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Abstract

Bipedal running gaits may be self-stable if they rely on the intrinsic system dynamics to atten-

uate deviations. This use of passive dynamics for gait stability has been observed in biological

running and applied for running robotics, supported with the results of numerical simulations.

It is an important aspect of the development of fast and agile legged robotic locomotion over

complex terrain. One part of running stability, trunk stabilization, can be described using a vir-

tual pendulum model. We believe such a metacentric model may be applied in robotic design

to achieve passive stabilization of body pitch for fast bipedal running.

In this study, we test metacentric models for self-stabilization of body pitch in bipedal run-

ning and evaluate the effects of running speed, design parameter variations, and control strate-

gies. We extract data from experiments with the Planar Elliptical Runner and compare these

with a planar spring-loaded inverted pendulum model with a trunk (TSLIP).

We find passive self-stable gaits in the TSLIP model with the centre of mass below the hip.

These gaits demonstrate robustness to disturbances and do not require inertial measurements

or high-gain feedback control. At high velocities, foot placement and choice of leg stiffness

become less critical for gait stability. Data from experiments with the Planar Elliptical Runner

support the findings from the model behaviour as it runs reliably, with passively stable body

pitch, and without feedback control.

A metacentric model, such as the virtual pendulum model, may explain the observed pas-

sive body-pitch stabilization. Evidence from the model ground reaction forces suggests that

pitch stability for the Planar Elliptical Runner can also be explained with a metacentric model.

Stability in height and velocity can be explained with the compliant leg behaviour in stance.

Constructing a metacentre through mechanical design is beneficial to intrinsic body-pitch

stability and subsequently facilitates full gait self-stability in fast running robotics. Implicit

feedback allows off-loading of high-gain feedback control onto the system mechanical design,

thus contributing to developments for fast legged locomotion over rough terrain.
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1
Introduction

Legged locomotion has a high potential for fast and agile movement over uneven terrain. How-

ever, fast and efficient running robots have been elusive, in part because of hardware limita-

tions. We believe that tuned intrinsic dynamics can facilitate fast running through mechanical

design and therefore seek to explore what makes bipedal running stable and robust.

1.1. Background
Intermittent contact and the ability to deal with complex terrain allows humans, animals, and

robots with legs to go where wheeled access is hard (Palmer et al., 2014). Moving fast on legs

requires running, which is a natural progression from a walking gait as the required speed in-

creases, marked by the gait featuring a stance and a flight phase (McGeer, 1990).

During running, we can discern between high-level control for path planning and con-

scious obstable negotiation and low-level control for gait generation and unplanned pertur-

bation handling. In this work, we characterize the low-level gait behaviour with measures of

robustness and stability, where robustness is defined as the ability of the running system to

not fall in response to large disturbances and stability is defined as the limit-cycle behaviour to

small perturbations in the system state.

Running gaits are global limit cycles which are a function of control patterns, system dy-

namics, and the environment (Taga et al., 1991). These are considered self-stabilizing if they

rely on intrinsic system dynamics for attenuating deviations from the periodic orbit without

directly measuring these errors. Open-loop control signals may be applied, but self-stability is

primarily an emergent effect from mechanical parameters (Hackert et al., 2006). Passive sys-

tem dynamics with hip and leg compliance form a morphological controller through interac-

tion with the environment. This passive generation of low-level gait dynamics provides a basis

for simplification of high-level actuated control (Owaki et al., 2011). Mechanical intelligence

embedded in the robot morphology leaves computational effort for global planning and spe-

cial manoeuvres (Mombaur, 2009; Cotton et al., 2012), however, relying on passive dynamics

for running efficiency may limit the speed and power with which a robot can respond to dis-

turbances if that is not considered in the mechanical design (Ahmadi and Buehler, 2006).

An example of self-stable gait generation is found in the passive-dynamic runners devel-

oped by McGeer (1990) and Owaki et al. (2011), that are powered only by gravity along a down-
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6 1. Introduction

ward slope. The interaction of their mechanical design and dynamics with the environment

creates an implicit feedback loop, requiring no explicit control. However, their efficiency is

offset by the limited set of initial conditions that result in stable running, leading to a lack of ro-

bustness to disturbances. Robots such as the single-legged hoppers described by Raibert (1986)

or Ahmadi and Buehler (2006) show highly dynamical gaits based on passive dynamics using

pneumatic actuation.

The use of passive dynamics for running gaits is also present in biological running. Run-

ning birds may use intrinsic dynamics for stability to manage neuromuscular delays at state

transitions (Blum et al., 2014) and humans and birds can adapt leg stiffness for negotiation of

unobserved rough terrain (Andrada et al., 2013; Birn-Jeffery et al., 2014).

The use of self-stable, passive gait generation has inspired a number of fast running robots.

The IHMC FastRunner project achieves high speeds in simulation by applying self-stability and

implicit feedback through mechanical design to attain fast, efficient, and robust running (Cot-

ton et al., 2012). The KAIST Raptor demonstrates fast planar bipedal running up to 12.8 m s−1

on a treadmill with a tail for pitch stabilization. It has a leg design similar to Kim et al. (2014),

using linkages and elastic elements to drive the gait pattern. The IHMC Planar Elliptical Run-

ner robot experimentally realizes fast running in the sagittal plane without explicit sensing,

controlled only by motor voltage set by a human operator.

Numerical methods may be used to find the control inputs and mechanical parameters

required for open-loop controlled, self-stabilizing bipedal running in both a simple bipedal

model with telescoping legs (Mombaur et al., 2005) and for a planar humanoid model (Mom-

baur, 2009). These do not necessarily improve understanding of the design for passive gait

generation.

A simpler model may provide more insight into design for self-stable gaits. One often-used

model is the standard spring-mass model (Blickhan, 1989) which represents a spring-loaded

inverted pendulum (SLIP). It has been shown to have self-stable limit cycles, requiring no feed-

back control if started from suitable initial conditions (Seyfarth et al., 2002; Ghigliazza et al.,

2003). It is frequently used to model the dynamics of the centre of mass for biological running

(Geyer et al., 2006) and it provides a basis for simulation studies investigating the fundamen-

tal effects of model parameters such as non-linear leg stiffness (Karssen and Wisse, 2011) or

swing-leg retraction in flight (Blum et al., 2011, 2014; Karssen et al., 2015).

Additionally, the SLIP model can be applied for robotic control and design. The self-stable

behaviour of the SLIP model is largely conserved as it is extended to a two-legged model (Peuker

et al., 2012). It has also facilitated experimental bipedal running robots. For example, ATRIAS

was mechanically designed to represent spring-mass model dynamics (Hubicki et al., 2016),

whereas robots such as RABBIT (Morris et al., 2006) and MABEL (Grizzle et al., 2009) have their

dynamics anchored to spring-mass models through Hybrid Zero Dynamics control (Poulakakis

and Grizzle, 2009).

SLIP self-stability covers height and velocity stabilization but for stable running according

to the three-part control for running robotics (Raibert, 1986), body pitch needs to be addition-

ally stabilized.

Metacentric stability models may explain passive pitch stabilization. The virtual pendu-

lum model of pitch stability suggests the ground reaction forces may form a metacentre from

which the centre of mass is suspended. The body pitch would then naturally stabilize as would

a hanging pendulum (Maus et al., 2008, 2010), illustrated in Figure 1.1 (a). For this model to
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be valid, the ground reaction forces in body coordinates should remain mostly unchanged in

response to pitch disturbance, so that the metacentre is maintained. Otherwise, the ground

reaction reaction forces may either not correct the disturbance, or move to generate an over-

correcting torque.

A metacentric buoyancy model compares pitch stability in running to a ship in water as

illustrated in Figure 1.1 (c). The centre of buoyancy of the vessel shifts more than the centre of

mass as the vessel rolls. This results in a restoring torque that stabilizes the vessel in its upright

position. Its behaviour is similar to that of the virtual pendulum model. Similarly, as described

by Ringrose (1997) explaining self-stability, a wheel with an off-centre mass, shown in Figure 1.1

(b), will stabilize with the centre of mass in the downward position because the ground reaction

forces provide a restoring torque.

The SLIP model may be expanded with a trunk to capture the problem of body-pitch stabi-

lization. Such a model is used by Sharbafi et al. (2013) to demonstrate that a passive hip-spring

configuration can stabilize pitch similar to a virtual-pivot-point (VPP) controller. A similar

model was used by van Oijen et al. (2013) to show that having a centre of mass on the hip is

not optimal for the maximum one- or two-step controllable disturbance despite the success of

the traditional SLIP model. This suggests the addition of a trunk may be beneficial for running

robustness.

This paper aims to explain what makes the Planar Elliptical Runner self-stable and robust.

To that end, it features a simulation study with a planar spring-loaded inverted pendulum

model with a trunk (TSLIP) and experimental measurements of the running robot. The use of

metacentric stability principles for trunk self-stabilization is investigated, as well as mechanical

properties for stable and robust fast bipedal running.

1.2. Research Questions
The similarity between the Planar Elliptical Runner robot and the TSLIP model leads us to ex-

pect that the model results may provide explanations for the open-loop stable running be-

haviour on the robot.

We hypothesize that having the centre of mass offset below a physical hip point makes

running inherently more stable and robust. This is expected to stabilize pitch by forming a

metacentre similar to a VPP controller, illustrated in Figure 1.1. Running with control without

explicit inertial reference should then be possible. On the basis of stable pitch, height and ve-

locity can be additionally stabilized without damping. We expect the choice of touch-down

angle and leg stiffness to become less critical at higher running speeds. Adding damping to the

leg or the hip will likely improve stability and robustness.

1.3. Structure
Section 2 introduces the TSLIP model for bipedal running. This model is used for the simula-

tion study as described in Section 3, for which results are summarized in Section 4.

The design of the Planar Elliptical Runner and the experimental methods are provided in

Section 5, with the results presented in Section 6.

The results of the simulation study and the experimental study are discussed in Section 7,

followed by the conclusions in Section 8.
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(a)

Fs
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(b)
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Figure 1.1: Illustration of the metacentric model for pitch stability. All four configurations generate a restoring

torque about the centre of mass when a disturbance in pitch angle is applied. (a) shows the pitch response for

a simple hanging pendulum, with a supporting force Fs and gravitational force Fg. (b) illustrates how a wheel

with an offset centre of mass has similar behaviour through the normal ground reaction force Fn. (c) shows how a

floating ship forms a virtual metacentre through the movement of with the buoyancy force Fb, which is applied at

the centre of buoyancy. (d) shows the approximate pitch response of the TSLIP model, with the resultant ground

reaction impulse I . This ground impulse remains directed approximately towards the hip, thereby providing the

required restoring torque for pitch stability. A detailed model response is provided in Figure 4.2 for the TSLIP model

with local velocity control and in Figure 6.2 for the TSLIP model tuned to the measurements of the Planar Elliptical

Runner.



2
Description of the Running Model

2.1. Model Definition
The planar spring-loaded inverted pendulum with a trunk (TSLIP) is used to model running

in the sagittal plane. It has a massless leg and foot and a linear spring-damper in the leg. The

addition of a trunk allows analysis of pitch dynamics. The model definition is illustrated in

Figure 2.1 (a).

The forces in the model are illustrated in the free-body diagram in Figure 2.1 (b). The hip

torque τ is determined by a control strategy as described in Section 2.4. The compressive leg

force Fl is determined with a linear stiffness k and a linear damping coefficient cl,

Fl = k(l0 − l )− cl l̇ , (2.1)

where l0 is the resting leg length, l is the leg length, and l̇ is the leg velocity.

2.2. Equations of Motion
In stance phase, the foot is fixed and the entire system can be described with the minimal co-

ordinate vector q ,

q =
[

l β φ
]T

. (2.2)

The equations of motion can be solved for the generalized accelerations q̈ in stance,

Mq̈ =Q −C , (2.3)

where M is the mass matrix in minimal coordinates,

M = (2.4) m 0 −mr cos(β+φ)

0 ml 2 mr l sin(β+φ)

−mr cos(β+φ) mr l sin(β+φ) J +mr 2

 ,

the vector Q contains the forces in minimal coordinates,

Q =

−mg sin(β)+k(l0 − l )− cl l̇

τ−mg l cos(β)

τ−mg r sin(φ)

 ,

9
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τ
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Fg
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Figure 2.1: (a) Definition of the planar spring-mass model with a trunk (TSLIP) in stance phase. The body has mass

m and rotational inertia J about the centre of mass. Its centre of mass is offset by a distance r from the hip joint.

The Cartesian position of the centre of mass relative to the origin is given by its coordinates (xm,ym). The leg has a

linear spring with stiffness k and resting length l0, and damper with damping cl. The leg and foot are massless. The

foot is in contact with the ground at a height h. (b) The free-body diagram indicates the relevant force and torque

definitions for the TSLIP model in stance. The vertical and horizontal ground reaction forces, Fy and Fx, apply at the

foot. The compressive leg force Fl acts along the direction of the leg, Ft acts perpendicular to the leg at the hip. The

extension torque τ is applied at the hip between the leg and the body. The force from gravitational acceleration Fg

applies at the centre of mass. (c) Definition of the TSLIP model during the flight phase. The coordinate definitions

are the same as during the stance phase. The only applied force is from the gravitational acceleration. The leg is

retracted with a constant angular velocity ωr with respect to the body.

and C is the vector with convective accelerations transformed to minimal coordinates,

C =

 mr φ̇2 sin(β+φ)−ml β̇2

mr l φ̇2 cos(β+φ)+2ml β̇l̇

mr l β̇2 cos(β+φ)+2mr β̇l̇ sin(β+φ)

 .

The full derivation of the equations of motion is provided in Appendix A.

The ground reaction forces follow from the balance of forces and moments on the leg,

Fx =−Fl cos(β)+ (τ/l )sin(β) , (2.5)

Fy = Fl sin(β)+ (τ/l )cos(β) , (2.6)

where Fx and Fy are the x and y components of the ground reaction force.

The flight phase is a purely ballistic motion illustrated in Figure 2.1 (c) which, in the absence

of drag and applied forces, reduces the equations of motion to

mÿm =−mg , (2.7)

where ÿm is the vertical acceleration of the centre of mass. All the other acceleration values

equal zero.

2.3. Events

2.3.1. Stride Definition

The start of a stride occurs immediately following a touch-down. A succesful stride then has

lift-off followed by another touch-down. The stride is considered unsuccessful if the model

falls.
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2.3.2. Lift-Off

The state transition from stance to flight occurs when the vertical ground reaction force calcu-

lated using Equation (2.6) equals zero,

Fy = 0. (2.8)

Upon lift-off the leg is reset to a reference hip angle αr and reference angular velocity α̇=−ωr,

both with respect to local trunk coordinates. The reference angle is set such that for the periodic

gait, touch-down occurs with the nominal touch-down angle β0.

2.3.3. Touch-Down

The transition from flight to stance occurs when the foot is at ground height, h,

ym + r cos(φ)− l sin(β) = h . (2.9)

Impact of the foot is assumed to be perfectly inelastic and the foot is assumed not to slip. The

inclusion of impact equations is not necessary because the leg and foot are massless.

2.3.4. Fall Detection

The model is assumed to fall when the centre of mass moves in the negative x direction,

ẋm < 0, (2.10)

or the hip point crosses the height of the ground reference,

ym + r cos(φ) ≤ h . (2.11)

The centre of mass reaching ground level (ym = h) is deliberately not chosen to cause a fall to

allow us to evaluate the effects of the mass offset approaching the resting leg length.

2.4. Stance-Phase Control
We consider four stance-phase control strategies, the first of which is passive running,

τ= 0. (2.12)

The second stance-phase controller is a global proportional-derivative (PD) controller to

represent a conventional control approach by controlling body pitch based on inertial mea-

surements,

τ= Kp(φr −φ)+Kd(φ̇r − φ̇) , (2.13)

where φr and φ̇r are the reference body pitch angle and angular velocity and Kp ≥ 0 and Kd ≥ 0

are the PD gains.

The third controller provides a simple model of an electrical motor driving the hip with a

constant reference voltage. The body-pitch stability is left to passive dynamics and the con-

troller is applied solely to the local angular velocity at the hip,

τ= Kd(α̇r − α̇) , (2.14)

where α̇r is the reference hip angular velocity and Kd ≥ 0 is the derivative gain. This becomes a

controller for global velocity assuming that pitch is also stabilized due to the predictable inter-

action between the leg and the ground in stance (Neville et al., 2006).
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The fourth controller is a constant driving torque τc, which is used to evaluate the addition

of damping in the leg,

τ= τc , (2.15)

or with added damping at the hip,

τ= τc − chα̇ , (2.16)

with hip damping constant ch. The local velocity controller is equivalent to a constant torque

with hip damping where τc = Kdα̇r and ch = Kd.

If no damping is applied, the model with a constant driving torque reduces to the passive

running model as described in Equation (2.12) because conservation of energy then requires

the torque to be zero for the periodic gait.

2.5. Swing-Leg Retraction in Flight
Applying an angular retraction rate to the leg in the flight phase, starting from the apex of the

centre of mass trajectory, has been shown to benefit stability in the SLIP model (Seyfarth, 2003).

A swing-leg retraction strategy is applied to the TSLIP model to evaluate the possible contribu-

tions to stability and robustness. Measurement of the apex event may not be simple in experi-

mental running (Karssen et al., 2015), so the swing-leg retraction is started with the instant leg

reset upon lift-off.

The swing-leg retraction is locally defined and starts from lift-off at the reset angle αr with

a constant retraction rate ωr,

α(t ) =αr −ωr(t − tLO) , (2.17)

where tLO is the time of the last lift-off.

The swing-leg retraction rate can be normalized to ω̄r by centre of mass velocity v0 and

resting leg length l0, such that the foot velocity is zero with respect to the ground for ω̄r = 1,

ω̄r = ωrl0

v0
. (2.18)

2.6. Base Parameter Choice
The simulation study is based on the TSLIP configuration in Table 2.1. The default configura-

tion is the passive model. The other control strategies are applied as required for testing the

hypotheses.

2.7. Numerical Integration
The equations of motion are numerically integrated with a Dormand-Prince 5(4) embedded

Runge-Kutta integrator (Dormand and Prince, 1980) in Java, as implemented in Apache Com-

mons Math 3.6. Absolute and relative tolerance on the integrated state are set to 1.0×10−8 in

dimensionless units as per Table 3.1. The touch-down and lift-off events are implemented as

switching conditions.

2.8. Finding Stable Limit Cycles
Periodic limit cycles are found by numerical optimization. A Covariant Matrix Adaptation Evo-

lution Strategy (CMAES) (Hansen et al., 2009) is applied to minimize the cost function, imple-
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Table 2.1: TSLIP model parameters for analysis. Parameters marked “opt.” are free in the optimization.

Parameter Value Unit

Passive

Initial velocity v0 5.0 g1/2 L1/2

Inertia J 0.1 M L2

Mass m 1.0 M

Mass offset from hip r 0.3 L

Gravitational acceleration g 1.0 g

Leg stiffness k 25.0 M g L−1

Touch-down angle β0 1.05 rad

Swing-leg retraction rate ωr 1.0 rad g1/2 L−1/2

Global PD controller

Proportional gain Kp 5.0 M g L rad−1

Derivative gain Kd 0.5 M g1/2 L3/2 rad−1

Reference pitch angle φr 0.0 rad

Reference pitch angular velocity φ̇r 0.0 rad g1/2 L−1/2

Local velocity controller

Derivative gain Kd 0.5 M g1/2 L3/2 rad−1

Reference hip angular velocity α̇r opt. rad g1/2 L−1/2

Constant driving torque

Leg damping coefficient cl 0.5 M g1/2 L−1/2

Torque constant τc opt. M g L
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mented with the Apache Commons Math 3.6 library in Java. This is a stochastic method that

does not require gradient information.

We combine the complete system configuration, x , and velocities, ẋ , into the state vector

z . The horizontal position xm is not periodic and therefore the first element is removed from

the state vector. The cost function C1(z) for finding a fixed point takes the sum of squared

differences over one step,

z =
[

x

ẋ

]
, (2.19)

C1(z) = (zn − zn+1)T(zn − zn+1) . (2.20)

The initial state zn is set to always start at the beginning of the stance phase with the foot on

the ground. The state after one step zn+1 is the result of numerically integrating a full step and

taking the system state immediately after touch-down.

If the value of the first cost function, C1(z), is smaller than a threshold ε = 1×10−4, the

optimization switches to the second cost function C2(q∗), which takes the state at the fixed

point and returns the square of the largest eigenvalue that has magnitude not equal to one,

C2(q∗) = max |λi |2, |λi | 6= 1, i ∈ [0,2] (2.21)

The first cost function is offset by a constant value of 25, such that it is always larger than the

second cost function for the largest eigenvalue smaller than 5.

The complete optimization problem is to minimize the combined cost function C (a, p),

which takes the vector with free initial conditions a and vector with free configuration param-

eters p , both subject to lower and upper bounds per variable,

min
a,p

C (a, p)

C1(z)+25 if C1(z) > ε ,

C2(q∗) otherwise,
(2.22)

s.t. a l ≤ a ≤ au , (2.23)

p l ≤ p ≤ pu . (2.24)

The free initial conditions are the angle between the velocity vector and the horizontal axis δ,

the body pitch φ, body pitch rate φ̇, and the leg reset angle αr.



3
Methods for Simulation Study

3.1. Outcome Measures

3.1.1. Dimensional Analysis

All units are normalized by body mass M , gravitational acceleration g , and resting leg length

L (McMahon and Bonner, 1983; McMahon and Cheng, 1990). The resulting scaling factors are

listed in Table 3.1. The normalized parameters are calculated by division with the scaling factor,

normalized quantity = quantity in SI units

scaling factor
. (3.1)

Table 3.1: Dimensional analysis and scaling factors.

Quantity (SI unit) Dimensions Scaling factor

Length (m) [L] L

Time (s) [T] g−1/2 L1/2

Frequency (Hz) [T−1] g1/2 L−1/2

Position (m) [L] L

Speed (m s−1) [L T−1] g1/2 L1/2

Acceleration (m s−2) [L T−2] g

Mass (kg) [M] M

Inertia (kg m2) [M L2] M L2

Force (N) [F] M g

Torque (N m) [F L] M g L

Impulse (N s) [F T] M g1/2 L1/2

Stiffness (N m−1) [F L−1] M g L−1

Damping (N s m−1) [F L−1 T] M g1/2 L−1/2

Energy (J) [F L] M g L

3.1.2. Stability of the Periodic Gait

In this work we define stability as the response of the periodic limit cycle of the gait to small

perturbations, as was applied for passive running by McGeer (1990). The orbital stability of

15
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the limit cycle is evaluated using the Floquet multipliers, which are the eigenvalues of the Ja-

cobian of the linearized stride-to-stride map (Parker and Chua, 1989). The calculation of the

eigenvalues is described in Appendix B.

We define q n as the state vector at the Poincaré section of step n, with the Poincaré section

taken just after touch-down. The gait has a periodic limit cycle, or fixed point, when the state

at the Poincaré section does not change from step to step,

q n = q n+1 = q∗ , (3.2)

where q∗ is the system state at the fixed point. We consider only gaits that are single-step

periodic, even though multi-step stable gaits may exist where q n = q n+i for i > 1.

The limit cycle is asymptotically stable if the magnitudes of all eigenvalues are smaller than

one. Eigenvalue magnitudes equal to one indicate neutral stability; these are present if the

dynamic system has a conservative nature. Neutral stability is considered sufficient for a stable

running gait in the domain of this study. The limit cycle is considered unstable if the magnitude

of any eigenvalue is larger than one.

3.1.3. Robustness to Large Disturbances

We define robustness as the resistance to falling. It is measured by taking the largest distur-

bance from the periodic limit cycle which does not result in a fall within 25 steps. The robust-

ness limits are found with a binary search method over the following variables:

1. Step-down (∆h),

2. Horizontal velocity (∆ẋm),

3. Pitch rate (∆φ̇).

Robustness is only computed for limit cycles that are at least neutrally stable.

3.2. Mechanism for Pitch Stabilization
Metacentric stability principles such as the virtual pivot point (Maus et al., 2008, 2010) depend

on location and the direction of the ground reaction forces. To investigate whether metacentric

stabilization may explain pitch stability, the ground reaction force vector F is integrated for

each step to a single ground reaction impulse I ,

I =
∫ t1

t0

F dt , (3.3)

where t0 is the touch-down time and t1 is the lift-off time. The ground reaction impulse is

linearized with respect to a pitch disturbance from the limit cycle,

I ≈ I (q∗)+ ∂I

∂q
∆q , (3.4)

where q∗ is the state at the fixed point and ∆q is the disturbance from the fixed point. The

point of application of the impulse (xp, yp) is determined relative to centre of mass by

xp =
∫

xFydt∫
Fydt

, yp =
∫

yFxdt∫
Fxdt

. (3.5)
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The response of the resultant ground impulse is evaluated over varying pitch disturbance

and linearized about the neutral point.

The observed impulse and ground reaction forces are plotted to enable the comparison

to the hanging pendulum for stability. We compare the passive TSLIP response to the global

PD-controlled response to see whether the virtual pendulum concept is still applicable.

3.3. Undamped Height and Velocity Stability
The passive TSLIP model is a conservative system. Following a change in ground height∆h, the

change in potential energy ∆Ep leads to a change in kinetic energy ∆Ek. Assume that the apex

height in flight converges to the same steady-state height above the ground and the rotational

element in kinetic energy is negligibly small. All potential energy is then converted to kinetic

energy,

∆Ep = mg∆h =−∆Ek , (3.6)

∆Ek =
1

2
m

(
v2
∞− v2

0

)=−mg∆h , (3.7)

where v0 is the initial centre-of-mass velocity at touch-down and v∞ is the final velocity of the

centre of mass at touch-down when the system has reached a steady state. The theoretical total

change in velocity ∆v is then

∆v = v∞− v0 =−v0 +
√

v2
0 −2∆h . (3.8)

We subject the passive TSLIP model to a 0.2 L step-down change in ground height. The

height and velocity of the centre of mass are observed to establish convergence to a steady

state.

For the passive model and the local-velocity-controlled model, we record the final velocity

following a step change in ground-height disturbance and compare these to the theoretical

expected values.

We expect the angle of the velocity vector at touch-down to to contribute to the stabilization

of height and velocity by influencing the stance-phase behaviour. We test for the stabilizing

mechanism by setting the model at the start of a stride and adjusting the angle of the velocity

vector from the periodic gait.

3.4. Running Velocity

3.4.1. Velocity Variation

For an evaluation of the impact of velocity on stability and robustness, we take the passive

TSLIP model with the configuration in Table 2.1. The initial velocity is then varied in the range

v0 ∈ [1,10]g1/2 L1/2.

3.4.2. Parameter Space

Self-stable gaits for the SLIP model depend on choosing a suitable combination of leg stiffness

and touch-down angle (Seyfarth et al., 2002). We hypothesize that increasing running velocity

reduces the sensitivity to parameter changes for self-stable gaits, specifically considering leg

stiffness and touch-down angle. A grid search for stable gaits is performed over varying leg

stiffness and touch-down angle, for a normalized velocity v0 ∈ [2,3,4,5]g1/2 L1/2.
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3.4.3. Stride Properties

At low speeds, the stance duration ts is dominated by the bounce duration tb of the spring-mass

system, which is half of a full period of oscillation,

tb =π
√

m

k
. (3.9)

This does not apply at higher speeds where the stance phase becomes determined by velocity

and leg touch-down angle, instead of stiffness and bounce duration,

ts ≈ 2l0(π/2−β0)

v0
. (3.10)

The flight duration tf is related to velocity v0 and the angle δ between the velocity vector and

the horizontal axis,

tf =
2ẏm

g
≈ 2v0δ

g
. (3.11)

The ratio between spring-mass bounce duration and velocity-based swing duration, which

we refer to as the fast-running index Ifr, can be used to discern between fast and slow running,

Ifr =
tb

ts
= πv0

p
m/k

l0(π−2β0)
. (3.12)

For Ifr = 1, the bounce and swing duration are equal, indicating a centre-of-mass trajectory

with a large vertical change. This trajectory becomes more horizontal for increasing speeds.

We define fast running for approximately Ifr > 2. At low Ifr, foot placement and running speed

are tightly coupled. This coupling is reduced for higher values of the fast-running index.

3.5. Damping in the Leg or Hip

Addition of dissipative elements may increase stability over the undamped response. Both

damping in the leg and in the hip may contribute to stabilization of the running gait.

We consider the TSLIP model with a constant driving torque for simplicity. The stability

and robustness measures are then evaluated separately for varying leg damping (cl ∈ [0,3]) and

varying hip damping (ch ∈ [0,3]), where the constant torque is the result of the optimization

such that it balances the energy dissipated in the damper for stable periodic running at the

given initial velocity v0.

3.6. Parameter Variation

3.6.1. Mass Offset

We expect the passive model to be stable for a mass below the hip due to metacentric pitch

stability. The discrete nature of the running system is likely to cause instability in pitch if the

mass offset becomes too large. The stability and robustness measures are evaluated for the

mass offset r ∈ [−1,1]L.
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3.6.2. Leg Stiffness

The effects on stability and robustness of changing leg stiffness for the TSLIP model is evaluated

for k ∈ [0,200]M g L−1. Stiffer legs are expected to better support the centre of mass after a

step-down change in ground height and are therefore likely to be more robust to step-down

disturbance. However, we expect legs that are too stiff to results in poor robustness due to

smaller acceptable deviations from the periodic gait for stable running.

3.6.3. Touch-Down Angle

We measure the stability and robustness measures for the touch-down angle β0 ∈ [0.8,1.5]rad.

For a fixed leg stiffness and swing-leg retraction rate, flatter touch-down angles are expected

to perform better in step-down robustness because they allow for a larger step-down without

missing the stance phase.

3.6.4. Swing-Leg Retraction

A swing-leg retraction strategy is applied to the TSLIP model to evaluate the possible contribu-

tions to stability and robustness on a range of normalized retraction rates ω̄r ∈ [0,2].

3.7. Control Strategy Comparison
The performance for the different control strategies is expected to differ primarily in their re-

sponse over varying mass offset from the hip. The stability and robustness measures for the

different control strategies are therefore compared for mass offset r ∈ [−1,1]L. We expect that

the control at the hip should not be significantly affected by differing leg stiffness, touch-down

angle, or retraction rate.





4
Simulation Results

4.1. Response to Pitch Disturbance
In response to a pitch disturbance, the ground impulse response changes as illustrated in Fig-

ure 4.1. For small disturbances, the linearized gradients are approximately zero for all except

the horizontal position with respect to the centre of mass. This horizontal movement of the

ground reaction impulse results in a torque about the centre of mass that counteracts the pitch

disturbance. The direction and size of the impulse remain constant for small disturbances.

This change in position of the resultant ground impulse with respect to the centre of mass is
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Figure 4.1: Linearization of the ground impulse response to pitch disturbance. xp and yp are the point of applica-

tion of the impulse with respect to the centre of mass (Equation (3.5)). Ix and Iy are the x and y components of

the resultant ground impulse I (Equation (3.3)). The TSLIP model is passive, with the full configuration listed in

Table 2.1. The steepest gradient is in the horizontal position of the ground impulse with respect to the centre of

mass, indicating a shift to provide a restoring torque.

illustrated in Figure 4.2 for both a negative and a positive change in pitch angle. The position

of the ground impulse remains below the hip and the direction does not change.

The PD-controlled response to a pitch disturbance is illustrated in Figure 4.3. The position

with respect to the centre of mass of the resultant ground impulse remains unchanged as pitch

21
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Figure 4.2: The TSLIP model is perturbed in its body pitch from the stable periodic limit cycle. All coordinates are

taken with respect to the centre of mass. The model configuration is listed in Table 2.1. The direction of the ground

reaction forces is shown as well as the resultant ground impulse. The impulse remains approximately directed

towards the hip, which causes a torque about the centre of mass opposite to the pitch disturbance, indicating the

metacentric pitch stability.

is perturbed. However, the correcting torque applied at the hip by the PD controller results in a

large change in direction of the ground impulse.
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Figure 4.3: The TSLIP model with a global PD controller on body pitch is shown. The mass above the hip is perturbed

in its body pitch from the stable periodic limit cycle. All coordinates are taken with respect to the centre of mass.

The model configuration is listed in Table 2.1. The direction of the ground reaction forces is shown as well as the

resultant ground impulse. The impulse position remains below the hip. The direction is changed because of the hip

torque that the controller applies to restore the body pitch, which does not resemble metacentric pitch stabilization.

4.2. Undamped Height and Velocity Stability
The passive TSLIP model converges to the expected velocity from the energy balance in Equa-

tion (3.8), as illustrated in Figure 4.4 (left). The model with a local velocity controller converges

back to the initial velocity as shown in Figure 4.4 (right).

The behaviour of the velocity and height of the centre of mass after a 0.2 L step-down distur-

bance is illustrated in Figure 4.5. The system stabilizes with a multi-step oscillation, as is also

visible in Figure 4.6 which shows the trajectory of the centre of mass and the body configuration

at touch-down. Height and horizontal velocity oscillate in opposite phase.

A step disturbance in ground height changes the direction of the velocity vector at touch-
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Figure 4.4: Change in velocity with respect to initial velocity of 5 g1/2 L1/2 after a step change in ground height, mea-

sured after the gait has converged to a steady state., The passive model converges to a velocity change as expected

from Equation (3.8). When the local velocity controller is applied, the gait converges back to the initial velocity.
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Figure 4.5: Horizontal velocity and height of the centre of mass after a 0.2 L step-down disturbance; the data marks

the values at touch-down for each step. Velocity and height oscillate in opposite phase and converge towards a

steady state. The simulation uses the passive TSLIP model with configuration listed in Table 2.1.
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Figure 4.6: Trajectory of the centre of mass and model configuration drawn at touch-down per step, after a 0.2 L

step-down disturbance; the shaded areas indicate the stance phase. Passive model with configuration listed in

Table 2.1. The trajectory of the centre of mass shows a multi-step oscillation converging back to the single-step

periodic gait. The touch-down leg angle changes each step due to the combination of a constant retraction rate and

differing flight times.
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down with respect to the periodic gait. This has an effect on the stance phase behaviour that

is illustrated in Figure 4.7 (top). Landing with a larger downward vertical velocity component,

i.e. after a step-down, leads to a longer stance phase and a flatter lift-off trajectory than in

the periodic gait. Subsequently, the flight phase is shorter. Conversely, if the vertical velocity

component is adjusted upwards, i.e. a step-up, the stance phase is shorter, with a steeper lift-off

and longer flight phase.

The change in the ground reaction forces shows a larger vertical force for larger downward

velocity as the spring is compressed more (Figure 4.7 (middle)). The magnitude of the hor-

izontal ground reaction forces becomes asymmetric, such that the resultant ground impulse

is directed forward after a step-down and backward after a step-up change in ground height

(Figure 4.7 (bottom)). The net result is that excess downward vertical velocity at touch-down is

converted into horizontal forward velocity.
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Figure 4.7: Illustration of the effect of changing the angle δ between the velocity vector of the centre of mass and the

horizontal axis. The trajectory of the centre of mass is drawn for a single step with the TSLIP configuration drawn at

touch-down, lift-off, and touch-down (top), with the related vertical (middle) and horizontal (bottom) components

of the ground reaction forces. Passive model with configuration in Table 2.1. As the vertical velocity component is

adjusted downward from the periodic gait, the time and distance covered in stance increases. The asymmetry in

the ground reaction force converts excess vertical, downward velocity into horizontal, forward velocity.

4.3. Effects of Running Faster

4.3.1. Velocity Variation

Running is stable with the TSLIP model above a minimum velocity. The gaits converge most

quickly per step for velocities just over the minimum velocity threshold for stable running as

illustrated in Figure 4.8. At higher velocities there is little variation of convergence with speed.

The maximum step-down disturbance is velocity dependent as shown in Figure 4.9 (top).

There is a peak in step-down robustness in this configuration for a normalized velocity around

4.0 g1/2 L1/2 and around 5.0 g1/2 L1/2. Further increase in velocity reduces the ability to handle
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Figure 4.8: Eigenvalue magnitudes of the TSLIP model over varying velocity. Green areas mark the stable domain.

Model configuration is passive as in Table 2.1. There is a minimum running velocity determined by the model

configuration, increasing velocity reduces convergence per step.

a step-down disturbance.

The maximum horizontal push disturbance (Figure 4.9 (middle)) increases almost linearly

with increasing velocity, such that the minimum velocity is constant for a fixed model configu-

ration.

The robustness to pitch-rate disturbance varies only minimally with velocity (Figure 4.9

(bottom)).

0.2

0.0

h 
(L

)

5

0
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Figure 4.9: TSLIP robustness to step-down (top), horizontal push (middle), and pitch-rate disturbance (bottom)

over varying initial velocity. Model configuration is passive as in Table 2.1. There is an optimum velocity for step-

down robustness, further increasing velocity above that reduces the maximum step-down. The resistance to a push

disturbance is primarily governed by the minimum speed for stable running for the specified configuration.



26 4. Simulation Results

4.3.2. Parameter Space

The range of possible leg stiffness and touch-down angle combinations for which a stable gait

can be found is larger for faster running as shown in Figure 4.10. The range of touch-down leg

angles that allows self-stable running is wider for a given stiffness at a higher velocity.
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Figure 4.10: Illustration of the range of leg stiffness and touch-down angle combinations which yield stable periodic

limit cycles. The TSLIP model is run with a local angular velocity controller and the configuration specified in

Table 2.1. The range of configurations is larger for faster running, indicating foot placement and leg stiffness become

less critical.

4.3.3. Stride Properties

Figure 4.11 illustrates the effect of initial velocity, leg stiffness, and initial leg angle on stance

and flight time. Stance time is not affected by stiffness, decreases with increasing velocity and

steeper initial leg angles. Flight time increases with increasing stiffness and decreases with

increasing velocity and steeper initial leg angle. The values match closely to the theoretical

expected values calculated with Equations (3.10) and (3.11).
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Figure 4.11: Stance and flight time over changing parameters compared to expected value. Passive TSLIP model,

configuration as in Table 2.1. Expected values calculated using Equations (3.10) and (3.11) with the other variables

constant.
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4.4. Adding Damping

4.4.1. Damping in the Leg

The addition of leg damping improves stability as shown in Figure 4.12. Leg damping affects

the stabilization of centre-of-mass height and velocity. The constant driving torque required

for energetic equilibrium increases with increasing damping because it is tuned such that the

power from actuation balances the dissipation in the damper.
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Figure 4.12: Eigenvalue magnitudes for the TSLIP model over varying leg damping with a constant driving torque

controller. Stable domain is marked in green. Configuration as in Table 2.1. Damping in the leg improves height

and velocity stability.

Leg damping has a negative effect on all of step-down, push, and pitch-rate robustness as

illustrated in Figure 4.13. Increasing damping leads to lower stance durations and longer flight

durations. This relates to an increased probability of missing a stance phase, causing the model

to fall.
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Figure 4.13: TSLIP robustness to step-down (top), horizontal push (middle), and pitch-rate disturbance (bottom)

over varying leg damping for the model with a constant driving torque. Configuration as in Table 2.1. High damping

in the leg negatively affects robustness to all of step-down, horizontal push, and pitch-rate disturbances.
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4.4.2. Damping at the Hip

Hip damping positively affects the stability of the model in response to pitch and pitch-rate

disturbances. The eigenvalues over varying hip damping are illustrated in Figure 4.14.
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Figure 4.14: Eigenvalue magnitudes for the TSLIP model over varying hip damping with a constant driving torque.

Stable domain is marked in green. Configuration as in Table 2.1. The addition of hip damping improves pitch

stability, although this is not necessarily the most unstable mode.

Hip damping has only minimal influence on the robustness to step-down disturbance, il-

lustrated in Figure 4.15 (top). It does not affect the stance and flight duration of the gait in the

way leg damping does.

The angular velocity at the hip is related to the forward velocity in stance phase. The robust-

ness to push disturbance decreases as hip damping increases as shown in Figure 4.15 (middle).

The addition of damping at the hip strongly improves the robustness to pitch-rate distur-

bance as shown in Figure 4.15 (bottom).

4.5. Parameter Variation

4.5.1. Mass Offset

Figure 4.16 illustrates the change in eigenvalues for a varying mass offset from the hip. The gait

becomes stable for mass offset below the hip. The variation is small for a lower hanging mass,

until the gait sharply becomes unstable for mass offset over 0.86 L.

The robust region is bounded by the mass-offset range for stable running as is shown in

Figure 4.17. For this configuration, having a mass offset up to 0.5 L below the hip improves the

robustness to a step-down disturbance as shown in Figure 4.17 (top). Further increasing the

mass offset reduces robustness until the gait becomes unstable at r ≈ 0.86L.

There is little impact of mass offset on robustness to push disturbance (Figure 4.17 (mid-

dle)) as there is no coupling between the hanging mass and velocity for passive running.

Having a mass offset further from the hip improves resistance to a pitch-rate disturbance

up until r ≈ 0.5L, illustrated in Figure 4.17 (bottom). Further increases in mass offset do not

affect pitch-rate robustness until the robustness reduces for r > 0.75L.

4.5.2. Stiffness

The stability improves for increasing stiffness, up to an upper limit where the fixed points be-

come unstable, illustrated in Figure 4.18. No periodic limit cycles are found when the stiffness
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Figure 4.15: TSLIP robustness to step-down (top), horizontal push (middle), and pitch-rate disturbance (bottom)

over varying damping at the hip with a constant driving torque. The model configuration is provided in Table 2.1.

The addition of hip damping improves the robustness to a pitch-rate disturbance, but reduces the robustness to a

change in horizontal velocity.
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Figure 4.16: Eigenvalue magnitudes for the TSLIP model over varying mass offset. Stable domain is marked in green.

Configuration is passive as in Table 2.1. Passive self-stable gaits exist for a mass offset below the hip.
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Figure 4.17: TSLIP robustness to step-down (top), horizontal push (middle), and pitch-rate disturbance (bottom)

over varying mass offset. Model configuration in Table 2.1. Hanging-mass configurations exhibit robust behaviour

without explicit inertial references. Increasing the mass offset has a positive effect on robustness for r smaller than

0.5 L.

is too low. On the contrary, if stiffness is increased above the upper limit for stable running,

periodic running gaits are still found, even though they are unstable.
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Figure 4.18: Eigenvalue magnitudes for the TSLIP model over varying leg stiffness. Stable domain is marked in green.

Configuration is passive as in Table 2.1. There is a wide range of possible leg stiffness values for stable running gaits.

The maximum step-down increases for stiffer legs, as shown in Figure 4.19 (top), although

the robustness decreases sharply above a certain threshold.

Figure 4.19 (middle) shows how the resistance to a push disturbance decreases for increas-

ing stiffness. The push disturbance relates to the minimum required speed for stable running.

Lower leg-stiffness values allow a larger push disturbance, which equates to a lower minimum

velocity for stable running.

The optimum stiffness for handling a pitch-rate disturbance is in the middle of the stable

range as shown in Figure 4.19 (bottom).



4.5. Parameter Variation 31

0.2

0.0

h 
(L

)

4

2

0
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Figure 4.19: TSLIP robustness to step-down (top), horizontal-push (middle), and pitch-rate disturbance (bottom)

over varying leg stiffness value. The model is passive with the configuration as in Table 2.1. Stiffer legs up to the

mid range tend to be more robust to a step-down disturbance. More compliant legs are able to handle a push

disturbance better as they allow a lower minimum running speed. A leg stiffness in the middle of the stable range is

best for robustness to pitch-rate variation.

4.5.3. Touch-Down Angle

Leg angle and stiffness appear to be coupled for stable running, visualized in Figure 4.10. Lower

stiffness requires flatter initial leg angles. Vice-versa, higher stiffness requires steeper initial leg

angles.

Flatter leg angles demonstrate better stability within the stable range shown in Figure 4.20.

The gait gradually becomes unstable if the leg angle becomes too flat, but periodic limit cycles

still exist. No periodic limit cycles are found when the touch-down angle becomes too steep.
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Figure 4.20: Eigenvalue magnitudes for the TSLIP model over varying initial leg angle. Stable domain is marked in

green. Configuration is passive as in Table 2.1. There is a range of leg angles for stable running gaits.

Flatter leg angles perform better in response to step-down disturbance as shown in Fig-

ure 4.21 (top).
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For push disturbance, illustrated in Figure 4.21 (middle), steeper leg angles provide large

robustness. This indicates a lower minimum velocity for steeper leg angles.

The robustness to pitch-rate disturbance shown in Figure 4.21 (bottom) shows that the

model is most robust in the middle of the range of touch-down angles for stable running.
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Figure 4.21: TSLIP robustness to step-down (top), horizontal push (middle), and pitch-rate disturbance (bottom)

for the four different control strategies over varying leg touch-down angle. Configuration as in Table 2.1. Flatter

leg angles tend to be more robust to step-down disturbance. Steeper leg angles allow running at lower speeds and

relate to handling larger push disturbances.

4.5.4. Swing-Leg Retraction

For fast running, the eigenvalue magnitudes are lower for slower retraction rates, illustrated

in Figure 4.22. However, there are no stable limit cycles without swing-leg retraction. Fast-

running limit cycles with low swing-leg retraction values have very minimal foot clearance.

The robustness to step-down disturbance, illustrated in Figure 4.23 (top), increases with some

swing-leg retraction. Step-down robustness is reduced for high retraction rates as the model

starts missing the stance phase for large drops.

Robustness to push disturbance, shown in Figure 4.23 (middle), does not show a trend with

varying leg retraction rate.

The ability to handle a pitch-rate disturbance improves when adding swing-leg retraction

to the TSLIP model as shown in Figure 4.23 (bottom).

4.6. Control Strategy Comparison
The passive TSLIP model has stable gaits for a range of mass offsets where r > 0, as shown in

Figure 4.24. Global PD control on pitch angle demonstrates neutrally stable limit cycles. The

pitch and pitch-rate modes are stable. The system is neutrally stable when perturbed in the

horizontal velocity.

The local velocity control shows asymptotically stable behaviour. There is a wide range of
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Figure 4.22: Eigenvalue magnitudes for the TSLIP model over varying normalized swing-leg retraction rates. Stable

domain is marked in green. Configuration as in Table 2.1. Some swing-leg retraction is required for stability, but

high retraction rates have a destabilizing effect.
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Figure 4.23: TSLIP robustness to step-down (top), horizontal push (middle), and pitch-rate disturbance (bottom) for

the four different control strategies over varying normalized swing-leg retraction rates. Configuration as in Table 2.1.

Adding swing-leg retraction improves step-down robustness, but high retraction rates are associated with falls due

to missing the stance phase. The robustness to pitch-rate disturbance also improves with swing-leg retraction.
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Figure 4.24: Eigenvalue magnitudes of the TSLIP model over changing mass offset for the four different control

paradigms. Green areas mark the stable domain. Model configuration in Table 2.1. Self-stable gaits without inertial

reference exist for mass offsets below the hip.

mass offsets for which there are stable limit cycles. Most of these are for r > 0. There exist a

mass offset that is optimal for stability.

With a constant driving torque and leg damping the gait is neutrally stable to pitch angle

disturbances. There are stable limit cycles for the centre of mass above the hip (r < 0), however

these are not robust to perturbations.

The robustness limits for the four control strategies with respect to varying mass offset are

shown in Figure 4.25. Global PD control provides the best robustness performance in general.

For most mass offsets below the hip, the controllers perform similarly in response to a step-

down (Figure 4.25 (top)).

In response to velocity disturbance, the passive, global-PD-controlled, and constant-driving-

torque model perform similarly as illustrated in Figure 4.25 (middle). The local velocity control

is least robust to sudden changes in velocity.

The global PD controller is able to deal with a significantly larger pitch-rate disturbance

than the other three control methods, which have similar maximum pitch-rate disturbances as

show in Figure 4.25 (bottom).
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Figure 4.25: TSLIP robustness to step-down (top), horizontal push (middle), and pitch-rate disturbance (bottom)

for the four different control strategies over varying mass offset. Model configuration in Table 2.1. Hanging mass

configurations exhibit robust behaviour without explicit inertial references. The local velocity controller is less

robust to a push disturbance.





5
Experimental Methods

5.1. HexRunner
The IHMC HexRunner shown in Figure 5.1 was designed with its body suspended from the

central axis of rotation, which functions as a hip. The robot has six straight legs with telescoping

springs, which are configured like a rimless wheel. There are three on each side that alternate

contact as it runs.

x

y

g

v

Foot
Foot

Hip

Figure 5.1: Image shows the HexRunner robot whilst it is standing still. It has six telescoping spring legs centrally

driven from a single motor that is voltage-controlled by a human operator. It is launched using a pendulum swing

to attain sufficient initial speed for running. The robot has no sensors, so the full gait is the result of its implicit

dynamics and interaction with the environment.

The rimless wheel configuration is very similar to the TSLIP model with instant leg reset at

lift-off and swing-leg retraction in the flight phase. It is mechanically simple because it does

not need to solve the problem of leg reciprocation.
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The HexRunner is able to run unsupported if launched with sufficient initial velocity and

can be steered by controlling the sideways angle of the hanging mass. The sagittal-plane sta-

bility may be explained using the TSLIP model. It derives at least part of its stability in the

transverse plane from gyroscopic effects. The small HexRunner shown in Figure 5.1 runs ap-

proximately 5 m s−1 in open space and is robust to running in high grass and over small hills. A

larger version of the HexRunner runs in free space on level ground at over 13 m s−1 and has hit

speeds over 22 m s−1 on a treadmill.

5.2. Planar Elliptical Runner
The IHMC Planar Elliptical Runner is a planar bipedal running robot with reciprocating legs,

shown in Figure 5.2, that demonstrates running on a planarized treadmill at a maximum ve-

locity of 4.4 m s−1, corresponding to a fast-running index of 1.73. The approximate physical

parameters are listed in Table 5.1.

Table 5.1: Approximate Planar Elliptical Runner parameters.

Parameter Value Unit Value Unit

Velocity v0 4.4 m s−1 2.0 g1/2 L1/2

Total mass m 3.3 kg 1.0 M

Mass offset r 0.15 m 0.3 L

Gravity g 9.81 m s2 1.0 g

Leg length l0 0.5 m 1.0 L

The robot is designed to run with only implicit feedback from its mechanical design. There

are no sensors to provide feedback or measurements. The single operator input is the remote

control on motor voltage set by a human operator. The operator thereby controls output power

and subsequently steady-state running velocity.

The hip joint is the highest point on the body, which means the centre of mass is suspended

below the hip. The legs are compliant due to their light construction and feature a linear spring

at the ankle joint. The linear leg spring is directed approximately towards the hip joint during

the stance phase. The foot trajectory is determined by the leg kinematics, which is similar to

the mechanism found in an elliptical exercise machine. The leg structure supports the weight

of the robot in stance without requiring actuation.

The mechanical design of the Planar Elliptical Runner is illustrated in Figure 5.3. The elastic

buffer element in the motor decouples the two legs which enables the single motor to drive

both the left and right leg. The leg trajectory throughout the gait follows from the mechanical

design of the linkages. The driving mechanism generates the reciprocating motion in the leg.

The ankle spring provides the compliance during the stance phase support. It can be tuned

with the number of rubber bands and the tension with which they are mounted.

5.3. Choice of Robot
The lack of sensors on either robot makes analysis more involved than the simulation. The Pla-

nar Elliptical Runner is used for gathering experimental data because the planarized treadmill

offers a controlled measurement environment. Furthermore, its reciprocating leg function is

more representative of general bipedal running than the rimless wheel configuration.
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Figure 5.2: Still image showing the middle of the stance phase, taken from the high-speed video of the Planar Ellip-

tical Runner running up to 4.4 m s−1 on a treadmill, planarized with two clear acrylic sheets. The image is mirrored

horizontally to correspond with the other illustrations in this paper. The robot is centrally driven from a single mo-

tor that is voltage-controlled by a human operator to match the treadmill speed. The robot has no sensors, so the

full gait is the result of its implicit dynamics and interaction with the environment.
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Figure 5.3: Illustration of the mechanical design for the Planar Elliptical Runner. The elements in the image are:

A. hip joint, B. leg mechanism, C. driving motor with an elastic buffer element, D. fixed guide wheel, E. driving

mechanism, F. rubber ankle spring, G. foot.



40 5. Experimental Methods

5.4. Experiment Set-up

The elliptical runner is set up on a treadmill running at a nominal velocity of 4.4 m s−1. The

treadmill is planarized by setting up two clear acrylic sheets along the sides. The robot is sup-

ported against the acrylic sheets by circular, Teflon-covered supports that are fitted to the robot

body. This prevents falling in the frontal plane, but some roll and yaw is still possible due to

small gaps between the sheets and the supports, as well as compliance in the system.

The human operator drives the robot to stay in approximately the same position on the

treadmill, so that it stays in the field of view of the camera. The camera takes video at a frame-

rate of 1000 Hz. The recorded frame size is 1024 px wide by 816 px high, corresponding to 0.88 m

wide by 0.70 m high at the side of the robot closest to the camera.

5.5. Motion Tracking
High-speed video imaging combined with digital image-processing techniques allows tracking

of points on the body. Acquisition of position data is done with the OpenCV 4.0 computer-

vision toolbox in Java.

The discs used to stabilize the body in the transverse direction are used as markers for the

body position and orientation. A Canny edge-detection algorithm is applied on the frame con-

verted to grey-scale. A Hough transform is then used to locate the circular markers on the

processed frame. The transform is tuned to the size of the markers. The frame is cropped to a

region of interest to prevent false positives.

A background subtraction algorithm is used to mask most of the stationary elements in the

image as a basis for tracking the foot points. The feet have been marked with a specific colour.

A mask based on an HSV colour range tuned to the foot colour is applied to the frame with the

background subtracted. Ellipses are then fit around the bobs in the masked frame. The two

largest ellipses are selected to be the foot positions.

For data series continuity, the body and foot points are appended to the series based on

Euclidean distance to the last known points.

5.6. Position-Data Processing
The position data as it comes from the digital image processing contains noise and outliers

due to imperfections in the point tracking. There are also gaps in the hind-foot position as it is

occluded by the robot body.

The position data is checked for outliers by comparing the dataset to the same dataset with

a low-pass filter applied. The points that are beyond a threshold value from the low-pass fil-

tered data are discarded from the original dataset.

The centre-of-mass position, pitch angle, leg length and leg angle are computed from the

position datasets.

The position data is not smooth enough to directly compute the velocities. A Savitzky-Golay

filter is applied so that the gradients can be computed (Savitzky and Golay, 1964).

The stance phase and flight phase are determined by comparing the foot points to a ground

reference representing the treadmill surface. The data is then separated into chunks per step,

from touch-down to the next touch-down. The steps for which the foot closest to the camera is

on the ground are then averaged and the standard deviation is taken. The steps where the hind
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foot is in stance are discarded because of body roll and yaw and lack of data due to the body

occluding the hind leg.

5.7. Model Fitting
The step-averaged results from the Elliptical Runner video are compared to a TSLIP simulation.

A TSLIP model with a local angular velocity controller and leg damping is tuned manually to

match the experimental results.

Local angular velocity control on the hip angle provides a simple model for the physical

behaviour of a voltage-controlled electric motor that drives the hip. The motor throttle be-

haves similar to angular velocity control. Damping in the leg models the energetic losses due

to impact, friction, and other inefficiencies in the running robot. The leg behaviour in flight

phase is also locally defined, similar to how the robot leg kinematics are driven without inertial

references.

The quality of the model fit is quantified using the Pearson correlation coefficient ρ,

ρ = cov(y, ŷ)

σyσŷ
, (5.1)

for the measured signal y and the model estimate ŷ , with the covariance, cov, and the signal

standard deviation, σ.

We also calculate the Variance Accounted For (VAF),

VAF =
(
1− var(y − ŷ)

var(y)

)
·100%, (5.2)

with the signal variance, var.

Due to a limited availability of running data, fitting the model and quantifying the quality

of the model fit is performed on the same data.

5.8. Modelled Response to Pitch Disturbance
A metacentric model for pitch stabilization is expected to be applicable to the Planar Elliptical

Runner to explain its open-loop stability.

We take the TSLIP model fit to the measurements of the running robot, then subject the

model to both a positive and a negative change in body pitch angle, after which we plot the

ground reaction forces and resultant impulse. This response is compared to the metacentric

models.

Due to a limited availability of running data, fitting the model and quantifying the quality

of the model fit is performed on the same data.
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Experimental Results

6.1. Measurements and Model Fit

The Planar Elliptical Runner runs at speeds of 1.2 g1/2 L1/2 to 2.0 g1/2 L1/2 without falling. At top

speed it runs with a consistent aerial phase and may be considered fast running with a fast-

running index of 1.73. At low speeds, it may run with alternating grounded and aerial running

steps because of asymmetry.

The trial with the Planar Elliptical Runner has a total of 38 recorded steps. The recording

was started after the robot held a steady position in view of the camera on the moving treadmill

set to 4.4 m s−1. The analysis only uses the 19 full steps where the leg closest to the camera goes

through a stance phase.

Figure 6.1 shows a comparison between the average measurements of the Planar Elliptical

Runner and a tuned TSLIP model. The model parameters are listed in Table 6.1. The model has

been fit such that the stance duration ts and the flight duration tf correspond with measured

data to within 0.01 g−1/2 L1/2. The relevant stride parameters are listed in Table 6.2. Correlation

and VAF are used to quantify the model fit as listed in Table 6.3, with the same data that was

used to tune the model.

Table 6.1: TSLIP model fit to Planar Elliptical Runner. The model has leg damping and uses a local angular velocity

controller on the hip angle.

Parameter Value Unit

Initial velocity v0 1.90 g1/2 L1/2

Inertia J 0.10 M L2

Mass m 1.00 M

Mass offset r 0.30 L

Leg stiffness k 8.00 M g L−1

Touch-down angle β0 0.93 rad

Swing-leg retraction rate ωr 1.50 rad g1/2 L−1/2

Damping coefficient c 0.32 M g1/2 L−1/2

Derivative gain Kd 0.40 M g1/2 L3/2 rad−1

Controller reference α̇r 2.42 rad g1/2 L−1/2
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Figure 6.1: Step-averaged elliptical runner measurements compared to the TSLIP model. The model is manually

tuned to match the stride times and state trajectories, yielding the configuration in Table 6.1, with the stride times

listed in Table 6.2. The model fit is quantified in Table 6.3. The graph shows the mean behaviour averaged over 19

steps with the associated standard deviation. A step starts at touch-down and ends at the next touch-down. The

flight phase is marked in grey. The model matches quite well in the stance phase, but there are some essential

differences in flight-phase behaviour. The globally referenced states show significantly more variance than the

TSLIP model.
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Table 6.2: Mean stride times for Planar Elliptical Runner and TSLIP model fit. The model has been tuned to match

the experimental times to within 0.01 g−1/2 L1/2.

Parameter Ell. Runner TSLIP Unit

Stance duration ts 0.58 ± 0.03 0.58 g−1/2 L1/2

Flight duration tf 0.13 ± 0.02 0.13 g−1/2 L1/2

Duty factor d 0.81 ± 0.02 0.82 −

Step frequency f 1.40 ± 0.07 1.41 g1/2 L−1/2

Table 6.3: Quantification of the model fit using correlation (Corr) and Variance Accounted For (VAF), comparing the

step-averaged results from the Planar Elliptical Runner with the tuned TSLIP model. The measures are computed

separately using only stance-phase data and for the full stride including the flight phase.

Stance Full stride

Parameter Corr. VAF Corr. VAF

Vertical pos. ym 0.847 71.6 % 0.808 53.5 %

Leg length l 0.995 98.7 % 0.720 38.7 %

Leg angle β 1.000 99.8 % 0.254 −46.4 %

Pitch angle φ 0.790 62.2 % 0.766 61.0 %

Horizontal vel. ẋm 0.771 46.4 % 0.744 45.6 %

Vertical vel. ẏm 0.675 44.9 % 0.696 49.1 %

Leg length vel. l̇ 0.977 95.6 % 0.696 53.9 %

Leg angle vel. β̇ 0.931 87.5 % 0.680 51.2 %

Pitch angle vel. φ̇ 0.687 46.0 % 0.400 8.7 %

For fitting the TSLIP model, the combination of leg angle, leg stiffness, and velocity were

dominant to the stance-phase behaviour. Without damping, the average pitch angle was ap-

proximately zero. Including damping leads to a higher average pitch angle, which allows match-

ing the average experimental pitch. The controller reference is the result of the numerical op-

timization for a fixed point; it controls the limit cycle at the specified velocity and accounts for

losses due to damping.

The largest eigenvalue magnitude of the TSLIP model is 0.92 , indicating an asymptoti-

cally stable limit cycle. The maximum step-down is −0.12 L, maximum push disturbance is

−0.73 g1/2 L1/2, and the maximum pitch-rate disturbance is −1.50 rad g1/2 L−1/2.

The TSLIP model is started on its stable periodic orbit and runs every step on that orbit.

There are no external perturbations, so the standard deviation from the mean is zero.

The velocities computed from the Planar Elliptical Runner data show more fluctuation than

the model, which is visible in Figure 6.1 and represented in the correlation values in Table 6.3.

The horizontal velocity of the centre of mass, ẋm, shows a large difference with the modelled

velocity in the stance phase. The other parameters are more accurately represented by the

model response.

The leg length and leg angle deviate from the TSLIP trajectory in flight phase, but match

closely in the stance phase. This is also evident in the difference between considering only the

stance phase and the full stride for computation of correlation and VAF . The Planar Elliptical

Runner has two legs which alternate the stance and swing phase. The TSLIP model on the other

hand, has only a single leg which is instantly reset to the forward position upon lift-off.
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6.2. Modelled Response to Pitch Disturbance
Subjecting the TSLIP model fit to the Planar Elliptical Runner to the same pitch disturbance

as in Section 4.1 yields the ground reaction forces and ground reaction impulse as plotted in

Figure 6.2.

The centre of mass shifts horizontally with respect to the hip due to the pitch disturbance.

The point of application of the resultant ground impulse remains in approximately the same

position with respect to the hip. Subsequently, the torque about the centre of mass from the

resultant ground impulse is oriented to correct the pitch disturbance.
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Figure 6.2: The TSLIP model fit to the measurements of the Planar Elliptical Runner is subjected to a disturbance in

body pitch angle from the stable periodic limit cycle. All coordinates are taken with respect to the centre of mass.

The model configuration is listed in Table 6.1. The direction of the ground reaction forces is shown as well as the

resultant ground impulse. The impulse remains directed approximately towards the hip, which results in a torque

about the centre of mass opposite to the pitch disturbance.
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7.1. Pendulum Configuration for Stable Pitch

7.1.1. Stabilizing Pitch

A necessary condition for pitch stability is that a pitch disturbance eventually results in a restor-

ing torque about the centre of mass. The resultant impulse from the ground reaction forces in

the TSLIP model is directed through the centre of mass in the unperturbed gait. The ground

impulse can change either in direction or position to provide a restoring torque.

Running is a discrete system, so overcorrection is possible if the response to a pitch distur-

bance is too large. This is an important distinction because the metacentric stability concepts

explain pitch stability either as a virtual pendulum or a floating vessel model. These are con-

tinuous systems which means that a larger restoring torque will result in faster convergence

as eigenvalues approach negative infinity, instead of overcorrection as the discrete eigenvalue

magnitudes exceed 1 for the running robot.

7.1.2. Metacentric Stabilization in TSLIP Running

The TSLIP model with a hanging mass and uncontrolled body pitch exhibits self-stabilizing

gaits that are robust to disturbances. The resultant impulse from the ground reaction forces

stays directed approximately towards the hip as a pitch disturbance is applied (Figure 4.2). The

torque about the centre of mass then counteracts the disturbance in pitch. Overcorrection is

avoided because the resultant ground impulse remains between the hip and centre of mass,

thereby limiting the amount of torque and subsequent change in pitch rate that is generated.

The resultant ground impulse remains directed approximately towards the hip due to the

model configuration. Ground reaction forces, as calculated in Equations (2.5) and (2.6), are

applied at the foot and act through the leg, which is directed towards the hip. The direction of

the ground reaction forces will not shift by much, unless a large torque is applied. The body

pitch angle does not contribute to shifting the position of the ground reaction impulse unless

a controller specifies a hip torque relative to the pitch angle. The suspension from the hip thus

generates a stabilizing torque, that results in behaviour like the virtual pendulum, as illustrated

in Figure 1.1 (d).

As the mass offset becomes too large, all gaits become unstable (Figure 4.24). This is proba-

47



48 7. Discussion

bly because of the discrete nature of the running system. The impulse remains directed approx-

imately towards the hip, but the large mass offset makes for a large moment arm when pitch is

perturbed, thereby causing an excessive restoring torque which leads to overcorrection.

The global PD-controller can stabilize the body with a centre of mass above the hip by uti-

lizing inertial measurements. The behaviour of the ground reaction forces in response to a

pitch disturbance (Figure 4.3) is different than for the other control strategies. The direction of

the impulse changes a lot in response to a pitch change because of the torque applied at the

hip that actively stabilizes the body pitch. The resulting torque about the centre of mass does

correct for the pitch disturbance without overcorrecting. The PD-controlled pitch response

suggests that the metacentric stability concept does not necessarily represent pitch stability

well if pitch is actively controlled with inertial measurements.

7.1.3. Mechanical Design for Pitch Stability

The TSLIP model tuned to the Planar Elliptical Runner displays a response to pitch disturbance

that generates a stabilizing torque from the ground reaction forces. The robot has a configu-

ration similar to the model with its centre of mass supported below a physical hip point. The

ground reaction forces are directed through the legs similar to how the TSLIP model functions.

This indicates the metacentric model may explain how the Planar Elliptical Runner maintains

body pitch stability.

Maus et al. (2008) and Sharbafi et al. (2013) describe a Virtual Pivot Point Controller (VPPC)

to actively control the direction of the ground reaction forces. The virtual metacentre con-

structed in that manner also demonstrates the metacentric concept of pitch stability. If we

consider the combination of TSLIP model results, experimental results from the Planar Ellipti-

cal Runner, and the VPPC pitch control, self-stable body pitch may also be achieved through a

mechanical robot design which constructs a virtual hip point by directing the leg force towards

a metacentre throughout the stance phase.

7.2. Height and Velocity Stabilization
The passive TSLIP model is conservative, so any change in potential energy results in a change

in kinetic energy and vice-versa. The main contributor to the kinetic energy in the model is its

forward velocity; its vertical velocity averages zero for periodic running and so does the body

pitch angular velocity. Potential energy is fully determined by the centre-of-mass height as long

as the leg spring remains uncompressed.

Following a step change in ground height, we observe an opposite phase oscillation be-

tween centre-of-mass height and velocity (Figure 4.5). This is the result of an exchange between

kinetic and potential energy due to the conservative nature of the model. Height and velocity

show convergence over this multi-step oscillation, thereby illustrating stabilization.

A step-down change in ground height causes a faster downward velocity at touch-down,

which then results in a ground impulse that is directed more forward (Figure 4.7). This causes

an increase in the centre-of-mass velocity, thereby transferring energy from vertical, downward

motion to horizontal, forward velocity. The lift-off trajectory is more horizontal as a result,

which leads to an opposite effect on the next step, where some forward motion is exchanged

for vertical, upward velocity. This behaviour is illustrated over multiple steps in Figure 4.6, and

matches the SLIP model with swing-leg retraction (Seyfarth, 2003). Applying a swing-leg retrac-
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tion rate in the flight phase can enhance this exchange of energy and improve convergence, if

a suitable, neither too low, nor too high, retraction rate is chosen.

This energy-exchange mechanism results in a stabilizing oscillation, where the average

height above ground converges as determined by the definition of the model kinematics with-

out requiring damping in the leg or explicitly controlling for centre-of-mass height. The stabi-

lizing behaviour of the centre-of-mass height implies velocity is stable as well, with any change

in potential energy leading to a subsequent change in forward velocity.

7.3. Fast Running

A trade-off to the reduced stability and step-down robustness for fast running is the increased

parameter space of possible leg stiffness and touch-down angles for self-stable gaits (Figure 4.10).

This matches the behaviour of the spring-mass model without a trunk (Seyfarth et al., 2002;

Geyer et al., 2006). The wide range of possible leg touch-down angles indicates that foot place-

ment becomes non-critical for fast running. This allows the same kinematic configuration to

be used at different speeds, as is also evident from the large velocity domain that has stable

limit cycles for a fixed TSLIP configuration (Figure 4.8).

The primary change required for changing the running velocity is the reference angular

velocity or the driving torque at the hip.

7.4. Damping in the Leg or Hip

Introducing damping in the leg (Figure 4.12) or at the hip (Figure 4.14) improves stability of the

running system. The constant torque compensates for the energy dissipated so that the gait

converges to a periodic limit cycle. Both leg and hip damping are associated with decreasing

eigenvalues, but they do not not necessarily affect the dominant unstable mode. Leg damp-

ing primarily influences stabilization of the centre-of-mass height, and thereby also velocity.

Damping at the hip is beneficial to pitch stability. Both leg and hip damping should therefore

be combined for robust self-stable running.

Hip damping improves robustness to a pitch-rate disturbance, but apart from that neither

leg nor hip damping are beneficial to robustness. The parameters that yield the best limit-

cycle stability for the running gait do not need to be the parameters that make the system most

resistant to falling; maximum stability and maximum robustness require a different parameter

choice.

7.5. Effects of Parameter Choice

7.5.1. Mass Offset

Having the mass offset below the hip is required for stability and robustness with locally defined

control because of the pendulum-like stabilization of body pitch. The mass offset has minimal

influence on the stability of the passive model, but there is an optimal mass offset for stability

with the local velocity controller. When prioritizing robustness, a mass offset between 0.2 L and

0.5 L yields the best results for robustness over the different control strategies. The TSLIP model

becomes unstable as the mass offset exceeds 0.86 L, which is likely due to overcorrection in the

discrete running system.
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7.5.2. Stiffness and Leg Angle

The maximum push disturbance increases with decreasing stiffness (Figure 4.19) and with

steeper leg angles (Figure 4.21). The leg stiffness and touch-down angle are the main factors

for determining the minimum velocity for stable running gaits. This makes the leg configura-

tion an important factor for design for running at a desired speed.

The choice of stiffness and leg angle is not critical for stability (Figure 4.18, 4.20), but does

have an effect on step-down robustness. At a given velocity, stiffness and leg angle can be cho-

sen in a combination to maximize step-down robustness.

Adjustable leg stiffness could provide the required change to maintain robust running for

varying velocities. A time-based leg-stiffening strategy could improve the step-down robust-

ness (Palmer et al., 2014). This could be achieved by adjustable springs or antagonistic ac-

tuation (Hosoda et al., 2008). A non-linear leg stiffness may also be tuned to provide a large

improvement in robustness to ground-height variation (Karssen and Wisse, 2011). Control of

leg stiffness can also be use to control forward velocity during running (Bertrand, 2012).

7.5.3. Swing-Leg Retraction

Angular retraction of the leg during flight phase contributes to stability and robustness of the

TSLIP model (Figures 4.22, 4.23). The retraction rate makes the touch-down angle dependent

on flight duration and thereby improves stability. Shorter flight durations result in flatter touch-

down angles of the leg, leading to a more vertical lift-off and a longer flight phase on the next

step. The opposite happens for a longer flight duration, leading to a stabilizing oscillating

behaviour from swing-leg retraction. Implementing swing-leg retraction stabilizes gaits that

would be unstable for fixed leg angles, similar to the effect on the SLIP model (Seyfarth, 2003).

The optimal swing-leg retraction rate differs with leg type (Karssen et al., 2015) and will thus

need to be tuned to the specific application instead of directly applying the TSLIP model re-

sults to robot design.

Another reason for improvement in robustness is that swing-leg retraction improves ground

clearance, which would otherwise be minimal and cause tripping even for small disturbances.

This corresponds with the behaviour for the SLIP model with swing-leg retraction (Ernst et al.,

2012). Ground clearance is less of a problem for a two-legged model because the swing-leg will

need to be shortened anyway for the forward swing-through. Such a model will still have the

advantage to stability from applying a swing-leg retraction rate.

A downside to applying a constant retraction rate is that it becomes possible to miss the

stance phase for large step-down changes in ground height. This is also represented in the nor-

malized maximum drop defined by Daley and Usherwood (2010) which depends on retraction

rate and leg stiffness. Stopping swing-leg retraction at a certain angle could be a strategy for

avoided missing a step.

7.6. Control Without Inertial Reference
Most spring-mass running models are based on the SLIP model (Blickhan, 1989) which uses an

inertial reference angle for its leg reset upon lift-off. Robots commonly have inertial measure-

ment units (IMU) to measure their orientation in the world and depend on feedback control to

stabilize the trunk orientation.

The TSLIP model has self-stable running gaits without any explicit inertial measurements
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with the centre of mass offset below the hip. This self-stable body configuration allows the leg

angle reset upon lift-off and swing-leg retraction rates to be defined as local hip angles.

The stable running gaits for the hip-driven TSLIP model are in line with the findings by

Shen et al. (2014) that demonstrate a positive stabilizing effect for rotary forcing in the SLIP

model.

The angular velocity of the stance leg is determined by the horizontal velocity during the

stance phase. This can be combined with the consistent body orientation to relate the hip

angular velocity to forward velocity. The local hip angular velocity controller thus becomes a

velocity controller through implicit feedback from the system dynamics when pitch is stable.

Neville et al. (2006) describes a similar concept but applies an inertial reference to control body

pitch.

Applying velocity control through controlling the local hip angular velocity means that the

TSLIP model is able to run without neutrally stable modes (Figure 4.24). The downside is that

it is less robust to velocity disturbance (Figure 4.25) because a spike in control torque will lead

to a fall if the difference between limit cycle velocity and actual velocity is too large.

The Planar Elliptical Runner demonstrates the practical application of the local control

principles discussed here. The leg kinematics of the Planar Elliptical Runner are defined rel-

ative to its body by its mechanical design. This means that its steady body pitch angle provides

a constant reference for the rest of its dynamic behaviour. This is similar to what is observed for

the TSLIP model with hanging mass and local angle referencing. The physical behaviour of the

voltage controlled electric motor is similar to the TSLIP control on the hip angular velocity. The

motor throttle is analogous to setting the reference angular velocity in the model. This leads to

the Planar Elliptical Runner having global velocity controlled via its intrinsic dynamics.

7.7. Modelling the Planar Elliptical Runner

The TSLIP model with local angular velocity control and leg damping can model the behaviour

of the Planar Elliptical Runner at top speed, as illustrated with the comparison of the mean

state behaviour per step in Figure 6.1.

The Planar Elliptical Runner does roll and yaw a little as it runs, which disturbs some of

the state variables. This affects the mean measurements because completely planar motion is

assumed and only one side of the robot is fully visible. For example, the mean end of stride

height of the centre of mass does not match with the start of the stride.

The model response correlates well with the mean measured step behaviour in stance phase

(Table 6.3). The correlation is better for locally measured states, i.e. leg length and leg an-

gle, than for global states, i.e. centre-of-mass height, pitch, and velocity. The measurement of

global states is subject to more disturbances, resulting in more variance than is present in the

TSLIP model.

The correlation for the full stride is not as good because the TSLIP model has only one leg.

The Planar Elliptical Runner needs to shorten its leg to be able to swing it forward, whereas the

TSLIP model leg is reset instantly to its resting length and reference angle upon lift-off. This

explains the large differences and poor correlation for leg angle and leg length between model

and experimental results for the full stride.

The absence of a second leg means grounded running gaits are not possible in the TSLIP

model. This has an effect on the lower velocity limits and robustness, as it is unable to take a
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double-stance step or compensate a missed stance phase with its second leg. Having only one

leg does not invalidate results for running with an aerial phase. However, the fact that the model

only has a single leg means that it can not be used to model the dynamics of the swing leg. This

problem is the same for the canonical SLIP model. It has been handled by either implementing

a second leg to enable grounded running (Geyer et al., 2006) or by adding a small pendulum to

represent the swing leg (Rashty et al., 2014).

Taking into account the limits of a one-legged model, the results for centre-of-mass tra-

jectory, stance-phase behaviour, and stability and robustness can be applied to fast bipedal

running.

7.8. Future Research
The theoretical foundations in sagittal-plane running should be used to drive design and de-

velop experimental fast running robotics.

Additionally, extending the robustness and stability analysis to a two-legged model in the

sagittal plane could provide further insight into fast-running behaviours because it introduces

the capability for a double-stance phase, and thus grounded running, and the ability to miss a

stance phase with a single leg without falling.

Other strategies such as non-linear stiffness, leg-length variation, and variable leg retrac-

tion speeds may be applied to improve running stability and robustness.

Starting from sagittal-plane stability, concepts for fast three-dimensional running should

be developed. Implementing lateral stability, especially in the context of self-stability, is still

an open problem. One possible direction is to design the running dynamics to introduce a

roll-yaw coupling similar to the mechanism that allows bicycles to self-stabilize with sufficient

forward velocity.

The mechanisms that enable the self-stable planar bipedal running in simulation and ex-

perimental robotics may also be present in biological running. Ostriches, for example, might

generate a metacentric pivot point to self-stabilize their body pitch. This could be tested with

measurements of ground reaction forces in running birds subjected to a disturbance in body

pitch.



8
Conclusion

A metacentric model can be used to explain pitch stability in the TSLIP model and the Planar

Elliptical Runner. The body mass acts as a consistent world reference when suspended below

a hip pivot point. This enables stable running without inertial measurements, utilizing only

local references. Subsequently, robots could do without an IMU for stable and robust running

if their mechanical design facilitates implicit control.

No complex control algorithms are required to control running velocity. Centre-of-mass

height and velocity are stable even without feedback or damping. Body-pitch stability and im-

plicit feedback from leg dynamics allows speed control based on the angular velocity at the hip.

Similarly, the TSLIP model with a constant driving hip torque coupled with a damping element

in the hip or leg will stabilize to a predictable velocity.

Self-stable fast running is possible for a larger number of parameter configurations than

slow running. Foot placement becomes less critical with greater speed, thus less precise control

may suffice.

For practical running robotics, robustness is more important than stability, once stability

has been achieved. Running with a specific limit cycle achieves little if a small disturbance

results in a fall. However, limit-cycle stability does provide a good starting point for evaluating

the feasibility of a running gait.
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A
Derivation of the Equations of Motion

The derivation of the equations of motion for the stance phase is done using the TMT method

(Vallery and Schwab, 2019) and verified with an independent derivation using Lagrangian dy-

namics.

The full system coordinate vector x is defined to be:

x =
[

xm ym l β φ
]T

. (A.1)

In stance phase, the foot is fixed and the entire system can be described with the minimal co-

ordinate vector q ,

q =
[

l β φ
]T

. (A.2)

The kinematic transformation T (q) : R3 → R5 describes the transformation from minimal co-

ordinates to the full set of coordinates,

x = T (q) =


−l cos(β)+ r sin(φ)+xf

l sin(β)− r cos(φ)+h

l

β

φ

 . (A.3)

The Jacobian of the kinematic transformation JT is taken with respect to the minimal coordi-

nates,

JT(q) = ∂T(q)

∂q
=


−cos(β) l sin(β) r cos(φ)

sin(β) l cos(β) r sin(φ)

1 0 0

0 1 0

0 0 1

 . (A.4)

This Jacobian allows the computation of the full set of velocities ẋ from the minimal velocities

q̇ ,

ẋ = JT(q)q̇ . (A.5)

The full mass matrix Mf is a diagonal matrix with the body mass m and mass moment of inertia

J ,

Mf = diag
([

m m 0 0 J
])

. (A.6)
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This is reduced to the mass matrix in minimal coordinates M with the kinematic Jacobian,

M = JT
TMfJT = (A.7) m 0 −mr cos(β+φ)

0 ml 2 mr l sin(β+φ)

−mr cos(β+φ) mr l sin(β+φ) J +mr 2

 .

The force vectors are defined in the full set of coordinates. The gravitational acceleration g

acts downward along the y axis. The applied force vector due to gravity f g is then

f g =
[

0 −mg 0 0 0
]T

. (A.8)

The hip torque is defined in the positive direction for β and φ, yielding the hip torque vector

f t,

f t =
[

0 0 0 τ τ
]T

. (A.9)

The compressive leg force vector f l acts along the leg length,

f l =
[

0 0 Fl 0 0
]T

, (A.10)

where the force Fl follows from Equation 2.1. The sum of the force vectors is transformed to the

force vector in minimal coordinates Q with the kinematic Jacobian,

Q = JT
T( f g + f t + f l) (A.11)

=

−mg sin(β)+k(l0 − l )− cl l̇

τ−mg l cos(β)

τ−mg r sin(φ)

 .

The convective accelerations c are computed,

c =
((
∂JT

∂q

)
q̇

)
q̇ , (A.12)

and transformed to the convective accelerations in minimal coordinates C ,

C = JT
TMc (A.13)

=

 mr φ̇2 sin(β+φ)−ml β̇2

mr l φ̇2 cos(β+φ)+2ml β̇l̇

mr l β̇2 cos(β+φ)+2mr β̇l̇ sin(β+φ)

 .

The system of equations can be solved for the generalized accelerations q̈ in stance,

Mq̈ =Q −C . (A.14)



B
Eigenvalues of the Poincaré Map

Define P a function that takes the state q at the Poincaré section right after touch-down and

returns the state at the next Poincaré section,

P (q n) = q n+1 , (B.1)

making it our stride-to-stride map.

To numerically evaluate stability, we evaluate the Jacobian of F with respect to q by means

of a first order central difference method,

Ai = P (q∗+∆qi )−P (q∗−∆qi )

2∆qi
, (B.2)

where ∆qi is a perturbation on the i th element of q∗ and Ai is the i th column of the map A that

governs the dynamics of perturbations from limit cycles as

∆q n+1 = A∆q n , with ∆q n = q n −q∗ . (B.3)

The Floquet multipliers are the eigenvalues λ of the linearized, discrete, step-to-step map A,

such that,

|A−λI| = 0 . (B.4)
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C
Validity of the No-Slip Assumption

The TSLIP model simulations assume the foot does not slip during the stance phase. The va-

lidity of this assumption is checked by assuming a coefficient of static friction of µ= 1.0 for dry

rubber on concrete. The maximum force of friction Ff is then:

Ff =µFy . (C.1)

The maximum static friction is compared with the actual horizontal reaction force assuming

the foot does not slip. Figure C.1 (left) shows that the magnitude of the horizontal ground re-

action force is lower than the allowable friction for the passive TSLIP model. The ground reac-

tion force for the TSLIP model fit to the Planar Elliptical Runner exceeds the allowable friction

slightly at the end of the stance phase. Some slipping may occur in the last 10 % of the stance

phase.

0.0 0.1 0.2
t (g 1/2 L1/2)

0

2

F x
 (M

g)

Passive TSLIP model

0.0 0.2 0.4 0.6
t (g 1/2 L1/2)

TSLIP model fit to Elliptical Runner

Fx

Ff

Figure C.1: Comparison between the actual ground reaction force and the maximum static friction force, assuming

a coefficient of static friction of µ = 1.0 for rubber on dry concrete. The passive TSLIP model (left), configuration

in Table 2.1 does not exceed the allowable friction. The TSLIP model fit to the Planar Elliptical Runner (right),

configuration in Table 5.1, slightly exceeds the allowable friction in the last 10 % of stance.
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D
Supplementary Material

This chapter provides supplementary material for the paper included in Part I. Section D.1 ex-

pands upon the changes of stance behaviour with running velocity. An overview of the ex-

perimental design with the Planar Elliptical Runner is provided in Section D.2. The measured

foot trajectory is provided in Section D.3. Illustrations for the motion-tracking algorithm are

provided in Section D.4. Finally, some details on the processing of the raw position data are

provided in Section D.5.

D.1. Effects of Speed on Stance Duration
For a spring-mass system with stiffness k and mass m that is hopping in place, the stance du-

ration tb is half of a full oscillatory period,

tb =π
√

m

k
. (D.1)

For a purely horizontal motion, stance duration is dominated by the leg angle, assuming a

symmetric stance phase. The distance covered in stance is a result of touch-down angle β0 and

resting leg length l0. Combining the distance with the centre-of-mass velocity yiels an estimate

of the stance time ts,

ts ≈ 2l0(π/2−β0)

v0
, (D.2)

using a small-angle approximation to simplify the equation.

The centre-of-mass trajectory for the SLIP and TSLIP models becomes increasingly hori-

zontal as running velocity increases. This becomes apparent in the difference in stance time as

the speed increases. This change from a bouncy gait dominated by spring-mass behaviour to

a more horizontal, velocity-dominated gait, may explain in part why the choice of leg stiffness

and touch-down angle becomes less critical at high speeds.

D.2. Experimental Design
The measurements of the running behaviour of the Planar Elliptical Runner were obtained with

the robot running on a regular treadmill. The complete set-up is illustrated in Figure D.1.
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10 mph

Figure D.1: Experimental set-up for measurements of the Planar Elliptical Runner on a treadmill. The camera is

positioned to the left of the robot. The robot is laterally stabilized with Teflon-covered supports between two acrylic

glass sheets. The sheets are held upright by two wooden supports. The operator controls the motor voltage to keep

the robot within the field of view of the camera. The feet are marked with coloured tape for tracking.

The robot is kept upright with Teflon-covered supports between two acrylic sheets. These

sheets are supported by two wooden supports on the treadmill. The right sheet is fitted with a

large peace of white paper to provide an even background for the measurements. The camera

is positioned on the left such that the robot fits within the field of view with some margin. The

operator is able to reliably control the speed of the robot such that it remains within view of the

camera for the duration of the recording.

Spotlights surround the experimental set-up to provide a well-lit environment. This allows

high shutter-speeds to minimize motion blur in the recorded image.

The 1000 Hz frame-rate for the video recording is the maximum the camera was capable

of. The resulting data contained more information for outlier rejection and estimation of state

parameters than the 240 Hz or 500 Hz trials. High frequency position measurements were es-

pecially useful due to the smoothing required for velocity estimation.

D.3. Measured Foot Trajectory

The mechanism generates consistent foot trajectories as illustrated in Figure D.2, with the co-

ordinates taken with respect to the centre of mass. There is a clear oscillation in the trajectory

due to the leg compliance as the foot is swung forward.
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Figure D.2: Plot of the foot position measurements and mean trajectory of the Planar Elliptical Runner experiment.

The coordinates are with respect to the centre of mass. The trajectory shows a consistent oscillation as the foot is

swung forward.

D.4. Motion Tracking Details
This section provide some illustration for the motion tracking algorithm described in Section 5.5.

Figure D.3 shows the steps taken for the tracking of the circular Teflon-covered supports that

are used to support the Planar Elliptical Runner between the acrylic sheets. The steps for track-

ing the foot positions are illustrated in Figure D.4.

(a) (b) (c)

Figure D.3: Tracking of the circular Teflon-covered supports that define the body position and orientation of the

Planar Elliptical Runner. (a) A region of interest is selected on the grey-scale version of the frame, based on the last

known points. (b) A Canny edge-detection algorithm is applied to the masked region of interest. (c) Circles are then

fit using a Hough transform to identify the position of the circular supports.

D.5. Processing of Position Data
The raw data from the motion-tracking algorithm contains outliers and noise. The outliers are

removed by comparison to a low-pass-filtered copy of the dataset. Values beyond a threshold

value from the smoothed data are rejected as illustrated in Figure D.5. High-frequency noise is

then removed with a low-pass filter as illustrated in Figure D.6. The noise originates from slight

fluctuations in the tracking algorithm and the discrete nature of the measurements, which rely

on the image resolution.
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(a) (b)

(c) (d)

Figure D.4: Tracking of the colour-marked feet of the Planar Elliptical Runner. (a) The background-subtraction

algorithm produces a mask that removes most of the static background elements from the frame. (b) A region of

interest is selected from the full frame for tracking foot points. (c) After the background is masked from the region

of interest, a HSV colour mask is applied that masks anything that is not the foot colour. (d) The two blobs with the

largest area are then selected, where the centroid is recorded as the foot position.
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Figure D.5: Segment of the position data from the motion tracking of the Planar Elliptical Runner, illustrating the

process of outlier rejection by comparison to a low-pass-filtered copy of the dataset.
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Figure D.6: Segment of the position data from the motion tracking of the Planar Elliptical Runner, illustrating the

use of low-pass filtering to remove high-frequency noise.





E
Planar Running with Non-Massless Legs

E.1. Introduction
The spring-loaded inverted pendulum (SLIP) model has been used extensively to model run-

ning centre-of-mass dynamics. It may also be used as a foundation for extended running mod-

els. The SLIP model may be anchored in a model with leg masses and damping, whilst pre-

dominantly conserving the domain of leg parameters leading to self-stable running patterns

(Peuker et al., 2012).

Passive body-pitch stabilization for bipedal running has been demonstrated with the TSLIP

model and experimentally shown to be possible with the IHMC Planar Elliptical Runner. Using

the TSLIP model as a starting point for design, we expect it to be possible to develop a planar

bipedal running model with leg mass that demonstrates similar self-stability, especially with

respect to trunk stabilization.

Section E.2 describes the design of a bipedal running model and a parametric controller for

leg reciprocation. The methods for analysis of this model are described in Section E.3, followed

by the results in Section E.4. The results are discussed in Section E.5, with the conclusions in

Section E.6.

E.2. Two-Legged Running Model

E.2.1. Model Description

The two-legged running model is illustrated in Figure E.1. It consists of a body and two legs with

each a thigh, shank, and foot. All elements have non-zero mass and inertia to avoid singulari-

ties in the equations of motion. A torque can be applied at the hip to generate leg reciprocation

and telescopic actuation in the thigh allows leg-length control.

The parameter values used in this chapter are listed in Table E.1. The initial conditions to

start the model in a periodic gait are provided in Table E.2.

E.2.2. Equations of Motion

The derivation of the equations of motion starts from the body, which has its centre of mass at

the Cartesian coordinates xm, zm and has a pitch angle θb.
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Table E.1: Parameter choice for two-legged running model.

Parameter Value Unit

Body mass mb 0.80? M

Body inertia Jb 0.10+ M L2

Thigh length lt 0.70? L

Thigh mass mt 0.08? M

Thigh inertia Jt 0.01? M L2

Shank length ls 0.30? L

Shank mass ms 0.01? M

Shank inertia Js 0.005? M L2

Foot mass mf 0.01? M

Hip offset r1 0.30+ L

Leg CoM fraction r2 0.40? −
+ based on a fixed point from the TSLIP model

∗ result from the numerical search for a periodic gait
? fixed parameter

Table E.2: Initial conditions for the two-legged running model.

Positions Velocities

Parameter Value Unit Value Unit

Horizontal body position xb 0.000+ L ẋb 1.898+ g1/2 L1/2

Vertical body position zb 0.514+ L żb −0.079+ g1/2 L1/2

Body pitch angle θb −0.290+ rad θ̇b 0.202∗ rad g1/2 L−1/2

Right thigh length lt,R 0.700+ L l̇t,R −0.012∗ g1/2 L1/2

Right shank length ls,R 0.300+ L l̇s,R −0.886∗ g1/2 L1/2

Right hip angle θh,R −0.351+ rad θ̇h,R 1.6282∗ rad g1/2 L−1/2

Left thigh length lt,L 0.370∗ L l̇t,L −0.997∗ g1/2 L1/2

Left shank length ls,L 0.300? L l̇s,L −0.136∗ g1/2 L1/2

Left hip angle θh,L 0.690∗ rad θ̇h,L −2.9350∗ rad g1/2 L−1/2

+ based on a fixed point from the TSLIP model
∗ result from the numerical search for a periodic gait

? fixed parameter
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Figure E.1: Planar running model with two legs with non-zero mass. The body has a mass mb and rotational mo-

ment of inertia Jb . A torque τ can be applied at each hip, to drive the rotation of the legs. The legs are identical and

the subscripts “R” and “L” are used to distinguish forces and states between the two legs. The thigh with length lt,

mass mt, and inertia Jt is telescopically actuated with a force Ft. The shank has length ls, mass ms, and inertia Js.

It is a linear spring-damper with force Fs. At the end of the shank is a point-mass foot with mass mf. The ground

reaction forces in vertical direction, Fz, and horizontal direction, Fx, are applied at the feet.

The rotation matrix R(θ) about an angle θ is

Ry(θ) =
[

cos(θ) sin(θ)

−sin(θ) cos(θ)

]
, (E.1)

which can be used to transform the unit vectors in the inertial reference frame e to the unit

vectors in the body reference frame b,

bz = Ry(θb)ez . (E.2)

Next, define the hip reference frame h for each leg, rotated an angle θl from the body,

hz,L = Ry(θh,L)bz , hx,R = Ry(θh,R)bx . (E.3)

The position vector pb defines the centre-of-mass position of the body in the inertial refer-

ence frame,

pb = xmex + zmez . (E.4)

The hip position ph is then defined relative to the body,

ph = pb + r1bz , (E.5)

and the position of the centre of mass of the thigh, p t, the shank, ps, and the foot, p f, are defined

relative to the hip point,

p t,L = ph − r2lt,Lhz,L , p t,R = ph − r2lt,Rhz,R , (E.6)

ps,L = ph − (lt,L + r2ls,L)hz,L , ps,R = ph − (lt,R + r2ls,R)hz,R , (E.7)

p f,L = ph − (lt,L + ls,L)hz,L , p t,R = ph − (lt,R + ls,R)hz,R , (E.8)
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where r2 is the position of the centre of mass as a fraction of the length of the leg segment.

The minimal coordinate vector q fully describes the system configuration,

q =
[

xb zb θb lt,R ls,R θh,R lt,L ls,L θh,L

]T
. (E.9)

The kinematic transformation full system coordinate vector T (q) : R9 → R27 describes the

transformation form minimal coordinates to the full set of coordinates,

x = T (q) =
[

pT
b θb pT

h

pT
t,R θt,R pT

s,R θs,R lR lt,R ls,R

pT
t,L θt,L pT

s,L θs,L lL lt,L ls,L

pT
f,R pT

f,L

]T
. (E.10)

The Jacobian of the kinematic transformation JT is taken with respect to the minimal coordi-

nates,

JT(q) = ∂T(q)

∂q
. (E.11)

This Jacobian allows the computation of the full set of velocities ẋ from the minimal velocities

q̇ ,

ẋ = JT(q)q̇ . (E.12)

The full mass matrix Mf is a diagonal matrix with the body mass m and mass moment of inertia

J ,

Mf = diag
[

mb mb Jb 0 0

mt mt Jt ms ms Jt 0 0 0

mt mt Jt ms ms Jt 0 0 0

mf mf mf mf

]
(E.13)

This is reduced to the mass matrix in minimal coordinates M with the kinematic Jacobian,

M = JT
TMfJT . (E.14)

The force vectors are defined in the full set of coordinates. The gravitational acceleration g

acts downward along the z axis. The applied force vector due to gravity f g is then

f g =
[

0 −mbg 0 0 0

0 −mtg 0 0 −msg 0 0 0 0

0 −mtg 0 0 −msg 0 0 0 0

0 −mfg 0 −mfg
]

. (E.15)

The vector f grf contains the forces applied at the feet when in contact with the ground,

f grf =
[

0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Fx,R Fz,R Fx,L Fz,L

]
. (E.16)
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The vector f a contains the torque τ at the hip, the thigh force Ft and the shank force Fs,

f a =
[

0 0 0 0 0

0 0 τR 0 0 0 0 Ft,R Fs,R

0 0 τL 0 0 0 0 Ft,L Fs,L

0 0 0 0
]

. (E.17)

The sum of the force vectors is transformed to the force vector in minimal coordinates Q with

the kinematic Jacobian,

Q = JT
T( f g + f grf + f a) . (E.18)

The sum of the force vectors is transformed to the force vector in minimal coordinates Q with

the kinematic Jacobian,

Q = JT
T( f g + f t + f l) . (E.19)

The convective accelerations c are computed,

c =
((
∂JT

∂q

)
q̇

)
q̇ , (E.20)

and transformed to the convective accelerations in minimal coordinates C ,

C = JT
TMc . (E.21)

The system of equations can be solved for the generalized accelerations q̈ in stance,

Mq̈ =Q −C . (E.22)

E.2.3. Ground Contact

A stiff, linear spring-damper model is used for to model the ground reaction forces. This model

has a vertical stiffness kz and damping cz, and a horizontal stiffness kx and damping cx. The

displacement is specified with respect to the touch-down position of the foot, which is denoted

with the subscript “TD”. The foot is not allowed to pull on the ground, so the ground reaction

forces are only applied if the vertical force is larger than zero,

Fz =
kz(zf,TD − zf)− cz żf if Fz > 0∧ zf ≤ 0,

0 otherwise,
(E.23)

Fx =
kx(xf,TD −xf)− cxẋf if Fz > 0∧ zf ≤ 0,

0 otherwise.
(E.24)

E.2.4. Actuation and Control

Motivated by the robustness of the TSLIP model response, we design simple parametric trajec-

tories to generate the required leg reciprocation. The parameters for the controller are listed in

Table E.4.
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Table E.3: Ground contact model parameters.

Parameter Value Unit

Vertical ground stiffness kz 100.0 M g L−1

Vertical ground damping cz 10.0 M g1/2 L−1/2

Horizontal ground stiffness kx 200.0 M g L−1

Horizontal ground damping cx 20.0 M g1/2 L−1/2

Table E.4: Controller parameters for the two-legged running model.

Parameter Value Unit

Duty factor d 0.58+ −

Stride time T 1.40+ g−1/2 L1/2

Initial phase offset ρ0 0.08∗ −

Thigh proportional gain Kp,t 500.0 ? M g L−1

Thigh derivative gain Kd,t 20.0 ? M g1/2 L−1/2

Thigh length in swing lt,s 0.40? L

Hip proportional gain Kp,θ 0.50? M g L rad−1

Hip derivative gain Kd,θ 0.50? M g1/2 L3/2 rad−1

Hip angle forward reference θf −0.54∗ rad

Hip angle sweep θs 1.44∗ rad

Shank spring stiffness k 8.0+ M g L−1

Shank spring damping cl 0.30+ M g1/2 L−1/2

+ based on a fixed point from the TSLIP model
∗ result from the numerical search for a periodic gait

? fixed parameter
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Phase definition

Define a phase variable ρ ∈ [0,1), which determines the phase in the stride period T .

ρ = t mod T

T
. (E.25)

The phase of the right leg ρR is shifted by an initial offset ρ0. The phase of the left leg ρLis

shifted a half period from the right leg,

ρR = (ρ+ρ0) mod 1, (E.26)

ρL = (ρR +0.5) mod 1. (E.27)

Compliant Shank Behaviour

The shank provides the compliant function required for the stance-phase behaviour. It func-

tions as a linear spring-damper with stiffness k, resting length ls,0, and damping coefficient

cl,

Fs = k(ls,0 − ls)− cl l̇s (E.28)

Thigh-Length Control

The thigh-length reference lt,ref is set to a constant value of lt,0 during the stance phase to not

interfere with the effect of the shank compliance. During the swing phase, the thigh needs to

be shortened to provide ground clearance. The leg is retracted to a length lt,s, with a parabolic

reference trajectory that starts and ends at the stance-phase reference length,

lt,ref(ρ) =
lt,0 if ρ ≤ d ,

lt,s

(
2ρ−1−d

1−d

)2 + (
lt,0 − lt,s

)
otherwise.

(E.29)

The reference leg-length velocity of the thigh is set to the time derivative of the position refer-

ence,

l̇t,ref

0 if ρ ≤ d ,
4lt,s

1−d

(
2ρ−1−d

1−d

)
1
T otherwise.

(E.30)

The force Ft applied by the thigh controller is then calculated with the reference trajectories,

Ft(ρ) = Kp,t(lt,ref(ρ)− lt,ref)+Kd,t(l̇t,ref(ρ)− l̇t,ref) , (E.31)

where Kp,t ≥ 0 is the proportional gain and Kd,t ≥ 0 is the derivative gain.

Hip-Angle Control

The reciprocating behaviour of the legs is generated from the reference trajectory for the hip

angle θref.

θref(ρ) =
−θs

2

[
cos

(ρπ
d

)+1
]+θf if ρ ≤ d ,

θs
2

[
cos

(
(ρ−d)π
(1−d)

)
+1

]
+θf otherwise.

(E.32)
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This prescribes leg retraction from the forward angle θf through a sweep angle θs for the stance

phase. The swing-phase trajectory brings the leg forward again for the next step. The velocity

reference for the hip angle controller θ̇ref is the time derivative of the position reference,

θ̇ref(ρ) =

π
d · θs

2 sin
(ρπ

d

) 1
T if ρ ≤ d ,

− π
(1−d) · θs

2 sin
(

(ρ−d)π
(1−d)

)
1
T otherwise.

(E.33)

The hip torque is then calculated with the reference trajectories,

τ(ρ) = Kp,θ(θref(ρ)−θ)+Kd,θ(θ̇ref(ρ)− θ̇) , (E.34)

where Kp,θ ≥ 0 is the proportional gain and Kd,θ ≥ 0 is the derivative gain.

E.2.5. Numerical Integration

The equations of motion are numerically integrated with a Dormand-Prince 5(4) embedded

Runge-Kutta integrator (Dormand and Prince, 1980) in Java, as implemented in Apache Com-

mons Math 3.6. Absolute and relative tolerance on the integrated state are set to 1.0×10−8 in

dimensionless units as per Table 3.1. The touch-down of the right foot is implemented as a

switching condition to mark the beginning and end of the stride.

E.2.6. Search for Periodic Gaits

The search for periodic limit cycles of the two-legged running model covers both control pa-

rameters and initial conditions. The initial guess makes use of a fixed point for the TSLIP model.

Parameters that can be directly implemented in the two-legged model are fixed in the optimiza-

tion to minimize the number of free variables.

The model variables are thus either chosen, based on the TSLIP result, or free in the opti-

mization. This distinction is indicated in the tables with the model configuration in Table E.1,

controller parameters in Table E.2.4, and initial conditions in Table E.2.

Periodic limit cycles are found by numerical optimization, with a method similar to that ap-

plied in the TSLIP study. A Covariant Matrix Adaptation Evolution Strategy (CMAES) (Hansen

et al., 2009) optimization is applied to minimize the cost function, implemented with the Apache

Commons Math 3.6 library in Java.

We combine the system configuration in minimal coordinates, q , and velocities, q̇ , into

a state vector z . The horizontal position xb is not periodic and therefore the first element is

removed from the state vector. The cost function C (z) for finding a fixed point takes the sum of

squared differences over one stride,

z =
[

x

ẋ

]
, (E.35)

C (z) = (zn − zn+1)T(zn − zn+1) . (E.36)

The initial state zn is set to always start at the beginning of the stance phase with the right foot

on the ground. The state after one stride zn+1 is the result of numerically integrating a full stride

and taking the system state immediately after touch-down of the right foot.
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E.3. Methods

E.3.1. Reciprocating Leg Controller

The controller performance is tested by comparing the actual joint trajectories to the refer-

ence trajectories. The thigh length is expected to follow closely due to the high-gain controller,

whereas the hip angle is expected to deviate more from the trajectory due to the lower gains on

the controller. The shank is expected to show similar behaviour to the leg spring in the TSLIP

model.

E.3.2. Stability and Robustness

The model is expected to inherit some of the properties in stability and robustness from the

TSLIP model that is used as a basis. We test for stability with the eigenvalues of the linearized

stride-to-stride map, defining a stride from the touch-down of the right foot to the next touch-

down of the right foot. Robustness is evaluated as the number of full strides the model runs

until falling.

E.3.3. Metacentric Pitch Stabilization

We test for metacentric stabilization of body pitch in a manner similar to the test for the TSLIP

model. The ground reaction forces and resultant impulse are compared for a change in body-

pitch angle, θb, of 0.0 rad, 0.5 rad, and −0.5 rad. The leg position and orientation are not changed

with respect to the inertial reference frame. To that effect, the hip angles, θh, are adjusted in the

opposite direction of the leg angle.

E.4. Results

E.4.1. Reciprocating Leg Controller

The search for a periodic gait results in a viable running gait for the two-legged model, using

the TSLIP model for a starting point and parametric trajectories for control.

The reference trajectories for generating the reciprocating bipedal running behaviour are

plotted in Figure E.2 together with the actual trajectories in simulation. The thigh length and

velocity closely follow the trajectory as controlled by the high-gain PD controller. The shank

exhibits simple spring-damper behaviour. It shortens and then extends as the runner moves

through the stance phase, followed by a damped oscillation in the swing phase. The hip an-

gle deviates more from the reference trajectory than the thigh length. There are some sharp

changes in hip angular velocity upon touch-down and lift-off.

Figure E.3 shows how the joint-space trajectories correspond to a reference foot trajectory

and the actual foot trajectory. The foot trajectories are not perfectly periodic.

E.4.2. Stability and Robustness

The gait is numerically unstable from these initial conditions, with a maximum eigenvalue of

67.0. The model falls after approximately 10 full strides. The last strides before the model falls,

the hip angles for both legs start to deviate more from the reference trajectory.
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Figure E.2: Controller reference and recorded trajectories for thigh length lt, shank length ls and hip angle θh of the

two-legged planar running model.

-1

0

1

0.0 0.2 0.4 0.6 0.8 1.0

reference trajectory
left foot trajectory

-1

0

1

0.0 0.2 0.4 0.6 0.8 1.0

reference trajectory
right foot trajectory
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actual trajectory deviates from the reference during stance due to the compliance of the lower leg.
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E.4.3. Metacentric Pitch Stabilization

The ground reaction forces remain mostly unchanged in response to a disturbance in body

pitch as illustrated in Figure E.4. The resultant impulse from the ground reaction forces pro-

vides a restoring torque about the centre of mass. The magnitude and direction of the impulse

show only little change from the change in body-pitch angle.
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Figure E.4: Change in ground reaction force and resultant impulse for a disturbance in body pitch.

E.5. Discussion

The results with the two-legged model confirm that it is feasible to use a simple template model

as an anchor for a more complex running model. Parallels in model design provide a good

starting point for search for a periodic gait, starting from a configuration that is expected to be

viable limits the number of free parameters.

The control for this model is designed to provide a means of leg reciprocation for bipedal

running. These simple parametric trajectories enable bipedal running for the model with leg

mass. It supports the ideas that underly the Planar Elliptical Runner, that fast bipedal running

does not require complex control - robust planar running can follow from the system dynamics.

Although the resulting gait is not perfectly periodic and numerically unstable, we do ob-

serve that the metacentric model is applicable to the body-pitch stabilization of the two-legged

model. This conservation of pitch-stabilization and the basic viability of the running gait shows

that properties of the simple model can be retained as model complexity increases, even though

stability and robustness may not be fully conserved.

Optimization methods using more information from the dynamics may yield better solu-

tions in terms of accuracy of the periodic gait and stability, with less computational power than

the single-shooting evolution strategy that was applied.

A future step may be the development of a planar running robot that is designed based on

simulation parameters. This could validate the design of experimental robot dynamics building

on simplified model results.
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E.6. Conclusion
Simple models for bipedal running may be used to model the centre-of-mass dynamics and

other gait dynamics. Conversely, simple models can be used as a foundation for robotic de-

sign. We show that the TSLIP model provides a good starting point for design of a two-legged

running model with a trunk and non-massless legs. Simple parametric trajectories can be used

to generate a bipedal running gait in this model. Metacentric self-stabilization of body pitch is

conserved, as is the basic viability of the running gait, however the gait does become unstable

and less robust than that of the TSLIP model it is built upon.
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This chapter provides credit where credit is due for the ideas in this thesis, such that it may be

clear which is my own work and where I borrow from the unpublished work of colleagues.

Johnny Godowski provided the intuitive ideas that underly the metacentric stability de-

scribed in the paper, describing pitch stabilization as metacentric buoyancy related a hang-

ing body-mass configuration and an elliptical foot trajectory. He provided the idea that a for-

ward body-pitch angle was related to accelerated running. The HexRunner was developed

and experimented wiuth by Sebastian Cotton, Colton Black, Nick Payton, Ionut Olaru, Johnny

Godowski and Chris Schmidt-Wetekam. They later used intuitive understanding of the dynam-

ics and mechanical design to construct the Planar Elliptical Runner. The robot is testament to

the possible robustness of fast planar bipedal running, as it was designed with only minimal

background in simulation.

Jerry Pratt has been the driving force in trying to provide more understandable and testable

explanations. He has been the key to converting the intuition that underlies the Planar Elliptical

Runner into more tangible questions and approachable problems.

Under his supervision, Ken Chao performed a preliminary study to replicate the self-stable

behaviours found in the SLIP model. He found some evidence for the decoupling of foot place-

ment and centre-of-mass motion at high velocities. He constructed a precursor to the TSLIP

model by adding a pendulum to the hip of the standard SLIP model to begin capturing the

problem of trunk stabilization. This model exhibited self-stable gaits but still relied on inertial

measurements.

I started the work for my thesis with this SLIP model with a pendulum extension, but found

it had a singular configuration for the pendulum length r = 0.0. Therefore, I made the transition

to the TSLIP model based on use in literature (van Oijen et al., 2013) as it did not have this

singularity. The derivation of the equations of motion and the code for numerical integration,

limit-cycle search, testing stability and robustness were fully done by me, as are all the graphs

and illustrations in this thesis.

I formulated the hypotheses in the paper after discussing with Jerry Pratt the concepts that

needed to be tested and explained. Furthermore, I set up the methods for testing the hypothe-

ses. Jerry suggested looking at the resultant ground impulse per step to test for metacentric

stability. I implemented the methods and further made the comparison to the virtual pendu-

lum models (Maus et al., 2010). Jerry suggested that I look into the stance-phase interaction
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between the leg spring and the centre-of-mass trajectory to find out more about height and

velocity stabilization; he proposed they could be stable without damping based on discussions

with Johnny Godowski and Chris Schmidt-Wetekam. I made the choice to evaluate the contri-

butions of both leg and hip damping, as well as which parameters sweeps I performed. I made

the choice for the control strategies in the model with feedback from Jerry.

It was my own idea to use motion tracking for performing measurements on the Planar

Elliptical Runner. Chris Schmidt-Wetekam operated the robot during the experiment and Billy

Howell set up the camera and lighting. I then used the high-speed video to perform the motion

tracking on the feet and body markers of the robot. I then also processed and filtered this

data and graphed the per-step averages. I fitted the TSLIP model to these measurements and

quantified the quality of the model fit.

Finally I wrote up the paper to combine all ideas, results, and discussion into a single doc-

ument to be published. Jerry Pratt, Heike Vallery, Chris Schmidt-Wetekam, Johnny Godowski

and Robert Griffin provided feedback on the writing.

The work in the appendices is mostly mine, I designed a two-legged running model to build

on the TSLIP model for planar running. I do have to thank Sylvain Bertrand for suggesting to

start with a planar two-legged model, instead of making the jump to three-dimensional run-

ning directly from the TSLIP. I derived the equations of motion, designed the parametric con-

troller, and wrote the code for integration and optimization.
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