<]
TUDelft

Delft University of Technology

On resonances in a weakly nonlinear microbeam due to an electric actuation

Harjanto, Eric ; van Horssen, Wim T.; Tuwankotta, Johan M.

DOI
10.1007/s11071-021-06495-z

Publication date
2021

Document Version
Final published version

Published in
Nonlinear Dynamics

Citation (APA)

Harjanto, E., van Horssen, W. T., & Tuwankotta, J. M. (2021). On resonances in a weakly nonlinear
microbeam due to an electric actuation. Nonlinear Dynamics, 104(4), 3157-3185.
https://doi.org/10.1007/s11071-021-06495-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1007/s11071-021-06495-z
https://doi.org/10.1007/s11071-021-06495-z

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



Nonlinear Dyn (2021) 104:3157-3185
https://doi.org/10.1007/s11071-021-06495-z

®

Check for
updates

ORIGINAL PAPER

On resonances in a weakly nonlinear microbeam due to an

electric actuation

Eric Harjanto® - Wim T. van Horssen -
Johan M. Tuwankotta

Received: 23 November 2020 / Accepted: 26 April 2021 / Published online: 17 May 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract In this paper, the oscillations of an actuated,
simply supported microbeam are studied for which
it is assumed that the electric load is composed of a
small DC polarization voltage and a small, harmonic
AC voltage. Bending stiffness and mid-plane stretch-
ing are taken into account as well as small viscous or
structural damping. No tensile axial force is assumed
to be present. By using a multiple time-scales per-
turbation method, approximations of the solutions of
the initial-boundary value problem for the microbeam
equation are constructed. This analysis is performed
without truncating the infinite series representation in
advance as is usually done in the existing literature. It
is shown in which cases truncation is allowed for this
problem. Moreover, accurate and explicit approxima-
tions of the natural frequencies up to order &> of the
actuated microbeam are also obtained. Intriguing and
new modal vibrations are found when the frequency of
the harmonic AC voltage is (near) half or twice a natural
frequency of the microbeam, i.e., near a superharmonic
or a subharmonic resonance.
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1 Introduction

Electrically actuated micro- and nano-beams have been
studied extensively in the literature, and have already
been used in many micro- and nano-mechanical devices
such as sensors and switches. One can find a compre-
hensive overview background on recent work on micro-
and nano- beams in the Table Al to A12 of [1]. The
analytical study of these actuated beams roughly falls
into two groups (see for instance [2—10]) for a small, but
representative overview of the available approaches). In
the first group one formulates a problem for a nonlinear
beam equation, and one computes a one (or atwo) mode
response consisting of only the directly excited eigen-
mode(s). The applied frequency (or frequencies) in the
harmonic AC voltage of the electric load is (or are)
equal to the natural eigenfrequencies of the nonlinear
beam. Or one studies for instance a three-to-one inter-
nal resonance by only considering the two modes which
are involved in this three-to-one internal resonance. In
fact, in this approach one truncates the solution of the
problem to one mode (or two modes) of oscillation,
and one studies a single (or a system of two) second
order, nonlinear differential equation(s). In the second
group of studies one formulates a (system of) second-
order ordinary differential equation(s), which include
linear and nonlinear terms with unknown parameters.
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Based upon experiments, one fits the unknown parame-
ter with different kind of methods to the obtained mea-
surements, such that the experiments and the model
equations give more or less the same bifurcations and
amplitude-frequency responses. In this paper, it will
be explicitly shown whether the truncation to a few
oscillation modes is allowed or not. Moreover, in this
paper accurate approximations of the eigenfrequencies
of the actuated beam are presented, and the influence
of damping and weak nonlinearities are described. This
will improve the parameter fitting procedure signifi-
cantly.

In this paper, we will consider an initial-boundary
value problem for an actuated microbeam for which
it is assumed that the electric load is composed of a
small DC polarization voltage and a small, harmonic
AC voltage. To simplify the analytical computations
it is assumed that the microbeam is simply supported,
but for other boundary conditions similar (but more
complicated) computations can be performed. Bend-
ing stiffness and mid-plane stretching of the microbeam
are taken into account as well as small viscous or struc-
tural damping. No axial, tensile force is assumed to be
present. A multiple time-scales perturbation method (as
the one for instance presented in [21,22] and used in
[11,12]) will be used to construct accurate approxima-
tions of the solutions of the problem which are valid on
long time-scales. In fact, we will study weakly nonlin-
early perturbed beam equations involving a small, posi-
tive parameter €. By following a proof as given in [13] it
can be shown that all of our approximations are order
& accurate on time-scales of order 1/e. Moreover, it
should be mentioned that Fourier series representations
for the solution will be used without truncating these
series in advance. So, no (unknown) truncation errors
are introduced in the approximations of the solution.
Truncations of the solution to a finite number of oscilla-
tion modes is quite common in solving initial-boundary
value problem such as in the studies of actuated micro-
and nano-beam problems. However, in some problems
such asin [14, 15], this truncation cannot be done due to
the modes internal resonances. This in general cannot
be known in advance. In this paper, it is shown whether
the truncation approach can be used or not. Moreover,
it will also turn out that due to some different scalings
introduced in the modelling of the problem, we will find
some new explicit resonances which are not equal or
not close to the natural frequencies of the microbeam.

@ Springer

As is well known, these resonant frequencies and
internal resonances are significant for those who
work on actuated micro- and nano-beam problems for
instance on mass sensing technique problems. In those
problems, the resonance frequency shifts are tracked to
measure the mass of nano particles as in [16—18].

This paper is organized as follows. In Sect. 2 of
this paper we will formulate an initial- boundary value
problem for the actuated microbeam equation by fol-
lowing partly the derivation as given in [2] and in [10]
chapter 6. In Sect. 3 we will give accurate approxi-
mations of the natural frequencies of the microbeam,
and we will study the influence of the electro-static and
dynamic force on the oscillations of the microbeam. In
Sect. 4, we will include mid-plane stretching and vis-
cous or structural damping. We will investigate their
influence on the oscillations, and we will describe some
new resonances in the actuated microbeam. Finally, in
Sect. 5, we will draw some conclusions, and we will
make some remarks on future research.

2 Formulation of the problem

In this paper, we consider the oscillations of a simply
supported microbeam which is actuated by an electric
load consisting of a DC component Vj and an AC com-
ponent v(¢). Bending stiffness and midplane stretch-
ing are included in the model equation as well as vis-
cous and/or structural damping. No tensile axial force is
assumed to be present. Following [2,3,6,8,11,19,20]
one arrives at the nowadays standard and nondimen-
sional equation for the nondimensional displacement
u = u(x, t) of the microbeam:
1

~ ~ ~ 2
Upt + Uxxxx + ClUs + CoUrxxxx = A / U, dx Uy
0

~ (Vo+d(1))?

subject to the boundary conditions
u(0,1) =u(l,t) = ux(0,1) = uy (1,1) =0, 2)
and subject to the initial conditions
u(x,0) = f(x), and u;(x,0) = §(x), 3)

where f and g represent the nondimensional initial
displacement and initial velocity of the microbeam,
respectively. For a schematic impression of the actu-
ated microbeam the reader is referred to Fig. 1. In (1),
(2), and (3) x is the nondimensional coordinate along
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Fig. 1 Schematic impression of the fixed groundplate and the
displacement u of the actuated microbeam which is simply
supported at x = 0 and at x = 1. The electrostatic actua-
tion is \70 + 0(t), and the nondimensional distance between the
microbeam and groundplate is 1

the beam withO < x < 1, ¢ is the nondimensional time,
and ¢ and ¢; are nondimensional damping parameters.

Furthermore, &, & and \70 are nondimensional
parameters, and v(¢) is a nondimensional function. To
derive (1) it is assumed that the electric field between
the groundplate and the microbeam is perpendicular
to the surfaces of both the fixed groundplate and the
microbeam. This assumption implies that the deflection
u of the microbeam is much smaller than the nondi-
mensional distance 1 between the fixed plate and the
microbeam. Furthermore, it will be assumed that the
electric load is given by \70 + VAC sin(wt), where VAC
is the magnitude of the applied AC voltage and w the
excitation frequency. Based upon these assumptions,
the following rescalings are used in this paper:

Vo = VoVac,

ap=a, Q=

Vac = &eVac,

_&
7 s
VAC

& = scy, ¢y =&,

fo) =ef(x), §(x)=eg(x),
and u(x,t) = ev(x, 1), 4)

where ¢ is a small positive parameter, that is, 0 <
& « 1. By using the rescalings (4) it follows from
(1)—(3) that we now have to study the following initial-
boundary value problem for v(x, t)

2
Vst + Uxxxx = —E€C1VUr — €7 CQVrxxxx
1
2 2
+ase /(; vy (x, Ddxvyy

H 2
+ eSO 0 <x < 1,1>0,  (5)
v(0.0) = v(1,1) = v (0,1) = vx (1,1)) =0, 120, (6)

v(x,0) = f(x), vi(x,0) = g(x), 0<x<l. @)

Since ¢ is small the denominator in (5) can be
expanded as

—L = 142043820 + OY). (8)

(1—ev)?2 —
Moreover, due to the boundary conditions (6) v(x, )
can be expanded in the following Fourier series:

o
v(x, 1) = Y v(t) sin(kmx). )
k=1

In the next section, we will study the natural frequencies
of the actuated beam in detail, i.e. c; = ¢ = a = 0.
By using a three-time-scales perturbation method (see
[21,22] for a description of the multiple time-scales
perturbation technique) we will construct O(&?) accu-
rate approximations of these frequencies. In Sect. 4
of this paper we will first consider the case when the
excitation frequency w is close to or equal to a natu-
ral frequency of the actuated beam. Only a relatively
large damping can reduce the amplitudes of the oscil-
lations of the beam. For that reason we first consider
c1 # 0 (i.e. we take into account a large viscous damp-
ing (and ¢ = a = 0)). Secondly, we will assume that
the excitation frequency w is not equal or not close to a
natural frequency of the actuated beam. We will study
the occurrence of super-or subharmonic resonances and
we will take into account the influence of the nonlinear
elastic forces in (5) as well as relatively small structural
damping, i.e.,c; =0, ¢ # 0and @ # 0.

3 The influence of the electrostatic force

In this section, we will study the influence of the elec-
trostatic force on the oscillations of the microbeam.
Damping and nonlinear elastic forces are neglected,
that is, ¢y = ¢ = « = 0 in Eq. (5). By substituting
(9) into (5), and by using the orthogonality properties
of the sine functions, it follows that v (¢) in (9) has to
satisfy

vk, + (k) o = 2(VE + 2e Vo sinot + &% sin® wr)
(H (k) 4 svi + 36> L(k) + O(e?)),

(10)
where
0, ifkiseven,
H(k)_{%, if k is odd, 1
and
o0
LG)= " Cmn VnVn, (12)
m,n=1

@ Springer
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where ¢, = 0if m £ n £ kis even or zero and it

. —dmnk .
is equal to n(k+m+n)(k+m_n’;’&_m+n)(k_m_n) if+m £

n £ kis odd.

By substituting (9) into (7) it similarly follows that
1
v (0) = 2/ f () sin(kmx)dx; vy, (0)
0

1
= 2/ g(x)sin(kmrx)dx. (13)
0

Since a naive perturbation expansion for v (f) leads
to secular terms in v (¢), we will now apply a three-
time-scales perturbation method (with 7y = ¢, 1] = et,
1> = £21) to obtain highly accurate approximations for
v () which are valid on a time-scale of order 1/¢. So,

vi(t, ) = v (to, 11, 12, €),
% = Do +¢D; +&°Dy, (14)
& = D3 +2eD1 Do +€2(D} +2D2 Do) + O(e),

with D; = %. By substituting (14) into (10) we obtain

Diuvi + (km)*vy + 26Dy Doy
+£2(D? + 2Dy Do) vy + O(?)
= 2(Vg + 2&Vp sin(wr) + &7 sin® (1))
(H (k) + evg + 3e2L(k) + O(?)). (15)

By putting (w; is a constant independent of ¢ fori = 1,
2, and 3)

w=wy+ ew; + £2a)2, (16)
we can rewrite sin(wt) in (15) as

sin(wt) = sin(woty + wit] + wrt?). (17)
As usual vy (9, 11, 12) is expanded in

v (10, 11, 12, €) = vk, 0(t0, 11, 12) + &vg 1 (f0, 11, 12)

18
+elvea(to, tr, 1) + O(e3). (18)

By substituting (18) into (15) and by collecting terms of
O(1), terms of O(¢), and terms of O(s2), we obtain the
usual O(1)-, O(g)-, O(g?)- problems: O(1)-problem :

Lo =2VFH(K), (19)
O(¢e)-problem:

Lvg1 = —2D1 Doveo + 2VEve,0 + 4Vo H (k) sin(wt), (20)

O(&?)-problem:

@ Springer

Lvg o = —2D1Dovg,1 — D%vk,() — 2Dy Dovg,0 + 2V02vk,1
+2H (k) sin®(wt) + 4Vouvg g sin(wt)

o]

+ovg Y

m,n=1
+m+tn+tk odd

Cm,n Ym,0 VUn,0, (21)

where Lv = ng + (kmr)*v and sin(wr) is given by
(17). The solution of the O(1)-problem (19) is given
by

w0t 11, 12) = Ago(t1, 1) cos(k* 1)
2VEH (k)
k44
(22)

+By 011, 1) sin(k?m 1) +

After substituting (22) into the O(e)-problem (20), we
obtain

Lo = —2k2n2< BdA"O

+4VyH (k) sin(woty + w1t + 6()21‘2)

HBAO

511’1(/(27'[ t) + cos(kznzto))

+2v¢ (Ak.o cos(k>m%tg) + By.o sin(k>m%1g)

+2V02H(k)> (23)

kA4

Now we have to consider two cases:
Case 1 wy # K?*mn? for all odd K € N, that is,
sin(woty + wit; + watr) is not a resonant term in the
right-hand side of Eq. (23) for vy 1,
Case 2wy = K272 foracertain, fixed,andodd K € N,
that is, sin(wofy + w1t + wyty) is a resonant term in
the right-hand side of Eq. (23) for vy 1.
First we will study the problem for v | (given by (23))
in case 1.
Case 1 g # K*n? for all odd K € N.
In this case, it follows from (23) that in order to avoid
secular terms in vg, | that Ay o and By o have to satisfy

940
2+ Bk 0=0,
ot k2 2
By Ve (24)
o~ gz Ako = 0.
The solution for A o and By o is given by
V2
Ago(t1, 12) = Cr,0(t2) cos (ﬁll)
. v}
+Dy,0(12) sin (—kz;ztl),
. V2
By o(t1, 12) = C,0(12) sin (ﬁn)
V2
~Dro(t2) cos (n ). (25)
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And so, in this case, we have
22 143
vk, 0(t0, 11, 12) = cos(k“m“10) { Cr,0(t2) cos ( 7211
(V2
+ Dy, 0(12) sin (ﬁn))
. (V2
+sin(k*219) (Ck’o(tz) sin (#tl)

V2
— Dy o(t2) cos (ﬁtl))
2VZH (k)
Tkt (20

and

k1 (0, 11, 12) = Ag 1 (181, 12) cos (kK *1o)
+ By 1 (11, o) sin(k>mtg)
4VoH (k) .
d a)g sin(woto + wit] + watr)
4VHH (k)
k88
Case 2 wy = K*n? for a certain, fixed, odd K € N.
In this case it follows from (23) that no secular terms in
v, 1 will occur when Ay o and By o satisfy (24) when
k # K, and satisfy for k = K

27

3Ak .0 V3 2VoH(K

a1 + Kzz.[z Bko = — ]gzﬂ(z )(COS((I)lfl + wai2)),
9Bk.0 Yo _ 2VoH(K) o:

o T K2 Ago = e (sin(w1t] + watp)).

(28)

It is obvious that for all k # K, vg o and vg, 1 are given
by (26) and (27), respectively. To determine vk ¢ and
vk.1 we first have to solve (28). The system (28) of two
first-order ordinary differential equations can be rewrit-
ten as a second-order ordinary differential equation for
Ak, 1€,

4
Vo

BZAK()
Ak

ar?
2VoH (k Ve

= Kozn(z ! <a)1 - Kz(jrz

To determine Ag o from (29) (and then Bk o from the

first equation in (28)) we now have to consider three

cases:
Case 2.1 oy = K272 for a certain, fixed, odd K € N,

V2
and w1 ;é :l:Kz_(:tz
by

> sin(wt] + watz).  (29)

.Inthis case Ax o and Bk o are given

V2
Ak o(t1, ) = Ck o(t2) cos (Kz_(;[z[1>

. 143
+ Dk 0(t2) sin (Kz_?fztl)

__2VoH(K)
Vi+w K22

. Vg
Bk o(t1, 12) = Ck o(f2) sin (Kz_(jtztl)

sin(wit] + wnt),

V2
—Dg 0(t2) cos (KZ_?TZ“)

—% cos(wity

+wah). (30)
Case 2.2 wy = K?n? for a certain, fixed, odd K € N,
and w1 = K‘Z/—‘iz. In this case Ax o and Bk o are given
by

Ak o(t1, 1) = Cg 0(t2) cos (wi1t1) + D o(t2) sin (w111) ,
Bk o(t1, 12) = Cg o(t2) sin (w1t1) — Dk o(22) cos (w1t1)

- ZHV(OK) cos (wit] + wntr) .
(31)
Case 2.3 wy = K272 for a certain, fixed, odd K € N
and w1 = —%.

1
In this case Ak o and Bg o are given by

Ak o(t1, 1) = Cg 0(f2) cos (w1t1) — Dk o(t2) sin (w111)
—%tl cos (wit] + watr),
Bk ,o(t1, 12) = —Ck 0(22) sin (w1t1) — Dk 0(t2) cos (w1t1)

+2‘;g§i(2K)t1 sin (w1t] + wnty) .

(32)

It should be observed that we get in the solu-
tions for Ago and Bg,o when wy = K272 and

w; = _KZ_?; (see case 2.3, and Eq. (32)) unbounded
terms in #;. However, on ¢ time-scales of order 1/¢
these terms remain bounded. So, for t = (’)(é) we
still have bounded functions for vg o(f, t1, t2) and
vk 1(to, t1, t2), and these functions for the 3 cases
(cases 2.1, case 2.2, and case 2.3) are given by

2.2

vg.0(t1, 11, 1) = Ak 0(t1, 12) cos(K“m1p)
2VZH(K)
K4z4

(33)

+ Bk o(t1, 1) sin(K 71 +

2.2
vk, 1(to, 11, ) = Ag.1(t1, 12) cos(K~m19)

4V H(K)
K878

+BK,1 (t1, 1) sin(Kznzto) —+
(34)

To determine vk o(%, t1, t2) completely for all the
cases (that is, for case 1, case 2.1, case 2.2, and case
2.3) we still have to determine Cy o(#2) and Dy o(f2)
for all k by solving the O(¢?)-problem (21). In the
right-hand side of Eq. (21) for vt > we encounter the
nonlinear term

oo
> Cwn vmolto, f1, 1) vaolio, 11, 12). (35)
m,n=1
*mEntk odd

@ Springer
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By substituting v, 0 and v, ¢ into this term we will
obtain products of sin(mznzto) (or cos(m2n2t2)) with
sin(n?721y) or cos(n?72ty), and we will get products
of sine or cosine functions with constants. For the prod-
ucts of the trigonometric functions we can use identities
yielding cos((m? + n?)ty) and sin((£m? + n?)1p).
These functions can be resonant terms in the nonlin-
ear term (35) of Eq. (21) when k? = £+m? 4 n? and
+m £ n £ k is odd. It can easily be shown that this
cannot occur. For instance, assume that both m and n
are odd (or even) then from k2 = +m? + n? it fol-
lows that k is even, but this contradicts the fact that
+m +n £k should be odd. Similarly, if one assumes m
to be odd and 7 to be even, then from k% = +m? + n?

it follows that k is odd, but this again contradicts the
fact that £m + n % k should be odd. So, the products
of the trigonometric functions in (35) will not lead to
resonant terms in Eq. (21), and the only resonant terms
coming from (35) (that is, the last term in Eq. (21)) are

<Ak,0 cos <k2n2to) + By o sin <k2n2t0))

2V2H @) 2V2H(m)
(S ennit + 3 cna ).

n odd m odd

Using the symmetry of ¢, , (see (12)) this resonant
term can be further simplified to

(Ak,o cos (kznzto) + By o sin (kznzto)) Sk),

with

S(k) = <4v02 3 k,,H(")> . (36)

n odd

Furthermore, it should be observed that we have in the
right-hand side of Eq. (21) the term 2 H (k) sin(wr) =
H (k)(% — %cos(2wt)) which can also be a resonant
term in vk » when & = L is odd and 29 = L?n2.
And also the term 4Vyvy o sin(wt) for k = M in (21)
can give rise to resonant terms when wy = 2M?%7?
for a fixed M € N (M can be even or odd). So, apart
from the resonance case, i.e., case 2 with wg = K272
for a certain, fixed, and odd K € N, we have to con-
sider three additional cases. In case 1.1 we will consider
the case when wyq is not equal to the “pure” resonance
frequency, and is not equal to first superharmonic and
subharmonic resonance frequency. In case 1.2 we will
consider the case when wy is equal to the first super-
harmonic resonance frequency, and in case 1.3 we will
study the case when wy is equal to the first subharmonic
resonance frequency.

@ Springer

Case 1.1 wy # K*w?forall odd K € N, and wy #
JL%n? for all odd L € N, and wy # 2M>x” for all
M e N.

By substituting v o and v, 1 as given by (26) and (27),
respectively, into the (’)(52)-problem (21) for v 2, we
obtain

3By Vo
Lvg o = cos(k?m? t0)< 20272 3;11 + k47014Ak’0
B
2V Ay — 2k k0 2Ak,os(k)>

. A
+s1n(k2712[0)<2k27t2 aatk.’] + k4n4 Bk 0

+2VE By 1 + 2422 2GR0

+ 6V02Bk,OS(k)>
+NST (37)

where NST stands for non-secular terms. To avoid
secular terms in vy 2, it follows from (37) that Ay 1 and
By 1 have to satisfy

8?% + 2 sz 1= —%Bko

—25k0 MO B, 39)
agtkl’] - kl/iz Ak1 = 2,:2; Ako

— 00k 4 32%2521() Ak (39)

By differentiating (38) with respect to #; and by sub-
stltutlng " L from (39) into the so-obtained equation,

we obtaln

82 Ax1 143 2
e T\ e ) Ak

. V2 2Ve dDyo
= —cos <_k2712t1><k8 s C0 + 22
6V S (k)
+ kaﬂ“ Ck,O)
. V2 A 2v2 dcC
_ 0 0 Z70 k.0
s (_kz 2[1)(_k8ﬂ3 Dio = =77~
% S(k)
+— Dx, o)

Since Ay 1 and By have to be bounded, we have to
avoid secular terms in Ay | and By 1, and so we obtain

dCr o vy 3VES(k)
dn <2k6 s T o ) Do =0,
d Dy o 1A 3V2S(k)
dl‘z (2k6(;_[6 + kOZJ'[z Ck’() = 0 (40)

By solving (40) it follows that Cy ¢ and Dy o are given
by
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vy 3VES(k 3By Vg vy _ 0Bro |, 3VESW)
Cr.0(t2) = Cr 0(0) cos <(2k6”6 + kzrrg ))t2> o, 27 ALl = 5755 AL0 o T 1 ALo
— L), cosQeity + 2wt). (45)

3VES(k
+Di0(0) sin ( (s + 2 g))tz),

3Vi Sk
Dio(t2) = —Cro(0) sin ( s 4 S §>)rz>

+Dy0(0) cos Vo i 3Z§£§k))t2) .
(41)
Hence,
000, 1, 12) = Cico(0) COS@ (10, 11, 2))
—Dy.0(0) sin(&(1o, 11, 12))
P (42)

4 2
1% . 3VESk) H
24676 k22 :

In this "nonresonant’ case it follows from (42) that the
natural frequencies of the microbeam up to O(g?) are
given by

V2 v 3VESk) \ 2
ezl <2k6716 Rler )‘9 (43)

for all k € N. Later on, we will see that if the frequency
of the external force (the AC frequency) is in a neigh-
borhood of a natural frequency of the vibration, it will
give rise to resonance.

Case 1.2 wy = %LGz for a certain, fixed, and odd
L eN.
In this case it follows from the (’)(82)-pr0blem (21) for
vk 2 that all vg 2 with k # L have to satisfy (37) and
that vg o is given by (42). For k = L it follows from
(21) that vy, » has to satisfy

A V2
where o1, 11, 12) = k27219 — et —

Kr? —

dBL 1
aty

V4
L"UL,Z = COS(LZJTZZ())(* L2 2 —+ L42[4 AL,O +2V02AL_1

9B o

—2L%7* S5 4+ 6V S(L)AL o

—H(L)cosQuwit; + sztz))

+sin(L2712[0)<2L2 20801 Lw BLo+2VEBy,
2127 2L + 6VES(L)BLo

+H(L) sinQart + 2a)212)>

+NST. (44)

To avoid secular terms in vz, 5 it follows from (44)
that Az 1 and Br 1 have to satisfy

0AL 1

) dALo  3VES(L)
B +

vy

T 267 sBro— 9 L2x? Bro
_H(L)
T 2077

BLI—

LZ’

> sin(2w1t1 + 2watr),

Combining the two equations in (45), we obtain for
AL,

92AL 143
o2 T T e Ars = —cos (
Vo 2V} dD
0 =0 L.,0
[Lsﬂs Cro+ 12722 dn
6VAS(L)
+ LO4,T4 CL,O]
. V2 1A 2V¢ dCro
—sin (_LGz fl) [‘Lsns Dro = 122

6VAS(L
+—= ()DLO]

o

Yo
L%m

2
e 2] cosRwit; + 2watr).

(46)

Now we have to consider three cases, that is, 2w; =

2
_L‘z/?rz’ 2] = L‘; 5, and 2w # +%5. If 2w #

L2 2
V2 .
iLZ_OnZ’ then we will obtain the same Cr o and Dy, o as

2
in (41). When 2w = L‘z/—?rz, then the last term in the
right-hand side of (46) will be zero, and we will have
the same Cy ¢ and Dy ¢ as given in (41). So, both of

these two cases will give us the same result as in case
2

1.1. When 2w = — 75, it follows from (45) that in
order to avoid secular termsin Az, | that Cp o and Dy, o
have to satisfy

dCyr o vy 3VZS(L)
i (2L6n6+ 172 ) Pro

H(L)

T 3122 sin(2wa 1),
dDyr A
dn +(2L60716
3V2S(L)
+5 >CL = D cosQunty). (47

Combining the two equations in (47), we obtain for
Cro

d*Cr vy 3VZS(L)
T +\ 366 T 122 CL.,O

v 3V2S(L) H(L)
+ <2w2 - <2L‘?n6 + 2)2”2 )) 3222 cos(2unty) = 0.

(48)

From (48) it follows that we have to consider 3 sub-
vy 3VZS(L) v
cases, i.e., 20y # 5745 + 15, 200 = 5545 +
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3V2S(L) vy 3V2S(L)
1 ,and2wy = — | 575 + — 5 ). For2w; =

vy 3V2S(L)
2L6716+ L2712

3VES(L
givenin (41). While for 2w, # + <2L6n6 + L‘)zn(z )),

Croand Dy o are given by

3V2S(L
Cr,o(2) = K| cos <<2L6n6 + Lozn(z )) t2>

. 3VyS(L
+K> sin (<2L6n6 + Lozn(z )> t2>

+ LA7*H(L)
2uLOT O+ VI +6VZLAT4S(L)

. vy 3VES(L
Dy o(2) = =K sin ((2L6 st Lozn(z )> f2>

3V2S(L
+ K> cos <<2L°n6 + L‘)zn( )> t2>

LA7*H(L) .
VT v reve LS Sn@2i2), (49)

, we obtain the same Cr, o and Dy, o as

cos(Lanty),

where K| and K, are constants of integration. For the

3V2S(L
last subcase, when 2wy = — <2L6n6 + (2 )), we

obtain

Cro() = Kicos ((2,_‘:,6 + 3‘2022;51(})) tz)
+K>sin <<2LV66; 6 3VLZZS<2L)) )
+315 1y sin (( U eSw ) tZ)

Dro() = =Kisin ((u‘?nﬁ 3‘2)2S(2L)> 2)
+Kzcos ((zmjfﬁ + 3\2)251(;)) tz)

H(L v 3V2S(L)
+2L§ﬂ)2 1> COS ((—ZLﬁoﬂf, + —Lozﬂz ) lz) .
(50)

Having determined Cy. o(#2) and Dy, o(t2) we now have
completely computed v o(%, t1, £2) as given by (26).
It should be observed that vy o is bounded on a ¢ time-
scale of order 1/¢, but it contains terms for k = L that
become unbounded for times ¢ larger than order 1/¢2
when the frequency of the AC voltage is O(e?) close
to

1,722 1.V 12 v 3VZS(L)
EL T — §8L2_712 — 58 L6 5 + 1272 . (51)

The resonance for w as given by (51) is usually referred
to as the first superharmonic resonance.

@ Springer

Case 1.3 :
M e N.
In this case it follows from the 0(82)—problem (21) for
vk 2 that all vg 2 with k # M have to satisfy (37) and
that vy o is given by (42). For k = M, it follows from
(21) that vy 2 has to satisfy

wo = 2M27? for a certain, and fixed

9B A
,CUM’Q = COS(M27T2t0)< M2 2 algl + M4_(;T4AM’0
+2Vg Apa + 6V S(M) A o

2_203Bumo
—2M*m 5

+2VolAm o sin(wit) + watr)
4By 0 cos(w1t] + a)ztz)]>

: 2.2 2_20A v
+sin(M2x zo)(zM Bty 0 Buo

+2VEBu.1 + 6VES(M)Bu o

2_20Am0
2M*m 0

+2Vo[Apm .o cos(wit) + wata)
— By 0 sin(w; 11 + wzlz)])
+NST. (52)

To avoid secular term in vy 2, it follows from (52) that
A1 and Byy,1 have to satisfy

9AM.1 dAmo  3VES(M)

an + M2 2BM 1= 2M6”6 Buo— 9 M2 Buo
— 5y [Amo cos(@itr + waty)
—Byosin(w1 + wa2)],
Byua V@ v 3Byo |, 3ViS(M)
an  M2rx ez Ami= 2M6 s3s AM0 — an + M272 Am,0

zﬂz [Amosin(@it) + @212)

+ B0 cos(wit] + watr)]. (53)

Combining the two equations in (53), we get

% Am, Ve _ vi ve
o2+ Apa ==cos | gaiah )| s Cmo
2V? dD 6VS(M)
0 M.0 0
B —an T e CM’O]
. V2 Ve 2V2 dC
0 0 0 M.0
—sin (Mzﬂz ll)[ 188 PM.0— 370 —an,
6VIS(M)

+ 1314”4 DM,O]

+ 2%, [Cpy 0 sin(wata) — a0 cos(anta)]

oo+ )0

+2Y% [C 1, cos(wrt2)+ D o sin(ent2)]

(o))
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Now we have to consider three cases, that is, when

2V}
w1 # 0 and w # —Mz—gz, when w; = 0, and when

2V . .
w] = 0 In the first two cases we will obtain the

T M2x2
same C M,onand Dy 0 as given by (41) and leading to
2
the same vy o as given by (42). When w; = —% it

follows from (54) that in order to avoid secular terms
in Ap,1 that Cy 0 and Dy o have to satisfy

dCyro v 3VES(M) Vi
dn (2Mg,r6 + Agzﬁz Dy, = _7M2(7)12 (Cp,0 cos(wat)

+ Dy 0 sin(wat2)),

dDy o v 3VES(M) v .
an T zMgn6+ A(,)Izﬂz CM,()=—7M2(;2(CM,()Sln(a)2t2)

—DM’() COS(wzl‘z)).

(55)

System (55) can be rewritten as

dc
d%’o _ (9 7\ Cmo
4D o -y 0)\Dum,0
dn ’

Vo [cos(waty) sin(watz) \(Cum,0
sin(wpty) — cos(wztr) [\ Dm0/’

T M2x?
(56)
vy 3VES(M) . .
where y = 57— + — />~ > 0. By introducing

the time-rescaling T = yt system (56) becomes

a0 0 1\/Cuo
dDuo | =\ =10 )\ Dpro
dt ’ (

(57)

System (57) is of the form X = AX+B(1)X, where
A is a constant matrix and where B(t) is a continuous
and periodic matrix. The fundamental matrix @ (¢) for
X = AX is given by (_C(:ég) (S:i)r;((?)) Then, by
using the method of variation of constants we can take
X(1) = ®(r)C(r) withC(t) = (C1(7), C2(7))T, and
we obtain C(r) = @ 1(1)B(r)®(t)C(). When this
method is applied to (57) we obtain

() --m=(oi0r 2 2@,

(58)
and (Cpy (1), DM,O(t))T is given by @(7)C(7).
Lett = —Vﬂf,znzs and o = —%ﬁ”z (2 + %) Then
(58) becomes

dcy cos(as) sin(as) Ci
<%> - <sin(as) —cos(ozs)) (C2> ' (59)
By introducing polar coordinates for Ci(s) and
C>(s), that is, C1(s) = r(s)cos(¢(s)) and Cor(s) =
r(s) sin(¢ (s)), it follows from (59) that r(s) and ¢ (s)

have to satisfy

dr
ds

‘fi—f = —sin(2¢ — as). (60)

=rcos(2¢ — as),

By putting ¥ (s) = 2¢ (s)—as the system of differential
equations (60) can be simplified to

d
I =rcos(y),

W — —a —2sin(y). (61)

It is not hard to see that the autonomous system (61)
admits the following first integral

(¢ +2 sin(tp))r2 = constant. (62)

From (62) it follows simply for || > 2 that o +
2sin(yr) is sign definite and so, the function r(s) is
bounded for all s. And so, for |¢| > 2 system (55) has
only bounded solutions Cjy,0(f2) and Dy o(t2). These
functions can be computed from (61), but the compli-
cated and long expressions will be ommited here for
convenience. For || < 2, we will study (59) by intro-
ducing z(s) = C1(s) + iCa(s), where i2 = —1. Then,
it can easily be shown (by using (59)), and the complex
notation for cos(as) and sin(as)), that

i ="z, (63)
where Z is the complex conjugate of z. Eq. (63) can be
solved by looking for nontrivial solutions in the form

2(s) = (61 +i52) exp((A1 +ir2)s), (64)

where &1, &, A1, and A, are real constants. By substi-
tuting (64) into (63) one obtains

(E1+iE) (M +ikg) = @D —ik).  (65)

The left-hand side of (65) does not depend on s, where-
as the right-hand side does. Moreover, we look for non-
trivial solutions of (63) (that is, (&1, &) # (0, 0)), and
so, it follows from (65) that « — 21, = 0, and that
&1+ i&)(M +ir2) = & — i&, which implies

Ay =73,
(A1 — D& — 586 =0,
5&1+ (M + D& =0. (66)

To have a nontrivial solution for (63), that is, (§1, &) #
(0, 0), it follows from the two last equations in (66) that
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the determinant of the coefficient matrix should be zero,
implying (A1 — 1)(A1 + 1) + % = 0, or equivalently

A = %\/41—7()(201‘)»] =—1Vd— a2, (67)

For |a| < 2 we find two different roots, and so two func-
tionally independent solutions for (63) (and for (59))
can be found by solving and using (64) and (66), yield-
ing

z1(s) = exp

3 —w><ws<°“>+§$%
( 2a COS + sin (?)))
( o

22(s) = exp l — s)( ozcos(2‘) +sm(as>
? 2 2+ V4 —a?
+i (—cos(a;>+

o sin (7)
= ) (68)
2+ V4 —a?
And so, the general solution of (59) can readily be
obtained from z(s) = C(s)+iC2(s) and (68), yielding

Ci(s) Re(z1(s)) Im(z1(s))
(Cz(S)> =k <Re(zz(S))> ke (Im(zz(S))> - (69)
where k1 and k> are constants of integration, and where
Re and Im stand for the real and imaginary part, respec-
tively.

For « = 2 or for « = —2 it follows from (67)
that we find coinciding roots. So, we have only one
solution for (63) (and for (59)). The other functionally
independent solution, however, can easily be found by
using the method of variation of constants. We will omit
the elementary computations. For « = 2, the general
solution of (59) is given by

(Cl(s)) . ( s(cos(s) + sin(s)) + cos(s) >
Ca(s)) s(—cos(s) + sin(s)) + sin(s)
. (70)
o ( cos(s) + sn?(s) ) ’

—cos(s) + sin(s)
and for « = —2 the general solution of (59) is given by

(Cl(s)> i <s(cos(s) + sin(s)) + cos(s))
Ca(s)) s(cos(s) — sin(s)) — sin(s)
. (71)
ks <cos(s) + sm(s))

cos(s) — sin(s)

where k1 and k> are constants of integration. From (68)-
(71) the solutions Cys o(t2) and Dyy o(f2) of (55) can
now be easily obtained, and so vy o(fy, t1, £2) given
by (26) is now completely determined. For |o| < 2

or equivalently for —2y — A;ZV;Z < w < 2y +
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2V vy 3VES(M)
e \Wherey = syes + S
vpm.0(%o, t1, 12) is unstable, else the solution is stable.
So far we studied up to O(&3) the cases for which
wo # K?m? forallodd K € Nand we found the natural
frequencies of the microbeam (up to 0(83)) which are

2 4 2
. 2.2 Vi 2 \%) 3Vy S(k)
givenby fy =k n” —enly — €| 5005 T 352
fork =1, 2, ... We also found a superharmonic reso-
nance when wg + ew; + &2an = %fL for a fixed and

odd L € N, and we found for a fixed M e Z subhar-
2

the solution

monic resonance for w = 2M?>

where wy € [ 2y — 2‘/02, =2y +

vy 3VES(M)
2MO7© M?2n?
pletely when wg = K 272 for a certain, fixed, and odd
K € N, that is, case 2.1, case 2.2, and case 2.3 have to
be studied further by considering the O(¢?)-problem
for vy » for those cases.

Case2.1 a)o = K22 for a certain fixed, odd K € N,

and w1 9é:|:K2 7.

Following the earlier made remarks in case 2 we now
only have to consider vk ¢, V.1, Vk 2. By substituting
VK.0, k.1, Ak.0, Bxo (as given in (33), (34), (30))
into the right-hand side of Eq. (23) and by taking apart
those terms in this right-hand side that cause secular
terms in vk 2 it follows that no secular terms in vk >
will occur when Ak | and Bk satisfy

2\/0
M2r?

] with y =

. We still have to determine vy o com-

Akl | V¢ vy %
an Treez BRI = —5pen cs[CKOSIn el

V2
7DK,0005(K2 t1>}
dCk.o Vg
_[ an cos(K2 511
dDK,O . VO2
-|Tzsm Kz—nztl

_ 2wy Vo H (K)
V§+oK2m?

cos(w] + wztz)]

82VoH (K)

K22 (Vi +an K222) cos(wity + i)

4V3H(K)
- ]?67.[6 cos(wyt] + waty)

3V2S(K) . V¢
0
— K22 |:CK,O s K2 2t1

Vz
—Dg ocos (K2 t]>

_ 2VpH(K)
V¢ +w K2n?

vy V¢
= 3K6, 6|:CKOC05 K2 —551

cos(wyt] + wzl‘z)] s

P 2
dBK,l VO
o KznzAK‘l
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. v
+Dg o sin Kon 211 ]
dCg o . v
_[ an Sm(Kz 21
dDg .o V¢
T dn co KZ tl

2wy Vo H (K)
V02+w] K272

sin(w11] + wztz)]

52VoH (K)

_m sin(wit] + wa1p)

4V H(K)
K676

3V2S(K) v2
+71?2n2 |:CK,0 cos Kz(;rz f
V2
H 0
+Dg o sin (m’l)

__2VgH(K)
V02+w1K2712

sin(wt] + wytp)

sin(wq ] +w2t2)]. (72)

Combining the two equations in (72), we obtain

325:;(1 K4,,4A1(1— —cos (K‘;—‘iztl)[[(s - Ck.o+ 1?;’52 d%.o
RLISCPN
—sin (K‘gi[;zﬂtl)[l(‘;i(;l)l(,o _ I?ZL](EZ ds;;o
+ 6‘,@751(1{) DK,():|+ NST.

To avoid secular terms in Ag 1 and Bk 1, Ck o and
Dk o have to satisfy (40). Eventually, we will obtain to
the same Ck o and Dk ¢ as given by (41). In this case,
VK0 1s given by:

vk, 0(fo, 11, ) = Kicos(a(to, 11, 1)) — Kz sin(a(to, t1, 12))
_ OVHK)
Vet Kon? sin(wotg + w1t + wat2)
2VZH(K)
+ kT
- ) %
where w(ty, t1, ) = K*n“tg — Kz_(;rztl

4 2
3Vy S(K
2K6 s+ K2 (2 )> 1, and, K| and K, are constants

of integration.
Case 2.2 a)o

and w1 =

K272 for a certain fixed, odd K € N,

Kznz :

Similar to the previous case, we substitute vg o, Uk 1,
Ak .0, Bk o (as givenin (33), (34), (31)) into the O(?)-
problem (21) and by collecting secular terms in vg »,
it turns out that Ax | and Bk 1 have to satisfy

0AK1

v .
+ w1 Bk 1 ——ﬁ[cl{,o sin(w111)
—DK 0 cos(wity)
2H(K)

cos (w1t + watr) ]

dc
_[ dtg cos(w1t1)+ dt

9 sin (wlfl)i|

3VZS(K) .
-k [CK,O sin(wy11) — Dk o cos(wit1)

_ZHV(OK) cos(wyf1 + wztz)]
4VSH(K)
T T K646
0Bk .1 _ Vé
g~ P1AK1 = 5566
(CK,O cos(wit)) + Dk o sin(a)ltl))

dCk.o . dDg o
—[ an sin(wi11) — —;

cos(w1t] + watr),

cos(wity)

+2(‘)2TI-{)(K) sin(w1t] + wztz)]
3VZS(K) .
+%(C1{‘0 cos(w1t1)+Dk o Sln(a)ltl))
4VSH(K) .
+1%67n6 sin(w1t] + watp). (73)
Combining the two equations in (73), we obtain
2
PALL} o} Ak = — cos(wltl)( 5 Ck0 +priy 10K0
vyt 3VES(K) | .
-2 0 — e - 2 sincene)
6VAS(K)
+20 Creo)
2V d
—Sln(wlfl)(Ks tDko— &= 722 (,5,’;0
2 3VZS(K
-0 0 — i = G costonry
6VIS(K
PO D). (74)

To avoid secular terms in (74), Ck 0 and D o have
to satisfy

dStI;O - (21((;6 +3‘;§2S;2K)>DK,0 = —%f)cos(wztz)
|:a)2_ 2](‘/}’;‘71(’ _%ﬁ:f)] ’
d?zl;() + (2,:37,6 + 3‘;25(5)) Cgo= H‘(,f) sin(wat2)
[wz - sxbs - W} - (75)

Combining the equations in (75) we obtain

2
d*c vy 3VES(K
0 +< =+ =2 ¢ )> Cko= H( sm(wztz)

dty K6JT K2m2
5 3VES(K)
Wy — (21("716 + K22
3V2S(K)
When wy, = + ZKﬁ s + —gzz ). Ck,0 and Dk o

are given by (41). In the other cases, we have

vy 3VES(K
Ck0(2) = K cos << o5 TR, TP )>t2)

@ Springer




3168

E. Harjanto et al.

. vy 3VES(K
+K> sin (<2K6 5+ W(z)) t2>

H(K)

sin(wa 1),

3VES(K)

DK,O(Q) = _Kl sin <<2K6n6 + T K272 ) t2>
4
+ K> cos ((2;#

3VZS(K) H(K
+#) tz) ( ) cos(anta).
where K| and K, are constants of integration.

Case 2.3 wy = K272 for a certain fixed, odd K € N,
2

and w1 = _K‘2/02~
By substituting vg .0, vk,1, Ak,0, Bk,o (as given in
(33), (34), (32)) into the O(?)-problem (21) and by
collecting the secular terms in vk 2, it turns out that
Ak .1 and Bk 1 have to satisfy

Ak v .
8!1: —w1Bk1 :ﬁ Ckos8in (wit1) +Dg o cos (w1t1)
6V H(K)
——Fg6 €08 (w111 + wahr)
4 2
2\/011(1() Vo 3V S(K)
K2m |:a) + K6n6 + Koznz g

sin (w1t + watp)

dCk o dDg
—[ an cos (w1ty) — T %m(wltl)]

3VES(K .
+ ,?z,,(z 2 [CK,O sin (w111) + Dk o cos (w111) ]
9Bk 1 _ VJ‘
g T @1AKL = 5o
[CK.O cos (w111) — Dk o sin (wltl)]
6VSH(K) .
+7I°(f,n((, ) sin (w111 + ant)

2VoH (K) 3VZS(K)
- Igzﬂz |:0)2+ 2[(6”6 + Kozﬂz |

cos (w1t + watp)

+[d§t’;° sin (w111) + 4 dt cos(a)m)]

3VES(K .
+ Kozn(z : [CK,O cos (w111) — Dk o sin (w111) ]

(76)

Combining the equations in (76), we obtain

32 AK1 2V} dDk

V()
+oiAk,1 == cos (i) (KTZSCKO X2

13V 3VES(K) | .
+72‘;2§l;zk)[wz+ o 4 S )}Sln(wm)

2KOm0 K2m?
6V S(K)
Ry Ck.0

. 2VZ dCk.o
+51n(w1t1)(,(8 s DK0 — 712 g,

e[ 13VE | 3V2S(K)
K22 Lw2+ 3K6.6 T gz [cos(w212)
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6VIS(K)
+ Ig“rr“ DK.O)

4V H(K)
+ Ilé"n" |:w2 + 2K57r" +

3V2S(K
l) ( )]
COSs (a)lll + wztz) .

Neglecting the ’secular term’ #; cos (w1t] + wat2),
we can avoid additional secular termsin A 1 by setting

dc vy 3VES(K) _HK
d/l;o ( s +—2> )DK,O = ( )COS(a)ztz)

2KO70 K27

13v3 3V2S(K)
|:a)2 + 21(6,[;6 + Koznz >

dDk o 3VES(K) HK)
a T (21(6 st Koz”z Cko=— \(,0 ) sin(wzt2)

13V} 3V2S(K)
(o + s + 253

77)

Combining the equations in (77), we obtain

2 3VZS(K 2
d“Cko o S(K)
dtg + 2K6n6+ K2x2
H(K) 13V | 3VES(K)
CK,O = ( w2 +2Ksﬂ6 + K272

v 3VZS(K)
(w2 - |:2Kg7'rfJ + 1227.[2 ])
sin(wat7). (78)

2
When w; = KVO = + wlgz—sn(f), the right hand side

of (78) will be zero, and Ck o and Dk o are given
by (41), but as vg 1, and vk ¢ contain secular terms,
the solution will be unbounded for increasing times.

For wy # + ( + 2% S””), Ci.0 and Do will

2K6n6 K?n?
be bounded functions, but since vk ¢ contains secu-
lar terms, vk o also becomes unbounded for increasing

3 ( i 3\/025(10)
2KO76 K272 )°
Ck .0 and Dk o will contain secular terms in f». Hence,
both vk ¢ and vk 1 have secular terms and the solu-
tion becomes unbounded for longer times. All these
three subcases in case 2.3 lead to unboundedness of
the solution for longer times. So, we can now conclude

in case 2 that when wg = K 2772 for a certain, fixed, and
odd K € N, then vk (9, t1, t2) given by (18) is stable

times. For the last subcase w, =

v} .
when oy # — K2_?12’ and vk (o, 11, 1p) is unstable when
__%
W =—%17-
4 The influence of damping and weakly nonlinear
elastic forces

In this section, we will study the interplay between the
electrostatic force, the damping force, and the weakly
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nonlinear elastic forces. First we will consider the case
for which the actuation frequency w is equal to or close
to anatural eigenfrequency of the actuated beam. In this
case, the damping force needs to be sufficiently large
(that is, needs to be of order ¢) in order to stabilize the
vibrations of the beam. In subsection 4.1 this case will
be studied. Viscous damping of order ¢ is assumed to
be present. The weakly nonlinear elastic forces and the
structural damping force are of order £2, and are too
small to play any role in the stabilization of the beam,
and are for that reason neglected in subsection 4.1. Next
we will consider the cases for which the actuation fre-
quency w is equal or close to a superharmonic or to a
subharmonic frequency of the actuated beam. For these
cases, the damping force cannot be too large else the
vibration amplitudes of the actuated beam become too
small to have any practical significance. For that rea-
son we will not consider in the subsections 4.2, 4.3,
and 4.4 the viscous damping force in Eq. (5). In these
subsections, the structural damping force, the weakly
nonlinear elastic forces, and the actuation forcing give
rise to an intriguing behaviour of the vibration modes
of the actuated beam. In subsection 4.2, we formulate
the general problem for these super-and subharmonic
cases, and in subsection 4.3 and in subsection 4.4 we
will study in detail a superharmonic and a subharmonic
case, respectively.

4.1 Viscous damping of O(¢e) without nonlinear
elastic forces

In this subsection, we will consider the actuated beam
Eq. (5) witha = 0,¢; = 0,and ¢; = B > 0, that is,
compared to the previous section viscous damping is
added to the beam equation:

: 2
o + e sin(on)” (J; 8_“;}()‘2”’ D" _ epu, (79)
subject to the boundary and initial conditions (6) and
(7). Here, the constant f is independent of . We follow
the same steps as in the previous section using a two
time-scales perturbation method, and obtain the same
O(1)-problem as in (19). While for the O(g)-problem,
we have:

Lvg,1 =—2D1Dovk o + 2V02vky()

Vit + Uxxxx =

+4VoH (k) sin wty — B Dovi. 0. (80)
2

Letw = K?n?— K‘z/O ¢, forafixedandodd K € N,
bl

that is, w is order &2 close to one of the natural fre-

quencies of the actuated beam. Observe that the excited
mode is just mode k = K. Substituting the same v o
as given by (22) with k = K into the right-hand side
(RHS) of (80), we have

RHS = cos(K 1) <— 2K2n2dg—t’j’° — BK?7% By o
2 . Vo
+2V3 Ak, — 4VoH (K) sin ( sty )
+ sin(K 2721p) (2[(2712% +/3K27r2AK,0
2 4
+2V3 Bio + 4VoH (K) cos ( ooy )

+NST.

To eliminate secular terms, Ag ¢ and Bk o have to sat-
isfy

dAk.o B Vg 2V H(K) Vo

- = —34Kk0— @ Bko— T cos| @z )
dBxo _ V& B HE) V3

- = 1 Ak, 0 — 5Bk — gz sin| 2=t )

This system of ODE can readily be solved, yielding

- v
Agoln) =e ﬂt‘/2<C1<,0 cos (KZ_(;TZ“>

N7
+Dk osin |51
2
4VoH(K) Yo
e COS<K27T2t1 )

- . Vg
Bk o(h) = e P1/? (CK,O sin <K2_(7)12t1>

Vi
—D[(’() COS mtl
AVoH(K) Vi
().
We see that adding viscous damping of order ¢ to the
system stabilizes the solution when the applied fre-

quency of the AC voltage is order &> close to an eigen-
frequency of the actuated beam.

4.2 Structural damping of O(¢?) and a weakly
nonlinear elastic force

In this subsection, we consider the actuated beam Eq.
S) witha #0,c; =0, and ¢ = B > 0 (where B is a
constant independent of ¢), that is,
1
Vit + Uxexr =—€2Burxexx+ 0‘82<f0 U)%(x, t)dx) Uxx
+ (Vo+e sin(wi))?

(I—ev)Z
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subject to the boundary and initial conditions (6) and
(7). Also we will consider two different values for
the frequency w (related to the superharmonic case,
and related to the subharmonic case), that is, 2w =
L?7% + O(e) for a fixed and odd L € N, and
w = 2M*7? 4+ O(e) for a fixed M € N. By using
a three time-scales perturbation method as in Sect. 3,
we obtain the same O(1)-problem (19), and the same
O(e)-problem (20). Their solutions vi o and vg,1 are
given by (22) and (27), respectively. By substituting
vk,0 and v 1, into the (9(82)-pr0blem we obtain

Lvg o = —2Dy DOUk,l_Dlzvk,O — 2Dy Dyvy,0+2H (k) sinz(wto)

+4V0vk,0 sin(wtq) +6V02 Z Cm,nVm,0Vn,0
m,n=1 (81)
Lmtntk odd

+2VO Vg1 —ﬂk4 4D0vk0 _ak nt Zn v, 0Vk,0-

n=I

In (81), we already see that the dynamics of vi 2, and
so the behaviour of vg o, are influenced by the elec-
trostatic force, the structural damping, and the non-
linear elastic force. In the next subsection, the inter-
play between these three factors will be explained fur-
ther. We will consider a superharmonic case, that is,
2wy = L%*n? (with the excited mode k = L), and
a subharmonic case, that is, wg = 2M? 72 (with the
excited mode k = M), in the next two subsections.

4.3 The superharmonic case (case 2wg = L%7?)

In this subsection, we will consider the superharmonic
case 20 = L27? + O(e) (that is, 2wy = L?72) for a
fixed and odd L € N. By substituting vk ¢ and v 1 into
the 0(82) equation (81), we obtain

9B

d B
Lvia :cos(k2n2t0)< 2k%7? st + k4”4Ak0 2k i

-|—2V02A1<,1 — Sk, H(k) cosQwit; +2wrtr)
+6VES(k)Ar.o —BkST®By o

Kt B2V H2 (k) | k2, 42 2
- Ak-O[ v T (Ao +Bio)

S 4
+y Al +Bzo)+Z4” ZSHX(")D
n=1

n=1

+sin(k2n2to)<2k2 20801 W gy 42k 2k

+2VE Byt +8k. L H (k) sinQai 11 +2w212)
+6VES (k) Bro + Bk Ak

2.4 8k2 VI H2 (k) 2.9 )
-k By, [7,(3,,3 +5 (AL 0+BL o)

@ Springer

+Z 2 (A2 0+B%)+Z%])

n=1

+NST (82)
where
S0 — 0, fork # L,
KL=, fork = L

and

Ve . Ve

Ak,0(11, 12) = Ci,0(t2) cos <ﬁt1) + Dy,0(12) sin (kzgzh),
. Vi Vi

By (11, 12) = Cro(2) sin| zzt1 | — Dro(r2) cos | =t | -

To avoid secular terms in vy it follows from (82)
that Ay 1 and By 1 have to satisfy

0Ak1 VUZ
at +7Bk71

ﬂk“ 4

Ak,() 3‘/0 S(k)
on k2n?

Bk 0— Br.o

2k67r°

Ak.0— Ok, L2k2 2 sin(2w1t; +2watr)

8k2VIH2 (k 2
+4 B, [7;&,8 Do +DR)

+Z z (C,10+D20)+Z4” Vi ‘”)}

Bk 1 dBy.0 32 S(k)
3t —70 7 A1 = 72](60614/(.0_ . T Ak

,Bk“ 4

Bro =8k L 3mrcos(2witi +2w12)
k8
o 2 4n? vy H?
+Y 5 (Clo+D} 0)+Z il ‘")}
n=1

Combining these two equations yields

2 8k2VAH2 (k) 2
—%Ak,o["iﬂg +5(Clo+DL )

92Ar1 2V¢ dDyo
312 +k4ﬂ4Ak 1 = —COS <k2 2l1>(ks g Cro +k27.?2 dir
6V S(k) 272 2
+ k%ﬂ4 Ck,O +,8V0k T Dk,()
aVZX (k)
T Ck,o)
. % A 2V§ dCro
—sm (kznz tl)(kgng Do — k2m? di
6V S (k) 2,22
+—G7" Dro —BVyk n~Ci o
aVEX (k)
T Dk,O)
PY. (58 PN Vi
TOkLop2g2 | SP1 T a2
cosQwit] + 2wrtr), (83)
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H(L) cos(¢r.o—2wily)
where o {ZLg ) LRLO (88)
2 8k2VAH2 (k)
X (k) = T(Clg,o + D;%,o) + ,{%T Let ¥1.0(t2) = ¢r.0(t2) — 2waty, then the nonau-

o0
2 4n2Vy H?(n)
+Z%(C’%»O+D 0)+Z - n8n8 . :
(84)

For all modes k # L secular terms in A 1 and By i
can be avoided when Cy o and Dy o satisfy (as follows
from (83)):

dCro ﬁk 74 vy 3VESK)  an?X(k)
an = Cr,0 +<2k67r6+ 2 1 ) Dros
dDyo _ Vo o 3VESK)  ar’X(k) Bl
dn — (21(6715 + [ 4 Cro — 2 Dr.o-
(85)

From (85) it follows that
dD 4_4
k() — _ﬂkzn (ngo + D;%,o),

dCr0
Cr.0 an + Dyo

and so, Rk,o = Ck,O + D,io satisfies

dR},
dt

Hence, Ry o, and so Cy o and Dy o are stable equilibria

which all tend to zero for t, — oo.

For mode k = L, we have to consider three subcases,

= —BK*7*RE . (86)

that is, when 2w = ‘2/—022, 2w = —‘2/—022, and 2w) #
Lm L°m

iL‘Z/_iZ' When 2w = L‘Z/—‘jz, the last term in (83) will

become 0, and CL 0 and Dy, o are satisfying (85)-(86).

When 2w # £5%5 L2 5, the last term in (83) will not lead

to secular terms, and Cp, o and DL o satisfy again (85)-

(86). For the case 2w; = L‘; >, Cr.0 and Dy ¢ have
to satisfy
dSrLz'U =-tLrc, 0 +(2L64ﬂs + “}fz(zL) Wzi“”) Dro
- ;{éf,)z sin(2w212),
dg;,o __ <2LV6"6:'[6 +3\2022i(2L) _ anzi((L)) Cro— ﬂL;y# Dro
+ZIZ§ 5 cos(Qanty). 87)

By introducing polar coordinates

CrLo(f2) = Rp 0(r2) cos(Pr 0(f2)),
Dy o(t2) = Rp o(r2) sin(¢r 0(22)),
system (87) becomes
dﬁfg‘) =L R, +2Lz L sin(pr,0 — 2w212).
doro _ _ < Vi s osz(L)>
dn 2L6 6 L272 4

tonomous system (88) becomes the following system:

dR L“ 4 .
7 == PL Ry +2L2,T2 sin(¥1,0),
dyrLo _ Ve 3VESIL) an?X(L)
dn 2L6716+ L2z2 4
H(L) cos(¥rL.0)
s SR 20y, (89)

Observe that system (89) is still a nonautonomous sys-
tem due to term involving X (L) as defined by (84). If
we assume that there is no initial energy in mode k for
all k # L, then we only have to consider Ry ¢ and
Y1 0. This will simplify the X (L) function to

812 V(;‘HZ(L)

312 4n? Vi H* (n)
L3878 RL 0 + Z ’

n8n8

X(L) =

and system (89) becomes an autonomus system and can
be rewritten in:

dRy o ﬁL 74

an = Rp o+ L3 3 sin(Yr, O)
dyro _ 3aL? 2 cos(¥,0)
an = (€ —2w) + alﬁn Ri o+ L3n3 Rro °
(90)
. A 3V25(L) SaV 4av
with € = _2L607'r6 - l?znz + Z
n odd

We will analyze the equilibria of system (90) and their
stability. To find the equilibria of (90), we have to solve
the following two equations:

4_4
BLT Ry, 1)
—R10((C—2w))

T sin(YL0) =
T cos(Yr0) =

+2LTRE ). 92)
To determine the stability of the equilibria we have to

look at the jacobian matrix J of the vector field (90)
around the solutions of (91)-(92), where J is given by

_ ﬁL4n4 cos(Y¥r.0)
L373
J 3al’n® p o cos(Wro) _ Sin(jlrﬂL,O) : 93)
23 L.0 L37T3R%0 L37T3RL,()

The eigenvalues X of J satisfy:

52 +(/3L47T4 + sin(m,m) A 4 BLIT sinwL0)
2

L37T3RL,0 2L37T3RL10

3aRp 0 cos(¥r,0)
23Lw

cos*(Yr.0) _
+WRL,O =0, (94)
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which can be further simplified by using (91) to

3aRL ocos(¥r.0)
23Lw

+C05 (wL 0) _ 0 (95)

L6n°R2

2 4.4 B2L378

By combining the equations (91) and (92), and by using
trigonometric identities, we obtain for the equilibria

32 2:4_456 3aL?7%(C—2w)) pd
FA LR, o+ =R}

2788
+ [(c — 2w)> +“T”] R o — s =0,

L671
and by putting R = R% - We finally obtain the cubic
equation

3_ 274_4p3 | 3aLl’72(C—2w)) p2
Fo LR+ SR

[(c dwp)? + 2L S]R— —0.  (96)

L6760 —

Of course we are only interested in the real and non-
negative solutions of (96). First, we will consider the
case when o = 0, that is, we will first consider the case
without nonlinear elastic forces.

4.3.1 The case without weakly nonlinear elastic
forces (« = 0)

For o = 0 and C = 2w, and B = 0, there are no
nontrivial Ry, ¢ for which equilibria exist for system
(90) (see Fig. 2c). This case corresponds to case 1.2
as studied in Sect. 3 for which w is up to O(e3) equal
to a % times a natural frequency of the actuated beam.
For« = 0 and C = 2wy and 8 > 0 a nontrivial
Ry o exists for which stable equilibria (RL.0, ¥r.0) of
system (90) occur with Ry o = L7 75 and ¥ o =
% +2nm,n € Z (see Fig. 2f). In this case, the structural
damping stabilizes the vibrations of the actuated beam
for which the actuation frequency w is O(¢3) close to a
% times a natural frequency of the actuated beam. For
o =0and B = 0 and 2wy, > C, or 2w < C, we
have as nontrivial equilibria for system (90): Ry, o =
m and Y1 0 =2nm,or Ry o = m
and ¥z, o0 = 7 + 2nm, respectively (and n € Z). These
two cases correspond to the nonresonant case 1.2 as
studied in Sect. 3. The phase portraits for these two
cases are given in Figs. 2a-b and 2d—e. For « = 0 and
2wy # C and B > 0 we have as nontrivial equilibria

i i 0): Rp o = g ’
or system (90): Rz o L33 /4H(C—200) 4 B2 Lo7° an

Yr.o = ¥* + 2nw (with n € Z), and where ¥* is a

@ Springer

solution of

4_4
sin(y*) = BL7

W) N/ HC—2a1)2 4B L8 8
COS(w*) - _ 2(C—2wy)

N HC=202)2+ L3}
_ 3o
2L (4(C—200) + B2 LB7) 2

It can be checked that these equilibria are asymptoti-
cally stable, and that the phase portraits are similar to
the one in Fig. 2f.

We can summarize this case « = 0 (when no elas-
tic forces are present) as follows. When damping B
is present, all solutions will be asymptotically sta-
ble. While when no damping is present, we can have
unbounded solutions when 2w, = C, or equivalently
when the actuation frequency  is up to O(e*) equal
to a % times a natural frequency of the actuated beam
(see also Eq. (51)).

The transitions of phase portraits when the nonlinear
elastic force and the structural damping are not present,
are shown in Figs. 2a to 2e as w; gets larger and larger.
In Figs. 2¢, wy = %C, the resonance frequency, and
so the solutions become unbounded. When damping is
present all solution will be bounded but not completely
damped out as in Figure 2 (f).

4.3.2 The case with weakly nonlinear elastic forces
(¢ >0)

Since o > 0, we can rewrite Eq. (96) by using the shift
R=R+ M , and we obtain the depressed cubic

R2gl272
form in R:
R + P2 [Ah 2L4 7 ( ﬂzLS 8*4(C 2w7) )
_ g(c 2w0)*  2MB2L2A%(C—2w)) 28 0
;=

3003070 363 P2 L0710 —

o7

Let the coefficient of R and the constant term of Eq.

(97) be p and ¢, respectively. Now, we will consider
the cases when 3,32L8718 = 4(C — 20)2)2, and when
3B2L878 £ 4(C —2w))?. Case 1: 382 L3878 = 4(C -
2w))?
For this case, we have two subcases to consider, i.e.
(C —2wn) = i%ﬁﬂL“n“. We also have a special
subcase, that is, when C = 2w, and = 0. In this last
special subcase, there are equilibria

3 2
(Re,0-VL,0) = <3L2\/ ai’iﬂ’” + Znn) nez,
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Fig. 2 The phase portrait of system (90) when o = 0, 8 = 0,
and for various w», except in Figure (f) where 8 > 0. Figure (a)
and (b) are the phase portraits when 2wy < C. When 2w, = C,
the phase portrait is shown at Figure (c). Here, we have the pure
resonance case, and so the solution will be unbounded. While

0 . N
0 0.02 0.04 0.06 008 0.1 012 0.14 0.16 0.18 02

RL,O

®

figure (d) and (e) are for 2w, > C. From Figure (a) to (e), we see
a transition of phase portraits as w> becomes larger and larger.
All solutions are bounded except when 2wy = C. When struc-
tural damping g is present, all solutions will be bounded as in
Figure (f)
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which are Lyapunov stable, see Fig. 3a. For the first
subcase, (C —2wp) = 3+/3BL47* (with C > 2w, and
B > 0), we have asymptotically stable equilibria with

3 224
o= b aapLinsy + B2 -2 g

and Y0 = ¥* + 2nw and 7 < ¥* < m, see
Figure 3(b). For the second subcase, (C — 2wp) =
—%«/gﬁL“n“ (with C < 2w, and B > 0), there will
also be asymptotically stable equilibria with Ry, o given
by

224
Ry o= %,/ﬁ\/\‘*/—(ﬁﬁﬁmnw +21e 102/381575.

and with similar phase portraits as in the first sub-
case.

Case 2: 382L878 £ 4(C — 2wy)?
When the discriminant of the cubic equation (97), D =
—(4p? + 27¢?), is equal to 0, we have as additional
condition on the parameters that

2BB2L10710(C — 2w0)* + 293 L4 74 (C — 20)3
+27ﬁ4L24n24(C _ 2w2)2
+2433aB L7 12(C = 209)
+24B0L30730 1 33 = 0. (98)

Satisfying the condition D = 0, we will further divide
this case into two subcases, that is, when 4(C — 2@2)2 —
3B%2L878 < 0,and when 4(C —2w»)?—3B8%L878 > 0.
For the first subcase, that is, when B is large, the dis-
criminant of the cubic equation is negative. This means
there will always be one equilibria of the system (97).
For the second subcase, if the discriminant is O and
(C = 2wp) > %ﬁﬁL“n“, that is, when § is small,
then there can be only one stable equilibrium with Rz, o
given by

R o — 27362 L1272 12(C—2a))+223%
L.0 =\ 324 L676[22(C—2w,)2—3B2L°7]"

If(C—-2wy) < ——fﬁL4n4 and less than —

then there are no nontrivial equilibria. While if (C —

25’;2—?‘2”,2 and —%ﬁﬂL“n“, then
there are at most three equilibria.

When the discriminant of the cubic equation (97)
is zero, we can identify at most three equilibria, that
is, two stable equilibria and one unstable saddle type
equilibrium. We can also determine when the system

has no nontrivial equilibria also.

25ﬂ2L17 129

2w») is between —

@ Springer

When the structural damping g is relatively large,
then all solutions will either be damped out or con-
verge to a nontrivial stable equilibrium. While when
the damping is relatively small, we have several cases
to consider. When wy < %C — ;llx/gﬂL“n“, there will
always be one nontrivial stable solution (see Fig. 4a
and b). As w; gets larger and larger, another unsta-
ble equilibrium appears (see Fig. 4c). This equilibrium
splits up into one stable point and one saddle point
(see Fig. 4d and e). As wy = 1C + %25/3232—1“2”12,
the saddle and the first equilibrium point coincide
and disappear (see Fig. 4g). This mechanism makes
sense by considering the cubic polynomial in Rin Eq
(97). For (C — 2a») >
three nontrivial equilibria, that is, two stable equilib-
ria and one unstable saddle type equilibrium. While if
(C—2wp) > —
ial equilibrium.

Physically, this means that when the nonlinear elas-
tic force is present and a relatively small damping is
present, then there will be at most two nontrivial stable
solutions. Here, the initial conditions will determine to
which stable solution the solution will converge. Next,
we will look at the interesting case when 8 = 0.

3
—MSL% we have at most

25/3%%’ there won’t be any nontriv-

4.3.3 Case B =0

When g = 0, system (90) will become

DL = L siny o), 09
dy, 3 L2 2 cos(¥1.,0)
a = (C—2m0) + 7R} o+ 55, o
. . vy 3V02S(L) Sav 4aVy
with € = T 20076 T T L7272 s+ Z n8m8
nodd

For system (99) we can also find a first integral. By
rewriting system (99) as

d‘//L,O =<(C 20)2)_’_30(L TI RL()

dRL
%)sﬁ(ﬁ
o)) = —1373(C = 2w)
M}ﬂ _%
dcssie(ﬁm cos[ng//f) 0 _ L37t3(C 2w9) — 3aL 7’ RL o

and by solving the last linear equation, we obtain as
first integral of system (99)

F(Rp 0, ¥1,0) =F(0) +Rp ocos(Vr 0)
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(a)

Fig. 3 The phase portraits of system (90) for « > 0 and for
various . Here, we see the change in stability of the nontrivial
equilibrium from Lyapunov stable to asymptotically stable when
damping g is changed from O to positive values. When the non-

L373(C—2w7) p2
+=—5—""RL o

3aL’7 R}
64 = = constant.

(100)

Using the Taylor expansion for this first integral in
a neighborhood of the equilibrium point (R*, ¥*) we
get

=FR*, ")
+[1373(C 202 + 27 (R*?] (Rpg —R*)?
—R* cos(Y™) (Y0 —¥™)>
—sin(Y*) (R0 —R*) (Y0 —y¥*) +HOT,
(101)

F(RL.0, ¥L,0)

where H OT stands for higher order terms. By using the
first integral (101) and Morse’s theorem it follows that
the equilibrium points are center points and/or saddle
points.

The phase portraits for the case 8 = 0O and o = 0
can be seen in Fig. 2, that correspond with 2w, = C
(Fig. 2¢), 2wy > C (Fig. 2d—e), and 2wy < C (Fig. 2a—
b). While the phase portraits when § = 0 and o > 0,
can be found in Fig. 5 and in Fig. 3a. Figure 3a is for
C = 2w;. For the case C # 2w;, there are three essen-
tially different phase portraits which correspond to neg-
ative, zero, and positive values of the discriminant of
the cubic Eq. (97). These three different phase portraits
are given in Fig. 5. Here we see that in the absence of

Lo
(b)

linear elastic force is present, all solutions will be stable (either
asymptotically stable when damping is present or else Lyapunov
stable when no damping is present)

the structural damping, the solutions are always Lya-
punov stable when the elastic force is present. In all of
these superharmonic cases, we see that there usually
exist two unstable saddle equilibria on the 7, g-axis,
that is, when Rz o = 0.

4.4 The subharmonic case (case wg = 2M 272 fora
fixed M € N)

In this subsection we will consider the subharmonic
case w = 2M?n? + O(e) (that is, wg = 2M%7?) for
a fixed M € N. By substituting vg o and v, j into the
O(¢?) Eq. (81), we obtain

0B, dB,
Lo :cos(k2n2t0)< 2UPm? Skl 4 L 4Ak0 2k 72 LEk0

on

+2VEAr1 + 6VES(k) Aro —BkST® B
+26k,01 Vo (Ax,0 sin(wi 71 +w2t2)
+By0 cos(w1t] +wntr))

ak2n4 Ar 8kzvg‘H2<k>
k8n8

+Z 2 (A2 ) +B2 ) +Z an’ V"H “”])

+sin(k2ﬂ2to)< AP B

2
+5 (A} +BLo)

Bk 0 +2k2 72 94ko

k4n4 Tin

+2VEBi1 +6VES(k)Bio +Bkom® Aro
+268k,m Vo (Ax.0 cos(wi 11 +ants)
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0.1 02 03 04 05 06

RL,O

(e)

Fig. 4 The phase portrait of system (90) when « > 0, for g rel-
atively small, and for various values of w;. As wy gets larger and
larger, a nontrivial equilibrium point occurs (Figure ¢)) which
for larger wy bifurcates in two nontrivial equilibria with differ-
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ent stability properties (Fig. d). In Fig. e-h, the first equilibrium
point and the saddle equilibrium coincide and disappear for larger
values of wy



On resonances in a weakly nonlinear microbeam 3177
6r 1 6F 1
55 1 5¢ 1
4r 1 4r 1
< e
Skl Y ] 5 8 ]
2t 1 2t 1
1t 1 1r 1
4
o ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘
6 61 62 63 64 65 66 67 68 69 7 75 76 77 78 79 8 81 82 83 84 85
R R
L,0 L,0
(® (h)
Fig. 4 continued
6 6 6 M
5 5 5
4 4 4
e < <
=3 =3 =3
2 2 2
1 1 1
0 0 0 (A
0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
F‘L,O
(@) (b) (c)

Fig. 5 The phase portrait of system (90) for § = 0 and o > 0.
Figure a, b, and ¢ are phase portraits for negative, zero, and posi-
tive values of the discriminant of the cubic Eq. (97), respectively.

—Byosin(wit1 +ant))

2.4 8k2 VI H (k) 2
— By, [ & %(A%,o +Bl§,0)

i
+Z (A2 +B2o) +Z i L (")])
+NST, - (102)
where
Sea = 0, fork#M,
’ 1, fork=M
and

. Ve
Byo(ti, 12) = Cyo(r2) sin (ﬁtl

Vi
— Dy 0(t2) cos th

Vi . v
Aro(t1, 12) = Cyo(t2) cos (ﬁtl)-l- Dyo(t2) sin (ﬁtl) ,

When the elastic force is present but the structural damping is
not present, we see that the nontrivial equilibria will always be
Lyapunov stable

To avoid secular terms in vy 2, it follows from (102)
that Ay 1 and By 1 have to satisfy

P 4+l B = — s Bro— a0 — SE0 B
- ﬁk;”A Ako+ #Bk,oX(k)
8k s (— Ak cos(11 +wat2)
+ By o sin(wi11 +wa12)),
agzk{l _%A“ = 2k6n6 Ak 0~ az%”' W”S(k)A k.0
ﬁk4 Byo— f{z Ag0X (k)

+5k,M m (Ak,O sin(w1 1]+ watr)
+ By o cos(wi 11+ wah)),

where X (k) is again given by (84). Combining these two equa-
tions, we obtain

A % % dDy 44
ol +k4n4Akl_k2 > COS (k2 1 27[1’ —Bk™ " Dy o
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wM,O
w IS o o
/k“f\

Fig. 6 The phase portrait of system (107) when ¢ = O,
B is relatively small, and for various values of w,. In Fig.
a, there are no nontrivial equilibria. When w, = D — JA

A/ B2 MBS

A= M*73

), a manifold of equilibria (the dot-

ted line in Fig. b) and the separatrix between the orbits (the
dashed line) occur. As wy gets larger and larger, the phase por-
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trait change from Fig. ¢ to d. Here we have unbounded solutions
due to the range of resonance frequencies. In Fig. e, that is, when
wy = D++/A wehave a similar phase portrait as in Fig. b. When
wy gets larger, we have similar phase portraits as in Fig. a with
reversed trajectories. All solutions are bounded except when w»
is in the range of the resonance frequency (that is, in Fig. ¢ and
d)
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_2( 17 3VES(k)

an?X (k)
2076 T k22 T 4 Cro

v Ve dc
+o zsm(ﬁtl)[z k0 | grtrtcy

vy 3VESK)  anX (k)
_2(2](6[;.[6 k%n2 - P! )Dk‘o:l

o1 Vodk.m Vi
+ 22 [Ck 0 sin ((0)1 +k27(_)[2 1 +watr

~Drgeos (o -+ ) o +onn)| (103)

For all modes k # M secular terms in A | and Bi | can
be avoided when Cy ¢ and Dy o satisfy (as follows from (103))
the same equations as given by (85). Hence, we will have the
same stable equilibria, and Cy o and Dy o will tend to zero for
1 — oQ.

Casek =M

Now, we will begin the discussion for the case when the excited
mode is k = M. Here, we have three subcases to consider
1. w; =0,

2V7
M272>

2V¢
3. w] #Oandwl ;é Ml

2. w] = —

When w; = 0, to avoid secular terms in Az 1 and By.1, Cym0
and Dy o have to satisfy

dCumyo _ M4 4 vy
dn Cuot M6n6
WESM)  anlx
1&2712 —74(’”) Dy .0, (104)
dDyo vt 3VES(M)
dn,  — 2M67'r6 + M272

2X(M
_an 4( )>CM,O— B

(105)

By combining the two equations in (104), and by introducing

RIZW 0= CJZW,0 + D12v1,0’ we obtain again equation (86), that is,
AR}
dty

= —BM*7*RY . (106)

Hence, we have the same stable equilibria, and Cjs,0 and Djs 0
tend to zero for #, — oo. For the subcase when w; # 0 and
W] # —%ﬁz, by eliminating the secular terms in (103), we
again end up with equation (106), and the same stable equilibria
for Cpr,0 and Dy o are obtained.

For the subcase w; = —
have to satisfy

dCuyo Mt Vi
= (ﬂ 57—+ ez cos(@ata) ) Cuo

vt 3VES(M
+( SREL/ LU

2v2 .
Mz—}‘;z, the functions Cpr,0 and Dy o

am?X (M)
2M6n M272 4

Vi .
- Mz?,z Sm(wﬂz))DM,O,

dDuyo _ Vo n 3VESIM)  ax’X(M)
di, 2M67t5 M272 4

Vi .
+ gy sin(@212)) Ci 0

Mzt 1%
- (ﬂ T s COS(wztz)) Cum.0-

By introducing polar coordinates

Cum.0(f2) = Rpp,0(22) cos(du,0(22)),
Dy o(t2) = Ry0(t2) sin(éu,0(t2)),

the system for Cys o and Dy o becomes:

dRyp Vi M7t
i = —(Mz?Tz cos2¢ur.0(t2) — wat2) + Y57 ) Ryy o,
démo _ Vo oo vy 3VES(M)
diy . = 2 SN2 0(12) —w212) — 565 —
arX (M)
oD,

By putting ¥a1.0(t2) = 2¢um.0(t2) — w22, an autonomous sys-
tem for Ry 0 and v o is obtained:

dRyo _ BM*7*
dn - ( p 7 RM,Os
dymo 2V, vy 6VES(M)
dn M202 sin(¥m,0)— (;16 - 18,27[2
2
XM
_’_Wf()_ ).

Assuming that no initial energy is present in all modes k #
M, we can simplify X (M), such that we obtain the following
autonomous system

dRu.0 Vi BM*r?
0 = = (5 cos(Wn0) + 2257 R,
dymo _ 3an? 142 p2 107
Y = (Dz—vwz)—i— - M’R}, (107)
+M27(;2 sin(Y¥p1,0),
where
6VZS(M) | 16aVy =\ Sa Vi
D=— Vo _ W% 0 Z 0
MO0 M272 M3x8 n8m8 *

n=1

The jacobian of the vector field (107) is given by
( (s cos(ano) + 22570 ) 1o sin(yn, 0))

3aM? 2Vo
%RM,O M2 cos(Yrm,0)

where the corresponding eigenvalues of the jacobian matrix
satisfy

4_4

22— (M‘;—‘;Tz cos(rp0)— EUT )A

2V
—cos(¥u,0) (MT;g cos(¥a,0)+ ﬁVoM2ﬂ2>
— 200 Ry o sin(Yur 0) = 0.
(108)
The first group of equilibria of system (107) satisfy Ry 0 =
2

0 and sin(Yp0) = %. For 0 < ¥y < 2w

. _ 2.2
and depending on the value of %, there can be at
most two equilibrium points on that part of the ¥y o-axis,
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M,0
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e
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R

0.9 1

M,0
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Fig. 7 The phase portrait of system (90) when o > 0, 8 is rel-
atively small, and for various values of w;. In Figure (a) there
are no nontrivial equilibria. As w, gets larger, one equilibrium
of the first group of equilibria occurs in Figure (b). In Figure (c)
and (d), there are 2 equilibria from the first group and one equi-

@ Springer

librium from the second group of equilibria. While in Figure (e),
we have two equilibria from both groups of equilibria. The first
group of equilibria disappear as w; gets larger as we see in Figure
(f). From Figure (a) to (f), we see a transition of phase portrait
as wy becomes larger and larger. Here, all solutions are bounded
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e 1N
Ell’—‘

UID—‘

Fig.8 The number of equilibria for the first group of equlllbrium
points which satisty system (107), where D+ = D + and

MZ 2
D—=D— }V?V;; The number of equilibria is given above the
wy-line. Here, we see the change in number of equilibria of the
first group of equilibria when w; is varied

2.2
see Figure 7b—e. When % = 0 (corresponding to

sin(Ypy,0 = 0)), that is, wy = D, there are two equilibria,
that is, one unstable equilibrium in (0, 0), and one equilib-

rium in (0, ), which is stable when § > 113(:/7?6

. _ 2_2
when 0 < 8 < A;XO Also if 0 < %’ < 1, that
is, D — # <w <D+ M2 2,buth # D, then there
exist two equilibria. One of them is unstable and the other one

is stable if 0 < f < 20 |1 — Moz “(D @)? (small) and

unstable if B > [;6‘/7(1’6 \/1 — ’Z:/Zz (D — w7)? (large). When

and unstable

=D=% 11;2 5, we have either an equilibrium in (0, 5) or in
(O, 37y which both have negative and zero eigenvalues. And,
finally, no equilibria if w, < D — 1;2‘/722 orwy; > D+ A,?zngz

(Fig. 7a and f). In Fig. 8 we present a diagram for the number
of equilibria of this first group of equilibria.
For the second group of equilibria, we have to satisfy

cos(Yu0) = — LT (109)
0= (D—wy)+ ¥IM R (1 2 sin(y o).
(110)
2Vo

From Eq. (109), it follows that there are no ¥ry,0 if B > 777 %
2V

(B large), one Yy 0 if B = 105 and two values for ¥0
if B < 2V° = (B small). If we combine (109) and (110), then
R0 has to satlsfy.

4 V0

MRt (111)

212 2
(D —an) + 2528 g2, ) =

Case a = 0 (no elastic forces)

If « is taken to be zero, then there are infinitely many equilibria

ifw, =D=%
here, that is when f = 0 and when B8 > 0. For the subcase
B = 0, based on the analysis as presented in section 3 of this
paper (see case 1.3), we summarize the results in Fig. 9. For
the special condition wp = D + ]V?ZV;;Z
solutions.

For the subcase 8 > 0, we have bounded solutions when

2Vo 2Vo 2V
wy =D —qgmsorwm > D+ o 2.WhenD— ez <

— BZM87m8. We will look at two subcases

we have unbounded

(D w))?

2V, 2
w <D+ ;rhand0 < B < V°6\/1 4V2

(small), the solutions will be unbounded, but become bounded

Bounded Not Bounded

D— D+

Bounded

w2

Fig.9 Diagram of the boundedness of solutions of system (107)

— 2Vo xt 2
when ¢ = 0, and g < 75 /1 — 4\/2 (D — w2)#, where

D+ =D+ A/?Z‘j{;l and D— =D — A/?ZV;;Z In the absence of the
nonlinear elastic force and relatively small damping, the solution
can become unbounded for a certain range of w»

A B C D E
D— D—-VA D+VA D+

Fig. 10 Diagram for the total number of equilibria of system
(107) when ¢ = 0 and B is relatively small, where D4+ = D +

,,;zv,(;z ,D—=D-— W’ and A = 113}*/?;4 — B>M8378. In domain
A, there are no equilibria of system (107). While when D— <
wy < D+, that is, in domain B, C, and D, the first group of
equilibria exists. The stable equilibrium of the second group of
equilibria exists when w, > D — /A, that is, in domain C, D,
and E. When wy > D + /A, that is, in the domain D and E,
an unstable saddle equilibrium exists. Unlike in the case when
a = 0, the solutions are always bounded in the domains B, C,
and D. Thus, when the nonlinear elastic force is present and the
structural damping is relatively small, the solution can become
unbounded for a certain range of w;. While if the damping is quite
large, all solutions will be bounded. The D— and D+ mark the
range when there are at most two equilibria from the first group.
To the right of D — /A the existence of a stable equilibrium
from the second group of equilibria is guaranteed, while to the
right of D + /A the existence of an unstable saddle from the
second group of equilibria is guaranteed

if B> Afﬁv;;é\/l - 4V2 2(D — w)? (large). For the spe-

cial case D — % < wy < D+ % and S equals
2Vo
MO76

bounded. The phase portrait for this special case, where there
are infinitely many equilibria, can be seen in the middle phase
portrait of Fig. 6b and e (the dotted line represents the manifold
of infinitely many equilibria). We present the summary of the
boundedness of solutions in Fig. 10.

Casea > 0

Simplifying (111), Ry o should satisfy

R0 = sy (02— D£4),
4v3
M4r#
non-negative Ry o if 8 < % and wr» > D + \/Z and one

Ry if B = 154% and wp > D + /A, While if g > 230

orwy < D++/A,no R0 can be found. By combining these
Ry .0 conditions and ¥ o conditions, we have two equilibria

when 8 < Ajﬁv b and wy > D 4 /A, where one is stable

where A = — BZMB78. In this case we will have two
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and the other is unstable (7(e) and (f)). We can also have one

equilibrium if 8 = A;Xgﬁ and wp > D 4 /A (one zero and

one negative eigenvalue) or a stable equilibrium point when
—VA <o <D+VAadp < 0% I p > 20

(large) or ws < D —+/A, then there are no equlllbrlum pomts.

Here, we will give a complete description on all the equilib-
ria when the structural damping is relatively small, that is,

B < Ajé/;(;é \/1 - 4V24 (D — w;)?. The first group of equilib-

thatis the domains B,

riaexistsifD—szj‘;2 <wp < D—I—M2 s
C, D in Fig. 9. The stable equilibrium from the second group
of equilibria appears when @, > D — A%‘TQ — B2MBx?8
(the domain C, D, and E in Fig. 9), while the unstable sad-

dle equilibrium of the second group appears when w; >

D+, 4V°4 B2MB78 (the domain D and E in Fig. 9).

When the structural damping is quite large, all solutions will

be stabilized regardless the existence of elastic forces. In the
absence of the elastic force and when the structural damping is
relatively small, we will have a range of resonance frequencies
WhenD—M22 M2 0,
resonance frequencies as in Case 1.3. Thus, when the elastic

which are the same

< w < D+

force is present, this constant D will serve as a correction to
the resonance frequency in the subharmonic Case 1.3. But it
will turn out that in this range of frequencies, the solution is
still bounded when the elastic force is present.

When the nonlinear elastic force is present, we can have
unbounded solutions if the following two requirements are met,
that is,

1. The first group of equilibria has two unstable saddles, and
the conditions are given by:

2Vo

2Vo
D—gmh <o <D+ 5k

and

2V _ Mt (D—w))?
0<B < 375.5,/1 o .
2. The second group of equilibria does not exist, and the
condition is given by

(@ B> ,;svﬁe,or
® 0<pB < -2 andw) <D —+A
Case 1 and 2(a) are impossible to occur.

We will discuss the possibility of the case 1 and 2(b). Because
D — wy > \/Z, then we have

Mﬁ

D —w, >0and (D — w2)2 +ﬁ2M8n8 —

4v2
0
T > 0.

While from the existence condition of the second group of
equilibria, we have

2 2
((D =) + 22 Ry )+ p2MP7° = il
This means
4v2
(D — ) + B> M°7® — 15t
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= —3aM*7*(D — w2)Ru o
_ (WRM 0) <0.

This also cannot happen. Thus, we do not have unbounded
solutions when the nonlinear elastic force is present.

So far, in the analysis we assumed that only energy was
present in mode k = M. Now we will consider the case when
initial energy is present in mode k = M and in mode k = 2M.
The interaction between two modes, that is,

(k=M and k =2M)
We will assumezthat wo = 2M?*7? for some fixed M € N,

1v212 >. So, we actually assume that the actuation
frequency is O(e?) close to a subharmonic frequency of the
beam. From (103)-(107) it follows that Rys.0, R2m.0, Ym0,

and Y 0 have to satisty

and w] =

dRy 0 V Mt
an (Mz(;z cos(Ym,0)+ 8 5 Rum 0,
dRaym 0 4_4
an . = —SBM " Ry 0.
dyumo Wy Vo 6VES(M) | an’X(M)
di,  — M2x2 sin(¥u,0) — MO8~ T MZAZ + 0] — w2,
d¢omo Ve n 3VESCM)  am’X(2M)
dty - 27M6 6 2M272 4 .

(112)

Using the same arguments as before, it follows directly
that the Rojy 0 equation can be solved, that is, Ropo =
Roe*SﬂMé‘”%, where Ry is an initial value for Ryps 0, and
by simplifying (112) further, we obtain:

dRpy 0 Vi M4
dn = (Mz(;,z cos(m,0)+ : 7 )RM.O’
d¥m,o

2 .
dn = (D =)+ sz,‘;z sin(¥a1,0) (113)
+%aM2712R%4 ot othﬂzR(%ef16/3/""4”4’2

Here, the phase portraits (see Fig. 11) are qualitatively simi-
lar to the ones when only the excited mode k = M is present. If
we look carefully, system (113) is similar to system (107) with
one additional term a M 27?2 RSe* 16pM e, , which is decreas-
ing exponentially to zero.

5 Conclusions and remarks

In this paper, the oscillations of a simply supported microbeam
which is actuated by a DC and AC electric load have been stud-
ied. In the first part of the paper, we looked at the influence
of the electrostatic force without damping and nonlinear elas-
tic force. Here we found accurate approximations of the exact
solution, including the solution to the first super- and subhar-
monic resonance cases on time-scales of order 1/¢ for various
frequencies of the electrostatic force. We also found accurate
approximations of the natural frequencies and the super- and
subharmonic resonance frequencies of the actuated microbeam
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Fig. 11 The phase portrait of system (113) when o > 0, § is relatively small, and for various values of w,. These phase portraits are
given for the same parameter values as in Figure 7. Figure 11a to ¢ are qualitatively the same phase portraits, unlike the ones in Fig. 7a
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up to order £3. Tt is interesting to see that the subharmonic res-
onance frequency occurs for values in a certain interval (com-
pared to a single value which we usually encounter for reso-
nance frequencies).

In the second part of the paper, we considered similar models
including viscous damping of order ¢ and models including
structural damping and nonlinear elastic forces of order £
Two cases have been considered in detail. In the first case, vis-
cous damping is present but no elastic forces are assumed to
be present. We saw that, although the frequency of the electro-
static force is set order &2 close to the eigenfrequency of the
actuated microbeam, the order ¢ damping already stabilizes
the solution. The second case to be considered was when the
viscous damping is changed to a relatively smaller structural
damping with additional elastic forces. We studied two spe-
cial subcases, the superharmonic and subharmonic cases. For
the superharmonic and subharmonic cases, we found that the
solutions are always bounded if damping is quite large. In the
superharmonic case, when the nonlinear elastic force and the
damping are not present, we can have unbounded solutions for
certain values of wy, which coincide with the resonance fre-
quencies. For all other cases, the solution is always bounded.
For the subharmonic case, we found that when the nonlinear
elastic force is not present and a relatively small damping is
present, we can have unbounded solutions for certain frequen-
cies as in the Case 1.3. When the nonlinear elastic force is
present, all solutions are bounded also.

The analysis in this paper shows that for this actuated beam
problem with simply supported end conditions, truncation is
allowed. But, one still has to consider the sub- and superhar-
monic case to understand fully that this is allowed.

For future work, different assumptions on how small or
how large the model parameters are, will lead to different mod-
els. Moreover, other boundary conditions can be applied and
a tensile axial force can be included in the model. Extending
the model to two-dimensional cases (for instance, rectangu-
lar or circular domains) are also other options to proceed, and
to apply the presented approach given in this paper. Those
changes will surely add more complexity to the model analy-
sis.
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