenfelder. Since we have already
covered the area law entropy in the previous section on Erik Verlinde’s first paper, we will
now mainly be concerned with he volume law entropy, thus the entropy associated with the
excitations due to dark energy. A pictorial interpretation of this discussion is given in figure
4.3. We will see in the next sections that masses remove the information of these tensor
networks, causing a shift in the volume entropy, which is why a mass feels an additional force.

4.3.1 Entropy and the cosmological constant

For now, we will not consider these tensors networks, as they are rather abstract objects
which are still researched heavily. We will instead focus on the effects dark energy has
on our universe. Dark energy causes the accelerated expansion of our universe, which is
characterized by the Hubble constant H. Due to this expansion, there exists a sphere called
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Figure 4.3: On the left a space is shown in which all information is stored
on the boundary and thus the particles feel a normal gravitational force. On
the right a space is shown in which information is also stored in the volume,

which causes an additional force. Credits to Erik Verlinde[26].

the Hubble sphere, which has a radius L = c
H . We cannot receive information from galaxies

that lie beyond our Hubble sphere as this information would have to travel faster than the
speed of light to reach us. It is thus only natural to associate dark energy with this Hubble
sphere. In turn this sphere acts as an apparent horizon. We will therefore associated dark
energy with a horizon, namely the Hubble sphere horizon. Let us therefore propose that dark
energy adds a total entropy to our universe of the form:

SDE :=
A(L)c3

4G~
with A(L) = 4πL2 (4.22)

Which is simply the Bekenstein entropy of the Hubble horizon. This is different from the
area law entropy that we associate with the ground state of the tensor networks. The area
law accounts for the usual gravitational laws and the volume law accounts for the dark matter
contribution to the gravitational effects.

Erik Verlinde then proposes that this entropy (equation 4.22) is divided equally over the
tensors in the volume, which are spread evenly throughout the volume. Thus the total dark
energy entropy 4.22 is spread evenly over the volume in the Hubble sphere, whereas the
Hawking-Bekenstein entropy (equation 4.5) was spread over the area of the horizon. Suppose
we have a ball with volume V(r) inside this sphere, what will its entropy content be? Well
the entropy contained in this ball of radius r is proportional to its volume as:

SDE (r) =
V(r)
V0

(4.23)

With V0 a constant. Since we know the entropy at the horizon of the sphere r = L, we can
thus calculate V0 by equating formula 4.23 at r = L with formula 4.22. This yields:

SDE (r) =
r
L

A(r)
4G~

, V0 =
4G~L

3c3 (4.24)

We have obtained a volume law expression for the entropy associated with dark energy in a
certain volume. Note that if we let one tensor represent one bit of information, then these
tensors occupy a volume of V0.
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4.3.2 Introducing mass

As with in our previous section an important question is: How does this entropy change when
we introduce matter into our Hubble sphere? Specifically, we will introduce this matter at the
center of the Hubble sphere, as this makes our lives much easier. The metric associated with
the Hubble sphere is the De Sitter metric. This metric has the following form:

ds2 =

(
1 −

r2

L2

)
c2dt2 +

1(
1 − r2

L2

) dr2 + r2dΩ2 (4.25)

In formula 4.25, L is the radius of the Hubble sphere and dΩ2 the metric of a 2-dimensional
unit sphere. Note that our horizon L is a horizon induced by the metric, as setting r = L
yields an infinite distance ds = ∞ to cross. We thus identify the horizon of our space with
the point our distances become infinitely large to cross.

When we introduce matter to our space, the metric becomes the De Sitter-Schwarzschild
metric, which is:

ds2 =

(
1 −

r2

L2 −
2Gm
rc2

)
c2dt2 +

1(
1 − r2

L2 −
2Gm
rc2

) dr2 + r2dΩ2 (4.26)

This introduction of matter shifts the horizon (the value of r at which our metric diverges).
Note that we could have made the same observation in the case of the particle changing the
entropy in our section on the first paper. The particle changes the entropy of the horizon,
which implies that it changes the horizon area (equation 4.5) and thereby the position of the
horizon.

If the mass is sufficiently small, this shift will also be small. Let us call this displacement
u(L) such that the horizon shifts from L → L + u(L). Using the fact that −Gm

r = φ(r) is the
Newtonian potential φ(r) associated with mass m, the new horizon is at:

1 −
r2

L2 − 2
φ(r)
c2 = 0 =⇒ r = L

√
1 + 2

φ(r)
c2 ≈ L + L

φ(L)
c2 (4.27)

We have assumed that the shift is small, such that we can approximate φ(r) ≈ φ(L) with
φ(L)

c2 � 1, in order to apply a Taylor series around r = L. Thus we find that the displacement
of the horizon is u(L) = L φ(L)

c2 . Note that the horizon shrinks as the Newtonian potential is
negative. Thus introducing mass into our space shrinks the horizon of our space. This is an
important fact that we will come back to later.

This fact can also be seen intuitively. Consider a space that is contained in a sphere with a
radius L. When we place a mass in this sphere, the space around this mass has to become
more curved by Einsteins equations. But the only way to make a ball more curved is to shrink
the ball. In this way the horizon has larger curvature. Hence; the volume of space shrinks
when we introduce a small mass into the space.

4.3.3 Mass and entropy

Upon introducing a mass m to our space, our horizon shift by u(L) = L φ(L)

c2 . We would now
like to calculate the amount of force exerted upon the mass m during this process. However,
our operation was not a continuous process, therefore we cannot use 4.1. Nonetheless, we will
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show that our change in entropy causes a stress in space-time, that exerts a force on particles.
We will do this step by step, starting with the change in the total entropy due to the shift:

∆SDE (L) =
dS
dL

u(L) = u(L)
d

dL

(
A(L)c3

4G~

)
= −

2πmLc
~

(4.28)

The total entropy changes by the amount given in formula 4.28. We would now also like to
know how much entropy is taken away from a spherical ball B(r) with radius r inside our
Hubble horizon. This will allow us to calculate the stress inside this ball. However, as we
change from one metric to another, the way in which we measure distances changes as well.
Thus the question at hand is: How do we know what happened to our ball of radius r?

At this point we will deviate from the results of Erik Verlinde to allow for our own interpreta-
tion. One way to identify a ball, is to identify its effect in the metric. In our original De Sitter
metric our ball of radius r yields a temporal component in our metric of s = 1− r2

L2 . Thus we
identify the horizon of our ball in this metric as that r which yields a certain value of s. We
do the same in our new metric, and then the new radius r of our horizon has become that new
r that yields the same value for s = 1 − r2

L2 −
2φ(r)
c2 . This implies that the horizon of the ball

has shifted by an amount u(r) = L φ(r)

c2 as the calculation is identical to the one we performed
at the horizon r = L.

We can think of our balls with radius r as being displaced by an amount u(r) = L φ(r)

c2 when
we introduce mass into our system. Note that our treatment is different than that of Erik
Verlinde but it yields the same result.

4.3.4 Entropy difference

Since our entropy is related to the volume of our ball, a change in the position of the horizon
of our ball causes a change in the volume entropy of the ball. Note that as our horizon shifts,
the volume occupied by one tensor does not necessarily have to be V0 anymore. With this in
mind let us calculated the lost entropy due to the introduction of mass m. We assume that the
entropy loss at radius r is proportional to the loss in volume u(r)A(r), such that the loss in
entropy Sm(r) is equal to:

Sm(r) =
u(r)A(r)

V∗0
(4.29)

Here V∗0 is yet another constant. Since we know the entropy loss at the Hubble radius r = L
from 4.28, we can calculate V∗0 . From our discussion on balls, we also know that the shift
in the balls radius was u(r) = L φ(r)

c2 . Plugging this into equation 4.29 and our newly found
value for V∗0 yields:

Sm(r) = −
2πmrc
~

with V∗0 =
2G~L

c3 (4.30)

The amount of entropy lost by this interaction between mass and space-time had to be stored
in a certain volume beforehand. Let us indicate this volume by Vm(r). From the volume law
4.23, we know how to calculate this volume:

Sm(r) = −
Vm(r)

V0
=⇒ Vm(r) =

8πGmrL
3c2 (4.31)

Let us quickly recap what we have found. Due to the introduction of mass, our space shrinks.
This implies that we lose part of our entropy SDE as entropy is related to volume. The
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amount of entropy we have lost inside a ball of radius r is Sm(r). This amount of entropy was
originally contained in a volume Vm(r) inside this ball.

4.3.5 Interpretation of results

At a radius r , we can calculate the amount of volume that has been lost which is u(r)A(r) =
3
2Vm(r). Thus it appears that we have lost more volume than was needed. Let us explain this
discrepancy, which is not done by Verlinde. It lies in our identification of the different balls
in our different metrics. If we assume that the radius of a ball of radius r shrinks by u(r) and
the horizon L also shrinks by u(L), we obtain a change in entropy of:

∆SDE (r) = u(r)
dSDE

dr
+ u(L)

dSDE

dL
= −

3πmrc
~
+

1
L2

mcπr3

~
(4.32)

Notice that the results still agree at r = L, but not for r � L. For r � L we obtain exactly
the factor 3

2 with respect to Sm(r) in equation 4.31. The fact that we lose more volume than
necessary thus lies in the way in which we identify different balls in our metric. The amount
of volume lost in the original metric is not equal to the amount of volume lost in the remaining
metric, due to the introduction of matter. It is thus very dangerous to equate different balls
from different metrics.

Two things are however certain. A volume of u(r)A(r) = V∗m(r) =
3
2Vm(r) has been removed

and the lost entropy was originally contained in a volume of Vm(r). Erik Verlinde proposes
the following interpretation:

If Vm(r) � V(r), then all entropy has been removed from our ball of radius r . Since the
medium that carried the volume law entropy has totally been removed, only the area law
remains and thus a particle would only experience the normal gravitational force. This is
similar to the requirement that a ≥ am in MOND. Why? Well, when:

Vm(r) � V(r) =⇒
8πGmrL

3c2 �
4
3
πr3 =⇒

Gm
r2 �

1
2

c2

L
≈ am (4.33)

If Vm(r) � V(r), only part of the entropic medium of the ball has been removed. This is
similar to the requirement that a ≤ am in MOND. Since only part of the entropic medium
has been removed, we would obtain both an area law and volume law and we would notice
additional effects normally attributed to dark matter.

Since V∗m(r) ≥ Vm(r), a part of the medium has to have been removed outside of Vm(r) (the
volume that originally contained the removed entropy). However, Erik Verlinde proposes that
this removal of additional entropy is still done from inside a ball of volumeVm(r). Pictorially,
this implies that the entirety of the volume of the ball inside Vm(r) is removed plus a part
of the surrounding volume that has flowed inside volume Vm(r) from the outside during the
process. The total removed volume is 3

2Vm(r).

4.4 Stresses and Strains

So far, we have established that a certain amount of entropy Sm(r) is removed from a ball
of volume V(r). This volume is removed inside a region of size Vm(r) and the total amount
of volume lost is V∗m(r) =

3
2Vm(r). Just as in the case of the polymer chain, Erik Verlinde

proposes that the entropic force due to this change in entropy can be calculated by considering
the medium as a linear incompressible elastic medium. The additional force would then be
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Figure 4.4: A volume of V∗0 is removed from a ball with volume V(r).
Credits to Erik Verlinde [26].

related to the strain in the medium. We therefore need to calculate the displacement u(r) and
strain ε(r) in the entropic medium, caused by removing a part of this medium. Thus we need
to take a quick detour into the theory of stresses and strains.

We will now calculate the displacement u(r) and strain ε(r) caused by removing a volume
of V∗m(r) =

3
2Vm(r) from a region of Vm(r) inside our ball of volume V(r). We assume

that V(r) ≥ Vm(r) as this is where the effects of dark matter come into play. A pictorial
interpretation of this can be found in figure 4.4.

4.4.1 Theory of Strain and Stress

A difficulty that we now face is the fact that the removed volume V∗m(r) grows with the radius.
Thus it is not at all clear what form or topology this volume takes. Let us therefore consider a
much simpler problem. Suppose we remove from a ball with radius Ra, a volume of V∗0 . The
displacement of a point on the medium is denoted by u(r) and is assumed to be spherically
symmetric. Since we know that the total volume changes by V∗0 , the shift at the boundary Ra

should be:
u(Ra) =

−V∗0
A(Ra)

(4.34)

Let us calculate the shift of a particle of the medium at a radius r inside the volume, called
the displacement u(r). Since the medium is incompressible, we have the following continuity
equation due to the incompressibility condition:

∂ρ

∂t
= 0 =⇒ ∇ · ®u = 0 (4.35)

In spherical coordinates, this implies that u(r) is of the form 1
r2 . Thus using our boundary

condition (4.34) and the incompressibility condition, we arrive at a formula valid at all radii
outside the removed volume V∗0 as:

u(r) =
−V∗0
A(r)

(4.36)

For incompressible media, we know the displacement within the medium when we consider
the removal of a volume from a spherical ball. This is actually all we need to know, since our
entropic medium is assumed to be linear and elastic. We can always decompose our entropic
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medium into tiny spherical balls from which a tiny volume is removed, such that the total
removed volume is the sum of these tiny removed volumes. Since the equations are linear,
the strain due to the total removed volume is then the same as the sum of the strains due to
the tiny removed volumes.

4.4.2 Strain in the entropic medium

Let us those decompose our volume of size V(r) into tiny balls of size NiV0. From these
balls, a volume of NiV∗0 will be removed. Note that the removed volume is greater than the
volume of the tiny ball. Therefore, we will mainly focus on the displacement outside the balls
of volume NiV0. The main focus in this section is to identify the square of the stress, as we
will need this later to formulate a Lagrangian.

Since a volume of NiV∗0 is removed, the displacement outside these balls will of course again
be given by equation 4.36 as:

u(r) = −
NiV∗0
A(r)

(4.37)

The strain ε(r) is related to the displacement u(r) as ε(r) = du(r)
dr , which yields:

εi(r) =
2
3

NiV∗0
V(r)

=
NiV0
V(r)

(4.38)

The energy of such a displacement is related to the square of the strain of the remaining
volume by an integral:

E ∝
∫ ∞

NiV0

ε2
i (r)A(r)dr =

∫ ∞

NiV0

(
NiV0
V(r)

)2
dr = NiV0 (4.39)

The energy is related to the removed volume, which is a well known result. We would have
obtained the same result if the tiny ball would not be at the center of our ball. We would now
like to sum over all the tiny balls to obtain the total strain. However, since we are dealing with
the square of the strain, we can no longer sum over the individual strains as ε =

∑
i εi. We

therefore assume that all strains are very localized, such that εi(r)εj(r) ≈ 0. This allows us to
simply sum over all contributions to obtain:∫

ε2(r)dV ≈
∑
i

∫
ε2
i dV =

∑
i

NiV0 = Vm(r) (4.40)

For our entire ball of radius r , the result is thus:∫ r

0
ε2(r ′)A(r ′)dr ′ = Vm(r) (4.41)

Differentiating this yields:

ε2(r) =
1

A(r)
dVm(r)

dr
=

m
A(r)

8πGc2

3L
(4.42)

We have found that the square of the strain is related to the normal gravitational force exerted
by the mass m.

Erik Verlinde then moves on to calculate the force this would exert on a particle by using
analogies with the theory of stresses and strains in linear incompressible media. We will



4th

4.4. Stresses and Strains 41

however stop here, as the strain is all we need to formulate our covariant formalism, which
was already done by Hossenfelder, whos approach we follow now.



4th



5th

43

Chapter 5

Covariant Emergent Gravity

top left

In this chapter, we convert the statements and concepts of Erik Verlinde’s first [27] and second
paper [26] into a fully general relativistic or covariant formulation. In this endeavor, we
follow the approach taken by Hossenfelder [11] along with small deviations to her equations
as proposed by Yen-Kheng Lim and Qing-hai Wang [18]. We will use these covariant
formulations in the subsequent chapter on theoretical applications of CEG.

The reader is required to know GR as formulated in the section on From Newtonian to
Einsteinian gravity.

5.1 Deriving a Lagrangian

We will now follow the approach taken by Hossenfelder [11] to arrive at a covariant theory
involving a Lagrangian of Emergent Gravity. This is done by converting concepts such as the
shift in the horizon of the De Sitter space u(r) and the strain into covariant formulations.

5.1.1 The form of the Lagrangian

The important quantity in Erik Verlinde’s view is the shift in the Hubble horizon, denoted
by u(r). In a non-spherical symmetric view, this becomes a vector field u(®r). Hossensfelder
refers to this field as the imposter field. All other quantities, such as the strain ε , follow from
this imposter field.

In a covariant theory, the imposter field becomes a four-dimensional vector uµ. From equation
4.42, we observe that strain is related to the gravitational force as ε2 ∼ Fg = ∇φB in which
φB is the normal gravitational potential. The strain is related to the imposter field by the usual
Hooke’s law ε ∼ ∇u. These two yield (∇u)2 ∼ ∇φB. Thus our covariant formulation for the
imposter field should lead to field equations that have as solution (∇u)2 ∼ ∇φB.

Since a Lagrangian involves second derivatives, we differentiate (∇u)2 ∼ ∇φB, which yields
∇ (∇u)2 ∼ ∇2φB ∼ ρ by Poisson’s equation.

Thus we propose that our covariant Lagrangian must lead to a field equation of the form
∇ (∇u)2 ∼ T with T the energy-momentum tensor. We start with the usual gravitational
action in which SH is the Einstein-Hilbert action for the space-time metric and Sm the action
of matter:

S = SH + Sm =
1

16πG

∫
R
√
−g dxγ + Sm with

δSm
δgµν

= −
1
2

Tµν (5.1)

In order to arrive at a relation of the form ∇ (∇u)2 ∼ T , we have to add a source term for the
imposter field. It is not immediately obvious how this should be done, as this is a non-linear
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differential equation. Hossenfelder proposed a scalar of the form χ ∼ (∇u)2, which is a
function of the imposter field uµ. This scalar would enter the Lagrangian in the form of

a source term as χ 3
2 such that χ 3

2 ∼

(
(∇u)2

) 3
2 . Upon using the Euler-Lagrange equations

(differentiating with respect to ∇u) we then correctly recover ∇ (∇u)2.

A true covariant description for such a scalar χ ∼ (∇u)2 is of the general from:

χ(uµ) = a(∇µuµ)2 + b
(
∇µuν

)
(∇µuν) + d

(
∇µuν

)
(∇νuµ) (5.2)

Einstein summation is implied and a, b, d are constants, which we will determine later on.
We will also introduce the strain and stress tensors as:

εµν = ∇µuν + ∇νuµ , Fµν = ∇µuν − ∇νuµ (5.3)

The strain tensor is simply the generalization of the strain ε in Erik Verlinde’s formulation.
Using these tensors, we find that we can write the scalar of equation 5.2 as:

χ(uµ) =
a
2
(ε
µ
µ )

2 +
b
2
εµνεµν +

d
2

FµνFµν (5.4)

Here we have made the substitution:

a =
a
2

b =
b + d

2
and d =

b − d
2

(5.5)

The constants a, b and d thus determine the importance of the stress and strain in our covariant
description. From Erik Verlinde’s formulation (equation 4.39), we know that ε2 is related
to the energy that it costs to introduce mass into our space or equivalently shift the Hubble
horizon. Thus we find that our scalar χ is related to the energy density in the entropic medium.

If we want to recover the equation ∇ (∇u)2 ∼ T , we have to add the source term to the
Lagrangian:

S = SH + Ssource + Sm =
1

16πG

⨌
R
√
−g dxγ +

α

16πG

⨌
χ

3
2
√
−g dxγ + Sm (5.6)

In this equation α is an arbitrary constant to be fixed later. The exponent of 3
2 for χ has been

discussed before and ensures that ∇ (∇u)2 ∼ T . It is however unusual and leads to complex
equations as its derivative becomes a square root. Note that χ is not the only possible
combination for a scalar as something like χ ∼ ∇u∇u∇u would also have worked, but would
have resulted in more difficult equations involving more indices.

We thus have a source term for the Lagrangian of the imposter field uµ. When we apply
the Euler-Lagrange equations, such a source term yields ∇ (∇u)2. We would like to have an
equation of the form ∇ (∇u)2 ∼ T , which implies that we need to add an extra interaction of
the imposter field with matter. This will also ensure that matter feels the additional force. We
will now try to identify such an additional force through an effective metric and interaction
terms.
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5.1.2 Effective metric

When we introduced a mass m, to our metric, we found that the temporal component of the
metric changed by: (

1 −
r2

L2

)
→

(
1 −

r2

L2 − 2
u(r)

L

)
(5.7)

Introducing a mass m to our space is equivalent to stating that the imposter field changes our
metric. This idea is captured in Hossenfelder’s model by an effective metric:

g̃µν = gµν − β
uµuν

u
(5.8)

From comparison with Erik Verlinde’s equation 5.7, we find that β = 2
L . Notice that this

metric is simply the covariant version of a shift by u(r). In Erik Verlinde’s paper, he also
hinted at this effective metric to explain the effects of dark matter. This was done by studying
the analogies between stress in our entropic medium and the gravitational forces, but we will
not repeat his arguments here as that would require several pages, whereas Hossenfelder’s
motivations are quite clear.

5.1.3 The interaction term

Note that the fact that there is an effective metric implies a certain interaction between
our imposter field and the curvature of our space. Thus our Lagrangian should include an
interaction term. We will derive this interaction term by considering the interaction a single
test particle has with the imposter field. This test particle has coordinates xµ and a mass m.
The following derivation is based on the derivation done by Yen-Kheng Lim and Qing-hai
Wang [18] in their paper on the field equations of CEG.

The energy-momentum tensor of a single particle is given by the usual formula:

Tµν = ρvµvν → Tµν = −
m
√
−g

∫
δ(xα − xα(τ)) Ûxµ Ûxνdτ (5.9)

Here √−g is evaluated at xα(τ). The 4-dimensional Dirac delta function simply picks out the
position the particle is currently at. The 1√

−g
is introduced to make sure that when we integrate

over the entire volume it cancels with the√−g in the volume integral. For the remainder of this
derivation we will use an action contribution of the single particle of Sm = m

2

∫
gµν Ûxµ Ûxνdτ.

To ensure that our particle feels a total effective metric of g̃µν, we must add an interaction
term Sint. This interaction term Sint would make sure that the total action of the single particle
is not dependent on gµν but on the effective metric g̃µν:

Stot =
m
2

∫
g̃µν Ûxµ Ûxνdτ =

m
2

∫ (
gµν − β

uµuν

u

)
Ûxµ Ûxνdτ (5.10)

As we postulated, this is due to an extra interaction term with:

Stot = Sm + Sint with Sm =
m
2

∫
gµν Ûxµ Ûxνdτ (5.11)

Comparing equation 5.10 with equation 5.11, we find that:

Sint = −
m
2

∫
β

uµuν

u
Ûxµ Ûxνdτ (5.12)
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Our actions for the fields (equation 5.6) involve integrals over all of space-time, whereas the
interaction action for a single particle is over the proper time and still depends on the path
of the particle. Of course, we want our interaction term to apply to any energy-momentum
distribution. This can be fixed however, by introducing a delta peak. This allows us to be able
to integrate over the entire 4d volume and arrive at our interaction term:

Sint = −
m
2

∫ ⨌
1
√
−g

δ(xα − xα(τ))β
uµuν

u
Ûxµ Ûxν

√
−g dxγdτ (5.13)

Note that this is almost the energy-momentum tensor of the single particle (equation 5.9). We
can substitute the energy-momentum tensor of the single particle to arrive at a formulation
independent of the particles properties. We use the matter energy-momentum tensor for a
single particle to obtain an interaction term for the Lagrangian:

Sint =
β

2

⨌
uµuν

u
Tµν
√
−g dxγ =⇒ Lint =

β

2
uµuν

u
Tµν
√
−g (5.14)

We now simply postulate that action 5.14 is valid for any form of energy with energy-
momentum tensor. Inserting this interaction term (equation 5.14) in our action with source
term (equation 5.6), we find a total action for the theory of the form:

S =
⨌

√
−g

[
1

16πG
R +

α

16πG
χ

3
2 +

β

2
uµuν

u
Tµν

]
dxγ + Sm (5.15)

The first term is the Einstein-Hilbert action SH . The second term is called the kinetic term of
the field and determines the energy of the field. The third term is the interaction term between
the imposter field and matter. The last term is the matter action.

5.2 Understanding the action

Before we move on to the equations determining the motions of matter and the imposter field,
let us shed some light on the individual terms in the action and make correspondences with
the electromagnetic Lagrangian.

In the Electromagnetic Lagrangian, we had a source term for the field φ of the form 1
2ε0∇φ·∇φ.

Similar source terms are present in the action 5.15. The term α
16πG χ

3
2 is the source term of

the imposter field uµ with equation 5.2 given the scalar χ in terms of uµ. This source term
responds to the interaction the imposter field has with the baryonic matter. This interaction is
present in β

2
uµuν
u Tµν.

In figure 5.1, we show the different components of the action and the way they interact. These
interactions will be the focus of the next section and this figure should accommodate the
reader alongside the following discussion on all the interaction terms. From the figure we see
that we have three important quantities, matter, the imposter field and the effective metric.
Matter influences the imposter field via the interaction term in the action. The imposter
field then determines the effective metric and in turn the effective metric dictates how matter
moves. Additionally, matter also dictates the behaviour of the metric through the modified
Einstein equations. We will calculate these different interactions in the coming sections.

As this is a rather complicated construction, we will discuss all the interactions in detail next.
The derivation of all the interaction terms between the various component of the action 5.15 is
done in appendix A. As such a derivation is rather heavy on the algebra, we have not included
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Figure 5.1: This figure shows the interactions between the different compo-
nents involved in the action 5.15.

it here. However it can also be insightful for readers who are unfamiliar with varying actions
in curved space-time. We therefore invite the reader to at least gloss over the appendix, as the
true machinery behind the next sections are all happening there.

We have provided a summary of the coming results on the next page.
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Action

S =
⨌

√
−g

[
1

16πG
R +

α

16πG
χ

3
2 +

β

2
uµuν

u
Tµν

]
dxγ + Sm

Important quantities

Imposter field uµ

Space-time metric gµν

Effective metric g̃µν = gµν − β
uµuν

u

Energy-momentum tensor baryonic matter/energy Tµν

Derived tensors

Imposter scalar χ(uµ) = a(∇µuµ)2 + b
(
∇µuν

)
(∇µuν) + d

(
∇µuν

)
(∇νuµ)

Strain tensor εµν = ∇µuν + ∇νuµ

Stress tensor Fµν = ∇µuν − ∇νuµ

Imposter Christoffel symbols Cδ
µν =

1
2g

δα
[
∂µ

( uαuν
u

)
+ ∂ν

(
uαuµ
u

)
− ∂α

(
uµuν
u

)]
Auxiliary tensors

Aµν = aελλ εµν + bεµλε λν + d FµλF λ
ν

Bµν = aελλg
µν + bεµν + d Fµν

Field equations

Imposter field equations (determine evolution of imposter field uµ in terms of Tµν)

3α
16πG

∇µ

(
χ

1
2 Bµν

)
=
β

2

[
2 Tµν

uµ
u
+

Tµλuµuλuν

u3

]

Imposter geodesic equations (determine motion single particle with path xδ(τ))

Üxδ − β
uδuν

u
Üxν = Ûxµ Ûxν

(
βCδ

µν − Γ
δ
µν

)

Modified Einstein equations (determine evolution gµν in terms of uµ and Tµν)

Rµν −
1
2
gµνR = 8πGTµν −

1
2
gµν

[
αχ

3
2 + 8πGβ

uαuβ
u

Tαβ
]
+

3α
2
χ

1
2 Aµν−

3α
2
∇α

[
χ

1
2

(
Bα
(µuν) + u(νB α

µ) − B(µν)uα
)]
−

8πGβ
[
uαuβ
2u3 uµuνTαβ +

2uβ
u

u(µT β
ν)

]
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5.3 Imposter field equations

The next step is to derive the field equations from the newly obtained total action 5.15. From
these equations we will derive the Newtonian limit and the weak-field limit. This action was
based on the assumptions made in the previous sections on Erik Verlinde’s theory. However,
one can also take this action at face value and in the next sections we will check whether it
yields any interesting results.

From this action 5.15, one can derive the field equations by varying the action with respect
to gµν and uµ. The derivation of this was not done in by Yen-Kheng Lim and Qing-hai Wang
[18] and we have included our derivations in the appendix as they are rather long and don’t
provide any new insights.

From our action 5.15, we know that the imposter field has a Lagrangian with a source term
and an interaction term coupled to baryonic matter. This implies that the field equations for
the imposter field uµ can be found by varying this Lagrangian with respect to uµ.

When we vary the action with respect to uµ, we obtain the differential equations for the vector
field uµ. In order to understand these equations, let us first introduce two simplifying tensors:

Aµν = aελλ εµν + bεµλε λν + d FµλF λ
ν , (5.16)

and the second simplifying tensor:

Bµν = aελλg
µν + bεµν + d Fµν . (5.17)

From the action 5.15, one can recover the field equations for uµ by varying the action with
respect to uµ. This is done in the appendix A. The results are the field equations for the
imposter field:

3α
16πG

∇µ

(
χ

1
2 Bµν

)
=
β

2

[
2 Tµν

uµ
u
+

Tµλuµuλuν

u3

]
(5.18)

This equation provide the left arrow in figure 5.1, it describes the way in which matter
determines the evolution of the imposter field. Note that the term χ

1
2 makes sense, as this

is the derivative of χ 3
2 . Since χ

1
2 ∼ ∇u and Bµν ∼ ∇u, these equations indeed imply

∇ (∇u)2 ∼ T as we wanted from our discussion on the correct form of the Lagrangian.

In Hossenfelder’s paper, this equation contains amistake according to the paper byYen-Kheng
Lim and Qing-hai Wang [18] and the author of this report shares this opinion. This mistake
comes from the interaction term Hossenfelder proposes, which is a factor 2 different from our
interaction term. This mistake can be fixed by letting β → β

2 in Hossenfelder’s paper. This
does not affect any results as this is simply a constant that is fixed later.

Before we move on to the other equations such as the interaction between the imposter field
and the curvature of space-time, let us see whether we can solve the field equations 5.18 in
the Newtonian limit.

5.3.1 The Newtonian Limit

It is time to make a couple of assumptions. First, we will assume that uµ only consists of a
temporal part, thus uµ = (u0, 0), which we assume to be negative, as in Erik Verlinde’s theory.
The fact that we only consider the temporal part implies that we are working relatively close
to the inertial frame of the imposter field. Stated simpler, we assume that the field moves
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slowly, which was also used by Erik Verlinde in his glassy dynamics. This requirement is
obviously not Lorentz invariant, but will suffice for our Newtonian considerations.

We will use a Newtonian approximation gµν ≈ ηµν to get an idea for this field uµ. We will
also assume that the field moves very slowly, which implies that we ignore time derivatives
∂tuµ = 0. In our analysis, we will make use of the short hand notation for the following
matrix:

∇u0
[

0 1
−1 0

]
:=


0 ∇u0 · e1 ∇u0 · e2 ∇u0 · e1

−∇u0 · e1 0 0 0
−∇u0 · e2 0 0 0
−∇u0 · e3 0 0 0

 (5.19)

Here ei are the unit vectors of our spatial coordinate system. It is simply the anti-symmetric
matrix with as its temporal-spatial parts its spatial derivatives.

The first step in solving for the imposter field equations in CEG is always to calculate the
strain εµν and stress Fµν under the current approximation. Plugging our approximations in
the formulas 5.3, the stress and strain tensors become:

Fµν = ∇u0
[

0 1
−1 0

]
εµν = ∇u0

[
0 −1
−1 0

]
(5.20)

Next, one solves for the simplifying tensors Aµν and Bµν. For our field equations 5.18, we only
need Bµν. For our simplifying tensor Bµν (equation 5.17), our strain and stresses (equation
5.20) yield:

Bµν = ∇u0
[

0 b − d
b + d 0

]
χ = −(b + d)

(
∇u0

)2
(5.21)

Since we ignore time derivatives, the only non-trivial term in the imposter field equation 5.18
for uµ is the ν = 0 term, which gives:

(b + d)
√
−b − d

3α
16πG

∇ ·

(
|∇u0 |∇u0

)
=
β

2
ρ

u0

|u0 |
(5.22)

From our Newtonian discussions, we now that what comes after ∇ is often the potential of
the field. Thus, let us define the dark potential φD := β

2
√
−uαuα =

β
2 u. Later on this will

indeed be identified as the potential associated with this field such that the force of the field
is F ∼ ∇φD .

Plugging our approximations for uµ =
(
u0, 0

)
into our definition of the potential, we see that:

φD =
β
2 |u

0 |. If we now use that we know from Erik Verlinde’s paper that u0 ≤ 0 and insert
the potential into the previous equation 5.22, we obtain:

(b + d)
√
−b − d

4
β2∇ · (|∇φD |∇φD) = −

β

α

16πG
6

ρ (5.23)

In our discussion on the effective metric, we already saw that β = 2
L by comparing equation

5.7 and 5.8. In Hossenfelder’s paper, she also assumed that α = 1
L2 by dimensional analysis.

This implies:
(b + d)

√
−b − d ∇ · (|∇φD |∇φD) = −

8
6L

4πGρ (5.24)



5th

5.3. Imposter field equations 51

In order to fix b and d, let us use that in Erik Verlinde’s paper, the Newtonian equations should
be:

∇ · (|∇φD |∇φD) = −
a0
6

4πGρ (5.25)

Equating the two expressions yields b + d = −4. Note that this set of constants is different
from those obtained by Hossenfelder, but the resulting force is of course similar to that of
Erik Verlinde [26]. We can fix b and d as follows. From our discussion on stresses and
strains and equation 5.3, we see that b determines the strain and d the stress contribution to
our equations. In Erik Verlinde’s second paper [26], the strain in the medium was the main
contributor to the force on the particle. Thus we assume that d = 0, which implies b = −4
and d = 0 in equation 5.4. This yields our Newtonian approximation of the field equations
5.18 as:

∇ · (|∇φD |∇φD) =
a0
6

4πGρ (5.26)

An easy solution to the equation 5.26 is that of a particle of mass M at position r = 0. We
can then simply solve equation 5.26 by using a Gaussian sphere around the mass. The results
are:

φD =

√
GMa0

6
ln r + C2 (5.27)

Note that this was indeed the form of the equation we were looking from our historical
discussion as it yields a constant tangential velocity for circular orbits from the centripetal
law if F ∼ ∇φD in order to yield a flat velocity.

5.3.2 Newtonian Lagrangian

Our Newtonian discussion can also be accompanied by a Lagrangian for the field φD such
that we produce equation 5.26. The correct Newtonian action is:

SN =

⨌ {
2
a0
(∇φD · ∇φD)

3
2 + 4πGρφD

}
dVdt (5.28)

We see that the interaction term 4πGρφD in 5.28 is similar to the interaction term in Elec-
tromagnetism (3.12) and in baryonic gravity. The source term 2

a0
(∇φD · ∇φD)

3
2 is however

fundamentally different from the source terms in either of these. This is also necessary to
produce a force that goes as 1

r instead of 1
r2 .

For completeness, we can also add the baryonic gravitional potential φB, to arrive at a total
action of:

SN =

⨌ {
2
a0
(∇φD · ∇φD)

3
2 + 4πGρ (φD + φB) + ∇φB · ∇φB

}
dVdt (5.29)

We can again draw analogies from our single particle case. The equations of motion for the
field φD are given by 5.26. These look similar to Newton’s equations of for a single particle
d
dt

(
m dx

dt

)
= F with the substitutions, x → φ, m → 6

a0
|∇φD | and d

dt → ∇. The mass of the
field (by analogy with the single particle case) is thus dependent on the value of the field:
mφ =

6
a0
|∇φD |. For low accelerations a ≤ a0

6 , the mass of the field is low, making it very
responsive to the baryonic matter densities. The reverse is true for high accelerations a ≥ a0

6 .
This is of course exactly the behaviour we were looking for, as the rotation curves tended to
deviate from our Newtonian predictions when a ≤ a0

6 .
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5.4 The Modified Einstein Equations

Now that we know how the imposter field reacts to baryonic matter, we can ask ourselves
how the imposter field affects the curvature of space-time. This is done by varying the Action
5.15 with respect to the metric gµν. Since every term in the action depends on the metric, this
is not an easy task, as can be seen in the appendix A. The results are the modified Einstein
equations:

Rµν −
1
2
gµνR = 8πGTµν −

1
2
gµν

[
αχ

3
2 + 8πGβ

uαuβ
u

Tαβ
]
+

3α
2
χ

1
2 Aµν−

3α
2
∇α

[
χ

1
2

(
Bα
(µuν) + u(νB α

µ) − B(µν)uα
)]
−

8πGβ
[
uαuβ
2u3 uµuνTαβ +

2uβ
u

u(µT β
ν)

] (5.30)

These equations provide the downward arrow from matter in figure 5.1 and show how both
the imposter field and baryonic matter determine the normal metric gµν. Don’t worry, we will
hardly need these equations throughout the rest of the report. The first three terms give the
known Einstein equations and the all other terms stem from the interaction between gµν and
the imposter field uµ. These interactions arise from the Lagrangian of the imposter field uµ,
which contains both a source term and an interaction of the imposter field with the baryonic
matter. These equations are rather large, but have already been solved for a Schwarzschild-like
solution by Yen-Kheng Lim and Qing-hai Wang [18] under the assumption that d = −1 and
b = 0.˙

There are several important points we would like to stress. Firstly, the motion of matter is
primarily influenced by the effect uµ has on the effective metric g̃µν (5.8). The effect of
uµ on the modified Einstein equations are negligible in the Newtonian approximation. This
is because the effect of the extra terms on the Einstein equations are incredibly small as
α
G ≈ 10−60 and β

G ≈ 10−25. Secondly, and more mathematically, we will see that the extra
terms disappear in our linearisation of the modified Einstein equations.

Now that we have derived the equations of motion for the imposter field uµ and the metric
gµν, the procedure to find the effective metric is clear. We have to solve both the system
of equations for the imposter field equations 5.18 and the modified Einstein equations 5.30.
From this we can construct an effective metric g̃µν. This is a rather hefty challenge, but we
will see that the equations simplify immensely using perturbation theory.

The main attack in equations in CEG thus consists of first solving for the various tensors
such as the stress and strain tensor 5.3 and the simplifying tensors 5.17 under the correct
approximations for uµ. The next step is to try to solve for the evolution of the imposter
field through the imposter field equations 5.18. Subsequently, one solves for the metric
gµν through the modified Einstein equations 5.30. Since these are all coupled differential
equations, worst case scenario is that one needs to solve these all at once. From the metric
and the imposter field, one then recovers the effective metric from equation 5.8. This effective
metric determines the motion of matter, which is what we will tackle next.

5.5 The Equations of Motion

In order to obtain the equations of motion for a single particle, we place a single test particle
in our space and vary its path to obtain its equations of motion. The particle adds a matter
action of the form Sm = m

2

∫ √
−gµν Ûxµ Ûxνdτ. From our discussions on from Newtonian to
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Einsteinian gravity, we know that the equation of motion are determined by the geodesic
equations in general relativity. The equations of motions for the particle will be altered, since
instead of a normal metric, we know have an effective metric. This can also be seen from the
fact that our action 5.15 contains an interaction term between the field uµ by uµuν

u Tµν.

The derivation of the equations of motion can be found in the relevant section of the appendix
A. The imposter geodesic equations are:

Üxδ − β
uδuν

u
Üxν = Ûxµ Ûxν

(
βCδ

µν − Γ
δ
µν

)
(5.31)

Here we have introduced the imposter Christoffel symbols Cδ
µν as is done by Yen-Kheng Lim

and Qing-hai Wang [18]. These imposter Christoffel symbols are defined as:

Cδ
µν =

1
2
gδα

[
∂µ

(uαuν
u

)
+ ∂ν

(uαuµ
u

)
− ∂α

(uµuν
u

)]
(5.32)

Here the main contribution of the imposter field uµ to the motion of our particle comes from
the imposter Christoffel symbols Cδ

µν and not the modifications in the Einstein equations. In
the Newtonian approximation, we defined the potential of the field as φD = β

2 |u
0 |. From the

imposter Christoffel symbols Cδ
µν, we see that the force is indeed given by F ∼ Cδ

µν ∼ ∇φD .
Thus the force is indeed given by the gradient of the potential. Note that the imposter geodesic
equations 5.31 also imply that the gravitation force ∼ Γδµν and the force due to the imposter
field ∼ Cδ

µν are additive.

These equations are illustrated by the arrow from the effective metric to matter in figure 5.1
and determine how the metric plus the imposter field determine the motion of matter.

Now that we know how masses move due to the imposter field, we can make use of the
Newtonian approximation for the imposter field and study themotion of slow-moving particles.

Again, we consider the Newtonian limit. We assume that the metric is approximately
Minkowskian, such that gµν ≈ ηµν in formula 5.32 and formula 5.31. We also make the
assumption that uµ = (u0, 0). From our discussion on From Newtonian to Einsteinian gravity,
we know that the Christoffel symbols are the ’acceleration’ in general relativity. In fact, the
radial acceleration for slow-moving particles in a circular orbit is determined by:

Ür − ω2r = c2 (
βCr

00 − Γ
r
00

)
(5.33)

Let us consider a slow-moving particle circling a much heavier particle with a mass M
centered at the origin. This allows us to Cr

00 from its defining equation 5.32 and our the
imposter potential due to a point source 5.26. The effect of the Christoffel symbols are known
from Newtonian gravity. Inserting both the Christoffel symbols and imposter Christoffel
symbols in the radial acceleration equations 5.33 yields:

Ür − ω2r = −
GM
r2 −

√
GMa0

6
1
r

(5.34)

Thus for objects circling this mass, we obtain a tangential velocity by using the usual cen-
tripedal velocity law:

v2 = −r2ω2 =⇒ v =
√
−r Ûr =

√
GM

r
+

√
GMa0

6
(5.35)
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Thus our velocities should go to a constant at large radii:

vflat =

(
GMa0

6

) 1
4

(5.36)

This is exactly the result obtained by Vera Rubin, namely that the rotation curves of galaxies
appear to flatten for large radii. Since any mass distribution at large radii looks like a point
source, we obtain a rather important result, namely that if the total mass in the galaxy is M , the
rotation curves should tend to the value obtained above. This is an important experimentally
verifiable result, but it is also an effect commonly attributed to dark matter.

The fact that the flat velocity obeys the scaling relation M ∼ v4 and is not dependent
on other properties of the galaxy is an experimentally known fact (see Lelli et al. [13]),
known as the Tully-Fisher relation. Thus we have obtained our first theoretical evidence
for an experimentally observed phenomena. This phenomena is also explained by MOND.
However, CEG derives it from entropic principles and MOND simply postulates a form that
matches observations.

5.6 Perturbation theory

In the previous section, we ignored the contribution of the imposter field uµ to the modified
Einstein equations 5.30. This is fine in the Newtonian approximation that gµν ≈ ηµν and for
slow-moving particles, but may break down for particles with relativistic velocities.

The reason we would like to calculate whether the imposter field modifies the metric gµν is
because we will study the bending of light in the next section. From the bending of light,
we can calculate whether CEG predicts deviations of the bending angle of light with respect
to the predicted value by Einstein’s equations. This time we actually have to solve for the
effective metric as light moves at such high speeds that the ’magnetic components’ of the
metric become important. However, since the bending angle is usually very small (in the
order of arc seconds), we will use perturbation theory.

In order to find the appropriate bending of light, we will write the metric in terms of a
Minkowskian part ηµν plus a small perturbation hµν, so that gµν = ηµν + hµν. Furthermore,
we assume that the stress-energy tensor Tµν is of the same order as the perturbation. This last
assumption follows from the fact that we assume that the mass of the object must be small for
the perturbation to be small.

From Erik Verlinde’s theory we know that for spherical masses βuµ =
φB

c2 . This will turn out
to be exactly hµν, such that βuµ and hµν are of the same order.

Now since α ∼ β2 and β � 1, this also implies that √χ is of the same order as hµν. Using
these assumptions on the order of hµν,Tµν and uµ, the right-hand side of theModified Einstein
equations (equation 5.30) up to first order in hµν becomes:

Gµν = 8πGTµν (5.37)

We see that we can neglect the interaction the imposter field has with themetric. Alternatively,
we could also have stated that the extra terms in the modified Einstein equations are much
smaller than the usual terms, as indicated in the section on the modified equations.
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Equation 5.37 are the unmodified Einstein field equations. This confirms our statement that
the influence of the imposter field uµ mainly comes from the effective metric g̃µν, at least in
the weak-field limit.

The linearization of the Einstein equations under the assumptions that the perturbation hµν is
well known. For a pressure-less fluid (matter density without internal pressure), we know that
Tµν = ρvµvν. We will also assume that our matter does not move. Under these assumptions,
the only non-zero component is T00 = ρ.

By plugging hµν andTµν into the perturbedmodifiedEinstein equations 5.37, one can calculate
the perturbed metric hµν. This is done in any book on general relativity (for instance Sean
Carroll [5]). The results are best formalized in a gravitational potential φB such that the
metric becomes:

gµν =


−1 − 2φB 0 0 0

0 1 − 2φB 0 0
0 0 1 − 2φB 0
0 0 0 1 − 2φB

 with ∇2φB = 4πGρ (5.38)

Note that, if we were to plug this metric into the geodesic equation, this indeed leads to the
Newtonian gravitational law for slow-moving particles.

From this perturbed metric, we can calculate the perturbed effective metric by equation 5.8.
From our discussion on the Newtonian approximation of the imposter field uµ, we know that:

u =
2
β
φD with ∇ · (|∇φD |∇φD) =

a0
6

4πGρ (5.39)

This yields an effective metric in equation 5.8 of:

g̃µν =


−1 − 2φB − 2φD 0 0 0

0 1 − 2φB 0 0
0 0 1 − 2φB 0
0 0 0 1 − 2φB

 (5.40)

A few comments about this effective metric are in order. Firstly, the fact that the effective
metric only differs from the metric by a temporal component is logical as we used that uµ

only has a temporal component. Secondly, this effective metric together with the geodesic
equations (5.31) yield an effective Newtonian force of:

Fnet = −m∇φB − m∇φD (5.41)

This is exactly what we found in our previous Newtonian analysis of the imposter geodesic
equations 5.31. Let us offer a quick summary to collect our results and then move on to the
bending of light.

5.6.1 Summary of the interactions from the imposter field

In the preceding chapters we found that matter feels an additional force next to the gravitational
force. This force will be called the dark force and will have a potential φD . The normal
gravitational force will have a potential φB with the B of Baryonic matter. The resulting force
on a particle in the Newtonian approximation would simply be the sum of these forces. Thus
our model obeys:

Fnet = −m∇φD − m∇φB (5.42)
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We know reintroduce the speed of light to make our results truly Newtonian. The differential
equations for the potentials φD and φB are:

∇2φB = 4πGρ and ∇ · ( |∇φD |∇φD) =
a0
6

4πGρ (5.43)

These equations can be applied to slow-moving particles in CEG. In order to solve for
relativistic particles such as light, we needed perturbation theory. Using perturbation theory
and the assumption that uµ =

(
u0, 0

)
and φD = β

2 |u
0 |, we found that the effective metric is

given by:

g̃µν =


−1 − 2φB

c2 − 2φD

c2 0 0 0
0 1 − 2φB

c2 0 0
0 0 1 − 2φB

c2 0
0 0 0 1 − 2φB

c2


(5.44)

The corresponding imposter geodesic equations are:

Üxδ − β
uδuν

u
Üxν = Ûxµ Ûxν

(
βCδ

µν − Γ
δ
µν

)
(5.45)

Here we have defined the imposter Christoffel symbols Cδ
µν as:

Cδ
µν =

1
2
gδα

[
∂µ

(uαuν
u

)
+ ∂ν

(uαuµ
u

)
− ∂α

(uµuν
u

)]
(5.46)

These equations can be applied to both slow-moving particles and light. For slow-moving
particles, we found that at large radii, the velocity becomes a flat constant:

vflat =

(
GMa0

6

) 1
4

(5.47)

This theoretical fact is also observed experimentally and captured in the Tully-Fisher relation
[13].
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Chapter 6

Theoretical applications CEG

top left

In this chapter we will explore two theoretical consequences of our general relativistic formu-
lation of emergent gravity. These are gravitational lensing and an attempt at a cosmological
model. Our gravitational lensing results are applicable to any lensing systems. In order to
explain these results, we will however first focus on the bending of light in Newtonian gravity.
Afterwards we will move on to bending of light in GR for point masses and subsequently
general lensing systems.

Our cosmological model will consist of a vacuum dominated solution and a matter dominated
solution. The vacuum dominated solution will turn out to yield a constant imposter field,
whilst the matter dominated solution has a changing imposter field due to the changing matter
content of the universe.

6.1 Gravitational lensing

In this section we will use the previously obtained results to calculate the bending of light in
an arbitrary mass distribution in CEG.

6.1.1 Newtonian Gravitational lensing

Long before Einstein, physicist had considered the bending of light due to large masses. In
fact, in 1704 Newton wrote the following quote in his treatise on optics [22]:
"Do not Bodies act upon Light at a distance, and by their action bend its Rays, and is not this
action strongest at the least distance?"
In GR, light curves around masses as masses bent the nearby space-time. In Newtonian
gravity however, there is not a clear indication of why light should bent around masses. Light
has no mass, thus it would not feel a force. Nevertheless, this does not stop us from saying
that light feels an acceleration due to gravity, as masses cancel out in gravity. Let us therefore
calculate the bending angle due to classical mechanics as a warm-up for the general relativistic
case.

As the bending angle of light is extremely small in most cases (arcseconds or less), we will
use perturbation theory. This implies that we act as if the light follows a straight line and
simply moves a tiny bit in the direction of the mass.

In figure 6.1, we have sketched our situation. We consider a beam of light that passes the Sun
at a distance b. As we are doing perturbation theory, we assume that the light travels almost
entirely in the x-direction such that dx

dt ≈ c. The y-direction is thus the direction with impact
parameter b with the Sun. Let us calculate the acceleration in the y-direction:

d2y

dt2 = sin θ |∇φ| =
b

√
x2 + b2

|∇φ| (6.1)
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Figure 6.1: A light beam passing the Sun at an impact parameter b. The current position of the light is indicated by the yellow dot
and its current angle with the Sun is indicated by θ. The initial angle of the light beam was α.

Here the angle θ is the angle sin θ = y
√

x2+y2
≈ b√

b2+x2 as indicated in figure 6.1.

Now the angle the path makes with respect to the x-axis at any point is given by:

α =
dy
dx
=

dy
dt

dx
dt

=
1
c

dy
dt

(6.2)

The total deflection angle α in the y-direction is then the final angle minus the initial angle:

α =
1
c

[
dy
dt
|tfinal −

dy
dt
|t=0

]
=

1
c

∫
d2y

dt2 dt =
1
c

∫
d2y

dt2
dt
dx

dx =
1
c2

∫
b

√
b2 + x2

∇φB dx

(6.3)
Note that this formula is valid for anymatter distribution! We have substituted the acceleration
from equation 6.1. Now let us evaluate this angle for the total deflection due the Sun for a
light ray that started at x = −∞ and ends at x = +∞:

α =
1
c2

∫ ∞

−∞

b
√

x2 + b2

GM
x2 + b2 dx =

2GM
bc2 ≈ 0.87” (6.4)

Here b was taken to be R�, the radius of the Sun and the mass M as M�, the mass of the
Sun. This is already a remarkable result. In fact, we are only off by a factor of 2 with respect
to the general relativistic case. One of the successes of Einstein’s theory was to explain this
missing factor. In fact Jaume Giné [6] showed in a recent paper that one recovers the general
relativistic case if one uses a retarded gravitational potential.

6.1.2 Microlensing in CEG

We will now focus on the bending of light in GR. In special relativity, light moves at speed
c. Thus a light ray that moves in the x-direction moves a distance dx = cdt in a time dt.
This is equivalent to ηµνdxµdxν = 0 or to c2dt2 − dx2 = 0. Similarly, in GR, light satisfies
gµνdxµdxν = 0. The following problem now arises: In our covariant emergent gravity, does
light satisfy gµνdxµdxν = 0 or g̃µνdxµdxν = 0. Yen-Kheng Lim and Qing-hai Wang chose
the former, but we will argue for the latter.

Both the introduction of light and matter alter the distribution of entropy by their stress-energy
tensor Tµν in the interaction term. Since light alters the entropy distribution of the universe
due to its energy, it should, like matter, feel an additional force. Thus we must demand that
light satisfies g̃µνdxµdxν = 0 and use the imposter geodesic equation 5.31. Thus if light
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Figure 6.2: The deflection of light passing a lens of mass M at an impact
parameter b. The path x(0)µ is the unperturbed path and x(1)µ the perturbation.
The angle α̂ is the total deflection angle of the light geodesic. Credit to Sean

Carroll [5]
.

follows a path xµ(λ), it must satisfy the equations:

g̃µνdxµdxν = 0 (6.5)

Üxδ − β
uδuν

u
Üxν = Ûxµ Ûxν

(
βCδ

µν − Γ
δ
µν

)
(6.6)

The dot represents the derivative with respect to the parameter λ of the path. Let the path of
the photon also be a perturbation to an unnacelerated path:

xµ(λ) = x(0)µ(λ) + x(1)µ(λ) (6.7)

A pictorial interpretation of this can be found in figure 6.2. The following discussions follows
the discussion of Sean Carroll’s book [5] on the bending of light with a few alterations to
accommodate for the additional force. We denote the wave vectors as:

kµ =
dx(0)µ

dλ
, `µ =

dx(1)µ

dλ
(6.8)

We will again look for a vector that is perpendicular to the unaccelerated path. Thus a vector
perpendicular to the space part k of the vector of the path kµ. In order to find such a vector, we
first need to solve the set of equations 6.6 for the wave vectors at different orders. We will first
solve for various order for the first equation of the set. If during this derivation, something is
unclear, we advise the reader to return to the Newtonian lensing derivation (section 6.1.1).

At zeroth-order, the effective metric (equation 6.6) yields:

(k0)2 = k2 = k2 (6.9)

At first order, we obtain:
2ηµνkµ`ν + h̃µνkµkν = 0 (6.10)

Equivalently:
− 2k0`0 + 2` · k − (2φB + 2φD) (k0)2 − 2φBk · k = 0 (6.11)

Using our zeroth-order equation 6.9 and equation 6.11, we obtain:

− k `0 + ` · k = (2φB + φD) k2 (6.12)

Thus if we want to find a vector that is perpendicular to k, we need to solve for `0. We will
now solve for d`µ

dλ using the imposter geodesic equation of set 6.6. The zeroth order of this
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equation simply states that kµ (the zeroth order wavevector along the path) is an unaccelerated
path. However, at first order we have:

d`0

dλ
− 2φD

dk0

dλ
=

(
k0

)2
∂tφD − 2k (k · ∇φB) − 2k (k · ∇φD) (6.13)

Note that the kµ wave vector does not change along the path and thatwe ignore time derivatives,
thus the temporal component of the previous equation simplifies to:

d`0

dλ
= −2k (k · ∇φB) − 2k (k · ∇φD) (6.14)

This allows us to solve for `0 by integrating the previous equation:

`0 =

∫
d`0

dλ
dλ = −2k

∫
k · (∇φB + ∇φD) dλ = −2k

∫
dx
dλ
· (∇φB + ∇φD) dλ = −2k (φB + φD)

(6.15)

Now that we have solved for `0, we can find a vector that is perpendicular to the unaccelerated
path’s space vector k by the dot product in equation 6.12 by substituting the results of equation
6.15 :

` · k = (2φB + φD) k2 + k `0 = −φDk2 (6.16)

Thus the vector perpendicular to k is:

m = ` + kφD (6.17)

We will again use the acceleration in the direction of this vector to find the total deflection
angle. Since m contains the spatial components of the wave vectors, we will first solve for
these using the geodesic equation of the set 6.6 at first order:

d`
dλ
= −k2∇φD − 2k2∇⊥φB with ∇⊥φB := ∇φB − k−2 (k · ∇φB)k (6.18)

In this equation, we have defined the perpendicular gradient ∇⊥φB as simply the component
of the gradient perpendicular to the path. As in the classical case, the deflection angle vector
α is again given by the initial angle the vector m makes with the vector k minus the final
angle, which is given by:

α = −
(minitial

k
−

m f inal

k

)
= −
∆m

k
(6.19)

The minus sign is included to account for the fact that the observer sees minus this deflection
angle. We can calculate ∆m using our previous knowledge of the spatial components of `
(equation 6.18) and k:

∆m =
∫

dm
dλ

dλ =
∫ [

d`
dλ
+ k

dφD
dλ

]
dλ =

∫ [
d`
dλ
+ k

dφD
dxµ

dxµ

dλ

]
dλ (6.20)

= k2
∫
[−∇φD − 2∇⊥φB] dλ + k

∫
(k · ∇φD) dλ (6.21)

This can again be simplified using the perpendicular gradient:

∆m = k2
∫
[−∇⊥φD − 2∇⊥φB] dλ (6.22)
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We are almost done. We only have to replace the parameter λ by the physical distance traveled
on our path like in the classical case. The physical distance traveled up to zeroth order is:

s =
∫ √(

dxµ

dλ

)2
dλ = kλ (6.23)

This allows us to re-express the deflection angle vector in equation 6.22 as:

α̂ =

∫
[∇⊥φD + 2∇⊥φB] ds (6.24)

From this equation it is clear that the amount of matter you would predict on the basis of
lensing is different from the amount ofmatter youwould predict from the rotation curves by the
Newtonian force 5.42 as the baryonic and dark potential do not provide the same contribution
to the deflection angle. This is an important conclucsion. However, it also depends on the
assumption that we are in a comoving frame with the imposter field uµ = (u0, 0). Different
assumptions would also lead to a more complicated imposter field equation, possibly altering
the form of the imposter field and thus the dark force. Such a change however is not unlikely,
as the theory is still in the early stages. The derivation of the lensing equation in this report
can then be applied to the new model.

Before we look at the deflection angle caused by a point mass, let us first check if the formula
makes sense. The Einsteinian deflection can be found by setting φD = 0, which yields:

αclass = 2
∫
∇⊥φB ds (6.25)

Interestingly, if one wants to calculate this angle deflection without GR, one finds the same
formula without the factor of 2. This was because in Newton’s theory, the magnetic compo-
nents of the gravitational field were ignored even for light. These magnetic components are
the spatial part of our perturbed metric and amount exactly to an extra factor of ∇⊥φB. This
also sheds light on why we don’t recover this factor of 2 in front of φD , as the imposter field
only affects the temporal part of our metric.

As a quick side note, it can be shown that the deflection angle (equation 6.24) is equivalent
to having an index of refraction n = 1 − 2φB

c2 −
φD

c2 . We could equivalently have done the
whole analysis starting with this refractive index and solving for the extremes of the action
S =

∫
n ds and would have arrived at the same result for the deflection angle.

An important point is to be made on the boundary of the integrals. Since Erik Verlinde’s
theory consists of a Hubble sphere of radius L, the maximum result would be obtained if we
integrated from −L to L. However, for an object of a small size relative to this scale, all the
deflection will happen when the light is very close to the object. Thus we can safely extend
the limits to −∞ to ∞, as the only important contribution comes from the point of closest
approach of the light.

6.1.3 Deflection due to the Sun

Let us calculate this deflection angle 6.24 in case of a point mass with mass M , using that:

φB = −
GM

r
and φD =

√
GMa0

6
ln r + C (6.26)
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Suppose the background path was originally along the x-direction. Let the impact parameter
be b, which is the point of closest approach. We then find:

φB = −
GM
√

x2 + r2
=⇒ ∇⊥φB =

GM(
b2 + x2) 3

2
b (6.27)

In the same fashion:

φD =

√
GMa0

6
ln r =⇒ ∇⊥φD =

√
GMa0

6
1(

b2 + x2) b (6.28)

Then our deflection angle in equation 6.24 becomes:

α̂ = 2GMb
∫

dx(
b2 + x2) 3

2
+ b

√
GMa0

6

∫
dx

x2 + b2 (6.29)

If we integrate this from one side of our Hubble sphere to the other, this becomes:

α̂ =
4GM
b c2

[
L

√
b2 + L2

]
+ 2

√
GM
6c2L

arctan
(

L
b

)
(6.30)

The deflection in GR is usually determined by integrating from −∞ to∞. which yields:

α̂ =
4GM
bc2 + π

√
GM
6c2L

(6.31)

The normal maximum deflection due to the Sun is 1.75 arcseconds and is found by integrating
from −∞ to ∞ . The extra deflection acquired when we integrate the new formula from −∞
to ∞ would be 0.91 · 10−6 arcseconds. This was calculated using values as reported in the
physical constants section. This extra deflection is comparable to the error in the deflection
due to the error in the physical constants.

Let us see which astronomical objects do yield a significant impact. Using a constant density
M = ρ4

3πb3 and factoring common terms yields:

α̂ =
4GM
bc2

©­«1 +
√
π

8
√

2

√
c2

GρbL
ª®¬ (6.32)

Thus to find deviations due to CEG, we need to look for galaxies with a low density and light
rays with small impact parameters. This is generally the regime of strong lensing. However,
caution should also be taken at small impact parameters as the current CEG framework only
deviates from Einstein at at accelerations smaller than a0.

6.1.4 The lens equation

From the previous discussion, it might appear that these deflection angles are incredibly small.
For instance we would need a telescope with an effective diameter of 10 kilometers at optical
wavelengths to measure the deviation due to CEG. However, the previous calculated angle
isn’t the full story as we haven’t accounted for the fact that the observer does not have to be
co-linear with the source nor do source and lens.

This is depicted in figure 6.3. Let α̂ be the calculated deflection angle, θ be the observed
angle of the image and β be its true angle. The measured deflection angle is related to these
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Figure 6.3: The geometry of gravitational lensing. The angle θ is the observed angle by the observer, whilst β is the observed
angle when the gravitational mass is not present. The angle α̂ is the actual deflection angle and α the observed deflection
angle. The parameter ξ is the impact parameter, which is denoted in this report by b. The distances are the angular diameter
distances. "Michael Sachs."Wikpedia. Wikipedia.org, 6 June 2008, https://commons.wikimedia.org/wiki/File:Gravitational-lensing-

angles.png. Accessed 30 june 2019.

by: α = θ − β . Let us call the vertical distance between source and lens S and between image
and lens I. The angular distance between observer and lens is Dd, between source and lens
Dds and between source and observer Ds. From the geometry of the image and the fact that
we are working with large distances, it follows that:

I − S = θDs − βDs I − S = Ddsα̂ (6.33)

Thus we obtain the lens equation:

β = θ −
Dds

Ds
α̂ (6.34)

As a quick side note, as we are working with angular distances to account for the curvature of
space-time between the various objects, the distances do not necessarily add: Ds , Dds +Ds.

Suppose we now consider again our point source with mass M and a co-linear source lens
and image, such that β = 0. The impact parameter b is then simply Ddθ and our deflection
angle is given by 6.31. This yields a lens equation 6.34 of:

0 = θ −
Dds

DdDs

4GM
θc2 −

Dds

Dd
π

√
GM
6c2L

(6.35)
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This is a quadratic equation in θ. For convenience, let us define the Einstein angle and
Verlinde angle:

θE =

√
Dds

DDDs

4GM
c2 θV =

Dds

Dd
π

√
GM
6c2L

(6.36)

Then the solution to the quadratic equation 6.35 becomes an Einstein-Verlinde ring at an
angle:

θ =
θV +

√
θ2
V + 4θ2

E

2
(6.37)

This is a ring around the lens by all the light rays that were sent from the source. The other
negative solution is not a true solution to the quadratic equation, as negative angels would
also require us to shift θV → −θV due to the vector nature of equation 6.29. We obtain using
the lens equation 6.34 for non-colinear sources (β , 0) two images at:

θ± =
β ± θV ±

√
(β ± θV )

2 + 4θ2
E

2
(6.38)

We thus see that the Einstein-Verlinde rings are slightly enlarged in comparison to the usual
rings.

6.1.5 General lensing systems

For general lensing systems, the situation is a bit more complicated. For instance, when a
source is lensed by a galaxy, the image will appear magnified and distorted, just as with a
normal non-perfect lens. Two important quantities of such a general lens are its convergence
κ and its shear γ. The convergence can be thought of as the power of the lens, thus it describes
the focusing of the lens. The shear, is a measure of the distortion of the shape of the source.
An often cited example is that circular sources can be distorted into elliptical ones. The
convergence κ is clearly related to the mass along the path the light ray takes, whilst the shear
is related to how the potential of the current path differs from a nearby light ray’s path. In
astrophysical situation, both the convergence and shear are calculated by investigating a large
number of background sources of light and the way their pattern statistically deviates from
a non-distorted shape due to a gravitational lens. It is therefore important to investigate the
convergence and shear in CEG. However, this is similar to replacing 2φB to 2φB + φD in the
known formulas for shear and convergence in astrophysics. The theoretical framework for
solving for general lensing systems can be found in any book on gravitational lensing or in
Sean Carroll’s book [5]. For the interested reader, we have provided a summary in appendix
C that incorporates CEG.

The results are best summarised in terms of the lensing potential:

ψ(θ) =
Dds

DdDs

∫
[φD + 2φB] ds (6.39)

The converge then becomes:

κ(θ) =
1
2
∇2
θψ with ∇θ = Dd∇⊥ (6.40)

In order to state the shear, we will use the notational convenience:

ψi j =
∂2ψ

∂θi∂θ j
(6.41)
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If the light rays move along the z-direction, the convergence then becomes κ = 1
2 [ψ11 + ψ22].

The shear γ in CEG then becomes:

γ = ±
√
γ2

1 + γ
2
2 with γ1 =

1
2
(ψ11 − ψ22) and γ2 = ψ12 (6.42)

It is clear that the convergence is a measure of the amount of matter along the path of the light
ray and the shear a measure of the difference between neighbouring light ray paths. These
results could be used to test whether CEG provides an accurate description for the measured
bending angle for light rays instead of theories of dark matter. Finally, the magnification M
is given by the usual formula:

M =
1

(1 − κ)2 − γ2
(6.43)

6.2 Cosmological model

Let us now try to solve for the imposter field uµ in a more realistic metric; a RobertsonWalker
metric with zero curvature κ = 0:

gµνdxµdxν = −dt2 + f (t)2
(
dr2 + r2dθ2 + r2 (sin θ)2 dφ2

)
(6.44)

Sabine Hossenfelder [11] already solved for uµ in an empty Robertson-Walker universe, but
we will also solve for the evolution of the imposter field in a matter dominated universe
by means of the imposter field equations 5.18. This section is not meant to represent a true
cosmological model, butmerely to investigate the evolution of the imposter field in the existing
cosmological models and the impact this has on the geodesic equations and properties of the
space. We will also show that the assumption that the imposter field does not contribute to
the modified Einstein equations 5.30 no longer holds in cosmology and that the imposter field
may actually yield an important contribution to the evolution of the Hubble parameter in our
current dark energy dominated cosmological era.

As Hossenfelder did, we take the comoving ansatz:

uµ = (u(t), 0, 0, 0) (6.45)

This simply states that the density of the imposter field increases/decreases in an expanding
universe, which is true for all densities, such as matter, radiation and vacuum densities.
Inserting this expression into the strain and stress tensors (equation 5.3) yields for the strain
tensor:

εµν =


2 Ûu 0 0 0
0 −2u f Ûf 0 0
0 0 −2u f Ûf r2 0
0 0 0 −2u f Ûf r2 (sin θ)2

 (6.46)

The stress tensor Fµν vanishes. Inserting the expression for the strain and stress tensor into
our expression for the imposter scalar field 5.4 and using that 3a + b = 0 yields:

χ = −
b
6

(
2 Ûu + 6u

Ûf
f

)2

+
b
2

4

(
( Ûu)2 + 3

(
u
Ûf
f

)2)
(6.47)
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Simplifying this result and introducing the Hubble parameter as H =
Ûf
f in equation 6.47

yields:

χ =

(
4
3

b Ûu2 − 4bu ÛuH
)

(6.48)

We can also solve for our auxiliary tensors in equation 5.17 by inserting our expression of the
strain and stress tensor into equation 5.17:

Bµ0 = δ
µ
0

(
b
3
(2 Ûu + 6uH) + 2b Ûu

)
= δ

µ
0

(
8
3

b Ûu + 2buH
)

(6.49)

Plugging our imposter scalar field into the imposter field equations 5.18 yields:

3α
4πG

∂0

[√
b
3
Ûu2 − bu ÛuH

(
4
3

b Ûu + buH
)]
=
β

2
ρ (6.50)

These equations are valid whether the Friedman equations apply or not.

To make headway in solving these equations, we assume that the impact of the imposter field
on the Einstein equations 5.30 is negligible, such that the Hubble parameter is determined by
the Friedman equation:

H2 =
8πG

3
ρ +
Λ

3
(6.51)

Before we move on to solving equation 6.50 for the various universes, we can derive some
intuitive analytical results for the various densities in our universe. For instance, let ρ be the
density of matter in our universe at a certain time t. After a while, space has expanded by a
factor f (t). The density thus decreases as ρ(t) = ρ0 [ f (t)]−3. This can be stated in terms of
the Hubble parameter as Ûρρ = −3H.

Actually, from the conservation equations of the baryonic components, it follows that all
baryonic densities scale as power laws given by ρ ∝ f −n or Ûρρ = −nH. We will now move on
to solving the evolution equation of the imposter density in various universes.

6.2.1 Vacuum dominated universe

Now we touch upon an important concept. The constants α and β are determined by the
current value of the size of the universe L = 1

H0
. The question is whether we let our constants

α and β evolve as H evolves or not. From our earlier analysis, we know that βα = 2H0. Note
that the question whether we let the constants evolve does not matter in a vacuum dominated
universe, as H = H0 is constant in such a universe.

In a vacuum dominated universe with cosmological constant Λ, we have H = H0 and ρ = 0.
The imposter field equations 6.50 then become:

0 = ∂0

[√
b
3
Ûu2 − bu ÛuH0

(
4
3

b Ûu + buH0

)]
(6.52)

An easy solution to this equation is of course a constant imposter field u(t) = u0 such that
Ûu = 0. Upon integration (introducing the integration constant κ) and squaring, we find:

κ =

(
b
3
Ûu2 − bu ÛuH0

) (
4
3

b Ûu + buH0

)2
(6.53)
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Another interesting solution is provided by κ = 0 and Ûuu = −nH with n = 3. Both solutions
make the imposter scalar χ vanish in equation 6.48. Note that the constant solution makes
sense. The Hubble constant is fixed and thus the Hubble horizon doesn’t move, implying no
stress in the medium.

Inserting this solutionsinto the Einstein equations 5.30 yields no contribution of the Imposter
field. AsHossenfelder also noted, the onlyway for the imposter field uµ tomake a contribution
in a vacuum dominated universe is by adding a mass term to the Lagrangian [11]. At the
very least, it is comforting to see that the field equations for the imposter field have a constant
solution in the case that it should be constant according to EG.

6.2.2 Matter dominated universe

In a matter dominated universe, the Hubble parameter varies as H = 1
t . It is not clear what

the constants α and β should be, as no vacuum energy is present and the Hubble parameter
varies with time. However, we will still assume that βα = 2H0. Substituting our choice into
the imposter field equation 6.50, we find that:(

−
1

2H0t
+ κ

)
=

√
b
3
Ûu2 − bu Ûu

1
t

(
4
3

b Ûu + bu
1
t

)
(6.54)

Again, easy solutions are found when the integration constant κ = 0. We assume that b = −4
from our Newtonian discussion in CEG. This yields the more instructive solution:

u = −
(

3
20

) 3
4
(

t
H0

) 1
2

, n = −
1
2

(6.55)

Inserting this back into our expression for the scalar field 6.48, we find that:

χ =
1

H0

√
20
3

1
t

(6.56)

Note that χ ∼ H
H0

. We find that we can only ignore the contribution of the imposter field to the

modified Einstein equations (5.30) when the density ρ has the property that Gρ � H
3
2 H

1
2

0 . In
our matter-dominated universe, the matter density is estimated to satisfy Gρ ∼ H2. We thus
see that our initial assumption that we can ignore the contribution of the imposter field to the
Einstein equations is only valid when H � H0 or simply times much smaller than the age of
our universe.

The physical interpretation of the fact that u (the one with the upstairs indices) is increasing
is as follows. We know that when we introduce matter to our De Sitter space, the entropy
content of our universe decreases due to the fact that the size of our universe went from
L → L + u(L). As time moves on, the baryonic density ρ ∼ t−2 decreases. This causes the
size of our universe to slowly return to its initial size L = 1

H0
, which is similar to a positive

shift u0 = −u(t).

If we were to combine both the vacuum-dominated and matter-dominated universe solutions,
we see that for early times (H � H0 when matter/radiation dominates), the imposter field
u ∼
√

t. For later times H ∼ H0, the imposter field becomes a constant.
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6.2.3 Effective metric

If one is able to sole for the imposter field in an FLR-metric using the imposter field equations
5.18 and the modified Einstein equations 5.30, then the following procedure shows the effects
of this imposter field.

According to the previous solutions, the effective metric will be of the form:

g̃µνdxµdxν = − (1 + βu) dt2 + f (t)2
(
dr2 + r2dθ2 + r2 (sin θ)2 dφ2

)
(6.57)

This can be transformed back into a Robertson-Walker metric using the transformation
(dt∗)2 = (1 + βu) dt2 or t∗ =

∫ √
1 + βu dt. We thus recover an effective metric of the

form:

g̃µνdxµdxν = − (dt∗)2+ f [t(t∗)]2
(
dr2 + r2dθ2 + r2 (sin θ)2 dφ2

)
with t∗ =

∫ √
1 + βu(t) dt

(6.58)
Thus we see that the effect of the imposter field is to modify the evolution of the scale factor.
The scale factor may also be further changed trough the modified Einstein equations 5.30.
For the vacuum-dominated universe, it is obvious that the constant imposter field solution
does not alter the dynamics of space-time as t∗ and t have a constant ratio.

In case of the matter-dominated universe, we find that t∗ ∼ t
5
4 . From our analysis, we know

that in a matter-dominated universe, f (t) ∼ t
2
3 . Thus we see that f (t∗) ∼ [t∗]

8
15 . As 2

3 ≥
8

15 ,
we see that the effect of the imposter field is thus to decrease the expansion of space and thus
the redshift of light in the early universe H � H0. In this new coordinate system, the Hubble
parameter H(t∗) ∼

[ 1
t∗

] 4
5 .

Actually integrating and solving for t∗ in equation 6.58 yields:

t∗ =
4
5

(
3
20

) 1
8
(
3H0

5

) 1
4

t
5
4 , H(t∗) =

(
20
3

) 1
10

(
5

3H0

) 1
5
(

5
4t∗

) 4
5

(6.59)

Of course, we can again calculate the age of the universe by settingH(t∗) = H0, which yields an
age of 14.7 ·109 years, which is slightly older than the age of our universe using current models
of 13.2 · 109 years. However, as we assumed H � H0 in our matter-dominated universe,
this is of course not a true representation of the age but just an estimate. A full solution for
a cosmological model can be obtained by numerically integrating the field equations 6.50
together with the modification the imposter field makes to the Einstein equations 5.30.

Caution should however be taken. Remember that we chose the constants a, b, d in equation
5.4 in order to make a constant solution for the imposter field possible, a.k.a. Hossenfelder’s
way of fixing the constants. This is not a problem because at present no other way is known
to fix these constants and all we are now saying is that there exists a set of constants such that
a constant solution is possible.
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Chapter 7

Fourier-Bessel methods & results

top left

In this chapter we will provide the numerical framework which we will use to solve gravita-
tional problems in MOND and CEG. Firstly, we will develop a numerical method that can be
used to solve the non-linear differential equation for the imposter potential (5.43). The meth-
ods we will develop are applicable to cylindrical matter density distributions and will make
use of an iterative algorithm with Bessel and Fourier transformations to solve the non-linear
differential equations. This methods could also be used to solve for the potentials in MOND.
As not much research has gone into numerical methods to solve for the MOND equations,
this makes the developed numerical methods interesting beyond the context of CEG.

We will apply our developed algorithm to both a spherical case (the sun) as on galaxy
NGC6503. Both cases will be used to analyse the effectiveness of the algorithm.

7.1 Theoretical Summary

In this section we provide a theoretical summary of the theory that we will test numerically.
For a full description of CEG, we recommend the relevant section in the theoretical chapter.
We will also introduce another theory, MOND, which is a rival theory to CEG that makes
similar predictions.

In the preceding chapters we found that matter in CEG feels an additional force next to the
gravitational force. This force will be called the dark force and will have a potential φD .
The normal gravitational force will have a potential φB with the B of baryonic matter. The
resulting force on a particle in the Newtonian approximation would simply be the sum of
these forces. Thus the particles in our model obey:

Fnet = −m∇φD − m∇φB (7.1)

These potentials satisfy the following differential equations:

∇2φB = 4πGρ and ∇ · ( |∇φD |∇φD) =
a0
6

4πGρ (7.2)

The non-linear differential equation for φD will be solved using the numerical algorithm we
will develop in the next sections.

The important prediction of CEG was that the speed of the stars and gas in galaxies would
become a constant far away from the center. A graph of the speed of these components is
called a rotation curve. In the theoretical chapter (equation 5.36), it was found that the dark
potential φD would lead to a velocity contribution to the rotation curves that only depends on
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the mass M of the galaxy as:

Vdark =

(
GMa0

6

) 1
4

(7.3)

These equations completely determine the path of non-relativistic particle in the Newtonian
approximation and are all that we need from the theoretical section on CEG.

The predictions of CEG are similar to those of Modified Newtonian Dynamics (MOND). This
is a theory invented by Mordehai Milgrom [2] to explain why the rotation curves of galaxies
tend to flatten when the acceleration drops below am = 1.2 · 10−10 ms−2. This constant is
usually called a0, but that name is already reserved in CEG with the approximate relation
a0 ≈ 6 am. Like CEG,MOND also has a relativistic formulation called Tensor–Vector–Scalar
gravity (TeVeS) [3], which was developed by Jacob Bekenstein in 2004.

In MOND there is only one potential, which we will call φm. This potential satisfies the
equation:

∇ ·

(
µ

(
|∇φm |

am

)
∇φm

)
= 4πGρ (7.4)

The interpolation function µ(x) is chosen such that when the acceleration is much larger than
am, µ(x) → 1, such that φm = φB to mimic Newtonian behaviour at high accelerations. At
accelerations much smaller than am, the function is chosen such that µ(x) → x, mimicking
the behaviour of the dark potential. A common choice for the interpolating function is the
standard interpolating function:

µ(x) =
x

√
1 + x2

(7.5)

It is clear that for x → 0, µ(x) → x, such that the defining equation for the potential φm in
MOND (equation 7.4) becomes similar to the equation for the dark potential φD in equation
7.2 with the approximate relation am =

a0
6 . This implies that the flat part of the rotation

curves in MOND become:
vflat = (GMam)

1
4 (7.6)

It is clear that both MOND and CEG predict similar behaviours in the regimes in which the
acceleration is much larger than a0 or much smaller. An important test would be to test their
behaviours in the intermediary region. This region coincides with the measurements of the
rotation curves of 175 galaxies done by the SPARC project [15]. We will thus compare the
two theories against the observations. This will be done in the next chapter. First we will
introduce the numerical method developed during this project to solve for the potentials φB
and φD in cases that the baryonic density is known.

7.2 Numerical baryonic potential

Before stating the numerical methods we use, we would like to note the following: The
transformation laws and the numerical algorithm to solve for the dark and baryonic potential
were mainly developed by my supervisor Dr. P. M. Visser during this project and I claim no
ownership over the results of this section.

7.2.1 Fourier-Bessel transform for scalars

Let us first solve for the baryonic potential φB in equation 7.2, as this is the easiest of the pair.
There are several ways to solve for the baryonic potential φB using equation 7.2 otherwise
known as Poisson’s equation. A subset of these methods include Bessel functions, Green’s
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function and Fourier transforms. One of the most common methods is to use the three
dimensional Fourier transform:

F (φ) =

∭
φ(r)e−i r·kd3r (7.7)

If we then Fourier transform Poisson’s equation 7.2, we obtain the following equation for the
Fourier transform:

F

(
∇2φB

)
= 4πGF (ρ) =⇒ −(k2

x + k2
y + k2

z )F (φB) = 4πGF (ρ) (7.8)

This yields the straightforward solution:

F (φB) = −
4πGF (ρ)
(k2

x + k2
y + k2

z )
(k , 0) (7.9)

We are thus able to convert differential equations in the spatial domain to algebraic equations in
the Fourier domain. Inverting this transform then yields the baryonic potential corresponding
to that specific density. Such a method however requires a lot of computational memory, as
we will show next. If we were to choose a three dimensional grid with size N × N × N , our
Fourier transforms would also be of size N3. For instance, if we take a grid with N = 1000
points along each dimension, then our Fourier transform would take up 1GB of memory if
we count each entry as a bit, which is a severe underestimation. Nonetheless, we also tested
this method in the numerical results section next to the method we will develop next.

Since the three dimensional Fourier transform would prove to be too computationally heavy,
we can make use of the symmetries we have in our system. Suppose we are working in a two
dimensional world in which we will be using polar coordinates (r, θ) and let f (r, θ) = f (r) be
a circular symmetric function. Then the two dimensional Fourier transform of f (r) is:

F [ f (r)] =
∬

f (r)e−ir·kd2r (7.10)

Transforming to polar coordinates and picking a system such that the k-vector lies on the
θ = 0 axis, we find that:

F [ f (r)] (k) =
∫ ∞

0

∫ 2π

0
f (r)e−irk cos θ rdθdr = 2π

∫ ∞

0
f (r)r J0(kr) dr (7.11)

By using the symmetry of our function f , we have turned a two dimensional Fourier transform
into a one dimensional Hankel transform. For three-dimensional functions with cylindrical
symmetry, we can do the same trick. Let us choose cylindrical coordinates r, θ, z and a density
function ρ that is cylindrical symmetric ρ(r, θ, z) = ρ(r, z). Using the previous result, the
three dimensional Fourier transform of a cylindrical symmetric function ρ(r, z) is equivalent
to the two dimensional Fourier-Bessel transform:

F [ρ(r, z)] (k, `) = 2π
∫ ∞

−∞

∫ ∞

0
ρ(r, z)r J0(kr) e−i`z dr dz (7.12)

We have found a different way of solving the Poisson equation 7.2 for cylindrical symmetric
potentials. Instead of using a three dimensional Fourier transform, we will use a two di-
mensional Fourier-Bessel transform. This allows us to calculate the gravitational potential
on a large grid without taking up too much memory. We will indicate the transformation of
a function f (r, z) by the Fourier-Bessel transformation simply by f̃ (k, `) and it satisfies the
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transformation rules:

f (r, z) =
∫ ∞

0

∫ ∞

−∞

k J0(kr) ei`z f̃ (k, `) d`dk (7.13)

f̃ (k, `) =
1

2π

∫ ∞

0

∫ ∞

−∞

r J0(kr) e−i`z f (r, z) dzdr (7.14)

In an analogous fashion, we can now calculate the Fourier-Bessel transformation of the
Laplace operator:

∇̃2φ =
(
−k2 − `2

)
φ̃(k, `) (7.15)

This again allows us to solve for the baryonic potential φB using equations 7.12, 7.14 and
7.15:

φ̃B(k, `) =
−4πG
k2 + `2 ρ̃(k, `) (7.16)

These results are all very similar to their 3D Fourier counterpart. We are now able to solve
for the baryonic potential using the Fourier-Bessel transformation (equation 7.12). However,
if we also want to solve for the dark potential φD in equation 7.2, we will need a bit more
machinery. For instance, we will see that the Fourier-Bessel transform of vectors isn’t quite
as simple as its scalar counterpart.

7.2.2 Bessel-Fourier transform of vectors

We will now look at the Fourier-Bessel transformation of vectors. Since our density will have
cylindrical symmetry, so will all our relevant vectors. Thus we can write a vector and its
Fourier-Bessel transform as:

F(r, z) = r̂F1(r, z) + ẑF2(r, z) (7.17)

F̃(k, `) = r̂F̃1(k, `) + ẑF̃2(k, `) (7.18)

The following set of vector transformation laws were proposed by my supervisor Dr. P. M.
Visser:

F(r, z) =
∫ ∞

0

∫ ∞

−∞

[
r̂ iJ1(kr)F̃1(k, `) + ẑ J0(kr)F̃2(k, `)

]
kei`z d` dk (7.19)

F̃(k, `) =
1

2π

∫ ∞

0

∫ ∞

−∞

[−r̂ iJ1(kr)F1(r, z) + ẑ J0(kr)F2(r, z)] re−i`z dz dr (7.20)

These transformations are conjugate symmetric (up to a factor of 2π). A curious reader might
now wonder why we would use J1 instead of J0 for the radial transformation. The reason for
this, is that we want the derivatives of the transform to be of the same form as the transform
itself. Otherwise, we would not be able to use them on an equation such as the non-linear
differential equation for φD in 7.2. If we had just used J0, the derivative of J0 would be J1
and we would not be able to relate this derivative of the transformation back to our original
transformation. This issue was not present in the scalar case, as the unwanted terms exactly
cancel for the second derivative.

Wewill now compute the divergence and curl of a vector field in terms of these transformations
in order to solve the non-linear differential equation 7.2. But, let us first state several important
identities of the Bessel functions:

J ′1 +
J1
x
= J0 and J ′0 = −J1 (7.21)
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Using these identities and the transformation laws proposed in 7.20, one can show that the
divergence of a vector field satisfies:

− i ∇ · F =
∫ ∞

0

∫ ∞

−∞

(
kF̃1 + `F̃2

)
k J0(kr) ei`z d` dk (7.22)

Since the gradient is a scalar, this is simply the transformation rule (equation 7.14) for a scalar
in terms of its vector components in the Fourier-Bessel domain:�−i ∇ · F = kF̃1 + `F̃2 (7.23)

Similarly, one can find the transformation of the curl of a vector:

− i ∇ × F = θ̂
∫ ∞

0

∫ ∞

−∞

(
kF̃2 − `F̃1

)
k J1(kr) ei`z d` dk (7.24)

This expression is not directly related to any of the transformations we have discussed before
due to the θ̂ component. This will not bother us however, as we will only need the transfor-
mation of the gradient. Now that we know the transformation rules for vectors, we can finally
attempt to solve the non-linear differential equation for the dark potential.

7.3 Numerical dark potential

A common way to solve a non-linear differential equation such as 7.2, is by starting with a
trial solution and using an iterative algorithm. We will use our newly found transformation
rules for the Fourier-Bessel transform to construct such an iterative algorithm for φD , but first
let us think of a trail solution. Instead of working with the dark potential, let us define a new
dark vector F:

F := |∇φD |∇φD =⇒ ∇ · F =
a0
6

4πGρ (7.25)

The implication follows from equation 7.2.

If we are able to solve for F, we can find the gradient of the dark potential from the inverse
relation:

∇φD =
1√
|F|

F (7.26)

Thus our main goal will be to solve for F such that it satisfies 7.25. Right from the start, a
great trial solution would be to use the gravitational field vector g = −∇φB, since this vector
already satisfies the equation ∇ · g = −4πGρ by Poisson’s equation 7.2. We therefore propose
to start our iterative algorithm with the trail solution:

F0 = −
a0
6

g (7.27)

In fact for spherical symmetric distributions, this would already be the exact solution. One
can check that equation 7.26 is indeed the same solution that we found in equation 5.27 for a
spherical symmetric distribution.

However, in general this might not be the true solution for F. This is because the right-hand
side of equation 7.26 might not be a true gradient, as it might still have a non-zero curl. We
should create a new vector F1 from F0, such that equation 7.26 yields a true potential for F1.
This can be easily done by only keeping the divergence part of 1√

|F |
F.
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However, when we only keep the divergence part, we face the new problem that this new
vector would not necessarily satisfy its defining equation 7.25. Thus we create a new vector
F2 from F1 such that it satisfies equation 7.25 etc. It is clear that we are going in circles, but
hopefully for our uses, we can develop an iterative algorithm that converges. The aim of the
algorithm is thus to let the vector F both satisfy its defining equation (7.25) as to make sure
that equation 7.26 is a true potential.

Before we lay out the algorithm, let’s first remind ourselves of an important theorem in
Analysis: Helmholtz theorem. Helmholtz theorem states that any vector field F satisfying
certain well behaved boundary conditions can be decomposed into a part with zero curl and
a part with zero divergence as:

F = ∇φ + ∇ × A (7.28)

In which φ is a scalar function called the potential and ∇ × A is called the magnetic part,
which we will denote by B := ∇ ×A and A is called a vector potential. In practice, all vector
fields that we are interested in satisfy these boundary conditions as it was shown by Milgrom
and Bekenstein [2] that for finite bodies the magnetic part decreases faster with radius r as 1

r3

and the decrease of ∇φ for finite bodies goes as 1
r2 or faster. The gradient of the potential and

magnetic part are uniquely specified by respectively the divergence of F and the curl of F.

Since we know that the divergence of F is up to a constant equal to the divergence of the
gravitational field vector g by equation 7.25, we can actually solve for the divergence part of F.
Since the gravitational field vector has zero curl, we find using equation 7.25 and Helmholtz
theorem, that we can always write:

F = −
a0
6

g + B (7.29)

This will always be our base equation to satisfy, along with finding a true potential in equation
7.26. For cases of high symmetry, such as spherical, cylindrical or planar, the magnetic field
vanishes. This is easy to show using a Gaussian surface to solve for equation 7.2.

7.3.1 The Fourier-Bessel method for the dark potential

It is time to introduce the algorithm. In order to keep the following discussion clear, we have
included a table 7.1 with the name of each vector, the equation it satisfies and its use. We have
also included a figure 7.1 which can be read alongside the following discussion. The main
aim of the algorithm is to keep removing unwanted aspect of vectors in the Fourier-Bessel
domain such as their divergence or curl.

Name Symbol Def. Use

Gravitational contr. g g = ∇φB In 7.29
Dark vector F F = |∇φD |∇φD F = − a0

6 g + B
Magnetic contr. B B = F + a0

6 g In 7.29
Dark potential vector f f = F√

|F |
f = ∇φD

Table 7.1: Table showing the definitions of the various vectors used in the
Fourier-Bessel method

We will use the same initial solution as discussed earlier. Once we have solved for the bright
potential using Fourier-Bessel transformations, we can calculate the gravitation field vector
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Figure 7.1: Illustration of the Fourier-Bessel method.

g. Thus we will start with our trail solution:

F0 = −
a0
6

g (7.30)

Our trial solution is simply the vector F with zero magnetic component in equation 7.29.
From this vector we can construct a new vector according to right-hand side of equation 7.26:

f0 =
1√
|F0 |

F0 (7.31)

Again, from Helmholtz theorem we know that we can write f0 as the sum of a potential and
magnetic part:

f0 = ∇φ0 + ∇ × A (7.32)

We are only interested in the potential part by equation 7.26. If we were able to remove the
magnetic part from this vector f0, we would obtain a true potential and would indeed satisfy
equation 7.26. We can remove unwanted components using our Fourier-Bessel transform.
We will now show how one can obtain just the divergence part of 7.32. This is repeatedly
done in the following way:

We know that the divergence of the curl part in equation 7.32 is zero, thus:

∇ · f0 = ∇
2φ0 (7.33)

We can solve for the potential by Fourier-Bessel transforming both sides, which yields using
equation 7.15 and 7.23:

φ̃0(k, `) =
1

i(k2 + `2)

(
k f̃1 + ` f̃2

)
(7.34)

In which the 1 and 2 indicate the components of the transform of f0. Inverting this transform
yields the divergence part of f0 in equation 7.32.
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Thus we now satisfy equation 7.26 with our new f0 → ∇φ0. However, we also need to check
whether we still satisfy our base equation 7.29. This is done by reconstructing f and F by:

f1 = ∇φ0 and F1 = |f1 | f1 (7.35)

We can then check whether we satisfy our base equation 7.29 by checking whether B is a true
magnetic field with zero divergence. We find this vector from 7.29 by:

B1 = F1 +
a0
6

g (7.36)

To check whether this is a true magnetic field, we solve for its potential using the same trick
as before:

∇ · B1 = ∇
2φ (7.37)

If this is zero, we can stop and we have found our previous solution for F was correct. If not,
we find this potential using our Fourier-Bessel transform:

φ̃(k, `) =
1

i(k2 + `2)

(
kB̃1 + `B̃2

)
(7.38)

In which the 1 and 2 denote the components of the Fourier-Bessel transform of B1. We then
subtract the gradient of this potential from our magnetic field, to find a true magnetic field:

B2 = B1 − ∇φ (7.39)

We now know that we satisfy our base equation 7.29 since this is a true magnetic field. From
this magnetic field, we can again construct F by using our base equation 7.29:

F3 = −
a0
6

g + B2 (7.40)

However, we find ourselves were we started. We have a certain F that satisfies our base
equation 7.29, but we do not know whether equation 7.26 yields a true potential. Thus we
repeat the same algorithm over again untill we have converged to a solution that satisfies both
equation 7.29 and equation 7.26.

Thus our algorithm consists of 9 steps:

1. Initialize with the trail vector for F:

F = −
a0
6

g (7.41)

2. Construct the vector f:
f =

1√
|F|

F (7.42)

3. Find the potential part ∇φ of f by solving for φ in the Fourier-Bessel domain:

φ̃(k, `) =
1

i(k2 + `2)

(
k f̃1 + ` f̃2

)
(7.43)

4. Construct the new vectors f and F:

f → ∇φ and F = |f | f (7.44)
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5. Construct the magnetic field B from:

B = F +
a0
6

g (7.45)

6. Solve for the potential part∇φ of this magnetic field using the Fourier-Bessel transform:

φ̃(k, `) =
1

i(k2 + `2)

(
kB̃1 + `B̃2

)
(7.46)

7. Construct a new magnetic field without the divergence part:

B→ B − ∇φ (7.47)

8. The new trail function for F will be:

F = −
a0
6

g + B (7.48)

9. Go to step 2

This loop continuous until the magnetic field B has converged. The potential of the final
vector f is then our dark potential φD . We will test our algorithm by applying it to the case
of a spherical density, for which it is known that the magnetic field vanishes.

From the bright potential φB and dark potential φD we can calculate the tangential velocity by
using the net force law (equation 7.1) and the approximation that stars move in nearly circular
orbits, such that |Fnet | = m |v |

2

r according to the centripetal law.

7.3.2 Altered Fourier-Bessel method for the dark potential

We will also present an altered version of this algorithm and test this altered version against
the previously introduced version. The aim of this altered version is to avoid using the vector
transformation laws and to only use the scalar transformation laws. Such an alteration only
requires an easy change to our algorithm. For instance, in equation 7.33, we solved for the
divergence of f in the Fourier-Bessel domain. This was done by first transforming f into
the Fourier-Bessel domain using vector transformation laws and subsequently calculating the
divergence in this frequency domain. This is shown on the right hand side of equation 7.34.
Thus we first convert a vector into the frequency domain and then convert it into a scalar.

However, we can also simply first calculate the divergence ∇ · f in the spatial domain such
that we only have to transform a scalar. Subsequently, we transform this scalar into the
Fourier-Bessel domain. Thus instead of solving equation 7.34, we solve the equation:

φ̃(k, `) =
−1

k2 + `2 ∇̃ · f(k, `) (7.49)

In which we have already solved for ∇ · f in the spatial domain such that we only have to trans-
form scalars. A similar change can be applied to calculating the divergence component of the
magnetic contribution. Such a change allows us to only transform scalars, reducing the com-
plexity of the algorithm and the need for the vector transformation laws. The alterations only
affect steps 3 and steps 6 of the algorithm with the substitutions

(
k f̃1 + ` f̃2

)
→ −i∇̃ · f(k, `)

and
(
kB̃1 + `B̃2

)
→ −i�∇ · B(k, `) using equation 7.23. This is effectively doing nothing but
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it allows us to calculate ∇ · f in the spatial domain and then convert to the Fourier-Bessel
domain instead of calculating the Fourier-Bessel vector components f̃1 and f̃2 using 7.20.

7.3.3 Software and Implementation

We have implemented the software intoMatlab R2018b as we had have to work with large ma-
trices and matrix multiplications. The Fourier transforms was done using the FFT alogrithm
already present in Matlab. No such algorithm exists in Matlab for the Bessel transformations.
The Bessel transformations are therefore done by using the quasi-discrete Hankel transform
developed by Guizar-Sicairos and Gutiérrez-Vega [10] for solving field propagation problems
in optics. This transform was implemented by Chouinard and Baddour [1] into Matlab.

7.4 Testing the numerical algorithm; Spherical symmetric case

7.4.1 Numerical bright potential

In this section we present the results of the numerical algorithm as applied to the Sun. We
will use the symbols M� for the solar mass and R� for the solar radius. The true solution for
the baryonic gravitational force in the plane z = 0 is:

gbar(r, 0) =


−

GM�
r2 r̂ for r ≥ R�

−
GM�r

R3
�

r̂ for r ≤ R�
(7.50)

The analytical and numerical solution for gbar and Vbar for the Sun are plotted for a grid with
maximum grid radius of 10R� and 100R� in figure 7.2 and 7.3 respectively. Both use a grid
with twice as many points in the z-direction, such that the maximum z-value coincides with
the maximum r-value. For both figures a grid of size 8000 × 4000 was used. The numerical
solutions are indistinguishable upon visual inspection from the analytical solutions except
for at the boundary. Such boundary effects are expected for Fourier transforms and Bessel
transforms as both have to cover a jump discontinuity at the boundary with a finite sum of
continuous functions. The boundary effects are almost unnoticeable in gbar, but can be easily
identified in the velocity graphs.

Despite diverging at the boundaries, the analytical and numerical solution are in good agree-
ment with a RMS value for the error of 0.3103 for the solution at a maximum radius of 10R�.
The numerical solution is however always larger than the analytical one making the error not
uniformly distributed. This is further quantified by a rejection based at a 5% significance
level from both a χ2 and Kolmogorov-Smirnov test between the numerical and analytical
gravitational potentials.

We will also test the Fourier-Bessel method against a 3D Fourier based method using the
same ideas as in the Fourier-Bessel method. This is done in figure 7.4 for the Sun, on a grid
of size 400 × 400 × 400 for the 3D Fourier method and a grid with size 400 × 200 for the
Fourier-Bessel method. For numerical calculations, both the Fourier method and Fourier-
Bessel method yield accurate results with a rms value of 5.3486 for the Fourier method and a
rms value of 0.9941 for the Fourier-Bessel method. However, the Bessel method calculated
velocities are in much better agreement with the analytical velocities with a rms value of
1.0110 · 104, whilst the Fourier method had a rms value of 3.2196 · 104 with the main error
coming from boundary effects.
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Figure 7.2: Comparison between the analytical solution for the sun and the numerical solution using the Fourier-Bessel
algorithm. The left figure shows a comparison between the analytical and numerical solution for gbar. The right figure
shows a comparison between the analytical and numerical solution for Vbar as computed by the centripetal law. A grid of

[z, r] = 400 × 200 points was used with a maximum radius of R = 10R� and similar maximum height.

Figure 7.3: Same as figure 7.2, except for a domain of size 100 R�.
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Figure 7.4: Comparison between the analytical solution for the sun and the numerical solution using the Fourier-Bessel
algorithm and a similar algorithm based on 3D Fourier methods. The left figure shows a comparison between the analytical
solution for gbar and the numerical solutions as obtained by the Bessel-Fourier and 3D Fourier method. The right figure
shows a comparison between the analytical solution forVbar as computed by the centripetal law and the numerical solutions
as obtained by the Bessel-Fourier and 3D Fourier method. A grid of size [x, y, z] = 400 × 400 × 400 was chosen for the

3D Fourier method and [z, r] = 400 × 200 for the Bessel-Fourier method.

It is thus clear that the Fourier-Bessel method outperforms the Fourier method even on smaller
grid sizes. Another advantage is that the Fourier-Bessel method also allows for much larger
grid sizes due to the fact that we only need a two-dimensional grid. We also calculated the
deflection angle for a right ray passing the sun at an impact parameter of b = R�. This was
calculated by using equation 6.29 by numerically integrating a path with impact parameter
b = R�. The bending angle was found to be α = 1.7402" for the Fourier-Bessel method,
matching the theoretical value closely. This makes the Fourier-Bessel algorithm an interesting
algorithm to calculate deflection angles.

7.4.2 Dark potential

Less accurate results were obtained for the dark potential. For a spherical symmetric system
one can easily calculate the dark potential φD from equation 7.2 using a Gaussian sphere and
using spherical symmetry. This yields for the dark potential:

gdark = −

√
−

a0
6
gbar (7.51)

The solution for the dark acceleration gdark and dark velocity Vdark is plotted in figure 7.5.
It is clear that the boundary effects have a larger impact on the dark force and velocity. To
calculate the dark acceleration, we used the numerically determined bright force from the
previous section. Using the analytical bright force yielded similar boundary effects. Once
again, the boundary effects are most prevalent in the velocity plots.
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Figure 7.5: Comparison between the analytical solution for the dark force for the sun and the numerical solution using
the Fourier-Bessel algorithm. The left figure shows a comparison between the analytical and numerical solution for gdark.
The right figure shows a comparison between the analytical and numerical solution for Vdark as computed by the centripetal
law. A grid of [z, r] = 400 × 200 points was used with a maximum radius of R = 10R� and similar maximum height.

Large boundary effects are visible due to the Fourier-Bessel methods in both figures.

7.4.3 Alteration to Fourier-Bessel method

In order to avoid the boundary effects in figure 7.5, we will use our altered Fourier-Bessel
method. It was noticed during the numerical simulations that the boundary effects depend
heavily on the number of operations performed in the frequency domain. The alterations to
the algorithm as proposed in the section on the altered dark potential algorithm yield better
results, as shown in figure 7.6. In both cases (figure 7.5 and 7.6), a maximum radius of
10R� was chosen to show the boundary effects clearly. When a maximum radius of 100R�
was chosen, the boundary effects produced the exact same deviations. This shows that both
methods can still be used to study gravitational systems as long as the maximum radius is
chosen large enough to avoid boundary effects.

A comparison of both the Fourier-Bessel method and the altered Fourier-Bessel method is
shown in figure 7.7. In the left figure, we have plottedB and− a0

6 gbar to show their contribution
to F = − a0

6 gbar + B. It is clear that for both methods the magnetic contribution is negligible
inside the sun but yields a significant contribution at the boundary for the first method (non-
altered algorithm) and a non-zero contribution to the second (altered algorithm). The second
figure shows the logarithm of the rms value of the differences between magnetic fields of
consecutive iterations. The logarithmic graph shows that both methods converge extremely
fast. As the alteration to the algorithm shows better results, we will use this version throughout
the rest of this chapter.

We conclude that the method provides a good fit to the bright potential, but fails to replicate
the flat velocity profile for the dark potential. This can be mitigated by choosing a large
enough grid such that the effects of the divergence is small.



7th

82 Chapter 7. Fourier-Bessel methods & results

Figure 7.6: Comparison between the analytical solution for dark force for the sun and the numerical solution using the
altered Fourier-Bessel algorithm. The left figure shows a comparison between the analytical and numerical solution for
gdark. The right figure shows a comparison between the analytical and numerical solution for Vdark as computed by the
centripetal law. A grid of [z, r] = 400 × 200 points was used with a maximum radius of R = 10R� and similar maximum

height. Boundary effects are visible due to the Fourier-Bessel methods in both figures.

Figure 7.7: The left figure shows both the value of gravitational contribution − a0
6 gbar and the magnetic contribution B

to the dark vector |∇φD |∇φD = − a0
6 gbar + B. All vectors were calculated using a grid representing the sun. It is clear

that the magnetic contribution is negligible except for at the boundary. The right figure shows the convergence of the
magnetic contribution B with respect tot the number of iterations for the Fourier-Bessel method (meth. 1) and the altered
Fourier-Bessel method (meth. 2). The error is the difference between successive values of the magnetic contributions.

The values were calculated using a base 10 logarithm.
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7.5 Spiral galaxy NGC6503

Wewill now apply the altered Fourier-Besselmethod to our favorite galaxy, namelyNGC6503,
a dwarf spiral galaxy in the constellation Dragon. This is one of the few galaxies in SPARC
for which our density profiles accurately fit the baryonic velocities as calculated by SPARC.
The density profiles for the stellar disk and gas components were dicussed in the section on
the SPARC data set in the chapter on astrophysics and galaxies. We would like to note that
the purpose of this section is not to accurately fit those density profiles, but to test our method
in a case that they do.

7.5.1 Mass-to-light ratio

Wewill fix the mass-to-light ratio for the stellar disk by using the flat velocityVflat to calculate
the total stellar mass. This is done in the following fashion:

We can calculate the mass-to-light ratio of a galaxy if we know the total mass of the galaxy M
as M = γdiskL∗ +Mgas with L∗ the observed total luminosity of the stellar disk. We also know
that there exists a direct link between the velocity contribution Vdark of the dark potential φD
and the total mass asVdark =

( a0
6 GM

) 1
4 by equation 7.3. We therefore propose to calculate the

velocity contribution the dark potential φD makes to the observed flat velocity of the rotation
curveVflat. If the baryonic velocity contribution to the flat part of the rotation curve isVbar, the
dark velocity is given by V2

dark = V2
flat −V2

bar. Of course, Vbar also depends on the mass-to-light
by from equation 2.10. Setting the two expressions for Vdark in this discussion equal, yields:√

a0
6

G
(
γdiskL∗ + Mgas

)
=

√
a0
6

GM = V2
dark = V2

flat−V2
bar = V2

flat−Vgas |Vgas |−γdiskV2
disk (7.52)

As we know Vflat, Vdisk and Vgas from the SPARC data, wwe can solve the mass-to-light ratio
γdisk. We then use the stellar luminosity profile and scale this appropriately such that the
integral over the volume yields the total stellar mass. This fixes our stellar mass density
profile. For the gas density profile we use the same luminosity profile as in the baryonic
calculation. We then solve for the bright and dark potential with the algorithm and calculate
the rotation curves as predicted by MOND and CEG and compare them with the actual
observed rotation curves of the galaxy in question. This entire section is therefore to test our
numerical algorithm on real examples.

We would like to note that we do not fit a single parameter. This makes the approach we
followed highly valuable for both CEG and MOND like density reconstructions from the flat
velocity and the luminosity profiles.

7.5.2 Results NGC6503

In figure 7.8 two plots are shown. We will first focus on the left plot. In this plot the
Newtonian/baryonic velocity is plotted as Vbar as calculated by the SPARC team for a light-
to-mass ratio of unity. From our density profiles, we calculated the baryonic velocities as
predicted by our profiles, which is plotted asVkep. We also plotted the baryonic contribution to
the rotation curve of the diskVdisk and of the gasVgas. It is clear that the reason that our density
profile works so well is because the disk dominates the dynamics of the galaxy, for which we
have an exact luminosity profile. The second plot in figure 7.8 shows the observed velocity
in NGC6503 corrected for inclination and distance. We also plotted the predicted velocity
in CEG based on our altered Fourier-Bessel method. The mass of the disk was estimated as
indicated in the numerical theory section, yielding a mass-to-light ratio of γ = 0.4090 M�

L� .
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Figure 7.8: The left figure shows both the calculated baryonic velocityVbar calculated by the SPARC team as the numerical
baryonic velocity as calculated by the altered Fourier-Bessel algorithm based on the assumed density profiles for galaxy
NGC6503. The gas contribution Vgas and disk contribution Vdisk to Vbar were calculated by the SPARC team based on the
measured luminosity profiles. The values were calculated using a disk mass-to-light ratio of unity. The right figure shows
the observed velocitiesVobs as in the SPARC database vs the calculated velocitiesVceg in CEG based on the altered Fourier-
Bessel algorithm and the assumed density profiles. We also plotted the dark velocity Vdark , the velocity contribution due

to the dark potential. The mass-to-light ratio was calculated as explained in the numerical theory section.

Several important conclusions can be drawn from baryonic velocities as calculated by the
SPARC team. Firstly, we see that Vgas is non-zero when the rotation curves have become
flat. This implies that the velocity in CEG will drop below the flat velocity of the rotation
curve as the baryonic contribution of the gas drops. Thus the flat velocity in CEG will drop
further as the baryonic contribution drops, making the velocity not exactly flat. In general,
the baryonic contribution is non-zero when the rotation curve is already flat for all SPARC
galaxies, making a good case for transition theories such as MOND or dark matter.

We also see that due to the fact that CEG is an additive theory (gobs = gbar + gdark), the CEG
velocity shows the same peak at 2.2 times the disk scale length of the disk as Vdisk. This peak
is usually not present in the rotation curves of galaxies, indicating that the mass-to-light ratio
for the disk has to be small in CEG, such that this peak is suppressed.

We would also like to note that the overestimation of CEG at 15 kpc might be caused by the
fact that we overestimate the density at 15 kpc, as is clear from the left figure (7.8).

Now we will consider the magnetic contribution and the error. We have again plotted the
Magnetic B and Gravitational contribution a0

6 gbar to F in equation 7.29 and the error between
consecutive magnetic fields in figure 7.9. This plot is a great insight into the magnetic
contribution in disk galaxies. Firstly, the magnetic contribution is highest when the density
is largest. This is clear from the form of the non-linear differential equation 7.2; higher
densities imply that more potentials of individual point masses overlap, creating extra pair-
wise contributions to the magnetic contribution.
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Figure 7.9: The left figure shows both the value of gravitational contribution − a0
6 gbar and the magnetic contribution B to

the dark vector |∇φD |∇φD = − a0
6 gbar + B. All vectors were calculated using assumed density profiles describing galaxy

NGC6503. The right figure shows the convergence of the magnetic contribution B with respect tot the number of iterations.
The error is the difference between successive values of the magnetic contributions for the altered Fourier-Bessel method

(meth. 2). The values were calculated for a base 10 logarithm.

The right plot in figure 7.9 shows that the magnetic contribution converges similar to the
spherical case. In order to test the effect of the magnetic contribution, we will also calculate
a velocity that ignores the magnetic contribution solely based on the predicted mass-to-light
ratio and the baryonic velocity. This is velocity is called Vfit. This velocity is not dependent
on the density profiles but just on the baryonic velocitiesVbar from SPARC. In the next chapter
we will explain how one should calculate such a velocity, but all we need to know right now is
that this velocity is not dependent on our density profiles and just on the SPARC data. We have
plotted this velocity Vfit against the rotation curves of CEG and the observed rotation cuves
in figure 7.10. The velocity is in good agreement with the predictions of the Fourier-Bessel
method, except at the points that we overestimate the density. This shows that the magnetic
contribution is negligible in this galaxy and that our numerical method works well.

However, there are several reasonswhywe cannot draw conclusions from the SPARCdatabase.
Firstly, our density profiles onlymatch the SPARCvelocitieswhen the velocities are dominated
by the disk velocity, indicating that our gas velocity does not fit the data. Secondly, the
produced velocities are dependent on the chosen maximum grid radius. This is because the
density profiles change slightly when we alter the maximum radius due to the finite grid.
Thirdly, as in CEG the velocity is not truly flat, it is hard to estimate the mass-to-light ratio
from formula 7.52. In conclusion, there are too many variables that can be varied to make
a general conclusion about CEG from our density profile. This is why we will fit CEG and
MOND velocity curves to the rotation curves in the next section.

Nonetheless, the convergence of the magnetic contribution and the match between Vceg and
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Figure 7.10: The figure shows the observed velocities Vobs as in the SPARC database vs the calculated velocities Vceg in
CEG based on the altered Fourier-Bessel algorithm and the assumed density profiles for galaxy NGC6503. We also plotted
the dark velocity Vdark , the velocity contribution due to the dark potential and the velocity Vfit. The latter velocity is the
velocity based solely on gbar as calculated by SPARC and equation 8.3. The mass-to-light ratio was calculated as indicated

in the numerical theory section.

Vobs shows that our altered Fourier-Bessel method can be used to calculate both CEG and
MOND rotation curves in cases that the actual density profiles are known.
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In this chapter we will describe the fits of MOND and CEG to the SPARC database of 175
galaxies. We will use this database to test both the prediction of CEG and MOND against
the actual observed rotation curves by fitting both theories to the rotation curves. We will use
three fit parameters: the mass-to-light ratio, the disk inclination and galactic distance. We
will fit these parameters to the observed rotation curves using a Markov Chain Monte Carlo
(MCMC) algorithm. Our fitting procedures are described in this chapter as well as the results.

8.1 MOND and CEG fits

The previous chapter was thus to test our algorithm on real examples. However, in order
to make quantitative statements about the overall effectiveness of MOND and CEG, we will
also fit both theories to the rotation curves. Of the 175 SPARC galaxies, we will only use
the galaxies that do not have a significant bulge and a quality flag of Q = 1, 2. This reduces
our fitting set to 131 galaxies. Such fittings for CEG are interesting, because it was shown by
Lelli. et al that EG did not describe the rotation curves well [16].

In these fits, we will only use the baryonic calculated acceleration by the SPARC team to
explain the observed acceleration. The baryonic acceleration at a galactic radius R is given
by:

gbar =
γdisk V2

disk + Vgas |Vgas |

R
(8.1)

The symbols we use throughout this chapter were explained in the section on the SPARC data
set in the chapter on astrophysics and galaxies. We advise the reader to return to this chapter
for definitions of the various symbols.

From this baryonic acceleration, one can calculate the acceleration due to MOND, gmond,
and due to CEG, gceg, in a straightforward manner. From our section on the bright and dark
potential in the Fourier-Bessel method chapter, we know that the potential of the modified
theories (equation 7.29) are related to the baryonic potential as:

µ

(
|gmond |

am

)
gmond = gbar + ∇ × Amond , |gdark | gdark =

a0
6

gbar + ∇ × Aceg (8.2)

In their 1984 joint paper, Milgrom and Bekenstein showed that the magnetic component
(∇ × A) decreases as O(r−3). For our current purposes, this implies that we can neglect
this terms contribution to the actual velocity, as the other terms scale as O(r−2). Thus we
effectively set (∇ × A = 0 in equation 8.2. This implies that both the acceleration in MOND
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and CEG can be predicted from the baryonic acceleration gbar as:

gmond = gbar
©­«1

2
+

1
2

√
1 +

(
2am
gbar

)2ª®¬
1
2

, gceg = gbar +

√
a0
6
gbar (8.3)

These predictions for the acceleration are compared against the actual observed acceleration
in SPARC:

gobs =
V2

obs
R

(8.4)

Such a fitting procedure as described above, in which the observed acceleration is fitted
against other theories of gravity using just the baryonic acceleration, is more commonplace
in astrophysics than the density profile procedure described earlier. For instance, fitting with
different fit parameters were done for other modified gravity theories such as neo-MOND
[23] and MOG [9]. A CEG fit was also performed by Hossenfelder [12] with only a0 as fit
parameter. Our approach will be similar to the approach taken in [17], but then applied to
MOND and CEG.

8.1.1 Fitting parameters

Since both Vgas and Vdisk are known, we seem to have only one fitting parameter: the mass-
to-light ratio γdisk of the disk in equation 8.1. However, as was done in [17], we will also fit
the galactic distance to the galaxy D and the inclination i of the galaxy disk. This is done
because the 5 different methods in SPARC to estimate the galactic distance D have an error of
5% to 15%. Similarly, the inclination i also has non-negligible errors in the SPARC database.
We will thus leave these parameters (the distance and inclination) as free parameters in our
fit model. We will now discuss how varying these parameters with respect to their values in
SPARC impacts our dataset as was done in [17].

Since the observed rotation velocity Vobs are determined based on line-of-sight velocity,
changing the inclination from i → i′ changes the observed velocities and its error by:

V ′obs = Vobs
sin i
sin i′

, δV ′obs = δVobs
sin i
sin i′

(8.5)

Since we are working with small angles, changing the galactic distance from D→ D′ changes
the radius R and baryonic velocities as:

R′ = R
D′

D
, V ′bar = Vbar

√
D′

D
(8.6)

Changing the distance does not affect the observed velocities. Notice that these transfor-
mations (equation 8.6) do not affect the baryonic acceleration g′bar = gbar in equation 8.1.
However, taking both the inclination change (8.5) and galactic distance change (8.6) into
account implies gobs in equation 8.4 changes as:

g′obs =

(
sin i
sin i′

)2 D
D′

gobs (8.7)

Thus changing the inclination (equation 8.5) and galactic distance (equation 8.6) only changes
the observed values and does not change our baryonic values. We will next describe the fitting
method we use. In our fits we will thus compare the observed acceleration g′obs corrected for
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our new inclination i′ and distance D′ to the MOND and CEG accelerations (equation 8.2).
The latter does not change when we change the distance and inclination of the galaxy.

8.1.2 Fitting procedure

Due to the degeneracy’s in 8.7 between the fitting parameters i and D, cftool cannot obtain
good bounds on these parameters, even when we constrain them to be in the intervals D′ ∈
[D − δD,D + δD] and similarly i′ ∈ [i − δi, i + δi] in which D is the original galactic distance
and δD the error as calculated by SPARC.

Instead, we will use a Markov Chain Monte Carlo (MCMC) algorithm or as it is known in
less formal company: the MCMC Hammer algorithm. We use a Matlab implementation of
Goodman & Weare’s Affine Invariant Markov chain Monte Carlo Ensemble sampler [8] as
implemented by Aslak Grinsted. The following approach is similar to the approach taken by
the SPARC team [17] applied to their radial acceleration theory.

A MCMC sampler starts by initiating a set of random walkers at a set of randomly chosen
points in the parameter space of the fit parameters. The goal is to have these random
walkers converge to a desired equilibrium distribution around the desired parameter values.
This is done by defining a log likelihood function. When the parameters that the random
walkers currently have yield a rotation curve that matches the observed velocities well, the
log likelihood function is high and visa versa. The random walkers then respond to this
log likelihood function by walking to fit parameters that have a high log likelihood function.
The log likelihood function is thus designed to let the random walkers converge to the fit
parameters that fit the curve best.

Next to a log likelihood function, we should also make sure that the random walkers cannot
converge to undesirable or nonphysical values in the parameter space. This is done by
introducing a prior distribution for the fitted variables γdisk,D and i. These prior distributions
ensure that our parameters stay close to the actual SPARC parameters and deviate only from
these parameters within the error range of these parameters as calculated by SPARC. For
instance, the prior distribution for the galactic distance D is a Gaussian with as mean the
SPARC value and as standard deviation the error SPARC calculated for this distance.

The log likelihood function thus ensures that our random walkers converge to fit parameters
that match the observed rotation curves. The prior distributions ensure that our fit parameters
stay reasonable. The eventual Markov chain of all the random walkers will then have as its
distribution the equilibrium distribution of the actual parameter set of that specific galaxy.

In our MCMC sampler, we wish to minimize the difference between the observed rotation
curve and the calculated rotation curve. This is done by minimizing the function:

χ2
v = −

∑
R

[gobs(R) − gtot(R)]2

(N − f )σ2
obs

(8.8)

In which gtot is either gmond or gceg. In this function we have already corrected for the new
inclination and distance. N is the amount of data points and f the degrees of freedom of the
fit (3). Notice that we simply minimize the error between our rotation curve and the observed
rotation curve weighted by the error in the observed value. The minus sign is introduced to
ensure that when the error between our curve and the observed curve is low, our function χ2

v

is largest etc. This will be our log likelihood function.
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We calculate the error in the observed data σobs as:

σobs = 2Vobs
δVobs

R
(8.9)

In which we also correct for the new inclination and distance.

As priors for γdisk,D and i, we will use Gaussian distributions centered at the measured
SPARC values for D and i and a mean of 0.5 M�

L� for γdisk. The distance and inclination priors
will have standard deviations given by the error in the SPARC data. The standard deviation
for γdisk will be 0.2 M�

L� . This last deviation is based on assuming a uniform distribution for
γdisk in our universe and on the measured values for γdisk ranging from 0.1 M�

L� to 0.8 M�
L�

according to [20].

Note that the actual value of the deviation is not important, but it should be high enough to
allow for changes in the Markov chains. We will also require that our parameters remain
physical, thus γdisk > 0 , D > 0 and 0° < i < 90°. The first 500 steps of the chain will be
considered as burn-in and a total number of steps for the total of the random walkers of 105.
After the simulation we will discard another 20% of the data as burn-in.

8.2 Fitting CEG and MOND

In this section we will present the results from the MCMC fits to SPARC. The actual fitted
parameters for all 131 SPARC galaxies can be found in appendix D.

Out of the 131 fits, 9 fits (7%) were poor fits (R2 < 0) and 62 galaxies (47%) were excellent
fits (R2 > 0.9) and 94 good fits (R2 > 0.7). Because we used three fitting parameters, we
also present the adjusted R2-value. These yielded similar results with 54 galaxies excellent
adjusted R2-values and 86 good fits by previous definitions.

The poor fits can be due to several reasons. Firstly, the standard deviations we imposed for
the priors on the inclination i and galactic distance D may be too tight or the errors were
underestimated in the SPARC data. Secondly, the galaxies might have dust contents that
shroud the disk luminosity profiles, reducing gdisk. Thirdly, the baryonic acceleration was
based on the calculated baryonic velocities from the SPARC team, which they calculated
from luminosity profiles taken from other groups (mainly (75%) PHD theses from RUG).
This introduces room for human error that we have not taken into account as the calculated
acceleration is very sensitive to changes in the baryonic velocity. The SPARC team also
released a paper [17] on their radial acceleration equation, in which only 10% of the galaxies
were a poor fit. We should however add that we use smaller subsets from the SPARC data with
better quality. They considered all SPARC galaxies, which includes galaxies with quality flag
Q = 3 and bulges. In cases of bulge galaxies they introduced another fitting parameter γbulge

For 15 additional galaxies that were a good fit, the error in γdisk was larger than the actual
value. This does not imply that the fit was poor, as can be seen for galaxy DDO161 in figure
8.1 and galaxy NGC4214 in figure 8.2. Such a large error in γdisk might be indicative that
the gas dominates the rotation curves and that the disk contribution to the velocity is thus
negligible. This is supported by the fact that the large errors in the mass-to-light ratio mainly
occurred for galaxies with γdisk < 10−3. This indicates that these errors happen when the gas
contribution dominates the rotation curve. We have also included galaxy IC2574 in figure
8.3, which is traditionally hard to fit by dark matter theorems [17]. We find R2 values of
0.9839 and 0.9860 for CEG and MOND respectively for IC2574.
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Figure 8.1: The figures show the fits of the velocities as calculated by CEG (Vceg) and MOND (Vmond) to the observed
velocities Vobs by SPARC of gas dominated galaxy DDO161 respectively. We used the three fit parameters in a MCMC
fitting algorithm based on the baryonic calculated acceleration gbar and Gaussian priors on the fit parameters and a log-
likelihood maximization. We fitted the mass-to-light ratio γdisk, distance D and inclination i based on priors and estimates
by SPARC. The velocities and errors are corrected for the distance and inclination and we also show the gas velocity

contribution Vgas and the disk contribution Vdisk for a mass-to-light ratio of unity.

Figure 8.2: Same as figure 8.1 but for SPARC galaxy NGC3741.
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Figure 8.3: Same as figure 8.1 but for SPARC galaxy IC2574.

8.2.1 Fit results

In figure 8.4 the residuals of both fits are plotted. These residuals were best fitted by a sum of
two Gaussian:

y =

2∑
i=1

ai e−
(
x−bi
ci

)2

(8.10)

For both CEG and MOND fits, these Gaussians had means close to zero, indicating that the
fits do not over/underestimate the data. The CEG double gaussian had a R2 value of 0.9953
and the MOND had a R2 value of 0.9949 indicating good fits. We fitted a double Gaussian
similarly to [17], due to the fact that there are two main contributions to the error in the
observed velocity. The first error in Vobs comes from fitting a disk to the luminosity profile to
estimate the inclination by the SPARC team. The second error inVobs is due to the asymmetry
between velocities in the approaching and receding sides of the galaxy (which were averaged
over) [17].

We will now consider the mass-to-light ratio of both CEG and MOND both plotted in figure
8.5. We will ignore the galaxies that were a poor fit (R2 < 0). We also plotted the line
γ = 0.5 M�

L� , which is the value predicted by current population synthesis models, indicated
by a red vertical line. We calculated the trimmed mean at 95%. For CEG, this yielded
γdisk = 0.4675 M�

L� andMOND γdisk = 0.6896 M�
L� . However, as this meanmight be influenced

by the error due to the gas dominated galaxies, we will also present the medians, which are
0.4810 M�

L� and 0.7054 M�
L� for CEG andMOND respectively. However, the mass-to-light ratio

is not constant from galaxy to galaxy as metal-rich galaxies tend to have a larger mass-to-light
ratio. Further increasing the standard deviation in the prior of γdisk did not significantly affect
our results, but decreasing it yielded smaller values of γdisk. This is because the random
walkers are less likely to travel do to the smaller standard deviation.

Next, we will consider the similarities and differences between the MOND and CEG fits.
In figure 8.6 we have plotted the CEG vs MOND scatter plots for the mass-to-light ratio,
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Figure 8.4: The left and right figure show the residuals of the fitted velocities to the SPARC observed velocities of CEG
and SPARC respectively. We also fitted a double Gaussian as there are two main contributions to the error as indicated in

the text with resulting fit parameters as indicated in the figure.

Figure 8.5: The left and right figures show respectively the mass-to-light of stellar disk of CEG and MOND for 122
SPARC galaxies as fitted by the MCMC algorithm based on three fit parameters with Gaussian priors. We excluded 9
galaxies that were a poor fit (R2 < 0) of the original 131 galaxies. The median values of both plots are 0.4810 M�

L� and
0.7054 M�

L� for CEG and MOND respectively. We also plotted a red line indicating the stellar population synthesis model
value of 0.5 M�

L� .



8th

94 Chapter 8. Testing MOND and CEG to observed rotation curves

Figure 8.6: The figures shows scatter plots between MOND and CEG based on three fitted parameters of the MCMC
algorithm applied to 131 galaxies of the SPARC database. We excluded 9 galaxies that were a bad fit (R2 < 0). The top left
plot shows the scatter plot between the mass-to-light ratios of the different models. A good fit of the form y = ax + b was
obtained with parameters R2 = 0.9954, a = 1.18 ± 0.03, b = 0.03 ± 0.02. The upper right plot shows the scatter between
the R2 values. A good fit was obtained by a line y = ax + b with R2 = 0.9311, a = 0.98± 0.02, b = 0± 0.02. The bottom
left plot shows the scatter between the calculated distances by CEG and MOND. A good fit was obtained by a straight line
y = ax + b with R2 = 0.9256, a = 1.07± 0.03, b = 0.1± 0.1. The bottom right plot shows the inclinations as predicted by
both models. We also found a good fit by a straight line y = ax + b with R2 = 0.9120, a = 0.96 ± 0.03, b = 0.05 ± 0.04.

The displayed errors are the errors based on the MCMC fittings.

R2-value, distance and inclination. In all scatter plot we only considered curves that were
good fits (R2 > 0). To all plots we have also fitted a straight line with the errors produced
in the fits as weights. The plot in the left upper corner shows the relation between the two
mass-to-light ratios, with an excellent fit R2 = 0.9954 provided by a straight line y = ax + b
with a = 1.18 ± 0.03 and b = 0.03 ± 0.02. The intersect is almost zero, as it should be, and
the slope indicates that MOND has slightly higher mass-to-light ratios. This is already clear
from formula 8.3 as CEG has an extra factor of gbar compared to MOND in the Deep-MOND
regime (gmond ≈

√
a0 gbar), which yields a lower mass-to-light ratio for CEG. The upper right

plot shows the relation between the R2-values of the plots. This plot shows that when either
MOND or CEG fit the rotation curve, so will the other theory, as the line has a slope of
a = 0.98 ± 0.02. This will make it hard to differentiate between the theories on the basis of
rotation curves.

A similar story is told by the two lower plots. These plots again have slopes close to unity,
showing that the two theories make similar corrections to the distance and inclination. The
median correction to the distance of CEG was 0.9208 times the original distance and 0.9635
for MOND. The median correction to the inclination was smaller with 0.9937 for CEG and
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1.0208 for MOND. Again, this shows that it will be hard to differentiate between MOND and
CEG on the basis of rotation curves.

The results for the inclination and distance are also indicative of theway inwhich distances and
inclinations were determined by the SPARC team. The distance of a galaxy were determined
by SPARC using the distances of the galaxy group it is in or the relevant Hubble flow with
estimated errors ranging from 5% to 10%. The inclination however, was determined by fitting
a tilted-ring to the H1 velocity profile. This makes the inclination results much more accurate,
which is shown in the median values close to unity by CEG and MOND.

We conclude that it is hard to differentiate between MOND or CEG on the basis of rotation
curves, even if both the inclination and distance aremore accurately known. Other scatter plots
were also studied, such as γdisk, Luminosity, Hubble type, error in distance D or inclination i
or other variations, but none showed a significant correlation.
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Discussion & Conclusion
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In this chapter, we will discuss the consequences and results of CEG as a framework for the
gravitational force. This chapter will be split into a discussion on the theoretical chapter and
a discussion on the numerical results.

9.1 Theoretical discussion & conclusions

In the theoretical chapters, Verlinde’s theory [27] [26], which describes gravity as an emergent
phenomenon, was translated into a covariant action formalism using Hossenfelder’s CEG
[11]. This amounted to introducing a new imposter field uµ that exerts an extra force on
matter through the imposter geodesic equations. This extra force was due to the fact that the
introduction of matter into a de Sitter space shifts the horizon and thereby changes the de
Sitter entropy of the space. The evolution of the imposter field was thus determined by the
baryonic matter via the imposter field equations 5.18.

This new framework came at the cost of introducing an effective metric g̃µν and altering the
Einstein field equations 5.30. Whereas we could conveniently ignore the alterations to the
Einstein equations, the effective metric proved fundamental to the theory. However, having
two metrics raises some ambiguities and questions. These include: ’Which metric describes
space-time?’ and ’Do existing cosmological models describe the effective or usual metric?’.
In the CEG framework, it seems that the metric gµν is reduced to a mere mathematical tool
to raise and lower operators and translate between the imposter field and the effective metric.
These questions might be solved by removing the need for an effective metric and having
the usual metric satisfy different equations such that the extra force of the imposter field
is already present in the usual metric. This might already be possible from the modified
Einstein equations 5.30 for the usual metric and imposter field equations 5.18 as presented in
this report. Using these two equations, one might be able to find Einstein equations for the
effective metric. If such an equation is found, the effective metric could be promoted to the
overall metric that is also used to raise and lower operators, nullifying the need for another
metric. Attempts to solve for such equations by this author have proven futile.

We also provided a general lensing equation using perturbation methods, yielding a lensing
potential, convergence and shear for general lensing systems. We showed that under the
usual assumption that the imposter field has only a temporal part, that the amount of matter
as predicted by lensing should differ from the amount of matter as predicted by the rotation
curves. Such a result could be experimentally verified using data from both rotation curves
and strong lensing. Weak lensing does not suffice as the effects are usually so small that
only the effects of a large cluster of galaxies can be measured. We would like to note that
this derivation was dependent on the assumptions on the imposter field. However, dropping
the assumption of uµ having only a non-zero temporal component would inevitably lead to
cross-terms in the effective metric, which would non-trivially alter the path of geodesics
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and thus the additional force. This implies that the imposter field equatioin 5.18 would also
become more complicated to solve, possibly altering the form of the imposter field and thus
the dark force. Such a change however is not unlikely, as the theory is still in the early stages.
The lensing equation derivation in this report can then be applied to the new model.

A cosmological model was also presented in the theoretical section. This model is in its
very early stages and the full effects of the imposter field on a cosmological scale should be
explored by also considering its contribution to the modified Einstein equations. Such a work
is beyond the scope and aim of this report, but could provide an interesting follow-up thesis,
considering the ties that the imposter field provides between dark matter and dark energy.
Such a report could aim to explain the current discrepancy between the Hubble constant
measurements.

9.2 Experimental discussion & conclusions

In the chapters dealing with numerics and observations, we presented both our Fourier-Bessel
method to solve for cylindrical symmetric systems in CEG or MOND and our fits of CEG
and MOND to the rotation curve from SPARC. Our Fourier-Bessel method provided an
excellent method for solving for gravitational problems for cylindrical symmetric densities,
as would be expected from such methods. However, a significant deviation in our numerical
solution for the dark potential due to boundary effects yielded large deviations in our predicted
dark velocities. An altered Fourier-Bessel method was presented, that was significantly less
dominated by boundary effects. We then used the latter method to solve for the velocity profile
in one of the SPARC galaxies, showing good results. This makes the presented method useful
in solving for cylindrical symmetric systems in CEG or MOND, especially in cases that the
magnetic term in equation 7.29 provides a non-negligible contribution. Interesting topics to
research using this method include the evolution of the galaxy disk and systems in which the
magnetic contribution is non-negligible.

In addition, we fitted CEG and MOND to the SPARC database using an MCMC algorithm.
Out of the 131 fits, 9 fits (7%) were poor fits (R2 < 0) and 62 galaxies (47%) were excellent
fits (R2 > 0.9) and 94 good fits (R2 > 0.7). Because we used three fitting parameters, we
also presented the adjusted R2-value. These yielded similar results with 54 galaxies excellent
adjusted R2-values and 86 good fits by previous definitions. We conclude that both theories
provided good fits to the rotation curves of the SPARC database. This is in contrast to EG,
which was shown to be a bad fit by Lelli et al. [16].

However, the scatter plots between CEG and MOND also showed that it will be hard to
differentiate between the two based on the rotation curves of galaxies. Since the Newtonian
acceleration as predicted by MOND and CEG are similar, it is also to be expected that CEG
inherents several observation difficulties of MOND such as the velocity dispersion profile of
globular structures and the temperature profile of galaxy clusters. A true distinction must
thus be based on the difference between the covariant versions of the two theories. Such a
theoretical investigation is another topic for further research.

The main goal of this thesis was to learn EG and CEG and identify experimentally verifiable
results. We conclude that it will be very hard to differentiate between MOND and CEG in
Newtonian regimes following our fits of CEG and MOND to 131 galaxies. One should thus
focus on covariant differences, such as our lensing formalism or cosmological model.
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Appendix A

Derivation of the field equations

In this chapter we will derive the field equations from the action 5.15. This section is rather
heavy on the algebra, but can also be insightful for readers who are unfamiliar with varying
actions in curved space-time.

This part will consist of varying the Lagrangian by means of the Euler-Lagrange equations in
curved coordinates. For a single particle with path xµ(τ) parametrized by a parameter τ, the
Euler-Lagrange equations in curve space-time are the same as in classical mechanics:

∂L
∂xµ

=
d

dτ
∂L
∂( Ûxµ)

(A.1)

The Euler-Lagrange field equations for a field φ in curved coordinates are:

∂L̂

∂φ
= ∇ν

(
∂L̂

∂(∇νφ)

)
(A.2)

The action we are interested in is was formulated in the chapter on the field equations in the
report and is stated here for convenience:

S(gµν, uµ, ρ, vµ) =
⨌

√
−g

[
1

16πG
R +

α

16πG
χ

3
2 +

β

2
uµuν

u
Tµν

]
dxγ + Sm (A.3)

A.1 Geodesic Equation

Before we calculate the imposter field equations and modified Einstein equations by varying
the action A.3, we will first focus on the imposter geodesic equations. This is because these
equations are easier to derive, as we can simply use the known Euler-Lagrange equations, and
will serve as a warm-up for the tensor algebra needed to derive the field equations later.

The imposter field equations can be found by varying our action with respect to the path xµ a
single particle takes, thus varying with respect to δxµ. The only terms in our action A.3 that
depends directly on the path of the particle are the interaction and mass terms. As we saw
in the report, the interaction action was chosen such that the interaction action plus the mass
action yields a total action of:

S =
∫ √

−g̃µν Ûxµ Ûxνdτ (A.4)

This is simply a normal action for a single particle but this time with respect to the effective
metric. This was because we wanted particles to follow geodesics with respect to this effective
metric. According to Sabine Hossenfelder [11], the particles feels an effective metric

g̃µν = gµν − β
uµuν

u
(A.5)
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This implies that the corresponding action for a single particle is indeed:

S =
∫

L dτ L =
√
−g̃µν Ûxµ Ûxν (A.6)

We now choose the parametrization such that ḡµν Ûxµ Ûxν = −1, which we will call τ for
convenience. As this is not a Lagrangian density but simply a Lagrangian, we must satisfy
the usual Euler-Lagrange equations from classical mechanics, which are stated in formula
A.1. The first derivative yields:

∂L
∂xα

=
1√

−g̃µν Ûxµ Ûxν

(
−

1
2
Ûxµ Ûxν

∂

∂xα
g̃µν

)
=

(
−

1
2
Ûxµ Ûxν

∂

∂xα
g̃µν

)
(A.7)

The derivative with respect to τ yields the following expression using our parametrization:

d
dτ

∂L
∂( Ûxα)

=
d

dτ

[
1√

g̃µν Ûxµ Ûxν
(− Ûxν g̃αν)

]
= − Üxν g̃αν − Ûxν

d
dτ

g̃αν (A.8)

The the Euler-Lagrange equations then lead to:

Üxν g̃αν + Ûxν
d

dτ
g̃αν =

1
2
Ûxµ Ûxν

∂

∂xα
g̃µν (A.9)

As we still raise and lower using the normal metric, these equation are not equivalent to the
geodesic equations for the normal metric replaced with the effective metric. Reintroducing
the field uµ yields:

Üxν(gαν − β
uαuν

u
) + Ûxν

d
dτ
(gαν − β

uαuν
u
) =

1
2
Ûxµ Ûxν

∂

∂xα
(gαν − β

uαuν
u
) (A.10)

This equation can be simplified by introducing the inverse metric: Let gµν denote the inverse
metric of gµν. Upon multiplying with the inverse metric:

Üxδ − β
uδuν

u
Üxν + Ûxνgδα

d
dτ
(gαν − β

uαuν
u
) =

1
2
Ûxµ Ûxνgδα

∂

∂xα
(gαν − β

uµuν
u
) (A.11)

Upon reintroducing the familiar Christoffel symbols Γδµν we obtain:

Üxδ − β
uδuν

u
Üxν + Ûxνgδα

d
dτ
(−β

uαuν
u
) = − Ûxµ ÛxνΓδµν +

1
2
Ûxµ Ûxνgδα

∂

∂xα
(−β

uµuν
u
) (A.12)

As is done by Yen-Kheng Lim and Qing-hai Wang, we simplify these equations by using the
imposter Christoffel symbols:

Cδ
µν =

1
2
gδα

[
∂µ

(uαuν
u

)
+ ∂ν

(uαuµ
u

)
− ∂α

(uµuν
u

)]
(A.13)

The equations then become:

Üxδ − β
uδuν

u
Üxν = Ûxµ Ûxν

(
βCδ

µν − Γ
δ
µν

)
(A.14)

Thus the main contribution of the imposter field uµ to the motion of our particle comes from
the tensor Cδ

µν. The effects of the modification of the geodesic equations due to the imposter
field are studied in the relevant sections of the report.
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We can actually apply the Lagrangian method, namely formula A.2, theory to the field uµ

to recover the field equations. However, this method can not be used to derive the Einstein
equations for gµν as varying these equations also changes the term √−g in the integral of the
action, which is not taken into account when deriving the Euler-Lagrange field equation.

A.2 The imposter field equations

Now that we know how particles respond to the effective metric, it is time to determine the
effective metric by finding the field equations for uµ and gµν. We will do this step by step,
starting by analysing how the field χ varies with respect to the imposter field uµ. Firstly, we
introduce a set of tensors, which were taken from the paper of Yen-Kheng Lim & Qing-hai
Wang [18]. The paper of Yen-Kheng Lim & Qing-hai Wang only stated the endresults, which
is why we have included a derivation in this paper. Let us first introduce several important
tensors, starting with the imposter field scalar:

χ = a(∇µuµ)2 + b
(
∇µuν

)
(∇µuν) + d

(
∇µuν

)
(∇νuµ) (A.15)

Let us further introduce the strain tensor as:

εµν = ∇µuν + ∇νuµ (A.16)

And the stress tensor is defined as:

Fµν = ∇µuν − ∇νuµ (A.17)

This enables us to write ∇µuν =
εµν+Fµν

2 . These two tensors allow use to write the imposter
field scalar χ in terms of strains and stresses. Upon substitution in equation A.15 and noting
that Fµµ = 0 and that εµνFµν = −εµνFµν = 0 for µ = 0, 1, 2, 3, we obtain:

χ =
a
4
(ε
µ
µ )

2 +
b + d

4
εµνεµν +

b − d
4

FµνFµν (A.18)

In order to avoid cluttering of constants, let us start by substituting a = a
2 , b = b+d

2 and
d = b−d

2 . Then our imposter field scalar becomes:

χ =
a
2
(ε
µ
µ )

2 +
b
2
εµνεµν +

d
2

FµνFµν (A.19)

Now as we must vary the imposter field χ, it is important to know how the strain and stress
tensor vary respectively.

Upon varying with respect to uµ we obtain:

δεµν = ∇µδuν + ∇νδuµ , δFµν = ∇µδuν − ∇νδuµ (A.20)

This allows us to consider how the various components of χ vary with respect to the field uµ:

δ(ε
µ
µ )

2 = 4ελλ∇
νδuν = 4ελλg

µν∇µδuν (A.21)

δ(εµνε
µν) = εµν(∇

µδuν + ∇νδuµ) + (∇µδuν + ∇νδuµ)εµν = 4εµν∇µδuν (A.22)
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δ(FµνFµν) = Fµν(∇µδuν − ∇νδuµ) + (∇µδuν − ∇νδuµ)Fµν = 4Fµν∇µδuν (A.23)

We can thus determine how our imposter scalar field χ varies with respect to uµ if we simply
add these three components:

δχ = 2Bµν∇µδuν with Bµν = aελλg
µν + bεµν + dFµν (A.24)

Here we have introduced another tensor in anticipation of our results. What other components
in our action A.3 change when we vary uµ if we ignore backreactions? Well the interaction
term of course. The variation of the interaction term is easily determined as:

δLint = δ

(
β

2
uµuν

u
Tµν

)
=
β

2

[
2 Tµν

uµ
u
+

Tµλuµuλuν

u3

]
δuν (A.25)

As we now know how to vary the scalar field, we can also determine the perturbation to the
source term if we only vary uµ:

δLsource = δ
( α

16πG
χ3/2

)
=

1
2

3α
16πG

χ
1
2 δχ =

3α
16πG

χ
1
2 Bµν∇µδuν (A.26)

Thus stating that the sum of these perturbations should vary up to first order and using
integration by parts to get rid of the covariant derivative yields the imposter field equations:

3α
16πG

∇µ

(
χ

1
2 Bµν

)
=
β

2

[
2 Tµν

uµ
u
+

Tµλuµuλuν

u3

]
(A.27)

These are the imposter field equations of uν, assuming that δuν = 0 on the boundary of
space-time. For comments on these equations, see the section on these equations in the
report.

A.3 The modified Einstein field equations

Now that we know how our imposter field scalar χ varies with respect to uµ, it is time to find
out how it varies with respect to the inverse metric gµν in order to solve for the field equations
for gµν. Remember that we are interested in the action:

S =
⨌

√
−g

[
1

16πG
R +

α

16πG
χ

3
2 +

β

2
uµuν

u
Tµν

]
dxγ + Sm (A.28)

Varying the first term in this action with respect to the inverse metric simply yields the left-
hand side of the Einstein field equations and varying the mass term Sm yields the right-hand
side. Let us therefore mainly focus on how the imposter source term and interaction term
vary with respect to the inverse metric. Let us start by examining how the imposter scalar
field varies with respect to the inverse metric.

As was the case in varying with respect to the imposter field, let us first see how the strain
and stress tensor vary with respect to gµν. This time it is important to keep track of whether
an index is a superscript or subscript, which was less important in the case of the imposter
field variations. We find that the strain tensor varies as:

δεµν = −(2δΓαµνuα) (A.29)
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δε
µ
ν = δ(g

µλελν) = gµλδελν + δg
µλελν = ελνδg

µλ − gµλ(2δΓαλνuα) (A.30)

δεµν = −(2δΓαβγuα)gβµgγν + ενγδg
γµ + ε

µ
γ δg

γν (A.31)

Applying the same logic to the stress tensor yields:

δFµν = 0 (A.32)

δFµν = Fβγδgβµgγν + Fβγgβµδgγν (A.33)

We can now ask ourselves how the individual components of the imposter field scalar χ vary
with respect to the inverse metric:

δ(ε
µ
µ )

2 = 2εµµ [ελαδgαλ − gβλ(2δΓαλβuα)] (A.34)

δ(εµνε
µν) = δεµνε

µν + εµνδε
µν = (2δΓαµνuα)εµν + εβγ(2δΓαβγuα) + 2εµλε λν δgµν (A.35)

δ(FµνFµν) = Fµν(F ν
β δg

βµ + Fµ
γδg

γν) = 2FµλF λ
ν δgµν (A.36)

Notice that these variations also include the variations of the Christoffel symbols. These were
left out by Hossenfelder [11] in her variations, which is why she recovered different modified
Einstein equations. This was noted by Yen-Kheng Lim & Qing-hai Wang and the author of
this paper shares their opinion.

Now, if we sum all the variations of the components of χ containing δgµν. We will first
ignore the variations in the Christoffel symbols. These variations are added later due to their
complexity. The variations due to a variation in the inverse metric are:

a
2

2εµµ ελαδgαλ +
b
2

2εµλε λν δgµν +
d
2

2FµλF λ
ν δgµν = Aµνδgµν (A.37)

In which we have defined a new tensor Aµν to abbreviate the results:

Aµν = aελλ εµν + bεµλε λν + dFµλF λ
ν (A.38)

The sum of all the variations of the components of χ containing δΓλµνuλ yield:

−
a
2

2εαα (2gµνδΓλµνuλ) −
b
2
(4δΓλµνuλ)εµν (A.39)

Notice that this time, the anti-symmetric tensors do not contribute and we cannot simply
use Aµν or Bµν again. However, we would still like a compact formula, thus we will add
0 = − d

2 (4δΓ
λ
µνuλ)Fµν to the previous result, in order to recover:

−
a
2

2εαα (2gµνδΓλµνuλ) −
b
2
(4δΓλµνuλ)εµν −

d
2
(4δΓλµνuλ)Fµν = −2BµνuλΓλµν (A.40)

Thus upon adding the variation with respect to the inverse metric and the Christoffel symbols
of χ, we obtain:

δχ = Aµνδgµν − 2BµνuλδΓλµν (A.41)

For the definiteness, we also include the variation of χ with respect to all its variables:

δχ = Aµνδgµν + 2Bµν(∇µδuν − uλδΓλµν) (A.42)
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We almost know how are scalar field varies with respect to the inverse metric. All that is left
is to calculate variation of the Christoffel symbols with respect to the inverse metric:

δΓλµν =
1
2

[
δgλσ

(
∂µgσν + ∂νgσµ − ∂σgµν

)
+ gλσ

(
∂µδgσν + ∂νδgσµ − ∂σδgµν

) ]
(A.43)

These results however, can be simplified by evaluating this expression in a flat coordinate
system. Since δΓλµν is a tensor, we obtain in a locally flat coordinate system with coordinates
indicated by hats:

δΓλ̂µ̂ν̂ =
1
2

[
gλ̂σ̂

(
∂µ̂δgσ̂ν̂ + ∂ν̂δgσ̂µ − ∂σ̂δgµ̂ν̂

) ]
+0 =

1
2

[
gλ̂σ̂

(
∇µ̂δgσ̂ν̂ + ∇ν̂δgσ̂µ − ∇σ̂δgµ̂ν̂

) ]
(A.44)

Since δΓλµν is a tensor, we would obtain the same tensorial expression in any coordinate
system:

δΓλµν =
1
2
gλσ

(
∇µδgσν + ∇νδgσµ − ∇σδgµν

)
(A.45)

But we want an expression for the inverse metric. Luckily we have the identity:

δgµν = −gµρgνλδg
ρλ (A.46)

This allows us to rewrite the variations with respect to the metric into variations with respect
to the inverse metric. Our variations in the Christoffel symbols thus become:

δΓλµν =
1
2
gλσ

(
−gσαgνρ∇µδg

αρ − gσαgµρ∇νδg
αρ + gµρgνα∇σδg

ρα) (A.47)

Upon using properties of the metric, we obtain:

δΓλµν =
1
2

(
−gνρ∇µδg

λρ − gµρ∇νδg
λρ + gµρgνα∇

λδgρα
)

(A.48)

This is the expression for the variations in the Christoffel symbols we were after. This allows
us to finally write the variations with respect to the Christoffel symbols in our scalar field χ
in terms of variations with respect to the inverse metric:

2BµνuλδΓλµν = Bµνuλ
(
−gνρ∇µδg

λρ − gµρ∇νδg
λρ + gµρgνα∇

λδgρα
)

(A.49)

Upon permuting indices:

2BµνuλδΓλµν = −uνBαµ∇αδg
µν − uνB α

µ ∇αδg
µν + Bµνuα∇αδgµν (A.50)

Since the variations gµν have to be symmetric, we can neglect the anti-symmetric components
within this contraction, since for every anti-symmetric tensor Fµν, Fµνδgµν = 0. Thus we
obtain:

2BµνuλδΓλµν = −Bα
(µuν)∇αδgµν − u(νB α

µ) ∇αδg
µν + B(µν)uα∇αδgµν (A.51)

The brackets indicate the symmetric part of a tensor, thus:

T(µν) =
1
2

(
Tµν + Tνµ

)
(A.52)

This allows us to finally write:

δχ = Aµνδgµν + Bα
(µuν)∇αδgµν + u(νB α

µ) ∇αδg
µν − B(µν)uα∇αδgµν (A.53)
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Since we assume that the variation of the metric at the boundary is zero, we can determine
the following variation (using partial integration):

δ
(
χ

3
2

)
=

3
2
χ

1
2 δχ =

3
2
χ

1
2 Aµνδgµν−

3
2
∇α

[
χ

1
2

(
Bα
(µuν) + u(νB α

µ) − B(µν)uα
)]
δgµν (A.54)

Thus we finally figured out how to vary the imposter field scalar with respect to the inverse
metric. Accounting for the square root of the metric, the source term has a variations of:

δLsource = δ
(
√
−g

α

16πG
χ

3
2

)
(A.55)

The variation of √−g with respect to the inverse metric is a known quantity, namely:

δ
√
−g =

−
√
−g

2
gµνδg

µν (A.56)

Since we know the variation of the imposter field scalar, this yields a variation of the density
Lagrangian of the source term using the product rule as:

δLsource
δgµν

=
α

16πG
3
2
χ

1
2 Aµν −

α

16πG
3
2
∇α

[
χ

1
2

(
Bα
(µuν) + u(νB α

µ) − B(µν)uα
)]

(A.57)

We are almost done. All that is left is to vary the other terms in the action with respect to the
inverse metric. By definition:

δSm =
−
√
−g

2
Tµνδgµν (A.58)

Furthermore, it is known from general relativity that the Ricci scalar has the following
variation:

δR = Rµνδgµν (A.59)

Thus all that is left is to vary the interaction term:

δLint
δgµν

= δ

(
√
−g

β

2
uµuν

u
Tαβ

)
=
−
√
−g

2
gµν

β

2
uαuβ

u
Tαβ+

√
−g

β

2

[
uαuβ
2u3 uµuνTαβ +

2uβ
u

u(µT β
ν)

]
(A.60)

Now using that the total variation of the sum of our Lagrangians must be zero, we obtain the
modified Einstein field equations:

Rµν −
1
2
gµνR = 8πGTµν −

1
2
gµν

[
αχ

3
2 + 8πGβ

uαuβ
u

Tαβ
]
+

3α
2
χ

1
2 Aµν−

3α
2
∇α

[
χ

1
2

(
Bα
(µuν) + u(νB α

µ) − B(µν)uα
)]
−

8πGβ
[
uαuβ
2u3 uµuνTαβ +

2uβ
u

u(µT β
ν)

] (A.61)

The first terms of which are the original Einstein equations as mentioned in the section of the
field equations in formula 5.37. For comments on these modified Einstein equations see the
relevant sections in the report. As a final exercise in tensor calculations, let us calculate the
stress-energy tenor of the field:
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A.4 Energy momentum tensor

The stress-energy tensor T̃µν of a source Lagrangian density Lsource is found by:

T̃µν = 2
δLsource
δgµν

− gµνLsource (A.62)

One does not actually have to calculate the stress-energy tensor from this expression as we
already know what the stress-energy tensor of the field is from our variations of the source
term with respect to the inverse metric gµν. The stress-energy tensor is then exactly the
contribution of the source term to the modified Einstein equations. This yields:

T̃µν =
α

16πG

[
3χ

1
2 Aµν − gµν χ

3
2 − 3∇α

[
χ

1
2

(
Bα
(µuν) + u(νB α

µ) − B(µν)uα
)] ]

(A.63)

This is in general not equal to the Noether stress-energy momentum tensor of the field. In
Hossenfelder’s paper, she argued that a constant field uµ = (u, 0, 0, 0) could only have a
conserved energy momentum tensor and fulfill the equations of motion if:

− 3a = 4b + 4d =⇒ 3a + 4b = 0 (A.64)

In the paper by Yen-Kheng Lim & Qing-hai Wang [18], they argue for the constraint:

3a + b = 0 (A.65)

We will test this assumption as Hossenfelder did in the easiest non-flat background, namely
a de-Sitter space with static coordinates in the next section.



109

Appendix B

Constraints on coefficients imposter
field scalar

B.1 Constraints in De Sitter space

In her paper, Hossenfelder [11] claims that if we want to allow for a non-changing static
imposter field in a De Sitter space, which is required for Erik Verlinde’s theory, the only
possible combination for the constants a, b, d is:

− 3a = 4b + 4d =⇒ 3a + 4b = 0 (B.1)

In the paper by Yen-Kheng Lim & Qing-hai Wang [18], they argue for the constraint:

3a + b = 0 (B.2)

We will indeed prove the latter by proving that a static imposter field can only occur when
this second constraint is satisfied by solving the imposter field equations. First let us solve for
the imposter field scalar. The de Sitter universe in Lemaître-Robertson form is:

ds2 = −dt2 + e2Ht
[
dx2 + dy2 + dz2] (B.3)

For u0 we obtain:
∇µuν = ∂µuν − Γλµνuλ = 0 − Γ0

µνu0 = Γ
0
µνu0 (B.4)

Before introducing the strain and stress tensor, let us define a matrix J = diag(0, 1, 1, 1) in
order to simplify our results:

J =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (B.5)

Since we know the metric, we can solve for the Christoffel symbols and thus the strain and
stress tensors. This implies for our strain and stress tensors: For our strain and stress tensor
these imply:

εµν = 2He2Htu0J , Fµν = 0 (B.6)

Using the metric, this allows us to solve for the superscript components as:

εµν = 2He−2Htu0J ενλ = 2Hu0J (B.7)

These results allow us to calculate the imposter field scalar by using that ε = 6Hu0 and
εµνε

µν = 12H2 (
u0)2. Thus our imposter field scalar becomes:

χ =
(
18aH2 + 6bH2 + 0

)
u0 (B.8)
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Furthermore our simplifying tensors become:

Aµν = 2(6a + 2b)He2Htu0J Bµν = 2(6a + 2b)He−2Htu0J (B.9)

Now since there is no mass present in our space, the equations of motion become:

∇µ χ
1
2 Bµν = 0 (B.10)

This implies:
1
2

Bµν∇µ (χ) + χ∇µ (Bµν) = 0 (B.11)

For ν = 0, these equations are trivially satisfied. For ν , 0 we notice that the nonzero
components of Bµν are simply 2

3H e−2Ht χ. This implies that the scalar field should be zero.
This can only be true for a nonzero uµ if:

3a + b = 0 (B.12)

In the report, we found that in order to obtain the same force as Erik Verlinde, we had to
require that b + d = −4. We also argued that d = 0 as Erik Verlinde’s theory is associated
with the strain components of the imposter ifeld. This yields the following set of constants:

a =
4
3

b = −4 d = 0 (B.13)

In terms of Hossenfelder’s coefficients, this implies:

a =
8
3

b = −4 d = −4 (B.14)

These differ from the set found by Hossenfelder, which were:

a =
4
3

b = −
1
2

d = −
1
2

(B.15)

There are two reasons for this discrepancy. First, this report uses a different constraint for the
coefficients. Secondly, it is the opinion of this author that Hossenfelder made a mistake in
calculating equation 8 in her report from equation 4 and her choice for coefficients.
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Appendix C

General lensing systems

For general lensing systems, the situation is a bit more complicated. For instance, when a
source is lensed by a galaxy, the image will appear both magnified and distorted, just as with a
normal non-perfect lens. Two important quantities of such a general lens are its convergence
κ and its shear γ. The convergence can be thought of as the power of the lens, thus it describes
the focusing of the lens. The shear, is a measure of the distortion of the shape of the source.
An often cited example is that circular sources can be distorted into elliptical ones. The
convergence κ is clearly related to the mass along the path the light ray takes, whilst the shear
is related to how the potential of the current path differs from a nearby light ray’s path.

In order to investigate such properties, we define the lensing matrix:

Ai j :=
∂βi

∂θ j
= δi j −

∂αi

∂θ j
= δi j −

Dds

Ds

∂α̂i

∂θ j
(C.1)

This matrix allows us to convert properties of the lens into properties of the deflection angle.
The derivative with respect to θ follows from the following consideration: Since our impact
parameter is given by b = Ddθ, we find that we can equivalently write our potentials as
function of the impact parameter and the traveled distance s

φ(b, s) = φ(Ddθ, s) (C.2)

In particular, we find that we can write the perpendicular gradient as:

∇⊥ =
1

Dd
∇θ (C.3)

This allows us to re-express the deflection angle in terms of the angle θ:

α̂(θ) =

∫
[∇⊥φD + 2∇⊥φB] ds =

1
Dd

∫
[∇θφD + 2∇θφB] ds (C.4)

We know now split A in an isotropic part 1
2 trace(A)I and an an-isotropic part A− 1

2 trace(A)I.
The isotropic part is related to the magnification of the entire object:

1
2

trace(A)I = (1 − κ)
[
1 0
0 1

]
with κ(θ) =

1
2

Dds

DdDs

∫ [
∇2
θφD + 2∇2

θφB
]

ds (C.5)

The defined function κ is the convergence of the lens and is related to the mass distribution
along the path by Poisson’s equation. For convenience, let us define the lensing potential:

ψ(θ) :=
Dds

DdDs

∫
[φD + 2φB] ds and ψi j =

∂2ψ

∂θi∂θ j
(C.6)
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The lensing matrix and convergence then become:

Ai j = δi j − ψi j and κ =
1
2
[ψ11 + ψ22] =

1
2
∇2
θψ (C.7)

The an-isotropic part can now be written in a convenient form:

Ai j −
1
2
(1 − ψ11 + 1 − ψ22) =

[
− 1

2 (ψ11 − ψ22) −ψ12
−ψ12

1
2 (ψ11 − ψ22)

]
i j

(C.8)

We define the shear γ1 := 1
2 (ψ11 − ψ22) and γ2 := ψ12. The matrix then has eigenvalues

γ = ±
√
γ2

1 + γ
2
2 . Thus there is an rotation angle ξ such that:

A = (1 − κ)
[
1 0
0 1

]
− γ

[
cos ξ sin ξ
sin ξ − cos ξ

]
(C.9)

Thus the convergence κ magnifies the image, whilst the shear γ distorts the image. The
magnification M is the determinant of the inverse of A and is, which is:

M =
1

(1 − κ)2 − γ2
(C.10)
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Appendix D

Fits CEG and MOND

D.0.1 Fits CEG to SPARC

The following table indicate theMCMCfits of CEG to the SPARCgalaxies. The fit parameters
were the mass-to-light ratio γdisk, the galactic distance D and the inclination i of the galaxy
disk. The first column shows the galaxies name and the second its Hubble type. The third
column shows the total luminosity of the galaxy. D0 and i0 are the distance as denoted in the
SPARC database. The fittings were done based on Gaussian priors on the fit parameters and
a maximum likelihood based on a χ2 estimate.

Galaxy name Type log10 L [L�] γdisk

[
M�
L�

]
Dist. [Mpc] D/D0 Inc. [Deg. °] i/i0 R2

CamB 10 7.88 0 ± 0.05 2.5 ± 0.8 0.75 32.8 ± 14.3 0.5 -0.08
D512-2 10 8.51 0.98 ± 0.15 11.9 ± 2.7 0.78 40.4 ± 7.6 0.72 0.92
D564-8 10 7.52 0 ± 0.1 8.7 ± 0.5 0.98 49.3 ± 7.6 0.78 -0.19
D631-7 10 8.29 0 ± 0.02 7.1 ± 1.3 0.91 47.1 ± 15.6 0.8 -2.12
DDO064 10 8.2 0.44 ± 0.15 6.3 ± 0.9 0.93 55.1 ± 3.9 0.92 0.73
DDO154 10 7.72 0.06 ± 0.05 3 ± 0.3 0.75 75.8 ± 6.1 1.18 0.98
DDO161 10 8.74 0 ± 0.13 5.8 ± 0.6 0.78 55.1 ± 8.4 0.79 0.94
DDO168 10 8.28 0.22 ± 0.17 4.1 ± 0.5 0.95 49.1 ± 11.2 0.78 -1.43
DDO170 10 8.73 1.24 ± 0.13 8.7 ± 1 0.56 59.9 ± 5.8 0.91 0.93
ESO079-G014 4 10.71 0.37 ± 0.11 32.6 ± 3.5 1.14 76.2 ± 4 0.97 0.67
ESO116-G012 7 9.63 0.26 ± 0.07 17.6 ± 1.3 1.35 74.8 ± 2.4 1.01 0.9
ESO444-G084 10 7.85 0.04 ± 0.13 5.2 ± 0.3 1.07 40 ± 1.8 1.25 0.62
ESO563-G021 4 11.49 0.29 ± 0.07 93.5 ± 6.3 1.54 86.3 ± 2.3 1.04 0.74
F563-1 9 9.28 0.72 ± 0.14 59.4 ± 6.7 1.21 23.8 ± 2.3 0.95 0.75
F563-V2 10 9.48 1.18 ± 0.14 52.6 ± 8.4 0.88 32.6 ± 4 1.13 0.73
F565-V2 10 8.75 0.3 ± 0.15 58.7 ± 5.9 1.13 62.9 ± 6.1 1.05 0.49
F568-1 5 9.8 1.08 ± 0.14 85.1 ± 7.1 0.94 28.5 ± 2.2 1.1 0.14
F568-3 7 9.92 0.27 ± 0.13 82.1 ± 6.6 1 40.7 ± 4 1.02 0.38
F568-V1 7 9.58 1.42 ± 0.12 87.5 ± 5.9 1.09 39.8 ± 4.3 0.99 0.89
F571-8 5 10.01 0.07 ± 0.03 123.8 ± 8.1 2.32 90 ± 2.9 1.06 -5.79
F571-V1 7 9.27 0.43 ± 0.14 75.9 ± 6.4 0.95 28 ± 1.9 0.93 0.87
F574-1 7 9.82 0.99 ± 0.11 92.1 ± 6.8 0.95 52.2 ± 6.2 0.8 0.71
F579-V1 5 10.07 1.13 ± 0.13 84.3 ± 7.1 0.94 21.5 ± 2.4 0.83 0.88
F583-1 9 8.99 1.22 ± 0.12 24.4 ± 4 0.69 63.7 ± 3.9 1.01 0.05
F583-4 5 9.23 0.36 ± 0.13 40.9 ± 7.5 0.77 62.5 ± 6.4 1.14 0.82
IC2574 9 9.01 0.06 ± 0.01 3.7 ± 0.2 0.95 63.3 ± 5 0.84 0.98
KK98-251 10 7.93 0 ± 0.15 2.8 ± 0.4 0.41 71 ± 4.1 1.2 0.86
NGC0024 5 9.59 0.88 ± 0.09 7.3 ± 0.3 0.99 64.5 ± 2.2 1.01 1
NGC0055 9 9.67 0 ± 0.02 1.7 ± 0.1 0.82 74.9 ± 2.9 0.97 0.94
NGC0100 6 9.51 0.1 ± 0.11 22.7 ± 2.4 1.68 89.4 ± 0.7 1 0.83
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Galaxy name Type log10 L [L�] γdisk

[
M�
L�

]
Dist. [Mpc] D/D0 Inc. [Deg. °] i/i0 R2

NGC0247 7 9.87 2.62 ± 0.09 1.2 ± 0.3 0.33 79.1 ± 3.4 1.07 0.81
NGC0289 4 10.86 0.76 ± 0.1 15.8 ± 2.4 0.76 40 ± 3.7 0.87 1
NGC0300 7 9.47 0.32 ± 0.1 2.1 ± 0.1 1 47 ± 3.1 1.12 0.92
NGC0801 5 11.49 1.48 ± 0.23 24.3 ± 7.1 0.3 85.1 ± 1.1 1.06 1
NGC1003 6 9.83 0.3 ± 0.07 9.6 ± 0.8 0.84 74.4 ± 4.2 1.11 0.97
NGC1090 4 10.86 0.56 ± 0.09 25.1 ± 2.6 0.68 61.4 ± 2.7 0.96 1
NGC2403 6 10 0.41 ± 0.02 2.7 ± 0.2 0.85 84.3 ± 4.7 1.34 1
NGC2903 4 10.91 0.14 ± 0.02 9.8 ± 0.8 1.49 88.7 ± 4.6 1.34 1
NGC2915 11 8.81 0.2 ± 0.12 5.2 ± 0.2 1.27 69 ± 3 1.23 0.62
NGC2976 5 9.53 0.13 ± 0.1 4 ± 0.1 1.13 78 ± 8.1 1.28 0.89
NGC2998 5 11.18 0.75 ± 0.09 42.3 ± 4.8 0.62 58.4 ± 2.3 1.01 1
NGC3109 9 8.29 0.01 ± 0.11 1.5 ± 0.1 1.14 75.5 ± 3.5 1.08 0.85
NGC3198 5 10.58 0.55 ± 0.04 9.7 ± 0.7 0.71 82.1 ± 3 1.12 1
NGC3521 4 10.93 0.3 ± 0.1 9.8 ± 1.3 1.27 71.7 ± 4.2 0.96 1
NGC3726 5 10.85 0.45 ± 0.07 11.4 ± 1.7 0.63 53.8 ± 1.7 1.01 0.94
NGC3741 10 7.45 0.08 ± 0.12 3.4 ± 0.1 1.07 72.2 ± 2.9 1.03 0.91
NGC3769 3 10.27 0.25 ± 0.07 17.3 ± 1.7 0.96 70.4 ± 1.7 1.01 0.99
NGC3877 5 10.86 0.17 ± 0.31 23.4 ± 3.9 1.3 76.1 ± 1.9 1 0.35
NGC3893 5 10.77 0.25 ± 0.07 22.4 ± 1.9 1.25 50.1 ± 1.7 1.02 0.99
NGC3917 6 10.34 0.68 ± 0.12 12.4 ± 2.1 0.69 88.5 ± 1.8 1.12 0.74
NGC3949 4 10.58 0.24 ± 0.06 18.1 ± 1.9 1.01 60.8 ± 1.6 1.1 0.95
NGC3953 4 11.15 1.11 ± 0.09 8.3 ± 2.1 0.46 60.1 ± 1.6 0.97 0.97
NGC3972 4 10.16 0.24 ± 0.12 23.8 ± 2.3 1.32 79.7 ± 1.1 1.04 0.38
NGC3992 4 11.36 1.25 ± 0.07 8.6 ± 1.7 0.36 83.8 ± 1.9 1.5 1
NGC4010 7 10.24 0.13 ± 0.08 25.1 ± 2 1.4 89.4 ± 0.7 1 0.63
NGC4051 4 10.98 0.69 ± 0.07 11 ± 2.1 0.61 42 ± 2.5 0.86 0.95
NGC4068 10 8.37 0.03 ± 0.09 4.3 ± 0.2 0.99 37.2 ± 2.5 0.84 0.96
NGC4085 5 10.34 0.12 ± 0.08 25.9 ± 2.8 1.44 83.1 ± 1.8 1.01 -0.39
NGC4088 4 11.03 0.3 ± 0.05 13 ± 1.9 0.72 67.9 ± 1.8 0.98 0.99
NGC4100 4 10.77 0.73 ± 0.11 12.6 ± 2.1 0.7 72.5 ± 2.1 0.99 0.99
NGC4183 6 10.03 1.97 ± 0.12 7 ± 1.5 0.39 88.4 ± 1.7 1.08 0.99
NGC4214 10 9.06 0.09 ± 0.15 3 ± 0.1 1.04 23.8 ± 1.9 1.59 0.97
NGC4559 6 10.29 0.43 ± 0.11 6.4 ± 0.7 0.71 66.5 ± 0.9 0.99 0.99
NGC5055 4 11.18 0.35 ± 0.04 9.8 ± 2.2 0.98 47.5 ± 3.9 0.86 1
NGC5371 4 11.53 2.25 ± 0.24 5.5 ± 3.9 0.14 71.8 ± 8.1 1.35 1
NGC5585 7 9.47 0.19 ± 0.03 7.7 ± 0.5 1.09 49.9 ± 1.6 0.98 0.9
NGC5907 5 11.24 0.93 ± 0.09 9.8 ± 1.1 0.56 81.8 ± 1.5 0.93 1
NGC6015 6 10.51 0.78 ± 0.09 12.6 ± 1.5 0.74 58.2 ± 2.7 0.97 0.98
NGC6503 6 10.11 0.31 ± 0.03 6.9 ± 0.2 1.1 74.3 ± 2 1 1
NGC6789 11 8 0.3 ± 0.12 3.8 ± 0.1 1.09 66.7 ± 3.7 1.55 0.31
NGC7793 7 9.85 0.48 ± 0.12 3.6 ± 0.1 0.99 40.7 ± 4.6 0.87 0.96
UGC00128 8 10.08 1.69 ± 0.15 54.1 ± 8.2 0.84 44.3 ± 6.4 0.78 0.99
UGC00191 9 9.3 1.17 ± 0.1 15.6 ± 2 0.91 34.7 ± 4.1 0.77 1
UGC00634 9 9.48 0.41 ± 0.07 30.8 ± 5.7 1 36.5 ± 4.2 0.99 0.99
UGC00731 10 8.51 1.8 ± 0.14 7.8 ± 0.7 0.62 66.3 ± 2.4 1.16 0.11
UGC00891 9 8.57 0 ± 0.06 9.2 ± 0.9 0.91 61.8 ± 5.3 1.03 0.2
UGC01230 9 9.88 1.16 ± 0.14 61.1 ± 8.3 1.14 15.1 ± 2 0.69 0.96
UGC01281 8 8.55 1.18 ± 0.11 2.9 ± 0.2 0.54 88.7 ± 0.5 0.99 0.01
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Galaxy name Type log10 L [L�] γdisk

[
M�
L�

]
Dist. [Mpc] D/D0 Inc. [Deg. °] i/i0 R2

UGC02023 10 9.12 0.03 ± 0.16 14.4 ± 2.4 1.38 16.7 ± 2.8 0.88 0.68
UGC02259 8 9.24 1.73 ± 0.11 4.3 ± 1.1 0.41 56.9 ± 2.4 1.39 0.96
UGC04278 7 9.12 0.56 ± 0.11 9.1 ± 1.1 0.96 85.6 ± 1.5 0.95 -0.7
UGC04325 9 9.31 1.39 ± 0.12 7.9 ± 1.1 0.82 38.6 ± 2.3 0.94 0.78
UGC04483 10 7.11 0.42 ± 0.13 2.2 ± 0.2 0.66 52.8 ± 2.3 0.91 0.71
UGC04499 8 9.19 0.5 ± 0.11 8.9 ± 1 0.71 49.5 ± 2.4 0.99 0.78
UGC05005 10 9.61 0.26 ± 0.14 48.2 ± 8.1 0.9 36.6 ± 4.1 0.89 0.81
UGC05414 10 9.05 0.15 ± 0.11 7.8 ± 1 0.83 59.3 ± 2.5 1.08 0.94
UGC05716 9 8.77 1.32 ± 0.08 22.4 ± 3.4 1.05 41.1 ± 6.6 0.76 0.97
UGC05721 7 8.73 0.5 ± 0.11 7.6 ± 0.8 1.23 69.2 ± 3.7 1.13 0.97
UGC05750 8 9.52 0.72 ± 0.14 29.5 ± 8.3 0.5 64.4 ± 7.2 1.01 0.67
UGC05764 10 7.93 1.67 ± 0.12 8.1 ± 0.8 1.09 60.2 ± 6.7 1 0.54
UGC05829 10 8.75 1.25 ± 0.14 9.8 ± 1.9 1.13 22.9 ± 4.2 0.67 0.79
UGC05918 10 8.37 1.23 ± 0.14 3.5 ± 1 0.46 53.6 ± 3.7 1.16 0.47
UGC05986 9 9.67 0.19 ± 0.09 15.9 ± 1.3 1.84 88.1 ± 1.3 0.98 0.85
UGC05999 10 9.53 0.4 ± 0.12 57 ± 7.6 1.2 17.3 ± 1.8 0.79 -0.35
UGC06399 9 9.36 0.5 ± 0.11 17.5 ± 1.6 0.97 75.7 ± 1.6 1.01 0.75
UGC06446 7 8.99 1.27 ± 0.13 9.7 ± 1.1 0.81 50.4 ± 2.3 0.99 0.94
UGC06628 9 9.57 1.14 ± 0.15 2.7 ± 3.7 0.18 20 ± 2 1 0.75
UGC06667 6 9.15 3.81 ± 0.14 13.3 ± 1.2 0.74 89.5 ± 0.6 1.01 0.03
UGC06818 9 9.2 0.02 ± 0.05 26.3 ± 2 1.46 78.2 ± 2.4 1.04 0.62
UGC06917 9 9.83 0.49 ± 0.09 17.2 ± 1.5 0.96 55.4 ± 1.6 0.99 0.82
UGC06923 10 9.46 0.14 ± 0.08 19.8 ± 1.7 1.1 67.3 ± 1.6 1.03 0.45
UGC06930 7 9.95 1.19 ± 0.12 14.6 ± 1.9 0.81 24.9 ± 2.2 0.78 0.96
UGC06983 6 9.72 0.98 ± 0.1 9.4 ± 1.3 0.52 65.3 ± 0.8 1.33 0.89
UGC07089 8 9.55 0.14 ± 0.08 17 ± 1.9 0.95 75.5 ± 2.5 0.94 0.44
UGC07125 9 9.43 1.21 ± 0.12 6.2 ± 0.5 0.31 87.7 ± 1.4 0.97 0.92
UGC07151 6 9.36 0.8 ± 0.04 4.2 ± 0.3 0.61 89.7 ± 1.5 1 0.81
UGC07232 10 8.05 0.08 ± 0.07 3.6 ± 0.1 1.28 82.5 ± 3.9 1.4 0.59
UGC07261 8 9.24 0.79 ± 0.13 9.7 ± 2.8 0.74 28.8 ± 3.9 0.96 0.94
UGC07323 8 9.61 0.22 ± 0.12 8.5 ± 1.2 1.07 45 ± 2.4 0.96 0.7
UGC07399 8 9.06 0.42 ± 0.11 15.7 ± 1.1 1.86 57.7 ± 2.3 1.05 0.91
UGC07524 9 9.39 0.88 ± 0.1 4.3 ± 0.2 0.91 36.1 ± 1.9 0.78 0.32
UGC07559 10 8.04 0.17 ± 0.05 3.2 ± 0.2 0.64 56.1 ± 2.3 0.92 0.26
UGC07577 10 7.65 0.03 ± 0.02 0.7 ± 0.2 0.26 81.2 ± 2.8 1.29 0.7
UGC07603 7 8.58 0.15 ± 0.1 7.5 ± 0.6 1.61 75.2 ± 2.4 0.96 0.87
UGC07608 10 8.42 0.24 ± 0.16 12.5 ± 1.7 1.52 23.2 ± 3.6 0.93 0.27
UGC07690 10 8.93 1.02 ± 0.12 7 ± 1.2 0.86 31 ± 3.6 0.76 0.99
UGC07866 10 8.09 0.74 ± 0.14 4.1 ± 0.2 0.9 29.9 ± 2.7 0.68 0.53
UGC08286 6 9.1 1.14 ± 0.07 5.7 ± 0.2 0.88 78.5 ± 1.5 0.87 0.96
UGC08490 9 9.01 0.77 ± 0.11 4.6 ± 0.3 0.99 49.8 ± 2 1 1
UGC08550 7 8.46 0.82 ± 0.11 5.6 ± 0.4 0.83 84.5 ± 1.4 0.94 0.95
UGC08837 10 8.7 0.17 ± 0.03 4.1 ± 0.3 0.56 85.7 ± 4.8 1.07 0.9
UGC09037 6 10.84 0.13 ± 0.03 84.3 ± 5.9 1.01 61.6 ± 3.9 0.95 0.8
UGC09992 10 8.53 1.25 ± 0.15 8.9 ± 2.6 0.84 17.1 ± 3.6 0.57 0.9
UGC10310 9 9.24 1.21 ± 0.13 8.5 ± 2.6 0.56 33 ± 3.6 0.97 0.89
UGC11455 6 11.57 0.22 ± 0.07 100.2 ± 9.2 1.27 89.8 ± 0.5 1 0.97
UGC11557 8 10.08 0.09 ± 0.15 31.6 ± 4.8 1.31 22.5 ± 3.8 0.75 0.15
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Galaxy name Type log10 L [L�] γdisk

[
M�
L�

]
Dist. [Mpc] D/D0 Inc. [Deg. °] i/i0 R2

UGC11820 9 8.99 1.14 ± 0.1 23.3 ± 3.6 1.29 28.9 ± 5.8 0.64 1
UGC12506 6 11.14 1.43 ± 0.09 59.7 ± 6.7 0.59 85.1 ± 2.6 0.99 0.99
UGC12632 9 9.11 1.33 ± 0.12 4.6 ± 0.8 0.47 51.7 ± 2.4 1.12 0.88
UGC12732 9 9.22 1.27 ± 0.11 8.4 ± 2.1 0.63 40.5 ± 3.8 1.04 0.99
UGCA442 9 8.15 0 ± 0.15 3.6 ± 0.2 0.83 87.3 ± 3.9 1.36 0.79
UGCA444 10 7.08 0.2 ± 0.16 0.9 ± 0 0.9 62.9 ± 3.4 0.81 -2.33

Table D.1: Fits of CEG to 131 SPARC galaxies using a MCMC algorithm
and three fit parameters. The fit parameters were the mass-to-light ratio γdisk,
the galactic distance D and the inclination i of the galaxy disk. The first
column shows the galaxies name and the second its Hubble type. The third
column shows the total luminosity of the galaxy. D0 and i0 are the original
distance and inclination as denoted in the SPARC database. The fittings
were done based on Gaussian priors on the fit parameters and a maximum

likelihood based on a χ2 estimate.

D.0.2 Fits MOND to SPARC

The following table indicate the MCMC fits of MOND to the SPARC galaxies. The fit
parameters were the mass-to-light ratio γdisk, the galactic distance D and the inclination i of
the galaxy disk. The first column shows the galaxies name and the second its Hubble type.
The third column shows the total luminosity of the galaxy. D0 and i0 are the distance as
denoted in the SPARC database. The fittings were done based on Gaussian priors on the fit
parameters and a maximum likelihood based on a χ2 estimate.

Galaxy name Type log10 L [L�] γdisk

[
M�
L�

]
Dist. [Mpc] D/D0 Inc. [Deg.°] i/i0 R2

CamB 10 7.88 0 ± 0.09 1.9 ± 0.7 0.56 32.8 ± 14.3 0.64 -0.06
D512-2 10 8.51 1.12 ± 0.15 13.9 ± 2.6 0.91 40.4 ± 7.6 0.71 0.9
D564-8 10 7.52 0 ± 0.11 9 ± 0.4 1.02 49.3 ± 7.6 0.8 -0.14
D631-7 10 8.29 0 ± 0.05 6.8 ± 0.6 0.88 47.1 ± 15.6 0.93 -1.74
DDO064 10 8.2 0.38 ± 0.14 7.9 ± 1 1.16 55.1 ± 3.9 0.92 0.71
DDO154 10 7.72 0.07 ± 0.06 4.2 ± 0.2 1.05 75.8 ± 6.1 0.95 0.97
DDO161 10 8.74 0.01 ± 0.14 4.7 ± 0.7 0.63 55.1 ± 8.4 1.12 0.97
DDO168 10 8.28 0.76 ± 0.15 4.1 ± 0.2 0.97 49.1 ± 11.2 0.83 -1.05
DDO170 10 8.73 1.33 ± 0.13 8.4 ± 1.1 0.55 59.9 ± 5.8 1.08 0.92
ESO079-G014 4 10.71 0.55 ± 0.11 34.6 ± 3.1 1.2 76.2 ± 4 1.07 0.69
ESO116-G012 7 9.63 0.34 ± 0.1 19.6 ± 1.4 1.51 74.8 ± 2.4 1.05 0.9
ESO444-G084 10 7.85 0.08 ± 0.14 4.4 ± 0.3 0.91 40 ± 1.8 1.54 0.8
ESO563-G021 4 11.49 0.47 ± 0.07 103.5 ± 5.4 1.7 86.3 ± 2.3 1 0.74
F563-1 9 9.28 0.94 ± 0.14 51.9 ± 6.8 1.06 23.8 ± 2.3 1.07 0.75
F563-V2 10 9.48 1.29 ± 0.14 71.9 ± 8.2 1.21 32.6 ± 4 1.11 0.66
F565-V2 10 8.75 0.27 ± 0.15 60.7 ± 5.7 1.17 62.9 ± 6.1 1.18 0.48
F568-1 5 9.8 1.14 ± 0.13 108.6 ± 7 1.2 28.5 ± 2.2 1.1 0.16
F568-3 7 9.92 0.25 ± 0.14 81.5 ± 6.4 0.99 40.7 ± 4 1.14 0.36
F568-V1 7 9.58 1.23 ± 0.13 77.9 ± 5.8 0.97 39.8 ± 4.3 1.31 0.82
F571-8 5 10.01 0.12 ± 0.04 111.6 ± 7 2.09 90 ± 2.9 1 -4.91
F571-V1 7 9.27 0.53 ± 0.15 76.6 ± 6.3 0.96 28 ± 1.9 0.99 0.85
F574-1 7 9.82 1.11 ± 0.11 78.2 ± 6.7 0.81 52.2 ± 6.2 1.1 0.7
F579-V1 5 10.07 1.08 ± 0.14 95.6 ± 6.8 1.07 21.5 ± 2.4 0.93 0.86
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F583-1 9 8.99 1.19 ± 0.13 30.9 ± 4.1 0.87 63.7 ± 3.9 0.99 0.08
F583-4 5 9.23 0.47 ± 0.14 46.4 ± 7.3 0.87 62.5 ± 6.4 1.06 0.81
IC2574 9 9.01 0.05 ± 0.01 3.5 ± 0.2 0.88 63.3 ± 5 1.06 0.99
KK98-251 10 7.93 0 ± 0.15 3.9 ± 0.5 0.57 71 ± 4.1 1.02 0.83
NGC0024 5 9.59 1.48 ± 0.12 7.1 ± 0.3 0.97 64.5 ± 2.2 1.06 1
NGC0055 9 9.67 0 ± 0.06 2 ± 0.1 0.94 74.9 ± 2.9 1.07 0.95
NGC0100 6 9.51 0.09 ± 0.14 26.2 ± 2 1.94 89.4 ± 0.7 1 0.79
NGC0247 7 9.87 3.13 ± 0.1 1.6 ± 0.2 0.43 79.1 ± 3.4 1.06 0.81
NGC0289 4 10.86 1.19 ± 0.11 7.4 ± 2.4 0.36 40 ± 3.7 1.69 1
NGC0300 7 9.47 0.42 ± 0.12 2.1 ± 0.1 0.99 47 ± 3.1 1.2 0.93
NGC0801 5 11.49 1.33 ± 0.13 38 ± 4.4 0.47 85.1 ± 1.1 1.1 1
NGC1003 6 9.83 0.48 ± 0.1 11.6 ± 0.9 1.02 74.4 ± 4.2 0.95 0.98
NGC1090 4 10.86 1.02 ± 0.12 27.4 ± 2.8 0.74 61.4 ± 2.7 0.9 1
NGC2403 6 10 0.63 ± 0.04 3.5 ± 0.1 1.12 84.3 ± 4.7 1.06 1
NGC2903 4 10.91 0.21 ± 0.02 12.3 ± 0.7 1.87 88.7 ± 4.6 1.07 0.99
NGC2915 11 8.81 0.42 ± 0.13 4.6 ± 0.2 1.13 69 ± 3 1.23 0.55
NGC2976 5 9.53 0.06 ± 0.11 6.6 ± 0.1 1.83 78 ± 8.1 1.41 0.89
NGC2998 5 11.18 1.36 ± 0.13 37.3 ± 6 0.55 58.4 ± 2.3 1.16 1
NGC3109 9 8.29 0.03 ± 0.12 1.5 ± 0.1 1.12 75.5 ± 3.5 1.19 0.79
NGC3198 5 10.58 1.1 ± 0.09 10.2 ± 0.8 0.74 82.1 ± 3 0.97 1
NGC3521 4 10.93 0.37 ± 0.09 12.7 ± 1.3 1.65 71.7 ± 4.2 0.94 1
NGC3726 5 10.85 0.78 ± 0.09 11.7 ± 1.6 0.65 53.8 ± 1.7 1.03 0.95
NGC3741 10 7.45 0.1 ± 0.13 3.7 ± 0.1 1.15 72.2 ± 2.9 1.06 0.91
NGC3769 3 10.27 0.5 ± 0.09 17.2 ± 1.5 0.96 70.4 ± 1.7 0.99 0.99
NGC3877 5 10.86 0.18 ± 0.08 30.1 ± 1.9 1.67 76.1 ± 1.9 1.12 0.37
NGC3893 5 10.77 0.35 ± 0.07 24.9 ± 1.6 1.39 50.1 ± 1.7 1.07 0.99
NGC3917 6 10.34 1.71 ± 0.12 10.5 ± 1.7 0.58 88.5 ± 1.8 1.04 0.73
NGC3949 4 10.58 0.33 ± 0.07 23.3 ± 1.8 1.29 60.8 ± 1.6 1.09 0.95
NGC3953 4 11.15 1.6 ± 0.14 8.7 ± 2.6 0.49 60.1 ± 1.6 1.02 0.99
NGC3972 4 10.16 0.38 ± 0.12 26.1 ± 1.7 1.45 79.7 ± 1.1 0.99 0.42
NGC3992 4 11.36 1.86 ± 0.1 9.8 ± 1.5 0.41 83.8 ± 1.9 1.48 1
NGC4010 7 10.24 0.23 ± 0.11 25.7 ± 1.8 1.43 89.4 ± 0.7 0.98 0.57
NGC4051 4 10.98 1.24 ± 0.1 5.9 ± 1.9 0.33 42 ± 2.5 1.37 0.95
NGC4068 10 8.37 0.01 ± 0.11 4.4 ± 0.2 1 37.2 ± 2.5 0.94 0.97
NGC4085 5 10.34 0.12 ± 0.06 37.8 ± 1.8 2.1 83.1 ± 1.8 1.06 -0.22
NGC4088 4 11.03 0.51 ± 0.08 13.9 ± 1.8 0.77 67.9 ± 1.8 1 0.99
NGC4100 4 10.77 1.18 ± 0.11 13.2 ± 1.6 0.74 72.5 ± 2.1 1.05 0.98
NGC4183 6 10.03 2.64 ± 0.12 8.8 ± 1.3 0.49 88.4 ± 1.7 1.06 0.98
NGC4214 10 9.06 0.33 ± 0.15 2.8 ± 0.1 0.96 23.8 ± 1.9 1.47 0.98
NGC4559 6 10.29 0.71 ± 0.12 6.8 ± 0.8 0.75 66.5 ± 0.9 1 0.99
NGC5055 4 11.18 0.62 ± 0.12 16 ± 4 1.62 47.5 ± 3.9 0.63 1
NGC5371 4 11.53 2.02 ± 0.16 8.4 ± 2.3 0.21 71.8 ± 8.1 1.59 1
NGC5585 7 9.47 0.24 ± 0.04 8.5 ± 0.5 1.21 49.9 ± 1.6 1 0.91
NGC5907 5 11.24 1.65 ± 0.13 9.8 ± 0.9 0.57 81.8 ± 1.5 0.99 1
NGC6015 6 10.51 1.35 ± 0.12 12.8 ± 1.4 0.75 58.2 ± 2.7 0.99 0.99
NGC6503 6 10.11 0.6 ± 0.05 6.5 ± 0.2 1.03 74.3 ± 2 1 1
NGC6789 11 8 0.39 ± 0.12 4.7 ± 0.1 1.33 66.7 ± 3.7 1.66 0.23
NGC7793 7 9.85 0.78 ± 0.12 3.8 ± 0.1 1.04 40.7 ± 4.6 0.9 0.95
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UGC00128 8 10.08 1.85 ± 0.17 54 ± 8 0.84 44.3 ± 6.4 0.87 0.97
UGC00191 9 9.3 1.44 ± 0.1 11.2 ± 2.3 0.66 34.7 ± 4.1 1.05 1
UGC00634 9 9.48 0.56 ± 0.09 26.5 ± 5 0.86 36.5 ± 4.2 1.17 0.97
UGC00731 10 8.51 1.89 ± 0.14 10.8 ± 0.8 0.86 66.3 ± 2.4 1.02 0.17
UGC00891 9 8.57 0 ± 0.07 9.3 ± 1 0.92 61.8 ± 5.3 1.16 0.45
UGC01230 9 9.88 1.27 ± 0.14 61.3 ± 8.6 1.14 15.1 ± 2 0.74 0.95
UGC01281 8 8.55 1.57 ± 0.13 3.4 ± 0.2 0.65 88.7 ± 0.5 1 0.09
UGC02023 10 9.12 0.02 ± 0.16 8.3 ± 2.4 0.8 16.7 ± 2.8 1.25 0.68
UGC02259 8 9.24 1.67 ± 0.13 6.9 ± 1.3 0.66 56.9 ± 2.4 1.24 0.94
UGC04278 7 9.12 0.52 ± 0.11 11.5 ± 1.2 1.21 85.6 ± 1.5 0.98 -0.45
UGC04325 9 9.31 1.38 ± 0.12 9.1 ± 1.2 0.95 38.6 ± 2.3 1.07 0.74
UGC04483 10 7.11 0.49 ± 0.14 2.8 ± 0.2 0.85 52.8 ± 2.3 0.86 0.66
UGC04499 8 9.19 0.64 ± 0.12 9.5 ± 1 0.76 49.5 ± 2.4 1.05 0.78
UGC05005 10 9.61 0.29 ± 0.14 47.3 ± 7.9 0.88 36.6 ± 4.1 0.96 0.79
UGC05414 10 9.05 0.14 ± 0.13 9.7 ± 1 1.03 59.3 ± 2.5 1.07 0.96
UGC05716 9 8.77 1.59 ± 0.09 21.5 ± 3.1 1.01 41.1 ± 6.6 0.85 0.97
UGC05721 7 8.73 0.84 ± 0.12 8 ± 0.8 1.29 69.2 ± 3.7 1.18 0.97
UGC05750 8 9.52 0.71 ± 0.14 36 ± 7.8 0.61 64.4 ± 7.2 0.98 0.63
UGC05764 10 7.93 1.77 ± 0.12 8.5 ± 0.7 1.13 60.2 ± 6.7 1.15 0.51
UGC05829 10 8.75 1.14 ± 0.14 9.4 ± 1.8 1.08 22.9 ± 4.2 0.78 0.78
UGC05918 10 8.37 1.11 ± 0.14 9.2 ± 1 1.2 53.6 ± 3.7 0.73 0.41
UGC05986 9 9.67 0.27 ± 0.11 17.4 ± 1.1 2.02 88.1 ± 1.3 1 0.82
UGC05999 10 9.53 0.47 ± 0.13 36.5 ± 7.4 0.77 17.3 ± 1.8 1.08 -0.24
UGC06399 9 9.36 0.64 ± 0.12 19.5 ± 1.4 1.08 75.7 ± 1.6 1.03 0.72
UGC06446 7 8.99 1.28 ± 0.13 12.8 ± 1.2 1.07 50.4 ± 2.3 0.97 0.91
UGC06628 9 9.57 1.3 ± 0.15 8.3 ± 3.8 0.55 20 ± 2 0.61 0.73
UGC06667 6 9.15 4.56 ± 0.15 15.1 ± 1.2 0.84 89.5 ± 0.6 1 -0.02
UGC06818 9 9.2 0.02 ± 0.07 29.2 ± 2 1.62 78.2 ± 2.4 0.91 0.36
UGC06917 9 9.83 0.72 ± 0.1 19.6 ± 1.4 1.09 55.4 ± 1.6 0.96 0.85
UGC06923 10 9.46 0.2 ± 0.1 23.3 ± 1.5 1.3 67.3 ± 1.6 1.02 0.46
UGC06930 7 9.95 1.14 ± 0.13 18.7 ± 1.8 1.04 24.9 ± 2.2 0.82 0.94
UGC06983 6 9.72 1.26 ± 0.11 16.1 ± 1.3 0.89 65.3 ± 0.8 1 0.91
UGC07089 8 9.55 0.14 ± 0.1 19 ± 1.8 1.05 75.5 ± 2.5 1.02 0.46
UGC07125 9 9.43 1.25 ± 0.13 7.6 ± 0.5 0.38 87.7 ± 1.4 0.99 0.92
UGC07151 6 9.36 1.16 ± 0.07 5 ± 0.3 0.73 89.7 ± 1.5 0.99 0.8
UGC07232 10 8.05 0.2 ± 0.1 3.5 ± 0.1 1.25 82.5 ± 3.9 1.27 0.03
UGC07261 8 9.24 1.22 ± 0.13 8.7 ± 2.7 0.66 28.8 ± 3.9 1.06 0.94
UGC07323 8 9.61 0.2 ± 0.13 10.1 ± 1.1 1.26 45 ± 2.4 1.01 0.7
UGC07399 8 9.06 0.63 ± 0.11 17.6 ± 1.1 2.09 57.7 ± 2.3 1.03 0.91
UGC07524 9 9.39 0.98 ± 0.11 4.8 ± 0.2 1.01 36.1 ± 1.9 0.83 0.38
UGC07559 10 8.04 0.13 ± 0.08 4.2 ± 0.2 0.84 56.1 ± 2.3 0.86 0.28
UGC07577 10 7.65 0.04 ± 0.02 1.1 ± 0.1 0.41 81.2 ± 2.8 0.95 0.62
UGC07603 7 8.58 0.18 ± 0.12 8.3 ± 0.6 1.77 75.2 ± 2.4 1.04 0.86
UGC07608 10 8.42 0.17 ± 0.15 7.3 ± 1.6 0.89 23.2 ± 3.6 1.38 0.3
UGC07690 10 8.93 1.24 ± 0.13 6.2 ± 1.2 0.77 31 ± 3.6 0.92 0.98
UGC07866 10 8.09 0.81 ± 0.14 4.5 ± 0.2 0.99 29.9 ± 2.7 0.7 0.56
UGC08286 6 9.1 1.62 ± 0.08 6.2 ± 0.2 0.95 78.5 ± 1.5 0.99 0.96
UGC08490 9 9.01 1.29 ± 0.12 4.5 ± 0.3 0.97 49.8 ± 2 1.04 1
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UGC08550 7 8.46 1.14 ± 0.12 6.1 ± 0.4 0.91 84.5 ± 1.4 0.98 0.97
UGC08837 10 8.7 0.14 ± 0.04 6.4 ± 0.3 0.89 85.7 ± 4.8 0.77 0.9
UGC09037 6 10.84 0.17 ± 0.06 84.5 ± 5.8 1.01 61.6 ± 3.9 1.13 0.81
UGC09992 10 8.53 1.19 ± 0.15 12 ± 2.5 1.12 17.1 ± 3.6 0.56 0.86
UGC10310 9 9.24 1.28 ± 0.14 8.5 ± 2.7 0.56 33 ± 3.6 1.1 0.84
UGC11455 6 11.57 0.43 ± 0.07 94.9 ± 7.6 1.21 89.8 ± 0.5 0.99 0.97
UGC11557 8 10.08 0.09 ± 0.16 22.4 ± 4.7 0.93 22.5 ± 3.8 1 0.14
UGC11820 9 8.99 1.36 ± 0.11 11.6 ± 3.7 0.64 28.9 ± 5.8 1.05 1
UGC12506 6 11.14 1.6 ± 0.11 89.4 ± 6.1 0.89 85.1 ± 2.6 0.95 0.98
UGC12632 9 9.11 1.39 ± 0.13 5.9 ± 0.9 0.61 51.7 ± 2.4 1.09 0.84
UGC12732 9 9.22 1.45 ± 0.12 14.1 ± 2 1.07 40.5 ± 3.8 0.85 0.98
UGCA442 9 8.15 0 ± 0.15 4.2 ± 0.2 0.97 87.3 ± 3.9 1.25 0.89
UGCA444 10 7.08 0.92 ± 0.15 0.9 ± 0 0.89 62.9 ± 3.4 0.83 0

Table D.2: Fits of MOND to 131 SPARC galaxies using aMCMC algorithm
and three fit parameters. The fit parameters were the mass-to-light ratio γdisk,
the galactic distance D and the inclination i of the galaxy disk. The first
column shows the galaxies name and the second its Hubble type. The third
column shows the total luminosity of the galaxy. D0 and i0 are the original
distance and inclination as denoted in the SPARC database. The fittings
were done based on Gaussian priors on the fit parameters and a maximum

likelihood based on a χ2 estimate.


