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Abstract
Single-cell RNA sequencing (scRNAseq) is a mea-
suring technique of gene expressions in single cells
that has allowed researchers to tackle Alzheimer’s
disease (AD) in many ways. Single-cell data has
been joined with machine learning to classify brain
cells as affected by AD. However, not much is
known regarding the usage of such classification
models in a spatial setting. This paper analyzes
how models trained on scRNAseq data can be used
to find AD properties of single cells when measur-
ing them with spatially resolved transcriptomics.
With that we study the hypothesis that cells labeled
as affected by the disease should appear closer to
amyloid plaques, than those that are unaffected.
To find out if this holds, three models are used to
classify single cells spatially and their predictions
are analyzed. Two single-cell datasets are used for
training, each giving a drastically different classi-
fication outcome. The models do not come to a
consensus on the hypothesis’ validity either, as the
analysis finds no significant correlation between the
variables.

1 Introduction
Alzheimer’s disease (AD) is a neuro-degenerative disorder
that affects people’s memory, thinking and communication
skills [1]. This loss of cognitive abilities, called dementia,
varies largely depending on the stage of the disease people
are in, as it progresses over a long time period. The most
widely affected group are the elderly, for instance in America
the majority of cases are people aged 65 years or older [1].
Several features characteristic to the disease are known, such
as build up of amyloid plaques and tau tangles inside the brain
[1]. However, despite scientist’s understanding of these fea-
tures, the exact causes of the disease are not known, making
it difficult to diagnose patients in early stages, offer effective
treatments or develop a cure.

Knowing individual cells’ gene expression helps scientists
uncover more details about their heterogeneous nature and
how they are affected by the disease [2]. These expressions
can be measured using a modern technique known as single-
cell RNA sequencing (scRNAseq). Despite its advantages,
scRNAseq has one caveat which is that it does not capture
the information regarding cells’ location in the tissue, as the
sequencing process requires to isolate them. This limits the
possibility to study the disease in more detail [3].

To circumvent this issue, scientists have put forth another
method for measuring cells’ gene expression - spatially re-
solved transcriptomics. Its value comes from the ability to
again measure expressions at single-cell resolution, while
preserving the spatial information regarding a cell, such as
its coordinates inside the tissue [3]. The downside of this
approach is that it can only measure a subset of the whole
transcriptome, unlike scRNAseq which does so in its entirety
[4].

Fortunately, researches have already taken notice of this.
Several methods have been developed that integrate spatial

transcriptomic and scRNAseq datasets, including SpaGE [4]
and Tangram [5]. These tools can predict the expression of
genes not found in the spatial data, but which are present in
the scRNAseq data. For this to work, they require that the
datasets have a set of shared genes to be used as reference for
the expected expression values.

With the rising adoption of machine learning in all fields of
science, some researchers have delved into how such systems
can be used to determine the extent to which single cells are
affected by AD. For example, cell-level classification models
do this by projecting sample metadata onto individual cells
[2]. However, this results in all cells having the same dis-
ease status, which does not correspond with the notion that
different cells are affected at different degrees by the disease
[2]. To avoid this, sample-level classification models, such as
scAGG, label cells individually based on gene expressions,
before aggregating them to determine the entire sample’s dis-
ease status [2]. Nonetheless, the aforementioned studies do
not consider how their models can be used in a spatial set-
ting.

A study which employs spatial transcriptomics has iden-
tified several effects that plaques have on the transcription
of cells within a 100 micron diameter [6]. Such effects are
the expression of plaque-induced genes in astrocytes and mi-
croglia, as well as AD-associated genes in oligodendrocyte
cells aptly named OLIGs [6]. Another study finds that mi-
croglial cells in close proximity of plaques have increased
Ca2+ activity, which is a response that is thought to be as-
sociated with inflammation and phagocytosis [7].

Based on these findings, we put forward the hypothesis,
H1, that cells affected by AD should be located closer to
plaques than unaffected healthy cells. When combined with
spatial transcriptomics, gene expression based cell-level clas-
sification makes it possible to study how strongly affected
cells are located relative to AD pathology.

The main aim of this study is to analyze the validity of H1
by examining the relationship between cells’ spatial profile
and their gene expression. Additionally, it provides a method
for labeling spatial transcriptomic data using a classification
model pre-trained on whole-transcriptome scRNAseq data,
and determines the effectiveness of different models on this
task.

2 Methodology
2.1 Datasets
This study makes use of three datasets from AD donors:
ROSMAP [8][9], SEA-AD [10] [11] and Xenium single cell
spatial transcriptomics.

• ROSMAP consists of gene expression data with samples
taken from the dorsolateral prefrontal cortex (DLPFC) of
donors. The pathological severity differs across donors, al-
though a direct measure is not present in the data. The full
data consists of 725109 observations (obs) with over 19000
expressed genes from 450 donors. The observations are fur-
ther divided into cell types, where microglia is 86612 obs,
astrocytes is 228925 obs and oligodendrocytes is 409572
obs.
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• SEA-AD, specifically the 10x single nucleus RNAseq data,
also stores the gene expressions of cells in the PFC, but
here only the nucleus is sequenced rather than the entire
cell. The pathological severity of each donor is denoted
in the data with four stages - No AD, Low, Intermediate
and High. For the purposes of this study, 9 donor objects
were combined - 3 with No AD, 3 with Low AD, and 3
with High AD. Their IDs are respectively H19.33.004,
H20.33.002, H20.33.036, H20.33.001, H20.33.032,
H21.33.001, H21.33.003, H21.33.032, H21.33.045 in
order of severity. The full SEA-AD data contains 34319
obs and 36601 genes. Per cell type this is 9674 astrocyte
cells, 5536 microglia and 19109 oligodendrocytes.

• Xenium is a spatial transcriptomics dataset, which con-
tains both gene expression data and information regarding
each cell’ location in the tissue, such as coordinates and
distance to plaque in microns. However, it is not whole-
transcriptome, unlike the other two datasets, as only 266
genes are measured. Furthermore, it comes from only 1
donor who had severe AD and Cerebral Amyloid Angiopa-
thy (CAA). The total number of observations is 58132,
consisting of 45138 astrocytes, 2160 microglia and 10834
oligodendrocytes.

All three datasets measure multiple cell types - from neurons
to glial cells. However, for this study only astrocytes,
microglia and oligodendrocytes are considered. This choice
reflects literature that has identified activation of such cells
around amyloid plaques [6][7].

2.2 Pre-processing
All of the pre-processing and later computations are handled
with random state set to 56. This ensures that the results re-
main the same when reproduced, given the same data.

Initially, the ROSMAP dataset only contains raw counts.
However, as this counts data is highly sparse, it cannot be
used directly for classification. Instead it must be filtered,
normalized and standardized. Although SEA-AD and Xe-
nium do have scaled variants of their gene expression counts,
they are also preprocessed from the raw counts in order to
ensure all datasets are in the same final format. For SEA-
AD the raw counts are stored in layer ’UMIs’. Most of the
preprocessing follows the standard SCANPY approach [12].

For model training, the ROSMAP and SEA-AD data are
filtered on cells and genes. Cells with less than 100 expressed
genes and genes expressed in less than 3 cells are left out.
Moreover, only those cells which have less than 5% mito-
chondrial genes expressed are kept [12][13]. Next, the most
highly variable 1000 genes are selected using the ’seurat v3’
flavor which requires raw counts. The resulting data is then
normalized, so that all counts per cell add up to the same
number equal to the median of the total counts before nor-
malization, logarithmized and scaled to unit variance and zero
mean.

For imputation, the datasets, including the spatial tran-
scriptomic data, are normalized and logarithmized. After this,
a clustering is performed on the data using leidenalg [14], as
this is required by Tangram in order to map the clusters onto

the spatial data [15]. Additionally, the ROSMAP data un-
dergoes a downsampling procedure by randomly selecting a
quarter of the olygodendrocyte cells and half of the astrocyte
cells, reducing each to about 100k cells. This step is done, be-
cause the unfiltered observations for these two cell types are
in the order of hundreds of thousands, which greatly slows
down the imputation and increases RAM usage.

Before classification, the imputed spatial data transcrip-
tome is subset to the same 1000 genes used in training. It also
undergoes the same procedure as the model training data by
filtering before selecting the top genes, then normalizing, log-
arithmizing and scaling after the genes have been subset. This
ensures the spatial data is in the same format as the model
training data.

The ROSMAP data is labeled using the
”ROSMAP clinical.csv” metadata file according to the
approach described in [16]:
• AD (109 samples): cogdx = 4, braaksc ≥ 4, ceradsc ≤ 2
• CT (61 samples): cogdx = 1, braaksc ≤ 3, ceradsc ≥ 3
• Other (279 samples): all other samples.
The metrics used are cogdx (cognitive diagnosis) - a clinical
assessment of cognitive impairment in patients, braaksc - a
measure of the neurofibrillary pathological severity [17][18]
and ceradsc - a measure of the density of amyloid-beta protein
neuritic plaques [19]. The outcome gives twice as many AD
cells as CT for all cell types.

The SEA-AD data already contains a column regarding
donors’ pathological severity as mentioned previously. To
create the appropriate labels, the ’No AD’ and ’Low’ sever-
ities are marked as CT, while the ’Intermediate’ and ’High’
are marked as AD. The total outcome is 25413 CT and 8906
AD cells, nearly a 3 times difference. When considering just
oligodendrocytes, the CT cells are roughly 4.2 times more,
while for the other two cell types this is only around 2 times.

2.3 Approach
The general approach is to train AD classification models
from scRNAseq data and use them to classify the cells in a
spatially resolved transcriptomic dataset as healthy (CT) or
diseased (AD). The single-cell training data is labeled based
on donor-level pathological severity that is then transferred to
the cell-level by the associated donor ID.

ML models
Classification is performed with three models. Those be-
ing a linear classifier (LC), a multilayer perceptron classifier
(MLP), and an MLP classifier with dropout (MLP+Dropout).
For the purpose of model training, the data target labels are
converted to numerical form where CT cells label is set to 0
and AD cells is set to 1. The models architecture is as follows:

• Linear classifier - one linear layer with 1000 input and 2
output dimensions.

• MLP classifier - 3 layers, two Linear and one ReLU in
between, with the linear inputs and outputs being (1000,
512) and (512, 2) respectively.

• MLP classifier with dropout - 4 layers, the same as the
general MLP model, with the addition of a dropout layer
at 0.3 dropout rate after the ReLU layer.
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Model training
All models use the ADAM optimizer with a learning rate of
0.0001. Similarly, all share the same cross-entropy loss func-
tion. The losses are summed per batch, rather than averaged.
No regularization parameter is added.

The models are trained two times. Once on the ROSMAP
data and once on the SEA-AD data. Training occurs in
batches of size 128 with shuffling of the data. This is done on
100% of the data for 21 epochs. The resulting model weights
of both runs are saved for classification.

The training quality of the models is measured using ac-
curacy. The training accuracy is calculated at each epoch as
the average of the accuracies per batch. To calculate the lat-
ter, the output of each batch is matched with the training la-
bels and the number of correct predictions is divided by the
batch size. The resulting accuracies per epoch are visualized
in a line plot, which consists of three distinctly colored and
shaped lines for each model.

Model evaluation
The models’ ability to classify unseen data is evaluated af-
ter each training epoch by again calculating accuracy. The
same loss function is used as for training. The evaluation is
done twice for each model training run. When the models are
trained on ROSMAP, they are evaluated on SEA-AD and vice
versa.

The accuracy is calculated in the same manner as during
training. It is again the average of the accuracies per batch,
where each batch is of size 128 and shuffled. All of the data
is used for evaluation.

Applying models to spatial transcriptomic data
After the models are trained, they are used to classify the
spatial data. However, this is not directly possible as Xe-
nium’s gene set is only 266 transcripts, while the training
data uses 1000. Despite being able to reduce the dimension-
ality of both to an equal number, not including all relevant
genes in the process is likely to lead to poor results. To deal
with this, first the missing genes in the spatial data are im-
puted from the two single-cell datasets using Tangram [5].
The imputation occurs in three steps: finding the common
genes using ’tg.pp adatas’, creating a matrix based on these
shared genes that maps single-cell to spatial data entries using
’tg.map cells to space’, and based on this mapping project-
ing the single-cell gene expressions to the spatial data with
’tg.project genes’. For Tangram to work reliably, the single-
cell and spatial datasets’ gene sets must intersect. The im-
putation is done using the whole reference dataset transcrip-
tome, rather than only the 1000 gene subsets. This is be-
cause the total shared genes are higher before subsetting -
all 266 Xenium genes are present in SEA-AD, and all but
one in ROSMAP. Before the actual imputation, the spatial
and reference datasets are preprocessed, without excluding
any shared genes, as described in the previous subsection.
The mapping from cells to space is done for 5 epochs at cell
level (mode=”cells”) with density prior=”rna count based”
on CPU [15]. The number of epochs was chosen to be the
highest number which is able to be run on the cluster. Even
for 5 epochs, the full ROSMAP data requires over 300GB of
RAM, so anything higher than 5 was not possible.

The imputation is validated by a leave-one-gene-out pro-
cedure for 10 cluster marker genes of the spatial data. The
genes are determined by a differential expression test using
the wilcoxon method. For each marker gene, the spatial data
gene expressions are imputed for 5 epochs by leaving this
marker gene out. After imputation, the predicted expression
is compared to the true measurement using Spearman’s rank
correlation coefficient. This validation is performed only for
the SEA-AD imputation, due to limitations.

Once the spatial data is imputed and processed, it can be
classified using the pre-trained models. When classifying,
there are two configurations: one is to impute the spatial data
using SEA-AD as reference and to label it using the model
trained on ROSMAP. The other is to impute using ROSMAP
and classify using the SEA-AD model. This is done to pre-
vent information that was used for training from leaking into
the spatial data. The model outputs two raw values per class
for each data point. To map the output to a list of predicted la-
bels, an argmax function is used, which takes the higher value
and reduces the inner list to this value’s index. The share of
the resulting labels is visualized using a bar chart. Further-
more, the raw output is converted to a list of probability val-
ues, representing the likelihood of a cell being AD, using the
softmax function. These probabilities are then plotted on a
histogram with bin size 15. The histogram could be used to
check whether the output follows a random uniform distribu-
tion or a U-shaped distribution where the two extremes are
predicted more frequently than mid-range values.

Analyzing spatial transcriptomic data distribution
To illustrate the difference in how the two class labels, AD
and CT, are distributed along the distance to plaque metric, a
split violin plot with quartile interior is drawn where ’x’ is the
distance and ’hue’ is the label set with order 1, 0 for AD, CT.
For a quantitative evaluation, the Mann-Whitney U test is ap-
plied [20]. This is a nonparametric statistical test which mea-
sures the difference between two distributions and whether
one is stochastically greater than the other. In the case of
H1, it tests whether the AD label distribution is stochastically
lower than the CT label distribution. The test returns a U
statistic and a p-value. The former is the number of times
an element from one distribution appears closer to a plaque
than an element of the other. The latter represents how con-
fident the test is that one distribution is stochastically greater
or lower than the other, with values less than or equal to 0.05
implying strong significance.

Visual analysis of spatial transcriptomic data
Four maps of all cells in the tissue are created; three colored
using the predicted AD probabilities of cells and the one us-
ing the distance to plaque in microns. The AD probability
maps are three as there is one for each model. The cells
(dots) are enlarged to make them more clearly visible. Fur-
thermore, their alpha value is set to 0.5 to give them some
transparency as they can overlap when enlarged. By compar-
ing the AD probability maps with the distance to plaque map,
the expectation is to see a negative correlation, such that cells
with higher probability of being AD have a lower distance
to plaques. This correlation is quantitatively measured using
Spearman’s rho. The test outputs a correlation coefficient in
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range −1 to 1, where the two end points represent strong neg-
ative correlation and strong positive correlation respectively,
with 0 being no correlation. It also returns a p-value, which
hints that the observed correlation has not occurred purely by
chance when less than or equal to 0.05.

Implementation details
The implementation is written in Python. Used frameworks
include anndata 0.10.9 [21], matplotlib 3.9.4 [22], numpy
2.0.2 [23], pandas 2.2.3 [24], scanpy 1.10.3 [12], scipy 1.13.1
[25], seaborn 0.13.2 [26], tangram-sc 1.0.4 [5], torch 2.7.0
[27], leidenalg 0.10.9 [14] and their required dependencies.
A full list of the requirements can be found in Appendix A.

The reason that Tangram (tangram-sc) [5] was used for im-
putation and not another algorithm, such as SpaGE [4], is
that it happened to be the fastest one on the machines used
for the experiments in this paper. Nonetheless, any imputa-
tion method should work for reproducing the results, as long
as it is designed for integrating scRNAseq and spatial tran-
scriptomic datasets.

As the ROSMAP data comes in individual h5ad files for
each cell type, they are combined into one using anndata’s
concat along axis 0. However, this is only done when building
the models. When doing the imputation, the data is imputed
per cell type, as the entire ROSMAP data is too large to apply
at once. However, for SEA-AD the imputation happens in
one go using all three cell types.

3 Results
Three models - Linear Classification (LC), Multilayer Per-
ceptron (MLP) and MLP + Dropout are trained on scRNAseq
datasets ROSMAP and SEA-AD. Their performance is mea-
sured using accuracy. These models are applied to spatial
transcriptomic data, of which the missing gene expressions
are imputed. The imputation is validated using a leave-one-
gene-out procedure. The results of the models’ classification
on the spatial data are analyzed qualitatively using violin plots
of the distance to plaque distribution of labels and maps of
cells’ location within the tissue, as well as quantitatively us-
ing Mann-Whitney U Test and Spearman’s rho statistics.

Model training performance

(a) (b)

Figure 1: Training accuracy across epochs of the three models
trained on (a) ROSMAP and (b) SEA-AD

The training accuracies per epoch for the three models,
LC, MLP and MLP+Dropout, on the ROSMAP and SEA-AD

datasets, and the evaluation accuracies of the models’ predic-
tions for each training epoch on the dataset they are not being
trained on, are illustrated in Figures 1a, 1b and Figures 2a, 2b
respectively. During training the most performant model is
MLP, reaching nearly 100% accuracy on both datasets. Fol-
lowing it are MLP+Dropout in second place and LC in last.
The exact accuracies are presented in Table 1.

LC MLP MLP+Dropout
ROSMAP 0.6984 0.9909 0.8840
SEA-AD 0.9225 1.0000 0.9997

Table 1: Last epoch training accuracy of each model by dataset

(a) (b)

Figure 2: Evaluation accuracy across epochs of the three models (a)
trained on ROSMAP, but evaluated on SEA-AD and (b) trained on

SEA-AD, but evaluated on ROSMAP

The testing accuracy is quite a lot lower compared to train-
ing, as pointed out in Table 2. The two MLP models perform
equally well on both datasets. However, when evaluated on
SEA-AD they appear stuck, showing no signs of improve-
ment as training progresses. During evaluation on ROSMAP,
the trend is even negative, with accuracy appearing to de-
crease as the models train. The situation with the LC model
is even worse. With SEA-AD, its accuracy quickly drops be-
low 38% in the first 3 epochs, flattening out around that value
without any increase later on. With ROSMAP there is also a
sharp decline after the first few epochs. Despite this, the LC
model still performs better until the 20th epoch during evalu-
ation on ROSMAP, compared to the other two. However, this
is unlikely to remain the case if more epochs were added as it
declines much faster than the other models.

training / evaluation LC MLP MLP+Dropout
ROSMAP / SEA-AD 0.3783 0.4130 0.4288
SEA-AD / ROSMAP 0.4416 0.4233 0.4171

Table 2: Last epoch evaluation accuracy of each model by training
dataset (left side) and evaluation dataset (right side)

Validation of gene expression imputation
The validation of SEA-AD imputed data for 10 marker genes
is illustrated in Figure 3. There appears to be moderate pos-
itive correlation between the true and predicted gene expres-
sions. This implies that the imputation works well, though it
is not perfect.

4



Figure 3: Spearman rank correlation coefficient between measured
and predicted using SEA-AD marker genes expression

Classification output for Xenium data
The results of the classification on the Xenium data using the
models trained on ROSMAP and SEA-AD are presented in
Figures 4a, 4b and 5a, 5b respectively.

(a) (b)

Figure 4: All Cell Type Spatial Data ROSMAP Models Distribution
of (a) Predicted Label and (b) Probability of AD

The ROSMAP-trained models, classifying the SEA-AD
imputed spatial data, label the majority of cells as AD. Sim-
ilarly, the histogram shows two spikes in predictions around
the values 0 and 1, representing CT and AD respectively, with
the spike at 1 for AD being much higher. However, this is
only the case for the two MLP models. Despite their resem-
blance, the general MLP model makes a much clearer distinc-
tion between the two class labels. In contrast, the LR model
predictions are much more condensed with the mean appear-
ing around 0.7, which explains the high number of predicted
AD labels.

(a) (b)

Figure 5: All Cell Type Spatial Data SEA-AD Models Distribution
of (a) Predicted Label and (b) Probability of AD

On the other hand, the models trained with SEA-AD data,
when classifying the full spatial data that is imputed using
ROSMAP, label the majority of cells as CT instead. This split

is also noticed in the histogram, which shows a large spike at
0 for the MLP models, and one smaller at 0.2 for LR. Again,
the general MLP model’s predictions are more skewed toward
0 probability than the one with dropout.

Analysis of predicted AD and CT labels distribution
across distance to plaque metric

Figures 6a and 6b both depict three violin plots, one per
model, of the distance to plaque metric distribution by label,
where the orange half is CT and the blue half is AD. The plots
also contain dashed vertical lines representing the quartiles of
the distributions, where the middle one is the median. The
distributions are normalized, as to have equal heights rather
than being disproportionate.

The first figure, 6a, shows the distance-label distribu-
tions for the SEA-AD imputed spatial data classified by the
ROSMAP-trained model. The violin plots for each of the
three models are quite similar, and more importantly so are
the AD and CT halves of each distribution. Some small de-
viations in the means can be seen for LC and MLP+Dropout,
where the AD distribution median is slightly closer to 0 than
that of the CT labels.

The violin plots of the SEA-AD trained models also ap-
pear to be quite similar. However, in this case the two halves
of each violin appear to be much more different. All models’
AD labels distribution is heavily shifted to the right compared
to the upper half. Moreover, even the median of the AD dis-
tribution is positioned higher along the axis than the other dis-
tribution’s 3rd quartile. Another notable difference is the LC
model’s CT labels distribution being skewed slightly more to-
ward 0. This is also evident by the lower median line, which
appears before the first AD quartile, as opposed to the other
two models where the CT median comes after it.

(a) (b)

Figure 6: Distance to Plaque Distribution of Labels Using (a)
ROSMAP Models and (b) SEA-AD Models

The above observations are quantitatively measured using
Mann-Whitney U tests for the ROSMAP-trained models and
SEA-AD trained models on full data. The results are pre-
sented in Tables 3 and 4 respectively.

The U tests on ROSMAP-trained models identify a statisti-
cally significant result for the LC model with p-value of near
0, thus favoring the alternative hypothesis H1. On the other
hand, the two MLP models do not cross the 0.05 confidence
threshold, although MLP + Dropout is close.
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Model U statistic p-value
Linear Classification 277427877.0 0.0
Multilayer Perceptron 364146700.0 0.6498

MLP + Dropout 377508247.0 0.0926

Table 3: Mann-Whitney U Test for ROSMAP-trained models

Regarding the SEA-AD trained models, all U tests show
that the inverse of H1 holds, as the p-value is equal to 1. This
implies that the AD labels are distributed significantly higher
on the distance to plaque axis relative to the CT labels.

Model U statistic p-value
Linear Classification 313531076.5 1.0
Multilayer Perceptron 99405932.5 1.0

MLP + Dropout 154318028.5 1.0

Table 4: Mann-Whitney U Test for SEA-AD trained models

Analysis of correlation between AD probability and
distance to plaque metric
Following are several maps of cells’ location within the sam-
ple tissue, starting with Figures 7a to 7d. The first image
depicts where to expect more cells that are labeled as AD and
where as CT. The maps of cells colored based on ROSMAP-
trained models’ predictions, i.e. 7b to 7d, show a seem-
ingly random assignment of probabilities with overwhelm-
ingly red-colored AD cells and a few blue CT dots spread
uniformly throughout the tissue.

(a) (b)

(c) (d)

Figure 7: Maps of All Cells Inside Tissue Colored by (a) Distance
to Plaque and (b) Probability of AD Based on LC, (c) MLP and (d)
MLP+Dropout ROSMAP Models

The tissue maps colored based on SEA-AD trained models
predictions for all cell types shown in Figure 8 have majority
blue CT cells with a few bright regions where the probabil-
ity of AD is higher. It is most notable that these bright re-
gions coincide with the areas that are farthest from plaques.

According to the reference map in Figure 7a, these regions
should be darker compared to the surroundings instead.

Figure 8: Maps of All Cells Inside the Tissue Colored by Probability
of AD for SEA-AD Trained Models

The SEA-AD models’ predictions are also analyzed on
the spatial data filtered to include only oligodendrocyte cells.
From the first map, 9a, it can be seen that most cells appear
in the areas which are far from plaques. In Figures 9b to 9d
these cells are also colored in blue, which means the SEA-
AD model accurately predicts AD for this cell type, even if
by chance. Nonetheless, some orange to red dots can still
be seen in the tissue, with more of them being visible in the
darker MLP model maps.

(a) (b)

(c) (d)

Figure 9: Maps of Oligodendrocyte Cells Inside Tissue Colored by
(a) Distance to Plaque and (b) Probability of AD Based on LC, (c)
MLP and (d) MLP+Dropout SEA-AD Models

The correlation between a cell’s proximity to a plaque and
the probability of it being AD, visualized in the tissue maps,
is quantitatively analyzed using Spearman’s rho. The results
are given in Tables 5, 6 and 7.

The test on the three ROSMAP-trained models finds a co-
efficient very close to 0 for all. This implies little to no corre-
lation between the AD probabilities predicted by the models
and cells’ distance to pathology.
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Model correlation coefficient p-value
Linear Regression -0.0480 0.0000

Multilayer Perceptron 0.0005 0.5506
MLP + Dropout -0.0063 0.0638

Table 5: Spearman’s rho Between Distance to Plaque Metric and
Probability of AD for All Cell Types from ROSMAP-trained models

The correlation coefficients for the SEA-AD trained mod-
els are a lot higher. However, the correlation is positive,
meaning the cells farther from plaques are more likely to have
AD. This is the opposite of the proposed hypothesis, which
expects a negative correlation. This interpretation is also sup-
ported by the high p-values.

Model correlation coefficient p-value
Linear Regression 0.2021 1.0

Multilayer Perceptron 0.1956 1.0
MLP + Dropout 0.1718 1.0

Table 6: Spearman’s rho Between Distance to Plaque Metric and
Probability of AD for All Cell Types from SEA-AD Trained Models

The correlation test of SEA-AD models predictions for
oligodendrocyte cells only is more similar to the ROSMAP
models results, than the one for all cell types. Despite what
was seen in the Figure 9 subplots, where a low likelihood of
AD coincided with a long distance from plaques, the corre-
lation coefficients are still close to 0. This is likely caused
by the models predicting low AD too often, thus including
also cells close to plaques, which counteracts the negatively
correlated predictions.

Model correlation coefficient p-value
Linear Regression -0.0197 0.0200

Multilayer Perceptron -0.0148 0.0615
MLP + Dropout -0.0157 0.0502

Table 7: Spearman’s rho Between Distance to Plaque Metric
and Probability of AD for Oligodendrocytes Cells from SEA-AD
Trained Models

4 Discussion
Models overfit during training and underperform during
evaluation
The results in the previous section of the models’ accuracy
illustrate their inability to generalize to unseen data. This
is evidenced by the lack of increase in accuracy throughout
evaluation epochs. As all models score below 50% predic-
tion accuracy, they work no better than a random classifier.

The drops in accuracy when evaluating the models trained
with SEA-AD data on ROSMAP data are likely related to the
datasets’ composition. SEA-AD contains predominately CT
cells, while ROSMAP has majority AD cells. Due to over-
fitting, the SEA-AD models end up labeling a high number
of ROSMAP cells as CT, with this number increasing in each
epoch, resulting in a decreasing evaluation accuracy.

In contrast, the training accuracy is high for all three mod-
els. This, in combination with the evaluation results, implies
that the models simply memorize the input dada, rather than
learn underlying patterns and features that define it. Further
increasing the training epochs is unlikely to improve perfor-
mance, as all evaluation accuracies are either flat, fluctuating
around the same value, or even decreasing.

Nevertheless, some insight can be gained on which model
is better suited for classification. Out of the three models,
MLP performs better than LC when evaluated on SEA-AD
data, and better than MLP + Dropout for ROSMAP data.
Even though adding dropout improves accuracy for SEA-AD
data, the increase is marginal and does not justify its use. Fur-
thermore, while LC achieves higher accuracy than MLP on
ROSMAP, this is unlikely to hold up if the number of epochs
increases as the LC model’s accuracy follows a sharp down-
ward trend during each evaluation step. This suggests that the
best model to use is MLP without dropout.

Classification of spatial data differs significantly
depending on the datasets used for training
Changing the training data seems to heavily affect the end
result of the spatial data classification. As was postulated
in the previous discussion point, the SEA-AD trained mod-
els do predict majority CT, whereas ROSMAP-trained mod-
els predict AD cases. With that in mind, the reason for the
discrepancy in classification output can also be attributed to
the models overfitting.

Analysis on predicted AD and CT label distributions
across distance to plaque metric does not conclusively
reject null hypothesis
The analysis results indicate that AD cells do not appear
closer to plaques than CT cells on average. The only model
for which this does occur is the LC model when trained on
ROSMAP data. On its own, this result is not enough to reject
the null hypothesis in favor of the alternative H1.

When trained on SEA-AD data, the models predict AD
in cells significantly farther from plaques than cells it labels
as CT. This contradicts H1, which is highly unlikely to be
true considering the literature on cells’ response to plaques.
Rather, it could be that the SEA-AD models have learned to
predict oligodendrocytes, instead of AD, as these cells’ loca-
tion in the tissue coincides with areas farthest from plaques.
As noted in the methodology, SEA-AD does contain a great
amount of oligodendrocytes compared to astrocytes and mi-
croglia. However, this is also the case for ROSMAP, but its
models do not exhibit the same defect.

Analysis finds almost no negative correlation between
AD probability and distance to plaque
The models trained on ROSMAP data have not identified
any spatial pattern in their predictions, as the maps of cells’
AD probability resemble random noise, more so than the
map of cells’ distance to a plaque. Although the LC and
MLP+Dropout correlation coefficients are on the negative
side, as desired, they both approach 0, indicating complete
lack of correlation.

On the other hand, the SEA-AD trained model predictions
for all cell types show a clear spatial pattern. However, the
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high AD probabilities in the regions far from plaques hint
that this is more a coincidence and an error than actual spa-
tial pattern identification by the models. This contradiction is
unlikely to stem from mistakenly using the probability of CT
instead of AD, as this would have reflected in the ROSMAP
results. The cause could be related to higher number of oligo-
dendrocyte cells in the SEA-AD data. It might also be that the
spatial data imputation on ROSMAP causes the gene expres-
sion of the spatial oligodendrocyte cells to be representative
of AD. This would explain why the areas with such cells are
predicted to be closer to AD than CT by SEA-AD models.

In contrast, the same SEA-AD models’ predictions for
oligodendrocyte-only spatial data appear much more accurate
in the areas far from plaques, labeling cells predominantly as
CT. Unfortunately, this contradicts the previous claim about
imputation significantly biasing cells’ gene expressions to-
ward AD, making it less plausible. Nonetheless, the respec-
tive correlation coefficients are very close to 0, implying a
high classification error rate and models that merely predict
the majority of cells as CT off of memory.

Limitations
As the spatial data is so limited, it cannot be deemed sufficient
enough to critically assess the alternative hypothesis’ validity
based on the observed results. At best it can provide support
for one of the two outcomes, but for a definitive conclusion
further experiments using data from more patients must be
carried out.

Another limiting factor in the experimentation process is
the number of epochs used for imputation. As the datasets
are so large and the mapping matrix that tangram creates has
size equal to the multiple of the single-cell observations by
the spatial observations the amount of memory and time re-
quired to compute the imputation are in the order of 100s of
GB and several hours of runtime. This is only possible to do
on DAIC, but it comes at the risk of timeout or out-of-memory
errors. This further exacerbates the process of imputing miss-
ing gene expressions. As such doing it for more than 5 epochs
becomes infeasible in the time-frame of the project.

In addition, the models’ architecture is quite simple for the
same reason as the imputation epochs. Although the current
one is able to run on a local machine, more complex networks
would require usage of DAIC as well. If more powerful mod-
els are used, it might lead to more confident and reliable re-
sults that shed new light on the hypothesis.

5 Conclusions
This study provides insights into the hypothesis that cells
should be labeled as AD when closer to plaques. This is the
expectation, as previous research has found amyloid plaques
to have significant impact on neighboring cells, particularly
in the range below 200 microns from a plaque. Alongside
this, it proposes a method for classifying single cells as AD
using spatial transcriptomic data. Furthermore, it contributes
by assessing the suitability of different pre-trained models for
AD classification.

The analysis on the classified spatial data is highly contra-
dictory. Some models find a moderate, but positive correla-
tion between cells’ distance to plaques and their probability

of AD, while other models do not identify any correlation.
Therefore, these results are not enough to determine the valid-
ity of H1. Irrespective of this, MLP without dropout is found
to be the preferred model to use for classification, based on
training and evaluation accuracy.

Further Research
Researchers who want to build upon this study can do so in
several ways. One of the main bottlenecks of this study is the
number of imputation epochs. Due to the previously men-
tioned limitations, only 5 epochs were able to be run. In-
creasing this amount could improve the quality of the imputed
missing gene expressions and in turn provide more conclusive
results.

Another problem with the proposed approach is the model
training. As it stands the models quickly overfit, and likely
do not learn the correct features, but ones that are correlated
but easier to learn, like whether a cell is of type oligodendro-
cyte or not. In order to resolve this, one could dive deeper
into methods such as regularization and hyper-parameter op-
timization.

In addition to the above proposal, aspiring researchers
could be more rigorous when preparing the datasets used for
training. This is to avoid the issue where the model learns
to predict one class, or worse one cell type, purely because it
constitutes the majority of the data. As the data in this study
has not been so carefully prepared, it occurs, for example, that
the SEA-AD data has more CT labeled points than AD, while
the opposite is true for ROSMAP. A solution to these issues
would be to ensure all datasets contain equal proportions of
cell types and classes.

6 Responsible Research
The main ethical consideration when conducting this research
is the kind of data being used. For this project, that data
comes from human donors who have agreed to have samples
taken from their brains postmortem for studying [8]. Ensur-
ing that the donors agree to this procedure is crucial for pre-
serving the ethical integrity of this research.

Most of the data comes from online sources. For
ROSMAP, this is the Synapse platfrom. This platform
requires users to be granted permission in order to ac-
cess datasets consisting of human data. This is done by
submitting a Data Use Certificate (DUC). For this project
the DUC, accepted on 4/12/2025, can be found at https:
//adknowledgeportal.synapse.org/Data%20Access by search-
ing for ”tverlaan”. In order to ensure the confidentiality of
the data, it has not been redistributed through third-party ap-
plications or other means and after completion of the study it
is wiped from the author’s personal computer.

The Xenium spatial transcriptomic data is not publicly
available, as it has not yet been published by the TU Delft.
In order to use it all students had to sign a data usage agree-
ment before the start of the project. This agreement again
enforces that all data be wiped from local machines and no
redistribution occur.

The DUC for ROSMAP also requests access to SEA-
AD on Synapse’s platform. However, the files on
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the platform are in raw format. Luckily, a pro-
cessed version of the data in h5ad format is available
online at https://sea-ad-single-cell-profiling.s3.amazonaws.
com/index.html#PFC/RNAseq/. The data is under the
license of the Allen Institute (https://alleninstitute.org/
terms-of-use/). As with the other datasets, any locally stored
data is wiped and any redistribution is strictly avoided.

Another important ethical consideration is the presence of
bias in the training data. ROSMAP participants are in part
people from the catholic community, in part people from re-
tirement homes [8]. This setting captures a large portion
of the elderly population in the United States, which makes
it a fairly reliable data source for classification models of
Alzheimer’s disease.

The same can be said for SEA-AD, which contains data
from many different individuals across the US. However, in
this paper only a few semi-randomly selected individuals are
used for the experiments, due to the immense size of the data.
This could lead to unintentional biases that hinder the in-
tegrity of the trained models. Despite this, such bias is un-
likely to significantly affect the results of the experiments, as
what matters more is the disease status of the patients, rather
than their diversity.

On the other hand, the Xenium data used for classification
comes from only one patient. This makes it largely unrep-
resentative of the general population. While this does not
distort the results, it does mean that any conclusion on the
hypothesis’ validity is not directly applicable to the general
population. However, it can still serve as the basis for further
research.

For reproduction of the results, one can make use of
the project code in Github (https://github.com/dsmenovski/
Research-Project-2425). Setup requires downloading the list
of dependencies that are given in Appendix A. Detailed im-
plementation details are also present in the last methodology
subsection. The project files include scripts which can be run
locally or on a server with arguments for path to input and
output files. When combined, the scripts make up the full ex-
perimental pipeline used for generating the results. The order
in which to run them is written in the README on Github.
Anyone who wishes to recreate the project from scratch can
follow the approach outlined in the methodology. As men-
tioned in the pre-processing subsection, the results are gener-
ated using random seed ’56’ to ensure reproducibility. Links
to the single-cell data are also provided in the README. As
the spatial data is not publicly available, there is no link to
it. To request access to it, contact the Pattern Recognition &
Bioinformatics group at TU Delft. It is suggested to execute
the imputation script on an HPC cluster, such as DAIC, as it
is quite computationally intensive, especially for a high num-
ber of epochs. For users with different file systems who want
to run the experiments on their machines, the scripts should
also enable them to do so, as they require custom input/output
paths to be entered for saving and loading the data. However,
in order to use different datasets than the ones in this study,
they will have to write their own scripts for label extraction
following the example of the code in the repository, as the ex-
act method differs slightly from dataset to dataset and cannot
be generalized easily. Moreover, the names of the AnnData

columns accessed in the code will have to be adapted if using
different datasets.
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