
Delft University of Technology
Master’s Thesis in Embedded Systems

Run-Time Reconfiguration in Wireless
Sensor Networks

Robin van den Berg

Run-Time Reconfiguration in
Wireless Sensor Networks

THESIS

submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
in

EMBEDDED SYSTEMS

by
Robin van den Berg

Department of Physics and Electronics
Expertise center Technical Sciences

TNO
Stieltjesweg 1, 2628 CK Delft, The Netherlands

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

c© 2011 Robin van den Berg.

Run-Time Reconfiguration in Wireless Sensor
Networks

Author
Robin van den Berg (robin@vandenbergweb.nl)

Report submission date
15 July, 2011

MSc presentation
22 August, 2011

Abstract

A wireless sensor network (WSN) consists of multiple small and simple
computers (nodes), whose performance is tightly linked to its unpredictable
deployment environment. It is nearly impossible to design a WSN that per-
forms well in every scenario; instead they are developed for a specific context,
with performance rapidly decreasing when environment properties move away
from the optimum. Enabling a WSN to adapt to a changing environment could
be a solution for this problem. The goal of this thesis project is to develop soft-
ware for sensor nodes that is able to reconfigure a wireless sensor network at
run-time, allowing the sensor network to perform within its requirements under
changing conditions.

An approach is proposed in which developers provide knowledge about the
WSN’s requirements to sensor nodes during design-time, enabling the nodes to
reason about their configuration at run-time. A middleware solution is designed
that combines the run-time environment data with the knowledge about the re-
quirements and indicates which reconfiguration is required. A proof-of-concept
implementation is developed which reasons about reconfiguration within mil-
liseconds. The performed evaluation includes the implementation of a recon-
figurable modal analysis application and shows the processing and memory
overhead introduced by the middleware remains low. The approach proves to
be a solid basis for future developments on reconfigurable sensor networks.

Graduation Committee
Prof.dr. K.G. Langendoen (chair) Delft University of Technology
Dr.ir. G.N. Gaydadjiev Delft University of Technology
Dr.ir. Z. Papp (daily supervisor) TNO
Dr. M. Woehrle (university supervisor) Delft University of Technology

mailto:robin@vandenbergweb.nl

Preface

Although one never stops learning, the time has finally come for me to finish my
education at the TU Delft. At the start of my master programme, I was not particu-
larly interested in the topic of Wireless Sensor Networks. However, as I learned more
about Embedded Computer Architectures, Real-Time Systems and Distributed Algo-
rithms and grew interested in how computers can interact with the physical world, I
realized that Wireless Sensor Networks combined many aspects of these specializa-
tions. As a person who is not very fond of choosing between his different interests,
this research area was ideal for my thesis project.

As I would liked to have more experience in industry, I applied for a thesis project
with TNO. From their experience with WSN deployments, TNO had learned that
run-time changes affect the usability of WSNs. They offered me the opportunity to
work on this problem, which I eagerly accepted.

I could not have reached the end of this project without the support of the people
around me. First of all, I would like to thank my supervisors at the TU Delft and
TNO, Matthias and Zoltan. Although initially I was very shy and reluctant to ask for
help, they offered me guidance and tips and convinced me to be less hesitant with
asking questions. Furthermore, thanks go out to my colleagues at TNO, especially
Arjan and Puneeth, for their suggestions, resources and of course the cookies and
fun discussions during the coffee breaks. Last but definitely not least, I would like
to express a great deal of gratitude to my parents and to my girlfriend Chanine, who
have supported me through the many tough times that came with this project. You
mean more to me than I can express.

Delft, The Netherlands
July 15, 2011

v

Contents

Preface v

Contents vii

1 Introduction 1
1.1 Commercial Interest . 2
1.2 Problem Statement . 3
1.3 Organization . 3

2 Background 5
2.1 Wireless Sensor Networks . 5
2.2 WSN Development Approach . 7
2.3 Reconfiguration Middleware for WSNs 9
2.4 Reconfiguration Intelligence . 10

3 Middleware Design 13
3.1 Goals and Requirements . 13
3.2 Knowledge Representation . 15
3.3 Rule-Based Inference . 20
3.4 Actuation . 21

4 Implementation 23
4.1 Implementation Platform . 23
4.2 Component Monitoring . 24
4.3 Rule Base . 25
4.4 Inference Engine . 27
4.5 Reconfiguration Actions . 28
4.6 Evaluation . 29

vii

viii Contents

5 Case Study 33
5.1 Sensor Network Design . 33
5.2 Reconfiguration . 35
5.3 Results . 40
5.4 Discussion . 41

6 Conclusions and Future Work 43
6.1 Discussion . 43
6.2 Future Work . 44

Bibliography 47

CHAPTER 1
Introduction

Ever since the introduction of automated computing, computer components have de-
creased in size. Although Moore’s law is often explained as an exponential growth in
the speed of microprocessors, it also translates into chips with similar performance
becoming smaller, cheaper and more power efficient. This phenomenon has gone
side-by-side with a decrease in the number of operators per computer: it has in fact
now become an increase in the number of computing devices per operator. The last
decade, this evolution has resulted in the concept of “smart dust” [18] and the emer-
gence of wireless sensor networks (WSNs).

A WSN consists of multiple small and simple computers called (sensor) nodes. A
node contains computing power (a microcontroller or mcu), some (wireless) commu-
nication capability and one or more sensors. It is typically powered by an off-grid
power supply, almost always a battery. This enables them to function in a completely
untethered manner, but also requires the nodes to be energy-efficient, since off-grid
power supplies generally have a very low energy density.

The size and freedom of the nodes allow them to be deployed in an ad-hoc manner,
possibly in hard-to-reach or hostile environments. Typical use-cases for WSNs are
environmental monitoring and event detection applications. After deployment, the
nodes co-operate to form a network and exchange data to reach a common goal. A
gateway computer on the edge of the network, usually referred to as base station, can
be used to exchange information with the sensor network. A typical WSN setup is
shown in Figure 1.1.

The operation of a WSN is tightly linked to its unpredictable deployment environ-
ment. Obviously, the environment determines sensor readings on the nodes, but it
can also affect other, interlinked properties like communication delay, energy con-
sumption and network topology. The properties of the deployment environment that
in some way affect the WSN will be referred to as the context. The context for
WSNs can vary considerably and some situations can be completely unknown to the
developer. It is nearly impossible to design a system that performs well in every
case; WSNs are often targeted for a specific context. In this case, performance of-
ten rapidly decreases when the differences between the actual and targeted context

1

2 Introduction

Figure 1.1: An example of a Wireless Sensor Network. Arrows represent communi-
cation links, the computer on the right acts as a gateway for network operators.

increase. Adapting a WSN to a changing context is one solution for this problem,
providing an acceptable quality of service in a wider range of contexts instead of a
high performance in a specific case.

Aside from the deployment context, the use of simple (inexpensive) hardware,
wireless transmissions and ad-hoc networking make it very difficult to create de-
pendable WSNs. Next to fault prevention and fault tolerance, fault removal and
forecasting are means to ensure a system will meet its specifications during its life-
time [2]. This can require reconfiguring (sub)components if failure of the current
system with current or future contexts is anticipated.

Reconfiguration means adapting (sub)components or their arrangement within a
system. Although it can be performed by stopping a system, applying changes
and starting the new system, in the context of this thesis it implies adapting the
WSN or its components at run-time. Reconfiguration requires handles with which
(sub)components can be changed and one or more alternatives to change them with.
Also, intelligence is required to reason about which alternative to choose, based on
performance metrics and system specifications.

1.1 Commercial Interest

TNO is a research company with several offices located primarily in The Netherlands.
Its mission statement is “TNO connects people and knowledge to create innovations
that boost the sustainable competitive strength of industry and well-being of society.”
The Distributed Sensor Systems department of the TNO expertise center Technical
Sciences has an interest in using WSNs for several studies on acoustics, structural
monitoring and smart mobility platforms. These studies are mostly conducted by do-
main experts, for whom developing WSNs is very tedious work. TNO is looking for
solutions that can simplify the development of dependable WSNs for their research.
A particular approach they are interested in is reconfigurable WSNs, which would
allow them to use a single WSN for different research projects.

1.2. Problem Statement 3

1.2 Problem Statement

The goal of this thesis project is to develop software for sensor nodes that is able
to reconfigure a wireless sensor network at run-time, allowing the sensor network
to perform within its requirements under changing conditions. Since TNO is inter-
ested in using WSNs for different types of studies, the solution should provide an
architecture that can be used for a wide range of sensor network applications. The
availability of a generic reconfiguration architecture should simplify the development
of dependable WSNs.

TNO has provided a scenario and platform that can be used as an example through-
out the development phases. In this application, the structural health of wind turbines
is monitored by measuring and analyzing the vibration modes. A network of G-Node
sensor nodes [36] should measure the acceleration at different locations on the pillar
of a turbine and provide reliable access to this data. This WSN should be able to per-
form under varying circumstances, in which individual nodes crash, communication
links fail, energy depletes or sensor measurements are erroneous.

In this thesis, a middleware solution is proposed that allows a developer to involve
run-time context information in the (re)configuration of WSN components. A struc-
ture is proposed for incorporating the required knowledge about the application into
the middleware. The middleware design is implemented as a proof-of-concept on
a typical WSN platform. For assessing the approach of the reconfiguration middle-
ware, a WSN application for structural health monitoring has been developed. Re-
configuration scenarios have been defined for this case study and incorporated into
the middleware. The advantages and disadvantages of the middleware for applica-
tion performance and dependability are tested with these scenarios. The proposed
approach resulted in a reconfigurable WSN application and provides a basis for fu-
ture run-time reconfigurable networks.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides additional
background information on wireless sensor networks, middleware and reconfigura-
tion. Rule-based middleware is discussed in Chapter 3, including the design of such
a solution for reconfigurable WSNs. Details about a proof-of-concept implementa-
tion for a common WSN platform are provided in Chapter 4. Using a case study, the
proposed middleware is evaluated in Chapter 5. Conclusively, Chapter 6 summarizes
the work described in this thesis, provides a discussion of the approach and proposes
suggestions for future work.

CHAPTER 2
Background

This chapter provides background information on WSNs in general and elaborates
on related work about reconfiguration and rule-based intelligence applied to WSNs.
It shows that many problems of WSNs are related to the context, while there are only
few efforts that use the context to provide a scalable solution for reconfiguring WSNs
at run-time.

Section 2.1 focuses on constraints and requirements that come with designing and
developing WSNs. Section 2.2 provides more details about the development pro-
cess of WSNs and how it can benefit from run-time reconfiguration. In Section 2.3,
current middleware solutions for WSNs are discussed. Finally, Section 2.4 covers
approaches for rule-based intelligence in WSNs.

2.1 Wireless Sensor Networks

The typical deployment scenario for WSNs requires cheap nodes with a small form
factor that can operate untethered for a long period. To achieve this, the hardware
is comprised of commodity off-the-shelf components with limited computation and
storage capacity. The G-Node used in TNO’s testbed is equipped with a TI MSP430
16-bit microcontroller operating maximally at 16 MHz, has 8 KB of RAM, 116 KB
of ROM, and 8 Mbit of storage capacity [36]. Operations on floating-point numbers
are not supported natively. To save energy, the microcontroller supports five low-
power modes aside from its fully active mode [17].

The information coming from the WSN is generated by sensors on board the
nodes. Using microelectromechanical systems (MEMS) and analog-to-digital con-
verters, values of various physical phenomena can be measured and converted to a
binary representation. The sensitivity, accuracy and sampling rate can all be config-
ured by the user. To avoid excessive communication, sensor data is often processed
locally before being made available to the rest of the network. For exchanging infor-
mation, nodes are equipped with a wireless radio. The transmission range is limited
and varies unpredictably over time and space, because of physical phenomena like
signal reflection, diffraction, shadowing and background noise. This means links

5

6 Background

cannot be assumed to be reliable and the network topology can change at run-time.
Also, the wireless communication uses a broadcast medium, which means the ex-
ample network of Figure 1.1 is more accurately modeled by Figure 2.1. The figure
shows that transmission ranges overlap, which means simultaneous transmissions
can cause collisions at the addressee without the senders knowing it, and disrupt
otherwise unrelated communication between other nodes.

Figure 2.1: The sensor network of Figure 1.1, drawn with idealized wireless trans-
mission ranges.

In reality, the ranges are far more irregular than with this idealized disc-model,
making it even more difficult to predict network connectivity [15]. Data from a node
also possibly has to travel multiple hops before it reaches its target destination. How-
ever, predefining a network structure is typically not possible, which means special-
ized routing protocols are required that cope with this unpredictability. As an exam-
ple of setting up data routes after deployment, Figure 2.2 shows the Collection Tree
Protocol that can be used to collect sensor data at one point in the network [14]. The
nodes set up the collection tree after deployment and use some link quality indicator
to determine to which parent they should send their information.

To make a WSN function as long as possible often requires reducing the energy
consumption to a minimum. Table 2.1 shows a comparison of the current draw –
which is proportional to the energy consumption – for different activities of the G-
Node and often-used alternative WSN platforms. Since the radio is the main power
consumer for many sensor node platforms, it is put into a low-power (sleep) mode
whenever possible. Whenever communication is required, the radio can be turned on
briefly, after which it is put back into the sleep mode. A duty-cycle like this can also
be used for other components, e.g. sensors with high energy consumption. Because
duty-cycling constrains the use of available functionality, the various requirements
of the system should be considered when determining the cycle time. Finding the

2.2. WSN Development Approach 7

1 1

BS

(a) The base station sends a
beacon message.

1 1

2
2

2 2

BS

(b) Its direct neighbors
mark the sender as their
parent and rebroadcast.

1 1

2
2

2

3

2

BS

3

(c) When every node has a
parent, data can be sent to
the tree root.

Figure 2.2: Formation of a collection tree.

Component Current draw (mA)
Sownet G-Node [36] Moteiv Tmote [5] Crossbow Mica2 [37]

Radio reception 14.6 23 27
transmission 34.2 21 10

Mcu active 1 2.4 8
low power 0.0012 0.021 0.015

Table 2.1: Comparison of G-node components’ current draw.

optimum has been a subject of various research efforts [30, 39].

2.2 WSN Development Approach

To design a WSN application, knowledge of many elements of the context is essential
as they influence the operation greatly. However, because some aspects of the context
are unpredictable and changing, many design choices are based on assumptions and
approximations.

As an example, consider the case study of a sensor network for structural health
monitoring. During the development of such a WSN, it is unknown which influences
the nodes might experience, which nodes might crash, and how long exactly the
sensor nodes will last with the available energy. Because of these uncertainties, the
quality of service of the WSN might develop over time like the solid blue line in
Figure 2.3.

Initially, the WSN will perform well because the context matches the expectations
during development. However, at some point t1 after deployment, a sensor node
might have changed position because of some external event, making its sensor read-
ings less accurate and the WSN decrease its performance. Also, another node might
experience high interference, resulting in many retransmissions from that node. The
higher energy consumption can cause the battery to run out at t2. If eventually at

8 Background

t1 t2t2’ t3

Without

Reconfiguration

With

Reconfiguration

Q
u

a
li

ty
 o

f
S

e
rv

ic
e

Time

Figure 2.3: Conceptual decrease in quality of service by context changes. At t3, the
centralized component dies, which renders the WSN without reconfiguration useless.

t3 the node that aggregates sensor information and transmits it to the base station
crashes, the complete WSN will be rendered useless.

If the inherently changing context can be encompassed into the design of the WSN,
the application’s performance could resemble the course of the dashed green line in
Figure 2.3 much more. Whenever (an element of) the context changes, the WSN
should be able to detect this and act on it, such that it maintains a suitable configu-
ration even when the context is unpredictable. Going back to the example, the WSN
could notice one of its sensors is generating inaccurate results at t1 and either adjust
its sensitivity or disable its sensor to prevent incorrect readings. At t′2, the node that
is experiencing much interference could detect the higher energy demand. By in-
creasing the length of its duty-cycle, it can avoid completely running out of energy at
t2, with only a small decrease in performance. Additionally, if a component provid-
ing important functionality crashes, the functionality could be transferred to another
node, in which case the WSN could continue to run after t3. In this way, a developer
does not have to determine the exact configuration, sensor accuracy or other proper-
ties at design time. Instead, he or she can delegate these choices to the network, and
let them be determined at run-time.

For these and many other scenarios, reconfiguration can increase the lifetime and
suitability of a WSN in a changing context. However, because of the limited re-
sources of the nodes, WSN deployments are often tailored to specific application
requirements in order to get the maximum performance possible [28]. This results
in a large variety of application-specific components. As an extension to these com-
ponents, reconfiguration could also take many forms, tailored specifically to each
application. However, when the application-specific elements can be isolated, a gen-
eralized middleware can be constructed that provides a uniform solution for recon-
figuring many different applications. The key to this generalization is to be able to
separate scenario-specific information from general reconfiguration constructs. The
resulting reconfiguration middleware allows a developer to focus on possible failures
individually, without having to consider combinations of failures or worry about how
the detection and reconfiguration logic should be implemented.

2.3. Reconfiguration Middleware for WSNs 9

2.3 Reconfiguration Middleware for WSNs

Earlier research efforts for WSN middleware have focused on various goals, rang-
ing from simplifying localized data sharing between nodes [40, 6] to providing a
complete and generic data collection platform [41, 27]. Fewer publications in recent
literature discuss solutions for reconfiguring WSNs.

Reconfiguration can be performed in several ways. One solution is to monitor
the WSN’s quality of service at the base station and reprogram (parts of) the sensor
nodes when necessary. An alternative is to locally monitor the context and perform
reconfiguration on each node individually.

2.3.1 Centralized Reconfiguration

Kogekar et al. [20] detect the need for reconfiguration of a WSN by creating a global
model based on information coming from sensor nodes at run-time. Next, a design-
space search is performed in order to come up with a suitable new configuration,
which is subsequently transferred on to the sensor nodes. However, because the tool
chain of the dominant WSN operating system, TinyOS, compiles software compo-
nents to a static image, this requires replacing the entire code image after deployment.
This uses much bandwidth and energy [29].

Maté provides a method for creating virtual machines for sensor nodes that execute
small script-like programs [22]. These scripts can be sent to a node and loaded and
unloaded at run-time. Although this approach is more efficient than reprogramming,
a disadvantage is that applications are required to be expressed as a list of generic
operations, with little room for specialized functionality.

FlexCup [29] and Dynamic TinyOS [31] therefore focus on adding flexibility in
node images. They do not exactly qualify as middleware, as they mainly alter the
TinyOS compilation process to allow for linking software components on the node
after deployment. This way, nodes can be reconfigured by uploading new individual
software components to the nodes and deleting unused parts. Because in some cases
this still requires a restart of individual nodes, it is not considered run-time adapta-
tion. However, the reconfiguration does occur after deployment and if the state of a
node can be restored after reconfiguration, the WSN can continue its operation. Also,
determining when to change which component is done manually in these solutions.

The biggest concern for these solutions is that the reasoning over reconfiguration
is done centrally and requires a global view of the WSN. This is not feasible for
most actual deployments, because centralized algorithms scale poorly. Tracking all
changes in the network requires much communication and thus energy, and global
views of a network often suffer from large delays.

2.3.2 Distributed Reconfiguration

A solution in which nodes reconfigure themselves without a centralized algorithm,
is Impala [25]. Each node contains an application adapter and update component.

10 Background

These respond to certain events in the network and periodically check system and
application parameters. Software components are modeled by a finite state machine.
If specific preconditions are satisfied, the application is transfered to a different state.
A downside of this approach is its granularity: an application can only have a lim-
ited number of states, and even small changes take up a complete state. Also, little
attention is paid to the reasoning on reconfiguration, and the authors have not yet
succeeded in implementing it on a sensor node platform.

Solutions like TinySOA [33] and OASiS [21] take a service-oriented approach to
reconfiguring WSNs. Here, nodes publish their functionality as a service to which
other nodes can subscribe. When an event in the network or the context decreases the
functionality that a specific node offers, the subscribed nodes try to find other nodes
with a better service level for the required functionality. However, in sparse networks
where there are few alternative nodes with a certain functionality, the application can
still fail, since these solutions do not consider changing the nodes themselves, but
only the relations between them.

In ASCENT, reconfiguration is modeled as a coverage problem [3]. Nodes either
actively contribute to some network functionality or remain passive to save energy,
depending on the number of active nodes in their neighborhood. This ensures specific
functionality is available for each area in the network. However, this can only be
achieved in a sufficiently dense network. As with service-oriented sensor networks,
ASCENT cannot prevent an application from failing in case a node fails while there
are no alternative nodes with similar functionality.

Distributed reconfiguration promises a more scalable approach for WSNs, but the
available solutions generally assume dense networks, place a heavy burden on sys-
tem resources or are not generally applicable to multiple WSN applications. There
has been little focus on how reconfiguration can be performed locally, in case little
coordination is possible. This thesis focuses on a lightweight solution for localized
reconfiguration, suitable for a large range of WSN applications, including sparse net-
works.

2.4 Reconfiguration Intelligence

Achieving automatic reconfiguration requires some intelligent component to reason
about when to change which components. In the larger area of computer science,
artificial intelligence has been a research topic for many years and has branched into
many subcategories. Some of these can be interesting to apply in the context of
wireless sensor networks.

When considering WSNs that reconfigure according to their context, one solu-
tion could be to treat the reconfiguration as a multi-parameter optimization problem.
Several methods exist for solving these type of problems, like genetic algorithms or
linear programming techniques [43, 35]. In ZeroCal, this approach is used to find
optimal duty cycle periods for a low-power MAC protocol [30]. However, applying
this to all elements that make up a WSN’s context is complex. More importantly, us-

2.4. Reconfiguration Intelligence 11

ing reconfiguration could make it possible to target different scenarios with different
assumptions and base components. It would be nearly impossible to come up with
a single accurate model for all contexts and configurations in which a WSN would
run, and shape this as an optimization problem.

An alternative solution is to use a heuristics based approach like expert systems,
to reason over reconfiguration. In expert systems, the necessary information is rep-
resented by facts in a database [32]. A repository of rules encapsulates knowledge
about the system and is used to infer new information or determine which action
is suitable. In FACTS [38] these constructs are used to support an event-condition-
action based middleware. DSN [4] uses similar constructs, but only to simplify WSN
development by creating a new declarative programming language. Although the
authors argue that it simplifies WSN development, the solution is used to define
standard node behavior, but both solutions do now allow to reconfigure the node’s
application depending on its context.

MoMi [7] uses a rule-based system to detect faulty nodes in a wireless sensor net-
work. Observations about local and surrounding nodes are compared with each other
based on predefined rules, after which conflicting observations are sent to a gateway.
The gateway in turn generates a prediction of possibly faulty nodes. The conclu-
sions however do not lead to node reconfiguration; as such it provides techniques
for monitoring the WSN that should be used in combination with other solutions for
reconfiguration. Additionally, the use of a central gateway makes the solution poorly
scalable for large networks.

CHAPTER 3

Middleware Design

Because a WSN’s operation is interlinked with an unpredictable context, a way to
improve the quality of service could be to encompass context changes into the WSN
design process. This thesis focuses on this idea by providing a middleware that sup-
ports the reconfiguration of sensor nodes at run-time. Reconfiguring sensor nodes
requires knowledge about the application; supporting a wide range of applications
requires a uniform way to represent this knowledge, loosely coupled to the mid-
dleware’s operation. A design is proposed in which developers provide application
knowledge, indicate the elements of interest of the context and define capabilities for
reconfiguration in a uniform way, such that the middleware can perform reconfigura-
tion for a large variety of applications.

This chapter describes the design of the middleware. In Section 3.1, more details
are provided about the requirements and the general setup for such a middleware.
Section 3.2 discusses how the information about the WSN’s application and context
that are required for run-time reconfiguration is represented in the middleware. A
distinction is made between knowledge required during the design of the system
and during operation after deployment. Section 3.3 goes into detail about how this
information is subsequently used by the inference engine for analyzing the run-time
environment. Finally, Section 3.4 explains how reconfiguration is performed once
the middleware has inferred that such an action is required.

3.1 Goals and Requirements

As mentioned in Section 2.3, there have been several efforts on producing reconfig-
urable sensor networks. This thesis focuses on providing a middleware that reasons
about when to reconfigure sensor nodes, based on run-time information and a model
of the WSN application. To make the solution applicable to a large variety of net-
works, reconfiguration should be performed without the requirement of a centralized
component. This means information is gathered and processed locally on individual
nodes, which allows reconfiguration to be performed without relying on communi-

13

14 Middleware Design

Context Sensor node

WSN Design

Middleware

Applica!on

Reconfigurable

component(s)

Reasoning

Components

Model

Compila!on

Recon-

figura!on

Reconfigura!on rules

Applica!on

monitoring

Context

monitoring

Figure 3.1: The proposed approach for reconfigurable sensor nodes.

cation. Nonetheless, the design should incorporate possibilities for extension with
coordinated reconfiguration if possible.

WSNs are often tailored to their use case, which results in a large variety of very
specific software components. As reconfiguration applies to these components, it can
also very specifically suit only the component that requires reconfiguration. How-
ever, this results in very little code reuse, weak separation of concerns and mainte-
nance problems when those components are integrated into an application. In order
to create a generalized middleware that provides a uniform reconfiguration solution
to many different applications, the application- and component-specific elements
should be isolated. The key to this generalization is to separate scenario-specific
information from general reconfiguration constructs.

The solution proposed in this thesis is schematically depicted in Figure 3.1. Dur-
ing development, the developer determines the requirements and defines the design
of the WSN. This results in the components that make up the sensor network appli-
cation, including those that can be reconfigured. To be able to reason about when
to reconfigure which components, the middleware requires knowledge about the ap-
plication, its domain and its requirements. The developer provides a model of this
information, from which a system representation for the middleware can be gener-
ated. The middleware uses this in combination with the run-time information the
node gets from monitoring its context and application, to infer if reconfiguration of
specific components of the application is required.

An important requirement for middleware in general is that it should not take up
much resources; it is used as an extension of a platform on which the actual appli-
cation itself should be able to run. For middleware on wireless sensor networks, this
translates to limited memory, computation and energy use. This thesis focuses on re-

3.2. Knowledge Representation 15

configuration on the local node, requiring no additional communication, thus limiting
a possibly high additional energy demand. This however also means that reconfig-
uration can only be performed using a limited view of a node and its context, with
possibly a limited influence on the WSN as a whole. To extend a node’s reconfigu-
ration capabilities, a suggestion for future work is to share run-time and design-time
information among neighbors. Several solutions have been proposed in literature on
how to achieve this efficiently [6, 40].

Developing WSN applications requires keeping account of many problems that in-
terfere with communication and other operational aspects, as mentioned in Section 2.1.
To limit the focus, the solution functions as middleware on top of TinyOS, which
provides a platform for controlling hardware, communication, scheduling, et cetera.
Hardware and software components provide status and diagnostic information at run-
time. Obviously, reconfiguration requires the components to be reconfigurable and
adjustable.

3.2 Knowledge Representation

To be able to reconfigure the application at run-time, the middleware requires knowl-
edge about the application. However, a generalized approach requires application-
specific information to be separated from common reconfiguration logic; the latter
is applicable to all applications and thus can be generalized. Application-specific
information consists of which capabilities are available for effectuating a change in
the application and of information about when those capabilities should be used. If
this information can be provided in a uniform way, the middleware can reason about
reconfiguration independent of the specifics of the application. This section provides
more details on how this knowledge of the application is provided to the middleware.

There is a difference between information supplied to the middleware at run-time
and at design-time. As depicted by the bottom arrow in Figure 3.1, design-time
information consists of the model of the WSN application transformed into a concrete
set of reconfiguration rules. The middleware uses these rules in its reasoning about
reconfiguration. The model concerns the available components and (reconfiguration)
functionality, and how they depend on the context of the node. For the case study,
an element in the model could be the presence of a sensor component, of which
the gain depends on the sample variance. This information is defined before the
creation and deployment of the sensor network and does not change during operation.
Note however that it contains descriptions of how components depend on run-time
properties.

At run-time, the middleware requires information about a sensor node’s context,
including the applications run-time parameters. This flow of information is repre-
sented in Figure 3.1 by the arrows labeled with ‘monitoring’. It contains details of
sensor node’s sensed environment and the state of the hardware and software com-
ponents. As the design-time information provided the middleware with knowledge
about how components depend on the context, run-time information provides the de-

16 Middleware Design

tails of this context. Combined, these allow the middleware to make decisions about
the application. In the case study, this could be the number of neighbors of a node,
its accelerometer’s sensitivity, or the node’s battery level.

The following subsections provide more detail about how this knowledge is repre-
sented in the middleware.

3.2.1 State Monitoring

The provided model states how the application depends on the node’s context. As
this context is dynamic and encompasses many elements that are unknown during
design-time, it has to be monitored at run-time. The middleware has to match this
run-time information with the component requirements defined in the model of the
application. This means it has to be represented in a uniform way. In the proposed
solution, the context of each node of the sensor network is represented as a (set of)
variable(s). These variables can contain local information about the node itself, e.g.
the variance of its sensor, or about network characteristics, e.g. the number of 1-hop
neighbors. Using this model, the state of a node’s environment at a specific time can
be captured in a set of these variables.

Pla�orm

OS services

Applica!on

Fact base

Run-!me

informa!on

Fact
FactFact f"

Middleware

Figure 3.2: Schematic overview of context monitoring. Components offer context
information as facts to the fact base.

Each of these variables possibly relates to a different component on the sensor
node, which means context information comes from components across different
system layers. To unify this information, the middleware maintains a local reposi-
tory in which any component can store variable valuations, through a standardized
interface. Figure 3.2 provides a schematic overview of the collection of this run-time
information. The values for each element of the context are stored as simple data
constructs called facts. The repository in which the collection of facts is stored will
be referred to as the fact base and is similar to the construct used in FACTS [38].
However, in FACTS the authors use this to determine application behavior, whereas
here only reconfiguration actions are deduced from it. The fact base defines the con-
text of each node. Example 3.1 illustrates how the context of a node of the case study
is stored. Each fact contains the variable-name as a unique identifier, the value of
this variable, and additional meta-data like the time of the most recent update. Ev-
ery component can introduce and update facts whenever it notices a change in its
environment, possibly overwriting previous values.

3.2. Knowledge Representation 17

Example 3.1. Run-time information about the average sensed acceleration, remain-
ing energy and routing protocol can be represented by the following set of facts:

f1 = (sensor.average, 4 g, 23:59 – 04-02-2011)

f2 = (battery.energy, 50 mAh, 08:45 – 05-05-2011)

f3 = (routing.protocol, 2, 00:01 – 01-01-2011)

3.2.2 Application and Configuration Model

As the fact base provides information about the context of the WSN at run-time,
the middleware analyzes this to reason about whether the application requires re-
configuration in that context. The requirements for reconfiguration and the available
functions to perform reconfiguration are part of the model of the application, which
is provided to the middleware during design-time.

In the application model, a configuration is defined as a set of interconnected func-
tional units, and have specific properties and parameters. As an example, consider
Figure 3.3 in which the (re)configuration of a typical WSN application is presented.
Components of the application are represented by boxes and interface with each
other via the solid lines. The middleware itself also consists of software compo-
nents (e.g. the reasoning component), with specialized interfaces represented by the
dashed lines, to the application components that are subject to reconfiguration.

Middleware

Application Sampling
duty_cycle := 5

start_!lter{ .. }

Reasoning

x -> start_!lter

y -> increase duty_cyle

...

Processing

Fact base

(a) Before

x, y

Middleware

Application Sampling
duty_cycle := 10

start_!lter{ .. }

Reasoning

x -> start_!lter

y -> increase duty_cyle

...

Processing

Filter

Fact base

(b) After

Figure 3.3: Example model of a sensor application undergoing reconfiguration. The
introduction of x and y to the fact base results in a filtering component being activated
and the duty-cycle being incremented from 5 to 10.

Depending on the context information of the fact base, the middleware uses these
interfaces to indicate that a specific reconfiguration is required, along with any pa-
rameters needed for the reconfiguration. The reconfiguration commands defined in
these interfaces shall be called actions. Each action can consist of a sequence of op-
erations. Actions can for instance command components to change their parameters,

18 Middleware Design

or start or stop them. In Figure 3.3b, the insertion of x and y to the fact base results in
the processing component starting a filtering-algorithm, and an increase in the duty-
cycle parameter of the sampling component. In turn, this can lead to new facts being
entered into the fact base.

During the design of each component, the developer defines to which actions the
component can respond and what the subsequent operations for that action are, thus
implementing a specific interface defined by the middleware. This approach allows
the components to execute the reconfiguration operations regardless of the reasoning
behind it, while the middleware can reason about reconfiguration regardless of how
the specific actions are actually implemented.

3.2.3 Conditional Reconfiguration

Besides knowledge about the application components and their supported reconfigu-
ration actions, the middleware requires knowledge about what type of reconfiguration
should be performed in which context. As this does not change after deployment, it
is also part of the model provided to the middleware during design-time.

A developer specifies the reconfiguration behavior using a high-level programming
language. During compilation, a collection of rules is generated from this specifica-
tion and stored in the rule base. This allows the middleware to reason over each of
the available reconfiguration actions.

Rules are a relationship between one or multiple conditions on the context and an
action. If the logical conjunction of the conditions is true, the action is triggered.

condition1 ∧ condition2 ∧ . . . ∧ conditionn → action

Using a collection of rules to describe knowledge at design-time and produce new
information at run-time is a well known concept in the area of artificial intelligence.
The approach is similar to the knowledge base of an expert system, a concept first
described by Feigenbaum et al. [10].

A condition is a boolean function that operates on an element of a node’s context
(represented by a fact) and a predefined value. The comparison operator can be any
developer-defined function, e.g. ≤ or >, or possibly operate on a fact’s meta-data,
e.g. ‘inserted later than’. The operator does not necessarily have to be binary: if
the high-level programming language requires more complex operators, the value
can contain a reference to other data structures to which the fact can be compared,
including a null-value for unary operation, or other facts.

fact , operator , value → boolean

When all conditions for a rule are true, the action is performed. An action consists
of operations that a reconfigurable software component performs. By using simple
identifiers for each action, the specific implementation can be abstracted away from
the middleware.

3.2. Knowledge Representation 19

All conditions in a rule have to be satisfied in order for the middleware to conclude
the rule is satisfied, which implies a logical conjunction of conditions. In the case
that some reconfiguration is required for multiple distinct contexts, a disjunction is
required, in which any of several conditions can be true for a certain rule. To repre-
sent this in the rule base, multiple rules can be created that result in the same action
when satisfied. An overview of possible relations between facts, conditions, rules
and actions is provided in Figure 3.4.

Rule baseFact base

f1

f2

c1

c2

c3

r2

r3

a1

a2

Facts

Conditions

Actions

f3

r1

c4

Rules
one-to-many many-

to-many many-
to-one

Figure 3.4: Relations between facts, conditions, rules and actions.

A fact f can be referred to by multiple conditions. A conjunction of multiple con-
ditions can be used in a rule. Conditions can also be used in multiple rules. Also,
multiple rules can lead to the same action a. Note the difference in relationships
indicated by the use of different arrows: the actual facts in the fact base are inserted
to the fact base at run-time, while the fact IDs, rules, conditions and actions that use
facts are defined at design-time in the rule base. To distinguish the different relation-
ships between the data elements, the definitions in Table 3.1 are used throughout the
rest of this thesis. Example 3.2 explains the various combinations in which rules and
conditions can be used.

Set Description Example from Figure 3.4
relatedConditions (f) Set of conditions by fact f . relatedConditions (f2) = {c2, c3}
requiredConditions (r) Set of conditions for a rule r requiredConditions (r1) = {c1, c2}
relatedRules (c) Set of rules that use condition c relatedRules (c1) = {r1}
possibleRules (a) Set of rules that lead to action a possibleRules (a1) = {r1, r2}

Table 3.1: Definitions used to distinguish relationships between data elements in the
rule base.

Example 3.2. Consider a typical sensor node containing an acceleration sensor, a
communication component and battery. The system requires that the sensor sensitiv-
ity should be decreased (action a1) if the measured acceleration becomes a little too

20 Middleware Design

high (condition c1), but only if the energy level is low (condition c2). This can be
represented by a rule r1. The second rule r2 states that if the acceleration reaches ex-
treme values (condition c3), sensitivity should be decreased regardless of the energy
level. This rule thus results in the same action a1 (decreasing the sensor sensitivity),
but requires a different condition. This condition nonetheless tests the value of a fact
about sensor.average. Thirdly, a reconfiguration in the routing component is required
(action a2) if the energy level becomes too low. This rule r2 can reuse condition c2 in
combination with a fourth condition regarding the routing protocol. Using the facts
of Example 3.1, this results in the following set of conditions and rules:

Conditions
c1: sensor.average > 10
c2: battery.energy < 50
c3: sensor.average > 100
c4: routing.protocol == 2

Rules
r1: c1 ∧ c2 → a1
r2: c3 → a1
r3: c2 ∧ c4 → a2

Table 3.2: Rule base for Example 3.2.

3.3 Rule-Based Inference

When all the required knowledge is provided to the middleware, the middleware
can reason over the node’s context, determine the required reconfiguration actions,
and request these actions from the reconfigurable components. Details about the
reasoning process are provided next.

Using facts as defined in Section 3.2.1, the middleware is notified whenever a
component notices a change in (some element of) the context. The inference engine
compares this with the design-time knowledge stored in the rule base, and signals
whenever all conditions for a specific action are satisfied, such that the corresponding
action can be performed.

Traditionally, expert systems can use forward or backward chaining to come up
with conclusions based on a rule base. With backward chaining, the middleware
performs hypothesis tests in which it looks for possible reconfiguration actions that
should be performed. For each action, the relevant conditions would be checked to
see if all of them are satisfied. Using forward chaining, the inference engine uses
facts as entry point. For each fact, it checks whether any of the related conditions
are satisfied. Subsequently, the inference engine checks for which rules all required
conditions are satisified.

Backward chaining might get a natural preference over forward chaining because
it reasons from the point of the resulting actions. However, this does not use the infor-
mation that conditions can only change if a fact is updated, while these changes may
happen only sporadically. The forward chaining alternative does allow to use this
information, which is why it is the algorithm of choice for this middleware design.

3.4. Actuation 21

Updating or creating a fact f triggers the inference process, which iterates over
the conditions of all rules. Conditions not in relatedConditions (f) can be skipped,
as well as remaining conditions that are used by rules that have been falsified by
earlier condition evaluations. After the rule base has been evaluated, the actions for
all satisfied rules are executed.

While the approach of checking only conditions referring to the changed fact might
be more efficient than the standard backward inference, it is still naive. Several op-
timizations are possible, which will be discussed in Chapter 4. The Rete algorithm
is a more efficient pattern matching algorithm, introduced by Forgy [12]. However,
because this approach is known to consume more memory, and the sensor nodes are
required to run the middleware next to an actual application, the preference was to
use the naı̈ve algorithm instead. The evaluation in Section 4.6 shows that the run-time
overhead is very low and poses no problem for use in an actual sensing application.

3.4 Actuation

Once the inference engine has found a satisfied rule, the middleware should bring
about the action on the specific components. As mentioned in Section 3.2 and shown
in Figure 3.3, each component that is subject to reconfiguration shares an interface
with the middleware. Whenever a rule is satisfied, the middleware sends a request
for the specific action via these interfaces, along with the required parameters. Each
component can subsequently execute its own specific operations required for the ac-
tion. This not only allows multiple components to respond simultaneously to a re-
configuration, but also informs components that do not require any change about a
possible delay in interfacing with the components that do. Because the middleware
only indicates which reconfiguration action should be taken, without specifying how
this should be performed, it provides a generic reconfiguration component that can
be used with various system architectures.

To verify that a reconfiguration successfully adapted the system to the new con-
text requirements, actions can result in new facts being entered or updated in the
fact base. Entering these derived facts can be done explicitly by the reconfiguring
software component, e.g. by inserting a fact that states that a specific action has
been performed. Fact updates can also result implicitly from performing an action
when, as a result of the reconfiguration, a parameter in a related component changes
and causes that component to update a fact. The fact update triggers the inference
process again to re-evaluate the conditions affected by the new update. When the
updated fact subsequently does not result in satisfied rules, the related actions will
not fire and the reconfiguration stops.

The process of feeding back the results of a reconfiguration to the middleware in-
troduces new dynamics into the system and should therefore be carefully examined
when designing the reconfiguration logic. The details regarding this process are ap-
plication specific: no general solution exists for this. Finding solutions for these type
of problems in adaptive systems is subject of ongoing research.

CHAPTER 4

Implementation

A proof-of-concept middleware has been implemented to assess the rule-based recon-
figuration approach on a typical WSN platform. Using the implementation, details
of the approach of reconfigurable middleware were refined, and memory and per-
formance characteristics of the middleware were evaluated. The implementation’s
hardware platform provided by TNO consists of G-Node sensor nodes [36], which
have been applied in various commercial applications. This platform was designed
to be compatible with TinyOS [24], a commonly used operating system for sensor
nodes.

This chapter discusses the details of this implementation. Section 4.1 will go
deeper into the TinyOS platform and the characteristics of developing software for
this platform. In Section 4.2, more details are provided about the implementation of
the fact base and how it stores the node’s context information. Section 4.3 pro-
vides more information about the system representation of reconfiguration rules.
Section 4.4 discusses how the reasoning of the inference engine is implemented,
while the implementation of reconfiguration actions is discussed in Section 4.5. The
chapter closes with an evaluation of the implementation, concerning both memory
and processing overhead, in Section 4.6.

4.1 Implementation Platform

The proof-of-concept middleware is implemented on TinyOS, an operating system
for WSNs [24]. TinyOS is based on a programming language called nesC, which
is an extension to C and allows developers to structure their software using compo-
nents named modules and configurations. In a module, certain functionality is imple-
mented using “private” state and functions that operate on this state. Configurations
wire components using (bi-directional) interfaces. Interfaces describe events that a
component can generate and commands that can be called by a user. This approach
corresponds well with the model described in Section 3.2.3. More information about
TinyOS can be found in the book by Levis and Gay [23].

23

24 Implementation

The reconfigurable middleware is implemented as a configuration that can be
wired to system and application components. A schematic figure of the middleware
components and interfaces is provided in Figure 4.1. In this figure, public interfaces
are marked by grey ovals, components are represented by squares and arrow labels
indicate the internal wiring of interfaces. The three interfaces allow a WSN applica-
tion to supply input for and read monitoring information and receive reconfiguration
signals from the middleware. The function of the components will be explained in
the following sections.

Reconfigure

InferenceEngineC

Reconfigure

FactBaseC

FactRead

RuleBaseC

RuleBase

FactRead

FactReadInferenceEngine

AllocatedQueueC
(FactQueue)

Queue<Fact>

FactWrite

FactWrite

Figure 4.1: Schematic overview of the essential components of the middleware. Pub-
lic interfaces are marked by grey ovals, components are represented by squares and
arrow labels indicate the internal wiring of interfaces.

4.2 Component Monitoring

Components that provide monitoring information can supply this to the middleware
via the FactWrite interface, provided in Listing 4.1. The component supplies an 8-bit
identifier and either a new value for the parameter or a delta value that is added or
subtracted to the stored value. Updating a fact with a delta value saves a component
from having to read a fact before writing a new value, e.g. when incrementing a time-
out counter. In case the application does require reading facts, for instance when an
energy saving reconfiguration adapts a duty-cycle depending on the current battery
level, this is possible via the FactRead interface.

4.3. Rule Base 25

interface FactWrite {
/* Decrease the fact with the provided ID with the

* provided delta value, down to but not beyond zero. */
command error_t decrementFact(uint8_t id, uint16_t delta);

/* Increase the fact with the provided ID with the

* provided delta value, up to but not beyond UINT16_MAX.*/
command error_t incrementFact(uint8_t id, uint16_t delta);

/* Set the fact with the specified ID to the specified

* value. */
command error_t writeFact(uint8_t id, uint16_t value);

/* Signaled when the Middleware is ready to accept facts.*/
event void startDone();

}

Listing 4.1: The FactWrite interface used by components to provide context infor-
mation to the middleware.

TinyOS requires static allocation of all data structures, which means the current
implementation uses fixed sized arrays to store its information. As new values for
facts overwrite previous values, the maximum number of facts in the fact base is
defined at design-time, providing safety from running out of memory at run-time.
However, it can lead to over-provisioning when some facts are not provided by any
application component while memory has been reserved for them. Future work could
focus on more dynamic allocation for the fact base.

The current implementation supports 16-bit fact values and stores these with a 32-
bit timestamp as a fact struct in a fixed-sized array. The identifier is used as the index
of the array position at which the fact struct is stored, which brings the memory cost
of a single fact to 6 bytes. Fact values are initialized to zero and are updated each
time a component defines a new value.

When a fact is updated, it means a change in the context has been detected. To
achieve the optimal configuration for the application in this changed context, the
middleware should check whether a reconfiguration is required. As explained in
Section 3.3, the inference process uses the fact change as a starting point for evaluat-
ing the rule base.

4.3 Rule Base

The design-time information about the application model is represented by a set of re-
configuration rules, as explained in Section 3.2. This allows the middleware to match
the design-time information with run-time facts, in order to infer which reconfigura-
tion actions should be performed. The following description explains how these rules

26 Implementation

Condi�on array

condi�on_id

condi�on struct

fact_id

operator

compare_value

…

condi�on struct

…

Fact array

fact_id

fact struct

value

�mestamp

…

fact struct

…

RuleCondi�on array

rc_id

RuleCondi�on struct

rule_id

condi�on_id

cached_result

…

RuleCondi�on struct

…

Rule array

rule_id

Rule struct

ac�on_id

sa�sfied

…

Rule struct

…

Figure 4.2: Data structures used for knowledge representation. The
cached result field in the RuleCondition struct is optional and speeds up the
inference process.

are stored in such a way that they can be used by the inference engine. Ultimately,
the rule base will be generated from the application model by a compiler, so that a
developer can define the reconfiguration behavior in a human-readable language.

The data structures used to store the rules are depicted in Figure 4.2. Each condi-
tion is stored as a tuple of an 8-bit fact ID, an 8-bit reference to a comparator operator
and the 16-bit operand to which the fact should be compared. This tuple is stored in
a condition array, indexed by the ID of the condition.

A rule is a relationship between one or more conditions and an action, as explained
in Section 3.2.3. The rule array stores the 8-bit action identifier for each rule, at the
location pointed to by the rule identifier, along with a variable that indicates whether
the rule is satisfied. When multiple rules leading to the same action are required, the
same action ID can be stored at different locations in the array. This represents a
disjunction of conditions for the corresponding action.

The relationships between conditions and actions are stored in an array with Rule-
Condition tuples. This allows conditions to be used by multiple rules, without re-
quiring multiple entries in the condition array. Each RuleCondition tuple reifies the
relation between a single condition and a single rule, by storing references to their
locations in the respective arrays. In this way, the collection of RuleConditions that
refer to the same rule ID r make up the conjunction of the conditions for that rule:

4.4. Inference Engine 27

namely requiredConditions {r}. The RuleCondition optionally contains a boolean
variable in which the previous evaluation of the condition is cached. This will be
further explained below.

4.4 Inference Engine

Using the data structures described above, the inference process reasons over the
provided rules and indicates which rules are satisfied in the context represented in
the fact base. This section provides more details about the inference process. A
schematic representation of the process is provided in Figure 4.3, which indicates the
different stages in the process.

Rule base

Update Fact base;

Iterate over

RuleCondi!ons
Fact queue

Fire sa!sfied

rules

Fact f

Fact base

Figure 4.3: Schematic overview of inference process. The dark arrows indicate the
flow of the inference process, the light arrows show the flow of information.

If the fact base is allowed to be changed during the inference process, race con-
ditions might occur between fact updates and condition evaluations, making the out-
come of the inference process unpredictable. To counteract this, each time a compo-
nent provides a new fact, the fact is buffered in a queue until the inference engine is
ready to process it.

Processing a fact means updating the necessary values in the fact base. After this,
the rules in the rule base are checked to see if they are satisfied in the new context.
The actions for the satisfied rules are subsequently executed.

The process of labeling the rules is represented by Algorithm 4.1. Each rule starts
out as satisfied, i.e. the variable satisfied of the rule struct is true. The inference
process iterates over all RuleConditions, as they provide references to both the con-
dition that requires evaluation and the rule that possibly is falsified by that condition.
As an optimization, RuleConditions for which the rule has been falsified by previous
conditions, are skipped in line 5.

A second optimization allows the inference engine to skip evaluation of conditions
that are not affected by the updated fact; instead the cached result from a previous
evaluation can be used, as shown in line 12. This however does require an additional
boolean variable in the RuleCondition struct, as indicated in Figure 3.4. Furthermore,
using a cache introduces an additional cache update operation for conditions that do
require evaluation; some RuleConditions therefore cannot be skipped in line 5. As

28 Implementation

Algorithm 4.1 labelRules(updatedFact)

for all ruleCondition in RuleCondition array do
condition← ruleCondition.getCondition()
rule ← ruleCondition.getRule()
if rule previously falsified and condition does not use updatedFact then

5: continue to next ruleCondition
end if
condition satisfied ← true
if condition uses updatedFact then

condition satisfied ← evaluate condition
10: update cached result

else
condition satisfied ← cached result

end if
if not condition satisfied then

15: falsify rule
end if

end for

such, the cache provides a trade-off between memory and inference speed, where
more complex rules, i.e. rules with many conditions, will be sped up more than the
simpler rules.

If the condition evaluates to false, the rule’s satisfied variable is updated ac-
cordingly. Subsequent RuleConditions of this rule are skipped: they can no longer
make the rule true, since a rule requires all conditions to be satisfied. If the condition
evaluates to true, the rule’s satisfied variable remains unchanged: a subsequent
condition could still falsify the rule.

When the inference engine has iterated over all RuleConditions, the inference pro-
cess iterates over all rules and signals the actions of rules that have not been falsified.
How this results in the required reconfiguration is explained below.

4.5 Reconfiguration Actions

When all conditions for a rule are satisfied, the inference engine signals an event
with the corresponding action ID. Using a form of the publish-subscribe pattern, re-
configurable components can subscribe to the actions of the middleware for which
it contains a reconfiguration implementation. Currently, this is implemented with a
nesC interface, that defines how an event is signaled by the middleware. The re-
configure interface is provided in Listing 4.2. A reconfigurable component wires to
the middleware by implementing the event function, thus subscribing to the actions.
By parameterizing the interface as in Listing 4.3, the implementing components can
ignore the action requests concerning other components. Providing the correct pa-

4.6. Evaluation 29

interface Reconfigure {

/* Signals whenever a rule is satisfied,

* providing the corresponding actionid */
event void action(error_t error, uint8_t actionid);

}

Listing 4.2: The reconfigure interface via which reconfigurable components receive
requests for actions.

configuration ReconfigurableConfiguration {
implementation {

components Middleware;
components new ReconfigComponentA();

ReconfigComponentA.reconfigure ->
Middleware.Reconfigure[RECONFIG_COMPONENT_A];

}
}

Listing 4.3: Wiring the parameterized interface.

rameters to wire each component to its corresponding reconfiguration interface can
easily be automated using the application model provided by the developer.

This approach of the publish-subscribe pattern could easily be expanded in future
work by including communication with other nodes. This provides a way to support
distributed reconfiguration in which neighboring nodes take up part of the reconfigu-
ration implementation. There have been several publications about implementing the
publish-subscribe mechanism efficiently for WSNs [34, 1, 16].

4.6 Evaluation

As the reconfiguration middleware is meant to run alongside a WSN application,
its resource use should be minimal. The reconfiguration middleware described above
has been put to several tests to measure its resource consumption. Both memory con-
sumption and processing overhead are taken into account. This thesis does not focus
on cooperative reconfiguration, which means the node’s energy consumption will not
be affected by any additional communication. This means considering the processing
overhead will also provide an estimation on the middleware’s energy requirements.

4.6.1 Memory Use

Since TinyOS only supports static memory allocation, a memory analysis of the com-
piled program reveals the required space for the middleware’s components in both

30 Implementation

ROM and RAM. The middleware’s main components are the fact base, rule base and
inference engine. The fact base and rule base contain application specific information
and vary in size depending on the number of rules and facts that have to be stored.
The following results are obtained by a memory dump tool and consider both the
variable as the invariable memory use.

Component Size (bytes)
Fact base 380
Inference Engine 228
Glue code 230
Total 838

Table 4.1: Size of middleware components in read-only memory, excluding rules and
compiler optimizations.

The ROM required for the middleware’s executable code and program constants
is listed for each component in Table 4.1, excluding storage required for rules or
facts. The TinyOS toolchain applies optimizations such as inlining during compila-
tion, which decreases the actual ROM use depending on the structure of the applica-
tion [13]. The results shown here are obtained with these optimizations disabled to
be able to consider the worst-case scenario. The G-Node can store 116 KB in ROM,
which means the middleware uses less than 1% of the available space.

As rules do not change at run-time, they are also stored in ROM. The size of
the rule base depends on multiple elements: the Rule, Condition and RuleCondition
arrays. Each rule requires a 2-byte entry in the Rule array. Besides this, a variable
number of entries in the Condition and RuleCondition arrays are required, depending
on the number of conditions required for a rule and the amount of conditions shared
by multiple rules. Each entry in the Condition array takes up 4-bytes. An entry in
the RuleCondition array is needed every time a rule requires a condition. It takes up
4 bytes when evaluation results are not cached and 6 bytes if they are. For a single
rule based on one condition, this gives a total size of 9, respectively 11 bytes.

The size in RAM depends on the number and size of facts and rules as well. In
the current implementation, all facts take up six bytes in RAM: two bytes for the
value and four for the timestamp. Rules require an additional 1 byte for storing
whether they are satisfied. When caching of condition evaluations is used, another
two bytes per each RuleCondition are required. Additionally, the queue that the
inference engine uses to buffer facts requires 7 bytes per entry.

4.6.2 Processing Performance

Besides memory, the processing overhead of the middleware should be reduced to
a minimum as this could interfere with the application. Since this thesis focuses on
local reconfiguration, the processing overhead will also be the primary source of ad-
ditional energy consumption. However, as Table 2.1 shows, the energy consumption

4.6. Evaluation 31

of a sensor node is mostly affected by communication, only remotely followed by
the processing done by the microcontroller. For this reason, the energy consumption
will not be considered in this evaluation.

Methodology

Measuring the processing time required for evaluating conditions and searching the
rule base requires the middleware giving a precise start and stop signal, without af-
fecting the actual processing time. For this analysis, the middleware was altered: an
output pin of the G-Node hardware was set high before a fact was updated, and set
low directly when the matching reconfiguration action was received by a component.
Using an oscilloscope, the pulse width on this pin can be measured, which provides
the time that the middleware is busy. This way, the processing time was measured
for several scenarios.

Processing response and cycle time

Reconfiguration is intended to adapt the software’s components such that it can op-
erate in a changing context. The quicker the middleware responds to a change, the
lesser the application is interrupted and the more time the application spends in an
optimal configuration.

Inference time (ms)
Cached 0.301
Uncached 0.286

Table 4.2: Processing time from the initial fact update to the end of the inference
process, averaged over 1000 measurements.

A simple experiment was performed to test the reasoning time of the middleware.
Using a rule base consisting of a single rule requiring a single condition, a new fact
was inserted as soon as the action from the previous fact insertion was triggered.
After every 1000 action events, an output pin of the G-node is alternated. This pin
was measured using an oscilloscope. This process was repeated 1000 times, for
the middleware with and without caching the condition evaluation. The results are
provided in Table 4.2, showing that the reasoning over a single rule is performed
in well under a millisecond. The table furthermore shows that without caching, the
inference process is performed more quickly than with caching condition evaluations.
This is because updating the cache requires some time, while for a rule with a single
condition, there is no condition evaluation that can be skipped.

A second experiment was conducted in which a large amount of facts was entered
to the fact base consecutively to test the throughput of the inference engine. However,
as the TinyOS scheduler will not schedule the inference process until after the last
fact update, the size of the fact queue is the limiting factor in this situation. Using

32 Implementation

principles of queuing theory, an optimal queue length can be found, depending on the
number of rules and facts, and the available memory for the application in question.

Scalability

To assess the scalability of the reasoning process with relation to the size of the rule
base, a fictional rule base was created with varying numbers of conditions and rules.
One fact was periodically updated, resulting in the last condition of each rule being
falsified. For the cases in which rules require multiple conditions, the remaining
conditions were unaffected by the fact update.

Without cache With cache
conditions for each rule

1 5 10 1 5 10

rules

1 0.45 0.54 0.66 0.46 0.51 0.58
5 0.56 1.02 1.60 0.60 0.86 1.19

10 0.69 1.62 2.77 0.76 1.29 1.94
25 1.09 3.41 6.31 1.27 2.58 4.23
50 1.75 6.39 7.88 2.10 4.67 5.69
75 2.41 7.40 9.45 2.94 5.80 7.70

100 4.92 8.28 11.50 3.77 6.82 9.46

Table 4.3: Inference time in milliseconds, for varying number of rules and conditions.

Table 4.3 shows the inference time for both the rule base with and without a cache
for the condition evaluations. When rules require only one condition, the inference
process takes slightly shorter when conditions are not cached. As explained previ-
ously, this is because rules based on a single condition do not require any evaluation
of other conditions aside from the one affected by the fact. However, as rules require
more conditions, using cached condition evaluations provides an increasing advan-
tage over evaluating every condition on each iteration. In the most optimal case
provided by the table, the advantage is over 17%. However, because in that case,
the rule base contains 1000 RuleConditions (10 conditions for 100 rules), caching
requires an additional 2 kilobytes of RAM.

The table also shows that the inference times are all well under one second. Com-
pared to duty cycles typically used in WSNs, this is very short. Furthermore, the
number of conditions tested here is very high compared to what a typical application
would require, as can be seen in the case study in Chapter 5.

CHAPTER 5
Case Study

A case study regarding structural health monitoring has been used to evaluate the
practical use of the middleware. Modal analysis is a method that structural engineers
use to determine the vibration characteristics of a structure, from which its strength
and overall structural health can be determined. Several publications have previously
used sensor networks in this context [42, 26, 19]; TNO is interested in the possibili-
ties of WSNs for monitoring off-shore wind turbines and other applications.

For this thesis, a modal analysis application has been implemented, which pro-
vides vibration characteristics of a structure. Four scenarios were defined in which
the quality of service of the application would decrease. For these scenarios, recon-
figurations were defined that can limit the decrease. These reconfigurations were
represented as rules and incorporated into the proof-of-concept middleware. Using
the resulting reconfigurable WSN, the proposed approach was assessed on effective-
ness and efficiency.

In this chapter, details are described of the application design and performance
of a structural health monitoring WSN. Section 5.1 explains the process of modal
analysis and provides details of a WSN designed for this purpose. In Section 5.2, four
scenarios are described which decrease the quality of service of the WSN. For each of
the scenarios, details are provided about how the proposed middleware reconfigures
the WSN to suit its context. Results of experiments performed on the implementation
are provided in Section 5.3. This chapter closes with a discussion of these results and
the approach of the middleware in Section 5.4.

5.1 Sensor Network Design

In modal analysis, the vibration patterns of a structure are determined by analyzing
the acceleration at different locations on the structure during a certain time period.
By applying a fast Fourier transform (FFT) to the acceleration time series, peak vi-
bration frequencies can be determined. The phase at those peak frequencies of all
locations combined provide the shape of the vibration. Doing this periodically al-

33

34 Case Study

node 1Sample

accelerometer FFT
 Peak

freq f ...f

node 2
(aggregation

node)

FFT

node n
FFT

Global

 f ... f system,1 system,m

Phase φ ...φ

at f ... f
1,1 1,m

1,1 1,m

 Peak

freq f ...f2,1 2,m

 Peak

freq f ...fn,1 n,m

Sample

accelerometer

Sample

accelerometer

system,1 system,m

Phase φ ...φ

at f ... f
2,1 2,m

system,1 system,m

Phase φ ...φ

at f ... f
n,1 n,m

system,1 system,m

Figure 5.1: Steps in the modal analysis algorithm.

lows a structural engineer to determine a change in vibrations, which could indicate
a weak spot or failure in the structure.

Using the approach of Zimmerman et al. [42], displayed in Figure 5.1, the amount
of data transmitted by sensor nodes can be reduced greatly compared to nodes sim-
ply sending accelerometer samples. At each measurement location, a sensor node
is placed that samples its accelerometer, and applies a 1024-point FFT. Using the
power spectral density, the peak frequencies on that point on the structure are deter-
mined by the node. For simplicity, the case study limits the number of frequencies
to the strongest one. The peak frequency values of all nodes are collected at one of
the nodes, which determines the most common peak frequency in the network and
broadcasts this back to all nodes again. This node, which will be referred to as ag-
gregation node, beacons periodically to inform other nodes about where to send their
peak frequencies. Finally, each sensor node determines the phase at this frequency
and transmits this to the base station. The case study repeats this process periodically.

This algorithm has been implemented on three G-Nodes equipped with an ac-

Figure 5.2: Schematic representation of the network setup used for the case study.

5.2. Reconfiguration 35

SamplerAppC

ProcessorC

Processor

FactWrite

FactWrite

Reconfigure

Reconfigure

FactWrite

CommunicationAppC

FactWrite Reconfigure

FactRead

FactRead

ModalAnalysisC

Sampler<int16_t>

Processor

FactWrite Reconfigure

LeafComm

FactRead

CentralAggregatorC

Aggregator SplitControl

CentralComm

Figure 5.3: Overview of the modal analysis application components, using the same
representation as in Figure 4.1. Doubly lined squares represent a component consist-
ing of multiple sub-components.

celerometer sensor board. A separate sensor node acts as a base station that collects
the transmitted data for storage and further processing on a pc. Figure 5.2 shows the
network setup schematically with communication directions represented by arrows.
An overview of the TinyOS components is provided in Figure 5.3. Components pro-
viding information to the middleware are wired to the FactWrite interface. Reading
from the middleware and listening to reconfiguration actions is done via the Fact-
Read and Reconfigure interfaces, respectively. The CentralAggregatorC component
can be started and stopped via the SplitControl interface.

5.2 Reconfiguration

Using this application, four scenarios were thought of in which the quality of service
of the sensor network would drop, which are listed below.

1. Recover from a crash of the aggregation component.
2. Share the load of aggregation to balance energy consumption.
3. Adjust accelerometer sensitivity when needed.
4. Decrease the sampling duty cycle when a node is low on energy.

First of all, the centralized aggregation is a weak spot: the sensor network stops
completely if the particular node crashes. Secondly, this aggregation also causes an
imbalance in power consumption among the nodes. When this functionality could
be delegated, the network lifetime increases as the time that the first node runs out of

36 Case Study

energy can be postponed. Thirdly, the sensitivity of the accelerometer is adjustable,
ranging from ±2g to ±16g. The optimal setting can vary at run-time, depending on
the strength of the pillar and the wind. A fourth issue again relates to the energy
consumption: because it is unknown if and when a change in the vibration pattern
occurs, it is difficult to asses how long the WSN should run. When a node is low on
energy, it could increase the time between measurements, which decreases its energy
consumption in exchange for fewer measurement samples.

The following subsections provide more details on these scenarios and how they
are handled by the reconfiguration middleware.

5.2.1 Restarting aggregation component

An obvious weak spot in this sensor network is the use of a central component that
aggregates the peak frequencies from other nodes and determines the sample fre-
quency for phase sampling. Assume failures of each node in the network are inde-
pendent with a probability modeled by an exponential distribution with rate λ per
time unit, and that failure of a node not running the aggregation component does
not influence the network performance. The reliability of the network, i.e. the prob-
ability that the network will perform its intended function during a specified pe-
riod of time t, will be equivalent to the reliability of the aggregating node, which is
R (t) = Pr {T > t} = e−λt.

However, when the central component can be restarted at any of n different nodes,
the lifetime of the network is extended to the lifetime of the last crashing node. Keep-
ing the failure model of each node the same, the reliability of the network changes to
R (t) =

∑n
k=1

(
n
k

) (
e−λt

)k (
1− e−λt

)n−k. The difference between these two relia-
bility functions is visualized in Figure 5.4 for λ = 0.01/h and n = 3. If for instance
a reliability of 80% is required, reconfiguration increases the network lifetime from
22 hours to 87 hours.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
(t

)
=

 P
r(

ne
tw

or
k

lif
et

im
e

>
 t)

t (hours)

With reconfiguration
Without reconfiguration

Figure 5.4: Reliability of the modal analysis network. Note that any unit of time can
be used as long as it is consistent with the failure rate λ = 0.01/h.

5.2. Reconfiguration 37

Action Implementation

a1
Central_aggregator.start();
FactWrite.writeFact(central_islocal, TRUE);
TimeOutCounter.stop();

a2
Central_aggregator.stop();
FactWrite.writeFact(central_islocal, FALSE);
TimeOutCounter.start();

Table 5.1: Pseudo-code for the actions that enable and disable the aggregation com-
ponent.

Conditions
c1: central timeout > 10
c2: central islocal == FALSE
c3: central timeout < 10
c4: central islocal == TRUE

Rules
r1: c1 ∧ c2 → a1
r2: c3 ∧ c4 → a2

Table 5.2: Rule base for scenario 1.

The information required for the middleware to handle this scenario, is provided in
Table 5.1 and Table 5.2. The implementation of action a1 is provided by the modal
analysis application and starts a new aggregation component. This action should
be called whenever the aggregation component is not functioning properly for some
reason. In order for a node to detect this, it can maintain the time since the last
message of the aggregation node. A time-out fact can then be inserted when the node
has not received a message in the last two seconds, which can easily be used for a
condition in the rule base: c1 is satisfied if the number of time-outs is higher than 10.
When the aggregation component is started, counting time-outs is no longer required.
Therefore, a1 also includes an operation to stop the counter. To prevent restarting the
aggregation component at the node on which it was already enabled, c2 requires this
component to be disabled locally for the rule to be satisfied, thus completing rule r1.

Similarly, action a2 provides a way to disable the aggregation component when a
node detects that another node already provides this functionality. As a message from
the aggregation node resets the number of time-outs, c3 and c4 can be used in rule
r2. An election algorithm could obviously further enhance this solution to determine
which of the nodes should retain its aggregation functionality.

5.2.2 Delegating aggregation component

The collection and dissemination of frequencies by the aggregation component re-
quires additional communication, resulting in a higher energy use for the node on
which the aggregation is performed. If this energy load can be divided among all

38 Case Study

Conditions
c5: battery energy < 500

Rules
r3: c4 ∧ c5 → a2

Table 5.3: Rule base addition for scenario 2.

nodes, the network lifetime, i.e. the time until the first node dies, can be prolonged
substantially, without requiring an increase in battery capacity.

This reconfiguration can be achieved by simply disabling the aggregation compo-
nent when the energy level drops below a certain point. The application can peri-
odically check this using the microprocessor’s voltage sensor as an indication of the
remaining energy. The other nodes detect the absence of an aggregation component
and reconfigure according to rule r1. Obviously, that rule has to be changed to pre-
vent the node from re-enabling the aggregation when it has just been disabled; this
will not be considered in this case study.

As disabling the aggregation component is already provided by action a2, this
scenario only requires a new rule r3 as provided in Table 5.3. This rule depends on a
new condition c5 requiring a certain battery level, and the already present condition
c4 of Table 5.2.

5.2.3 Adapting accelerometer sensitivity

A different problem that might arise concerns the sensitivity of the accelerometer
sensor, for instance because of hardware aging, or deterioration of the mount. The
analog acceleration values are converted to a 32-bit representation, with ranges of
±2g,±4g,±8g or±16g [8]. When the sensitivity is set too low and heavy vibrations
occur, the power spectral density resulting from the FFT can contain overflowed
values, which makes determining the peak frequencies impossible. When overflow
is detected, the sensor sensitivity should decrease to allow stronger vibrations to be
detected.

Action Implementation

a3

Sensor.increaseSensitivity();
FactWrite.writeFact(sensor_sensitivity,

Sensor.getSensitivity());
FactWrite.resetFact(PROCESSOR_OVERFLOW);

Table 5.4: Pseudo-code for the action adjusting the accelerometer sensitivity.

This scenario can easily be detected at run-time, by making the processor com-
ponent record a fact each time the amplitude at the peak frequency is very high or
generates an overflow. The number of overflows can subsequently be used as indica-
tion for whether reconfiguration is required or not. This is encoded in Table 5.5 by
condition c6 for rule r3. The implementation of action a3 as provided in Table 5.4

5.2. Reconfiguration 39

Conditions
c6: processor overflow > 5

Rules
r4: c6 → a3

Table 5.5: Rule base addition for scenario 3.

adjusts the sensitivity of the accelerometer, records this in the fact base and resets the
overflow count.

Detecting the opposite case, i.e. whether the sensitivity is too low, can be done by
counting the times that the amplitude at the peak frequency is equal to or nearing
zero. The rest of this case is similar to a too high sensitivity and omitted for reasons
of brevity.

5.2.4 Adapting sensor cycle period

The fourth scenario for reconfiguration allows a node to save power when the energy
depletes more rapidly than expected. Again using the microprocessor’s voltage sen-
sor as an indication, the application can periodically check if the node can reach its
target lifetime. By increasing the time between consecutive runs of the modal anal-
ysis algorithm, the energy consumption can be lowered, which prolongs the node’s
lifetime.

Action Implementation

a4
Sampler.increasePeriod();
FactWrite.writeFact(sampler_period,

Sampler.getPeriod());

Table 5.6: Pseudo-code for the action adjusting the sampling duty cycle.

Conditions
c7: sensor rate = 15

Rules
r5: c6 ∧ c7 → a4

Table 5.7: Rule base addition for scenario 4.

The required operations for this reconfiguration action are provided in Table 5.6
and can be implemented by the sampling component. The action consists of adjust-
ing the duty cycle parameter of the sampling component and updating the value in
the fact base. The rule r5 triggering this action is provided in Table 5.7. As the re-
quirement on the energy level is already provided in condition c6, only one additional
condition c7 is required, which asserts the duty cycle has not already been decreased.

The duty cycle of the modal analysis can be adjusted to any value: other rules
similar to r5 can be defined to provide an appropriate value for various energy levels.

40 Case Study

In this way the developer can define duty cycle adjustments with smaller or larger
steps.

5.3 Results

By incorporating the middleware with the reconfiguration rules explained above, a
modal analysis application results which can reconfigure itself according to its con-
text after deployment. The following section discusses the properties and test results
of the resulting WSN. The additional memory use and processing time of the mid-
dleware are discussed to assess the additional load on a node’s resources.

5.3.1 Memory Use

As mentioned in Section 4.6, memory is a scarce resource for nodes. Considering
the middleware should run alongside the WSN application, it is even more important
to keep the additional memory consumption limited. The size of the data structures
used in the assessment are shown in Table 5.8.

Fact array Rule array Condition array RuleCondition array Fact queue
30 10 28 54 100

Table 5.8: Number of bytes in the data structures used in the case study.

The modal analysis application was compiled in different configurations to obtain
the actual additional memory use of the middleware. The compilation included any
optimizations performed by the nesC compiler. In Table 5.9 the RAM and ROM
use are provided as reported by the TinyOS tool-chain. Considering the G-Node
platform has available 8 KB of RAM and 116 KB of ROM, the middleware requires
an additional 2.7% respectively 1.4% of these resources when caching is disabled,
and 2.9% respectively 1.4% when caching is used.

RAM (extra) ROM (extra)
Without middleware 5333 24598
With middleware, without caching 5554 (221) 26182 (1584)
With middleware, with caching 5572 (239) 26244 (1646)

Table 5.9: Memory requirements for modal analysis application in bytes.

The absolute increase in ROM is considerably more than the sum of the memory
of each component as provided in Section 4.6.1. This can be explained by the fact
that besides the middleware components, the monitoring and reconfiguration func-
tionality provided by the application also increase the memory use. Compared to the
size of the application, the middleware constitutes an increase in RAM and ROM use
of 4.1% respectively 6.4% when caching is not used, and 4.5% respectively 6.7%
when caching is used.

5.4. Discussion 41

5.3.2 Processing Load

To assess the impact of the middleware on the activity of the microcontroller, a tim-
ing analysis was performed. By slightly modifying the TinyOS scheduler- and sleep
components, the total time could be recorded which the microcontroller spends in
each of the six supported power modes. When multiplied with the average energy
consumption of the microcontroller in each power mode, the accumulated times pro-
vide a representative picture of the total energy consumption of this component [9].

The experiment ran the modal analysis application for eight hours both with and
without the middleware, after which the accumulated time spent in each of the power
modes was divided by the experiment’s run time. In order to solely get the cost of the
extra processing of monitoring and inferencing, no rules were actually fired during
the experiment. The middleware was set to use caching for condition evaluations.
The modal analysis algorithm was performed every fifteen seconds, with the aggre-
gation node beaconing every two seconds.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ac ve Low power mode 3

Without

middleware

With

middleware

Figure 5.5: Fraction of time the microcontroller spent fully active and in low power
mode 3 during the 8 hour run.

The results are depicted in Figure 5.5. The microcontroller is put in low power
mode 3 for the majority of the time, namely 92.18% and 92.73% for with and without
the middleware running, respectively. The microcontroller was fully turned on during
the remaining 7.82% and 7.27% of the total run time. The other power modes are
not used by the application. The experiment shows that the middleware increases the
active time of the microcontroller by only 7.6%. Given the current ratings of 525 µA
during active mode and 0.6 µA during low power mode 3 [17], this constitutes an
increase of 7.4% in the energy consumption of the microcontroller.

5.4 Discussion

For the provided use case, the middleware successfully adapted the application to its
context. Some issues arose during the development of the system however, which are
inherent to the approach and/or could be targeted in future work.

42 Case Study

As noted in Section 2.3, the internal system representation of facts, conditions and
rules are not easily readable by humans but rely on being generated from a high-
level programming language. As such, it is difficult to maintain an overview of the
complete behavior of the system as the rule base grows, in case errors occur or other
circumstances require detailed inspection.

The requirement of conditions to evaluate to true in order to trigger some reconfig-
uration action introduces some inefficiencies. For instance, the two rules used in the
case study regarding the start and stop of the central aggregation component use two
different conditions: c2 checks if the component is active, while c4 checks if the com-
ponent is inactive. A method to encode this into a single condition that can evaluate
to either true or false could be interesting to further increase the reuse of conditions
and optimize the rule base. Extending the comparator operations on conditions can
also lead to additional expressiveness and memory savings.

Caching the results of previous evaluations of conditions slightly reduces the in-
ference time for complex rules, i.e. rules with multiple conditions and lengthy com-
parison operators. However, the trade-off between inference speed and memory use
might favor not caching results most of the time, as a decrease of some milliseconds
in inference time requires up to 25% of the total available RAM.

The inference engine uses a naive algorithm to search the rule base. However, the
evaluation and case study proved that what would be regarded a large rule base can
still be processed in a small time period compared to typical WSN duty cycles. The
microprocessor spends only about 7% longer in active mode compared to when the
middleware is not used. As this is the only source of additional energy consumption
and the energy consumption of the microprocessor is very little compared to the
radio, the middleware will have little effect on the total energy consumption of a
sensor node. Rule bases that stretch the limits of the inference time are not realistic
for typical WSN applications. Also, more computationally efficient solutions, e.g.
based on the Rete algorithm, would probably reach the memory limits of many WSN
platforms in these cases, as they trade off inference time for memory.

Although the memory use of the current approach also scales poorly, it is still well
within the limits of the platform and leaves enough room for a complete sensing
application on the nodes. Compression of the rule base might be possible during the
generation of the rule base, reducing the size of facts, conditions and rules where
possible. Providing monitoring input is very simple via the use of the fact base, but
it can lead to storing information twice when component parameters are also part
of the monitoring data. Also, reconfigurations that depend on previous state or time
require explicitly providing this information to the fact base. The reconfiguration
itself performs well in a practical application; getting the steps of the reconfiguration
actions correctly is the most concerning issue for a sensor network developer.

CHAPTER 6
Conclusions and Future Work

Because the quality of service of WSNs largely depends on the run-time context, a
method is required that encompasses this context into the design, such that a WSN
is able to reconfigure after deployment. Previous work has focused on centralized
(partial) reprogramming or required dense networks. The goal of this thesis project
is to develop software that supports the local reconfiguration of sensor nodes at run-
time, allowing a WSN to perform within its requirements under changing conditions.

This thesis proposes a middleware that represents a WSN’s context on each node
as a set of facts. An inference engine on each node contains rules that are based on
these facts. Upon a change in the context, the inference engine checks these rules
and indicates what actions should be performed by the application, such that it suits
the new context.

The middleware was implemented and evaluated using a case study. The approach
proved successful in reconfiguring the application to four context changes, while the
evaluation showed the middleware required little additional memory and processing
time compared to the application. The impact of this approach on the development
of reconfigurable WSNs will be discussed next. In Section 6.2 suggestions will be
given for future work on this research topic.

6.1 Discussion

The idea behind middleware for reconfigurable sensor networks is to provide WSN
applications a means to cope with run-time context changes, simplify the design and
implementation of adaptive sensor networks and help creating reusable components.
The middleware described in this thesis improves this by providing a simple construct
to monitor the context and automatically trigger reconfiguration when the context
requires this. The approach improves the WSN design process as it can save on
costly resources and delay certain design decisions to run-time, when more or more
up-to-date information is available for reasoning about the optimal solution.

When designing distributed systems like WSNs, a developer has to take into ac-
count the changes in the context of the application. These changes can have vari-

43

44 Conclusions and Future Work

ous causes: failure of sensor components themselves, e.g. sensor or battery aging or
faulty memory; an external event, e.g. a node falling off its mount or the movement of
an object for a tracking application; or possibly a change in information requirements
from the user.

To deal with these variable conditions, designs traditionally incorporate additional
resources, e.g. over-provisioning the available energy, using high-efficiency chips,
incorporating multiple processing algorithms, or providing redundant communica-
tion links. These solutions are costly however, and do not always provide the optimal
result; mostly it is chosen because it can be provided during design time and does not
require developer-interaction after deployment.

However, with reconfigurable middleware, the configuration of a WSN is not in-
variably fixed after deployment. It allows to incorporate multiple configurations into
the system and use run-time information in the design choices for a new configura-
tion. For the case study, this can result in applying a different processing algorithm,
or trading-off sample-density for network lifetime by adjusting the duty-cycle. As the
WSN takes the configuration of the available resources that, according to its speci-
fication, suits its context, the highest possible quality of service can be approached
in the different contexts. Reconfiguration allows for a graceful degradation of func-
tionality as a cheaper and/or smarter alternative to achieving maximum functionality
through costly over-provisioning or redundancy.

Using the reconfiguration middleware as elaborated in this thesis, rules are created
that start, stop and adjust the required functionality depending on the run-time infor-
mation. This way, the proposed middleware chooses the most suitable configuration
of the available components for each context. This provides a structured approach
to reconfiguration, allowing for design guidelines opposed to application-specific ad-
hoc solutions.

6.2 Future Work

The focus of this thesis has been on providing a solution that allows certain design-
time decisions to be delayed to run-time. This required representing knowledge about
the WSN in a way that enables a generic middleware to reason over these decisions
and reconfigure the application to its context. This leaves open a number of issues.

The internal representation of the design-time knowledge is difficult to create and
maintain for developers. A high-level language can be developed which allows a
more human-readable definition of the application model and requirements. This
definition will subsequently be compiled to the internal representation. This will pro-
vide a better overview of the complete reconfiguration behavior and makes it easier
to verify correctness, further simplifying the development process for reconfigurable
WSNs. Also, the proposed solution supports state-dependent reconfigurations only
by treating time as a regular monitored element in the fact base. Future work can fo-
cus on considering time as a separate concept in the middleware, which goes towards
temporal reasoning about reconfiguration.

6.2. Future Work 45

A second direction for future work to focus on is expanding the proposed approach
with methods to perform distributed context monitoring and reconfiguration actions.
This allows nodes to incorporate a wider view of its context and also effect coor-
dinated reconfiguration of nodes in a certain region. The current approach already
allows interaction with neighbors via the user-defined actions, but several publica-
tions have proposed solutions for information sharing between nodes, which could
be used to enhance this functionality and increase efficiency [6, 40]. This can result
in middleware that is able to perform simple local reconfiguration or more complex,
coordinated reconfiguration if necessary.

Taking the idea of coordinated reconfiguration across multiple nodes one step fur-
ther, a second level of rule compilation could be developed. This second level trans-
lates global system specifications and requirements to local rules; the previously
mentioned compilation can subsequently translate these local rules to the internal
representation. This additional level brings reconfiguration middleware to the re-
search area of large-scale adaptive systems.

Finally and most importantly, leveraging the presented approach, future work can
focus on extending the design methodology and patterns for reconfigurable WSNs.
First works in this direction were recently proposed by Fleurey et al. [11].

Bibliography

[1] M. Albano and S. Chessa. Publish/subscribe in wireless sensor networks based
on data centric storage. In Proceedings of the 1st International Workshop on
Context-Aware Middleware and Services: affiliated with the 4th International
Conference on Communication System Software and Middleware (COMSWARE
2009), pages 37–42. ACM, 2009.

[2] A. Avizienis, J.C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE transactions on dependable
and secure computing, 1(1):11–33, 2004. ISSN 1545-5971.

[3] A. Cerpa and D. Estrin. Ascent: Adaptive self-configuring sensor networks
topologies. IEEE transactions on mobile computing, 3(3):272–285, 2004.

[4] D. Chu, L. Popa, A. Tavakoli, J.M. Hellerstein, P. Levis, S. Shenker, and I. Sto-
ica. The design and implementation of a declarative sensor network system. In
Proceedings of the 5th international conference on Embedded networked sen-
sor systems, page 188. ACM, 2007.

[5] Moteiv Corporation. Tmote Sky Datasheet, 2006. URL http:
//www.eecs.harvard.edu/˜konrad/projects/shimmer/
references/tmote-sky-datasheet.pdf.

[6] P. Costa, L. Mottola, A.L. Murphy, and G.P. Picco. TeenyLIME: transiently
shared tuple space middleware for wireless sensor networks. In Proceedings of
the international workshop on Middleware for sensor networks, pages 43–48.
ACM, 2006.

[7] A. De Jong, M. Woehrle, and K. Langendoen. MoMi: model-based diagno-
sis middleware for sensor networks. In Proceedings of the 4th International
Workshop on Middleware Tools, Services and Run-Time Support for Sensor
Networks, pages 19–24. ACM, 2009.

[8] Analog Devices. ADXL345 Digital Accelerometer Data Sheet. Analog Devices,
Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, USA,
a edition, 2010.

47

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

48 Bibliography

[9] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-based on-line energy
estimation for sensor nodes. In Proceedings of the 4th workshop on Embedded
networked sensors, pages 28–32. ACM, 2007.

[10] E.A. Feigenbaum, Stanford University. Dept. of Computer Science, and Stan-
ford University. Heuristic Programming Project. The art of artificial intelli-
gence: I. Themes and case studies of knowledge engineering. Computer Sci-
ence Department, School of Humanities and Sciences, Stanford University,
1977.

[11] Franck Fleurey, Brice Morin, and Arnor Solberg. A model-driven approach to
develop adaptive firmwares. In Proceeding of the 6th international symposium
on Software engineering for adaptive and self-managing systems, SEAMS ’11,
pages 168–177. ACM, 2011.

[12] C.L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem* 1. Artificial intelligence, 19(1):17–37, 1982.

[13] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 1–11. ACM, 2003.

[14] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection tree
protocol. In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, pages 1–14. ACM, 2009.

[15] G.P. Halkes and K.G. Langendoen. Practical considerations for wireless sen-
sor network algorithms. Wireless Sensor Network, 2(6):441–446, jun 2010.
ISSN 1945-3078. URL http://www.es.ewi.tudelft.nl/papers/
2010-Halkes-theory-vs-practice.pdf.

[16] U. Hunkeler, Hong Linh Truong, and A. Stanford-Clark. MQTT-S; a publish/-
subscribe protocol for wireless sensor networks. In Communication Systems
Software and Middleware and Workshops, 2008. COMSWARE 2008. 3rd Inter-
national Conference on, pages 791 –798, Jan. 2008.

[17] Texas Instruments. MSP430x12x MIXED SIGNAL MICROCONTROLLER.
Texas Instruments Incorporated, Post Office Box 655303, Dallas, Texas 75265,
USA, slas312c edition, September 2004.

[18] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next century challenges: mobile net-
working for “Smart Dust”. In Proceedings of the 5th annual ACM/IEEE in-
ternational conference on Mobile computing and networking, pages 271–278.
ACM, 1999.

[19] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon.
Health monitoring of civil infrastructures using wireless sensor networks. In
Proceedings of the 6th international conference on Information processing in
sensor networks, pages 254–263. ACM, 2007.

http://www.es.ewi.tudelft.nl/papers/2010-Halkes-theory-vs-practice.pdf
http://www.es.ewi.tudelft.nl/papers/2010-Halkes-theory-vs-practice.pdf

Bibliography 49

[20] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi, and M. Maroti.
Constraint-guided dynamic reconfiguration in sensor networks. In Information
Processing in Sensor Networks (IPSN), 2004, pages 379–387. IEEE, 2004.

[21] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and J. Sztipanovits.
Oasis: A programming framework for service-oriented sensor networks. In
Proceedings of the 2nd International Conference on Communication Systems
Software and Middleware (COMSWARE), pages 1–8. IEEE, 2007.

[22] P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. ACM
SIGARCH Computer Architecture News, 30(5):85–95, 2002. ISSN 0163-5964.

[23] P. Levis and D. Gay. TinyOS programming. Cambridge University Press, 2009.
ISBN 9780521896061.

[24] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An operating system for sensor
networks. Ambient Intelligence, 35, 2005.

[25] T. Liu and M. Martonosi. Impala: a middleware system for managing auto-
nomic, parallel sensor systems. In Proceedings of the ninth ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 107–
118. ACM, 2003.

[26] J.P. Lynch and K.J. Loh. A summary review of wireless sensors and sensor
networks for structural health monitoring. Shock and Vibration Digest, 38(2):
91–130, 2006.

[27] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. The design of an
acquisitional query processor for sensor networks. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data, pages 491–
502. ACM, 2003.

[28] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless
sensor networks for habitat monitoring. In Proceedings of the 1st ACM inter-
national workshop on Wireless sensor networks and applications, pages 88–97.
ACM, 2002.

[29] P. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and K. Rother-
mel. Flexcup: A flexible and efficient code update mechanism for sensor net-
works. Wireless Sensor Networks, pages 212–227, 2006.

[30] A. Meier, M. Woehrle, M. Zimmerling, and L. Thiele. ZeroCal: Automatic
MAC protocol calibration. Distributed Computing in Sensor Systems, pages
31–44, 2010.

[31] W. Munawar, M.H. Alizai, O. Landsiedel, and K. Wehrle. Dynamic TinyOS:
Modular and Transparent Incremental Code-Updates for Sensor Networks. In
2010 International Conference on Communications (ICC), pages 1–6. IEEE,
2010.

[32] Michael Negnevitsky. Artificial Intelligence: A Guide to Intelligent Systems,
chapter 2. Pearson Education Limited, 2 edition, 2002.

50 Bibliography

[33] A. Rezgui and M. Eltoweissy. Service-oriented sensor-actuator networks:
Promises, challenges, and the road ahead. Computer Communications, 30(13):
2627–2648, 2007. ISSN 0140-3664.

[34] E. Souto, G. Guimarães, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and
J. Kelner. Mires: a publish/subscribe middleware for sensor networks. Personal
and Ubiquitous Computing, 10(1):37–44, 2006.

[35] N. Srinivas and K. Deb. Muiltiobjective optimization using nondominated sort-
ing in genetic algorithms. Evolutionary computation, 2(3):221–248, 1994.

[36] SOWNet Technologies. G-Node G301 whitepaper. SOWNet Technologies,
Delftechpark 26, 2628 XH Delft, 2010.

[37] Crossbow Technology. Mica2 Wireless Measurement System Datasheet,
6020-0042-04 edition, 2003. URL https://www.eol.ucar.edu/rtf/
facilities/isa/internal/CrossBow/DataSheets/mica2.
pdf.

[38] K. Terfloth, G. Wittenburg, and J. Schiller. Facts-a rule-based middleware
architecture for wireless sensor networks. In Proceedings of the 1st interna-
tional conference on Communication System Software and Middleware (COM-
SWARE). Citeseer, 2006.

[39] T. Van Dam and K. Langendoen. An adaptive energy-efficient mac protocol for
wireless sensor networks. In Proceedings of the 1st international conference on
Embedded networked sensor systems, pages 171–180. ACM, 2003.

[40] M. Welsh and G. Mainland. Programming sensor networks using abstract
regions. In Proceedings of the 1st conference on Symposium on Networked
Systems Design and Implementation-Volume 1, page 3. USENIX Association,
2004.

[41] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in
sensor networks. SIGMOD record, 31(3):9–18, 2002.

[42] A.T. Zimmerman, M. Shiraishi, R.A. Swartz, J.P. Lynch, et al. Automated
modal parameter estimation by parallel processing within wireless monitoring
systems. Journal of Infrastructure Systems, 14:102, 2008.

[43] H.J. Zimmermann. Fuzzy programming and linear programming with several
objective functions* 1. Fuzzy sets and systems, 1(1):45–55, 1978.

https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf
https://www.eol.ucar.edu/rtf/facilities/isa/internal/CrossBow/DataSheets/mica2.pdf

	Preface
	Contents
	Introduction
	Commercial Interest
	Problem Statement
	Organization

	Background
	Wireless Sensor Networks
	WSN Development Approach
	Reconfiguration Middleware for WSNs
	Reconfiguration Intelligence

	Middleware Design
	Goals and Requirements
	Knowledge Representation
	Rule-Based Inference
	Actuation

	Implementation
	Implementation Platform
	Component Monitoring
	Rule Base
	Inference Engine
	Reconfiguration Actions
	Evaluation

	Case Study
	Sensor Network Design
	Reconfiguration
	Results
	Discussion

	Conclusions and Future Work
	Discussion
	Future Work

	Bibliography

