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Abstract. In this research, we extend the universal reinforcement learn-
ing agent models of artificial general intelligence to quantum environ-
ments. The utility function of a classical exploratory stochastic Knowl-
edge Seeking Agent, KL-KSA, is generalized to distance measures from
quantum information theory on density matrices. Quantum process
tomography (QPT) algorithms form a tractable subset of programs for
modeling environmental dynamics. The optimal QPT policy is selected
based on a mutable cost function based on algorithmic complexity as well
as computational resource complexity. The entire agent design is encap-
sulated in a self-replicating quine which mutates the cost function based
on the predictive value of the optimal policy choosing scheme. Thus,
multiple agents with pareto-optimal QPT policies evolve using genetic
programming, mimicking the development of physical theories each with
different resource trade-offs. This formal framework, termed Quantum
Knowledge Seeking Agent (QKSA), is a resource-bounded participatory
observer modification to the recently proposed algorithmic information-
based reconstruction of quantum mechanics. A proof-of-concept is imple-
mented and available as open-sourced software.

Keywords: Algorithmic information theory · Quantum computing ·
Reinforcement learning · Mutating quine

1 Introduction

The overwhelming success of deep learning over the last decade is encouraging
the revival of research on artificial general intelligence (AGI) from various direc-
tions [7,9]. The most mathematically rigorous among these is universal artificial
intelligence (UAI) [11]. The agent-environment paradigm of model-based rein-
forcement learning (RL), is best suited to mimic the interactive learning behavior
of biological intelligence. UAI-based RL agents are concisely referred to as uni-
versal reinforcement learning (URL) agents. This research examines policies of
modeling an unknown environment as the general task assigned to a URL agent.
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URL agents have been instrumental in proving asymptotic optimal behav-
ior [20,21] in partially observable environments by merging theoretical concepts
in universal automata, algorithmic information theory (AIT) [24] and decision
theory. However, the dependence on AIT makes these agents generally uncom-
putable. While resource-bounded variants have been proposed, these models still
remain intractable for real-world applications. Moreover, these resource bounds
introduce arbitrary hyper-parameters. To address this issue, we utilize the pro-
posal [37] of embedding RL agents within an evolutionary framework (Evo-RL)
to guide the meta-learning for a specific application scenario. In this work, we
propose the idea of a resource-bounded evolutionary URL (Evo-URL) for the
first time. The framework implements the resource cost function as a genetic
program encapsulated by a mutating quine. This work is prompted by the sug-
gestion of UAI systems to eventually play the role of autonomous scientists by
recursive self-improvement [35].

The properties of the environment is as crucial for AGI as that of the learning
strategy. In its most general form, physical systems should include classical,
quantum, and relativistic scenarios. This work addresses the first two cases by
defining the environment as an unknown quantum process. The proposed agent
uses quantum process tomography (QPT) strategies as a tractable predefined
subset of programs for actively learning the environmental model. Limiting the
evaluation to this subset of programs alleviates the exponential scaling of the
space of programs, which limits UAI’s applicability beyond toy models.

The proposed AGI framework, called Quantum Knowledge Seeking Agent
(QKSA), models classical and quantum dynamics by merging ideas from AIT,
quantum information, constructor theory, and genetic programming. Following
the artificial life (or, animat) path to intelligence, a population of classical agents
undergoes open-ended evolution (OEE) to explore pareto-optimal ways of model-
ing the perceptions from a quantum environment. Similar to how AIXI-tl [12] is a
resource-bounded active version of Solomonoff universal induction [39], QKSA is
a resource-bounded participatory observer [13,44] framework to the recently pro-
posed [26] algorithmic information-based reconstruction of quantum mechanics.
QKSA can be applied for simulating and studying aspects of quantum informa-
tion theory like control automation, multiple observers, course-graining, distance
measures, resource complexity trade-offs, etc.

The rest of the article is organized as follows. Section 2 presents the four
features of the QKSA model that distinguish it from other similar concepts
and models. In Sect. 3 we present the formalization of QKSA’s policy. Section 4
concludes the article with suggestive applications.

2 Framework Features

In this section, we present the four distinguishing features of the QKSA frame-
work, (i) representations of general quantum environments, (ii) process tomogra-
phy algorithms for modeling, (iii) computational resource-bounded algorithmic
cost, and (iv) mutating meta-learning hyper-parameter embedded in a quine.
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2.1 Representations of General Quantum Environments

The class of environments an agent can model define the bound of its applica-
bility. Solomonoff’s theory of universal inductive inference [39] forms the the-
oretical basis of UAI, and automated scientific modeling in general. In it, the
environment is assumed to be computable by a universal Turing machine [42].
The hypothesis size (i.e., the Kolmogorov/algorithmic complexity [17]) is used
to proportionally weigh (i.e., the Solomonoff/algorithmic probability) the envi-
ronmental models for future predictions. The invariance theorem allows any
universal automata/language to be used for estimating the hypothesis size, up
to a constant overhead.

The active generalization of Solomonoff’s induction using Bellman’s opti-
mality equation form the basis of URL agents. The agent and the environment
interact in turns. At every time step, the agent supplies the environment with
an action. The environment then performs some computation and returns a per-
cept to the agent, and the procedure repeats. The environment is modeled as a
partially observable Markov decision process. The canonical URL model is the
AIXI model [11].

Knowledge Seeking Agents [28] replaces the extrinsic reward function in AIXI
with a utility function defined as information gain of the model. Thus, this
collapses the exploration-exploitation trade-off to simply exploration, allowing
agents to explore the environment in a principled approach. The goal of these
agents is to entirely explore their world optimally, form a model, and get a reward
for reducing the entropy (uncertainty) in its model from the two components:
uncertainty in the agent’s beliefs and environmental noise. A particularly inter-
esting case is the KL-KSA [29], which is robust to stochastic noise as the utility
function is given as the Kullback-Leibler divergence.

While KL-KSA generalizes over arbitrary countable classes and priors, it
cannot intrinsically interpret quantum information. This is because quantum
information [27] is a generalization of classical probability theory to the complex
domain. It allows richer representations and manipulations of information based
on superposition, unitary evolution, interference, entanglement, and projective
measurement. QKSA generalizes the probability distribution of KL-KSA to den-
sity matrices and the KL divergence to various distance measures on quantum
processes.

A brief necessary background of these representations are presented here.
Statistical ensembles of N pure quantum states |ψ〉 are described as a den-
sity matrix ρ =

∑N
k=1 pk|ψ〉〈ψ|, where the probabilities satisfy 0 < pk ≤ 1

and
∑N

k=1 pk = 1. A projective measurement of an observable Mm is given by
the expectation value Pr(m) = Tr(Mmρ). Statistics of observable probabilities
from quantum measurements can only estimate the density matrix instead of
the state, thus fitting the QKSA use case. The unitary U evolution of closed
quantum systems is denoted for pure states as, |ψ′〉 = U |ψ〉 and for mixed
states as ρ′ = UρU†. More generally, a quantum process Φ that transforms a
density matrix need not always be unitary. Given classical processes are often
irreversible and include measurements, a quantum generalization includes uni-
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tary transforms (symmetry transformations of isolated systems), probabilistic
logic, measurements and transient interactions with an environment. Thus, quan-
tum processes formalize the time evolution of open quantum systems as lin-
ear quantum dynamical maps from the set of density matrices to itself. For a
quantum system with an input state ρin of dimension n × n and an output
state ρout = Φ(ρin) of dimension m × m, Φ is a linear superoperator map-
ping between the space of Hermitian matrices Φ : Mn×n → Mm×m. There are
other equivalent representations of quantum processes like Choi matrix ρChoi,
Kraus operators, Stinespring, Pauli basis Chi matrix χ, Lindbladian, etc. For
instance, the Choi matrix ρChoi is the density matrix obtained after putting half
of the maximally entangled state |Ω〉 through the channel Φ, while doing nothing

on the other half, i.e. if Λ =
∑

i,j

1
2n

|i〉〈j| ⊗ Φ(|i〉〈j|), the ρChoi = Λ(|Ω〉〈Ω|)
The evolution of a density matrix with respect to the Choi-matrix is given by,
ρout = Φ(ρin) = Tr1((ρT

in ⊗ I)ρchoi)), where Tr1 is the partial trace over subsys-
tem 1. As a result of the Choi-Jamiolkowski isomorphism, the Choi matrix ρChoi

characterizes the process Φ completely. This isomorphism forms the basis of the
channel-state duality in quantum information.

Like classical probability distribution, there are many measures of quan-
tum distances, each with its own application advantage. The QKSA framework
allows the user to select a distance metric as part of the experimental setup. The
current implementation provides the following distance metrics, Hamming dis-
tance, KL divergence, trace distance, Hilbert-Schmidt norm, and Bures distance
(fidelity). Users can also define a custom distance measure. A future extension
would provide diamond distance, Hellinger distance, quantum Kolmogorov com-
plexity, quantum relative entropy, RÃl’nyi divergence, Bhattacharyya distance,
and quantum complexity action [10].

2.2 Process Tomography Algorithms for Modeling

In canonical UAI formalism, the programs are drawn randomly from a prefix code
for a universal automata. However, the space of programs grows exponentially,
limiting its applicability beyond simple grid-world exploration and games. We
restrict this space to a constant number of predefined algorithms provided to the
framework. This pragmatic design feature allows us to implement interpretable
and tractable URLs.

Characterization of quantum dynamical systems is a fundamental problem
in quantum information science. The procedures that achieve this goal are called
quantum process tomography. Some examples of these well-developed techniques
are: standard QPT [6], entanglement-assisted QPT, direct characterization of
quantum dynamics, compressed-sensing QPT, permutation-invariant tomogra-
phy, self-guided QPT and shadow QPT [23]. Each QPT technique has a differ-
ent experimental setup and computational resource requirements. These QPT
algorithms form the space of programs that QKSA evaluates as candidates for
modeling the environment. Intuitively, a QPT algorithm will better predict a
quantum environment than a random program. Thus, it allows us to apply the



388 A. Sarkar et al.

tools of AIT in a practical setting where available expert knowledge can be
embedded within the agent. Given computational resource limitations, QKSA is
designed to automatically discover the optimal strategy in the available pool of
QPT algorithms.

Recent publications study learning in a quantum environment, for e.g., pro-
cess learning with restricted Boltzmann machines [41], RL based optimizer
for variational algorithms [31,43], automated design of experimental quantum
optics [19], and, projective simulation (PS) [4,8]. Despite the similarities with
QKSA (especially of PS), these approaches are not based on URL. Also unlike
[5,33], we do not assume the quantum computational capability of the agent
for estimating the AIT metric, in line with the conventional qualia of human
intelligence. QKSA is an RL framework to study quantum information and com-
putation via the lens of AIT.

2.3 Computational Resource-Bounded Algorithmic Cost

The algorithmic probability of a candidate model/program is used as a weight
for choosing an action and thereby the reward in UAI. However, this also makes
such models impractical due to the uncomputability of algorithmic information
metrics like algorithmic probability and algorithmic complexity. Being asymptot-
ically computable, URL is thus not a pragmatic algorithmic solution to general
RL, and must be simplified in any implementation. In principle, there are an
infinite number of programs that can be candidate models of the environment.
Also, while evaluating, the programs can enter infinite loops. To circumvent
these two issues, modifications are proposed on the agents, like AIXI-tl [12],
MC-AIXI(FAC-CTW) and UCAI [14]. These bound the program length and run-
time per step to explore a subspace of promising hypotheses that models the
interactive behavior registered till the current time step. There arise three issues
with this approach:

1. The bounds introduce heuristic hyper-parameters that depend on the avail-
able computational resources. Thus, selecting an appropriate value to apply
the model for a given use case becomes difficult.

2. The bounds sharply cut off models beyond the specification while keeping
the weight for the models within the specification unaffected. So a model
that performs well but lies beyond the defined bound may be unreachable.

3. It is possible to trade off these resource bounds with other computational
resources, like additional memory.

Using the QKSA platform, it is possible to investigate these issues. In the
framework we propose five computational resources, together we call the LEAST
metric, as an acronym for (program) length, (compute) energy, approximation,
(work memory) space and (run) time. Similar algorithmic observables have been
suggested in [1]. We provide estimation techniques of the LEAST metric in our
implementation, based on state-of-the-art algorithmic information research and
general practices in computer engineering. The estimation technique, however
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can easily be redefined by the user. The estimated metric is used in a two-fold
way. Firstly, it is used to qualify the hypothesis for consideration based on upper
bounds for each of the five computational resources individually. This is dictated
by the available computational resource of the substrate the implementation is
executed on, and is similar to the resource-bounded UAI models [12]. These
bounds can be included in the list of evolving hyper-parameters to allow QKSA
to mutate and adjust autonomously to the available computational resource.
After that, the metrics for valid hypotheses are fed to a cost function (a genetic
program) that outputs a single positive real value which is used as the weight
for the hypothesis (instead of only the length, as in algorithmic probability).
We call this the least action as a parameterization to optimize the Lagrangian
dynamics of computation.

2.4 Mutating Meta-learning Hyper-parameter Embedded
in a Quine

There is no unifying cost function that can serve as a metric to trade-off bounds
on resources (like space, time, approximation), and possibly cannot exist [13,
30]. In fact, this depends closely on the policy of the agent. For example, a
physicist might use simpler Newtonian mechanics instead of complex relativistic
mechanics for modeling where the approximations are acceptable. Thus, instead
of a single metric, a pareto-optimal frontier on the LEAST metrics maps to
models and algorithms that can be used to predict the environment dynamics.

Various research has explored this frontier, considering a few of the LEAST
metrics. Some examples are, Levin complexity [22], Bennett’s logical depth [2]
and pebbling game [3], Schmidhuber’s speed prior [36], Wolpert’s statistical ther-
modynamics of Turing machines [16], Zenil’s block decomposition method [38],
and look-up tables. These resource-bounded metrics are not immune to the no-
free-lunch theorems [45] and adversarial cases of environments.

QKSA holistically (yet, subjectively) explores these trade-offs by dynami-
cally adapting the cost function to the environment. The five estimates of the
LEAST metrics are given as input to a cost function. We employ evolutionary
computation, a population-based trial and error problem solving technique for
meta-heuristic or stochastic optimization. More specifically, we use genetic pro-
gramming (GP) [18]. The cost function itself is a gene represented as a program
tree with the leaf nodes as the metrics or constants, and the internal nodes are
from a set of essential arithmetic functions. Once QKSA learns an environment
optimally or completely fails to do so (i.e. when the learning rate stabilizes), the
QKSA self-replicates. The child QKSA has the same source code as the parent,
except for a mutation on the cost function that modifies the weights and struc-
ture embedded via the cost function gene. Thus the open-ended evolution of
the pareto-optimal manifold converges on QPT algorithms which fits well in the
available computational resource. The parent QKSA perishes if the prediction
of the model fails persistently (i.e., when the rate stabilizes as the strategy fails
to learn) or continues to correctly predict environmental interaction and can be
inspected to obtain the cost function. Thus, a single QKSA may not have an
objective optimal resource trade-off for a static environment, but the population
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is expected to converge to an optimal policy even for a dynamic environment
(provided the dynamics are slower than the learning rate).

The entire agent framework described so far is embedded within a quine.
Quines are self-replicating programs that are the software embodiment of
constructors, an idea foundational to artificial life [40] and physical theories
alike [25]. The Kleene recursion theorem [15] allows any program to be modified
such that it (a) replicates its source code, (b) executes an orthogonal payload that
serves the same purpose as the original non-quine version. This embellishment
on the evolutionary cost function qualifies QKSA as a recursive self-improving
system.

3 QKSA Formalism

In this section, we start from the formalism of AIXI and elucidate the changes
described in the previous section. For brevity, we omit the mathematical rea-
soning behind the AIXI, which can be found in [11]. The canonical expectimax
equation in UAI is used by the agent to rationalize the choice of a particular
action at the current time step. For AIXI [11], it takes the form:

at = arg lim
m→∞ max

at∈A

∑

et∈E
. . . max

am∈A

∑

em∈E

m∑

k=t

γkrk

∑

p:U(p;a<k)=e<k

2−l(p)

where, at is the action at time step t from the action space A, ek is a perception
from the percept space E defined over the time step span from t to m, γ is
a reward discount function, U is an universal automata, p is a program that
forms the model/hypothesis for the environment, rk is the reward signal from the
environment, and l(p) is the length of the program p. In the case of KL-KSA [29],
the reward for AIXI is generalized to the utility given by, uk = u(ek|ae<kak) =
Ent(wν |ae<k+1) − Ent(wν |ae<kak), where Ent() refers to the entropy function
and wν refers to the agent’s credence in the percept distribution ν representing
the environment.

The first change is to restrict the search space of programs p to quantum
process tomography algorithms, denoted as pqpt. It is important that the QPT
algorithm reconstructs and outputs a process representation ρk instead of the
prediction of the subsequent perception. λe′

k ∈ {0, 1} is the probability of the
quantum state collapsing to the prediction e′

k made at time step t − 1. This
modification is imperative due to the stochastic nature of individual quantum
measurements and the calculation of the utility.

The second change is to replace the length estimate of the 2−l(p) factor from
the algorithmic probability with the estimate of the evolving cost function cest.
The cost function is denoted by cleast, i.e. cest = cleast(pqpt). Thus, the learning
part of the equation is:

aQKSA
t = arg lim

m→∞
max
at∈A

∑

e′
t∈E

λe′
t . . . max

am∈A

∑

e′
m∈E

λe′
m

m∑

k=t

γku′
k

∑

pqpt:U(pqpt;hk)=ρk

pqpt:U(pqpt;ρk;ak;e
′
k)=λ

e′
k

2−cleast(pqpt)
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The third change is to define the utility function as a quantum distance
measure on the space of quantum processes ρ (defined as the density matrix in
the Choi process matrix representation). A higher predicted utility indicates that
the current estimate of the quantum process will be updated more significantly
based on the perception, thus, a potential knowledge gain for choosing that
action.

u′
t = Δ(ρ′

t+1, ρt) = Δ(U(pqpt;ht; at; e′
t), U(pqpt;ht))

A detailed description of the QKSA framework and policy is provided in
[32]. A full proof-of-concept of the discussed QKSA framework is implemented
on Python and Qiskit. It is available as open-source software at the following
link: https://github.com/Advanced-Research-Centre/QKSA.

4 Conclusion

In this article, we extended the formalism of UAI to quantum environments by
generalizing the KL-KSA to a quantum knowledge seeking agent (QKSA). The
environment within the reinforcement learning setup is defined by an unknown
quantum circuit that the agent attempts to model using quantum process tomog-
raphy. A quantum environment prevents the exact prediction of perceptions (as
used by AIXI), and a single probability distribution of perception based on the
set of actions (as used by KL-KSA). The subjective model is conditioned on
the chosen action and is thus represented by the more general density matrix
formalism. Any quantum process can be represented as a Choi density matrix,
which forms a model of the environmental dynamics. To circumvent the uncom-
putability of UAI models, we propose to evaluate the algorithmic cost within
a set of user-provided programs. This consideration makes the framework more
tractable and interpretable. Also, the resource restrictions used in computable
UAI models are arbitrary. In our model, these resource bounds are interdepen-
dent hyper-parameters whose value and trade-off relations are optimized using
genetic programming. Thus, this allows open-ended evolution of the agents for
dynamic environments. Each agent can self-replicate as a quine and thus is a
recursive self-improving intelligence model.

As part of ongoing research [34], we are applying the QKSA framework as
described in this article to study course-graining in multi-observer scenarios and
quantum uncomplexity resources. It also has near term applicability in optimiz-
ing NISQ era hybrid variational quantum algorithms.
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