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Abstract In this paper, the oscillations of an actuated,
simply supported microbeam are studied for which
it is assumed that the electric load is composed of a
small DC polarization voltage and a small, harmonic
AC voltage. Bending stiffness and mid-plane stretch-
ing are taken into account as well as small viscous or
structural damping. No tensile axial force is assumed
to be present. By using a multiple time-scales per-
turbation method, approximations of the solutions of
the initial-boundary value problem for the microbeam
equation are constructed. This analysis is performed
without truncating the infinite series representation in
advance as is usually done in the existing literature. It
is shown in which cases truncation is allowed for this
problem. Moreover, accurate and explicit approxima-
tions of the natural frequencies up to order ε3 of the
actuated microbeam are also obtained. Intriguing and
new modal vibrations are found when the frequency of
the harmonicACvoltage is (near) half or twice a natural
frequency of themicrobeam, i.e., near a superharmonic
or a subharmonic resonance.
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1 Introduction

Electrically actuatedmicro- and nano-beams have been
studied extensively in the literature, and have already
beenused inmanymicro- andnano-mechanical devices
such as sensors and switches. One can find a compre-
hensive overviewbackground on recentwork onmicro-
and nano- beams in the Table A1 to A12 of [1]. The
analytical study of these actuated beams roughly falls
into twogroups (see for instance [2–10]) for a small, but
representative overviewof the available approaches). In
the first group one formulates a problem for a nonlinear
beamequation, and one computes a one (or a two)mode
response consisting of only the directly excited eigen-
mode(s). The applied frequency (or frequencies) in the
harmonic AC voltage of the electric load is (or are)
equal to the natural eigenfrequencies of the nonlinear
beam. Or one studies for instance a three-to-one inter-
nal resonance by only considering the twomodeswhich
are involved in this three-to-one internal resonance. In
fact, in this approach one truncates the solution of the
problem to one mode (or two modes) of oscillation,
and one studies a single (or a system of two) second
order, nonlinear differential equation(s). In the second
group of studies one formulates a (system of) second-
order ordinary differential equation(s), which include
linear and nonlinear terms with unknown parameters.
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Based upon experiments, one fits the unknown parame-
ter with different kind of methods to the obtained mea-
surements, such that the experiments and the model
equations give more or less the same bifurcations and
amplitude-frequency responses. In this paper, it will
be explicitly shown whether the truncation to a few
oscillation modes is allowed or not. Moreover, in this
paper accurate approximations of the eigenfrequencies
of the actuated beam are presented, and the influence
of damping andweak nonlinearities are described. This
will improve the parameter fitting procedure signifi-
cantly.

In this paper, we will consider an initial-boundary
value problem for an actuated microbeam for which
it is assumed that the electric load is composed of a
small DC polarization voltage and a small, harmonic
AC voltage. To simplify the analytical computations
it is assumed that the microbeam is simply supported,
but for other boundary conditions similar (but more
complicated) computations can be performed. Bend-
ing stiffness andmid-plane stretching of themicrobeam
are taken into account as well as small viscous or struc-
tural damping. No axial, tensile force is assumed to be
present.Amultiple time-scales perturbationmethod (as
the one for instance presented in [21,22] and used in
[11,12]) will be used to construct accurate approxima-
tions of the solutions of the problem which are valid on
long time-scales. In fact, we will study weakly nonlin-
early perturbed beam equations involving a small, posi-
tive parameter ε. By following a proof as given in [13] it
can be shown that all of our approximations are order
ε accurate on time-scales of order 1/ε. Moreover, it
should bementioned that Fourier series representations
for the solution will be used without truncating these
series in advance. So, no (unknown) truncation errors
are introduced in the approximations of the solution.
Truncations of the solution to a finite number of oscilla-
tionmodes is quite common in solving initial-boundary
value problem such as in the studies of actuated micro-
and nano-beam problems. However, in some problems
such as in [14,15], this truncation cannot be done due to
the modes internal resonances. This in general cannot
be known in advance. In this paper, it is shown whether
the truncation approach can be used or not. Moreover,
it will also turn out that due to some different scalings
introduced in themodelling of the problem,wewill find
some new explicit resonances which are not equal or
not close to the natural frequencies of the microbeam.

As is well known, these resonant frequencies and
internal resonances are significant for those who
work on actuated micro- and nano-beam problems for
instance on mass sensing technique problems. In those
problems, the resonance frequency shifts are tracked to
measure the mass of nano particles as in [16–18].

This paper is organized as follows. In Sect. 2 of
this paper we will formulate an initial- boundary value
problem for the actuated microbeam equation by fol-
lowing partly the derivation as given in [2] and in [10]
chapter 6. In Sect. 3 we will give accurate approxi-
mations of the natural frequencies of the microbeam,
and we will study the influence of the electro-static and
dynamic force on the oscillations of the microbeam. In
Sect. 4, we will include mid-plane stretching and vis-
cous or structural damping. We will investigate their
influence on the oscillations, andwewill describe some
new resonances in the actuated microbeam. Finally, in
Sect. 5, we will draw some conclusions, and we will
make some remarks on future research.

2 Formulation of the problem

In this paper, we consider the oscillations of a simply
supported microbeam which is actuated by an electric
load consisting of a DC component V0 and an AC com-
ponent v(t). Bending stiffness and midplane stretch-
ing are included in the model equation as well as vis-
cous and/or structural damping.No tensile axial force is
assumed to be present. Following [2,3,6,8,11,19,20]
one arrives at the nowadays standard and nondimen-
sional equation for the nondimensional displacement
u = u(x, t) of the microbeam:

utt + uxxxx + ĉ1ut + ĉ2utxxxx = α̂1

∫ 1

0
u2x dx uxx

+ α̂2
(V̂0+v̂(t))2

(1−u)2
, (1)

subject to the boundary conditions

u(0, t) = u(1, t) = uxx (0, t) = uxx (1, t) = 0, (2)

and subject to the initial conditions

u(x, 0) = f̂ (x), and ut (x, 0) = ĝ(x), (3)

where f̂ and ĝ represent the nondimensional initial
displacement and initial velocity of the microbeam,
respectively. For a schematic impression of the actu-
ated microbeam the reader is referred to Fig. 1. In (1),
(2), and (3) x is the nondimensional coordinate along
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Fig. 1 Schematic impression of the fixed groundplate and the
displacement u of the actuated microbeam which is simply
supported at x = 0 and at x = 1. The electrostatic actua-
tion is V̂0 + v̂(t), and the nondimensional distance between the
microbeam and groundplate is 1

the beamwith 0 < x < 1, t is the nondimensional time,
and ĉ1 and ĉ2 are nondimensional damping parameters.

Furthermore, α̂1, α̂2 and V̂0 are nondimensional
parameters, and v̂(t) is a nondimensional function. To
derive (1) it is assumed that the electric field between
the groundplate and the microbeam is perpendicular
to the surfaces of both the fixed groundplate and the
microbeam.This assumption implies that the deflection
u of the microbeam is much smaller than the nondi-
mensional distance 1 between the fixed plate and the
microbeam. Furthermore, it will be assumed that the
electric load is given by V̂0 + V̂AC sin(ωt), where V̂AC

is the magnitude of the applied AC voltage and ω the
excitation frequency. Based upon these assumptions,
the following rescalings are used in this paper:

V̂AC = εVAC , V̂0 = V0VAC ,

α̂1 = α, α̂2 = ε

V 2
AC

,

ĉ1 = εc1, ĉ2 = ε2c2,

f̂ (x) = ε f (x), ĝ(x) = εg(x),

and u(x, t) = εv(x, t), (4)

where ε is a small positive parameter, that is, 0 <

ε � 1. By using the rescalings (4) it follows from
(1)−(3) that we now have to study the following initial-
boundary value problem for v(x, t)

vt t + vxxxx = −εc1vt − ε2c2vt xxxx

+αε2
∫ 1

0
v2x (x, t)dxvxx

+ (V0+ε sin(ωt))2

(1−εv)2
, 0 < x < 1, t > 0, (5)

v(0, t) = v(1, t) = vxx (0, t) = vxx (1, t) = 0, t ≥ 0, (6)

v(x, 0) = f (x), vt (x, 0) = g(x), 0 < x < 1. (7)

Since ε is small the denominator in (5) can be
expanded as

1
(1−εv)2

= 1 + 2εv + 3ε2v2 + O(ε3). (8)

Moreover, due to the boundary conditions (6) v(x, t)
can be expanded in the following Fourier series:

v(x, t) =
∞∑
k=1

vk(t) sin(kπx). (9)

In the next section,wewill study the natural frequencies
of the actuated beam in detail, i.e. c1 = c2 = α = 0.
By using a three-time-scales perturbation method (see
[21,22] for a description of the multiple time-scales
perturbation technique) we will construct O(ε3) accu-
rate approximations of these frequencies. In Sect. 4
of this paper we will first consider the case when the
excitation frequency ω is close to or equal to a natu-
ral frequency of the actuated beam. Only a relatively
large damping can reduce the amplitudes of the oscil-
lations of the beam. For that reason we first consider
c1 �= 0 (i.e. we take into account a large viscous damp-
ing (and c2 = α = 0)). Secondly, we will assume that
the excitation frequency ω is not equal or not close to a
natural frequency of the actuated beam. We will study
the occurrence of super-or subharmonic resonances and
we will take into account the influence of the nonlinear
elastic forces in (5) as well as relatively small structural
damping, i.e., c1 = 0, c2 �= 0 and α �= 0.

3 The influence of the electrostatic force

In this section, we will study the influence of the elec-
trostatic force on the oscillations of the microbeam.
Damping and nonlinear elastic forces are neglected,
that is, c1 = c2 = α = 0 in Eq. (5). By substituting
(9) into (5), and by using the orthogonality properties
of the sine functions, it follows that vk(t) in (9) has to
satisfy

vktt + (kπ)4vk = 2(V 2
0 + 2εV0 sinωt + ε2 sin2 ωt)

(H(k) + εvk + 3ε2L(k) + O(ε3)),

(10)

where

H(k) =
{
0, if k is even,
2
kπ , if k is odd,

(11)

and

L(k) =
∞∑

m,n=1

cm,n vmvn, (12)
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where cm,n = 0 if ±m ± n ± k is even or zero and it

is equal to −4mnk
π(k+m+n)(k+m−n)(k−m+n)(k−m−n)

if ±m ±
n ± k is odd.

By substituting (9) into (7) it similarly follows that

vk(0) = 2
∫ 1

0
f (x) sin(kπx)dx; vkt (0)

= 2
∫ 1

0
g(x) sin(kπx)dx . (13)

Since a naive perturbation expansion for vk(t) leads
to secular terms in vk(t), we will now apply a three-
time-scales perturbation method (with t0 = t , t1 = εt ,
t2 = ε2t) to obtain highly accurate approximations for
vk(t) which are valid on a time-scale of order 1/ε. So,

vk(t, ε) = vk(t0, t1, t2, ε),

d
dt = D0 + εD1 + ε2D2,

d2

dt2
= D2

0 + 2εD1D0 + ε2(D2
1 + 2D2D0) + O(ε3),

(14)

with Di = ∂
∂ti

. By substituting (14) into (10) we obtain

D2
0vk + (kπ)4vk + 2εD1D0vk

+ε2(D2
1 + 2D2D0)vk + O(ε3)

= 2(V 2
0 + 2εV0 sin(ωt) + ε2 sin2(ωt))

(H(k) + εvk + 3ε2L(k) + O(ε3)). (15)

By putting (ωi is a constant independent of ε for i = 1,
2, and 3)

ω = ω0 + εω1 + ε2ω2, (16)

we can rewrite sin(ωt) in (15) as

sin(ωt) = sin(ω0t0 + ω1t1 + ω2t2). (17)

As usual vk(t0, t1, t2) is expanded in

vk(t0, t1, t2, ε) = vk,0(t0, t1, t2) + εvk,1(t0, t1, t2)
+ε2vk,2(t0, t1, t2) + O(ε3).

(18)

By substituting (18) into (15) and by collecting terms of
O(1), terms ofO(ε), and terms ofO(ε2), we obtain the
usualO(1)-,O(ε)-,O(ε2)- problems:O(1)-problem :

Lvk,0 = 2V 2
0 H(k), (19)

O(ε)-problem:

Lvk,1 = −2D1D0vk,0 + 2V 2
0 vk,0 + 4V0H(k) sin(ωt), (20)

O(ε2)-problem:

Lvk,2 = −2D1D0vk,1 − D2
1vk,0 − 2D2D0vk,0 + 2V 2

0 vk,1

+2H(k) sin2(ωt) + 4V0vk,0 sin(ωt)

+6V 2
0

∞∑
m,n=1

±m±n±k odd

cm,n vm,0 vn,0, (21)

where Lv = D2
0v + (kπ)4v and sin(ωt) is given by

(17). The solution of the O(1)-problem (19) is given
by

vk,0(t0, t1, t2) = Ak,0(t1, t2) cos(k
2π2t0)

+Bk,0(t1, t2) sin(k
2π2t0) + 2V 2

0 H(k)

k4π4 .

(22)

After substituting (22) into theO(ε)-problem (20), we
obtain

Lvk,1 = −2k2π2
(
− ∂Ak,0

∂t1
sin(k2π2t0) + ∂Bk,0

∂t1
cos(k2π2t0)

)

+4V0H(k) sin(ω0t0 + ω1t1 + ω2t2)

+2V 2
0

(
Ak,0 cos(k

2π2t0) + Bk,0 sin(k
2π2t0)

+ 2V 2
0 H(k)
k4π4

)
(23)

Now we have to consider two cases:
Case 1 ω0 �= K 2π2 for all odd K ∈ N, that is,
sin(ω0t0 + ω1t1 + ω2t2) is not a resonant term in the
right-hand side of Eq. (23) for vk,1,
Case 2ω0 = K 2π2 for a certain, fixed, and odd K ∈ N,
that is, sin(ω0t0 + ω1t1 + ω2t2) is a resonant term in
the right-hand side of Eq. (23) for vk,1.
First we will study the problem for vk,1 (given by (23))
in case 1.
Case 1 ω0 �= K 2π2 for all odd K ∈ N.
In this case, it follows from (23) that in order to avoid
secular terms in vk,1 that Ak,0 and Bk,0 have to satisfy

∂Ak,0
∂t1

+ V 2
0

k2π2 Bk,0 = 0,
∂Bk,0
∂t1

− V 2
0

k2π2 Ak,0 = 0.
(24)

The solution for Ak,0 and Bk,0 is given by

Ak,0(t1, t2) = Ck,0(t2) cos
(

V 2
0

k2π2 t1
)

+Dk,0(t2) sin
(

V 2
0

k2π2 t1
)
,

Bk,0(t1, t2) = Ck,0(t2) sin
(

V 2
0

k2π2 t1
)

−Dk,0(t2) cos
(

V 2
0

k2π2 t1
)
. (25)
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And so, in this case, we have

vk,0(t0, t1, t2) = cos(k2π2t0)
(
Ck,0(t2) cos

(
V 2
0

k2π2 t1
)

+Dk,0(t2) sin
(

V 2
0

k2π2 t1
))

+ sin(k2π2t0)
(
Ck,0(t2) sin

(
V 2
0

k2π2 t1
)

−Dk,0(t2) cos
(

V 2
0

k2π2 t1
))

+2V 2
0 H(k)

k4π4 (26)

and

vk,1(t0, t1, t2) = Ak,1(t81, t2) cos(k
2π2t0)

+Bk,1(t1, t2) sin(k
2π2t0)

+ 4V0H(k)

k4π4 − ω2
0

sin(ω0t0 + ω1t1 + ω2t2)

+4V 4
0 H(k)

k8π8 . (27)

Case 2 ω0 = K 2π2 for a certain, fixed, odd K ∈ N.

In this case it follows from (23) that no secular terms in
vk,1 will occur when Ak,0 and Bk,0 satisfy (24) when
k �= K , and satisfy for k = K

∂AK ,0
∂t1

+ V 2
0

K 2π2 BK ,0 = − 2V0H(K )

K 2π2 (cos(ω1t1 + ω2t2)),
∂BK ,0
∂t1

− V 2
0

K 2π2 AK ,0 = 2V0H(K )

K 2π2 (sin(ω1t1 + ω2t2)).

(28)

It is obvious that for all k �= K , vk,0 and vk,1 are given
by (26) and (27), respectively. To determine vK ,0 and
vK ,1 we first have to solve (28). The system (28) of two
first-order ordinary differential equations can be rewrit-
ten as a second-order ordinary differential equation for
AK ,0, i.e.,

∂2AK ,0

∂t21
+ V 4

0
K 4π4 AK ,0

= 2V0H(k)
K 2π2

(
ω1 − V 2

0
K 2π2

)
sin(ω1t1 + ω2t2). (29)

To determine AK ,0 from (29) (and then BK ,0 from the
first equation in (28)) we now have to consider three
cases:
Case 2.1 ω0 = K 2π2 for a certain, fixed, odd K ∈ N,

andω1 �= ± V 2
0

K2π2 . In this case AK ,0 and BK ,0 are given
by

AK ,0(t1, t2) = CK ,0(t2) cos
(

V 2
0

K 2π2 t1
)

+DK ,0(t2) sin
(

V 2
0

K 2π2 t1
)

− 2V0H(K )

V 2
0 +ω1K 2π2 sin(ω1t1 + ω2t2),

BK ,0(t1, t2) = CK ,0(t2) sin
(

V 2
0

K 2π2 t1
)

−DK ,0(t2) cos
(

V 2
0

K 2π2 t1
)

− 2V0H(K )

V 2
0 +ω1K 2π2 cos(ω1t1

+ω2t2). (30)

Case 2.2 ω0 = K 2π2 for a certain, fixed, odd K ∈ N,

and ω1 = V 2
0

K2π2 . In this case AK ,0 and BK ,0 are given
by

AK ,0(t1, t2) = CK ,0(t2) cos (ω1t1) + DK ,0(t2) sin (ω1t1) ,

BK ,0(t1, t2) = CK ,0(t2) sin (ω1t1) − DK ,0(t2) cos (ω1t1)
− 2H(K )

V0
cos (ω1t1 + ω2t2) .

(31)

Case 2.3 ω0 = K 2π2 for a certain, fixed, odd K ∈ N

and ω1 = − V 2
0

K2π2 .
In this case AK ,0 and BK ,0 are given by

AK ,0(t1, t2) = CK ,0(t2) cos (ω1t1) − DK ,0(t2) sin (ω1t1)
− 2V0H(K )

K 2π2 t1 cos (ω1t1 + ω2t2) ,

BK ,0(t1, t2) = −CK ,0(t2) sin (ω1t1) − DK ,0(t2) cos (ω1t1)
+ 2V0H(K )

K 2π2 t1 sin (ω1t1 + ω2t2) .

(32)

It should be observed that we get in the solu-
tions for AK ,0 and BK ,0 when ω0 = K 2π2 and

ω1 = − V 2
0

K 2π2 (see case 2.3, and Eq. (32)) unbounded
terms in t1. However, on t time-scales of order 1/ε
these terms remain bounded. So, for t = O( 1

ε
) we

still have bounded functions for vK ,0(t0, t1, t2) and
vK ,1(t0, t1, t2), and these functions for the 3 cases
(cases 2.1, case 2.2, and case 2.3) are given by

vK ,0(t1, t1, t2) = AK ,0(t1, t2) cos(K
2π2t0)

+BK ,0(t1, t2) sin(K
2π2t0) + 2V 2

0 H(K )

K 4π4 ,

(33)
vK ,1(t0, t1, t2) = AK ,1(t1, t2) cos(K

2π2t0)

+BK ,1(t1, t2) sin(K
2π2t0) + 4V 4

0 H(K )

K 8π8 .

(34)

To determine vk,0(t0, t1, t2) completely for all the
cases (that is, for case 1, case 2.1, case 2.2, and case
2.3) we still have to determine Ck,0(t2) and Dk,0(t2)
for all k by solving the O(ε2)-problem (21). In the
right-hand side of Eq. (21) for vk,2 we encounter the
nonlinear term

∞∑
m,n=1

±m±n±k odd

cm,n vm,0(t0, t1, t2) vn,0(t0, t1, t2). (35)

123



3162 E. Harjanto et al.

By substituting vm,0 and vn,0 into this term we will
obtain products of sin(m2π2t0) (or cos(m2π2t2)) with
sin(n2π2t0) or cos(n2π2t2), and we will get products
of sine or cosine functions with constants. For the prod-
ucts of the trigonometric functionswe can use identities
yielding cos((±m2 ± n2)t0) and sin((±m2 ± n2)t0).
These functions can be resonant terms in the nonlin-
ear term (35) of Eq. (21) when k2 = ±m2 ± n2 and
±m ± n ± k is odd. It can easily be shown that this
cannot occur. For instance, assume that both m and n
are odd (or even) then from k2 = ±m2 ± n2 it fol-
lows that k is even, but this contradicts the fact that
±m±n±k should be odd. Similarly, if one assumesm
to be odd and n to be even, then from k2 = ±m2 ± n2

it follows that k is odd, but this again contradicts the
fact that ±m ± n ± k should be odd. So, the products
of the trigonometric functions in (35) will not lead to
resonant terms in Eq. (21), and the only resonant terms
coming from (35) (that is, the last term in Eq. (21)) are(
Ak,0 cos

(
k2π2t0

)
+ Bk,0 sin

(
k2π2t0

))
(∑
n odd

ck,n
2V 2

0 H(n)

n4π4 +
∑
m odd

cm,k
2V 2

0 H(m)

m4π4

)
.

Using the symmetry of cm,n (see (12)) this resonant
term can be further simplified to(
Ak,0 cos

(
k2π2t0

)
+ Bk,0 sin

(
k2π2t0

))
S(k),

with

S(k) =
(
4V 2

0

∑
n odd

ck,n
H(n)

n4π4

)
. (36)

Furthermore, it should be observed that we have in the
right-hand side of Eq. (21) the term 2H(k) sin2(ωt) =
H(k)( 12 − 1

2 cos(2ωt)) which can also be a resonant
term in vk,2 when k = L is odd and 2ω0 = L2π2.
And also the term 4V0vk,0 sin(ωt) for k = M in (21)
can give rise to resonant terms when ω0 = 2M2π2

for a fixed M ∈ N (M can be even or odd). So, apart
from the resonance case, i.e., case 2 with ω0 = K 2π2

for a certain, fixed, and odd K ∈ N, we have to con-
sider three additional cases. In case 1.1wewill consider
the case when ω0 is not equal to the “pure” resonance
frequency, and is not equal to first superharmonic and
subharmonic resonance frequency. In case 1.2 we will
consider the case when ω0 is equal to the first super-
harmonic resonance frequency, and in case 1.3 we will
study the casewhenω0 is equal to the first subharmonic
resonance frequency.

Case 1.1ω0 �= K 2π2 for all odd K ∈ N, andω0 �=
1
2 L

2π2 for all odd L ∈ N, and ω0 �= 2M2π2 for all
M ∈ N.
By substituting vk,0 and vk,1 as given by (26) and (27),
respectively, into the O(ε2)-problem (21) for vk,2, we
obtain

Lvk,2 = cos(k2π2t0)

(
− 2k2π2 ∂Bk,1

∂t1
+ V 4

0
k4π4 Ak,0

+2V 2
0 Ak,1 − 2k2π2 ∂Bk,0

∂t2
+ 6V 2

0 Ak,0S(k)

)

+ sin(k2π2t0)

(
2k2π2 ∂Ak,1

∂t1
+ V 4

0
k4π4 Bk,0

+2V 2
0 Bk,1 + 2k2π2 ∂Ak,0

∂t2
+ 6V 2

0 Bk,0S(k)

)

+NST (37)

where NST stands for non-secular terms. To avoid
secular terms in vk,2, it follows from (37) that Ak,1 and
Bk,1 have to satisfy

∂Ak,1
∂t1

+ V 2
0

k2π2 Bk,1 = − V 4
0

2k6π6 Bk,0

− ∂Ak,0
∂t2

− 3V 2
0 S(k)
k2π2 Bk,0, (38)

∂Bk,1
∂t1

− V 2
0

k2π2 Ak,1 = V 4
0

2k6π6 Ak,0

− ∂Bk,0
∂t2

+ 3V 2
0 S(k)
k2π2 Ak,0. (39)

By differentiating (38) with respect to t1 and by sub-
stituting ∂Bk,1

∂t1
from (39) into the so-obtained equation,

we obtain

∂2Ak,1

∂t12
+

(
V 2
0

k2π2

)2

Ak,1

= − cos
(

V 2
0

k2π2 t1
)(

V 6
0

k8π8Ck,0 + 2V 2
0

k2π2
dDk,0
dt2

+ 6V 4
0 S(k)
k4π4 Ck,0

)

− sin
(

V 2
0

k2π2 t1
)(

V 6
0

k8π8 Dk,0 − 2V 2
0

k2π2
dCk,0
dt2

+ 6V 4
0 S(k)
k4π4 Dk,0

)
.

Since Ak,1 and Bk,1 have to be bounded, we have to
avoid secular terms in Ak,1 and Bk,1, and so we obtain

dCk,0

dt2
−

(
V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)
Dk,0 = 0,

dDk,0

dt2
+

(
V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)
Ck,0 = 0. (40)

By solving (40) it follows that Ck,0 and Dk,0 are given
by
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Ck,0(t2) = Ck,0(0) cos

((
V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)
t2

)

+Dk,0(0) sin

((
V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)
t2

)
,

Dk,0(t2) = −Ck,0(0) sin

((
V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)
t2

)

+Dk,0(0) cos

((
V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)
t2

)
.

(41)

Hence,

vk,0(t0, t1, t2) = Ck,0(0) cos(ω̂(t0, t1, t2))

−Dk,0(0) sin(ω̂(t0, t1, t2))

+ 2V 2
0 H(k)
k4π4 , (42)

where ω̂(t0, t1, t2) = k2π2t0− V 2
0

k2π2 t1−
(

V 4
0

2k6π6 + 3V 2
0 S(k)

k2π2

)
t2.

In this ’nonresonant’ case it follows from (42) that the
natural frequencies of the microbeam up to O(ε3) are
given by

k2π2 − V 2
0

k2π2 ε −
(

V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)
ε2 (43)

for all k ∈ N. Later on, we will see that if the frequency
of the external force (the AC frequency) is in a neigh-
borhood of a natural frequency of the vibration, it will
give rise to resonance.

Case 1.2 ω0 = 1
2 L

2π2 for a certain, fixed, and odd
L ∈ N.
In this case it follows from theO(ε2)-problem (21) for
vk,2 that all vk,2 with k �= L have to satisfy (37) and
that vk,0 is given by (42). For k = L it follows from
(21) that vL ,2 has to satisfy

LvL ,2 = cos(L2π2t0)
(

− 2L2π2 ∂BL ,1
∂t1

+ V 4
0

L4π4 AL ,0 + 2V 2
0 AL ,1

−2L2π2 ∂BL ,0
∂t2

+ 6V 2
0 S(L)AL ,0

−H(L) cos(2ω1t1 + 2ω2t2)
)

+ sin(L2π2t0)
(
2L2π2 ∂AL ,1

∂t1
+ V 4

0
L4π4 BL ,0 + 2V 2

0 BL ,1

+2L2π2 ∂AL ,0
∂t2

+ 6V 2
0 S(L)BL ,0

+H(L) sin(2ω1t1 + 2ω2t2)
)

+NST . (44)

To avoid secular terms in vL ,2 it follows from (44)
that AL ,1 and BL ,1 have to satisfy

∂AL ,1
∂t1

+ V 2
0

L2π2 BL ,1 = − V 4
0

2L6π6 BL ,0 − ∂AL ,0
∂t2

− 3V 2
0 S(L)

L2π2 BL ,0

− H(L)

2L2π2 sin(2ω1t1 + 2ω2t2),

∂BL ,1
∂t1

− V 2
0

L2π2 AL ,1 = V 4
0

2L6π6 AL ,0 − ∂BL ,0
∂t2

+ 3V 2
0 S(L)

L2π2 AL ,0

− H(L)

2L2π2 cos(2ω1t1 + 2ω2t2). (45)

Combining the two equations in (45), we obtain for
AL ,1

∂2AL ,1

∂t21
+ V 4

0
L4π4 AL ,1 = − cos

(
V 2
0

L2π2 t1

)

[
V 6
0

L8π8CL ,0 + 2V 2
0

L2π2
dDL ,0
dt2

+ 6V 4
0 S(L)

L4π4 CL ,0

]

− sin

(
V 2
0

L2π2 t1

) [
V 6
0

L8π8 DL ,0 − 2V 2
0

L2π2
dCL ,0
dt2

+ 6V 4
0 S(L)

L4π4 DL ,0

]

− H(L)

2L2π2

[
2ω1 − V 2

0
L2π2

]
cos(2ω1t1 + 2ω2t2).

(46)

Now we have to consider three cases, that is, 2ω1 =
V 2
0

L2π2 , 2ω1 = − V 2
0

L2π2 , and 2ω1 �= ± V 2
0

L2π2 . If 2ω1 �=
± V 2

0
L2π2 , then we will obtain the same CL ,0 and DL ,0 as

in (41). When 2ω1 = V 2
0

L2π2 , then the last term in the
right-hand side of (46) will be zero, and we will have
the same CL ,0 and DL ,0 as given in (41). So, both of
these two cases will give us the same result as in case

1.1. When 2ω1 = − V 2
0

L2π2 , it follows from (45) that in
order to avoid secular terms in AL ,1 thatCL ,0 and DL ,0

have to satisfy

dCL ,0
dt2

−
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
DL ,0

= − H(L)

2L2π2 sin(2ω2t2),

dDL ,0
dt2

+
(

V 4
0

2L6π6

+ 3V 2
0 S(L)

L2π2

)
CL ,0 = H(L)

2L2π2 cos(2ω2t2). (47)

Combining the two equations in (47), we obtain for
CL ,0

d2CL ,0

dt22
+

(
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)2
CL ,0

+
(
2ω2 −

(
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

))
H(L)

2L2π2 cos(2ω2t2) = 0.

(48)

From (48) it follows that we have to consider 3 sub-

cases, i.e., 2ω2 �= V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2 , 2ω2 = V 4
0

2L6π6 +
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3V 2
0 S(L)

L2π2 , and 2ω2 = −
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
. For 2ω2 =

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2 , we obtain the same CL ,0 and DL ,0 as

given in (41).While for 2ω2 �= ±
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
,

CL ,0 and DL ,0 are given by

CL ,0(t2) = K1 cos

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+K2 sin

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+ L4π4H(L)

2μL6π6+V 4
0 +6V 2

0 L
4π4S(L)

cos(2ω2t2),

DL ,0(t2) = −K1 sin

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+K2 cos

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+ L4π4H(L)

4μL6π6+V 4
0 +6V 2

0 L
4π4S(L)

sin(2ω2t2), (49)

where K1 and K2 are constants of integration. For the

last subcase, when 2ω2 = −
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
, we

obtain

CL ,0(t2) = K1 cos

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+K2 sin

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+ H(L)

2L2π2 t2 sin

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)
,

DL ,0(t2) = −K1 sin

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+K2 cos

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)

+ H(L)

2L2π2 t2 cos

((
V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
t2

)
.

(50)

Having determinedCL ,0(t2) and DL ,0(t2)we now have
completely computed vk,0(t0, t1, t2) as given by (26).
It should be observed that vk,0 is bounded on a t time-
scale of order 1/ε, but it contains terms for k = L that
become unbounded for times t larger than order 1/ε2

when the frequency of the AC voltage is O(ε3) close
to

1
2 L

2π2 − 1
2ε

V 2
0

L2π2 − 1
2ε

2
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2

)
. (51)

The resonance forω as given by (51) is usually referred
to as the first superharmonic resonance.

Case 1.3 : ω0 = 2M2π2 for a certain, and fixed
M ∈ N.
In this case it follows from theO(ε2)-problem (21) for
vk,2 that all vk,2 with k �= M have to satisfy (37) and
that vk,0 is given by (42). For k = M , it follows from
(21) that vM,2 has to satisfy

LvM,2 = cos(M2π2t0)
(

− 2M2π2 ∂BM,1
∂t1

+ V 4
0

M4π4 AM,0

+2V 2
0 AM,1 + 6V 2

0 S(M)AM,0

−2M2π2 ∂BM,0
∂t2

+2V0[AM,0 sin(ω1t1 + ω2t2)

+BM,0 cos(ω1t1 + ω2t2)]
)

+ sin(M2π2t0)
(
2M2π2 ∂AM,1

∂t1
+ V 4

0
M4π4 BM,0

+2V 2
0 BM,1 + 6V 2

0 S(M)BM,0

2M2π2 ∂AM,0
∂t2

+2V0[AM,0 cos(ω1t1 + ω2t2)

−BM,0 sin(ω1t1 + ω2t2)]
)

+NST . (52)

To avoid secular term in vM,2, it follows from (52) that
AM,1 and BM,1 have to satisfy

∂AM,1
∂t1

+ V 2
0

M2π2 BM,1 =− V 4
0

2M6π6 BM,0− ∂AM,0
∂t2

− 3V 2
0 S(M)

M2π2 BM,0

− V0
M2π2

[
AM,0 cos(ω1t1 + ω2t2)

−BM,0 sin(ω1t1 + ω2t2)
]
,

∂BM,1
∂t1

− V 2
0

M2π2 AM,1 = V 4
0

2M6π6 AM,0 − ∂BM,0
∂t2

+ 3V 2
0 S(M)

M2π2 AM,0

+ V0
M2π2

[
AM,0 sin(ω1t1 + ω2t2)

+BM,0 cos(ω1t1 + ω2t2)
]
. (53)

Combining the two equations in (53), we get

∂2AM,1

∂t22
+ V 4

0
M4π4 AM,1 =− cos

(
V 2
0

M2π2 t1

)[
V 6
0

M8π8CM,0

+ 2V 2
0

M2π2
dDM,0
dt2

+ 6V 4
0 S(M)

M4π4 CM,0

]

− sin

(
V 2
0

M2π2 t1

)[
V 6
0

M8π8 DM,0− 2V 2
0

M2π2
dCM,0
dt2

+ 6V 4
0 S(M)

M4π4 DM,0

]

+ ω1V0
M2π2

[
CM,0 sin(ω2t2)−DM,0 cos(ω2t2)

]

cos

((
ω1 + V 2

0
M2π2

)
t1

)

+ ω1V0
M2π2 [CM,0 cos(ω2t2)+DM,0 sin(ω2t2)]

sin

((
ω1 + V 2

0
M2π2

)
t1

)
. (54)
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Now we have to consider three cases, that is, when

ω1 �= 0 and ω1 �= − 2V 2
0

M2π2 , when ω1 = 0, and when

ω1 = − 2V 2
0

M2π2 . In the first two cases we will obtain the
same CM,0 and DM,0 as given by (41) and leading to

the same vk,0 as given by (42). When ω1 = − 2V 2
0

M2π2 it
follows from (54) that in order to avoid secular terms
in AM,1 that CM,0 and DM,0 have to satisfy

dCM,0
dt2

−
(

V 4
0

2M6π6 + 3V 2
0 S(M)

M2π2

)
DM,0 = − V0

M2π2 (CM,0 cos(ω2t2)

+DM,0 sin(ω2t2)),

dDM,0
dt2

+
(

V 4
0

2M6π6 + 3V 2
0 S(M)

M2π2

)
CM,0 = − V0

M2π2 (CM,0 sin(ω2t2)

−DM,0 cos(ω2t2)).

(55)

System (55) can be rewritten as
( dCM,0

dt2
dDM,0
dt2

)
=

(
0 γ

−γ 0

)(
CM,0
DM,0

)

− V0
M2π2

(
cos(ω2t2) sin(ω2t2)
sin(ω2t2) − cos(ω2t2)

)(
CM,0
DM,0

)
,

(56)

where γ = V 4
0

2M6π6 + 3V 2
0 S(M)

M2π2 > 0. By introducing
the time-rescaling τ = γ t2 system (56) becomes
(

dCM,0
dτ

dDM,0
dτ

)
=

(
0 1

−1 0

)(
CM,0

DM,0

)

− V0
γ M2π2

⎛
⎝cos

(
ω2
γ

τ
)

sin
(

ω2
γ

τ
)

sin
(

ω2
γ

τ
)

− cos
(

ω2
γ

τ
)
⎞
⎠
(
CM,0

DM,0

)
.

(57)

System (57) is of the form Ẋ = AX+B(τ )X , where
A is a constant matrix and where B(τ ) is a continuous
and periodic matrix. The fundamental matrix Φ(t) for

Ẋ = AX is given by

(
cos(τ ) sin(τ )

− sin(τ ) cos(τ )

)
. Then, by

using the method of variation of constants we can take
X (τ ) = Φ(τ)C(τ )withC(τ ) = (C1(τ ),C2(τ ))T , and
we obtain Ċ(τ ) = Φ−1(τ )B(τ )Φ(τ)C(τ ). When this
method is applied to (57) we obtain

( dC1
dτ
dC2
dτ

)
= − V0

γ M2π2

⎛
⎝cos

((
2 + ω2

γ

)
τ
)

sin
((

2 + ω2
γ

)
τ
)

sin
((

2 + ω2
γ

)
τ
)

− cos
((

2 + ω2
γ

)
τ
)
⎞
⎠
(
C1

C2

)
,

(58)

and (CM,0(τ ), DM,0(τ ))T is given by Φ(τ)C(τ ).

Let τ = − γ M2π2

V0
s and α = − γ M2π2

V0

(
2 + ω2

γ

)
. Then

(58) becomes

( dC1
ds
dC2
ds

)
=

(
cos(αs) sin(αs)
sin(αs) − cos(αs)

)(
C1

C2

)
. (59)

By introducing polar coordinates for C1(s) and
C2(s), that is, C1(s) = r(s) cos(φ(s)) and C2(s) =
r(s) sin(φ(s)), it follows from (59) that r(s) and φ(s)
have to satisfy
dr
ds = r cos(2φ − αs),
dφ
ds = − sin(2φ − αs). (60)

Byputtingψ(s) = 2φ(s)−αs the systemofdifferential
equations (60) can be simplified to
dr
ds = r cos(ψ),

dψ
ds = −α − 2 sin(ψ). (61)

It is not hard to see that the autonomous system (61)
admits the following first integral

(α + 2 sin(ψ))r2 = constant. (62)

From (62) it follows simply for |α| > 2 that α +
2 sin(ψ) is sign definite and so, the function r(s) is
bounded for all s. And so, for |α| > 2 system (55) has
only bounded solutions CM,0(t2) and DM,0(t2). These
functions can be computed from (61), but the compli-
cated and long expressions will be ommited here for
convenience. For |α| ≤ 2, we will study (59) by intro-
ducing z(s) = C1(s) + iC2(s), where i2 = −1. Then,
it can easily be shown (by using (59)), and the complex
notation for cos(αs) and sin(αs)), that

ż = eiαs z̄, (63)

where z̄ is the complex conjugate of z. Eq. (63) can be
solved by looking for nontrivial solutions in the form

z(s) = (ξ1 + iξ2) exp((λ1 + iλ2)s), (64)

where ξ1, ξ2, λ1, and λ2 are real constants. By substi-
tuting (64) into (63) one obtains

(ξ1 + iξ2)(λ1 + iλ2) = ei(α−2λ2)s(ξ1 − iξ2). (65)

The left-hand side of (65) does not depend on s, where-
as the right-hand side does.Moreover, we look for non-
trivial solutions of (63) (that is, (ξ1, ξ2) �= (0, 0)), and
so, it follows from (65) that α − 2λ2 = 0, and that
(ξ1 + iξ2)(λ1 + iλ2) = ξ1 − iξ2, which implies

λ2 = α
2 ,

(λ1 − 1)ξ1 − α
2 ξ2 = 0,

α
2 ξ1 + (λ1 + 1)ξ2 = 0. (66)

To have a nontrivial solution for (63), that is, (ξ1, ξ2) �=
(0, 0), it follows from the two last equations in (66) that
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the determinant of the coefficientmatrix should be zero,
implying (λ1 − 1)(λ1 + 1) + α2

4 = 0, or equivalently

λ1 = 1
2

√
4 − α2 or λ1 = − 1

2

√
4 − α2. (67)

For |α| < 2wefind twodifferent roots, and so two func-
tionally independent solutions for (63) (and for (59))
can be found by solving and using (64) and (66), yield-
ing

z1(s) = exp

(
1

2

√
4 − α2s

) (
cos

(αs

2

)
+ α sin

(
αs
2

)
2 +

√
4 − α2

+i

(
− α cos

(
αs
2

)
2 +

√
4 − α2

+ sin
(αs

2

)))
,

z2(s) = exp

(
−1

2

√
4 − α2s

)(
α cos

(
αs
2

)
2 +

√
4 − α2

+ sin
(αs

2

)

+i

(
− cos

(αs

2

)
+ α sin

(
αs
2

)
2 +

√
4 − α2

))
. (68)

And so, the general solution of (59) can readily be
obtained from z(s) = C1(s)+iC2(s) and (68), yielding(
C1(s)
C2(s)

)
= k1

(
Re(z1(s))
Re(z2(s))

)
+ k2

(
Im(z1(s))
Im(z2(s))

)
, (69)

where k1 and k2 are constants of integration, and where
Re and Im stand for the real and imaginary part, respec-
tively.

For α = 2 or for α = −2 it follows from (67)
that we find coinciding roots. So, we have only one
solution for (63) (and for (59)). The other functionally
independent solution, however, can easily be found by
using themethod of variation of constants.Wewill omit
the elementary computations. For α = 2, the general
solution of (59) is given by(
C1(s)
C2(s)

)
= k1

(
s(cos(s) + sin(s))+ cos(s)
s(− cos(s) + sin(s)) + sin(s)

)

+k2

(
cos(s) + sin(s)

− cos(s) + sin(s)

)
,

(70)

and for α = −2 the general solution of (59) is given by(
C1(s)
C2(s)

)
= k1

(
s(cos(s) + sin(s))+ cos(s)
s(cos(s) − sin(s)) − sin(s)

)

+k2

(
cos(s) + sin(s)
cos(s) − sin(s)

)
,

(71)

where k1 and k2 are constants of integration. From (68)-
(71) the solutions CM,0(t2) and DM,0(t2) of (55) can
now be easily obtained, and so vM,0(t0, t1, t2) given
by (26) is now completely determined. For |α| ≤ 2
or equivalently for −2γ − 2V0

M2π2 ≤ ω2 ≤ −2γ +

2V0
M2π2

(
where γ = V 4

0
2M6π6 + 3V 2

0 S(M)

M2π2

)
the solution

vM,0(t0, t1, t2) is unstable, else the solution is stable.
So far we studied up to O(ε3) the cases for which

ω0 �= K 2π2 for all odd K ∈ N andwe found the natural
frequencies of the microbeam (up toO(ε3)) which are

given by fk = k2π2 − ε
V 2
0

k2π2 − ε2
(

V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2

)

for k = 1, 2, . . . We also found a superharmonic reso-
nance when ω0 + εω1 + ε2ω2 = 1

2 fL for a fixed and
odd L ∈ N, and we found for a fixed M ∈ Z subhar-

monic resonance for ω = 2M2π2 − 2ε
V 2
0

M2π2 + ε2ω2,

where ω2 ∈
[
−2γ − 2V0

M2π2 ,−2γ + 2V0
M2π2

]
with γ =

V 4
0

2M6π6 + 3V 2
0 S(M)

M2π2 . We still have to determine vk,0 com-

pletely when ω0 = K 2π2 for a certain, fixed, and odd
K ∈ N, that is, case 2.1, case 2.2, and case 2.3 have to
be studied further by considering the O(ε2)-problem
for vk,2 for those cases.

Case2.1ω0 = K 2π2 for a certain fixed, odd K ∈ N,

and ω1 �= ± V 2
0

K2π2 .

Following the earlier made remarks in case 2 we now
only have to consider vK ,0, vK ,1, vK ,2. By substituting
vK ,0, vK ,1, AK ,0, BK ,0 (as given in (33), (34), (30))
into the right-hand side of Eq. (23) and by taking apart
those terms in this right-hand side that cause secular
terms in vK ,2 it follows that no secular terms in vK ,2

will occur when AK ,1 and BK ,1 satisfy

∂AK,1
∂t1

+ V 2
0

K 2π2 BK ,1 = − V 4
0

2K 6π6

[
CK,0 sin

(
V 2
0

K 2π2 t1

)

−DK ,0 cos

(
V 2
0

K 2π2 t1

)]

−
[
dCK ,0
dt2

cos

(
V 2
0

K 2π2 t1

)

+dDK ,0
dt2

sin

(
V 2
0

K 2π2 t1

)

− 2ω2V0H(K )

V 2
0 +δK 2π2 cos(ω1t1 + ω2t2)

]

+ δ2V0H(K )

K 2π2(V 2
0 +ω1K 2π2)

cos(ω1t1 + ω2t2)

− 4V 3
0 H(K )

K 6π6 cos(ω1t1 + ω2t2)

− 3V 2
0 S(K )

K 2π2

[
CK ,0 sin

(
V 2
0

K 2π2 t1

)

−DK ,0 cos

(
V 2
0

K 2π2 t1

)

− 2V0H(K )

V 2
0 +ω1K 2π2 cos(ω1t1 + ω2t2)

]
,

∂BK ,1
∂t1

− V 2
0

K 2π2 AK ,1 = V 4
0

2K 6π6

[
CK ,0 cos

(
V 2
0

K 2π2 t1

)
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+DK ,0 sin

(
V 2
0

K 2π2 t1

) ]

−
[
dCK ,0
dt2

sin

(
V 2
0

K 2π2 t1

)

− dDK ,0
dt2

cos

(
V 2
0

K 2π2 t1

)

+ 2ω2V0H(K )

V 2
0 +ω1K 2π2 sin(ω1t1 + ω2t2)

]

− δ2V0H(K )

K 2π2(V 2
0 +δK 2π2)

sin(ω1t1 + ω2t2)

+ 4V 3
0 H(K )

K 6π6 sin(ω1t1 + ω2t2)

+ 3V 2
0 S(K )

K 2π2

[
CK ,0 cos

(
V 2
0

K 2π2 t1

)

+DK ,0 sin

(
V 2
0

K 2π2 t1

)

− 2V0H(K )

V 2
0 +ω1K 2π2 sin(ω1t1 + ω2t2)

]
. (72)

Combining the two equations in (72), we obtain

∂2 AK,1

∂t21
+ V 4

0
K 4π4 AK ,1 = − cos

(
V 2
0

K 2π2 t1

)[
V 6
0

K 8π8 CK ,0+ 2V 2
0

K 2π2
dDK ,0
dt2

+ 6V 4
0 S(k)

K 4π4 CK ,0

]

− sin

(
V 2
0

K 2π2 t1

)[
V 6
0

K 8π8 DK ,0 − 2V 2
0

K 2π2
dCK ,0
dt2

+ 6V 4
0 S(k)

K 4π4 DK ,0

]
+ NST .

To avoid secular terms in AK ,1 and BK ,1, CK ,0 and
DK ,0 have to satisfy (40). Eventually, we will obtain to
the same CK ,0 and DK ,0 as given by (41). In this case,
vK ,0 is given by:

vK ,0(t0, t1, t2) = K1 cos(ω̄(t0, t1, t2)) − K2 sin(ω̄(t0, t1, t2))

− 2V0H(K )

V 2
0 +ω1K 2π2 sin(ω0t0 + ω1t1 + ω2t2)

+ 2V 2
0 H(K )

K 4π4 ,

where ω̄(t0, t1, t2) = K 2π2t0 − V 2
0

K 2π2 t1

−
(

V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
t2, and, K1 and K2 are constants

of integration.

Case 2.2 ω0 = K 2π2 for a certain fixed, odd K ∈ N,

and ω1 = V 2
0

K2π2 .

Similar to the previous case, we substitute vK ,0, vK ,1,
AK ,0, BK ,0 (as given in (33), (34), (31)) into theO(ε2)-
problem (21) and by collecting secular terms in vK ,2,
it turns out that AK ,1 and BK ,1 have to satisfy

∂AK,1
∂t1

+ ω1BK ,1 =− V 4
0

2K 6π6

[
CK ,0 sin(ω1t1)

−DK ,0 cos(ω1t1)

− 2H(K )
V0

cos (ω1t1 + ω2t2)
]

−
[
dCK ,0
dt2

cos (ω1t1) + dDK,0
dt2

sin(ω1t1)
]

− 3V 2
0 S(K )

K 2π2

[
CK ,0 sin(ω1t1) − DK ,0 cos(ω1t1)

− 2H(K )
V0

cos(ω1t1 + ω2t2)
]

− 4V 3
0 H(K )

K 6π6 cos(ω1t1 + ω2t2),

∂BK ,1
∂t1

− ω1AK ,1 = V 4
0

2K 6π6(
CK ,0 cos(ω1t1) + DK ,0 sin(ω1t1)

)
−

[
dCK ,0
dt2

sin(ω1t1) − dDK ,0
dt2

cos(ω1t1)

+ 2ω2H(K )
V0

sin(ω1t1 + ω2t2)
]

+ 3V 2
0 S(K )

K 2π2

(
CK ,0 cos(ω1t1)+DK,0 sin(ω1t1)

)

+ 4V 3
0 H(K )

K 6π6 sin(ω1t1 + ω2t2). (73)

Combining the two equations in (73), we obtain
∂2 AK,1

∂t21
+ ω2

1 AK ,1 = − cos(ω1t1)
(

V 6
0

K 8π8 CK,0 + 2V 2
0

K 2π2
dDK,0
dt2

− 2V0H(K )

K 2π2

[
ω2 − V 4

0
2K 6π6 − 3V 2

0 S(K )

K 2π2

]
sin(ω2t2)

+ 6V 4
0 S(K )

K 4π4 CK ,0

)

− sin(ω1t1)
(

V 6
0

K 8π8 DK ,0 − 2V 2
0

K 2π2
dCK ,0
dt2

− 2V0H(K )

K 2π2

[
ω2 − V 4

0
2K 6π6 − 3V 2

0 S(K )

K 2π2

]
cos(ω2t2)

+ 6V 4
0 S(K )

K 4π4 DK ,0

)
. (74)

To avoid secular terms in (74), CK ,0 and DK ,0 have
to satisfy

dCK ,0
dt2

−
(

V 4
0

2K 6π6 + 3V 2
0 S(K)

K 2π2

)
DK ,0 = − H(K )

V0
cos(ω2t2)

[
ω2− V 4

0
2K 6π6 − 3V 2

0 S(K )

K 2π2

]
,

dDK ,0
dt2

+
(

V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
CK ,0 = H(K )

V0
sin(ω2t2)

[
ω2 − V 4

0
2K 6π6 − 3V 2

0 S(K )

K 2π2

]
. (75)

Combining the equations in (75) we obtain

d2CK,0

dt22
+

(
V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)2

CK,0 = H(K)
V0

sin(ω2t2)

(
ω2
2 −

(
V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)2)
.

When ω2 = ±
(

V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
, CK ,0 and DK ,0

are given by (41). In the other cases, we have

CK ,0(t2) = K1 cos

((
V 4
0

2K 6π6 +3V 2
0 S(K)

K 2π2

)
t2

)
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+K2 sin

((
V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
t2

)

− H(K )
V0

sin(ω2t2),

DK ,0(t2) = −K1 sin

((
V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
t2

)

+K2 cos

((
V 4
0

2K 6π6

+ 3V 2
0 S(K )

K 2π2

)
t2

)
− H(K )

V0
cos(ω2t2),

where K1 and K2 are constants of integration.
Case 2.3 ω0 = K 2π2 for a certain fixed, odd K ∈ N,

and ω1 = − V 2
0

K2π2 .
By substituting vK ,0, vK ,1, AK ,0, BK ,0 (as given in
(33), (34), (32)) into the O(ε2)-problem (21) and by
collecting the secular terms in vK ,2, it turns out that
AK ,1 and BK ,1 have to satisfy

∂AK,1
∂t1

− ω1BK,1 = V 4
0

2K 6π6

[
CK ,0 sin (ω1t1) +DK ,0 cos (ω1t1)

]

− 6V 3
0 H(K )

K 6π6 cos (ω1t1 + ω2t2)

− 2V0H(K )

K 2π2

[
ω2 + V 4

0
2K 6π6 + 3V 2

0 S(K )

K 2π2

]
t1

sin (ω1t1 + ω2t2)

−
[
dCK ,0
dt2

cos (ω1t1) − dDK ,0
dt2

sin (ω1t1)
]

+ 3V 2
0 S(K )

K 2π2

[
CK ,0 sin (ω1t1) + DK ,0 cos (ω1t1)

]
,

∂BK ,1
∂t1

+ ω1AK ,1 = V 4
0

2K 6π6[
CK ,0 cos (ω1t1) − DK ,0 sin (ω1t1)

]

+ 6V 3
0 H(K )

K 6π6 sin (ω1t1 + ω2t2)

− 2V0H(K )

K 2π2

[
ω2 + V 4

0
2K 6π6 + 3V 2

0 S(K )

K 2π2

]
t1

cos (ω1t1 + ω2t2)

+
[
dCK ,0
dt2

sin (ω1t1) + dDK ,0
dt2

cos (ω1t1)
]

+ 3V 2
0 S(K )

K 2π2

[
CK ,0 cos (ω1t1) − DK ,0 sin (ω1t1)

]
.

(76)

Combining the equations in (76), we obtain

∂2 AK,1

∂t21
+ ω2

1 AK ,1 =− cos (ω1t1)
(

V 6
0

K 8π8 CK,0 + 2V 2
0

K 2π2
dDK ,0
dt2

+ 2V0H(K )

K 2π2

[
ω2 + 13V 4

0
2K 6π6 + 3V 2

0 S(K )

K 2π2

]
sin(ω2t2)

+ 6V 4
0 S(K )

K 4π4 CK ,0

)

+ sin (ω1t1)
(

V 6
0

K 8π8 DK ,0 − 2V 2
0

K 2π2
dCK ,0
dt2

− 2V0H(K )

K 2π2

[
ω2+ 13V 4

0
2K 6π6 + 3V 2

0 S(K )

K 2π2

]
cos(ω2t2)

+ 6V 4
0 S(K )

K 4π4 DK ,0

)

+ 4V 3
0 H(K )

K 4π4

[
ω2 + V 4

0
2K 6π6 + 3V 2

0 S(K )

K 2π2

]
t1

cos (ω1t1 + ω2t2) .

Neglecting the ’secular term’ t1 cos (ω1t1 + ω2t2),
we can avoid additional secular terms in AK ,1 by setting

dCK ,0
dt2

−
(

V 4
0

2K 6π6 + 3V 2
0 S(K)

K 2π2

)
DK ,0 = − H(K )

V0
cos(ω2t2)

[
ω2 + 13V 4

0
2K 6π6 + 3V 2

0 S(K )

K 2π2

]
,

dDK ,0
dt2

+
(

V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
CK ,0 = − H(K )

V0
sin(ω2t2)

[
ω2 + 13V 4

0
2K 6π6 + 3V 2

0 S(K )

K 2π2

]
.

(77)

Combining the equations in (77), we obtain

d2CK,0

dt22
+

(
V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)2

CK ,0 = H(K )
V0

(
ω2 + 13V 4

0
2K 6π6 + 3V 2

0 S(K)

K 2π2

)

(
ω2 −

[
V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

])

sin(ω2t2). (78)

When ω2 = V 4
0

2K 6π6 + 3V 2
0 S(K)

K 2π2 , the right hand side
of (78) will be zero, and CK ,0 and DK ,0 are given
by (41), but as vK ,1, and vK ,0 contain secular terms,
the solution will be unbounded for increasing times.

For ω2 �= ±
(

V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
, CK ,0 and DK ,0 will

be bounded functions, but since vK ,0 contains secu-
lar terms, vK ,0 also becomes unbounded for increasing

times. For the last subcaseω2 = −
(

V 4
0

2K 6π6 + 3V 2
0 S(K )

K 2π2

)
,

CK ,0 and DK ,0 will contain secular terms in t2. Hence,
both vK ,0 and vK ,1 have secular terms and the solu-
tion becomes unbounded for longer times. All these
three subcases in case 2.3 lead to unboundedness of
the solution for longer times. So, we can now conclude
in case 2 that whenω0 = K 2π2 for a certain, fixed, and
odd K ∈ N, then vK (t0, t1, t2) given by (18) is stable

whenω1 �= − V 2
0

K 2π2 , and vK (t0, t1, t2) is unstable when

ω1 = − V 2
0

K 2π2 .

4 The influence of damping and weakly nonlinear
elastic forces

In this section, we will study the interplay between the
electrostatic force, the damping force, and the weakly
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nonlinear elastic forces. First we will consider the case
for which the actuation frequency ω is equal to or close
to a natural eigenfrequency of the actuated beam. In this
case, the damping force needs to be sufficiently large
(that is, needs to be of order ε) in order to stabilize the
vibrations of the beam. In subsection 4.1 this case will
be studied. Viscous damping of order ε is assumed to
be present. The weakly nonlinear elastic forces and the
structural damping force are of order ε2, and are too
small to play any role in the stabilization of the beam,
and are for that reason neglected in subsection 4.1. Next
we will consider the cases for which the actuation fre-
quency ω is equal or close to a superharmonic or to a
subharmonic frequency of the actuated beam. For these
cases, the damping force cannot be too large else the
vibration amplitudes of the actuated beam become too
small to have any practical significance. For that rea-
son we will not consider in the subsections 4.2, 4.3,
and 4.4 the viscous damping force in Eq. (5). In these
subsections, the structural damping force, the weakly
nonlinear elastic forces, and the actuation forcing give
rise to an intriguing behaviour of the vibration modes
of the actuated beam. In subsection 4.2, we formulate
the general problem for these super-and subharmonic
cases, and in subsection 4.3 and in subsection 4.4 we
will study in detail a superharmonic and a subharmonic
case, respectively.

4.1 Viscous damping of O(ε) without nonlinear
elastic forces

In this subsection, we will consider the actuated beam
Eq. (5) with α = 0, c2 = 0, and c1 = β > 0, that is,
compared to the previous section viscous damping is
added to the beam equation:

vt t + vxxxx = (V0 + ε sin(ωt))2

(1 − εv)2
− εβvt , (79)

subject to the boundary and initial conditions (6) and
(7). Here, the constant β is independent of ε. We follow
the same steps as in the previous section using a two
time-scales perturbation method, and obtain the same
O(1)-problem as in (19). While for theO(ε)-problem,
we have:

Lvk,1 =−2D1D0vk,0 + 2V 2
0 vk,0

+4V0H(k) sinωt0 − βD0vk,0. (80)

Letω = K 2π2− V 2
0

K 2π2 ε, for a fixed and odd K ∈ N,

that is, ω is order ε2 close to one of the natural fre-

quencies of the actuated beam. Observe that the excited
mode is just mode k = K . Substituting the same vK ,0

as given by (22) with k = K into the right-hand side
(RHS) of (80), we have

RHS = cos(K 2π2t0)
(
− 2K 2π2 dBK ,0

dt1
− βK 2π2BK ,0

+2V 2
0 AK ,0 − 4V0H(K ) sin

(
V 2
0

K 2π2 t1

))

+ sin(K 2π2t0)
(
2K 2π2 d AK,0

dt1
+βK 2π2AK,0

+2V 2
0 BK ,0 + 4V0H(K ) cos

(
V 2
0

K 2π2 t1

) )

+NST .

To eliminate secular terms, AK ,0 and BK ,0 have to sat-
isfy

d AK ,0
dt1

= − β
2 AK ,0 − V 2

0
K 2π2 BK ,0 − 2V0H(K )

K 2π2 cos

(
V 2
0

K 2π2 t1

)
,

dBK ,0
dt1

= V 2
0

K 2π2 AK ,0 − β
2 BK ,0 − 2V0H(K )

K 2π2 sin

(
V 2
0

K 2π2 t1

)
.

This system of ODE can readily be solved, yielding

AK ,0(t1) = e−βt1/2
(
CK ,0 cos

(
V 2
0

K 2π2 t1

)

+DK ,0 sin

(
V 2
0

K 2π2 t1

))

− 4V0H(K )

βK 2π2 cos

(
V 2
0

K 2π2 t1

)
,

BK ,0(t1) = e−βt1/2
(
CK ,0 sin

(
V 2
0

K 2π2 t1

)

−DK ,0 cos

(
V 2
0

K 2π2 t1

))

− 4V0H(K )

βK 2π2 sin

(
V 2
0

K 2π2 t1

)
.

We see that adding viscous damping of order ε to the
system stabilizes the solution when the applied fre-
quency of the AC voltage is order ε2 close to an eigen-
frequency of the actuated beam.

4.2 Structural damping of O(ε2) and a weakly
nonlinear elastic force

In this subsection, we consider the actuated beam Eq.
(5) with α �= 0, c1 = 0, and c2 = β > 0 (where β is a
constant independent of ε), that is,

vt t + vxxxx =−ε2βvt xxxx+ αε2
(∫ 1

0 v2x (x, t)dx
)

vxx

+ (V0+ε sin(ωt))2

(1−εv)2
,
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subject to the boundary and initial conditions (6) and
(7). Also we will consider two different values for
the frequency ω (related to the superharmonic case,
and related to the subharmonic case), that is, 2ω =
L2π2 + O(ε) for a fixed and odd L ∈ N, and
ω = 2M2π2 + O(ε) for a fixed M ∈ N. By using
a three time-scales perturbation method as in Sect. 3,
we obtain the same O(1)-problem (19), and the same
O(ε)-problem (20). Their solutions vk,0 and vk,1 are
given by (22) and (27), respectively. By substituting
vk,0 and vk,1, into the O(ε2)-problem we obtain

Lvk,2 = −2D1D0vk,1−D2
1vk,0 − 2D2D0vk,0+2H(k) sin2(ωt0)

+4V0vk,0 sin(ωt0) +6V 2
0

∞∑
m,n=1

±m±n±k odd

cm,nvm,0vn,0

+2V 2
0 vk,1 −βk4π4D0vk,0 − αk2π4

2

∞∑
n=1

n2v2n,0vk,0.

(81)

In (81), we already see that the dynamics of vk,2, and
so the behaviour of vk,0, are influenced by the elec-
trostatic force, the structural damping, and the non-
linear elastic force. In the next subsection, the inter-
play between these three factors will be explained fur-
ther. We will consider a superharmonic case, that is,
2ω0 = L2π2 (with the excited mode k = L), and
a subharmonic case, that is, ω0 = 2M2π2 (with the
excited mode k = M), in the next two subsections.

4.3 The superharmonic case (case 2ω0 = L2π2)

In this subsection, we will consider the superharmonic
case 2ω = L2π2 + O(ε) (that is, 2ω0 = L2π2) for a
fixed and odd L ∈ N. By substituting vk,0 and vk,1 into
the O(ε2) equation (81), we obtain

Lvk,2 = cos(k2π2t0)

(
− 2k2π2 ∂Bk,1

∂t1
+ V 4

0
k4π4 Ak,0−2k2π2 ∂Bk,0

∂t2

+2V 2
0 Ak,1 − δk,L H(k) cos(2ω1t1 +2ω2t2)

+6V 2
0 S(k)Ak,0 −βk6π6Bk,0

− αk2π4

2 Ak,0

[
8k2V 4

0 H2(k)
k8π8 + k2

4 (A2
k,0 +B2

k,0)

+
∞∑
n=1

n2
2 (A2

n,0 +B2
n,0) +

∞∑
n=1

4n2V 4
0 H2(n)

n8π8

])
,

+ sin(k2π2t0)

(
2k2π2 ∂Ak,1

∂t1
+ V 4

0
k4π4 Bk,0 +2k2π2 ∂Ak,0

∂t2

+2V 2
0 Bk,1 +δk,L H(k) sin(2ω1t1 +2ω2t2)

+6V 2
0 S(k)Bk,0 + βk6π6Ak,0

− αk2π4

2 Bk,0

[
8k2V 4

0 H2(k)
k8π8 + k2

4 (A2
k,0+B2

k,0)

+
∞∑
n=1

n2
2 (A2

n,0 +B2
n,0) +

∞∑
n=1

4n2V 4
0 H2(n)

n8π8

])

+NST (82)

where

δk,L =
{
0, for k �= L ,

1, for k = L ,

and

Ak,0(t1, t2) = Ck,0(t2) cos

(
V 2
0

k2π2 t1

)
+ Dk,0(t2) sin

(
V 2
0

k2π2 t1

)
,

Bk,0(t1, t2) = Ck,0(t2) sin

(
V 2
0

k2π2 t1

)
− Dk,0(t2) cos

(
V 2
0

k2π2 t1

)
.

To avoid secular terms in vk,2 it follows from (82)
that Ak,1 and Bk,1 have to satisfy

∂Ak,1
∂t1

+ V 2
0

k2π2 Bk,1= − V 4
0

2k6π6 Bk,0− ∂Ak,0
∂t2

− 3V 2
0 S(k)
k2π2 Bk,0

−βk4π4

2 Ak,0− δk,L
H(k)
2k2π2 sin(2ω1t1 +2ω2t2)

+απ2

4 Bk,0

[
8k2V 4

0 H
2(k)

k8π8 + k2
4 (C2

k,0 +D2
k,0)

+
∞∑
n=1

n2
2 (C2

n,0 +D2
n,0) +

∞∑
n=1

4n2V 4
0 H

2(n)

n8π8

]
,

∂Bk,1
∂t1

− V 2
0

k2π2 Ak,1 = V 4
0

2k6π6 Ak,0 − ∂Bk,0
∂t2

+ 3V 2
0 S(k)
k2π2 Ak,0

−βk4π4

2 Bk,0 −δk,L
H(k)
2k2π2 cos(2ω1t1 +2ω2t2)

−απ2

4 Ak,0

[
8k2V 4

0 H
2(k)

k8π8 + k2
4 (C2

k,0 +D2
k,0)

+
∞∑
n=1

n2
2 (C2

n,0 +D2
n,0) +

∞∑
n=1

4n2V 4
0 H

2(n)

n8π8

]
.

Combining these two equations yields

∂2Ak,1

∂t21
+ V 4

0
k4π4 Ak,1 = − cos

(
V 2
0

k2π2 t1

)(
V 6
0

k8π8Ck,0 + 2V 2
0

k2π2
dDk,0
dt2

+ 6V 4
0 S(k)
k4π4 Ck,0 +βV 2

0 k
2π2Dk,0

−αV 2
0 X (k)
2k2

Ck,0

)

− sin

(
V 2
0

k2π2 t1

)(
V 6
0

k8π8 Dk,0 − 2V 2
0

k2π2
dCk,0
dt2

+ 6V 4
0 S(k)
k4π4 Dk,0 −βV 2

0 k
2π2Ck,0

−αV 2
0 X (k)
2k2

Dk,0

)

−δk,L
H(k)
2k2π2

[
2ω1 − V 2

0
k2π2

]

cos(2ω1t1 + 2ω2t2), (83)
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where

X (k) = k2
4 (C2

k,0 + D2
k,0) + 8k2V 4

0 H
2(k)

k8π8

+
∞∑
n=1

n2
2 (C2

n,0 + D2
n,0) +

∞∑
n=1

4n2V 4
0 H

2(n)

n8π8 .

(84)

For all modes k �= L secular terms in Ak,1 and Bk,1

can be avoided when Ck,0 and Dk,0 satisfy (as follows
from (83)):

dCk,0
dt2

=− βk4π4

2 Ck,0 +
(

V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2 − απ2X (k)

4

)
Dk,0,

dDk,0
dt2

=−
(

V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2 − απ2X (k)

4

)
Ck,0 − βk4π4

2 Dk,0.

(85)

From (85) it follows that

Ck,0
dCk,0
dt2

+ Dk,0
dDk,0
dt2

= −βk4π4

2 (C2
k,0 + D2

k,0),

and so, R2
k,0 = C2

k,0 + D2
k,0 satisfies

dR2
k,0

dt2
= −βk4π4R2

k,0. (86)

Hence, Rk,0, and so Ck,0 and Dk,0 are stable equilibria
which all tend to zero for t2 → ∞.
For mode k = L , we have to consider three subcases,

that is, when 2ω1 = V 2
0

L2π2 , 2ω1 = − V 2
0

L2π2 , and 2ω1 �=
± V 2

0
L2π2 . When 2ω1 = V 2

0
L2π2 , the last term in (83) will

become 0, and CL ,0 and DL ,0 are satisfying (85)-(86).

When 2ω1 �= ± V 2
0

L2π2 , the last term in (83) will not lead
to secular terms, and CL ,0 and DL ,0 satisfy again (85)-

(86). For the case 2ω1 = − V 2
0

L2π2 , CL ,0 and DL ,0 have
to satisfy

dCL ,0
dt2

=− βL4π4

2 CL ,0 +
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2 − απ2X (L)
4

)
DL,0

− H(L)

2L2π2 sin(2ω2t2),

dDL ,0
dt2

=−
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2 − απ2X (L)
4

)
CL ,0 − βL4π4

2 DL ,0

+ H(L)

2L2π2 cos(2ω2t2). (87)

By introducing polar coordinates

CL ,0(t2) = RL ,0(t2) cos(φL ,0(t2)),

DL ,0(t2) = RL ,0(t2) sin(φL ,0(t2)),

system (87) becomes

dRL ,0
dt2

=−βL4π4

2 RL ,0 + H(L)

2L2π2 sin(φL ,0 − 2ω2t2),

dφL ,0
dt2

=−
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2 − απ2X (L)
4

)

+ H(L)

2L2π2
cos(φL ,0−2ω2t2)

RL ,0
. (88)

Let ψL ,0(t2) = φL ,0(t2) − 2ω2t2, then the nonau-
tonomous system (88) becomes the following system:

dRL ,0
dt2

=−βL4π4

2 RL ,0 + H(L)

2L2π2 sin(ψL ,0),

dψL ,0
dt2

=−
(

V 4
0

2L6π6 + 3V 2
0 S(L)

L2π2 − απ2X (L)
4

)

+ H(L)

2L2π2
cos(ψL ,0)

RL ,0
−2ω2. (89)

Observe that system (89) is still a nonautonomous sys-
tem due to term involving X (L) as defined by (84). If
we assume that there is no initial energy in mode k for
all k �= L , then we only have to consider RL ,0 and
ψL ,0. This will simplify the X (L) function to

X (L) = 8L2V 4
0 H

2(L)

L8π8 + 3L2

4 R2
L ,0 +

∞∑
n=1

4n2V 4
0 H

2(n)

n8π8 ,

and system (89) becomes an autonomus system and can
be rewritten in:
dRL ,0
dt2

= −βL4π4

2 RL ,0 + 1
L3π3 sin(ψL ,0),

dψL ,0
dt2

= (C − 2ω2) + 3αL2π2

16 R2
L ,0 + 1

L3π3
cos(ψL ,0)

RL ,0
,

(90)

with C = − V 4
0

2L6π6 − 3V 2
0 S(L)

L2π2 + 8αV 4
0

L8π8 +
∞∑
n=1
n odd

4αV 4
0

n8π8 .

We will analyze the equilibria of system (90) and their
stability. To find the equilibria of (90), we have to solve
the following two equations:

1
L3π3 sin(ψL ,0) = βL4π4

2 RL ,0, (91)
1

L3π3 cos(ψL ,0) = −RL ,0 ((C − 2ω2)

+ 3αL2π2

16 R2
L ,0

)
. (92)

To determine the stability of the equilibria we have to
look at the jacobian matrix J of the vector field (90)
around the solutions of (91)-(92), where J is given by

J =
⎛
⎝ −βL4π4

2
cos(ψL ,0)

L3π3

3αL2π2

23
RL ,0 − cos(ψL ,0)

L3π3R2
L ,0

− sin(ψL ,0)

L3π3RL ,0

⎞
⎠ . (93)

The eigenvalues λ of J satisfy:

λ2 +
(

βL4π4

2 + sin(ψL ,0)

L3π3RL ,0

)
λ + βL4π4 sin(ψL,0)

2L3π3RL,0

−3αRL ,0 cos(ψL ,0)

23Lπ

+ cos2(ψL ,0)

L6π6R2
L ,0

= 0, (94)
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which can be further simplified by using (91) to

λ2 + (βL4π4)λ + β2L8π8

4 − 3αRL ,0 cos(ψL ,0)

23Lπ

+cos2(ψL ,0)

L6π6R2
L ,0

= 0, (95)

By combining the equations (91) and (92), and by using
trigonometric identities, we obtain for the equilibria

32

28
α2L4π4R6

L,0 + 3αL2π2(C−2ω2)

23
R4
L ,0

+
[
(C − 2ω2)

2 + β2L8π8

4

]
R2
L ,0 − 1

L6π6 = 0,

and by putting R = R2
L ,0, we finally obtain the cubic

equation

32

28
α2L4π4R3 + 3αL2π2(C−2ω2)

23
R2

+
[
(C − 2ω2)

2 + β2L8π8

4

]
R − 1

L6π6 = 0. (96)

Of course we are only interested in the real and non-
negative solutions of (96). First, we will consider the
case when α = 0, that is, we will first consider the case
without nonlinear elastic forces.

4.3.1 The case without weakly nonlinear elastic
forces (α = 0)

For α = 0 and C = 2ω2 and β = 0, there are no
nontrivial RL ,0 for which equilibria exist for system
(90) (see Fig. 2c). This case corresponds to case 1.2
as studied in Sect. 3 for which ω is up to O(ε3) equal
to a 1

2 times a natural frequency of the actuated beam.
For α = 0 and C = 2ω2 and β > 0 a nontrivial
RL ,0 exists for which stable equilibria (RL ,0, ψL ,0) of
system (90) occur with RL ,0 = 2

L7π7β
and ψL ,0 =

π
2 +2nπ , n ∈ Z (see Fig. 2f). In this case, the structural
damping stabilizes the vibrations of the actuated beam
for which the actuation frequency ω isO(ε3) close to a
1
2 times a natural frequency of the actuated beam. For
α = 0 and β = 0 and 2ω2 > C , or 2ω2 < C , we
have as nontrivial equilibria for system (90): RL ,0 =

1
L3π3(2ω2−C)

and ψL ,0 = 2nπ , or RL ,0 = 1
L3π3(C−2ω2)

and ψL ,0 = π + 2nπ , respectively (and n ∈ Z). These
two cases correspond to the nonresonant case 1.2 as
studied in Sect. 3. The phase portraits for these two
cases are given in Figs. 2a–b and 2d–e. For α = 0 and
2ω2 �= C and β > 0 we have as nontrivial equilibria
for system (90): RL ,0 = 2

L3π3
√

4(C−2ω2)2+β2L8π8
, and

ψL ,0 = ψ∗ + 2nπ (with n ∈ Z), and where ψ∗ is a

solution of

sin(ψ∗) = βL4π4√
4(C−2ω2)2+β2L8π8

cos(ψ∗) = − 2(C−2ω2)√
4(C−2ω2)2+β2L8π8

− 3α
2L4π4(4(C−2ω2)2+β2L8π8)3/2

.

It can be checked that these equilibria are asymptoti-
cally stable, and that the phase portraits are similar to
the one in Fig. 2f.

We can summarize this case α = 0 (when no elas-
tic forces are present) as follows. When damping β

is present, all solutions will be asymptotically sta-
ble. While when no damping is present, we can have
unbounded solutions when 2ω2 = C , or equivalently
when the actuation frequency ω is up to O(ε3) equal
to a 1

2 times a natural frequency of the actuated beam
(see also Eq. (51)).

The transitions of phase portraits when the nonlinear
elastic force and the structural damping are not present,
are shown in Figs. 2a to 2e as ω2 gets larger and larger.
In Figs. 2c, ω2 = 1

2C , the resonance frequency, and
so the solutions become unbounded. When damping is
present all solution will be bounded but not completely
damped out as in Figure 2 (f).

4.3.2 The case with weakly nonlinear elastic forces
(α > 0)

Since α > 0, we can rewrite Eq. (96) by using the shift

R̂ = R+ 25(C−2ω2)

32αL2π2 , and we obtain the depressed cubic

form in R̂:

R̂3 + 26

33α2L4π4

(
3β2L8π8 − 4(C − 2ω2)

2
)
R̂

− 213(C−2ω2)
3

36α3L6π6 − 211β2L2π2(C−2ω2)

34α3 − 28

32α2L10π10 = 0.

(97)

Let the coefficient of R̂ and the constant term of Eq.
(97) be p and q, respectively. Now, we will consider
the cases when 3β2L8π8 = 4(C − 2ω2)

2, and when
3β2L8π8 �= 4(C−2ω2)

2.Case 1: 3β2L8π8 = 4(C−
2ω2)

2

For this case, we have two subcases to consider, i.e.
(C − 2ω2) = ± 1

2

√
3βL4π4. We also have a special

subcase, that is, when C = 2ω2 and β = 0. In this last
special subcase, there are equilibria

(
RL ,0, ψL ,0

) =
(

2
3Lπ

3

√
2.32

αL2π2 , π + 2nπ

)
, n ∈ Z,
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 The phase portrait of system (90) when α = 0, β = 0,
and for various ω2, except in Figure (f) where β > 0. Figure (a)
and (b) are the phase portraits when 2ω2 < C . When 2ω2 = C ,
the phase portrait is shown at Figure (c). Here, we have the pure
resonance case, and so the solution will be unbounded. While

figure (d) and (e) are for 2ω2 > C . From Figure (a) to (e), we see
a transition of phase portraits as ω2 becomes larger and larger.
All solutions are bounded except when 2ω2 = C . When struc-
tural damping β is present, all solutions will be bounded as in
Figure (f)
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which are Lyapunov stable, see Fig. 3a. For the first
subcase, (C−2ω2) = 1

2

√
3βL4π4 (withC > 2ω2 and

β > 0), we have asymptotically stable equilibria with

RL ,0 = 2
3Lπ

√
1

αLπ

√
3
√

(22
√
3βL5π5)3 + 2234α

Lπ
− 22

√
3βL5π5

and ψL ,0 = ψ∗ + 2nπ and π
2 < ψ∗ < π , see

Figure 3(b). For the second subcase, (C − 2ω2) =
− 1

2

√
3βL4π4 (with C < 2ω2 and β > 0), there will

also be asymptotically stable equilibriawith RL ,0 given
by

RL ,0= 2
3Lπ

√
1

αLπ

√
3
√

−(22
√
3βL5π5)3 + 2234α

Lπ
+22

√
3βL5π5.

and with similar phase portraits as in the first sub-
case.

Case 2: 3β2L8π8 �= 4(C − 2ω2)
2

When the discriminant of the cubic equation (97), D =
−(4p3 + 27q2), is equal to 0, we have as additional
condition on the parameters that

28β2L16π16(C − 2ω2)
4 + 263αL4π4(C − 2ω2)

3

+27β4L24π24(C − 2ω2)
2

+2433αβ2L12π12(C − 2ω2)

+24β6L30π30 + 35α = 0. (98)

Satisfying the condition D = 0, we will further divide
this case into two subcases, that is, when 4(C−2ω2)

2−
3β2L8π8 < 0, andwhen 4(C−2ω2)

2−3β2L8π8 > 0.
For the first subcase, that is, when β is large, the dis-
criminant of the cubic equation is negative. This means
there will always be one equilibria of the system (97).
For the second subcase, if the discriminant is 0 and
(C − 2ω2) > 1

2

√
3βL4π4, that is, when β is small,

then there can be only one stable equilibriumwith RL ,0

given by

RL ,0 =
√

273β2L12π12(C−2ω2)+2234α
32αL6π6[22(C−2ω2)2−3β2L8π8] .

If (C−2ω2) < − 1
2

√
3βL4π4 and less than− 33α

25β2L12π12 ,

then there are no nontrivial equilibria. While if (C −
2ω2) is between − 33α

25β2L12π12 and − 1
2

√
3βL4π4, then

there are at most three equilibria.
When the discriminant of the cubic equation (97)

is zero, we can identify at most three equilibria, that
is, two stable equilibria and one unstable saddle type
equilibrium. We can also determine when the system
has no nontrivial equilibria also.

When the structural damping β is relatively large,
then all solutions will either be damped out or con-
verge to a nontrivial stable equilibrium. While when
the damping is relatively small, we have several cases
to consider. When ω2 ≤ 1

2C − 1
4

√
3βL4π4, there will

always be one nontrivial stable solution (see Fig. 4a
and b). As ω2 gets larger and larger, another unsta-
ble equilibrium appears (see Fig. 4c). This equilibrium
splits up into one stable point and one saddle point
(see Fig. 4d and e). As ω2 = 1

2C + 1
2

33α
25β2L12π12 ,

the saddle and the first equilibrium point coincide
and disappear (see Fig. 4g). This mechanism makes
sense by considering the cubic polynomial in R̂ in Eq
(97). For (C − 2ω2) > − 33α

25β2L12π12 we have at most
three nontrivial equilibria, that is, two stable equilib-
ria and one unstable saddle type equilibrium. While if
(C −2ω2) > − 33α

25β2L12π12 , there won’t be any nontriv-
ial equilibrium.

Physically, this means that when the nonlinear elas-
tic force is present and a relatively small damping is
present, then there will be at most two nontrivial stable
solutions. Here, the initial conditions will determine to
which stable solution the solution will converge. Next,
we will look at the interesting case when β = 0.

4.3.3 Case β = 0

When β = 0, system (90) will become

dRL ,0
dt2

= 1
L3π3 sin(ψL ,0),

dψL ,0
dt2

= (C − 2ω2) + 3αL2π2

16 R2
L ,0 + 1

L3π3
cos(ψL ,0)

RL ,0
.
(99)

with C = − V 4
0

2L6π6 − 3V 2
0 S(L)

L2π2 + 8αV 4
0

L8π8 +
∞∑
n=1
n odd

4αV 4
0

n8π8 .

For system (99) we can also find a first integral. By

rewriting system (99) as
dψL ,0
dRL ,0

=
(
(C−2ω2)+ 3αL2π2

16 R2
L ,0

+cos(ψL,0)

L3π3RL,0

)
L3π3

sin(ψ)

d cos(ψL ,0)

dRL ,0
= −L3π3(C − 2ω2)

−3αL5π5

16 R2
L ,0 − cos(ψL ,0)

RL ,0

d cos(ψL ,0)

dRL ,0
+ cos(ψL ,0)

RL ,0
=−L3π3(C − 2ω2) − 3αL5π5

16 R2
L ,0.

and by solving the last linear equation, we obtain as
first integral of system (99)

F(RL,0, ψL,0) = F(0) +RL ,0 cos(ψL ,0)
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(a) (b)

Fig. 3 The phase portraits of system (90) for α > 0 and for
various β. Here, we see the change in stability of the nontrivial
equilibrium from Lyapunov stable to asymptotically stable when
damping β is changed from 0 to positive values. When the non-

linear elastic force is present, all solutions will be stable (either
asymptotically stable when damping is present or else Lyapunov
stable when no damping is present)

+ L3π3(C−2ω2)
2 R2

L ,0

+3αL5π5R4
L ,0

64 = constant. (100)

Using the Taylor expansion for this first integral in
a neighborhood of the equilibrium point (R∗, ψ∗) we
get

F(RL ,0, ψL ,0) = F(R∗, ψ∗)

+
[
L3π3(C −2ω2) + 9αL5π5

16 (R∗)2
]
(RL ,0 −R∗)2

−R∗ cos(ψ∗)(ψL ,0 −ψ∗)2

− sin(ψ∗)(RL ,0 −R∗)(ψL ,0 −ψ∗) +HOT,

(101)

where HOT stands for higher order terms.Byusing the
first integral (101) and Morse’s theorem it follows that
the equilibrium points are center points and/or saddle
points.

The phase portraits for the case β = 0 and α = 0
can be seen in Fig. 2, that correspond with 2ω2 = C
(Fig. 2c), 2ω2 > C (Fig. 2d–e), and 2ω2 < C (Fig. 2a–
b). While the phase portraits when β = 0 and α > 0,
can be found in Fig. 5 and in Fig. 3a. Figure 3a is for
C = 2ω2. For the case C �= 2ω2, there are three essen-
tially different phase portraitswhich correspond to neg-
ative, zero, and positive values of the discriminant of
the cubic Eq. (97). These three different phase portraits
are given in Fig. 5. Here we see that in the absence of

the structural damping, the solutions are always Lya-
punov stable when the elastic force is present. In all of
these superharmonic cases, we see that there usually
exist two unstable saddle equilibria on the ψL ,0-axis,
that is, when RL ,0 = 0.

4.4 The subharmonic case (case ω0 = 2M2π2 for a
fixed M ∈ N)

In this subsection we will consider the subharmonic
case ω = 2M2π2 + O(ε) (that is, ω0 = 2M2π2) for
a fixed M ∈ N. By substituting vk,0 and vk,1 into the
O(ε2) Eq. (81), we obtain

Lvk,2 = cos(k2π2t0)

(
− 2k2π2 ∂Bk,1

∂t1
+ V 4

0
k4π4 Ak,0−2k2π2 ∂Bk,0

∂t2

+2V 2
0 Ak,1 + 6V 2

0 S(k)Ak,0 −βk6π6Bk,0

+2δk,MV0
(
Ak,0 sin(ω1t1 +ω2t2)

+Bk,0 cos(ω1t1 +ω2t2)
)

− αk2π4

2 Ak,0

[
8k2V 4

0 H2(k)
k8π8 + k2

4 (A2
k,0 +B2

k,0)

+
∞∑
n=1

n2
2 (A2

n,0 +B2
n,0) +

∞∑
n=1

4n2V 4
0 H2(n)

n8π8

])
,

+ sin(k2π2t0)

(
2k2π2 ∂Ak,1

∂t1
+ V 4

0
k4π4 Bk,0 +2k2π2 ∂Ak,0

∂t2

+2V 2
0 Bk,1 +6V 2

0 S(k)Bk,0 +βk6π6Ak,0

+2δk,MV0
(
Ak,0 cos(ω1t1 +ω2t2)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 The phase portrait of system (90) when α > 0, for β rel-
atively small, and for various values of ω2. As ω2 gets larger and
larger, a nontrivial equilibrium point occurs (Figure c)) which
for larger ω2 bifurcates in two nontrivial equilibria with differ-

ent stability properties (Fig. d). In Fig. e-h, the first equilibrium
point and the saddle equilibriumcoincide and disappear for larger
values of ω2
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(g) (h)

Fig. 4 continued

(a) (b) (c)

Fig. 5 The phase portrait of system (90) for β = 0 and α > 0.
Figure a, b, and c are phase portraits for negative, zero, and posi-
tive values of the discriminant of the cubic Eq. (97), respectively.

When the elastic force is present but the structural damping is
not present, we see that the nontrivial equilibria will always be
Lyapunov stable

−Bk,0 sin(ω1t1 +ω2t2)
)

− αk2π4

2 Bk,0

[
8k2V 4

0 H2(k)
k8π8 + k2

4 (A2
k,0 +B2

k,0)

+
∞∑
n=1

n2
2 (A2

n,0 +B2
n,0) +

∞∑
n=1

4n2V 4
0 H2(n)

n8π8

])

+NST, (102)

where

δk,M =
{
0, for k �= M,

1, for k = M.

and

Ak,0(t1, t2) = Ck,0(t2) cos

(
V 2
0

k2π2 t1

)
+ Dk,0(t2) sin

(
V 2
0

k2π2 t1

)
,

Bk,0(t1, t2) = Ck,0(t2) sin

(
V 2
0

k2π2 t1

)
− Dk,0(t2) cos

(
V 2
0

k2π2 t1

)
.

To avoid secular terms in vk,2, it follows from (102)
that Ak,1 and Bk,1 have to satisfy

∂Ak,1
∂t1

+ V 2
0

k2π2 Bk,1=− V 4
0

2k6π6 Bk,0− ∂Ak,0
∂t2

− 3V 2
0 S(k)
k2π2 Bk,0

− βk4π4

2 Ak,0+ απ2

4 Bk,0X (k)

+δk,M
V0

k2π2

( −Ak,0 cos(ω1t1 +ω2t2)

+Bk,0 sin(ω1t1 +ω2t2)
)
,

∂Bk,1
∂t1

− V 2
0

k2π2 Ak,1 = V 4
0

2k6π6 Ak,0− ∂Bk,0
∂t2

+ 3V 2
0 S(k)
k2π2 Ak,0

− βk4π4

2 Bk,0− απ2

4 Ak,0X (k)

+δk,M
V0

k2π2

(
Ak,0 sin(ω1t1+ ω2t2)

+Bk,0 cos(ω1t1+ ω2t2)
)
,

where X (k) is again given by (84). Combining these two equa-
tions, we obtain

∂2Ak,1

∂t21
+ V 4

0
k4π4 Ak,1= V 2

0
k2π2 cos

(
V 2
0

k2π2 t1

)[
− 2

dDk0
dt2

−βk4π4Dk,0
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 The phase portrait of system (107) when α = 0,
β is relatively small, and for various values of ω2. In Fig.
a, there are no nontrivial equilibria. When ω2 = D − √

Δ(
Δ = 4V 2

0
M4π4 − β2M8π8

)
, a manifold of equilibria (the dot-

ted line in Fig. b) and the separatrix between the orbits (the
dashed line) occur. As ω2 gets larger and larger, the phase por-

trait change from Fig. c to d. Here we have unbounded solutions
due to the range of resonance frequencies. In Fig. e, that is, when
ω2 = D+√

Δwe have a similar phase portrait as in Fig.b.When
ω2 gets larger, we have similar phase portraits as in Fig. a with
reversed trajectories. All solutions are bounded except when ω2
is in the range of the resonance frequency (that is, in Fig. c and
d)
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−2
(

V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2 − απ2X (k)

4

)
Ck,0

]

+ V 2
0

k2π2 sin

(
V 2
0

k2π2 t1

)[
2 dCk,0

dt2
+βk4π4Ck,0

−2
(

V 4
0

2k6π6 + 3V 2
0 S(k)
k2π2 − απ2X (k)

4

)
Dk,0

]

+ ω1V0δk,M
k2π2

[
Ck,0 sin

((
ω1 + V 2

0
k2π2

)
t1 +ω2t2

)

−Dk,0 cos

((
ω1 + V 2

0
k2π2

)
t1 +ω2t2

)]
. (103)

For all modes k �= M secular terms in Ak,1 and Bk,1 can
be avoided when Ck,0 and Dk,0 satisfy (as follows from (103))
the same equations as given by (85). Hence, we will have the
same stable equilibria, and Ck,0 and Dk,0 will tend to zero for
t2 → ∞.

Case k = M

Now,wewill begin the discussion for the casewhen the excited
mode is k = M . Here, we have three subcases to consider

1. ω1 = 0,

2. ω1 = − 2V 2
0

M2π2 ,

3. ω1 �= 0 and ω1 �= − 2V 2
0

M2π2 .

When ω1 = 0, to avoid secular terms in AM,1 and BM,1, CM,0

and DM,0 have to satisfy

dCM,0
dt2

= − βM4π4

2 CM,0+
(

V 4
0

2M6π6

+ 3V 2
0 S(M)

M2π2 −απ2X (M)
4

)
DM,0, (104)

dDM,0
dt2

= −
(

V 4
0

2M6π6 + 3V 2
0 S(M)

M2π2

− απ2X (M)
4

)
CM,0 − βM4π4

2 DM,0. (105)

By combining the two equations in (104), and by introducing
R2
M,0 = C2

M,0 + D2
M,0, we obtain again equation (86), that is,

dR2
M,0

dt2
= −βM4π4R2

M,0. (106)

Hence, we have the same stable equilibria, andCM,0 and DM,0

tend to zero for t2 → ∞. For the subcase when ω1 �= 0 and

ω1 �= − 2V 2
0

M2π2 , by eliminating the secular terms in (103), we
again endupwith equation (106), and the same stable equilibria
for CM,0 and DM,0 are obtained.

For the subcase ω1 = − 2V 2
0

M2π2 , the functions CM,0 and DM,0

have to satisfy

dCM,0
dt2

= −
(

βM4π4

2 + V0
M2π2 cos(ω2t2)

)
CM,0

+
(

V 4
0

2M6π6 + 3V 2
0 S(M)

M2π2 − απ2X (M)
4

− V0
M2π2 sin(ω2t2)

)
DM,0,

dDM,0
dt2

= −
(

V 4
0

2M6π6 + 3V 2
0 S(M)

M2π2 − απ2X (M)
4

+ V0
M2π2 sin(ω2t2)

)
CM,0

−
(

βM4π4

2 − V0
M2π2 cos(ω2t2)

)
CM,0.

By introducing polar coordinates

CM,0(t2) = RM,0(t2) cos(φM,0(t2)),

DM,0(t2) = RM,0(t2) sin(φM,0(t2)),

the system for CM,0 and DM,0 becomes:

dRM,0
dt2

= −
(

V0
M2π2 cos(2φM,0(t2)− ω2t2) + βM4π4

2

)
RM,0,

dφM,0
dt2

= V0
M2π2 sin(2φM,0(t2) −ω2t2) − V 4

0
2M6π6 − 3V 2

0 S(M)

M2π2

+απ2X (M)
4 .

By putting ψM,0(t2) = 2φM,0(t2)−ω2t2, an autonomous sys-
tem for RM,0 and ψM,0 is obtained:

dRM,0
dt2

= −
(

V0
M2π2 cos(ψM,0) + βM4π4

2

)
RM,0,

dψM,0
dt2

= 2V0
M2π2 sin(ψM,0)− V 4

0
M6π6 − 6V 2

0 S(M)

M2π2

+ απ2X (M)
2 − ω2.

Assuming that no initial energy is present in all modes k �=
M , we can simplify X (M), such that we obtain the following
autonomous system

dRM,0
dt2

= −
(

V0
M2π2 cos(ψM,0) + βM4π4

2

)
RM,0,

dψM,0
dt2

= (D − ω2) + 3απ2

8 M2R2
M,0

+ 2V0
M2π2 sin(ψM,0),

(107)

where

D = − V0
M6π6 − 6V 2

0 S(M)

M2π2 + 16αV 4
0

M8π8 +
∞∑
n=1

8αV 4
0

n8π8 .

The jacobian of the vector field (107) is given by
(

−
(

V0
M2π2 cos(ψM,0) + βM4π4

2

)
V0

M2π2 sin(ψM,0)

3αM2π2

4 RM,0
2V0
M2π2 cos(ψM,0)

)
,

where the corresponding eigenvalues of the jacobian matrix
satisfy

λ2 −
(

V0
M2π2 cos(ψM,0)− βM4π4

2

)
λ

− cos(ψM,0)

(
2V 2

0
M4π4 cos(ψM,0)+ βV0M2π2

)

− 3αV0
4 RM,0 sin(ψM,0) = 0.

(108)

The first group of equilibria of system (107) satisfy RM,0 =
0 and sin(ψM,0) = (ω2−D)M2π2

2V0
. For 0 ≤ ψM,0 < 2π

and depending on the value of (ω2−D)M2π2

2V0
, there can be at

most two equilibrium points on that part of the ψM,0-axis,
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 The phase portrait of system (90) when α > 0, β is rel-
atively small, and for various values of ω2. In Figure (a) there
are no nontrivial equilibria. As ω2 gets larger, one equilibrium
of the first group of equilibria occurs in Figure (b). In Figure (c)
and (d), there are 2 equilibria from the first group and one equi-

librium from the second group of equilibria. While in Figure (e),
we have two equilibria from both groups of equilibria. The first
group of equilibria disappear asω2 gets larger as we see in Figure
(f). From Figure (a) to (f), we see a transition of phase portrait
as ω2 becomes larger and larger. Here, all solutions are bounded
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Fig. 8 The number of equilibria for the first group of equilibrium
points which satisfy system (107), where D+ = D + 2V0

M2π2 and

D− = D − 2V0
M2π2 . The number of equilibria is given above the

ω2-line. Here, we see the change in number of equilibria of the
first group of equilibria when ω2 is varied

see Figure 7b–e. When (ω2−D)M2π2

2V0
= 0 (corresponding to

sin(ψM,0 = 0)), that is, ω2 = D, there are two equilibria,
that is, one unstable equilibrium in (0, 0), and one equilib-
rium in (0, π), which is stable when β > 2V0

M6π6 and unstable

when 0 ≤ β < 2V0
M6π6 . Also if 0 <

∣∣∣ (D−ω2)M2π2

2V0

∣∣∣ < 1, that

is, D − 2V0
M2π2 < ω2 < D + 2V0

M2π2 , but ω2 �= D, then there
exist two equilibria. One of them is unstable and the other one

is stable if 0 ≤ β < 2V0
M6π6

√
1 − M4π4

4V 2
0

(D − ω)2 (small) and

unstable if β > 2V0
M6π6

√
1 − M4π4

4V 2
0

(D − ω2)2 (large). When

ω2 = D± 2V0
M2π2 , we have either an equilibrium in (0, π

2 ) or in

(0, 3π
2 ) which both have negative and zero eigenvalues. And,

finally, no equilibria if ω2 < D − 2V0
M2π2 or ω2 > D + 2V0

M2π2

(Fig. 7a and f). In Fig. 8 we present a diagram for the number
of equilibria of this first group of equilibria.
For the second group of equilibria, we have to satisfy

cos(ψM,0)= − βM6π6

2V0
, (109)

0= (D− ω2)+ 3απ2M2

8 R2
M,0+ 2V0

M2π2 sin(ψM,0).

(110)

From Eq. (109), it follows that there are no ψM,0 if β > 2V0
M6π6

(β large), one ψM,0 if β = 2V0
M6π6 , and two values for ψM,0

if β < 2V0
M6π6 (β small). If we combine (109) and (110), then

RM,0 has to satisfy:
[
(D − ω2) + 3απ2M2

8 R2
M,0

]2 = 4V 2
0

M4π4 − β2M8π8. (111)

Case α = 0 (no elastic forces)

If α is taken to be zero, then there are infinitely many equilibria

ifω2 = D±
√

4V 2
0

M4π4 − β2M8π8.Wewill look at two subcases

here, that is when β = 0 and when β > 0. For the subcase
β = 0, based on the analysis as presented in section 3 of this
paper (see case 1.3), we summarize the results in Fig. 9. For
the special condition ω2 = D ± 2V0

M2π2 , we have unbounded
solutions.
For the subcase β > 0, we have bounded solutions when
ω2 ≤ D − 2V0

M2π2 or ω2 ≥ D + 2V0
M2π2 . When D − 2V0

M2π2 <

ω2 < D + 2V0
M2π2 and 0 < β < 2V0

M6π6

√
1 − M4π4

4V 2
0

(D − ω2)2

(small), the solutions will be unbounded, but become bounded

Fig. 9 Diagram of the boundedness of solutions of system (107)

when α = 0, and β < 2V0
M6π6

√
1 − M4π4

4V 2
0

(D − ω2)2, where

D+ = D + 2V0
M2π2 and D− = D − 2V0

M2π2 . In the absence of the
nonlinear elastic force and relatively small damping, the solution
can become unbounded for a certain range of ω2

Fig. 10 Diagram for the total number of equilibria of system
(107) when α = 0 and β is relatively small, where D+ = D +
2V0
M2π2 , D− = D− 2V0

M2π2 , andΔ = 4V 2
0

M4π4 −β2M8π8. In domain

A, there are no equilibria of system (107). While when D− ≤
ω2 ≤ D+, that is, in domain B, C, and D, the first group of
equilibria exists. The stable equilibrium of the second group of
equilibria exists when ω2 > D − √

Δ, that is, in domain C, D,
and E. When ω2 > D + √

Δ, that is, in the domain D and E,
an unstable saddle equilibrium exists. Unlike in the case when
α = 0, the solutions are always bounded in the domains B, C,
and D. Thus, when the nonlinear elastic force is present and the
structural damping is relatively small, the solution can become
unbounded for a certain range ofω2.While if the damping is quite
large, all solutions will be bounded. The D− and D+ mark the
range when there are at most two equilibria from the first group.
To the right of D − √

Δ the existence of a stable equilibrium
from the second group of equilibria is guaranteed, while to the
right of D + √

Δ the existence of an unstable saddle from the
second group of equilibria is guaranteed

if β > 2V0
M6π6

√
1 − M4π4

4V 2
0

(D − ω2)2 (large). For the spe-

cial case D − 2V0
M2π2 < ω2 < D + 2V0

M2π2 and β equals

2V0
M6π6

√
1 − M4π4

4V 2
0

(D −ω2)2, the solutions will always be

bounded. The phase portrait for this special case, where there
are infinitely many equilibria, can be seen in the middle phase
portrait of Fig. 6b and e (the dotted line represents themanifold
of infinitely many equilibria). We present the summary of the
boundedness of solutions in Fig. 10.

Case α > 0

Simplifying (111), RM,0 should satisfy

R2
M,0 = 8

3απ2M2

(
ω2 − D ± √

Δ
)

,

where Δ = 4V 2
0

M4π4 − β2M8π8. In this case we will have two

non-negative RM,0 if β < 2V0
M6π6 and ω2 ≥ D + √

Δ, and one

RM,0 if β = 2V0
M6π6 and ω2 ≥ D + √

Δ. While if β > 2V0
M6π6

or ω2 < D+√
Δ, no RM,0 can be found. By combining these

RM,0 conditions and ψM,0 conditions, we have two equilibria
when β < 2V0

M6π6 and ω2 ≥ D + √
Δ, where one is stable
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and the other is unstable (7(e) and (f)). We can also have one
equilibrium if β = 2V0

M6π6 and ω2 ≥ D + √
Δ (one zero and

one negative eigenvalue) or a stable equilibrium point when
D − √

Δ < ω2 < D + √
Δ and β ≤ 2V0

M6π6 . If β > 2V0
M6π6

(large) or ω2 < D−√
Δ, then there are no equilibrium points.

Here, we will give a complete description on all the equilib-
ria when the structural damping is relatively small, that is,

β < 2V0
M6π6

√
1 − M4π4

4V 2
0

(D − ω2)2. The first group of equilib-

ria exists if D− 2V0
M2π2 ≤ ω2 ≤ D+ 2V0

M2π2 , that is the domainsB,
C, D in Fig. 9. The stable equilibrium from the second group

of equilibria appears when ω2 ≥ D −
√

4V0
M4π4 − β2M8π8

(the domain C, D, and E in Fig. 9), while the unstable sad-
dle equilibrium of the second group appears when ω2 ≥
D +

√
4V0
M4π4 − β2M8π8 (the domain D and E in Fig. 9).

When the structural damping is quite large, all solutionswill
be stabilized regardless the existence of elastic forces. In the
absence of the elastic force and when the structural damping is
relatively small, we will have a range of resonance frequencies
when D − 2V0

M2π2 < ω2 < D + 2V0
M2π2 , which are the same

resonance frequencies as in Case 1.3. Thus, when the elastic
force is present, this constant D will serve as a correction to
the resonance frequency in the subharmonic Case 1.3. But it
will turn out that in this range of frequencies, the solution is
still bounded when the elastic force is present.

When the nonlinear elastic force is present, we can have
unbounded solutions if the following two requirements aremet,
that is,

1. The first group of equilibria has two unstable saddles, and
the conditions are given by:

D − 2V0
M2π2 < ω2 < D + 2V0

M2π2

and

0 ≤ β < 2V0
M6π6

√
1 − M4π4(D−ω2)

2

4V 2
0

.

2. The second group of equilibria does not exist, and the
condition is given by

(a) β > 2V0
M6π6 , or

(b) 0 ≤ β < 2V0
M6π6 and ω2 < D − √

Δ

Case 1 and 2(a) are impossible to occur.
We will discuss the possibility of the case 1 and 2(b). Because
D − ω2 >

√
Δ, then we have

D − ω2 > 0 and (D − ω2)
2 + β2M8π8 − 4V 2

0
M4π4 > 0.

While from the existence condition of the second group of
equilibria, we have
(
(D − ω2) + 3αM2π2

8 RM,0

)2 + β2M8π8 = 4V 2
0

M4π4 .

This means

(D − ω2)
2 + β2M8π8 − 4V 2

0
M4π4

= − 3
4αM2π2(D − ω2)RM,0

−
(
3αM2π2

8 RM,0

)2
< 0.

This also cannot happen. Thus, we do not have unbounded
solutions when the nonlinear elastic force is present.

So far, in the analysis we assumed that only energy was
present in mode k = M . Now we will consider the case when
initial energy is present in mode k = M and in mode k = 2M .
The interaction between two modes, that is,
(k = M and k = 2M)
We will assume that ω0 = 2M2π2 for some fixed M ∈ N,

and ω1 = − 2V 2
0

M2π2 . So, we actually assume that the actuation

frequency is O(ε2) close to a subharmonic frequency of the
beam. From (103)-(107) it follows that RM,0, R2M,0, ψM,0,
and ψ2M,0 have to satisfy

dRM,0
dt2

=−
(

V0
M2π2 cos(ψM,0)+ βM4π4

2

)
RM,0,

dR2M,0
dt2

=−8βM4π4R2M,0,

dψM,0
dt2

= 2V0
M2π2 sin(ψM,0)− V 4

0
M6π6 − 6V 2

0 S(M)

M2π2 + απ2X (M)
2 − ω2,

dφ2M,0
dt2

=−
(

V 4
0

27M6π6 + 3V 2
0 S(2M)

22M2π2 − απ2X (2M)
4

)
.

(112)

Using the same arguments as before, it follows directly
that the R2M,0 equation can be solved, that is, R2M,0 =
R0e−8βM4π4t2 , where R0 is an initial value for R2M,0, and
by simplifying (112) further, we obtain:

dRM,0
dt2

= −
(

V0
M2π2 cos(ψM,0)+ βM4π4

2

)
RM,0,

dψM,0
dt2

= (D − ω2)+ 2V0
M2π2 sin(ψM,0)

+ 3
8αM2π2R2

M,0+ αM2π2R2
0e

−16βM4π4t2 .

(113)

Here, the phase portraits (see Fig. 11) are qualitatively simi-
lar to the ones when only the excitedmode k = M is present. If
we look carefully, system (113) is similar to system (107) with
one additional term αM2π2R2

0e
−16βM4π4t2 , which is decreas-

ing exponentially to zero.

5 Conclusions and remarks

In this paper, the oscillations of a simply supportedmicrobeam
which is actuated by aDC andAC electric load have been stud-
ied. In the first part of the paper, we looked at the influence
of the electrostatic force without damping and nonlinear elas-
tic force. Here we found accurate approximations of the exact
solution, including the solution to the first super- and subhar-
monic resonance cases on time-scales of order 1/ε for various
frequencies of the electrostatic force. We also found accurate
approximations of the natural frequencies and the super- and
subharmonic resonance frequencies of the actuatedmicrobeam
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 The phase portrait of system (113) when α > 0, β is relatively small, and for various values of ω2. These phase portraits are
given for the same parameter values as in Figure 7. Figure 11a to c are qualitatively the same phase portraits, unlike the ones in Fig. 7a
to c
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up to order ε3. It is interesting to see that the subharmonic res-
onance frequency occurs for values in a certain interval (com-
pared to a single value which we usually encounter for reso-
nance frequencies).
In the second part of the paper, we considered similar models
including viscous damping of order ε and models including
structural damping and nonlinear elastic forces of order ε2.
Two cases have been considered in detail. In the first case, vis-
cous damping is present but no elastic forces are assumed to
be present. We saw that, although the frequency of the electro-
static force is set order ε2 close to the eigenfrequency of the
actuated microbeam, the order ε damping already stabilizes
the solution. The second case to be considered was when the
viscous damping is changed to a relatively smaller structural
damping with additional elastic forces. We studied two spe-
cial subcases, the superharmonic and subharmonic cases. For
the superharmonic and subharmonic cases, we found that the
solutions are always bounded if damping is quite large. In the
superharmonic case, when the nonlinear elastic force and the
damping are not present, we can have unbounded solutions for
certain values of ω2, which coincide with the resonance fre-
quencies. For all other cases, the solution is always bounded.
For the subharmonic case, we found that when the nonlinear
elastic force is not present and a relatively small damping is
present, we can have unbounded solutions for certain frequen-
cies as in the Case 1.3. When the nonlinear elastic force is
present, all solutions are bounded also.

The analysis in this paper shows that for this actuated beam
problem with simply supported end conditions, truncation is
allowed. But, one still has to consider the sub- and superhar-
monic case to understand fully that this is allowed.

For future work, different assumptions on how small or
how large themodel parameters are, will lead to different mod-
els. Moreover, other boundary conditions can be applied and
a tensile axial force can be included in the model. Extending
the model to two-dimensional cases (for instance, rectangu-
lar or circular domains) are also other options to proceed, and
to apply the presented approach given in this paper. Those
changes will surely add more complexity to the model analy-
sis.
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