Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Adding Redundancy to Splitting Protocols for a Better
Performance

Ivaylo Georgiev, Dr. Stefanie Roos, Oguzhan Ersoy
TU Delft

June 27, 2021

Abstract

Payment Channel Networks have been developed to deal with the scalability issue in
blockchain technologies. Using them, two parties can make multiple payments between
themselves relatively fast. However, usually the channels have too small capacities,
unable to handle a big payment. Allowing to split a payment into smaller payments and
forwarding them through different intermediaries is a way to solve this issue, but a party
only knows the capacities of the channels it is connected to. Therefore, it is possible
for a payment to be sent to an intermediary which would not have sufficient funds to
forward it to another node, closer to the receiver. Making redundant transactions in
order to further improve the payment success ratio is a way to handle this drawback.
This paper provides 3 algorithms for adding redundancy to the already existing splitting
protocol [1]. The evaluation shows that all of them improve the success ratio, but at
the price of parties exchanging more messages.

1 Introduction

The biggest problem with cryptocurrencies like Bitcoin [2] and Ethereum [3] is that they lack
scalability. Payment channels (PCs) [4] have been developed to tackle this issue. They allow
the participating parties to exchange funds off-chain and append only the final agreement to
the blockchain when the channel is closed. In order to create a PC, the two participants agree
to use a certain amount of their on-chain funds only between themselves. Cryptographic
protocols were developed that ensure both parties would not try to cheat the other one out
of money. After the PC is established, the participants can make transfers of money by
agreeing to a new distribution of the funds on the channel.

Payment-Channel Networks (PCNs) are created by connecting multiple channels. Thus,
in case a party A needs to make a payment to another party B and they do not have
an established PC among themselves, the payment can still be forwarded from the sender
through one or several intermediaries to the receiver, forming a path from the sender to the
receiver. One of the most widely used PCNs is Lightning?® [5].

However, an intermediary on the path from the sender to the receiver might not have
sufficient funds to forward the payment on any of the channels it is participating in. The
way to overcome this issue is to split the payment over multiple channels [1]. However, this

Thttps://lightning.network/

comes with a number of security issues, such as ensuring that the intermediaries do not steal
money during the transaction process. Cryptographic protocols were developed in order to
tackle those problems.

When splitting the payments, however, a whole transfer fails if only one partial payment
fails. This issue can be tackled by sending redundant payments [6] to the whole transfer.
The main problem here is that the two protocols make and work on different assumptions
(for example, in the splitting protocol the intermediary nodes decide how to further split the
payment, while in the redundancy one the sender decides everything; also, the redundancy
protocol splits the whole transfer into v transactions, while the splitting protocol does this
as described in Section 2.1).

In this paper a combined protocol’s design is described that tackles all the differences
in the two protocols. As both protocols have multiple options used for splitting and adding
redundant payments, there is a choice between different alternatives for (i) how to choose
the next intermediary on the path, (ii) how to split the payment, and (iii) when and how
to add the redundant coins in the payment. All of those options are further described and
explained in the paper. The aim of the research is to compare the performance of the newly
developed combined protocol with the splitting one, to check whether increasing the success
ratio of payments comes at the cost of giving up on something else, and finally to make a
conclusion whether it is worth it to combine redundancy with splitting in the real world or
not.

In order to evaluate the newly developed protocol, its success ratio, as well as the av-
erage number of messages exchanged by two parties are measured using a simulation-based
evaluation. It is then compared with the already existing splitting protocol using those
metrics. It is observed that all implementations of the new protocol have a higher success
ratio compared to the splitting protocol. The increase varies between 1% and around 22%,
when different splitting algorithms, as well as different combined algorithm implementations
are used (those are explained further in Section 2 and Section 3 respectively). However, the
number of exchanged messages also increases, with the increase varying from 0.5 to around
150 on average (again, those results come from using different splitting and combined pro-
tocol algorithms). Only the static case scenario (where the topology of the network does
not change in time, and the channel capacities are reset after every transfer) was simulated,
so further simulations should be held in a dynamic environment.

The structure of the paper follows. In Section 2 the splitting and redundancy proto-
cols are discussed more in-depth. Section 3 explains the design of the combined protocol.
Section 4 gives the evaluation environment and explains the obtained results. Section 5
explains how the obtained results can be reproduced and in Section 6 a conclusion is drawn
and future work is discussed.

2 Existing Protocols

In this section the already existing protocols that need to be combined are discussed in more
detail.

2.1 Splitting Protocol

A lot of single- and multi-path routing protocols for PCNs exist |7, 8, 9], but most of them
assume that the sender chooses the whole path, through which the payment should be routed.
However, the sending party knows only the topology of the network and the capacities of

the channels it participates in. Therefore, the chosen route might contain intermediaries,
whose channel capacities are insufficient to further forward the payment, and thus result in
a failed transfer. One of the most important innovations of the splitting protocol [1] is that
the sender of the payment does not specify the whole path of the payment, but only the
first hop. After that, all the intermediary nodes decide for themselves how to forward and
split the partial payment they receive. Leaving the nodes on the path to decide where to
forward the payment to will prevent the case in which the sender decides to send it through
a channel with insufficient capacity. In order to do that, the sender and all intermediaries
should be able to (i) determine the potential next nodes for the payment and (ii) split the
payment over them.

There are 2 ways described in the paper for finding the set of potential next nodes on
which the payment can be forwarded/split:

1. Hop Distance (Nextg,p) - it gives the length of the shortest path between two nodes.
Payments are forwarded only to the nodes that are the closest to the destination (thus,
making it possible to split only when there are 2 or more nodes that have the same
distance to the target and this distance is minimal).

2. Interdimensional SpeedyMurmurs (Next;yrsa) - this is a modification of the
SpeedyMurmurs [10] algorithm, made more suitable for splitting. It establishes Breadth-
First Search spanning trees and uses them to decide on next hops. Contrary to the
original SpeedyMurmurs, the Interdimensional version considers the spanning trees
concurrently - if a node X wants to transfer a certain amount to node Y, it will con-
sider a node Z as a possible intermediary if Z is closer to Y than X in at least 1 of
the spanning trees (here, Z being closer to Y than X means that in the spanning tree
there are less edges on the path from Z to Y than on the path from X to Y). Note that
while constructing the spanning trees only a subset of the edges is used. However,
when routing a payment every channel in the graph can be used.

After the set of next hops is created, a splitting strategy is used to split the whole transfer
into partial payments according to a certain strategy. A total of 3 strategies are described
in the paper:

1. No Split (Splitn,) - the payment is not split and is forwarded to a single node.

2. Split By Distance (Splitp;s:) - the candidate nodes are sorted in order from smallest
to largest distance to the receiver with ties being broken randomly. Then, each node
receives an amount equal to the minimum of the remaining channel capacity and the
remaining partial payment.

3. Split If Necessary (Split;;y) - the candidate nodes are sorted in order from biggest
to smallest channel capacity. Then, just as in the Split By Distance case, each node
receives an amount equal to the minimum between the channel capacity and the re-
maining payment to be made.

Then, for the whole splitting protocol, every distance function can be combined with
every splitting strategy to make a complete algorithm.

2.2 Boomerang (Redundancy) Protocol

In the Boomerang protocol [6], contrary to the splitting one, the sender decides the whole
path (meaning that intermediaries only forward the payment, they are not allowed to further

split or reroute it). It also splits the whole payment into v equal transactions, using another
u redundant transactions of the same amount, making it more likely for a whole transfer
to succeed. Every time the receiver redeems a transaction, it reveals a key p(i) (i being
the number of the transaction) to the sender. In case the sender gets to know more than v
keys it can revert the whole transfer. Thus, it is most optimal for the receiver to redeem v
transactions and no more.

In the paper, 3 different multi-path routing protocols are described:

1. Retry - the original v transactions are attempted, and at most u are reattempted in
case any of the first ones fail.

2. Redundancy - v + u transactions are attempted from the beginning. The transfer
is successful if v of them arrive to the destination. According to the cryptographic
primitives established in the paper, the destination node will not be interested in
redeeming more than v transactions (since in this case the sender will have enough
information to revert the whole transfer back).

3. Redundant-Retry(10) - a combination of the 2 previous protocols. It starts out with
v + min(u,10) transactions in the beginning and reattempts at most u - min(u,10) of
them.

3 Combined Protocol

In this section, four possible realizations of combined protocols are explained:

1. No Redundancy (W/O) - no redundant payments are made (same as the splitting
protocol).

2. Atomic Transactions without Splitting (Trany,) - the payment is divided into v
equal atomic transactions. Then, they are sent through the network one after another,
without the possibility of splitting them further (could be also interpreted as using the
No Split strategy), using one of the two possible algorithms to find the next hop,
described in Section 2.1. Failed transactions are rollbacked and can be resent at most
U times.

3. Atomic Transactions with Splitting (T'rangy;:) - the same as the second one, but
the atomic payments could be further split. The payment succeeds only if all partial
atomic payments are redeemed by the receiver, and the whole transfer is successful in
case v payments succeed.

4. Retry Amount (Amount) - this strategy uses the Retry multi-path routing protocol
described in Section 2.2. Firstly, the sender starts by forwarding the whole payment.
In case a partial payment ends up in a node, in which the sum of the capacities of
all outgoing edges is insufficient, then the node forwards as much as possible and
the remainder is retried again from the beginning. The total amount of redundant
payments u is decided in the beginning.

Figure 1 gives an example of how all 3 of the newly developed combined protocol real-
izations would work on a small network.

Note that Trany, and Trangy; do not require any new cryptographic proofs except
the ones developed in the splitting and redundancy papers [1, 6] in order to be integrated.

O party O party

2 payment channel with capacity 2 payment channel with capacity

—— successful non-redundant payment

—+ successful non-redundant payment
— failed payment — failed payment

—2+ successful redundant payment —%+ successful redundant payment

O party

2

payment channel with capacity
—2 . partially successful payment

—~ successful redundant payment

Figure 1: An example of a payment of 4 from node 1 to node 7, using the a) Trany,,
b) Trangp (in both cases, v = 2 and u = 1) and ¢) Amount (using v = 2) combined
algorithm. In all 3 cases the successful payment (if existing) was first, then the unsuccessful
and finally the successful redundant one.

Figure 2 shows the communication between the two parties. First of all, Boomerang’s
cryptographic preliminaries are used - the sender and the receiver agree on v and u, with
the sender dividing the whole transfer amount into v equal transactions. The receiver also
chooses a polynomial P of degree v with coefficients «q, ag, ..., @, to be used for claiming
a transaction:

P(x) = i ax’
i=0

Then, the receiving party commits to this polynomial by sending hashed values of the
coefficients ayp, a1, ..., a, (the hash function has the property that by knowing H(c,),
obtaining «; will be difficult, but if «; is known, then H(«;) can be easily computed).
Learning the value of ay would mean that the sender can revert the whole transfer. After
that, the splitting protocol’s security properties are applied - the receiver sends its hashed
random preimage to the sender. Then, the sender appends routing information (which
includes the receiver’s identity, as well as the number of the transaction) to the payment
and forwards it to the next hop. When the receiver gets sufficiently many partial payments
(which have the same transaction number and add up to the transaction value), it uses its
preimage to unlock them and broadcasts P(i) (¢ being the transfer number) to the sender
to redeem them. The whole transfer is successful when the receiver claims a total of v
transactions. Note that the hash function H is chosen in such a way, that retrieving more
than v transactions (and thus, broadcasting more than v P(4) values) will give the sender

O Party

@ . Exchanged message

_ Sender's lime frame

/. E— Receiver's lime frame
Agree on _
vand u

Choose polynomial

Send random hashed preimage

Forward payment 1

Redeem
Broadcast coefficient 1 payment 1
Forward payment x
Redeem
payment v

Broadcast coefficient v

Figure 2: Message exchange between 2 parties throughout a transfer, with v <z < v+ w.

the opportunity to calculate all the coefficients a; for 0 < i < v, thus making it possible for
the sender to revert the transfer. Therefore, these protocol implementations are safe against
cheating behavior from the receiver.

However, the already known cryptographic preliminaries and security models are insuf-
ficient for the Amount realization. In this algorithm, the payment is not split into smaller
atomic transactions, thus making the redundant payments different in value (it is known
that the sum of all redundant payments does not exceed a certain number, but different
transactions can be of a different amount). This means that if this combined protocol im-
plementation proves to be a better option than the Tran implementations, then new security
guarantees should be developed which prevent the receiver from claiming more money than
it should.

4 Evaluation

Evaluation on the performance of the combined protocol in comparison with the existing
splitting protocol is given in this section. In order to do that, a simulation study was
conducted, in which the impact of the 3 combined algorithm realizations on the success

ratio, as well as the communication overhead measured by the average number of messages
exchanged by two parties, is analyzed.

4.1 Metrics

The most important and representative metrics that will be used are the success ratio and
the average number of messages sent between two parties throughout one payment.

The success ratio is given by the ratio between the successful transfers and all transfers.
It is expected that with redundancy more transfers will be successful and the success ratio
will increase.

However, redundancy would also increase the number of exchanged messages in one
payment. This would increase the overall time required for a transfer to finish in case the
transactions are routed one after another (not concurrently). However, if they are forwarded
concurrently, messages would be exchanged in a concurrent manner as well, so the time a
transfer requires to finish will most probably not be affected as much.

Therefore, redundancy has both its positive and negative sides and they should be com-
pared accordingly in order to make an adequate evaluation of the newly created protocol.

4.2 Simulation Model and Network

The current implementation works only in the static scenario, meaning that both the network
topology and channel capacities remain constant throughout the simulation, being reset to
their initial value after every transfer. This, of course, is not the case in the real world,
therefore a simulation in a dynamic environment is strongly suggested in the future. Also,
considering concurrency when routing the payments is vital (since when payments are made
concurrently, adding more and more redundant payments does not necessarily increase the
success ratio [6]).

The network topology? used for the simulation is taken from the splitting protocol paper
[1]. It is a real-world Lightning snapshot from March 1, 2020, snapshot 04 00. The total
number of nodes is 6329, while the average number of channels per node is 10.31. The
channel capacity distribution, as well as the mean capacity value, are also taken from the
paper, corresponding to the Lightning channel capacity in March, 20203. The average
capacity value back then was 200, with the distribution being highly skewed (most channels
had really small capacities). Thus, the exponential distribution seems to be most suitable
for this case, and is therefore used in the simulation.

4.3 Simulation Parameters

The parameters that could influence the performance include the amount to be transferred,
the number of transactions v to divide the whole payment in and the number of redun-
dant transactions u to retry in the first 2 combined algorithm realizations, and the total
redundancy amount u in the last one, all of which are described in Section 3. For the In-
terdimensional SpeedyMurmurs distance function a total of 5 spanning trees were used in
order to identify next potential hops, with the root being randomly chosen.

All experiments are averaged over 20 runs, where each run consists of 10000 transfers.
The transfer amount follows an exponential distribution with expectation 1/A = {1, 5, 20,

2https://git.tu-berlin.de/rohrer/discharged-pc-data
Shttps://1ml.com /statistics

50, 100, 200, 300}. The impact of this parameter was studied with performing a simulation
using constant values for the redundancy parameters of the combined algorithms (and also
for the initial number of transactions in the Tran implementations), namely v = 25 and
u = 10 for the Tran algorithms, and v = 100 for the Amount implementation.

For the T'ran algorithms, the influence of the number of initial transactions v, as well as
the number of redundant transactions u was studied. In the performed simulation, the values
that those two parameters took were v = {1, 5,10, 25, 50,100} and v = {1, 5, 10, 20, 30, 50},
with u taking a constant value of 10 when v was altered, and v = 25 when modifying w.
The transfer amount used is exponentially distributed with expectation 1/\ = 200.

The Amount combined algorithm is influenced by its w parameter, showing the total
maximum redundant amount. In the simulation, the value range for this parameter was
u = {10, 20, 50, 100, 200, 300, 500}. As in the T'ran simulation, the amount to be transferred
in this case is also exponentially distributed with expectation 1/A = 200.

4.4 Results

T 1
1 _@— Dist-W/0
—m— IfN-W/O
—o— N.O-Tran 0.95
o) — s Dist-Tran o)
% —&— IfN-Tran 4%
= 0.8 _ @ - Dist-Amount | pt
2] _ @ - IfN-Amount 2 0.9 Dist-W/O
8 8 —@— IfN-W/O
g g —@®— No-Tran
wn wn —%— Dist-Tran
06| 0.85 |- —— .IfN—Tran
- @ - Dist-Amount
— @ - IfN-Amount
| | 08 | |
0 100 200 300 0 100 200 300
Expected transaction value Expected transaction value
(a) Using Hop Distance (b) Using INTSM

Figure 3: Success ratio for transfers with exponentially distributed transfer amounts.

Figure 3 gives the success ratio of the different combined algorithms using both the
Hop distance function and the Interdimensional SpeedyMurmurs to identify possible next
hops. The abbreviations indicated in Section 2 and Section 3 are used in the legend for
readability. It is clear that in all cases adding redundancy increases the success ratio -
about a 19% increase when using the Hop distance function, and a 2-14% increase when
using Interdimensional SpeedyMurmurs (using different splitting algorithms and different
distance functions has a big impact here). The reason behind that difference is that when
using INTSM, the success ratio is pretty large anyway, so adding redundancy cannot make
it much larger. It is also observed that actually using the Tran realizations give a greater
improvement compared to the Amount one.

Figure 4 shows the average number of messages exchanged for 1 transfer for the different
combined protocol implementations, with the transaction amount being exponentially dis-
tributed as mentioned in Section 4.3. As seen, the Amount realization makes just slightly
more hops than the W/0 one (about 2 more when using the Hop Distance, and about 0.5

150 F 9
g 0 |z
))
S S —
m T
g 60 12 100}]
Yy Yy
5 5
E E
= Y 12
= = 50 b
& g’o
< 20 4 <
g g
Z Z D D
ol mEL Mm@ Be@LE ol EEL] HEL L/
T T T T T T
100 200 300 100 200 300
Expected transcation value Expected transaction value
‘ Oo w/O 0o Amount I0Trany, M Tranpig ‘ ‘ o w/O 0o Amount U0 Trany, M Tranp;s ‘
(a) Using Hop Distance (b) Using INTSM

Figure 4: Average amount of messages sent for 1 full transfer using the Splitp;s; distance
function.

more when using Interdimensional SpeedyMurmurs), while in the Tran realizations much
more messages are exchanged (for example, when using the INTSM and the expected trans-
fer amount is 300, in T'rany, around 119 messages are exchanged and in Tranp;s - around
144, compared to only about 18 in W/0). This is due to the fact that the whole payment
is broken into v tiny payments, which are then forwarded one after another, thus messages
are exchanged for each of those small payments.

0.74 F T I
—@— Trany, 0.98 |- N
—m— Tranpig $
072 [~ —@— Tranypn | T e
0.96 |- 8
g 0T 18
< < 094 8
- -
2 0.68 1 2
5 & 0921 *
: :
n 0.66 -4 ;n
09 5
0.64 - B —e— Trany,
0.88 | —@— Tranpe |
—@— TranysN
0.62 ! ! ! ! [! ! ! ! ! !
0 20 40 60 80 100 0 20 40 60 80 100
Number of transactions v Number of transactions v
(a) Using Hop Distance (b) Using INTSM

Figure 5: Success ratio of the Tran combined algorithm using different number of transac-
tions v, with number of redundant transactions v = 10 and expected transfer amount being
200.

Figure 5 shows how does the success ratio of the Tran algorithms change when the

number of initial transactions v is altered. As seen, when using the Hop distance function,
the most optimal v for all Tran algorithms in this simulation is 5. This could be due to
the fact that the total redundant amount decreases when v increases - the bigger the initial
number of transactions, the smaller the amount of one transaction, thus the smaller the
total amount of redundant transactions. Therefore, the amount of redundant transactions
might not be sufficient in order to compensate for the failed ones.

When using the INTSM distance function the difference is not that significant when
v < 25 (when v > 25 the success ratio drops because of the same reason as in the Hop
distance function case). The reason behind this is that even without redundancy the total
success ratio of the transfers was pretty high, so adding redundancy does not affect it as
much as in the Hop distance function case. Therefore, making more but smaller atomic
payments cannot affect the overall performance that much. Note that when using the Dist
splitting algorithm the success ratio drops with 0.2% when v increases from 1 to 5. This is
due to the randomness included in the splitting algorithm when breaking ties, and can be
shown by the confidence intervals obtained for the success ratio in those two occasions. A
confidence interval displays the probability that a parameter (in this case, the success ratio)
will fall between a pair of values. When v = 1, the 95% confidence interval is (0.976,0.98),
and for v = 5 - (0.973,0.979). As seen, they are really close, so it can be deduced that
randomness in breaking ties is the reason for this small drop.

0.75 *
0.98 + *
9 0.7 1.8
& =
= =
w w 0.97 *
w0 0
¢ g
= 0.65[R
n N
—e— Trany, 0.96 - —e— Trann, |
0.6 —— Tranp;s¢ | —M— Tranp;s¢
—@— Tranysn —@— Tranysy
| | | | | | | | | | | |
0 10 20 30 40 50 0 10 20 30 40 50
Number of redundant transactions u Number of redundant transactions u
(a) Using Hop Distance (b) Using INTSM

Figure 6: Success ratio of the T'ran combined algorithm using different number of redundant
transactions wu, with number of original transactions v = 25 and expected transfer amount
being 200.

Figure 6 shows how the T'ran algorithms change their success ratio when the number of
redundant transactions u is altered. Note that in the case of having concurrent payments
adding more redundancy would not always mean a better success ratio because the payments
might block each other. Therefore, conducting a simulation where payments are forwarded
concurrently is vital for future work. However, in the static case scenario when only one
payment is forwarded through the network at a time, it is expected that the number of
successful transfers would increase when the total redundant payments increase - since in
this case more partial payments could be reforwarded from the sender in case some others
fail. From what can be observed in the figure, this seems to be the case. Only when using the

10

INTSM distance function with the total redundant payments being between 20 and 50 this
is not the case. However, as mentioned before, the success ratio is pretty high there (roughly
98%), so this error is most probably because of the randomness introduced when breaking
ties between the possible next hops. For example, when using the Dist splitting strategy and
u increases from 20 to 30, the success ratio drops with 0.15%. The 95% confidence interval
when u = 20 is (0.9797,0.983) and when u = 30 - (0.977,0.982). Again, they are really close
to one another, so the success ratio drop would be due to the involved randomness.

However, even though it seems that adding more and more redundant payments is in-
creasing the success ratio (in the static scenario), this also comes at a cost - the number of
exchanged messages throughout one whole transfer increases.

gz 100 18
))
g g 160(8
) 95 - 41 8
g g
kS| kS|
3 90 I~ 1 a 140 - -
E E
2 2
=] 85 | | =]
) [
))
g g 120 |- *
L —e— Trany, | —e— Trany,
% 80 - T7‘a71Dj\i=t % . TmnDNHt
—@— Tranpyn —@— Tranysn
| | | | | | | | | | | |
0 10 20 30 40 50 0 10 20 30 40 50
Number of redundant transactions u Number of redundant transactions u
(a) Using Hop Distance (b) Using INTSM

Figure 7: Average number of messages exchanged for the combined algorithm using different
number of redundant transactions w, with number of original transactions v = 25 and
expected transfer amount being 200.

Figure 7 gives information on how much does the average number of messages increase for
the T'ran algorithms when the number of redundant payments v is altered. When using the
Hop distance function we see that there is an increase of more than 10 when the redundant
payments are 20 and 50 respectively, and when using the Tranp;s; algorithm combined with
INTSM this difference becomes much larger - more than 30 more messages. Therefore, the
conclusion which can be drawn here is that with giving up a bit on the success ratio, the
number of exchanged messages throughout one transfer would drop. In this particular case,
having more than 20 redundant payments would mean unnecessarily increasing the number
of messages in order to increase the success ratio with 0.3% or even less.

Figure 8 shows the success ratio of the Amount combined algorithm. As seen, adding
more redundancy does not help when the whole transfer amount cannot be split. When the
transfer fails, the whole amount is reforwarded from the sender again, thus the only hope
is that it goes through another path (that is, picking a different neighbouring node when
randomly splitting ties between possible next hops). In all other cases it seems that adding
more redundancy until v = 300 affects the success ratio positively. If the Hop distance
function is used, the success ratio increases by around 20% when comparing the cases in
which v = 10 and v = 300. When using INTSM, it can be observed that the increase also
depends on the splitting algorithm used. When the Dist algorithm is used the increase is

11

0.7} 1 o095 o .
.2 .2
= 0.65[4 =
- a 0.9) y
w0 0
5] —@— Amounty, 3] —@— Amounty,
< — B Amountpg, < — B Amountpg,
=] =]
0 —@— AmountrfN | TR —@— Amountrsy
0.6 |-
0.85 *
we o o o o w e o . . °
055 ! ! ! ! [! ! ! ! ! !
0 100 200 300 400 500 0 100 200 300 400 500
Total redundant amount Total redundant amount
(a) Using Hop Distance (b) Using INTSM

Figure 8: Success ratio of the Amount combined algorithm, using different total redundant
amount u.

about 1.5%, in comparison with a 4.5% increase when using IfN. Note that, as in the T'ran
combined algorithm implementations, there are cases in which adding redundancy results
in a drop of the success ratio. For example, one of these inverted cases is when u goes
from 20 to 50 when using the Hop distance function and the Dist splitting algorithm. The
95% confidence interval when u = 20 is (0.6,0.611), and when v = 50 - (0.58,0.618). It is
seen that the boundaries of the second interval are roughly on the same distance from the
boundaries of the first one and that they are pretty close to one another. Thus, it can be
concluded that, as in the previous cases, randomness is the main factor causing the success
ratio drop.

In summary, the Tran realizations have an advantage over the Amount one both in the
success ratio and in the fact that no new cryptographic protocols should be obtained in
order to prove they can be implemented in the real world. However, the average number
of messages exchanged between two parties throughout a full transfer is much larger when
using the Tran implementations than when using the Amount one or the normal splitting
protocol. This might not be a problem if the transactions are routed concurrently, so
implementing and evaluating concurrent payments in the future would be really important
here.

5 Results Reproduction

In this section the way to reproduce the results will be discussed. It is of great importance
that other people interested in the blockchain technology are able to check the results for
themselves, since this can lead them to further improve the presented combined protocol,
or even implement it in the real world.

The solid foundation for the whole project was given in the splitting protocol imple-
mentation*. This is also the code used to obtain the results for the W/O realization of
the combined protocol (which is exactly the same as the splitting protocol, used only for

4https://github.com /stef-roos /PaymentRouting

12

comparison with the other 3).

Implementation of the Tran® realizations and the Amount® algorithm are located in the
same repository, but on different branches. However, in both cases the results are obtained in
the same way - by running the main() method in the src/paymentrouting/route/Evaluation
class. The main() method calls the evalValTrees() method. All of the parameter settings
are located there. In both algorithms the vals array stores all the considered transfer values
(or rather, the expected transfer values since they follow an exponential distribution). In
the Tran implementations, the transactions and the redundant arrays store the parameters
v (the number of transactions, in which the whole transfer amount is divided) and u (the
number of redundant transactions) respectively. The Amount implementation contains the
amountToRetry array, in which the values used for the total redundant amount parameter u
are stored. All of the aforementioned arrays currently contain the values used and described
in Section 4. After running the evaluation, the results files appear in the data/lightning-
nopadding folder.

The code was tested and runs under Windows 10 and macOS Big Sur operating systems.
No specific file paths were hard-coded and there are not any other machine-specific settings
that prevent the implementations from running on any computer.

The results obtained by running the evaluation might slightly differ from those discussed
in the paper due to the randomness involved in choosing the next hop when routing a
payment. Unfortunately, providing the random seeds used by the random number generator
in the evaluation phase discussed in this paper is not possible. However, standard deviation,
as well as 95% confidence intervals are present in the results files. These can be used to
deduce the possible error between two subsequent simulations.

6 Conclusion and Future Work

This section discusses further the obtained results in Section 4 and brings up ideas on some
work that could be done in the future. As mentioned in Section 1, the goal of this paper
is to explain how does adding redundancy to the existing splitting protocol [1]| affect its
performance and whether there are any issues that arise with the newly created combined
protocol.

As seen, adding redundancy to the splitting protocol brings the successful payments ratio
up. However, this also comes with a price - the nodes in the network will have to exchange
more messages (since failed partial payments are reattempted from the beginning).

We have seen that using the Amount combined algorithm, the average number of ex-
changed messages is slightly higher than the splitting protocol’s, while the Tran algorithms
use much more than it, making the whole transfer process much slower in the static scenario.
This, however, also comes with a price - the success ratio of the Amount version when using
the INTSM distance function is smaller than that of the T'ran realizations. Also, new cryp-
tographic rules and security models would need to be obtained in order to prove that the
whole combined strategy is secure, and that the sender and the receiver’s greatest interest
would be to respectively pay and claim exactly the amount of the whole transfer.

Therefore, the main goal for the future would be to firstly think on improvements over
the Tran algorithms. One such improvement could be to send all of the transactions con-
currently. In this way, the messages can also be exchanged concurrently, so the total time

Shttps://github.com/ivkontiny /PaymentRouting-1/tree/redundancy-no-split
6https://github.com /ivkontiny /PaymentRouting-1/tree/redundancy

13

one transfer takes would decrease. Also, using heuristics when deciding on the next hops
would probably increase the success ratio further.

In case the abovementioned goal proves to be unsuccessful, then cryptographic proofs

and security models should be obtained in order to prove that the Amount algorithm is
feasible for integration in the real world. This seems to be a much harder task, but the
benefits will be huge - getting a pretty big increase in the success ratio, while exchanging
just slightly more intermediary messages.

References

1

2]

3]

4]

[5]

[6]

7]

8]

9]

[10]

Lisa Eckey, Sebastian Faust, Kristina Hostakova, and Stefanie Roos. Splitting payments
locally while routing interdimensionally. TACR Cryptol. ePrint Arch., 2020:555, 2020.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,
Manubot, 2019.

Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
FEthereum project yellow paper, 151(2014):1-32, 2014.

Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites: Pay-
ment channels that go faster than lightning. CoRR, abs/1702.05812, 2017.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments, 2016.

Vivek Bagaria, Joachim Neu, and David Tse. Boomerang: redundancy improves latency
and throughput in payment-channel networks. In International Conference on Financial
Cryptography and Data Security, pages 304-324. Springer, 2020.

Pavel Prihodko, Slava Zhigulin, Mykola Sahno, Aleksei Ostrovskiy, and Olaoluwa Os-
untokun. Flare: An approach to routing in lightning network. White Paper, 2016.

Peng Wang, Hong Xu, Xin Jin, and Tao Wang. Flash: efficient dynamic routing for
offchain networks. In Proceedings of the 15th International Conference on Emerging
Networking Ezxperiments And Technologies, pages 370-381, 2019.

Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivatsan
Ravi. Concurrency and privacy with payment-channel networks. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages
455-471, 2017.

Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. Settling pay-
ments fast and private: Efficient decentralized routing for path-based transactions.
arXiv preprint arXiw:1709.05748, 2017.

14

