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Summary

The reader is introduced into the basic characteristics of using spectral elements, which implies
using orthogonal Lagrange polynomials as basis function and the minimization using least squares.
Combined, this will result into the least square spectral element method (LSQSEM). The real
strength of the spectral elements is the accuracy of integration by increasing the polynomial order
(p-refinement) of the basis function. This will result in a faster convergence of the integration error
compared to increasing the amount of elements (h-refinement). With confidence it can therefore
be applied on tracking free surface flows using a combination of the LSQSEM spatial and Crank-
Nicolson in the time integration.

With the least square spectral element method some mathematical problems can be discretised.
This can be for example the setting up of a linear operator that can be applied to any kind of
function. The construction of a linear operator is a good tool to use if one desires to solve flow
problems like Navier-Stokes, Euler or Potential flows.

The next step is to apply the LSQSEM to a given flow equation: the Poisson equation. To
solve the Poisson equation using the LSQSEM one needs to discretise a coupled system defined
by the Laplacian of a velocity potential. The Poisson equation is thoroughly tested on different
kinds of known functions for both p- and h-refinement and it showed once more that p-refinement
results in a faster convergence rate compared to h-refinement.
To be able to apply the LSQSEM to free surface tracking, one needs to explain what free surfaces
are and how a free surface can be tracked by means of a tracer function. The tracer function is
moved by inserting the velocity field that will determine the movent of the flow. The time depen-
dence that is introduced by tracking the moving surface is discretised using a second order accurate
Crank-Nicolson scheme. This is a one step scheme that only requires the storage of the previous
time step and is thus efficient in terms of CPU-time. Combining therefore time (Crank-Nicolson)
and spatial (LSQSEM) discretisation will yield the solution to the tracer function.
Finally the tracer function and the Poisson equation are combined to solve a flow problem. All
the aspects concerning the combination of the two are treated, including the setting up the bound-
ary conditions and how an iterative process can be initiated. As an example, a standing wave is
initially exited and then released so that the only driver working on the system is gravity. One
side of the free surface was fluid, the other is set as a vacuum. The righthand side of the Pois-
son equation is taken to be zero, so the flow is considered inviscid, meaning no wall friction applies.

The results are remarkable. On a one elemental basis with polynomial orders up to N = 5 it is
possible to accurately keep a free surface flow going for quite some time and at the same time being
able to track the free surface contour. Low orders like N = 3 have a more linear characteristic
and increasing the order enables the polynomial basis function to represent the solution in a more
accurate way. However to be able to go to even higher orders, using more elements is inevitable.
An alternative could be the use of deformed elements that conform to the free surface.
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Nomenclature

Latin Letters

A Stiffnes Matrix
f Right-hand forcing function vector
BC Boundary condition
c Tracer function

CFD Computational fluid dynamics
DOF Degrees of freedom

F Funtion of:
FEM Finite element method
g Gravity m/s2

GLL Gauss-Lobatto-Legendre
K Stiffnes Matrix

LSQSEM Least Squares spectral element method
m number of elements
N Order of convergence
n Polynomial order

SEM Spectral element method
u Solution vector
u Velocity in x-direction m/s
v Velocity in y-direction m/s
w Integration weights

Greek Letters

ε Integration error
η y-coordinate on standard element
L Linear operator
Ω Computational domain
φ Basis function
ϕ Velocity potential
ξ x-coordinate on standard element
ζ z-coordinate on standard element

Subscripts

i, j, k, l Indexing x- and y-direction
p, q GLL integration weights in x- and y-direction
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Chapter 1

Introduction

The LSQSEM is around for quite some time now, but nevertheless the interest in it seems little in
the engineering world. Quite strange considering the fact that it has been shown multiple times
that it quite a powerful method in gathering accurate results for flow solving. The finite Element
method (FEM) instead is still much preferred. Using spectral element method (SEM) is in fact a
higher order elaboration of the FEM. Should it therefore not be more efficient to use SEM [23]?

Considering its low popularity it is once more a challenge to show that the LSQSEM is indeed a
powerful method when it comes to solving flow problems. Therefore a lot of time was spend on
thoroughly testing the capabilities of the LSQSEM on different functions and differential equations.
This however is not enough, because a convergence study does not show how a solution scheme
behaves on a flow problem. It merely confirms the proper implementation and highest accuracy
possible. Therefore this report will focus on a flow problem, using the LSQSEM, and apply it to
free surface flows in a similar manner as Sherwin [28] describes in his paper.

First, a short review of the theory considered important for the SEM using Least Square can be
found in Chapter 2. If in depth background reading on the LSQSEM is needed, this can be found in
the Appendices B-C. Chapter 3 presents a two-dimensional sample problem where a general linear
operator is discretised using the LSQSEM, because this is the basis for more complex flow problems.
Next, Chapter 4, a model problem is introduced: the Poisson equation. An explanation is given on
how to discretise the coupled Laplacian system and how well it performs by doing a convergence
study (h- and p-refinement) in Chapter 5. Chapter 6 goes into detail on the techniques to solve
free surface flows by means of a tracer function. Chapter 6 is showing how the tracer function
can be discretised in space and time. An application to tracking free surface flows and combining
it with the Poisson equation using the LSQSEM is presented in Chapter, 8. The results of the
application are explained in Chapter 9, after which conclusions are drawn, Chapter 10.
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Chapter 2

Least Squares Spectral Elements

The spectral element method is an elaborated version of the Finite Element Method (FEM). FEM
relies on non-orthogonal polynomials whereas in spectral elements orthogonal polynomials are used.
The word ’spectral’ originates from Fourier series. The spectrum defines the frequency distribution.
The convergence can be described as exponential and thus has similar characteristics as using high
order polynomials as basis functions.

2.1 Spectral Element Method

A spectral discretisation relies on the expansion of an arbitrary function, say u(x) in the following
way, where φn(x) are the so called basis or trial functions [17, 24]:

u(x) =
∞∑
n=0

ûnφn(x) = û0φ0(x) + · · ·+ û∞φ∞(x) (2.1)

One may also write this infinite sum as:

uexact(x) =
N∑
n=0

ûnφn(x) +
∞∑

n=N+1

ûnφn(x). (2.2)

The exact function is equal to the sum of the two sums - a finite part and an infinite part. An
approximate representation of the exact function is obtained by truncating the sum after the N th

polynomial degree. The larger N is, the better the approximation uappr becomes.

uappr(x) =
N∑
n=0

ûnφn(x). (2.3)

The important property of φn(x) is that it is orthogonal with any other basis function up to the N th

term. While it is possible to design orthogonal basis functions, it would be very time consuming.
One might better use some common basis function expansions that were already derived in the
past. The Jacobi polynomials and the derived Chebychev, Legendre and Lagrange polynomials
are presented in Appendix A.2. A detailed discussion of the SEM is given in Appendix A. A
one-dimensional full step implementation is presented in Appendix B.

2.2 Least Squares Method

The least squares method for finite elements can be used as a means to minimize the residual of
the function:

Au− f

3



Chapter 2. Least Squares Spectral Elements

Where A is the differential operator, u is the solution vector, and f the right hand side forcing
function. This can be rewritten as, [16]:

I(u) =
∫

Ω

(Au− f)2dΩ (2.4)

Applying variational analysis on the minimization problem will return the following:∫
Ω

(Aφ)T (Au− f)dΩ = 0 ∀ φ (2.5)

which is the basis of the least squares method (LSM).

Combining least squares with the SEM will result in the Least Squares Spectral Element Method
(LSQSEM). LSQSEM is an efficient method as it inherits the locality of the FEM and is symmetric
positive for high order problems [7, 4, 16]. This means that the method keeps its geometric
flexibility and combines it with the high order accuracy of the Spectral method. Furthermore
there is no LBB-condition and is therefore easy to implement in all kinds of different types of
equations without the loss of accuracy, showing a robustness on all kinds of problems without any
fluctuations or ’wiggle’ like convergence behavior for smooth functions as compared to Galerkin.
For non-smooth problems wiggles will show in the convergence.

2.3 Computational domain - Standard element

For the remainder of this thesis report a lot of attention will be payed to the computational
domain Ω = [−1, 1], the so called standard element, as on this interval the basis functions will be
orthogonal. Nevertheless the basis functions can be made orthogonal on all intervals, but doing
this for just one interval allows mapping on to all intervals. For distorted domains a transformation
has to be defined to make the domain fit the standard element again. Normally for the x-direction
the letter ξ is used. For y-direction η will be used and ζ accordingly for z-direction where:

x → ξ : −1 ≤ ξ ≤ 1

y → η : −1 ≤ η ≤ 1

z → ζ : −1 ≤ ζ ≤ 1

All computations of this thesis, both 1D and 2D, are performed on a standard element for simplic-
ity.
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Chapter 3

Linear Operator

For the Poisson equation, Heat equation, Navier Stokes equations and other flow problems one
needs to discretise (partial) differential equations or systems of partial differential equations. These
will consist of first, second or higher order differentials. When applying LS to the spectral elements
a linear system is required. Appendix B gives a good illustration how the LSQSEM can be applied
on a first order derivative in one dimension. This chapter will expand this to make it possible to
write a linear operator in two dimensions in the form of:

L = a
∂

∂x
+ b

∂

∂y
+ c (3.1)

In (3.1) a, b and c are constants so that by choosing them appropriately every possible linear
operator desired can be obtained. Higher order differential equations can be solved by LSQSEM.
The equations first have to be rewritten as a system of first order differential equations. Chapter
4 shows how the linear operator presented in the next section can be applied to these systems of
equations.

3.1 Linear Operator application

In this section a short summary is given on the two-dimensional implementation of a linear operator
in abstract form (see B). Let us therefore define a function u(x, y) and apply the linear operator
discussed above (3.1). Then the system to be solved becomes:

Lu(x, y) = f(x, y) (3.2)

The two functions u(x, y) and f(x, y) are expanded using orthogonal basis functions (Chapter 2
and Appendix A.2):

u(x, y) =
N∑
i=0

N∑
j=0

ûijφi(x)φj(y). (3.3)

and,

f(x, y) =
N∑
i=0

N∑
j=0

f̂ijφi(x)φj(y). (3.4)

Applying the operator L yields either

Lu(x, y) =
N∑
i=0

N∑
j=0

Lûijφi(x)φj(y) = f̂ijφi(x)φj(y) (3.5)

or in a more detailed form,

Lu(x, y) =
N∑
i=0

N∑
j=0

ûij

[
a
∂φi(x)
∂x

φj(y) + bφi(x)
∂φj(y)
∂y

+ cφi(x)φj(y)
]

= f̂ijφi(x)φj(y). (3.6)

5



Chapter 3. Linear Operator

This has to be multiplied with the LS operator, see Appendix B. The system to be solved reads∫
Ω

(Lv)T (Lu− f)dΩ = 0 ∀ φ (3.7)

which is essentially what was given by 2.5. The LO hence can be presented by a matrix A. For the
integration the so-called Gauss-Lobatto quadrature is used (see Appendix A.5.1). The LO used
here is actually the same LO as was applied before. However, for the discretizations a different
indexing is used. [

a
∂φk(x)
∂x

φl(y) + bφk
∂φl(y)
∂y

+ cφk(x)φl(y)
]

(3.8)

Inserting the least sqares linear operator (3.8) into (3.6) returns:

N∑
i=0

N∑
j=0

[
a
∂φk(x)
∂x

φl(y) + bφk(x)
∂φl(y)
∂y

+ cφk(x)φl(y)
]

(
ûij

[
a
∂φi(x)
∂x

φj(y) + bφi(x)
∂φj(y)
∂y

+ cφi(x)φj(y)
]
− f̂ij(xp, yq)φi(x)φj(y)

)
= 0∀ k, l. (3.9)

Finally applying the Gauss-Lobatto quadrature results in,

N∑
p=0

N∑
q=0

N∑
i=0

N∑
j=0

[
a
∂φi(x)
∂x

φl(yq) + bφk(x)
∂φl(y)
∂y

+ cφk(xp)φl(y)
]

(
ûij

[
a
∂φi(x)
∂x

φj(yq) + bφi(x)
∂φj(y)
∂y

+ cφi(xp)φj(yq)
]
− f̂ij(xp, yq)φi(x)φj(y)

)
wpwq = 0

(3.10)
The points xp and xq are the GLL-zeros in x- and y-direction, respectively. Therefore the next
step is to construct the stiffness matrix K and fill it in essence with the terms above like:

→ k̄

K = ↓ l̄

 (0, 0) . . .
...

. . .
(l̄, k̄)

 (3.11)

With:
k̄ = i+ (j)(N + 1)
l̄ = k + (l)(N + 1)

as described in Appendix A.2.4. The different terms belonging to one specific point K(l̄, k̄) can be
added together to form one matrix system. Therefore to solve the linear system

Kû = Mf̂ , (3.12)

the last step left is incorporating the boundary condition.

3.2 Sorting for incorporating Boundary condition

For every single derivative in one direction one needs one boundary condition [10]. In the case of
the linear operator L applied to u one would need two boundary conditions to obtain a result. As
one would like to solve a first order system still, it is necessary to sort and renumber (in other
words sort the stiffness matrix K so that the non boundary terms are mentioned first in the vector
ûb instead of a matrix, where (idem for f̂b):

û1

û2

...
û(N+1)2

 =


û(1,1)

û(2,1)

...
û(N+1,N+1)

 . (3.13)

6



3.2 Sorting for incorporating Boundary condition

Figure 3.1: Sorting of node numbering from standard to BC numbering (N = 2)

This new numbering of û and f̂ , has to be sorted so that the interior nodes are treated first.
Therefore figure 3.1 shows how this transform has to be made for the simple case of N = 2. This
is a similar sorting procedure as depicted in Appendix A.6, except that even more care has to be
taken with bookkeeping to keep track of the nodes in the sorted system. The boundary conditions
will be used in the system the following way, KInt KInt−BC

KBC−Int KBC


 ûInt

ûBC

 =

 f̂Int

f̂BC

 , (3.14)

by making the distinction between interior (Int) and boundary (BC) nodes. In this way the
interior stiffness matrix KI can be used to solve the system. However the boundary condition will
be incorporated first to the right hand side forcing function, simply by multiplying the last entries
of ûBC with the Matrix KInt−BC and this can be taken to the right hand side forcing function.
Then the bottom rows in the matrix system are now superfluous and are omitted, leaving equation
(3.14) to:  KInt

 ûInt

 =

 f̂Int −KInt−BC ûBC

 (3.15)

This new system can be solved without much trouble by solving (3.15) and remaining with the
desired vector ûI .
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Chapter 4

Discretising a Model Problem:
Poisson Equation

4.1 The Poisson Equation

The Poisson equation results by applying the Laplacian operator to a potential field, say ϕ(x, y)
in two dimensions. This can be written as:

∆ϕ = ∇ · ∇ϕ (4.1)

This equation can be rewritten as a system of two coupled first order differential equation. The
divergence and the gradient operator have to be applied within the coupled system:

~u = ∇ϕ,

∇ · ~u = f (4.2)

The first equations represents the gradient operator acting on a potential field producing a vector
field. The second equations of (4.2) is the divergence operator acting on this vector field returning a
scalar field, which can be expressed as the right hand side forcing function. The Poisson equation
has to be solved by means of the LSQSEM method. The right hand side forcing function f is
known together with four boundary conditions [10]. In the present chapter Neumann boundary
conditions are used at all four sides, i.e. the normal components of ~u are prescribed.

4.2 Writing Poisson as a coupled linear system

For the Poisson equation a new linear operator for applying least squares has to be created. The
tools for construction are described in the previous chapter. The first line of (4.2), in two dimensions
can be written as:

∂ϕ

∂x
= u, (4.3)

∂ϕ

∂y
= v. (4.4)

and the second line of the said equation gives one more equation,

∂u

∂x
+
∂v

∂y
= f(x, y). (4.5)

Therefore combining the three equation from (4.3),(4.4) and (4.5) into a linear system - taking the
unknowns to the left-handside and the known functions to the right-handside yields: ∂/∂x ∂/∂y

1 0 −∂/∂x
0 1 −∂/∂y

  u
v
ϕ

 =

 f(x, y)
0
0

 , (4.6)
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Therefore the LO for the Poisson equation reads:

L =

 ∂/∂x ∂/∂y 0
1 0 −∂/∂x
0 1 −∂/∂y

 (4.7)

4.3 Discretising the Poisson Equation

The LS operator applied to the basis functions is equal to L of equation (4.7). Recall that (3.6)
holds: ∫

Ω

(Lφ)T (Lu− f)dΩ = 0 ∀ φ

with LT being:

LT =

 ∂/∂x 1 0
∂/∂y 0 1

0 −∂/∂x −∂/∂y

 . (4.8)

All of the unknowns and the lefthand-side function are expanded using spectral elements, similar
to (3.3). Applying the LO (4.7):

Lφi(x)φj(y) =


∂φi(x)
∂x φj(y) ∂φj(y)

∂y φi(x) 0
φi(x)φj(y) 0 −∂φi(x)

∂x φj(y)
0 φi(x)φj(y) −∂φj(y)

∂y φi(x)

 (4.9)

and

LTφk(x)φl(y) =


∂φk(x)
∂x φl(y) φk(x)φl(y) 0

∂φl(y)
∂y φk(x) 0 φk(x)φl(y)

0 −∂φk(x)
∂x φl(y) −∂φl(y)

∂y φk(x)

 . (4.10)

Then the complete system to be solved (4.11) is obtained by merely inserting the LS operator.
The Poisson equation is hence solved in one go, as a linear system. The solutions for the velocity
field and the potential field are thus obtained and can be used for various applications.
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N∑
p=0

N∑
q=0

N∑
i=0

N∑
j=0


∂φk(xp)
∂x φl(yq) φk(xp)φl(yq) 0

φk(xp)
∂φl(yq)
∂y 0 φk(xp)φl(yq)

0 −∂φk(xp)
∂x φl(yq) −φk(xp)

∂φl(yq)
∂y





∂φi(xp)
∂x φj(yq) φi(xp)

∂φj(yq)
∂y 0

φi(xp)φj(yq) 0 −∂φi(xp)
∂x φj(yq)

0 φi(xp)φj(yq) −φi(xp)∂φj(yq)
∂y


 ûij(xp, yq)

v̂ij(xp, yq)
ϕ̂ij(xp, yq)

 (4.11)

−

 f̂ij(xp, yq)φi(x)φj(y)
0
0

wpwq = 0 ∀ k, l
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Chapter 5

Error Analysis on the Model
Problem: Poisson equation

As a matter of verifying the proper implementation and accuracy of the Poisson equation it is
inevitable to perform an error analysis. Therefore this chapter will deal with the detailed error
analysis. For more details on error analysis consult Appendix C. First two different forcing functions
are presented which are used in the two-dimensional Poisson calculations. Thereafter both a p-
refinement and a h-refinement error analysis are performed. The respective speed of convergence
is discussed. Finally, some remarks are given.

5.1 Problem Definition

To validate the discretisation of the Poisson equation known functions are studied. The respective
derivatives can be calculated easily. Hence, the obtained forcing function is taken as an input
right-hand side function for the Poisson code. The calculations should yield the originally taken
known functions. Therefore, taking an arbitrary function,

ϕ1 = x6y2 + y3 (5.1)

will give that

u1 = 6x5y2,

v1 = 2x6y + 3y2, (5.2)
f1 = 30x4y2 + 2x6 + 6y,

The functions u1, v1 and f1 are calculated using equations (4.3, 4.4, 4.5) of Chapter 4. With the
right hand side forcing function f1 and the four boundary conditions (one for every derivative [10])
the system can be solved for the desired function ϕ1. The error is expected to converge fast to
the exact solution (machine error) because the function ϕ1 is of a polynomial nature - just as the
basis functions are. Since the function ϕ1 is of sixth order in x-direction one would expect that
there exists a linear combination of the basis functions up to sixth order which produces the exact
solution. It is therefore advisable to look for a function which cannot as easily be presented by a
final linear combination of polynomial functions for a solidly founded error analysis. A good choice
would be a trigonometric function composed out of sines and cosines.
Thus a second function could look like:

ϕ2 = sin(x)sin(y) (5.3)

The respective derivatives are computed as:

u2 = cos(x)cos(y),
v2 = −sin(x)sin(y), (5.4)
f2 = −2sin(x)cos(y).
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Figure 5.1: Potential field ϕ1 = x6y2 + y3, m = 9, n = 5

On both functions a h- and p-refinement will be performed and the respective speeds of convergence

Figure 5.2: Potential field ϕ2 = sin(x)cos(y), m = 9, n = 5

are presented in the following sections. For details on error analysis and a comparison of h- and
p-refinement consult Appendix C.

5.2 p-Refinement and speed of convergence

For the p-refinement of the first function ϕ1 the polynomial order (DOF) is increased while keeping
the number of elements m constant. The convergence rate of the error can be determined and will
give an indication on how fast the error decreases. As has been pointed out in Appendix C the
error decreases exponentially fast. Hence, an exponentially decreasing function is assumed.

ln|ε|2 = a ·DOF + b, (5.5)

can be used to calculated the error for a certain polynomial order assuming a and b are known
constants. a can be identified as the slope of the error curve. Rewriting relation (5.5) one can find
the norm of the actual error. This implies that

|ε|2 = c · ea·DOF . (5.6)
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The result for ϕ1 in Figure 5.3 shows clearly that the solution has converged to the exact solution
at a degree of freedom of N = 6. The error drops to machine accuracy for N = 6. This due the
fact that ϕ1 incorporates a highest order of 6 and this can be represented by polynomials of order
N = 6. After order N = 6 that some increase is visible due to numerical calculation error and
truncation errors at machine precision.
The second function ϕ2 returns a slower convergence because in this case a sine function can
not be exactly represented by polynomials of any finite order. Figure 5.6 shows this with the
amount of elements being set to m = 1. Further, one sees again that there is a clear ’wiggly’
behavior visible in the convergence. A characteristic that is typically found for such trigonometric
functions (Appendix C). This is due to the fact that the function chosen ϕ2 is point-symmetric
with respect to the origin. The approximation of the solution at an even order consists of basis
functions that are symmetric. Purely point-symmetric functions can not be approximated by a
purely axis-symmetric function. Therefore on every even order it will show a plateau-like shape
in the error curve, because the error will hardly decrease. For the even orders a skew-symmetric
function should be added. Then the error will decrease smoothly.
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Figure 5.3: Error behavior for m = 1, ϕ1 = x6y2 + y3

Figure 5.4: Error behavior for m = 1, u1
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Figure 5.5: Error behavior for m = 1, v1

Figure 5.6: Error behavior for m = 1, ϕ2 = sin(x)cos(y)
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Figure 5.7: Error behavior for m = 1, u2
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5.3 h-Refinement and speed of convergence

The real strength of the LSQSEM is the fast convergence by increasing the polynomial order of the
basis functions. The previous section revealed exponential convergence of the error for an increase
of the polynomial order. The speed of the convergence for the h-refinement however, is different
than the one obtained earlier. Equation 5.7 presents the simple relation with whom the error can
be evaluated as:

ln‖ε‖2 = a · lnh+ b, (5.7)

Again a and b are constants, presenting the slope of the error curve and the intersection point with
the y-axis, respectively. This implies that

‖ε‖2 = c · ha. (5.8)

With a the slope of the error curve. As the cell size h is proportional to one over the number of
elements m:

h ∝ 1
m
, (5.9)

one expects with a polynomial degree of N that:

‖ε‖ = c ·
(

1
m

)N+1

. (5.10)

To illustrate the speed of convergence of the h-refinement, the amount of elements m on the com-
putational domain is increased and the order kept constant. Figure 5.8 shows this for an order of
N = 2 for ϕ1. The trend line for the expected order for a = 3 and slowly the solution will converge
to this steepness. The trend line in Figure 5.9 shows that the the solution for u approaches an
order of a = 3 slower compared to the potential. Figure 5.10 converges with the expected slope.
This is partly due the fact that in y-direction the order of the function for v1 is three orders lower
compared with the x-direction u1.

Similar results are obtained for the second potential field ϕ2. Figure 5.11 shows slow conver-
gence. Of course a sine-cosine function is more difficult to represent by polynomials. Only the u
component is plotted in Figure 5.12, because u2 and v2 yield the same function.
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Figure 5.8: Error convergence with trend-line fit for ϕ1 = x6y2 + y3,N = 2

Figure 5.9: Error convergence with trend-line fit for u1, N = 2
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Figure 5.10: Error convergence with trend-line fit for v1, N = 2

Figure 5.11: Error convergence for ϕ2 = sin(x)cos(y),N = 2
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Figure 5.12: Error convergence for u2, N = 2
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Chapter 6

Free Surface Flow Tracking

Free surface Flows appear all around us. Think of tidal movement of the oceans, storms, ships in
the water, rivers, waves and many more. All of these have one thing in common: two or more media
interact. In physics a free surface is the surface of a body that is subject to neither perpendicular
normal stress nor parallel shear stress such as the boundary between two homogenous fluids. Unlike
liquids, gasses can not form a free surface on their own [32]. To be able to have a free surface or
interface, there need to be two fluids of a different kind, e.g. different flow properties or phase.
They should therefore have different density ρ, pressure p and even temperature T . When the flow
system is at rest or in an equilibrium position the interface will not move and then the interface
of the free surface can be easily determined. Mostly however the free surface is driven by a force.
This could be wind, a current, or just simply a gravity force. For now the last possibility is taken
as an example for the remainder of the report (Figure 6.1).

Especially when a fluid is placed in a gravitational field, as on earth, the fluid will always form
a free surface positioned in such a way that the gravitational force will be perpendicular to the
surface. Thus an equilibrium position is reached when the gravity vector with the normal of the
free surface are aligned [32].

Figure 6.1: Flow Field with two fluids I and II seperated by the free surface c(t, x, y) = 0

6.1 Fluid Interface Capturing

In computational fluid dynamics the tools for capturing a flow phenomenon are limited. It will
usually consist of flow equations in the form of differential equations and a computational domain
on which a grid will be expanded, on which a solver (e.g. LSQSEM) can be released on the
flow equations. Merely with these three the work has to be performed in a satisfying manner.
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Simulating a similar flow problem in an experimental setup, one can use the eye, color differences,
cameras, sensors, lasers etc., but then that is less challenging (PIV is not always the solution).

Assuming that there will be a free surface like depicted in Figure 6.1 then the surface is described
by a tracer function c(t, x, y) = 0. The tracer function itself can be evaluated on all points in the
flow domain. The time dependence is introduced when the surface starts moving, obviously the
level of c(t, x, y) will change.

When one knows the solution of the tracer function c(t, x, y), the separation boundary between
fluid I and II can thus be found by searching for zero values, one knows then where the fluids
resides in space. For the trace function it must hold that when moving within fluid I or II that,

fluid I: c(t, x, y) ≥ 0
fluid II: c(t, x, y) ≤ 0. (6.1)

An other approach of knowing where one resides in the computational domain is for example,

fluid I: c(t, x, y) = 1
fluid II: c(t, x, y) = 0, (6.2)

but this has the effect that at the the free surface contour a discontinuity is imposed. Therefore
the method described by (6.1) seems to be the favorable one as this implies a linear transition
between the fluids.

Performing numerical simulations of two fluid flows with moving free surfaces imposes two
problems. One is keeping track of the current location of the surface at a specific time. Next it is a
challenge to compute the new position at a next time step. This advancing in time introduces the
time dependence of the free surface. Updating the free surface position per new time step requires
an iterative numerical scheme.

6.2 Mesh Generation

Before starting a numerical simulation of the flow problem a choice has to be made on the type of
computational mesh to be used. The choice depends on the problem considered.

6.2.1 Moving Mesh

The latter section indicated clear that the whole flow field can be described as a function of the
tracer function of the free surface flow c(t, x, y), by evaluating it in all nodes. Intuitively one would
suggest therefore to chose a computational mesh that adapts to the free surface, as depicted in
Figure 6.2. That would be aligning the cells of the mesh orthogonal with respect to the surface.
Accuracy can be expected doing it this way, but the great disadvantage is that for every time step
the mesh has to be restructured to meet the free surface boundary again. This procedure will be
costly in cpu-time and strongly distorted elements can be the result. A further problem exist with
a dynamic mesh when possible waves would roll over and collapse. In this case the cells would
collapse as well and intersect, which is not possible [29].
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Figure 6.2: Moving mesh adapting to the free surface contour c(t, x, y) = 0

6.2.2 Fixed Mesh

A fixed or static mesh will not move with the free surface, see Figure 6.3. The meshes can be
structured or unstructured according to preference or the problem definition. The amount of
elements has to be chosen in advance and with this the calculation will be performed. The free
surface moves within the elements and thus will spare re-meshing after every time step. This
is more interesting, clearly because it is easier to implement when programming and it is fast
concerning cpu-times. In addition one does not have to worry about cells that deform badly, or
cells that collapse. For the course of this chapter the cells are chosen to be fixed. [29]

Figure 6.3: Fixed mesh to compute the 2D free surface c(t, x, y)
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Chapter 7

Solving the Tracer Function for
the Free-Surface

For numerical calculations one can not get around the fact that the flow equations have to be
discretised. The time dependent tracer function is no exception. The tracking definition will be
according to the description in the previous Chapter (6.1). In general the tracer function of an
arbitrary free surface can be described by the following convective differential equation [2, 34, 29]:

∂c(t, x, y)
∂t

+ (~u,∇) c(t, x, y) = 0, (7.1)

with c(t, x, y) describing the movement of the free surface in time, subject to the velocity field
~u = (u, v) at time t or,

∂c(t, x, y)
∂t

+ u
∂c(t, x, y)

∂x
+ v

∂c(t, x, y)
∂y

= 0. (7.2)

Previously the spatial discretisation was performed with the spectral elements and least squares
minimization to form the LSQSEM, see Chapter 2. The spatial discretisation in equation 7.1 will
therefore be done with the LSQSEM. But there is also time dependency that has to be discretised.
This does not need to be spectral elements as well, merely a faster and easier to implement
scheme could be used. Among these time schemes there are endless possibilities. Well known ones
are Backward Euler (explicit), or higher order schemes like Adam-Bashforth2 (explicit), Adam-
Moulton (implicit) and many other or others.

7.1 Time-Stepping formulations

Time stepping is of importance when introducing time dependance to the problem. The previous
chapters where concentrating entirely on spatial discretisation. Assume a system of an ordinary
differential equation:

∂u
∂t

= F(u). (7.3)

There are different possibilities to solve equation (7.3) with time-stepping methods. One can use
one-step-θ like Euler and Crank-Nicolson or multi-step methods like Adam-Bashforth and Adam-
Moulton [6, 19].

7.1.1 One-Step-θ Schemes

The one-step-θ schemes group together time-stepping schemes with θ as a dependent variable. In
this way multiple time schemes are summarized in one generic formula i.e.,

un+1 − un

∆t
= (1− θ)F(un) + θF(un+1) (7.4)

27



Chapter 7. Solving the Tracer Function for the Free-Surface

Taking different values for θ will simplify into different one-step schemes.

Explicit Euler by setting θ = 0, (7.4) gives,

un+1 − un

∆t
= F(un) (7.5)

Implicit Euler by setting θ = 1, (7.4) gives,

un+1 − un

∆t
= F(un+1) (7.6)

Crank-Nicolson by setting θ = 1
2 , (7.4) gives,

un+1 − un

∆t
=

1
2
F(un) +

1
2
F(un+1) (7.7)

These are the most common one-step time schemes but others are possible as well.

7.1.2 Adams Forward Multi-Step Schemes

The Adams Family consist of Adam-Bashforth and Adam-Moulton and can both be summarized
into,

un+1 − un

∆t
=
J−1∑
q=0

βqF(un+1−q) (7.8)

Adam-Bashforth is an explicit scheme that can be obtained by setting β0 = 0 and setting the order
of integration by changing J accordingly. Taking order J = 1 is equal to the explicit Euler scheme.

Taking β0 6= 0 gives the implicit Adams-Moulton family. Again order of integration can be
chosen to adapt the problem considered. An order J = 1 will return implicit Euler and J = 2 the
Crank-Nicolson scheme. It can therefore be concluded that Crank-Nicolson is second order accurate
although it is a one-step time integration scheme. Therefore Crank-Nicolson is an attractive scheme
to use because a one-step scheme requires only the storage of the previous time-step. Using
increasing orders for Adam-Bashforth reduces the stability region compared to implicit Euler and
thus smaller time-steps are needed to keep the scheme from blowing up. This fact turn makes
higher order schemes costly to use.

7.2 Space and Time Discretisation of the convective Free
Surface equation

7.2.1 The 1D case

Equation (7.2) in 1D will reduce to;

∂c(t, x)
∂t

+ u(t, x)
∂c(t, x)
∂x

= 0, (7.9)

the contour c(t, x) of the FS can be discretised with spectral elements with a truncated series
solution as discussed in chapter 2;

c(x, t) =
N∑
i=0

ĉi(t)φi(x) (7.10)

The advantage of this is that ĉi(t) is only time dependent as the constants will chance only per
new time-step. Likewise, φi(x) is only dependent on the spatial coordinate, x. Discretising like
this gives a similar effect as separation of variables. Equation (7.1) can be integrated with respect
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to space x first using LSQSEM and then with respect to time solve the semi-discreet system.
Combining therefore (7.9) with (7.10) returns

N∑
i=0

∂ĉi(t)
∂t

φi(x) +
N∑
i=0

u(t, x) ĉi(t)
∂φi(x)
∂x

= 0. (7.11)

Then discretising with respect to time with implicit Euler for simplicity reasons,

N∑
i=0

ĉn+1
i (t)− ĉni (t)

∆t
φi(x) +

N∑
i=0

u(t, x) ĉn+1
i (t)

∂φi(x)
∂x

= 0 (7.12)

where ĉn+1
i is the constant at the new time step, just as ĉni is the solution for the current time.

Re-arranging the knowns to the right hand side and unknowns to the left hand side,

N∑
i=0

ĉn+1
i (t)
∆t

φi(x) +
N∑
i=0

u(t, x) ĉn+1
i (t)

∂φi(x)
∂x

=
N∑
i=0

ĉni (t)
∆t

φi(x) (7.13)

or,
N∑
i=0

ĉn+1
i (t)

[
φi(x)
∆t

+ u
∂φi(x)
∂x

]
=

N∑
i=0

ĉni (t)
∆t

φi(x), (7.14)

According to least squares (Chapter 2),∫
Ω

(Lv)T (Lu)dΩ = 0 ∀ φ,

must hold, so meaning that the LS operator will look like:

(Lv)T =
φj(x)

∆t
+ u(t, x)

∂φj(x)
∂x

. (7.15)

This has to be multiplied with equation 7.14 resulting in:

N∑
i=0

ĉn+1
i (t)

[
φj(x)

∆t
+ u(t, x)

∂φj(x)
∂x

] [
φi(x)
∆t

+ u(t, x)
∂φi(x)
∂x

]
= (7.16)

N∑
i=0

ĉni (t)
[
φj(x)

∆t
+ u(t, x)

∂φj(x)
∂x

]
φi(x)
∆t

,

Lastly integrating with respect to the GLL quadrature (Appendix A.5.1)

N∑
i=0

N∑
p=0

ĉn+1
i (t)

[
φj(xp)

∆t
+ u(t, x)

∂φj(xp)
∂x

] [
φi(xp)

∆t
+ u(t, x)

∂φi(xp)
∂x

]
wp = (7.17)

N∑
i=0

N∑
p=0

ĉni (t)
[
φj(xp)

∆t
+ u(t, x)

∂φj(xp)
∂x

]
φi(xp)

∆t
wp ∀ j

yields the following system:

A

 ĉn+1
0 (t)

...
ĉn+1
N (t)

 = B

 ĉn0 (t)
...

ĉnN (t)

 . (7.18)

Taking the inverse of A changes the system so that the new time step can be computed:

c̃n+1 = A−1B c̃n. (7.19)
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7.2.2 Incorporating BC 1D

Next step is to incorporate the boundary condition. Per time step the new boundary value has to
be known. As discretisation is nodal and applied to a Lagrangian framework (see Appendix 2) the
solution of the constants ĉni is the solution on the node. Say one defines the boundary value thus
at the start of the domain for each time step, this would imply that:

ĉn+1
0 =̂BC,

creating a system like: BC IA



ĉn+1
0

ĉn+1
1..N

 =

 IB




ĉn0

ĉn1..N

 (7.20)

With BC being the boundary nodes and IA and IB the interior nodes. The first line can be
eliminated and the reduced system looks then as follows: ĉn+1

1..N

 =

 I−1
A

 IB ĉ
n
1..N −BCĉ

n+1
0

 . (7.21)

It is now possible to solve the reduced system to find the new time step solution. Iteration of this
procedure will yield the flow field solution at every time step.

7.2.3 The 2D case

The 1D case was an interesting starting point in investigating the problem definition. However
a step further to the real world, 2D solutions are trivial. Expanding the convective differential
equation of the tracer function from equation (7.2) means also changing the spectral discretisation
by one more basis function in y-direction compared to the 1D case, meaning

c(t, x, y) =
N∑
i=0

N∑
j=0

ĉij(t)φi(x)φj(y). (7.22)

This is the new truncated series solution expanded on a Lagrangian basis. Note again that ĉij(t)
is the time dependent parameter as this value will change when advancing in time. Similarly
as in 1D section 7.2 the problem can be split in a spatial and time dependent integration as the
spectral element discretisation yields a variable separating characteristic. The time integration can
be performed again with schemes like Euler, Crank-Nicolson, Adam-Bashforth or Adam-Moulton
etc Section 7.1.1.
Discretising the domain means that equation (7.22) will have to be substituted with equation (7.2)
yielding,

N∑
i=0

N∑
j=0

∂ĉij(t)
∂t

φi(x)φj(y) +
N∑
i=0

N∑
j=0

u(t, x, y) ĉij(t)
∂φi(x)
∂x

φj(y)+ (7.23)

N∑
i=0

N∑
j=0

v(t, x, y) ĉij(t)
∂φj(y)
∂y

φi(x) = 0,

Then discretising with respect to time with backward (implicit) Euler,

N∑
i=0

N∑
j=0

ĉn+1
ij (t)− ĉnij(t)

∆t
φi(x)φj(y)+ (7.24)

N∑
i=0

N∑
j=0

[
u(t, x, y) ĉn+1

ij (t)
∂φi(x)
∂x

φj(y) + v(t, x, y) ĉn+1
ij (t)

∂φj(y)
∂y

φi(x)
]

= 0
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where again ĉn+1
i is the constant at the new time step, just as ĉni is the solution for the current

time, then,

N∑
i=0

N∑
j=0

ĉn+1
ij (t)

[
φi(x)φj(y)

∆t
+ u(t, x, y)

∂φi(x)
∂x

φj(y) + v(t, x, y)
∂φj(y)
∂y

φi(x)
]

= (7.25)

N∑
i=0

N∑
j=0

ĉnij(t)
∆t

φi(x)φj(y).

The LS operator,

(Lv)T =
φk(x)φl(y)

∆t
+ u(t, x, y)

∂φk(x)
∂x

φl(y) + v(t, x, y)
∂φl(y)
∂y

φk(x). (7.26)

has to be multiplied with equation 7.26 resulting in:

N∑
i=0

N∑
j=0

ĉn+1
ij (t)

[
φk(x)φl(y)

∆t
+ u(t, x, y)

∂φk(x)
∂x

φl(y) + v(t, x, y)
∂φl(y)
∂y

φk(x)
]

[
φi(x)φj(y)

∆t
+ u(t, x, y)

∂φi(x)
∂x

φj(y) + v(t, x, y)
∂φj(y)
∂y

φi(x)
]

= (7.27)

N∑
i=0

N∑
j=0

ĉnij(t)
[
φk(x)φl(y)

∆t
+ u(t, x, y)

∂φk(x)
∂x

φl(y) + v(t, x, y)
∂φl(y)
∂y

φk(x)
]
φi(x)φj(y)

∆t

Applying the the GLL quadrature (Appendix A.5.1)

N∑
i=0

N∑
j=0

N∑
p=0

N∑
q=0

ĉn+1
ij (t)

[
φk(x)φl(y)

∆t
+ u(t, xp, yq)

∂φk(xp)
∂x

φl(yq) + v(t, xp, yq)
∂φl(yq)
∂y

φk(xp)
]

[
φi(xp)φj(yq)

∆t
+ u(t, xp, yq)

∂φi(xp)
∂x

φj(yq) + v(t, xp, yq)
∂φj(yq)
∂y

φi(xp)
]
wpwq = (7.28)

N∑
i=0

N∑
j=0

N∑
p=0

N∑
q=0

ĉnij(t)
[
φk(x)φl(y)

∆t
+ u(t, xp, yq)

∂φk(xp)
∂x

φl(yq) + v(t, xp, yq)
∂φl(yq)
∂y

φk(xp)
]

φi(xp)φj(yq)
∆t

wpwq

The result can be written in a matrix system similar as described in 1D (7.18), except that the
matrices A and B will be larger.

7.2.4 Incorporating BC 2D

As mentioned the structure of the 2D time dependent system resulting from equation (8.10) is
similar to the 1D case (7.18) so also the boundary condition implementation will be similar. The
constants are described as a matrix cij , meaning inevitably that it has to be resorted into a vector
to solve the linear system. The indexing of the time dependent vectors will be sorted according to
Chapter 3.2. The newly sorted matrices A and B can then be reduced and the system solved.
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Chapter 8

Application: Time Dependent
Free Surface Tracking using the
LSQSEM

Finally, after a lot of mathematics in the forgoing chapters is it now possible to join all the building
blocks together to solve a flow problem. The building blocks include the LSQSEM, Poisson equation
and the time dependent Free surface tracer function. Additional characteristics of the flow will be
added in this chapter. An overview of the solving procedure is summarized in Section 8.3

8.1 Problem Definition: Gravity Driven Free Surface Flow

Figure 8.1 shows a graphical representation of the flow problem, where an initially excited surface
with h(t, x) at t = 0 is released so that fluid I starts to oscillate in the box due to the presence of
a gravity force g. For simplicity fluid II is taken to be vacuum. Fluid I on the other hand will be
subject to a potential field ϕ where density ρfluidI and pfluidI are the dominating flow properties.
Having fluid II as a vacuum and fluid I a fluid makes the solving easier, because the velocity field
in the entire domain is only dependent on the movement of fluid I.

Figure 8.1: Problem definition of an initially excited free surface
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8.1.1 Flow Properties

Potential Flow, Irrotanial Inviscid Flow

Recall that the Poisson is defined by taking the Laplacian of the the potential field ∆ϕ = f
(4.2) [28],

~u = ∇ϕ,
∇ · ~u = f.

For this flow problem ∆ϕ = 0 is chosen and as conservation of mass must be fulfilled:

∇ · ~u = 0, (8.1)

making the righthand-side f = 0. Further is the flow to be assumed irrotational so that,

∇× ~u = 0. (8.2)

The flow is subject to the Eulerian momentum equation, neglecting viscosity:

∂u

∂t
+ (~u · ∇)~u+

p

ρ
= 0. (8.3)

Using the vector identity,

(~u · ∇)~u =
1
2
∇~u2 − ~u× (∇× ~u), (8.4)

and substituting (8.2) into equation (8.3) yielding,

∇∂ϕ
∂t

+
1
2
∇(∇ϕ)2 +

∇p
ρ

= 0, (8.5)

taking out ∇ gives the momentum equation,

∂ϕ

∂t
+

1
2

(∇ϕ)2 +
p

ρ
= const, (8.6)

and together with conservation of mass,
∆ϕ = 0

define the physical basis for calculations.
Pressure

Pressure depends on the gravity force and thus on the height of the water column, then,

p = p0 + gρy (8.7)

substituting in (8.6) gives

ρ
∂ϕ

∂t
+ ρ

1
2

(∇ϕ)2 + p0 + gρy = const, (8.8)

With h(t, x) being the excitation of the free surface with respect to the x-axis, as depicted in Figure
8.1.

8.1.2 Time-Stepping and Spatial Discretisation

At this point a time-stepping scheme has to be chosen that fits to the flow problem. Section 7.1.1
makes clear that Crank-Nicolson seems to be a good trade-off. It is a one-step scheme and therefore
relatively cheap in terms of CPU time because only the previous time has to be stored. Further
it is second order accurate, so that leaves some leverage in case higher order integration would
be needed to increase accuracy of the computation. As the higher order accuracy comes ’for free’
Crank-Nicolson will be used in the remainder of the flow problem. Recall that (7.7) states:

un+1 − un

∆t
=

1
2
F(un) +

1
2
F(un+1),
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Then combining the Crank-Nicolson time-stepping and LSQSEM spatial discretisation of the free
surface contour equation (7.2):

∂c(t, x, y)
∂t

+ u
∂c(t, x, y)

∂x
+ v

∂c(t, x, y)
∂y

= 0,

will look like:
N∑
i=0

N∑
j=0

ĉn+1
ij (t)− ĉnij(t)

∆t
φi(x)φj(y)+

N∑
i=0

N∑
j=0

[
1
2
u(t, x, y) (ĉn+1

ij (t) + ĉnij(t))
∂φi(x)
∂x

φj(y) +
1
2
v(t, x, y) (ĉn+1

ij (t) + ĉnij(t))
∂φj(y)
∂y

φi(x)
]

= 0

(8.9)
Further derivation of (8.9) will be left to the reader as an elaborated discretisation of an Euler-
LSQSEM space-time derivation of the said equation is performed in Chapter 7.2.3. Merely the end
result looks like,

N∑
i=0

N∑
j=0

N∑
p=0

N∑
q=0

ĉn+1
ij (t)

[
φk(x)φl(y)

∆t
+

1
2
u(t, xp, yq)

∂φk(xp)
∂x

φl(yq) +
1
2
v(t, xp, yq)

∂φl(yq)
∂y

φk(xp)
]

[
φi(xp)φj(yq)

∆t
+

1
2
u(t, xp, yq)

∂φi(xp)
∂x

φj(yq) +
1
2
v(t, xp, yq)

∂φj(yq)
∂y

φi(xp)
]
wpwq = (8.10)

N∑
i=0

N∑
j=0

N∑
p=0

N∑
q=0

ĉnij(t)
[
φk(x)φl(y)

∆t
− 1

2
u(t, xp, yq)

∂φk(xp)
∂x

φl(yq)−
1
2
v(t, xp, yq)

∂φl(yq)
∂y

φk(xp)
]

[
φi(xp)φj(yq)

∆t
+

1
2
u(t, xp, yq)

∂φi(xp)
∂x

φj(yq) +
1
2
v(t, xp, yq)

∂φj(yq)
∂y

φi(xp)
]
wpwq

8.2 Setting up the Boundary and Initial Condition

The problem can be set up so boundary and initial conditions are needed to get the flow started
and flowing. The boundary conditions will be implemented using a ’weak’ formulation and this
will be discussed elaborately in the course of this section.

8.2.1 Initial Conditions

The initial condition is defined by the tracer function c(t, x, y) described in Chapter 6. It was
opted for a tracer function with smooth linear transition between negative and positive values of
the tracer function c(t, x, y). At the positions in the domain where c(t, x, y) = 0, the free surface
is found. Figure 8.2 shows clearly the surface at t = 0. The tracer function can be described with
an arbitrary linear function as:

c(0, x, y) = −ay + bx for − 1 ≤ x ≤ 1 (8.11)

With a determining the slope of the tracer plane and b defining the hight of the initial exitations.
The velocity potential is initially ϕ0 = 0, hence the velocities in the system are zero as well, this
makes sense as the flow is still at rest.

8.2.2 Implementation of Weak Boundary Conditions

Until now only ’strong’ implementation of boundary conditions have been used (Section 7.2.4).
The advantage is that the prescribed values can be eliminated from the system and taken to the
righthand-side of the problem. This reduces the system for faster computing and guarantees that
the boundary conditions are met exactly. However in a big and complicated system like the one
discussed in this chapter it can happen that not all the boundary conditions can be met in the nodes.
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Figure 8.2: Free surface at t = 0, nodal to t = 1 interpolated

For example the potential on the surface boundary will have to be interpolated as it is unlikely that
the surface will always go through any integration points and if so, most likely too little boundary
conditions can be met, leaving the system under determined. The weak implementation ensures
a coupling between interpolation and nodes and also ensures that all boundary condition will be
met in the least squares sense. So if a boundary condition can not be met exactly the system will
try to get as close as possible and still satisfy other boundary conditions as well [15]. Equation
(3.7) concludes with the LSQSEM system∫

Ω

(Lv)T (Lu− f)dΩ = 0

and extending it to multiple elements as done in Appendix A.4.1,

∑
e

∫
Ωe

(Lv)T (Lu− f)dΩe = 0 (8.12)

with

ue =
∑
i

ueiφi(x) (8.13)

and where φi(x) are basis functions that span the subspace Ωe. Applying the Gauss-Lobatto
Quadrature to the above gives:

∑
e

[∑
i

uei
∑
p

(Lφi(xp))T (Lφj(xp))wp

]
=
∑
e

∑
p

f(xp)Lφi(xp))Twp (8.14)

with xp being the GLL zero and wp the corresponding GLL weight. Hoitinga et. al. [15] summa-
rized the last equation by defining in each element the matrix (Ae)pi:

(Ae)pi = Lφi(xp) (8.15)

and a seperate weigh matrix We

(We)pp = wp (8.16)

into this: ∑
e

[
(Ae)TWBe

]
ue =

∑
e

[
(Ae)TWF

]
, (8.17)
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where the vector F contains the elements (F)p = f(xp). So imposing weak boundary conditions
will now be simply adding rows below matrix Ae instead of elimininating as previously done;

Ãe =


Ae

 ← extra BC relations

. (8.18)

This means that also the weight matrix We will have to be extended so that it will look like

W̃e =


We

αI

 , (8.19)

where α are the boundary condition weights, determining the ’hardness’ of the implemented bound-
ary condition. So a high α will return a better met boundary value. I is simply the identity matrix.
What is left is now to add the know solution for the boundary value on the right hand side vector;

F̃e =


Fe

BC

 , (8.20)

The same LSQSEM system as in equation (8.17) can be solved with weak boundary condition.

8.2.3 Identifying Boundary Conditions

The Poisson equation requires 4N (four times polynomial order) number of boundary conditions to
not under or over constrain the system when using the LSQSEM. So when using an order of N = 4,
16 nodes or surface values should be defined as boundary conditions. The boundary conditions
can be separated into two parts. For one there is the walls on which the fluid acts and secondly
the free surface itself.

Walls

Calculations are done using the Poisson equation meaning that friction is not taken into account,
inviscid flow. The walls are slippery, so there is no need to include the velocities parallel to the
wall to the boundary conditions. Nevertheless it still applies that the fluids can not cross the wall
boundary and therefore the only wall condition is that the normal velocity to the wall is zero

∇ϕ · n̄ = Vwall = 0, (8.21)

shown graphically in Figure 8.3. The free surface divides the domain into two parts of roughly equal
size. In this case that means the number of nodes on the walls within the fluid are approximately
1
2N + 1

2N +N = 2N , which is two half side walls and one full wall. This number will roughly stay
the same, even during motion of the surface, because mass has to be conserved. When using less or
more fluid of course the amount of boundary nodes will reduce or increase. During the movement
of the surface it means however that one has to determine in every new time step if the node at the
wall is in- or outside of the fluid, by looking at the sign of the tracer function c(t, x, y). Positive
was defined to be fluid (6.1), meaning that then a boundary value will apply for the corresponding
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Figure 8.3: Normal Wall Boundary Condition

node and that this node will have to be imposed as weak boundary underneath the system. If the
corresponding nodes defined as boundary condition are found they can be imposed in the ’weak’
form so that the extra boundary condition relation beneath matrix A will look like,

[
1 0 0

]  uij
vij
ϕij

 , (8.22)

meaning that where there is a 1 in the system, the corresponding uij or vij is the boundary value
known. On the right hand side vector F (8.20) a 0 is added below the system as boundary condition.

Surface

First it must hold that all point on the surface stay on the surface, which implies that the kinematic
boundary condition looks like:

D ~X

dt
= ~u. (8.23)

such that the interface moves with the speed of the flow. This however is already incorporated in
the convection equation of the tracer function (equation 7.2) as always the current velocity field
will be included. The convective derivative of the velocity potential;

Dϕ

dt
=
∂ϕ

∂t
+ (∇ϕ)2, (8.24)

is also taken care for in the convection equations. Equation (8.6) can be discretised and written
as,

ϕn+1 = ϕn − 1
2

(∇ϕn)2 ∆t− gy∆t, (8.25)

and holds on the free surface, but the potential ϕ will have to be interpolated, because it is unlikely
that the surface will run through exactly the nodes at any time during movement. At a certain
position on the surface P (x∗, y∗), not necessary being in a node, the potential at time step n can
be found interpolated as:

ϕ∗n(x∗, y∗) =
N∑
i=0

N∑
j=0

ϕnijφi(x
∗)φ(y∗). (8.26)

The number of points to be chosen on the surface is roughly 2N as about 2N points are already
been given to the boundary conditions on the walls in the previous part of this chapter. Again the
ratio between the number of wall and surface boundary nodes depends on the amount of fluid.

The potential found on the refined grid as on the surface and depicted in Figure 8.2 will be
described from now on at time step n as ϕ∗n. At t = 0 the system is released from the initial
excitation and the free surface contour is positioned in the field so that for the new time step t = 1
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the corresponding ϕ∗n+1 can be computed by using equation (8.25). The potential at the new
time step ϕ∗n+1 is the new surface boundary condition. Therefore the solution for ϕ∗n+1 is put
below the system on the right hand side vector F (equation 8.20), implemented ’weak’. On the
left hand side the basis functions will be positioned so that the extra row of boundary condition
relation underneath matrix A (8.18) looks like:

[
0 0 φi(x∗, y∗)φj(x∗, y∗)

]  uij
vij
ϕij

 =
[
ϕ∗ij

]
, (8.27)

8.3 Solving Procedure

To get things into perspective it is probably a good idea to graphically demonstrate how the
previous can be implemented in an iterative process. In Figure 8.4 one starts by inserting the
initial conditions into the Poisson equation. Then the Poisson equation is solved returning u, v
and ϕ in the nodes. Then u, v can be used for the Crank-Nicolson time integration and the tracer
function c(t, x, y) will be moved into the new position. For the new time step coming up new
boundary condition has to be defined and so the potential ϕ has to interpolated and on different
points on the surface the interpolated potential ϕ∗n will be found. From (8.26) ϕ∗n+1 can be
gathered as new ’weak’ boundary condition. In addition all the nodes on the boundary have to
be checked if they are residing within the fluid. If so, they will be added to the ’weak’ boundary
conditions as well. Now going back to the start will initiate the new iteration.

Figure 8.4: Solving scheme for free surface tracking using Crank-Nicolson and LSQSEM
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Chapter 9

Results For a Gravity Driven Free
Surface Flow

Chapter 8 described all the tools for setting up a basic gravity driven flow problem. That included
the definition of all the boundary conditions involved and the physical system, using a Laplacian of
the velocity potential. At this stage the only thing missing is seeing the system in action. Therefore
presented in this chapter are the results of the gravity driven problem shown in Figure 8.1. In this
way the application description in Chapter 8 will be implemented. The only force acting on the
system is gravity, so no friction forces or others.

9.1 Standing Wave

The ease of this problem is that it is relatively simple to implement. It can be compared with
different orders of convergence and the differences spotted. The flow is given an initial excitation
of h(0, x) = 0.1x and released so that gravity can do its work to get the system going. The system
should wave up and down forever as friction with the walls is not incorporated due to the inviscid
flow assumption. Figure 9.1 is a vector plot of the velocity vector ~u in the fluid, plotted for a
polynomial order of N = 8 after the fist iteration. Clearly the velocity has a downward motion on
the right hand side, where we expect gravity pulling the fluid down. Figure 9.2 shows the results of

Figure 9.1: Vector plot of velocity vector ~u in the fluid for N = 8 after first iteration
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using the LSQSEM method for the free surface tracking on a standard element using polynomial
orders of N = 3 to N = 5 in spatial direction. The initial excitation is set to h(0, x) = 0.1x (Figure
9.2(a)). The interpolation mesh, Section 8.2.1, is set to r = 160 cells in one spatial direction. The
whole computational field is solved at one go with Poisson using a single elemental basis m = 1,
with m the number of elements. Already at the first slice, figure 9.2(c), one detects that order
N = 5 is starting to curve into an ’s’ shape. Also N = 4 is showing that behavior, but less than
for N = 5. The increase in curvature is certainly no accident, it is rather expected. The solution
is calculated with the LSQSEM and N being the polynomial order. At low orders like N = 3 the
polynomials can not follow the actual solution, as the curve can not be represented properly by
third order polynomials. Increasing the order increases the ability to do so. Therefore N = 3 looks
more like a linear function oscillating around the origin. As the problem inherits the characteristics
of a standing wave the node at the origin should always be met at any time. N = 3 has little
problems with that due to a ’near’ linear behavior. N = 4 clearly does not meet it well as Figures
9.2(d) and 9.2(e) etc demonstrate. N = 4 does not show origin symmetry, so that could be the
reason it does not meet the origin. Consistently, N = 5 is meeting the origin quite well and has a
more origin symmetric display.

An other characteristic of the stationary wave is that the maxima and minima in the end points
at x = −1 and x = 1 should be reached. The maxima and minima at these points should return
the value of the initial excitation |h(0, x)| = 0.1x, because there can not be any damping due to
viscosity. Investigating Figure 9.2(e) once more, it shows that N = 4 has some overshoot going
beyond the initial value of h(0,−1) = 0.1. N = 3 Is meeting h well, Figure 9.2(e). N = 5 Can
not be taken a trustworthy result as soon in time the solution explodes (figure 9.2(i)). N = 4 is
consistent in showing overshoot, Figure 9.2(s), however N = 3 is damping out a little on the left
hand side comparing Figure 9.2(s) and 9.2(t). During the transition at the maximum the value of
h = −0.1 at the wall has not been met, so some damping is present. It is known that low orders
suffer some numerical diffusion, so some damping can be expected.
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(a) t=0s (b) t=0.19s

(c) t=0.38s (d) t=0.56s

(e) t=0.75s (f) t=0.94s
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(g) t=1.13s (h) t=1.33s

(i) t=1.50s (j) t=1.69s

(k) t=1.88s (l) t=2.06s
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(m) t=2.25s (n) t=2.44s

(o) t=2.63s (p) t=2.81s

(q) t=3.00s (r) t=3.19s
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(s) t=3.56s (t) t=3.75s

Figure 9.2: Standing wave, N=3 ’black’, N=4 ’red’, N=5 ’green’
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By now one is wondering why the solution for N = 5 is blowing up after only a short time of
iterations (Figure 9.2(i)), t = 1.5s. This is opposing all expectations, because the LSQSEM should
be working very well at high orders. So the expectation would be increased accuracy at higher
orders. There are some theories about this behavior. For one the calculations are performed on a
single element. Within this element there are two regions, the fluid and the vacuum. The vacuum
can not be seen as a fluid. The LSQSEM system solves the whole domain at once, for u, v and
ϕ. The solution of u, v and ϕ will be zero in the vacuum and have some value within the fluid.
This means that the basis functions will have difficulties to fulfill the solution in all nodes on the
computational domain. The ’weak’ implementation of the boundary conditions ensures that the
solution will try and reach the best compromise to fulfill all boundary conditions. The LSQSEM
will try and make use of the vacant area in the computational element to get rid of the polynomials
in such a way that the solutions in the fluid can be met as good as possible. When using higher
orders however the linear effect of low order will slowly vanish. Therefore it will be more difficult
to meet the boundary conditions.

Inevitably the next step into tackling this problem is to go to a multiple elemental basis. In this
way the basis functions will be able to represent the solution better. In this particular problem an
interesting alternative would be introducing elements that deform to meet the free surface contour,
because like this only the region in the fluid has to be solved. Everything outside of the fluid can
then be neglected. For sure this will yield more accurate results.

Making the time step smaller is an other alternative. This method is generally known to work
well. Table 9.1 show what happens when reducing the time step. The solution will blow up later,
but the gain is marginal, being 0.1 second. Reaching computing times of 3.75 seconds, like N = 4,
in this way is unlikely. It can therefore be concluded that this is not the reason the solution blows
up.

time step blow up:
∆t=1/160 t=1.35s
∆t=1/200 t=1.45s

Table 9.1: Convergence comparison blow up time vs. time step
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Chapter 10

Conclusion

In this master thesis the emphasis is put on using the LSQSEM to track free surface flows on a
standing wave problem. Using spectral elements based on orthogonal Lagrange polynomials as
basis function and combining it with the least square method results into the least square spectral
element method (LSQSEM). The real strength of the spectral elements is the accuracy of integra-
tion by using p-refinement and will result in a fast convergence of the integration error compared
to h-refinement. Therefore a linear operator was discretised that can be applied on a variety of
functions. This is the basis of setting up the discretisation of flow problems like the Poisson,
Navier-Stokes or Euler.
For solving the Poisson equation using the LSQSEM one needs to set up a coupled system defined
by the Laplacian of a velocity potential. The Poisson equation is tested on different kind of known
function like the sine and cosine and simple polynomial functions. It showed that integration
errors (convergence study) go as low as machine error using p-refinement and that the speed of
convergence is faster than using classic h-refinement.
To be able to apply the LSQSEM to free surface tracking a tracer function was introduced that
can be evaluated in the whole flow field. It ensures that the surface contour will be convected
correctly over time. Where the tracer function is identified as being zero, i.e. c(t, x, y) = 0 part
of the free surface is found. One of the two fluids will inherit negative tracer function values and
the other positive values. The tracer function will have a smooth transition between negative and
positive side of the the free surface to prevent discontinuities. A fixed mesh was chosen compared
to moving mesh as this safes valuable CPU-time in re-meshing for every time step.
The solving of the free surface tracer function requires the discretisation in time direction as well
as in spatial direction. Spatial direction will be solved using the LSQSEM, but in time direction
a second order accurate scheme is used, Crank-Nicolson. This time discretisation is a one-step
scheme that only requires the storage of the previous time step, so that the second order accuracy
it inherits comes for ’free’. Valuable CPU-time can be saved.

Finally the tracer function and the Poisson equation are combined to solve a flow problem. Setting
up the boundary conditions and how an iterative process can be initiated are explained. For the
free surface boundary condition use was made of interpolations of the velocity potential. The inter-
polated values where then inserted as ’weak’ boundary condition for solving the Poisson equation.
The wall boundary condition are evaluated at the GLL nodes and idem used as a ’weak’ boundary
implementation. A standing wave problem is introduced that is initially exited from a reference
hight by h(0, x) = 1 and then released. Only one side of the free surface is actual fluid. The other
side is considered to be a vacuum. Gravity is the only driver of the problem, because friction forces
are not taken into account, by taking the right hand side of the Poisson equation to be zero.

The result is that a flow can be simulated with success. On a single elemental basis an oscillating
standing wave is simulated. Polynomial orders of the basis function ranging between N = 3 and
N = 5 are shown. Order N = 3 has some linear behavior as the the third order polynomials can
not represent the solution well enough yet. Increasing to N = 4 solves this problem partly, but the
flow is still not symmetric in the y-axis as is expected. Initially order N = 5 complies very well
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with the expectations of a standing wave, but is unfortunately not stable enough and explodes.
This is most likely because the polynomials have a hard time representing the flow field, as outside
of the fluid, in the vacuum, calculations are performed that do not belong in the fluid solution. The
high oscillations of the high order polynomials find it difficult meeting the boundary conditions
the quality of the computed results goes down.

10.1 Recommendations

To be able to run calculations on the standing wave, it is essential that the calculation basis
is expanded to multiple elements. This will relief the polynomials so that the solution can be
represented more accurately. Further improvements on this would be creating elements that adapt
to the form of the free surface contour. In this way unnecessary inclusion of the region outside of
the flow region is not needed anymore.
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Appendix A

Spectral Elements

A.1 Standard Element

A lot of attention will be payed to the computational domain Ω = [−1, 1] as on this interval the
basis functions will be orthogonal. Nevertheless the basis functions can be made orthogonal on
all intervals, but doing this for just one interval allows mapping on to all intervals. For distorted
domains a transformation has to be defined to make the domain fit the standard element again.
Normally for the x-direction the letter ξ is used. For y-direction η will be used and ζ accordingly
for z-direction where:

x → ξ : −1 ≤ ξ ≤ 1

y → η : −1 ≤ η ≤ 1

z → ζ : −1 ≤ ζ ≤ 1

A.2 High-Order Expansion Basis (Trial) Functions

When using a linear expansion basis the only way to obtain a higher accuracy of the calculation is
to increase the amount of elements, also called h-refinement. With the use of Spectral elements,
contrary to linear elements, the user is now able to increase the accuracy without increasing the
amount of sub-domains, by expanding the truncated series solution with higher polynomial order.
This section will deal with the different types of higher order related basis functions that can be
used. Also the choice for the expansion basis that will be used in the course of the thesis. Some
common basis functions previously derived by others are Jacobi, Lagrange, Legendre, Chebyshev
and many others. They all have the common feature that they are all orthogonal on the interval
[−1, 1] with respect to a given weight function.

A.2.1 Jacobi/Legendre polynomials

The Jacobi/Legendre polynomials are solutions of a singular Sturm-Liouville problem [17], Pα,βn

with n being the order of the polynomial. As mentioned above the feature is the orthogonality
property they posess on the interval [−1, 1] with respect to a given weight function [13].

To construct the polynomials the following recursive formula can be used:

Pα,β0 (x) = 1
Pα,β1 (x) = 1

2 [α− β + (α+ β + 2)]
a1
pP

α,β
p+1(x) = (a2

p + a3
px)Pα,βp (x)− a4

pP
α,β
p−1(x)

(A.1)

With
a1
p = 2(p+ 1)(p+ α+ β + 1)(2p+ α+ β),
a2
p = (2p+ α+ β + 1)(α2 − β2),
a3
p = (2p+ α+ β)(2p+ α+ β + 1)(2p+ α+ β + 2),
a4
p = 2(p+ α)(p+ β)(2p+ α+ β + 2).

(A.2)
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Here α and β can be chosen arbitrarily. For example choosing α = β one obtains classical symmetric
polynomials. When taking α = β = 0 or α = β = − 1

2 one obtains the Legendre and Chebyshev
polynomials, respectively.

For the scope of this Literature review only the Legendre spectral elements will be used as they
result in a unit weight function.

A.2.2 Lagrangian Expansion Basis

The expansion of the solution can be done in a Lagrangian framework, meaning on a nodal ex-
pansion basis. These nodes are chosen such that they coincide with the zeros of the Gauss-
Lobatto-Legendre (GLL) points. This means that one uses the derivative of the highest Legendre
Polynomial and adds two zero points, one at the start and one at the end of the computational
domain Ω = [−1, 1]. Then it has to be solved:

(1− ξ2)L′N (ξ) = 0 [−1 ≤ ξ ≤ 1], (A.3)

which represents the GLL polynomials. In (A.3) L′N (ξ) represents the partial derivative with
respect to ξ Legendre Polynomials LN (ξ), with order N . The first five orders are:

N LN (ξ)
0 1
1 ξ
2 1

2 (3ξ2 − 1)
3 1

2 (5ξ3 − 3ξ)
4 1

8 (35ξ4 − 30ξ2 + 3),

(A.4)

and L0-L3 are depicted in figure A.1 and can be derived directly by inserting α = β = 0 and the

Figure A.1: Legendre polynomials L0-L3

order N accordingly, into equation A.1, then,

LN (ξ) = P 0,0
n (ξ). (A.5)

The zeros of the GLL formulation (A.3) have to be found by evaluating the said equation for
every order, thus evaluating the zeros of the Legendre Polynomials and in addition the two end-
points as (1 − ξ2) will return these values. Therefore the N + 1 zeros (nodes) are formulated as
−1 = ξ0, ξ1, · · · , ξN = 1. For convenience the polynomials of Legendre LN (ξ) can be recursively
represented in the form [3]:

Lk+1(ξ) =
2k + 1
k + 1

ξLk(ξ)− k

k + 1
Lk−1(ξ), (A.6)
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with L0 = 1 and L1 = ξ and k the order of the polynomial. Then taking the derivative returns:

L′k+1(ξ) =
2k + 1
k + 1

(Lk(ξ) + ξL′k(ξ))− k

k + 1
L′k−1(ξ) (A.7)

with L′0 = 0 and L′1 = 1.
The Lagrangian basis functions can be found using N nodal points −1 = ξ0, ξ1, · · · , ξN = 1

resulting in an order for the Lagrangian polynomial of N − 1. It holds that:

φp(ξq) = δpq, (A.8)

thus defined by a Kronecker delta function as the Lagrangian polynomials are unity ξq at p = q
and zero at p 6= q [3, 13, 17]. Then the Lagrangian base functions can be written as:

φp(ξ) =
ΠN
q=0,p6=q(ξ − ξq)

ΠN
q=0,p6=q(ξp − ξq)

, (A.9)

combined with the GLL points:

φp(ξ) = − 1
N(N + 1)

(1− ξ2)L′N (ξ)
(ξ − ξpLN (ξp))

p = 0, · · · , N. (A.10)

The new set of basis function according to the Lagrangian framework can now be used to expand
the solution in a Spectral sense, i.e. replacing the linear basis functions (Fourier, etc.) to form a
basis of higher order terms (A.7). The Lagrange polynomials are plotted for p = 5 in figure A.2.
Therefore in this thesis the Lagrange polynomials are based on Legendre polynomials.

Figure A.2: Lagrange polynomials φ0 − φ4

A.2.3 Differentiation of the Lagrange base function

In many cases it is needed to find a differentation of basis functions. This can be for example:

∂u

∂ξ
=
∞∑
n=0

ûn
∂φn(ξ)
∂ξ

(A.11)

where ∂φn(ξ)
∂ξ has to be found. Next the said differentiation is also needed when using the Least

Square integration method (sect. 2.2), where the test function of the Least Squares method equals
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the first derivative of the basis functions. This differential matrix can be written as,

dpq =



LN (ξp)
LN (ξq)

−1
ξp−ξq

p 6= q,

−N(N+1)
4 p = q = 0,

N(N+1)
4 p = q = N,

0 else.

(A.12)

A.2.4 Higher dimensional expansion basis

Higher dimensional expansion basis are very similar to 1-D problems. The expansion can now be
written as:

2D Hi(ξ, η) = φp(ξ)φq(η) i = p+ q(N + 1)

3D Hi(ξ, η, ζ) = φp(ξ)φq(η)φr(ζ) i = p+ q(N + 1) + r(N + 1)2.
(A.13)

A.3 Least Squares and Galerkin integration methods

The Least Square and Galerkin methods are ways to integrate an unknown function expanded in
the Spectral Element discretization. In Appendix B a step by step implementation of the Galerkin
and Least Square method combined with the Spectral Method is incorporated. In this section the
fundamental mathematical basis is described of, first, the Galerkin Method and second the Least
Squares Method.

A.3.1 Galerkin Method

The Galerkin method is widely used in computational fluid dynamics and belongs to the class of
weighted residuals. For the basis of the theory of the Galerkin method a system with a differential
equation is considered according to Jiang, [16]:

Au = f in Ω,
Bu = 0 on Γ (A.14)

Where A is the linear differential operator, B is the boundary operator, u is the dependent
unknown vector, f is the forcing function vector, Ω is the domain of interest and Γ represents part
of the boundary of Ω. In the Galerkin Method the function u can be approximated by a set of
unknown trial functions (or basis functions) φi expanded by a truncated series solution, where ûi
are constants:

uappr =
N∑
i=0

ûiφi , i = 1, · · · , n (A.15)

Next, the algebraic equation resulting in a numerical solution is formed as a ’weighted residual’
and can be defined as: ∫

Ω

vT
i (Au− f)dΩ +

∫
Γ

v̄T
i BudΓ, (A.16)

where vT
i and v̄T

i are the transposes of ’suitable chosen’ test functions. In the case of using the
classic Galerkin approach usually the test functions are chosen such that:

vT
i = v̄T

i = φi. (A.17)

The Galerkin method can be applied to self-adjoint operators and systems as well as to non-self-
adjoined ones and is thus a good option for general solving of equations. It is applicable to problems
in solid mechanics as well as fluid mechanics.
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Some known concerns about the Galerkin method in practise are that the solutions to convec-
tive problem will show oscillations and ’wiggle’ like behavior. This behavior can be reduced by
increasing the amount of sub-domains on the computational domain [17], but this would counteract
the aim for a faster solving with the help of a high order scheme with low amount of cells. Further-
more it will not behave in hight-speed compressible flow and shallow water wave problems as well
as elliptic and mixed problems (Laplace) problems following the Ladyzhenskaya-Babushka-Brezzi
(LBB) condition [17] as the minimization results into a difficult to solve saddle-point. According
to the LBB-condition there is a distinction between primal and dual variables, where for example
in the Navier-Stokes equation the pressure is considered a dual variable as whereas the velocity a
primal. This means for the solution a lower order has to be taken for the pressure compared to
the velocity and thus a loss in accuracy.

A.4 h/p-refinement

Spectral element methods (SEM) are based on higher order discretisation over a certain domain.
This usually means that an order of more than two is used. Higher order polynomials reduces
the computed error. The increase in order is also called p-refinement. Another method which
is very common in first order FEM, is to increase the amount of elements on the computational
domain, because this increases the accuracy as well. This type of refinement is called h-refinement.
Appendix C gives a good illustration and analysis what both optimization methods mean for
SEM, where first the number of cells is kept constant and polynomial order altered after which
the opposite is done, keeping the polynomial order constant and increasing the amount of cells or
sub-domains on the computational domain.
It has to be noted that both, h and p type refinement are closely related, because even when only
a p-refinement is applied still an elemental basis is needed.

A.4.1 h-refinement

In this section the process of decomposing an expansion into an elemental contribution, that is the
h-refinement, will be demonstrated.
The first step in the spectral element discretisation process to be taken is to divide the domain Ω
into ne non-overlapping elements denoted by sub-domains, Ωe [7, 17, 30]. Then the domain Ω
can be written as the sum of the sub-domains, hence:

Ω = ∪ne
e=1Ωe ,∩ne

e=1 = ø. (A.18)

For the domain this means that if Ω is a domain of length l, Ω = {x|0 < x < l}, a sub-domain,
e.g., the e-th element can be defined like

Ωe = {x|xe − 1 < x < xe},

where x0, x1, · · · , xe represent the (e + 1) nodes at the edges of the elements. Figure A.3 makes
clear how division of the solution domain can be represented by the sub-elements. Furthermore it

Figure A.3: Sub-domains of global domain Ω and corresponding end element nodes

must hold that the sum of all sub-domains should yield the result of the complete domain as,∫
Ω

(Aφ)T (Au− f)2dΩ =
ne∑
e=0

∫
Ωe

(Aφ)Te (Au− f)2
edΩe = 0
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A.4.2 p-refinement

p-Refinement is the actual strength of the SEM. The accuracy of the solution increases faster
compared to the accuracy increase of a h-refinement, Appendix C. Furthermore the implementation
of higher orders is relatively simple. It is based on increasing the order of the basis functions
(Appendix A.2), where the order is described as the degree of freedom of the approximate solution.

A.5 Error Analysis

Nobody likes to makes errors as it is in human nature to strive for perfection. However discretising
a differential equation has the property that one approximates a solution. In the case of LSQSEM
the discretisation of a differential equation will have a truncated error and greatness of the error
will give a validation of the strength of LSQSEM compared to Galerkin as well as the comparison
between p- and h-refinement.

Intuitively an error could be defined as taking the difference between the real solution at a
given point and subtract the approximated solution evaluated at the same said point. However in
this section another error approach is used according to the L2-Norm.

A.5.1 Gauss-Lobatto Quadrature

In general form Gauss-Lobatto quadrature will rewrite the integration of a function g(x) as a
weighted summation like [7, 3], ∫

Ω

g(x)dx ≈
P∑
p=0

g(xp)wp, (A.19)

With xp being the Gauss-Lobatto-Legendre GLL zeroes and wp, the GLL weights,

wp =
2

N(N + 1)
1

[LN (xp)]2
(A.20)

A.5.2 Error according to the L2-Norm

Clearly, the remaining term of the series expansion (2.2) can be described as the error. If there
exist a space Lp(Ω) with 1 ≤ p ≤ ∞ then this space is a function space for a function u with
domain Ω. If p = 2 this will result in a Hilbert space with, L2(Ω) = H0, [8, 13] or

||u||2L2(Ω) =
∫

Ω

|u|2dΩ. (A.21)

Then the error can be defined at the difference of the real and approximated solution. This means
the error will look as follows:

ε = uexact − uappr. (A.22)

Therefore when combining (A.22) and the definition for the L2-Norm, (A.21), the normed error
squared is defined as,

||ε||2L2 =
∫

Ω

|uexact − uappr|2dΩ. (A.23)

A.6 Incorporating Boundary Conditions (BC)

For the solution a differential equation, e.g. (A.11), it was made clear in the above how to expand a
solution as a truncated series. Within this series the constants ûn have to be found. The expansion
can also be written in matrix form as:

Aû = f (A.24)

From a mathematical point of view to solve a first order differential equation one needs at least one
boundary condition. For every other increase in the order of the differential equation an additional
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boundary condition is needed. In case of the first order differential equation the boundary condition
is defined somewhere within the matrix system of (A.24). However it is not practical to solve the
system this way. It would be easier to get the row and column corresponding to the boundary
value to the most right column and the boundary row down to the bottom of matrix A displayed
in (A.25), [13]  AI AIB

ABI ABB


 ûI

ûB

 =

 fI

fB

 , (A.25)

by making the distinction between interior I and boundary B nodes. In this way the interior matrix
AI can be used to solve the system later. However the boundary condition will be incorporated
first to the right hand side forcing function, simply by multiplying the last entry of ûB with the
column AI and thus can be taken out of matrix A. Then the bottom row in the matrix system is
superfluous and is omitted, leaving equation (A.26) to: AI

 ûI

 =

 fI −AIBûB

 (A.26)

This new system can be solved without much trouble by solving (A.26) and remaining with the
desired vector ûI.

A.7 Mesh Refinement

To be able to see the computed solution more clearly it is necessary to lay a refined mesh over the
computed mesh. With the computed mesh, only the values at the computed GLL nodes resulting
in û from the previous section. When just plotting these values one obtains for example figure A.4.
Notice that the solution between the GLL-nodes is missing and therefore just a straight line is

Figure A.4: Course grid GLL-nodes u(x) = sin(x), n = 17

drawn. One could make the mistake by meaning to increase the order excessively to make it ’look’
better, but in fact wasting computer power and CPU time as it is only a matter of representation.
Essentially the following is plotted:

u(xp) =
N∑
n=0

ûnφn(xp) (A.27)
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Chapter A. Spectral Elements

Thus for every GLL-node xp only the corresponding constant solution ûn is plotted as, recall:

φn(xp) = δnp.

Therefore now a fine mesh is chosen, in particular a mesh with a GLL structure, so not a uniform
mesh. These points are then inserted in the general solution so that again (A.7) holds:

u(x) ≈ uN (x) =
N∑
n=0

ûnφn(x) = û0φ0(x) + · · ·+ ûNφN (x),

With the now known constants ûn and base functions φn(x) evaluated at any point x with x being
a fine GLL mesh node. The contribution of every basis function on the computational domain
will now be added together in one single point. Doing this with multiple points will result in
the fine GLL mesh. This can be now plotted together with the points from (A.27) and a smooth
function can be represented, Figure A.5 resulting from one solution of constants ûn without having
to increase the order further.

Figure A.5: Refined mesh between GLL-nodes u(x) = sin(x)
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Appendix B

Test Cases

In this chapter two test cases will be discussed to see how the theory of appendix can be applied on
a simple problem. The first test case will concern a step by step implementation of the LSQSEM
in one 1D. The second part will deal with a simple 2D test problem.

B.1 Full step by step implementation LSQSEM on a sample
problem

Let us now consider a simple sample problem to go through all the steps required to solve an
equality. As a simple example the following differential equation is chosen:

∂u

∂x
= f(x), (B.1)

with x = [−1, 1] and f(x) = x being the forcing function. One would like to solve (B.1) and of
course the exact solution is known to be u(x) = 1

2x
2 which will help to see if the results of the

LSQSEM or Galerkin minimization are correct. It was already previously derived how u(x) can
be expanded in a series solution like (2.3):

u(x) =
N∑
n=0

ûnφn(x).

It is now allowed to take the derivative as ûn is a constant, therefore:

∂u(x)
∂x

=
N∑
n=0

ûn
∂φn(x)
∂x

.

A choice has to be made on what sort of polynomial is going to be used to evaluate the differential
equation. Here a Lagrangian basis is taken. Further the right hand side forcing function has to be
expanded as well,

f(x) =
N∑
n=0

f(x)φn(x). (B.2)

The right and left hand side of the initial differential equation are now known and thus the equality
of B.1 holds now:

N∑
n=0

ûn
∂φn(x)
∂x

=
N∑
n=0

f(x)φn(x).

To obtain an approximated solution the said equation has to be integrated now as:∫
Ω

N∑
n=0

ûn
∂φn(x)
∂x

v(x)dx =
∫

Ω

N∑
n=0

f(x)φn(x)v(x)dx,
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Chapter B. Test Cases

According to the Galerkin and Least Square integration a test function v(x) is needed to be
multiplied on both sides for integration. For the Galerkin Method this incorporates to multiply
the left and right hand side with v(x) = φn(x) and for the Least Square Method the test function
is v(x) = φ′n(x). In both cases the integration has to be multiplied with a weighting factor wp as
both types of integration are family of the weighted residuals, see Appendix ??. Using the GLL
quadrature yields:

P∑
p=0

N∑
n=0

ûn
∂φn(xp)
∂x

v(xp)wp =
P∑
p=0

N∑
n=0

f(xp)φn(xp)v(xp)wp,

If now the Galerkin method is taken the differential equation can be written as:

∑N
n=0

[
û1 · · · ûN

]  φ′0(x0)
...

φ′N (xN )

 [ φ0(x0) · · · φN (xN )
]
wp =

∑N
n=0

[
f(x0) · · · f(xN )

]  φ0(x0)
...

φN (xN )

 [ φ0(x0) · φN (xN )
]
wp

(B.3)

Therefore for the Least Square Method one can write by simply changing the test function from
φn(x) to φ′n(x), which returns:

∑N
n=0

[
û0 · · · ûN

]  φ′0(x0)
...

φ′N (xN )

 [ φ′0(x0) · · · φ′N (xN )
]
wp =

∑N
n=0

[
f(x0) · · · f(xN )

]  φ0(x0)
...

φN (xN )

 [ φ′0(x0) · · · φ′N (xN )
]
wp

(B.4)

The general form will now be:

M

 û0

...
ûn

 =

 f(x0)
...

f(xN )

F. (B.5)

When using Least Square it will look like:

M =


φ′0(x0)φ′0(x0) φ′0(x0)φ′1(x1) · · · φ′0(x0)φ′N (xN )
φ′1(x1)φ′0(x0) φ′1(x1)φ′1(x1) · · · φ′1(x1)φ′N (xN )

...
...

. . .
...

φ′N (xN )φ′0(x0) φ′N (xN )φ′1(x1) · · · φ′N (xN )φ′N (xN ),

 (B.6)

and also,

F =


φ0(x0)φ′0(x0) φ0(x0)φ′1(x1) · · · φ0(x0)φ′N (xN )
φ1(x1)φ′0(x0) φ1(x1)φ′1(x1) · · · φ1(x1)φ′N (xN )

...
...

. . .
...

φN (xN )φ′0(x0) φN (xN )φ′1(x1) · · · φN (xN )φ′N (xN )

 , (B.7)

For the case of using Galerkin as basis functions, the right hand side F will look like:

F =


1 0 · · · 0
0 1 0 0
...

...
. . .

...
0 0 · · · 1

 (B.8)
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, simply because it must hold,
φn(xp) = δnp.

then solving to the right side:  û1

...
ûn

 = M−1

 f(x0)
...

f(xN )

F
The returned vector û1···n contains the unknown constants for the expansion of u(x), (A.7) in all
the GLL zeros. Therefore it is know now that:

u(xi) = ûiφi(xi) , i = 0 · · ·N

as follows by combing Equation A.7 and B.2, as all other basis function for one specific zero are
all zero as this is the property of the basis functions. Knowing now that φn(xp = 1 for all n = p
it results in:

u(xi) = ûi , i = 0 · · ·N

Finally, some small remarks on some characteristics of the Galerkin and Least Square formu-
lation should be made to be able to check the correctness of the implementation.
The Galerkin method will always return a diagonal right hand side matrix F whereas Least Square
will return a non diagonal one. The row sum of the right hand side matrix M will have to be
always zero for both, Galerkin and Least Square. Further matrix M will be symmetric for Least
Square and anti-symmetric for Galerkin.

B.2 LSQSEM application in a two-dimensional sample prob-
lem

The basic theory used for the two-dimensional analysis is very similar to the one-dimensional
case. However, since the one-dimensional elements are expanded to rectangular elements in two
dimensions, the major difference is the expansion basis used. As has been pointed out in section
A.2 the expansion basis used in two dimensions is a product of two one dimensional expansion
bases. The resulting expansion is shown in B.9.

u(x, y) =
N∑
i=0

N∑
j=0

ûijφi(x)φj(y). (B.9)

In case of the first order partial derivative in x-direction the expansion can be written as:

∂u

∂x
=

N∑
i=0

N∑
j=0

ûij
∂φi(x)
∂x

φj(y) (B.10)

The forcing function can be expanded similarly.

f(x, y) =
N∑
i=0

N∑
j=0

f̂ijφi(x)φj(y). (B.11)

The two-dimensional expansion of equation B.1 is thus written as:

∫ 1

−1

∫ 1

−1

 N∑
i=0

N∑
j=0

ûij
∂φi(x)
∂x

φj(y)−
N∑
i=0

N∑
j=0

f̂ijφi(x)φj(y)

 ∂φk(x)
∂x

φl(y)dxdy (B.12)
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In this expression a standard two-dimensional element and the least squares approximation (the
test function is equal to the two-dimensional basis function) are used. Using the Gauss-Lobatto
quadrature this equation can be rewritten as follows:

N∑
p=0

N∑
q=0

 N∑
i=0

N∑
j=0

ûij
∂φi(x)
∂x

φj(y)−
N∑
i=0

N∑
j=0

f̂ijφi(x)φj(y)

 ∂φk(x)
∂x

φl(y)

∣∣∣∣∣∣∣ x = xp
y = yq

wpwq (B.13)

This can be rewritten as

N∑
p=0

N∑
q=0

[
N∑
i=0

ûiq
∂φi(x)
∂x

|x=xp
− f̂pq

∂φk(x)
∂x

|x=xp
δl(q)wpwq

]
(B.14)

In the last expression use has been made of the fact that the Lagrange polynomials evaluated at
the Legendre zeros equal unity at one zero and zero at all the other ones. Hence, the following
must hold again

φi(xp) = δip.

The Kronecker delta yields an identity matrix. As compared to the one-dimensional case the
weights will produce a weight matrix. Clearly, the equations indicate a certain amount of book-
keeping is involved with higher dimensional expansion problems. The left hand side matrix in
two dimensions is again a symmetric, diagonal matrix. On the diagonal the corresponding one-
dimensional matrices are placed. The resulting matrices are shown in equation B.15. The sym-
metric one-dimensional matrix d has been discussed in (A.12)

M2D =


d

d
. . .

d

 (B.15)

The general form of the two-dimensional weight matrix is presented:

W =


wp(1)wq(1) wp(2)wq(1) · · · wp(N)wq(1)
wp(1)wq(2) wp(2)wq(2) · · · wp(N)wq(2)

...
...

. . .
...

wp(1)wq(N) wp(2)wq(N) · · · wp(N)wq(N)

 , (B.16)

Certainly, the boundary conditions can be applied as in the one-dimensional case. The procedure is
not as trivial as in the one-dimensional case and a detailed description is omitted in this literature
review. However, generally the procedure can be summarized as follows. First, a reordering of the
left- and right-hand-side matrices is performed. It is recommended to rearrange the matrices as
has been outlined in (A.25) section A.6 and the matrix system can be solved to obtain the desired
interior values of û.
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Appendix C

Results Error Analysis

C.1 Examples on error analysis in 1D

This section will deal with the behavior of the error for different type of forcing function f defined
by the differential equation in equation B.1.

∂u(x)
∂x

= f(x)

For this error analysis known functions are taken for which the primitives and derivatives are
known. Therefore the following functions for u(x) are taken for which the forcing function can be
determined by simply taking the derivative, so numerically integrating the forcing function should
result in an approximate solution uappr of the exact solution uexact, like:

u1(x) = sin(πx) → f1(x) = πcos(πx)

u2(x) = x8 + 5x3 → f2(x) = 8x7 + 15x2
(C.1)

In the scope of this literature review first Galerkin will be compared with Least Square method and
secondly the h-refinement and p-refinement. A closer look will be taken between the differences of
the computed error of the differential equation, for both Galerkin an Least Square method. Then
the difference in the refinements are looked at. First the cell size is kept constant and and the
polynomial order altered. Subsequently the order will be kept constant and then the number of
sub-domains changed, i.e. the amount of elements. This will enable an assessment how the error
behaves by changing these mentioned parameters.

C.1.1 Galerkin vs. Least Square p-refinement

Compared to Least Squares, the Galerkin Method is still more popular to be use. As discussed in
section A.3.1 the behavior of Galerkin will show ’wiggle’ like behavior in the convergence. In this
section Galerkin is therefore compared with Least Square to see what this implies for this thesis
and to verify the theory [17].

First the function f1(x) is taken and computed on a single element and u1(x) will be used as
a reference to the computed values as this is the exact solution. Figure C.1 shows the comparison
between Galerkin and LS integration methods for an order of n = 4. Clearly Least Square is
more accurate. However when looking at Figure C.2 it seems that Galerkin and Least Square are
roughly equally far converged. Consulting therefore the error evolution, according to the L2-norm
A.5, with increasing the order of both, Galerkin and Least Square in one Figure, shows indeed the
’wiggle’ like behavior in the convergence of Galerkin, Figure C.3

Secondly a closer look is taken at a function of higher polynomial order. Both Galerkin and
Least Square should perform well as they both incorporate basis functions that are consisting of
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Figure C.1: Comparison u(x) = sin(x) of Galerkin and LS (order n=4)

Figure C.2: Comparison u(x) = sin(x) of Galerkin and LS (order n=5)

polynomials themselves. Therefore u2(x) and f2(x) are used now and drawn in Figure C.4 for a
polynomial order of n = 5. Once more Galerkin seems to be lacking behind in convergence to the
exact solution. Therefore again the error is analyzed. Figure C.5 displays again the ’wiggles’ and
an other interesting event, in particular that the solution for the convergence actually suddenly
drops down to the exact solution, for both Galerkin and Least Square. The error that still remains
after n = 8 is just the machine error.

C.1.2 Galerkin vs Least Square h-refinement

First u1(x) is considered again and the corresponding error shown in figure C.6 and than u2(x) in
figure C.7. The results are similar as in the previous section. Least Squares performs better.

C.1.3 p-refinement vs. h-refinement Least Square

It is clear that a p-refinement, Appendix A.4 converges faster to the exact solution than h-
refinement. Nevertheless h-refinement can not be completely neglected. Think about a boundary
which is not straight, but one with the presence of a sharp corner or kink. It is then evidently
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Figure C.3: Comparison error according to the L2-Norm for u(x) = sin(x)

Figure C.4: Comparison u(x) = x8 + 5x3 Galerkin with Least Square n = 5

needed to be able to follow the contour of the boundary with the use of at least more than one
cell. Therefore in the remainder of this section p- versus h-refinement is analyzed and once more
use is made of the functions u1(x) and u2(x)

C.2 Error Analysis Results 2D

In this section the results obtained with the two-dimensional calculations are presented. As in the
one-dimensional case discussed before a p-refinement is compared with a h-refinement. However,
in the two-dimensional case only the LSQSEM is considered.
As in the one-dimensional case a convergence study of the residual error is performed based in two
functions:

u1(x, y) = sin(πx)cos(πy) → f1(x, y) = πcos(πx)cos(πy)

u2(x, y) = x9y2 → f2(x, y) = 9x8y2
(C.2)
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Figure C.5: Comparison error according to the L2-norm for u(x) = x8 + 5x3

Figure C.6: Comparison error u(x) = sin(x) Galerkin with Least Square h-refinement

C.2.1 2D p-refinement

For the p-refinement the order of the polynomials is increased from n = 1 (linear polynomials) to
n = 20. The number of elements is kept constant at one element - the standard element. Figure
C.9 shows the convergence behavior of the function u1(x, y). It can be seen that with increasing
the polynomial order while keeping the number of elements constant the residual error decreases
exponentially. At a polynomial order of n = 16 the exact solution is reached. Higher orders do
not yield more accurate results. In Figure C.10 and C.11 a surface plot is shown of the function
u1(x, y) using second order (n = 2) polynomials. In the first figure only the GLL points are used.
In the second figure the mesh is refined using just these GLL points. The refinement is needed
for a more accurate error analysis. The approximation converges towards the real solution with
increasing the polynomial order. Two surface plots showing the converged solution are presented
in Figures C.12 and C.13, respectively. The first of these two shows the GLL points are used. The
second figure shows the same polynomial order with a refined mesh.
In Figure C.14 the convergence behavior of u2(x, y) is shown. The sudden drop at n = 10 indicates
that the actual solution is reached. Again, increasing the polynomial order will not yield a more
accurate result.
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Figure C.7: Comparison error in the L2-Norm for u(x) = x8 + 5x3

Figure C.8: Comparison error according to the L2-norm for u(x) = x8 + 5x3 h- vs p-refinement

C.2.2 2D h-refinement

For the h-refinement the number of square elements is increased from m = 1 to m = 20 while the
polynomial order is kept constant. In the present case linear polynomials are used.
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Figure C.9: Error according to the L2-Norm for u(x, y) = sin(πx)cos(πy) p-refinement

Figure C.10: Surface plot for u(x, y) = sin(πx)cos(πy), n = 2, GLL points

Figure C.11: Surface plot for u(x, y) = sin(πx)cos(πy), n = 2
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Figure C.12: Surface plot for u(x, y) = sin(πx)cos(πy), n = 18, GLL points

Figure C.13: Surface plot for u(x, y) = sin(πx)cos(πy), n = 18

Figure C.14: Error according to the L2-Norm for u(x, y) = x9y2 p-refinement
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