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This paper presents an optimal control framework to determine acollection of

open-loop command signals that mathematically guarantees operation of an air-

craft within certain prescribed state constraints. The framework is specifically ap-

plied to estimate margins for the reference command inputs of aircraft autopilot

systems, so that safe operation within a given flight envelope can be assured under

appropriate control action. Flight envelope excursions are generally considered as

precursors to Loss-Of-Control incidents, and hence, these margins contain safety

critical information that can help improve the situational awareness on-board the

aircraft. In off-nominal conditions, the computed safety margins provide indica-

tions of a degraded aircraft with reduced flying and handling qualities. These indi-

cations appear in the form of increasingly more strict limits on the autopilot refer-

ence command input. The entire framework is illustrated on an example problem

involving a pitch dynamics model with state constraints on the pitch attitude. Sim-

ulations are conducted wherein margins are computed for the reference pitch com-

mand of the pitch hold system, while the aircraft enters an off-nominal condition

with severely degraded system dynamics and reduced elevator effectiveness.
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Acronyms

DP Dynamic Programming

FEP Flight Envelope Protection

FSA Flight Safety Assurance

GTM Generic Transport Model

HJB PDE Hamilton-Jacobi-Bellman Partial Differential Equation

LOC Loss-Of-Control

QLC Quantitative Loss-of-control Criteria
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Nomenclature

A0, B0 = nominal LTI system matrices

A, B = off-nominal LTI system matrices

f = system dynamics

h = output equation

H = Hamiltonian

Ji = cost functional

kθ, kq, ks = control system gains [-,1/sec,-]

l i = state constraint

q = pitch rate [rad/sec]

t0 = current/initial time [sec]

T = prediction horizon [sec]

Vi = value function

x = state

x0 = current or initial state

yre f = ref. command input

y = output

Yre f = command input space

Yre f = set of admissible ref. command signals

δe = elevator input [deg]

δe,min, δe,max = min. and max. elevator input [deg,deg]

ζ = system state trajectory

(yre f min
, yre f max

) = command margins

θ = pitch attitude [deg]

θre f = pitch attitude ref. command [deg]

(θre f,min, θre f,max) = pitch attitude ref. command margins [deg]

Θre f = set of admissible pitch ref. signals
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I. Introduction

Loss-of-Control (LOC) is a major contributor to accidents andfatalities across all aircraft, opera-

tional categories, and phases of flight. In the commercial jet category alone, LOC was the cause of

22 accidents resulting in 1,991 fatalities [1] for the period between 1999 and 2008. Aircraft LOC

accidents are complex, and as stated in Kwatny et al. [2], areoften associated with flight outside

of the normal operating envelope, with non-linear influences, and with an inability of the pilot to

control the aircraft. In an attempt to quantify LOC, Wilborn and Foster [3] defined metrics and

criteria that can be used to identify LOC events from flight data. These metrics are collectively

known as the Quantitative Loss-of-control Criteria (QLC) andconsist of five envelopes related to

the airplane flight dynamics, aerodynamics, structural integrity and flight control use.

Due to the complexity and multidisciplinary nature of LOC, there is no single intervention

strategy to these incidents. Rather, a holistic approach must be employed which systematically

breaks-down the chain of events that precede a LOC incident.Analysis of accident data have

shown that LOC is often preceded by an adverse on-board condition (e.g. contaminated airfoil,

improper vehicle loading, vehicle damage) or external hazard condition (e.g. poor visibility, wake

vortices, wind shear, turbulence, and icing conditions), that eventually lead to an upset condition

(e.g. abnormal attitude, abnormal airspeed, uncontrolleddescent, or departure into a stall) be-

cause of an inability of the crew to deal with the situation [1]. This observation suggests that

current flight-crew decision making and supporting flight-deck software for safe vehicle operation

are inadequate in dealing with these so-called off-nominalconditions. That is, unawareness on the

impact of in-flight failures and hazardous flight conditionsoften result in situations where inappro-

priate command signals lead to dangerous flight conditions from which recovery to normal flight

is difficult to obtain.

In this regard, Flight Envelope Protection (FEP) is seen as auseful tool to prevent such danger-

ous excursions, which many times are caused by inappropriate piloting action. The task of FEP is

to monitor and maintain vehicle operation within prescribed limits under all circumstances. FEP

has been the subject of study in the recent past under variouscontexts. Yavrucuk et al. [4] have

studied automatic envelope protection systems tailored specifically for unmanned aerial vehicles,
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Falkena et al. [5] has investigated FEP strategies for smallaircraft from the general aviation cat-

egory perspective, and Sharma et al. [6] have looked into practical FEP schemes for commercial

aircraft under icing conditions. For the commercial aircraft category, the industry dictates two

philosophies in FEP; in the first philosophy, the responsibility of maintaining the aircraft within

prescribed limits is given to the flight control system. Thisphilosophy mandates an active role to

the flight control system, as pilot control actions can be overridden to prevent aircraft from leaving

certain envelope bounds. In the second philosophy, a more passive approach is taken wherein the

flight control system takes a more advisory role, and where the pilot has the final authority over the

aircraft [5]. Regardless of which philosophy is being followed, current FEP systems have not al-

ways helped in preventing LOC incidents and are not sophisticated enough to adapt to off-nominal

conditions that alter the flight dynamical characteristicsof the aircraft significantly. To overcome

this shortcoming, more advanced Flight Safety Assurance (FSA) systems [1] have to be developed

that can help assess and predict the impact of off-nominal conditions on vehicle flight safety.

In line with this goal, this paper presents a novel frameworkto determine“safety margins”for

the reference command signals of an aircraft autopilot system. These safety margins ensure that an

aircraft will never violate certain state constraints which define the boundaries of a safe maneuver-

ing envelope. Hence, provided that off-nominal dynamics are detected and identified almost imme-

diately, the computed margins provide important information concerning the operational freedom

of the aircraft. The proposed framework to compute the margins involves optimizing a set of cost

functionals over a space of admissible command signals. Thesign of these cost functionals signify

whether a state trajectory of the system can violate a state constraint within a certain predefined

time-window. The information extracted by the optimization of the cost functionals subsequently

allows us to use an iterative procedure to find suitable margins for the system. The extrema of the

cost functionals are computed using Dynamic Programming (DP) principles. This involves solving

a time-dependent Hamilton-Jacobi-Bellman Partial Differential Equation (HJB PDE) which often

arises in optimal control problems (see Kirk [7, Ch. 3] or Bardiand Capuzzo-Dolcetta [8, Ch. 3]

for more background).

In comparison to other related work [9–12] that aims to compute certain safety metrics for
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inputs signals of aircraft systems, the significance of the optimal control formulation presented in

this paper is that the computed marginsmathematicallyguarantee operation of the system within

the state envelope for aspecified prediction horizon. Furthermore, the method is directly applicable

to a large class of nonlinear systems, since no stringent assumptions are made concerning the

structure of the system. The practical application of the proposed methodology is illustrated on a

simplified aircraft system with state constraints on the pitch attitude. Simulations are conducted to

study the dynamic behavior of the margins in response to abrupt changes in the system dynamical

properties and control behavior. In line with expectationsand theory, simulation results verify

that envelope excursions only occur under prolonged neglect of the margins. These excursions are

preceded by a rapid shrinkage of the margins, indicating that the aircraft is rapidly approaching the

edge of the envelope. On the other hand, if the command inputscontinuously satisfy the margins,

an envelope excursion never seems to occur.

The remainder of this paper is organized as follows. SectionII elaborates on the details of

the problem addressed in this paper. Section III then casts this problem in an optimal control

framework, which is subsequently solved using DP principles. Section IV applies the proposed

method on an example involving a pitch dynamics approximation of a Generic Transport Model

[13]. Section V presents simulation results where margins are computed for the pitch reference

command along the simulated flight trajectory. Section VI states the conclusions of the work.

II. Problem formulation

Many physical systems operate safely only when they are confined to certain operating conditions.

In order to maintain a system within certain prescribed state constraints, one needs to be cautious

on how the system gets excited. For the case of an aircraft, this would relate to the type of command

signals provided to the autopilot system. The objective in this paper is to classify a collection of

feasible command signals that meet the requirement of keeping the aircraft within flight envelope

constraints. The goal in this section is to describe how the problem is approached quantitatively.

The aim is to clarify the overall setting of the problem by stating the assumptions, and also pointing

out to some additional considerations which go beyond the present scope of this paper.
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A. Modeling the aircraft as a command-driven system

In modern aircraft, it is often the case that a specific reference command signal is provided to

the autopilot system, after which an existing controllersteersthe aircraft towards that reference.

Hence, from the viewpoint of the cockpit, the aircraft can beviewed as a command-driven control

system. In addition, command limiting an autopilot is an easier retrofit option than the replacement

of a certified flight control system. This command-driven control system is modeled by

ẋ = f
(

x, yre f

)

(1a)

y = h (x) (1b)

where f andh are Lipschitz continuous functions, and wherex ∈ R
n denotes the state,y ∈ R

m

denotes the output, andyre f ∈ Yre f ⊂ R
m denotes the reference command input. In (1a), the symbol

yre f is deliberately used to emphasize that the input to the system is areference command. Thus

for the application in consideration,yre f denotes typical inputs to an autopilot system such as: the

reference pitch attitude, reference flight path angle, reference bank angle, reference velocity, etc.

In FEP, the goal is to determine how the reference command signals, denoted byyre f (·), have to be

limited, in order to ensure that certain state constraints are never violated by the state trajectories

of (1).

For the scope of this paper, we assume complete knowledge of the system (1). In practice,

an accurate model of the system will not always be present. This holds especially true when the

aircraft is flying in an off-nominal condition. Therefore, given this uncertainty on the system,

an important requirement is to develop in-flight system identification procedures that are capable

of estimating the anomalies in the flight dynamical characteristics. The challenging part of this

requirement is that the detection and identification of off-nominal conditions has to be done with

minimum time delays. LOC incidents can develop in a matter ofseconds, and given the unforgiving

and unpredictable nature of LOC, deliberate excitation of the controls in order to meet persistence

of excitation requirements is unacceptable during a failure condition. Despite all of this, note here

that many LOC incidents also occur when the aircraft appearsto be in a nominal state, hence
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making the work discussed in this paper relevant even without the existence of on-line system

identification procedures. In addition, some recent research [14] has shown that pilot inputs during

a normal task can be effective at near real-time system identification and this may be an approach

that is relevant to this task.

B. The safe maneuvering envelope

The state domain in which the aircraft must be operated denotes the safe maneuvering envelope.

This envelope is described in terms of inequality constraints on the state of the system, i.e.

l i (x) ≤ 0, i = 1, . . . , r (2)

A trivial example of an inequality constraint that helps define the contours of the envelope is

the limitation imposed on the angle-of-attack. Moreover, the five envelopes defined in [3]: the

adverse aerodynamics envelope, unusual Attitude envelope, structural integrity envelope, dynamic

pitch control envelope, and dynamic roll control envelope,may also be represented in terms of

inequality constraints (2).

Although not the focus in this paper, note that the actual safe maneuvering envelope may shrink

under adverse on-board conditions. To estimate changes in the flight envelope is a non-trivial mat-

ter, and currently is an active area of research within the aeronautical community. The survey paper

of Tang et al. [15] summarizes some of the developments in adaptive flight envelope estimation. In

general, the literature describes two different approaches for estimating the safe maneuvering en-

velope. The first approach aims to represent the envelope as the collection of all achievable aircraft

trim conditions along with their local stability maps. For example, in Tang et al. [16] the stable and

controllable trim conditions were determined off-line fora Generic Transport Model (GTM) with

left wing damage. The authors saw this as a comprehensive andconsistent way of representing

the maneuvering envelope, so that it can be used to determinefeasible trajectories for safe vehicle

landing during emergency conditions. The other approach that can be found in the literature is the

reachability formulation for estimating the safe flight envelope (see also [17, 18]). For example,
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in Oort et al. [19] and Lombearts et al. [20] the flight envelope was characterized as the intersec-

tion between the forward and backward reachable set of the aircraft trim set. In any case, both

approaches are computationally intensive and require a fully integrated modeling of aerodynamic,

structural and propulsive aspects of the aircraft in order to obtain high fidelity approximations of

the maneuvering envelope. In the present study, we assume that the safe maneuvering envelope, or

equivalently, the constraints (2) are a given information.

C. The command margins

In order to classify a collection of reference command signals that ensure operation within the

constraints (2), the input space Yre f is parameterized in terms of the interval

Yre f :=
[

yre f min
, yre f max

]

(3)

whereyre f min
andyre f max

denote respectively the lower and upper limit imposed on thereference

command. Collectively, the pair: (yre f min
, yre f max

) is referred to as the command margins for the

system (1). These margins are used to define a function space

Yre f :=
{

yre f (·) : [t0, t0 + T] 7→ [yre f min
, yre f max

]
∣

∣

∣ yre f (·) is measurable
}

(4)

whereYre f denotes a collection of reference signalsyre f (·) for the time period[t0, t0 + T]. These

signals are effectively piecewise continuous functions and satisfy the imposed margins for the time

period of consideration. That is, for anyyre f (·) ∈ Yre f , we have that

yre f min
≤ yre f (τ) ≤ yre f max

for all τ ∈ [t0, t0 + T].

The problem we lay out is as follows. Suppose that the aircraft is at some initial condition

x0 at time t0. The goal is to determine the margins: (yre f min
, yre f max

), such that, no matter what
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admissible command signal satisfying the margins for the next T seconds (i.e.yre f (·) ∈ Yre f ) is

provided to the system, the resulting state trajectory, denoted byζ(τ; x0, yre f (·)), will never violate

the envelope during that time period. That is, the aim is to have

max
τ∈[t0,t0+T]

l i
(

ζ(τ; x0, yre f (·))
)

< 0, i = 1, . . . , r (5)

for all yre f (·) ∈ Yre f .

The objective is to estimate these margins continuously in areal-time setting along the followed

state trajectory of the system. The variableT is a design parameter and denotes theprediction

horizon for which the margins are valid. The goal is to set the prediction horizonT sufficiently

large so that all important transients in the dynamics are included in the analysis. Too small a

prediction horizon can lead to deceitfully lenient marginswhich ignore the effects that come into

play at a later stage. Very small prediction horizons are misleading and can create the illusion

that there is a lot of operational freedom. On the other hand,very large prediction horizons are

computationally more challenging, but also do not add much value because of largely unmodeled

higher-order effects. Typically, only a local model of the aircraft flight dynamics around the current

flight condition is available, hence projecting too much into the future is not possible. As a thumb

rule, a suggestion is to fixT equal to two or three times the time-constant of the system.

Figure 1 illustrates the receding horizon approach for computing safety margins. In the figure,

the past state trajectory of an aircraft system is shown up totime t0 and statex0. Furthermore,

a time-window is depicted from the present timet0 to some future timet0 + T. Supposing that

certain command margins are set for this time-window, for the specified margins in figure 1a, it

appears that there exists a reference command signaly∗re f (·) ∈ Yre f that can give rise to an extremal

trajectoryζ∗(·; x0, y∗re f (·)) violating the envelope. On the other hand, for the slightlymore limited

margins in figure 1b, there exists no such command signal thatcan lead to such a trajectory. The

goal is to continuously ensure that the margins exhibit the property depicted in figure 1b. When

this is the case, those margins are called “safe”, where safety is interpreted as whether the margins

can guarantee flight inside the state envelope for a specifiedprediction horizon.

Note that the safety margins should be interpreted as advisory information, since violation of
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the margins does not imply an inevitable envelope excursion. A reference signal outside of the

margins can still be commanded to the aircraft, as long as oneconstantly monitors the dynamic

behavior of the safety margins after such actions. As will beseen later in section V, if a rapid

shrinkage of the margins occurs, then this would be an indication of the aircraft getting closer to

edge of the envelope.

t

x (t)

xmax

xmin

yre f max

yre f min

t0 t0 + T

x0

y∗re f (·)

Envelope violation

ζ∗
(

·; x0, y∗re f (·)
)

a) There exists at-least one reference commandyre f (·) ∈ Yre f that can steer the system
outside the envelope inT seconds.

t

x (t)

xmax

xmin

yre f max

yre f min

t0 t0 + T

x0

yre f (·)

ζ∗
(

·; x0, y∗re f (·)
)

b) There existsno reference commandyre f (·) ∈ Yre f that can steer the system outside
the envelope inT seconds.

Figure 1. ”Safe” (figure 1b) and ”unsafe” (figure 1a) command margins for some hypothetical dynamical system
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III. The Optimal Control Methodology

The objective formulated in section II C requires one to analyze the properties of a whole class of

system state trajectories at once. In this section, a systematic methodology is presented to tackle

this problem with the help of optimal control ideas for computing reachable sets of dynamical

systems (see [18,21]).

The details of the proposed methodology are explained in thecontext of the general problem

formulation given in section II. Later in section IV, the methodology is illustrated on a specific

example problem which involves computing safety margins for a pitch hold system.

A. The cost functional

The safety margins for the system (1) are found using an iterative approach. This approach involves

fixing certain margins for the system, and then, checking whether the corresponding signal space

(4) can contain reference signals that lead to state trajectoriesζ(τ; x0, yre f (·)) which violate the

conditions (5).

This verification of the system state trajectories for a specific collection of command signals

(4) can be done statistically through the means of simulating many individual state trajectories.

However, such a Monte Carlo approach will never provide a guarantee of whether all system state

trajectories are checked. That is, there might still exist some reference command signal withinYre f

that can lead to a trajectory crossing the envelope boundaries. Instead of analyzing the properties of

certain random state trajectory individually, it suffices that this verification process can be handled

analytically by recasting the problem in an optimal controlframework. Contrary to Monte Carlo

simulations, solving the problem using this framework allows for a systematic check of all state

trajectories.

To further elaborate on this, consider the cost functional

Ji

(

x0, yre f (·)
)

:= max
τ∈[t0,t0+T]

l i
(

ζ(τ; x0, yre f (·))
)

(6)

wherex0 denotes the state condition at timet0, andyre f (·) denotes a reference command signal over
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the time period[t0, t0 + T]. Suppose that (6) is optimized over the space of admissible command

signals (4), i.e.

J∗i (x0) = max
yre f (·)∈Yre f

Ji

(

x0, yre f (·)
)

(7)

Then the following can be stated for the selected margins (yre f min
, yre f max

):

• WhenJ∗i (x0) ≤ 0, the system is guaranteed to not violate i-th state constraint (i.e. l i (x) ≤ 0)

in the time-window[t0, t0 + T] for any admissible command signal.

• On the other hand, whenJ∗i (x0) > 0, there exists one or perhaps several command signals

yre f (·) ∈ Yre f that do result in trajectories violating the i-th state constraint.

Effectively, the optimization in (7) translates into a search within the function space (4) for the

worst possible command signal which will steer the system towards the boundaries of flight enve-

lope as much as possible inside the time-window:[t0, t0 + T]. In other words, the optimization will

find the extremal command signaly∗re f (·) ∈ Yre f , leading to the extremal trajectoryζ∗(·; x0, y∗re f (·))

shown in figure 1a or 1b. The extremal trajectories violate the envelope whenJ∗i (x0) ≤ 0 for some

i ∈ {1,2, . . . , r}. Vice versa, the state trajectories of (1) are guaranteed tostay inside the envelope

(2), if and only if

max
i∈{1,2,...,r}

J∗i (x0) ≤ 0 (8)

B. The iterative procedure to find safety margins

The properties of the cost functional are exploited to find safe command margins for the system

in a systematic way. An iterative procedure is used for that purpose. This iterative procedure

involves solving the optimal control problem (7) multiple times for different margin settings. At

every iteration step, incremental changes are made to the lower and upper limits of the margins,

i.e. to yre f min
andyre f max

respectively, until margins are found that meet the condition in (8). The

entire procedure is schematically depicted in figure 2.

The command margins are a function of the system dynamics (1)and the current statex0. To

explain this in more detail, consider that a degradation of the system dynamics (i.e. a slightly

less stable system) will lead for instance to more strict margins for the reference command inputs.
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state

Command
margins

Check condition (8)
Make necessary adjustments

to (yre f min
, yre f max

)

ComputeJ∗i (x0)

System dynamics

r

Figure 2. The iterative procedure for finding safe command margins.

Likewise, certain states will be more susceptible to envelope violations than others. For these

states, the margins will turn out to be more strict as well. Infact, for some state conditions which

are still within the envelope, it may be inevitable to prevent the aircraft from violating the safe

maneuvering envelope, no matter what command inputs are provided to the control system. In that

case, there will be no more margins left for the system and condition (8) will never be satisfied.

Our goal is to compute safety margins continuously along theactual state trajectory followed

by system. The intention is to continuously update the margins in-flight, so that this information

can be either: 1) fed-back to the pilot through cockpit displays for improving situational awareness,

or 2) used to directly augment command inputs provided to theautopilot system. The overall way

in which the information is used in the FEP system depends on the specific philosophy being

followed (as discussed in the introduction). Both implementations are illustrated in figure 3 with

the dashed lines.

C. Dynamic programming and the Hamilton-Jacobi-Bellman equation

The most challenging part of the procedure depicted in figure2 is to solve the optimal control

problem in (7). In the present implementation,J∗i (x0) is found through the dynamic programming

principle. In [18] it was showna that J∗i can be related to the value function of a terminal-cost

aSee proposition 3 on page 920.

14 of 31

American Institute of Aeronautics and Astronautics



Pilot with signal
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autopilot
Aircraft
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Outputs

System
identification

Command margin
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y(t)

r

r

r r

r

rr

rr

r

u(t) x(t)

system dynamics

command margins

situational
awareness

direct augmentation
of command inputs

Figure 3. The intended applications for the estimated command margins in the FEP architecture.

optimal control problem. The relationship is given by

J∗i (x0) = max
τ∈[t0,t0+T]

Vi (τ, x0) (9)

whereVi : [t0, t0 + T] ×Rn 7→ R is the value function given by the unique viscosity solutionof the

time-dependent Hamilton-Jacobi-Bellman PDE

∂Vi (t, x)
∂t

+ H

(

x,
∂Vi (t, x)
∂x

T)

= 0 (10a)

Vi (t0 + T, x) = l i (x) (10b)

In (10),H : Rn × Rn 7→ R denotes the Hamiltonian and consists of the optimization

H

(

x,
∂Vi (t, x)
∂x

)

= max
yre f∈Yre f

〈

∂Vi (t, x)
∂x

, f
(

x, yre f

)

〉

(11)

with 〈·, ·〉 denoting the standard inner product. Furthermore, notice that the boundary condition

(10b) equalsl i from (2).

Analytic solutions are rarely found for (11). Hence, in order to find J∗i through the relationship
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(9), the HJB PDE (11) has to be solved numerically. Well established convergent finite-difference

schemes exist (see e.g. Osher and Fedwick [22, Ch. 5]) that solve (11) on a fixed Cartesian grid

in the state-space. However, a major drawback of these methods is the exponential growth of the

grid-size with respect to the state dimension, limiting their applicability to low-order problems.

This computational complexity issue is a common problem in dynamic programming. A common

strategy used to overcome these computational challenges is to use Adaptive Dynamic Program-

ming (ADP) techniques [23] to find approximations of the value function with general function

approximators. In this paper, we have used the method from Govindarajan et al. [24], that uses

multivariate simplex splines [25,26] to find an approximation ofVi(t, x).

The investigation of other methods that solve (7) more effectively is an area of research that

requires more attention. In the present study, the focus waslargely on solving (7) through the DP

principle. However, the literature (see also the survey papers [27, 28]) offers a breadth of other

numerical methods to solve optimal control problems, each with their own share of advantages

and disadvantages. The aim of this paper is not to present a detailed analysis of numerical methods

that can solve (7), but more to illustrate the overall application of the framework presented in this

paper. In any case, we briefly hint out to the Gauss-Pseudospectral method [29, 30] as an suitable

alternative method which converts (7) into a nonlinear program. For very specific cases, such as

when f (x, yre f ), h(x) are linear, andl i (x) are convex functions, the nonlinear program reduces to

a convex optimization problem that can be solved effectively with existing algorithms.

IV. Illustrations on a pitch dynamics model

In this section, the working principles of the optimal control approach detailed in section III is

illustrated on an example involving the longitudinal pitchdynamics of a Generic Transport Model

(GTM) [13]. The methodology is applied on a case where reference pitch attitude commands are

provided to the pitch hold mode of the autopilot. More specifically, safety margins are computed

for the reference pitch attitude command, so that the aircraft is guaranteed to stay inside a safe

maneuvering envelope, defined in terms of limitations on thepitch attitude.

Safety margins are determined for two situations. The first situation represents thenominal
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casewherein the aircraft is in a healthy state. The second situation represents anoff-nominal case

wherein the aircraft has experienced a failure and is in a degraded state.

A. The pitch dynamics model: the nominal & off-nominal case

The longitudinal pitch dynamics of the GTM is approximated with a second-order linear system.

The approximation describes the pitch dynamics motion of the GTM in clean configuration at an

altitude 30000 ft, flying at Mach 0.8. In the approximate model, the aircraft is described by two

states: the pitch angleθ [deg] and pitch rateq [rad/s]. The input to the system is the elevator

deflectionδe [deg]. The input is bounded by the upper and lower limits:δe,max [deg] andδe,min

[deg], respectively.

Let x = [θ,q]T denote the state of the system. Under nominal conditions, the pitch dynamics

of the GTM [9] are

ẋ = A0x + B0δe, δe,min ≤ δe ≤ δe,max (12)

whereb:

A0 =























0 1

−2.6923 −0.7322























, B0 =























0

−3.3552























and

δe,min = −30 deg, δe,max = 30 deg

In the nominal case, the natural frequency of the systemωn0 is equal to 1.64 rad/s and the damping

ratioς0 is 0.223.

Many different failure scenarios can be considered for the GTM. In this paper, the analysis is

restricted to one hypothetical off-nominal condition which is representative of a case wherein the

open-loop dynamics become marginally stable. Additionally, a 50% loss of elevator effectivenes

is assumed in the failure condition. The dynamics of the off-nominal condition are

ẋ = Ax + Bδe, δe,min ≤ δe ≤ δe,max (13)

bThe matrices A0 and B0 are given forθ, andδe expressed in radians.
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where

A =























0 1

−2.3388 −0.0252























, B =























0

−1.7676























In (13), notice that the loss of elevator effectiveness can be recognized in the change of magnitude

in the secondB-matrix entry from−3.3552 to−1.7676. In comparison to the nominal system (12),

the off-nominal system has indeed become marginally stable, since the damping ratioς is now

only 0.0083. The natural frequencyωn has remained more or less constant which is now equal to

1.53 rad/s.

B. The pitch hold system

A pitch hold system is designed for the nominal case of the pitch dynamics model (12). The pitch

hold system takes a reference pitch attitude as a command input, and aims to bring the aircraft state

to that reference pitch attitude. The pitch hold system is a PD controller and takes the formc

δe = kθ
(

ksθre f − θ
)

− kqq (14)

with θre f denoting reference pitch attitude andqre f set to 0 rad/s. LetK1 = [kθ, kq] andK2 = kθks,

so that (14) can be rewritten as

δe = −K1x + K2θre f (15)

Stability requirements demand the natural frequencyωnr to be 2.5 rad/s and the damping ratioςr

to be 0.707. Pole-placement yields

K1 =

[

−1.0604 −0.8354
]

The gainK2 is used to eliminate the steady-state error for a step reference command. For the nom-

inal system, this gain would be set to−1.8628. Note that the saturation of the elevator introduces

non-linear effects. Within the saturation bounds however,the closed-loop system is completely

cThe gainskθ, ks, andkq are given forθ, θre f , andδe expressed in radians.
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linear and given by

ẋ = (A0 − B0K1) x + B0K2θre f

For the off-nominal case (13), the closed-loop dynamics are

ẋ = (A − BK1) x + BK2θre f

Note that the gainsK1 andK2 remain the same in the off-nominal case. Consequently, the closed-

loop dynamics is degraded during the off-nominal condition. That is, apart from a sluggish re-

sponse (i.e. high overshoot, large settling time, etc), a steady-state error is expected when a certain

reference pitch attitude is commanded. Also, larger elevator deflections are required to obtain the

same reference pitch attitude because of the loss in elevator effectiveness.

C. The safe maneuvering envelope and the reference pitch attitude margins

Our aim is to maintain the aircraft within an envelope constrained by limitations on the pitch

attitude. The constraints on the pitch attitude are

l1 (x) := −θ − 10◦ ≤ 0 (16a)

l2 (x) := θ − 25◦ ≤ 0 (16b)

Given that the aircraft is at some statex0 = [θ0,q0]T at time t0, the computed reference pitch

attitude margins (θre f,min, θre f,max) ensure that the state trajectory will not violate the constraints

(16) for the nextT seconds, as long as

θre f,min ≤ θre f (τ) ≤ θre f,max

for all τ ∈ [t0, t0 + T].
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D. Implementation of the optimal control framework

In order to compute the margins for the reference pitch attitude, the framework outlined in sec-

tion III is followed. Define the following cost functionals

Ji

(

x0, yre f (·)
)

:= max
τ∈[t0,t0+T]

l i
(

ζ(τ; x0, θre f (·))
)

, i = 1,2 (17)

In (17), the cost functionalJ1 refers to the lower bound set on the pitch attitude (16a). Thecost

functionalJ2 on the other hand refers to upper bound set on the pitch attitude (16b). For a given set

of margins (θre f,min, θre f,max), the cost functionals (17) are optimized over the space of admissible

reference signals

Θre f :=
{

θre f (·) : [t0, t0 + T] 7→ [θre f,min, θre f,max]
∣

∣

∣ θre f (·) is measurable
}

(18)

That is, the following are computed

J∗i (x0) = max
θre f (·)∈Θre f

Ji

(

x0, θre f (·)
)

, i = 1,2 (19)

J∗i (x0) can be found from the relationship (9), which subsequently requires solving PDE (10).

In the present study, (10) is solved using the method presented in [24].

The PDEs in (10) are coupled with an optimization problem. This optimization consist of

evaluating the Hamiltonian in (11). What follows next is an elaboration on how this evaluation is

performed. Let

f 0

(

x, θre f

)

=







































A0x + B0δe,min if − K1x + K2θre f < δe,min

A0x + B0δe,max if − K1x + K2θre f > δe,max

(A0 − B0K1) x + BK2θre f otherwise

(20)
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denote the dynamics of the nominal system. Similarly, let

f
(

x, θre f

)

=







































Ax + Bδe,min if − K1x + K2θre f < δe,min

Ax + Bδe,max if − K1x + K2θre f > δe,max

(A − BK1) x + BK2θre f otherwise

(21)

denote the dynamics of the off-nominal system. Hence, the Hamiltonians that need to be evaluated

are respectively

H0

(

x,
∂Vi (t, x)
∂x

)

= max
θre f∈[θre f,min,θre f,max]

∂Vi (t, x)
∂x

T

f 0

(

x, θre f

)

(22)

for the nominal case, and

H

(

x,
∂Vi (t, x)
∂x

)

= max
θre f∈[θre f,min,θre f,max]

∂Vi (t, x)
∂x

T

f
(

x, θre f

)

(23)

for the off-nominal case. From (20) and (21) it follows that the optimization variableθre f in (22)

and (23) is affine to bothx and ∂Vi (t,x)
∂x . Because of this fact, the optimization in (22) and (23)

becomes very straightforward as it can be expressed analytically with the feedback laws

g∗0 (t, x) =























θre f,min if ∂Vi (t,x)
∂x

T
B0K2 ≤ 0

θre f,max if ∂Vi (t,x)
∂x

T
B0K2 > 0

(24)

for the nominal case, and

g∗ (t, x) =























θre f,min if ∂Vi (t,x)
∂x

T
BK2 ≤ 0

θre f,max if ∂Vi (t,x)
∂x

T
BK2 > 0

(25)

for the off-nominal case. Subsequently, (22) and (23) can bereduced to

H

(

x,
∂Vi (t, x)
∂x

)

=

∂Vi (t, x)
∂x

T

f
(

x, g∗0 (t, x)
)

and

H

(

x,
∂Vi (t, x)
∂x

)

=

∂Vi (t, x)
∂x

T

f
(

x, g∗ (t, x)
)
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respectively.

E. The algorithm to compute safety margins for the pitch dynamics model

The margins on the pitch command reference are determined byusing the procedure depicted

in figure 2. Simple heuristics are used to iteratively adjustthe margins of the pitch command

reference. This involves making incremental changes to theupper and lower limits of the pitch

command reference.

Given the dependency ofJ∗i on the margins: (θre f,min, θre f,max), we may express

J∗i = J∗i
(

x0; θre f,min, θre f,max

)

, i = 1,2

The following algorithm finds the least restrictive marginsfor the considered example problem.

The margins are found by making incremental changes ofone degreeto θre f,min andθre f,max.

Algorithm

Let x0 denote the current state. Furthermore, letθre f,min0
and θre f,max0

denote the margin lim-

its computed in the previous time-step. For the next time-step, initializeθ(0)
re f,min = θre f,min0

and

θ
(0)
re f,max = θre f,max0

, and perform the following iteration at leastkmin times.

1. ComputeJ∗i (x0; θ
(k)
re f,min, θ

(k)
re f,max) for i = 1,2.

2. If k > kmin, break the iteration at this point and return the safety margins (θ(k)
re f,min, θ

(k)
re f,max), if

either:

• max
i∈{1,2}

J∗i (x0; θ
(k)
re f,min, θ

(k)
re f,max) ≤ 0

• the lower margin limit hits the upper margin limit, i.e.θ(k)
re f,min = θ

(k)
re f,max, and max

i=1,2
J∗i (x0; θ

(k)
re f,min, θ

(k)
re f,max

0.

3. Depending on the sign ofJ1(x0), update the margin limits with one degree increments in the
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following way:

θ′re f,min =























θ
(k)
re f,min + 1◦ if J∗1(x0; θ

(k)
re f,min, θ

(k)
re f,max) > 0

θ
(k)
re f,min − 1◦ if J∗1(x0; θ

(k)
re f,min, θ

(k)
re f,max) ≤ 0

θ′re f,max =











































θ′re f,min

if J∗1(x0; θ
(k)
re f,min, θ

(k)
re f,max) > 0

and if θ(k)
re f,min = θ

(k)
re f,max

θ
(k)
re f,max otherwise

4. ComputeJ∗i (x0; θ′re f,min, θ
′
re f,max) for i = 1,2.

5. If k > kmin, break the iteration at this point and return the safety margins (θ′re f,min, θ
′
re f,max),

if either

• max
i∈{1,2}

J∗i (x0; θ
′
re f,min, θ

′
re f,max) ≤ 0

• the lower margin limit hits the upper margin limit, i.e.θ′re f,min = θ
′
re f,max, and max

i=1,2
J∗i (x0; θ

′
re f,min, θ

′
r

0.

6. Depending on the sign ofJ2(x0), update the margin limits with one degree increments in the

following way:

θ
(k+1)
re f,max =























θ′re f,max− 1◦ if J∗2(x0; θ′re f,min, θ
′
re f,max) > 0

θ′re f,max+ 1◦ if J∗2(x0; θ′re f,min, θ
′
re f,max) ≤ 0

θ
(k+1)
re f,min =











































θ
(k+1)
re f,max

if J∗2(x0; θ′re f,min, θ
′
re f,max) > 0

and if θ′re f,min = θ
′
re f,max

θ′re f,min otherwise

V. Simulation results

In this section, simulation results are presented for the GTM example where safety margins are

computed for the reference pitch attitude along the followed state trajectory. The margins are
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determined using the algorithm presented in the previous section. The simulation results display

how the margins change dynamically to the control actions and system degradation.

A. The test scenario

In the simulation, a scenario is considered wherein a certain failure leads to a sudden degradation of

the system dynamics. In this failure condition, which occurs after 10 seconds in the simulation, the

system makes a transition from the nominal condition, i.e. as in (12), to the off-nominal condition

described in (13). This transition happens instantaneously, and the simulation is extended for 40

more seconds, resulting in an overall simulation duration of 50 seconds.

During the entire simulation, a switching block signal is provided as a reference command to

the pitch hold system. The following two cases are distinguished:

• Case I: the reference commandsatisfiesthe command margins, and hence stayswithin the

computed margin limits at all times.

• Case II: the reference command occasionallyviolatesthe command margins, and sometimes

goesoutsideof the computed margin limits.

Simulations are conducted representing both cases. The simulations are conducted using the sub-

scale model of the GTM given by (12) and (13) for the nominal and off-nominal condition respec-

tively. Subsequently, the provided example purely focuseson the system performance for the pitch

attitude, and neglects the effects on the angle of attack andload factor envelopes. The remaining

subsections discusses the dynamic behavior of the margins for case I and II separately.

B. Case I: the reference command satisfies the command margins

Figure 4 shows simulation results for case I. In the figure, the envelope boundaries (as defined in

(16)) are denoted by the thick, gray continuous lines. Furthermore, the state trajectory is denoted

by a black continuous line, and the reference command signalis denoted by the black dotted line.

The margins themselves are denoted by the gray dashed lines.Clearly noticeable in the figure

is that the reference command always remains within the margins (i.e. between the dashed gray
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lines) for the entire simulation. Coincidentally, the statetrajectory never exceeds the envelope in

this particular simulation. This observation is consistent with our expectations since the margins

provide a guarantee of not violating the envelope for a specified time period. Hence, if the reference

command continuously satisfies the margins, so will the state trajectory continuously remain within

the envelope.
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a) Results for a prediction horizon ofT = 1 second.
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b) Results for a prediction horizon ofT = 3 seconds.
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c) Results for a prediction horizon ofT = 5 seconds.

Figure 4. The command margins estimated with different prediction horizon settings for case I.
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Figure 4 displays the command margins for three different prediction horizons. The general

trend seen in the figure is that increasing the prediction horizon leads to more restrictive margins.

This holds true particularly for the prediction horizon ofT = 1 second in figure 4a, where the mar-

gins are extremely large and exceed even the flight envelope.This result suggests that extremely

large reference commands (that which even exceed the envelope) are required to steer the aircraft

out of the envelope within a one second time frame. When increasing the prediction horizon to

T = 3 seconds, figure 4b shows that it is also possible to steer theaircraft out of the envelope with

less extreme reference command signals. Clearly, a one second prediction is simply too small to

encompass all transient effects in the pitch dynamics. Using such a small prediction horizon can

be very misleading and sends out false signals concerning vehicle safety and operational freedom.

For the example consider in this paper, a larger prediction horizon ofT = 5 seconds (figure 4c)

gives a much better indication of safety. For a prediction horizon of T = 5 seconds, the margins

clearly shrink after the failure att = 10 seconds. This shrinkage of the margins gives an indica-

tion that the system dynamics has been degraded and that the aircraft has entered an off-nominal

condition.

C. Case II: the reference command violates the command margins

Figure 5 shows the simulation results for Case II. This time, the margins are computed only for

a prediction horizon ofT = 5 seconds. Furthermore, the provided reference command no longer

satisfies the safety margins for the entire duration of the simulation. As can be seen in figure 5,

after the failure condition att = 10 seconds, the reference command repeatedly violates the lower

limit set by the margins. In compliance with expectations, results indicate that envelope excursions

may occur under prolonged neglect of the margins. For instance, an envelope excursion happens at

approximatelyt = 11.5 seconds, when the margins are ignored for the first time. Thebroken lines

at approximatelyt = 12 seconds point out that there is no reference signal that will keep the system

inside the envelope boundaries. In the simulation, the aircraft returns back into the envelope as if

nothing significant has occurred. However, note that in practice this envelope excursion could have

been a precursor to a LOC incident.
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Figure 5. Command margins estimated with a prediction horizon of T = 5 seconds for case II.

A violation of the margins by the reference command signal does not necessarily imply an

inevitable envelope violation. As can be observed in figure 5, the pitch attitude reference command

repeatedly violates the margins aftert = 20 seconds, yet the state trajectory does not cross the

envelope for those occasions. An envelope excursion is commonly preceded by a rapid shrinkage

of the margins. This is noticeable also in the envelope violation at approximatelyt = 11.5 seconds

in figure 5. The shrinkage is more clearly portrayed in figure 6a which zooms in to the time period

of the transition from nominal to off-nominal dynamics. A fast shrinkage of the margins is a strong

indication of the aircraft approaching the edge of the envelope; closer the aircraft is to the envelope

boundary, smaller the margins become. The envelope excursion could have been prevented if the

reference command was modified in time in order to comply withthe margins. This is illustrated in

figure 6b and 6c, wherein an envelope excursion is avoided by modifying the reference command

at approximatelyt = 11.2 seconds.

In future work, efforts will be geared towards designing effective cockpit displays that help

portray the margin information to the pilots. Furthermore,efforts will be made to apply the frame-

work on more complex, higher dimensional systems with potentially multiple reference command

inputs. Eventually, the goal is to conduct human-in-the-loop experiments in order to test the con-

cept in practice.
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a) The reference command violates the margins continuously. The margins shrink rapidly followed by a envelope violation.
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b) The reference command is modified in response to the changes in the margins.
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c) The reference command is modified in response to the changes in the margins, but this time the reference command is
only modified slightly so that it barely satisfies the margins.

Figure 6. Command margins estimated for case II withT = 5 seconds. The results are shown for the time
interval: [9,11.5] seconds where the transition occurs from nominal to off-nominal dynamics.

VI. Conclusions

A methodology was proposed to compute “safety margins” for the reference command signals of

aircraft control systems, such that certain predefined state constraints denoting a safe maneuvering
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envelope are not violated. The methodology employs principles from optimal control to establish

a set of margins that mathematically guarantee operation ofthe aircraft within the envelope for

a specified prediction horizon. To estimate the margins correctly, complete information on the

system dynamics is required, and hence, the methodology must be used in combination with a

system identification procedure to estimate the anomalies during off-nominal conditions.

The practical application of the entire framework was illustrated on a simplified pitch dynamics

model with state limitations on the pitch attitude. Simulations were conducted wherein margins

were computed for the reference pitch attitude command of the pitch hold system. These margins

were computed along the actual flown state trajectory, whilethe aircraft enters into a failure con-

dition. In line with theory and expectations, simulation results confirmed that envelope excursions

are avoided when the reference command signals remain within the margins. On the other hand,

a prolonged neglect of the margins is capable of steering theaircraft out of the flight envelope.

The excursions can be anticipated by a rapid shrinkage of themargins prior to an envelope viola-

tion. The computed margins can be used to improve the situational awareness by displaying the

information on cockpit displays. The margins can also be used to directly limit the commands

provided to the autopilot system. This all depends on which design philosophy is applied in the

FEP architecture.
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